
Fundamenta Informaticae XXX (2018) 1001–1024 1001

DOI 10.3233/FI-2016-0000

IOS Press

The Magda language: ten years after

Viviana Bono
Dipartimento di Informatica

University of Torino

Corso Svizzera 185, 10149 Torino, Italy

bono@di.unito.it

Abstract. We discuss Magda ten years after its design. Magda is a mixin-oriented programming
language and its goal is to improve code modularity and, as a consequence, code reuse. The aim
of this paper is to survey Magda and position it in today’s programming language scenarios.

Keywords: Object-oriented programming language, mixin, modularity, code reuse.

1. Introducing Magda

From the early nineties up to the new millennium there was a flourishing of studies on object-oriented
languages, that:

• clarified aspects of the theory behind objects, notably the milestone A Theory of Objects by
Abadi and Cardelli [1], the lambda-calculus of objects by Fisher, Honsell, Mitchell [15], and
the work by Bruce [11];

• helped main-stream languages advance, for example Java generics (formalized elegantly via
Featherweight Java in [23]) made their way into Java 5;

• studied alternatives to single and multiple inheritance, the former too rigid to be an effective
means of code reuse, the latter perceived as too complicated and too dangerous [12]. There is a
large body of work from the seminal work of Bracha and Cook [10], to mixin-based inheritance
[29, 10, 9, 3, 16, 7, 4] and trait-based inheritance [31, 13].

Address for correspondence: bono@di.unito.it

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Institutional Research Information System University of Turin

https://core.ac.uk/display/302355414?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1002 V. Bono / The Magda language: ten years after

Magda stems from this tradition and it is a general-purpose language oriented to code reuse with
three well-defined features:

• Magda is mixin-based, but with a twist with respect to other mixin-based proposals.

• Magda offers modular constructors, as an alternative to traditional ones, which are monolithic.

• Magda imposes hygienicity on identifiers of fields and methods, in order to avoid accidental
name clashes.

Magda was studied within Jarek Kuśmierek’s PhD thesis [25] and presented at the conference
ECOOP 2012 [8]. In the latter, the main focus was on the modular initialization protocol. A thorough
description of the problems Magda help solving is present in the previous publications. A detailed
description of the language syntax can be found in [25]. A proof-of-concept implementation of Magda,
the examples present in the paper, and a first proposal for an IDE can be found at [27]. The aim of this
paper is to survey Magda and position it in today’s programming language scenarios.

This paper is organised as follows: Section 2, Section 3 and Section 4 describe by examples,
respectively, the three main features of the language mentioned above. Section 5 hints briefly at the
Magda type system. Section 6 discuss the future potential of Magda.

Note. The examples of Section 2.2, Section 3, and Section 5 are taken from [8].

2. Magda is mixin-based

Magda is a mixin-oriented language, as opposite to a class-based language. A class is intended as a
“closed” collection of fields and methods, describing the state of its object instances and the operations
on the state, possibly inherited from ancestor classes. A mixin differs from a class as it is inherently
“open”, since it can assume operations that can be supplied by other templates (i.e., other mixins or
classes). In what does a mixin differs from, say, an abstract class? One strong point of mixins is that
they can be composed, to obtain a tamed form of multiple inheritance, which is linearised and thus does
not suffer from the diamond problem [10], that is one of the biggest drawbacks of multiple inheritance.
It happens when a class inherits from the same parent class via more than one path, possibly producing
conflicts among components. Method conflicts are relatively easy to solve, for example by means of
overriding, instead state conflicts are trickier, since it is not clear if the state should be inherited
more than once or only once, and, for the latter, along which path. Mixin composition enforces a
linear, hence unique, inheritance path, therefore avoiding the diamond problem. In most mixin-based
proposals [9, 17, 7, 4, 37], mixins and classes live together: a mixin is a class parametrised on a
superclass. The same mixin can be applied to different superclasses, originating families of object
templates. In Magda, however, there is only one construct: the mixin. A mixin can extend more than
one base mixin at once, therefore Magda offers a form of multiple inheritance. Each object in Magda
is created from a non-empty sequence of mixins, that are composed together. A sequence of mixins
plays a role similar to the one of a class in other languages.

V. Bono / The Magda language: ten years after 1003

2.1. The Decorator pattern in Magda

The Decorator pattern can be used to extend the functionality of a certain object at runtime (by dec-
orating it), independently of other instances of the same class [18]. This pattern is designed so that
multiple decorators can be stacked on top of each other, each time adding a new functionality to the
overridden method(s). We depict an example here, where a string is first framed within two rows of
stars, then duplicated, then these two effects are combined in two different orders, as shown in Fig-
ure 1. The reader will forgive us for the lack of graphics in Magda, however this example mirrors
the paradigmatic Gang-of-Four example of a window decorated with a border and a scroll bar, in any
order [18].

Label:

This is a label

FramedLabel:

This is a FRAMED label

DoubledLabel:

This is a DOUBLED label

This is a DOUBLED label

multiInherit1(Framed + Doubled):

This is a FRAMED and so DOUBLED label

This is a FRAMED and so DOUBLED label

multiInherit2(Doubled + Framed):

This is a DOUBLED and so FRAMED label

This is a DOUBLED and so FRAMED label

FramedDoubledLabel(Framed + Doubled):

This is a FRAMED and so DOUBLED label

This is a FRAMED and so DOUBLED label
**

DoubledFramedLabel(Doubled + Framed):

This is a DOUBLED and so FRAMED label

This is a DOUBLED and so FRAMED label
**

Figure 1. A decorated label (from the execution of the TestLabel Magda program)

Within a language without mixins, one obvious solution would be to create a hierarchy of classes,
as depicted in Figure 2, but this solution is a bad one, since it introduces redundancies of classes and
code duplication (in this example, in the method PrintLabel()). The Decorator design pattern (see
Figure 3) offers a better solution, based on object composition and dynamic binding. Intuitively, a
concrete component object of type Label can be wrapped by a decorator object of type Doubled or
by a decorator object of type Framed, which in turn can be wrapped by another decorator object of

1004 V. Bono / The Magda language: ten years after

type Framed or by another decorator object of type Doubled. The method PrintLabel() in Label
pretty-prints the content of the label, in Framed adds a row of stars before and after forwarding the
call to its component field, in Doubled forwards the call to its component field twice.

FramedDoubledLabel

+PrintLabel(): void

DoubledFramedLabel

+PrintLabel(): void

FramedLabel

+PrintLabel(): void

DoubledLabel

+PrintLabel(): void

Label

labelText: String

+SetLabelText(text: String): void
+GetLabelText(): String
+PrintLabel(): void

Figure 2. An inheritance-only-based solution

Framed

+PrintLabel(): void

Doubled

+PrintLabel(): void

Decorator

component: DecoratedLabel

+PrintLabel(): void

«Interface»
DecoratedLabel

+PrintLabel(): void

Label

labelText: String

+SetLabelText(text: String): void
+GetLabelText(): String
+PrintLabel(): void

Figure 3. A Decorator-based solution

Implementing the Decorator in Magda is easy and effective thanks to mixin composition. To
produce the sought decorations, we write four mixins. The first one extends the base mixin Object,
declares a field and three methods. Methods must be prefixed either with new or with override,
indicating, respectively, an introduction or a redefinition. Each access to a field or call to a method
is prefixed with the name of the mixin where the identifiers was introduced (with a new keyword);
this hygienic approach to identifiers is to avoid accidental name clashes. The this represent the self
object, as usual. The mixin String is part of the Magda library.

mixin Label of Object =
labelText:String;

V. Bono / The Magda language: ten years after 1005

new void SetLabelText (text:String)
begin
this.Label.labelText := text;

end;

new String GetLabelText ()
begin
return this.Label.labelText;

end;

new void PrintLabel ()
lineFeed:String;
lenText:Integer;
i:Integer;

begin
lenText := this.Label.labelText.String.length();
lineFeed := "\r\n";
i := 0;
while(i < (lenText+4))
"-".String.print();
i := i + 1;

end;
lineFeed.String.print();
"| ".String.print();
this.Label.labelText.String.print();
" |".String.print();
lineFeed.String.print();
i := 0;
while(i < (lenText+4))
"-".String.print();
i := i + 1;

end;
lineFeed.String.print();

end;

end;

The second and third mixins extend the previous mixin and redefine a method.

mixin DoubledLabel of Label =

override void Label.PrintLabel ()
lineFeed:String;

1006 V. Bono / The Magda language: ten years after

begin
lineFeed := "\r\n";
lineFeed.String.print();
super();
super();
lineFeed.String.print();

end;

end;

mixin FramedLabel of Label =

override void Label.PrintLabel ()
lineFeed:String;
lenText:Integer;
i:Integer;
begin
lenText := this.Label.labelText.String.length();
lineFeed := "\r\n";
i := 0;
while(i < (lenText+4))
"*".String.print();
i := i + 1;

end;
lineFeed.String.print();
super();
i := 0;
while(i < (lenText+4))
"*".String.print();
i := i + 1;

end;
lineFeed.String.print();

end;

end;

We now use a let assignment to give names to sequences of mixins representing mixin compositions,
that will be used later on in the code into new expressions to create objects. We also introduce a fourth
mixin. It is an “empty” mixin and it has the purposes of giving a name to a compound mixin and
therefore of inducing a new type.

let FDLabel = Label, FramedLabel, DoubledLabel, FramedDoubledLabel;

V. Bono / The Magda language: ten years after 1007

let DFLabel = Label, DoubledLabel, FramedLabel, FramedDoubledLabel;

mixin FramedDoubledLabel of Label, FramedLabel, DoubledLabel =

// This mixin has an empty body

end;

The reader should pay attention to the difference between names for mixin compositions introduced
via let (such as FDLabel), that are mere syntactic sugar to shorten new expressions, and mixin defi-
nitions (such as FramedDoubledLabel), possibly extending other mixins.

What follows is a program written in Magda, that exploits the mixins previously defined. We
alternate code and explanations, with the goals of showing how to implement the Magda version of
the Decorator and of introducing some syntax and characteristics of the language, as a byproduct.

In the first part, there are inclusions of the Magda library (containing some basic utilities) and of
the mixins displayed above.

include "Magdalib/library.magda";
include "Mixinlib/mixinLabel.magda";
include "Mixinlib/mixinFramedLabel.magda";
include "Mixinlib/mixinDoubledLabel.magda";
include "Mixinlib/mixinFramedDoubledLabel.magda";

In Magda, a possible way of writing a program is to encapsulate a “main” method into a mixin.

// Main
mixin MainClass of Object =

new Object mainProgram()

mainLabel:Label;
mainFramedLabel:FramedLabel;
mainDoubledLabel:DoubledLabel;
multiInherit1:Label;
multiInherit2:Label;
mainFramedDoubledLabel:FramedDoubledLabel;
mainDoubledFramedLabel:FramedDoubledLabel;

The mixin MainClass extends the base mixin Object and defines a new method called mainProgram()
with no arguments and Object as the return type (used here as the Java void type). In the method
there are variable declarations: the types are mixin names.

Then five objects are created1. We will describe (modular) constructors and object creation later
on. The last two objects mix frame and duplication in two different orders and realize the decorations.
1In this version of Magda, it is necessary to list all the super-mixins of the mixin(s) from which the object is created, and the
supermixins come first in the list. This feature is obviously inconvenient and will be overcome in possible future versions of
the language.

1008 V. Bono / The Magda language: ten years after

In general, the order among unrelated mixins (i.e., mixins that are not in the same hierarchy, even
if they might share ancestors), such as FrameLabel and DoubleLabel, matters and can originate
different effects (as in our case). The order, in particular, imposes an order over method redefinitions,
when present.

begin

mainLabel := new Label[];
mainFramedLabel := new Label, FramedLabel[];
mainDoubledLabel := new Label, DoubledLabel[];
multiInherit1 := new Label, FramedLabel, DoubledLabel[];
multiInherit2 := new Label, DoubledLabel, FramedLabel[];

The following assignments show other ways of composing the same mixins.

// mainFramedDoubledLabel :=
// new Label, FramedLabel, DoubledLabel, FramedDoubledLabel[];
// mainDoubledFramedLabel :=
// new Label, DoubledLabel, FramedLabel, FramedDoubledLabel[];

// Thanks to the ’let’, a more compact syntax:
mainFramedDoubledLabel := new FDLabel[];
mainDoubledFramedLabel := new DFLabel[];

What follows, it is a portion of code where methods are called on the previously created objects.

"Label:\r\n".String.print();
mainLabel.Label.SetLabelText("This is a label");
mainLabel.Label.PrintLabel();
"\r\n".String.print();

"FramedLabel:\r\n".String.print();
mainFramedLabel.Label.SetLabelText("This is a FRAMED label");
mainFramedLabel.Label.PrintLabel();
"\r\n".String.print();

[...]

"multiInherit1(Frame + Double):\r\n".String.print();
multiInherit1.Label.SetLabelText("This is a FRAMED and DOUBLED label");
multiInherit1.Label.PrintLabel();
"\r\n".String.print();

[...]

V. Bono / The Magda language: ten years after 1009

"FramedDoubledLabel(Double + Frame):\r\n".String.print();
mainDoubledFramedLabel.Label.SetLabelText("This is a DOUBLED and FRAMED label");
mainDoubledFramedLabel.Label.PrintLabel();
"\r\n".String.print();
end;

end;

The statement mainDoubledFramedLabel.Label.PrintLabel() is a method call. The method
PrintLabel() (introduced in the mixin Label) is called on the object mainDoubledFramedLabel.
In the statement that follows, an object from mixin MainClass is created, in order to invoke the
mainProgram(): (new MainClass[]).MainClass.mainProgram().

2.2. Virtual and abstract methods

A method redefinition has a different syntax from method introduction: a redefinition begins with an
override keyword and contains the name of the mixin in which the redefined method was introduced.
The body of a method redefinition can use a super(...) expression to call a previous implementation
of the method. When a super(...) expression is evaluated in a method mt of a mixin Mc belonging
to a mixin sequence

−→
M , the previous implementation of mt is the one present in the last mixin in

−→
M

preceding Mc, which contains a definition or a redefinition of the method mt. As a result, the actual
method body called by super(...) within a method redefinition depends on the mixins (and their
order) which have been used to create the object in the corresponding new expression. Indeed, we saw
this in the example of the Decorator in Section 2.1. Because we choose explicitly which method from
which mixin to redefine when declaring a method redefinition, there are no problems when two base
mixins of a given mixin contain method definitions with the same name. Moreover, this explicitness
also ensures that accidental name clashes are avoided when a new method is added to a mixin extended
by other mixins.

A mixin declaration can also contain a declaration of a new method identifier without the body,
marked with the keyword abstract. The body must be supplied by another mixin, by marking it with
the keyword override. The following example shows some features of the abstract methods.

mixin M1 of Object =
abstract String Met1();

end;

mixin M2 of M1 =
override String M1.Met1()
begin
return "Implementation from M2";

end;
end;

1010 V. Bono / The Magda language: ten years after

mixin M3 of M1 =
override String M1.Met1()
begin
return super().String.add(" with redefinition from M3");

end;
end;

mixin M4 of M1 =
new String Met1()
begin
return super().String.add(" with redefinition from M4");

end;
end;

(new M1, M2, M3 []).M1.Met1().String.print();
// OK and prints: "Implementation from M2 with redefinition from M3"

(new M1, M3, M2 []);
// does not compile, M3.Met1 not suited as first definition of M1.Met1
// (contains call to super())

(new M1 []);
// does not compile, implementation of M1.Met1 missing

(new M4 []);
// does not compile, M4.Met1 is a new method, it cannot reference a super()

3. On modular constructors

We developed for Magda a Modular Initialization Protocol approach (MIP for short) based on small,
composable pieces called initialization modules (ini modules from now on).

An ini module accords with the following syntax:
{ required | optional } Mixin (p1: T1; ...;pn: Tn) initializes (p1; ...;pk)
begin

I1;
super[p1:=e1, ...,pn:=en];
I2;
end

First of all, the signature of an ini module declares whether its usage is required or optional,
meaning whether its execution is mandatory or not during the initialization of an object. Then, in the

V. Bono / The Magda language: ten years after 1011

style of Java constructors, which are named with the name of the declaring class, we have the name
Mixin of the mixin in which this ini module is declared. Finally, each ini module comes with two list
of parameters: the parameters in the first list (p1: T1; ...;pn: Tn) are called input parameters, and they
must be supplied to execute the ini module; the parameters in the second list (p1; ...; pk) are called
output parameters and they make reference by name to input parameters declared in other modules,
whose values will be computed by the current ini module and supplied, via the super construct, to
such other modules. We will show how Magda’s ini modules are activated by a running example in
the next section.

3.1. An example

The program shown in Figure 4 exploits two mixins containing ini module declarations. The first
mixin (Point2D) contains the declaration of ini module mod1, requiring parameters x and y and not
computing any output parameter. That is why the super[] instruction in mod1 does not contain any
parameter assignment. The second mixin (Point3D) contains the declarations of two ini modules.
The first one (mod2) expects one input parameter z, which is used to initialize the field fz of the
object. The second one (mod3) has one input parameter other and three output parameters. Those
output parameters refer to the input parameter of the module mod2 declared in the same mixin, and
to the parameters of the module mod1 declared in the base mixin. Its body contains a super[...]
instruction, which computes the values of the three output parameters.

Finally, the MainClass.MainMatter method contains two object creation expressions. The first
expression supplies the values of three initialization parameters: z of mixin Point3D, and x and y of
mixin Point2D. When this instruction is executed, an object of type Point3D is created and then the
initialization protocol proceeds as follows:

1. the first parameter Point3D.z is supplied to module mod2, and that module is the first one to be
executed;

2. when its execution reaches super[], the search begins for the next module to be executed,
which is mod1, because parameters x and y are yet to be consumed;

3. the last instruction of the module mod1, the super[] call, does nothing, since all parameters
have been consumed.

The second object creation expression supplies the value of one initialization parameter, Point3D.other.
When this instruction is executed, an object of type Point3D is created:

1. the optional module mod3 is executed, and it computes the three parameters x,y,z;

2. the third parameter is passed to the module mod2;

3. when the execution of mod2 reaches the super[...] call, the remaining two parameters are
supplied to module mod1;

4. the last instruction of the module mod1, the super[] call, does nothing, since all parameters
have been consumed.

1012 V. Bono / The Magda language: ten years after

mixin Point2D of Object =
fx:Integer; fy:Integer;

required Point2D(x:Integer; y:Integer) initializes () //module mod1
begin
this.Point2D.fx := x;
this.Point2D.fy := y;
super[];

end;

new Integer getX();

new Integer getY();
end;

mixin Point3D of Point2D =
fz:Integer;

required Point3D(z:Integer) initializes () //module mod2
begin
this.Point3D.fz := z;
super[];

end;

optional Point3D(other:Point3D) initializes
(Point2D.x, Point2D.y, Point3D.z) //module mod3

begin
super[Point2D.x:= other.Point2D.getX(), Point2D.y:= other.Point2D.getY(),
Point3D.z:= other.Point3D.getZ()];

end;

new Integer getZ();
end;

mixin MainClass of Object =
new Object MainMatter()
p1:Point3D; p2:Point2D;
begin
p1:= new Point2D, Point3D[Point3D.z:= 12, Point2D.x:=10, Point2D.y:=11];
p2:= new Point2D, Point3D[Point3D.other := p1];

end;
end;

(new MainClass []).MainClass.MainMatter();

Figure 4. Object initialization in Magda

V. Bono / The Magda language: ten years after 1013

As a result, all the ini modules declared in the program are executed during the creation of this object,
in a bottom-up order: mod3, mod2, mod1.

3.2. The MIP constructs

The new construct Every object creation expression has the following syntax:

new MixinExpression[p1:=e1, ...,pn:=en]

where MixinExpression is an ordered sequence of mixins, followed by a (possibly empty) list of
initialization parameters, together with their values. When such an expression is evaluated, the list of
ini modules within the mixins beloging to MixinExpression is traversed. Each module for which
there are input parameters supplied is executed and, when the execution of a given module reaches a
super[...] instruction, the traversal procedure is resumed. A module is then executed when its input
parameters either are supplied directly in the object creation expression or are supplied indirectly by
another module (via its output parameters), which was executed before. In [8] a semi-formal semantics
of this mechanism is described.

The super construct The super[...] instruction in an ini module is different from the super(...)
expression within overriding method bodies, because the parameters supplied in super[...] do not
have to be the parameters which will be passed to the ini module activated by this super[...] in-
struction. Those parameters can be in fact passed to other modules which will be executed later on.
To understand this better, consider again the example in Figure 4. The super[...] instruction in the
module mod3 supplies the values of three initialization parameters and calls the module mod2. How-
ever, only one of these parameters (z) is consumed by mod2, while the remaining parameters (x, y)
will be supplied to another ini module (mod1). Moreover, super[] instruction within mod2 does not
contain any parameters, however it calls the module mod1, that takes two parameters which have been
computed by mod3.

3.3. How ini modules solve the problems of traditional constructors

In the following, we discuss how Magda’s ini modules solve some problems of traditional constructors.
Optional parameters. We can introduce an optional ini module for each set of optional attributes

as (input) parameters without increasing exponentially the number of ini modules with respect to the
number of the attributes, since each ini module takes care only of its input parameters. Also, there is
no problem with parameter lists of the same length and compatible types, thanks to named parameters.

Unnecessary constructor dependencies. Any new ini module introduced in a mixin is independent
from the ini modules already present. We see this in the following example (continuation of the
example from Figure 4):

mixin ColorPoint of Point2D =
fcr:Integer;
fcg:Integer;
fcb:Integer;

1014 V. Bono / The Magda language: ten years after

required ColorPoint(cr:Integer, cg:Integer, cb:Integer) initializes ()
begin
this.ColorPoint.fcr := cr;
this.ColorPoint.fcg := cg;
this.ColorPoint.fcb := cb;
super[];

end;
end;

new Point2D, Point3D, ColorPoint[Point2D.x := 1, Point2D.y := 2,
Point3D.z := 10, ColorPoint.cr := 255,];

The initialization module in mixin ColorPoint is independent from the ones in mixin Point2D, in
particular it does not refer to any of Point2D ini modules’ parameters. An ini module contains ref-
erences to input parameters of other ini modules only when it computes their actual values (if this
is the case, they are present as output parameters of the ini module); for instance, the ini module
from Figure 4 with input parameter other:Point3D refers to parameters x, y, and z as its output
parameters.

Multiple initialization options and code duplication. Each option corresponds to a certain ini
module, and each ini module deals with one option without need for code duplication. An example
is the one above that mixes colors with coordinates: this is a typical case that would cause code
duplication when using classical constructors.

Fragile overloaded constructors. In Magda, the choice of the appropriate ini modules is done
using the names of the parameters and no form of overloading is present. As a result, there cannot be
ambiguities.

Problems with traditional mixins. Traditional mixins are basically classes parametrized over a
superclass, that is, in addition to mixin composition (similar to the one of Magda’s) there is also mixin
application, which applies a mixin to a class to obtain a fully-fledged subclass (the class argument
playing the role of the parent). Therefore, they suffer from the same problems of class-based languages
with respect to initialization. We refer to Jam [4] (a Java extension with mixins) for a discussion on the
matter. In particular, in Jam the authors decided to circumvent the problem by choosing to disallow
the declarations of constructors in mixins, and forcing programmers to write constructors manually in
all classes resulting from a mixin application. We thus believe that the adoption of ini modules could
improve code modularization also within traditional mixins like the ones of Jam.

4. On hygienicity

As hinted before, Magda enforces a hygienic way of declaring and referencing identifiers of fields
and methods. This approach modifies the way declarations of new methods, overriding of existing
methods, field access and method calls are specified. In fact, in Magda the method and field names
are qualified by the name of the mixin in which they have been introduced. The objective of this

V. Bono / The Magda language: ten years after 1015

hygienic approach is to avoid accidental name clashes. These clashes can cause different kinds of
problems, from non-compilation to unexpected behavior during the program execution (e.g., due to
accidental overridings). However, this approach, while improving inter-component compatibility, is
surely the weakest point of the language seen from the usability perspective of a programmer. In fact,
prefixing each method name with the mixin name may result in a code which is verbose and difficult
to read and to maintain. Therefore, we thought of designing and implementing an IDE tool to deal
with non-ambiguous identifiers in a smoother manner.

The IDE has been implemented by taking advantage of the pre-built language implementation
infrastructure offered by the framework Xtext [14] of Eclipse, obtaining an Eclipse plugin. This
framework is successfully exploited for implementing programming languages, via compilers and
interpreters. Xtext is a framework for the development of programming languages as well as other
domain-specific languages (DSLs), which eases this task by providing a high-level setting that gener-
ates most of the typical and recurrent artifacts necessary for a fully-fledged IDE on top of Eclipse. The
plugins generated by Xtext already implement most of the recurrent artifacts for a language IDE, and
they can be easily customised by “injecting” (relying on Google-Guice) the specific language mecha-
nisms implementations. Therefore the code that is needed for customizing the IDE is essential: there
are some stubs that only need to be filled with language-dependent code to obtain the various IDE
functionalities.

First of all, the IDE offers a set of standard IDE-functionalities, as:

• compiling and executing of Magda programs;

• syntax coloring, to give the user syntactic or semantic information through colors;

• hyperlinking, which makes the code navigable;

• outline view, which shows the user a graphical, simplified structure of code;

• validation, and raising of related errors and warnings;

• quick fixes associated with errors or warnings, which represents hints to the user to solve them.

However, as said above, the main goal of our Magda IDE is to give the programmer a way to
go beyond the intrinsic verbosity of the language, by making to him/her available the possibility of
working on two different views of the code:

• a standard view of Magda code, according to the syntax of the language; this view on the code is
called extended, because in this case all the hygienic identifiers are directly visible and editable
by the programmer: all field and method identifiers are prefixed with the explicit name of the
mixin in which the field or method was introduced, and the programmer can directly edit them;

• a shortened view on Magda code, that hides the mixin names of hygienic identifiers, which
are, then, not directly editable by the programmer; the shortened view of the IDE represent a
restricted view of the underlying complete syntax of the language; in this way the programmer
can work on a syntax which is much similar, from this point of view, to that of the most common
programming languages, such as Java and C++.

1016 V. Bono / The Magda language: ten years after

The shortened view functionality had some related problems which had been addressed in the
implementation. In particular, since in this view the programmer does not display directly the field or
method prefix (made of mixins names), we had to solve the problem of possible ambiguous identifiers.
We say that a field or method identifier is ambiguous when this identifier is present in more than one
mixin from which the object was created.

A non-ambiguous identifier is completed automatically by the IDE by adding appropriately in
the code the only candidate of mixin name, if this exists. Instead, in the presence of ambiguity, the
programmer is offered two different ways to solve this ambiguity:

• by using the content-assist functionality, the programmer can choose a specific version of the
ambiguous field or method, and therefore solve the problem a priori;

• by writing an ambiguous identifier, the programmer obtains an error (“Called method or se-
lected field is ambiguous”) and then she will be able to solve it by using a quick fix which
proposes the possible mixin names.

After choosing (a priori or by the quick fix) a mixin name and so a specific version of the method,
the programmer can however change it anytime she wants, by using a quick fix associated with an info
which signals to the user the presence of other versions of the field or method with that name from
other mixins.

The second main feature of our Magda IDE is a support for getting right the mixin sequences in an
object creation. In fact, in order to simplify the execution semantics which otherwise would be very
complex, the current version of the Magda syntax imposes some constraints at the time of the creation
of an object. In particular:

• all the mixins declared in the formal type of the object must appear in the object creation se-
quence;

• for each mixin, also its base mixins must appear (a base mixin is similar, in essence, to a super-
class);

• base mixins must appear before their respective submixins.

Our IDE helps the programmer respecting these constraints by reporting their possible violations
via specific errors and offering the user some related quick fixes.

In the implementation of the Magda IDE with Xtext as an Eclipse plugin, we also used two generic
features of Eclipse in order to support the main feature of the IDE, that is, the shortened view on the
underlying code, which hides to the programmer the mixin names of the hygienic identifiers:

• Eclipse projection. It is an Eclipse feature to support collapsing and expanding of portions of
text. In particular, in the text editor of the Eclipse Java development tools (JDT), this feature of
the framework has been introduced to implement the code folding functionality, which allows
the user to fold individual methods and classes. The basic idea of projection is very simple:
without projection, we have a document to hold the text and a corresponding view to provide
the UI for the text; by introducing projection, we have a master document, which contains the

V. Bono / The Magda language: ten years after 1017

entire text, and an additional projection document attached to it. The contents of a projection
document are a subset of the contents of the master document; in other words, the content of
a projection document consists of portions of the master document; the UI shows the user this
projection document, hiding it the other portions of text in the underlying master document.
However, the Eclipse standard projection feature allows only to collapse or expand entire rows
of text, therefore we had to generalize it to be able to collapse or expand portions of a row (as
in the case of a mixin name in a hygienic identifier).

• Eclipse reconciler. It is an Eclipse component which periodically re-parses the source file in
order to update the abstract in-memory representation (AST). In fact, as the user types in the
editor, the text can become out of sync with the underlying model that is often used for semantic
manipulation, such as refactoring. When a reconciler is installed on an editor, a queue is created
to record all the changes that occur; when the user makes a typing break, the reconciler then
removes items from the queue and updates the abstract model accordingly with the current text
in the editor. In our Magda IDE, in the shortened view on the code we had the need to manage
automatically the mixin names on updates or deletions by the user in the text editor: this is
because the programmer cannot directly edit a mixin name prefix of a hygienic identifier in the
shortened view. Therefore, we implemented an extension of the Eclipse reconciler in order to
validate the hidden mixin names and remove them automatically from the underlying master
document when they are no longer valid.

5. Hints on the Magda type system

Types. Magda is a statically typed language and enjoys a type soundness property guaranteeing
absence of message-not-understood errors. This is formally defined and proved in [25]. What distin-
guishes Magda from other languages, then, is the way the type expressions are formed and the way
subtyping is verified.

Every type in a Magda program is an unordered sequence of mixin names. When a variable or
a field is declared of type T , it means that its value can be either null or an object created from a
sequence of mixins which contains at least the mixins present in T (and maybe more).

For example, consider the program in Figure 4. The type of p1 in method MainClass.MainMatter
is Point3D, while the type of p2 is Point2D. The second declaration means that the variable p2 can
hold either the null value or a reference to an object created using a sequence of mixins containing
Point2D. However, notice that Point3D mixin has Point2D as its base mixins. As a result, every
object created from Point3D is also created from Point2D. Therefore the type Point2D, Point3D is
equivalent to the type Point3D as well as to the type Point3D, Point2D.

We remark that, on the one hand, in an object creation expression new the base mixins cannot
be omitted in the mixin sequence because the order in which mixins are present in the sequence is
significant, as shown in the Decorator example of Section 2.1. On the other hand, in types the removal
and ordering of base mixins are, instead, insignificant. Summarizing, the order of mixins matters in
new expressions from an operational point of view, but not in types, that is, not from a static semantics
perspective.

1018 V. Bono / The Magda language: ten years after

We say that type T2 is the fully expanded form of type T1 if T2 is the type obtained by appending
to T1 all direct and indirect base mixins of T1.

Now consider the following mixin:

mixin Test of Object =
new Object SomeMethod ()

v1: Point3D;
v2: Point3D, ColorPoint;

begin
...
v1 := v2; //OK
v2 := v1; //not OK

end;
end

The requirements enforced by the type of variable v2 are stricter than the ones enforced by the type
of variable v1. As a result, each value of variable v2 can be also a value of variable v1. However, the
opposite does not hold.

In general, we say that type T2 is a subtype of type T1 (denoted T2 � T1) when the fully expanded
form of T1 is a subset of the fully expanded form of T2. As a consequence of this definition, we define
the type of the null value as the set of all mixin names used within a program.

Other properties. Our modular approach to initialization is motivated by the fact that we want each
mixin to be as composable with other mixins as possible, in order to minimise the amount of the code
to be written (or, worse, duplicated). Magda then enjoys an unusual safety property which intuitively
means that no accidental conflicts can happen.

We say that an identifier p is a transitive output parameter of an ini module m if: (i) either p is an
output parameter of m; (ii) or p is an output parameter of an ini module n, such that at least one input
parameter of n is a transitive output parameter of m.

We say that two mixins M 1 and M 2 are exclusive if: (i) there exists a mixin M b which is a direct
or an indirect base mixin of both M 1 and M 2; (ii) and there exists an input parameter ip b of an ini
module in M b, such that both M 1 and M 2 contain a required ini module each, m 1 and m 2, and ip b
is a transitive output parameter of m 1 and m 2.

Intuitively, the safety property ensures that if there is no ambiguity in the runtime choice of ini
modules inside a set of mixins (i.e., they are not non-exclusive two by two), then the mixin elements
of this set can be composed in any order.

Magda enjoys another important property: Magda’s modularity guarantees that the client code of a
library written in Magda will never break as a consequence of any addition of members to the library’s
mixins (modulo exclusivity). The property is as follows: for any set of well-typed mixins and any
well-typed client code which uses it, if it is possible to extend a mixin in the set with a new method,
or to add a new optional ini module to it, in such a way that the mixin itself is still well typed, Magda
guarantees that: (i) all the other mixins in the set and the client code will still be well typed (i.e., they
will still compile); (ii) the result of the execution of the client code will not change.

This property does not extend to the case of method override, however this is unavoidable, as
override may change the semantics of a method. Magda’s features are such that this is the only

V. Bono / The Magda language: ten years after 1019

case in which it happens, as opposed in other languages, where also additions of members can cause
unexpected changes.

6. Conclusions and future work

Magda was designed with the following goals in mind: (i) organising the code while programming;
(ii) simplifying code reuse; (iii) maximising the ratio between the trouble of learning new concepts
and the benefits afterwards.

Often mixins are compared with traits [13]. A trait is a set of methods without state and classes
are formed by composing traits. Classes may define state and contain the so-called glue code, that
are essentially setters and getters. Conflicts on names are dealt with directly by the programmer with
operators such as exclusion, aliasing and renaming. We think that avoiding conflicts instead of dealing
with them goes more in the direction of being able to reuse third-party code without too much trouble.
Moreover, with Magda there are fewer new concepts to learn with respect to traditional class-based
languages, which might appeal to someone willing to try a new language only if it provides a gradual
learning curve.

Scala’s traits [37] (that are indeed mixins, as they can contain state) are a powerful tool for software
composition. However, as traditional mixins, they are used along classes and class-based inheritance.
We believe that Magda has a semantics which is simpler and easier to understand.

Mixins (and traits) have been designed to tame multiple inheritance and managed to improve
reusability in many aspects. However, they were never very successful even though some form of
them are present especially in untyped, dynamic languages, such as Ruby and Javascript. There is also
a recent study on how to adapt Magda-style ini modules into Smalltalk [30], towards a more effective
form of stateful traits [6].

Today mixins are popular mainly for organising CSS code, in order to reuse style descriptors.
Languages like Less [36] and Sass [21] are CSS extension languages that feature mixins, pre-processed
away into pure CSS, similarly to macros.

The question now is: is there a future for the Magda language?
General-purpose languages are not the main subject of research at present. Groovy [35] is maybe

one of the few recent general-purpose languages. It works on the Java platform and one of its most
interesting features is that it is optionally typed (optional typing is a form of gradual typing [32]). It
also offers a trait construct, close to the traditional mixin construct, however, no form of constructor
is present in the Groovy traits. There has been also a bunch of new proposals of languages for mobile
devices, like Swift [5] and Kotlin [24]. The difference here with respect to past language proposals
is that these ones build on compatibility with mainstream languages, for instance the former bases
on Objective-C and the latter on Java. In other words, now reuse is mostly directed towards the
exploitation of the libraries and the compatibility features of other, widely used, languages, more than
on language constructs.

Still, we believe that there is some space for Magda and its principles:

• Kuśmierek introduced a novel style to formalize a big-step operational semantics within Magda.
The new approach arises from the observation that the typical type soundness property formu-
lated via a big-step operational semantics is weak, that is, there are kind of faulty typing rules

1020 V. Bono / The Magda language: ten years after

that do not violate the typical big-step formulation of soundness. For instance, consider a wrong
typing rule for an if instruction that omits to verify that the condition expression is of type
bool. As a result, a program which uses an integer expression as condition will pass the type
checking correctly. However, such a program will get stuck when reaching the point of eval-
uation of this condition, if the evaluation rules for the if instruction requires (correctly) the
condition to evaluate to true or false. Nevertheless, the typical type soundness statement ”If
the program terminates, then it does so with a correct value” still holds even in the presence
of the wrong rule. This example hints that the classical notion of type soundness is not strong
enough, because properties that concern the intermediate configurations that may emerge in
the course of a program evaluation are disregarded. On the other hand, the option of using a
small-step operational semantics is not always an option, because it is less intuitive to build
and understand. The Magda semantics formulated according to the new style can be found
in [25], and this approach was further discussed in [26]. More work is needed to fully formalize
which classes of languages can benefit of such a style of big-step operational semantics and for
a deeper comparison with co-inductive operational semantics styles [28, 22, 2, 20, 33].

• The Magda static type system ensures strong unicity properties among labels of methods and
parameters of ini-constructors (see Section 5). Such unicity properties are not suited if they are
to be enforced on totally dynamic settings like CSS extension languages, however we believe
that they can be adapted for a sort of soft typing, hinting at gradual typing [32] for such lan-
guages. CSS code is in fact very difficult to organise and maintain, even with the Less and Sass
mixin addition, and a form of soft typing might help here.

• An innovative use of Magda would be exploiting some of it in a Domain Specific Language
for composing ontologies [19]. It is possible to reuse an ontology O1 or part of it in another
ontology O2 by importing O1 entirely in O2, or by mentioning a class, a property, an individual
of O1 inside O2, for example by using OWL (Web Ontology Language [38]). However, the
soundness of these operations is left to the ability of the OWL programmer, that must pay
attention to superpositions, semantic mismatches, different choice of modelling present in the
two ontologies. A precise notion of ontology composition mechanism based on mixins, with a
related type system, could be of help in this setting. A good starting point to get inspiration from
is the NeOn methodology framework [34], in particular the scenarios from 3 to 6, concerning
reusing, merging and reengineering ontological resources.

• Last but not least, it would be still a good bet to maintain and improve Magda itself, as a good
example of language design. A relatively simple addition to Magda could be exceptions. In
fact, a natural way of adding checked exceptions would be adding them to ini modules; then,
there would be no need to repeat the declarations in the ini modules of the derived mixins, since
they work as extensions, not as replacements of the parent ini modules. Moreover, it would be
good to introduce a form of ini module override. Finally, it would also be interesting to study
a novel form of method selection similar to the one of ini module selections, that is, based on
parameters’ names.

Other functionalities may be introduced in the IDE, in particular:

V. Bono / The Magda language: ten years after 1021

– It would be useful to introduce a support for ini modules, since in the current implemen-
tation of the language the textual ordering of ini modules declarations in a mixin can have
an impact on object initialization; this is necessary in order to (a) obtain real modularity,
and (b) not making too complex the underlying semantics. As a consequence, however,
the programmer could be confused by this order constraint, and the IDE could therefore
support him/her.

– The IDE could be expanded with other classical functionalities as wizards to create Magda
projects or refactoring support, not included in the first version of the prototype.

– The current implementation of the Magda language [27] is a prototype based on Java:
a preprocessor translates Magda source code into Java code. This prototype is barely
adequate to test the main innovative features of the language. Therefore, it would be
interesting to implement a real compiler for Magda, and this could also be done using the
Xtext framework.

Acknowledgements. The story of the language called Magda started back in circa 2005, when Pawel
contacted me with a manuscript written by one of his master students, Jarek Kuśmierek, describing
a proposal for a yet another new object-oriented programming language. However, as Pawel put it,
“there was something in it” and this “something” resulted in a collaboration among Jarek, Pawel and
myself, ending successfully in Jarek’s PhD thesis.

I also want to express my gratitude to the reviewers. Their observations helped me a great deal to
revise the paper.

References

[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer New York, Inc., Secaucus, NJ,
USA, 1996. ISBN 978-0-387-94775-4. doi: 10.1007/978-1-4419-8598-9.

[2] Mads S. Ager. From natural semantics to abstract machines. In Logic Based Program Synthesis
and Transformation, volume 3573 of LNCS, pages 245–261. Springer, 2005. doi: 10.1007/
11506676 16.

[3] Davide Ancona and Elena Zucca. An algebra of mixin modules. In Proc. Workshop on Algebraic
Development Techniques ’97, volume 1376 of LNCS, pages 92–106. Springer, 1997. doi: 10.
1007/3-540-64299-4 28.

[4] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam — a smooth extension of Java with
mixins. In Proc. ECOOP ’00, volume 1850 of LNCS, pages 145–178. Springer, 2000. doi:
10.1007/3-540-45102-1 8.

[5] Apple Inc. Swift Website. https://swift.org/.

1022 V. Bono / The Magda language: ten years after

[6] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Stateful traits and
their formalization. Computer Languages, Systems and Structures, 34(2-3):83–108, 2008. doi:
10.1016/j.cl.2007.05.003.

[7] Viviana Bono, Amit Patel, and Vitaly Shmatikov. A Core Calculus of Classes and Mix-
ins. In Proc. ECOOP ’99, volume 1628 of LNCS, pages 43–66. Springer, 1999. doi:
10.1007/3-540-48743-3 3.

[8] Viviana Bono, Jarek Kuśmierek, and Mauro Mulatero. Magda: A new language for modularity.
In Proc. ECOOP 2012 - Object-Oriented Programming - 26th European Conference, volume
7313 of LNCS, pages 560–588, 2012. doi: 10.1007/978-3-642-31057-7 25.

[9] Gilad Bracha. The Programming Language Jigsaw: Mixins, Modularity and Multiple Inheri-
tance. PhD thesis, The University of Utah, 1992.

[10] Gilad Bracha and William R. Cook. Mixin-based inheritance. In OOPSLA/ECOOP ’90 Pro-
ceedings of the European conference on object-oriented programming on Object-oriented pro-
gramming systems, languages, and applications, volume 25 of ACM SIGPLAN Notices, pages
303–311, 1990. doi: 10.1145/97945.97982.

[11] Kim B. Bruce. Foundations of object-oriented languages - types and semantics. MIT Press,
2002. ISBN 978-0-262-02523-2.

[12] Steve Cook. OOPSLA’87 panel P2 – varieties on inheritance. In Proc. OOPSLA’87 Addendum
to Proceedings, pages 35–40. ACM Press, 1987.

[13] Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black.
Traits: A mechanism for fine-grained reuse. ACM Trans. Program. Lang. Syst., 28(2):331–388,
2006. doi: 10.1145/1119479.1119483.

[14] Eclipse Industry Working Groups. Xtext Website. https://www.eclipse.org/Xtext/.

[15] Kathleen Fisher, Furio Honsell, and John C. Mitchell. A lambda-calculus of objects and method
specialization. Nordic J. of Computing, 1(1):3–37, 1994. Preliminary version appeared in Proc.
LICS ’93, pp. 26–38.

[16] Matthew Flatt, Shiram Krishnamurthi, and Matthias Felleisen. Classes and Mixins. In Proc.
POPL ’98, pages 171–183. ACM, 1998. doi: 10.1145/268946.268961.

[17] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A Programmer’s Reduction
Semantics for Classes and Mixins. In Formal Syntax and Semantics of Java, pages 241–269.
Springer, 1999. doi: 10.1007/3-540-48737-9 7.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1 edition, November 1994.
ISBN 0201633612.

V. Bono / The Magda language: ten years after 1023

[19] Anna Goy and Diego Magro. What are ontologies useful for? In M. Khosrow-Pour, editor, En-
cyclopedia of Information Science and Technology, Third Edition, pages 7456–7464. IGI Global,
2015.

[20] Carl A. Gunter and Didier Rémy. A Proof-Theoretic Assesment of Runtime Type Errors. AT&T
Bell Laboratories Technical Memo 11261-921230-43TM, 1993.

[21] Hampton Catlin, Natalie Weizenbaum, Chris Eppstein, and numerous contributors. Sass Web-
site. https://sass-lang.com/.

[22] Husain Ibraheem and David A. Schmidt. Adapting big-step semantics to small-step style: Coin-
ductive interpretations and ”higher-order” derivations. Electr. Notes Theor. Comput. Sci., 10:121,
1997. doi: 10.1016/S1571-0661(05)80692-9.

[23] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001. doi: 10.1145/
503502.503505.

[24] Jet Brains. Kotlin Website. https://kotlinlang.org/.

[25] Jarek Kuśmierek. A Mixin Based Object-Oriented Calculus: True Modularity in Object-Oriented
Programming. PhD thesis, Warsaw University, Departement of Informatics, 2010. Available at
http://www.mimuw.edu.pl/˜jdk/mixiny.pdf.

[26] Jarek Kuśmierek and Viviana Bono. Big-step operational semantics revisited. Fundam. Inform.,
103(1-4):137–172, 2010. doi: 10.3233/FI-2010-323.

[27] Jarek Kuśmierek, Mauro Mulatero, and Marco Naddeo. The Magda language implementation.
http://sourceforge.net/projects/magdalanguage.

[28] Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. CoRR,
abs/0808.0586, 2008.

[29] David A. Moon. Object-oriented programming with flavors. In Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’86), Portland, Oregon, USA,
Proceedings., pages 1–8. ACM Press, 1986. doi: 10.1145/28697.28698.

[30] Marco Naddeo. A Mixin Based Object-Oriented Calculus: True Modularity in Object-Oriented
Programming. PhD thesis, University of Torino and University of Lille co-tutelle, 2017. Avail-
able at https://hal.inria.fr/tel-01651738.

[31] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black. Traits: Compos-
able Units of Behaviour. In Proc. ECOOP ’03, volume 2743 of LNCS, pages 248–274. Springer,
2003. doi: 10.1007/978-3-540-45070-2 12.

[32] Jeremy G. Siek and Walid Taha. Gradual typing for objects. In Proc. ECOOP 2007 -
Object-Oriented Programming - 21st European Conference, volume 4609 of LNCS, pages 2–
27. Springer, 2007. doi: 10.1007/978-3-540-73589-2 2.

1024 V. Bono / The Magda language: ten years after

[33] Allen Stoughton. An operational semantics framework supporting the incremental construc-
tion of derivation trees. Electr. Notes Theor. Comput. Sci., 10:122–133, 1997. doi: 10.1016/
S1571-0661(05)80693-0.

[34] Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, and Mariano Fernández-López. The
neon methodology framework: A scenario-based methodology for ontology development. Ap-
plied Ontology, 10(2):107–145, 2015. doi: 10.3233/AO-150145.

[35] The Apache Software Foundation. Groovy Website. http://groovy-lang.org/.

[36] The Core Less Team. Less Website. http://lesscss.org/.

[37] The Scala Group. Scala Website. http://www.scala-lang.org/.

[38] W3C OWL Working Group. OWL Website. https://www.w3.org/OWL/.

