18,265 research outputs found

    Desertification indicators for the European Mediterranean region: state of the art and possible methodological approaches [= Indicatori di desertificazione per il Mediterraneo europeo: stato dell'arte e proposte di metodo]

    Get PDF
    The Italian Environment Protection Agency (ANPA), and the Desertification Research Centre at the University of Sassary have worked jointly to provide decision-makers with an in-depth analysis of the state of the art and methodologies applicable to the evaluation of the desertification phenomenon. ANPA has promoted this important research activity, within the wider and more dynamic framework of actions it conducts in the Italian National Committee, providing its support to the definition and start up of the National Plan to Combat Desertification and Drought. The complexity of the phenomena and their causes leads to the individuation of a plurality of “actors” who might take the responsibility to carry out actions aimed at combating Desertification and Drought. Indicators represent a crucial link in the chain that, from knowledge, leads to taking decisions and promoting responsible behaviours: starting from an evaluation of the various, physical, biologic, socio-economic processes that contribute to land degradation and desertification, the goal is to individuate indicators that might prove useful in territorial planning and public information activities, and that might be a suitable answer to the request for direct knowledge of the status and evolution of the phenomenon, as well as the opportunity to take actions aimed at mitigating and, above all, preventing the occurrence of the phenomenon

    A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe

    Get PDF
    Environmental change alters ecosystem functioning and may put the provision of services to human at risk. This paper presents a spatially explicit and quantitative assessment of the corresponding vulnerability for Europe, using a new framework designed to answer multidisciplinary policy relevant questions about the vulnerability of the human-environment system to global change. Scenarios were constructed for a range of possible changes in socio-economic trends, land uses and climate. These scenarios were used as inputs in a range of ecosystem models in order to assess the response of ecosystem function as well as the changes in the services they provide. The framework was used to relate the impacts of changing ecosystem service provision for four sectors in relation to each other, and to combine them with a simple, but generic index for societal adaptive capacity. By allowing analysis of different sectors, regions and development pathways, the vulnerability assessment provides a basis for discussion between stakeholders and policymakers about sustainable management of EuropeÂżs natural resource

    High resolution fire hazard index based on satellite images

    Get PDF
    In December 2015, after 3 year of activity, the FP7 project PREFER (Space-based Information Support for Prevention and REcovery of Forest Fires Emergency in the MediteRranean Area) came to an end. The project was designed to respond to the need to improve the use of satellite images in applications related to the emergency services, in particular, to forest fires. The project aimed at developing, validating and demonstrating information products based on optical and SAR (Synthetic Aperture Radar) imagery for supporting the prevention of forest fires and the recovery/damage assessment of burnt area. The present paper presents an improved version of one of the products developed under the PREFER project, which is the Daily Fire Hazard Index (DFHI)

    Physiological drought responses improve predictions of live fuel moisture dynamics in a Mediterranean forest.

    Get PDF
    The moisture content of live fuels is an important determinant of forest flammability. Current approaches for modelling live fuel moisture content typically focus on the use of drought indices. However, these have mixed success partly because of species-specific differences in drought responses. Here we seek to understand the physiological mechanisms driving changes in live fuel moisture content, and to investigate the potential for incorporating plant physiological traits into live fuel moisture models. We measured the dynamics of leaf moisture content, access to water resources (through stable isotope analyses) and physiological traits (including leaf water potential, stomatal conductance, and cellular osmotic and elastic adjustments) across a fire season in a Mediterranean mixed forest in Catalonia, NE Spain. We found that differences in both seasonal variation and minimum values of live fuel moisture content were a function of access to water resources and plant physiological traits. Specifically, those species with the lowest minimum moisture content and largest seasonal variation in moisture (Cistus albidus: 49–137% and Rosmarinus officinalis: 47–144%) were most reliant on shallow soil water and had the lowest values of predawn leaf water potential. Species with the smallest variation in live fuel moisture content (Pinus nigra: 96–116% and Quercus ilex: 56–91%) exhibited isohydric behaviour (little variation in midday leaf water potential, and relatively tight regulation of stomata in response to soil drying). Of the traits measured, predawn leaf water potential provided the strongest predictor of live fuel moisture content (R2 = 0.63, AIC = 249), outperforming two commonly used drought indices (both with R2 = 0.49, AIC = 258). This is the first study to explicitly link fuel moisture with plant physiology and our findings demonstrate the potential and importance of incorporating ecophysiological plant traits to investigating seasonal changes in fuel moisture and, more broadly, forest flammability.This study was made possible thanks to the collaboration of and the staff from the Natural Park of Poblet, P Sopeña, and the technical staff from MedForLab. This study was funded by the Spanish Government (RYC-2012-10970, AGL2015-69151-R). R. H. Nolan was supported with funding from the New South Wales Office of Environment and Heritage, via the Bushfire Risk Management Research Hub. We benefitted from critical comments from J Voltas, JM Moreno and L Serrano and instrument loans from R Savín

    Desertification

    Get PDF
    IPCC SPECIAL REPORT ON CLIMATE CHANGE AND LAND (SRCCL) Chapter 3: Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystem

    Predicting soil erosion after land use changes for irrigating agriculture in a large reservoir of southern Portugal

    Get PDF
    The construction of the Alqueva reservoir in a semi-arid Mediterranean landscape brought new opportunities for irrigated farming. Land use changes and climate change may alter the risk of soil erosion that was not predicted in the initial development plans and decrease the lifetime of the investment. A comprehensive methodology that integrates the Revised Universal Soil Loss Equation (RUSLE) and geographic information system was adopted to study the effect on soil erosion of different land-uses of the Alqueva reservoir region. Analysing the soil erosion of each land-use it was obtained the following land use erosion vulnerability: Olive orchard>Vineyard>Montado>Alfalfa. The strong erosion variances that were observed in the study area show the importance of locating the 'hot spots' of soil erosion. Simulated scenarios for the entire area can be used as a basis for site-specific soil conservation plans, to promote sustainable land management practices and to facilitate localized erosion control practices and environmentally friendly farming. (C) 2015 The Authors. Published by Elsevier B.V

    A Fifty-Year Sustainability Assessment of Italian Agro-Forest Districts

    Get PDF
    DistrictAs cropland management and land use shifted towards more intensive practices, global land degradation increased drastically. Understanding relationships between ecological and socioeconomic drivers of soil and landscape degradation within these landscapes in economically dynamic contexts such as the Mediterranean region, requires multi-target and multi-scalar approaches covering long-term periods. This study provides an original approach for identifying desertification risk drivers and sustainable land management strategies within Italian agro-forest districts. An Environmental Sensitivity Area (ESA) approach, based on four thematic indicators (climate, soil, vegetation and land-use) and a composite index of desertification risk (ESAI), was used to evaluate changes in soil vulnerability and landscape degradation between the years 1960 and 2010. A multivariate model was developed to identify the most relevant drivers causing changes in land susceptibility at the district scale. Larger districts, and those with a higher proportion of their total surface area classified as agro-forest, had a significantly lower increase in land susceptibility to degradation during the 50 years when compared with the remaining districts. We conclude that preserving economic viability and ecological connectivity of traditional, extensive agricultural systems is a key measure to mitigate the desertification risk in the Mediterranean region
    • …
    corecore