8,182 research outputs found

    Single-picture reconstruction and rendering of trees for plausible vegetation synthesis

    Get PDF
    State-of-the-art approaches for tree reconstruction either put limiting constraints on the input side (requiring multiple photographs, a scanned point cloud or intensive user input) or provide a representation only suitable for front views of the tree. In this paper we present a complete pipeline for synthesizing and rendering detailed trees from a single photograph with minimal user effort. Since the overall shape and appearance of each tree is recovered from a single photograph of the tree crown, artists can benefit from georeferenced images to populate landscapes with native tree species. A key element of our approach is a compact representation of dense tree crowns through a radial distance map. Our first contribution is an automatic algorithm for generating such representations from a single exemplar image of a tree. We create a rough estimate of the crown shape by solving a thin-plate energy minimization problem, and then add detail through a simplified shape-from-shading approach. The use of seamless texture synthesis results in an image-based representation that can be rendered from arbitrary view directions at different levels of detail. Distant trees benefit from an output-sensitive algorithm inspired on relief mapping. For close-up trees we use a billboard cloud where leaflets are distributed inside the crown shape through a space colonization algorithm. In both cases our representation ensures efficient preservation of the crown shape. Major benefits of our approach include: it recovers the overall shape from a single tree image, involves no tree modeling knowledge and minimal authoring effort, and the associated image-based representation is easy to compress and thus suitable for network streaming.Peer ReviewedPostprint (author's final draft

    Learning Generative Models of the Geometry and Topology of Tree-like 3D Objects

    Full text link
    How can one analyze detailed 3D biological objects, such as neurons and botanical trees, that exhibit complex geometrical and topological variation? In this paper, we develop a novel mathematical framework for representing, comparing, and computing geodesic deformations between the shapes of such tree-like 3D objects. A hierarchical organization of subtrees characterizes these objects -- each subtree has the main branch with some side branches attached -- and one needs to match these structures across objects for meaningful comparisons. We propose a novel representation that extends the Square-Root Velocity Function (SRVF), initially developed for Euclidean curves, to tree-shaped 3D objects. We then define a new metric that quantifies the bending, stretching, and branch sliding needed to deform one tree-shaped object into the other. Compared to the current metrics, such as the Quotient Euclidean Distance (QED) and the Tree Edit Distance (TED), the proposed representation and metric capture the full elasticity of the branches (i.e., bending and stretching) as well as the topological variations (i.e., branch death/birth and sliding). It completely avoids the shrinkage that results from the edge collapse and node split operations of the QED and TED metrics. We demonstrate the utility of this framework in comparing, matching, and computing geodesics between biological objects such as neurons and botanical trees. The framework is also applied to various shape analysis tasks: (i) symmetry analysis and symmetrization of tree-shaped 3D objects, (ii) computing summary statistics (means and modes of variations) of populations of tree-shaped 3D objects, (iii) fitting parametric probability distributions to such populations, and (iv) finally synthesizing novel tree-shaped 3D objects through random sampling from estimated probability distributions.Comment: under revie

    Soft set theory based decision support system for mining electronic government dataset

    Get PDF
    Electronic government (e-gov) is applied to support performance and create more efficient and effective public services. Grouping data in soft-set theory can be considered as a decision-making technique for determining the maturity level of e-government use. So far, the uncertainty of the data obtained through the questionnaire has not been maximally used as an appropriate reference for the government in determining the direction of future e-gov development policy. This study presents the maximum attribute relative (MAR) based on soft set theory to classify attribute options. The results show that facilitation conditions (FC) are the highest variable in influencing people to use e-government, followed by performance expectancy (PE) and system quality (SQ). The results provide useful information for decision makers to make policies about their citizens and potentially provide recommendations on how to design and develop e-government systems in improving public services

    Reconstructing Plants in 3D from a Single Image Using Analysis-by-Synthesis

    Get PDF
    International audienceMature computer vision techniques allow the reconstruction of challenging 3D objects from images. However, due to high complexity of plant topology, dedicated methods for generating 3D plant models must be devised. We propose to generate a 3D model of a plant, using an analysis-by-synthesis method mixing information from a single image and a priori knowledge of the plant species. First, our dedicated skeletonisation algorithm generates a possible branch- ing structure from the foliage segmentation. Then, a 3D generative model, based on a parametric model of branching systems that takes into ac- count botanical knowledge is built. The resulting skeleton follows the hierarchical organisation of natural branching structures. An instance of a 3D model can be generated. Moreover, varying parameter values of the generative model (main branching structure of the plant and foliage), we produce a series of candidate models. The reconstruction is improved by selecting the model among these proposals based on a matching criterion with the image. Realistic results obtained on di erent species of plants illustrate the performance of the proposed method

    Simple identification tools in FishBase

    Get PDF
    Simple identification tools for fish species were included in the FishBase information system from its inception. Early tools made use of the relational model and characters like fin ray meristics. Soon pictures and drawings were added as a further help, similar to a field guide. Later came the computerization of existing dichotomous keys, again in combination with pictures and other information, and the ability to restrict possible species by country, area, or taxonomic group. Today, www.FishBase.org offers four different ways to identify species. This paper describes these tools with their advantages and disadvantages, and suggests various options for further development. It explores the possibility of a holistic and integrated computeraided strategy

    Extraction of Unfoliaged Trees from Terrestrial Image Sequences

    Get PDF
    This thesis presents a generative statistical approach for the fully automatic three-dimensional (3D) extraction and reconstruction of unfoliaged deciduous trees from wide-baseline image sequences. Tree models improve the realism of 3D Geoinformation systems (GIS) by adding a natural touch. Unfoliaged trees are, however, difficult to reconstruct from images due to partially weak contrast, background clutter, occlusions, and particularly the possibly varying order of branches in images from different viewpoints. The proposed approach combines generative modeling by L-systems and statistical maximum a posteriori (MAP) estimation for the extraction of the 3D branching structure of trees. Background estimation is conducted by means of mathematical (gray scale) morphology as basis for generative modeling. A Gaussian likelihood function based on intensity differences is employed to evaluate the hypotheses. A mechanism has been devised to control the sampling sequence of multiple parameters in the Markov Chain considering their characteristics and the performance in the previous step. A tree is classified into three typical branching types after the extraction of the first level of branches and more specific Production Rules of L-systems are used accordingly. Generic prior distributions for parameters are refined based on already extracted branches in a Bayesian framework and integrated into the MAP estimation. By these means most of the branching structure besides tiny twigs can be reconstructed. Results are presented in the form of VRML (Virtual Reality Modeling Language) models demonstrating the potential of the approach as well as its current shortcomings.Diese Dissertationsschrift stellt einen generativen statistischen Ansatz für die vollautomatische drei-dimensionale (3D) Extraktion und Rekonstruktion unbelaubter Laubbäume aus Bildsequenzen mit großer Basis vor. Modelle für Bäume verbessern den Realismus von 3D Geoinformationssystemen (GIS), indem sie Letzteren eine natürliche Note geben. Wegen z.T. schwachem Kontrast, Störobjekten im Hintergrund, Verdeckungen und insbesondere der möglicherweise unterschiedlichen Ordnung der Äste in Bildern von verschiedenen Blickpunkten sind unbelaubte Bäume aber schwierig zu rekonstruieren. Der vorliegende Ansatz kombiniert generative Modellierung mittels L-Systemen und statistische Maximum A Posteriori (MAP) Schätzung für die Extraktion der 3D Verzweigungsstruktur von Bäumen. Hintergrund-Schätzung wird auf Grundlage von mathematischer (Grauwert) Morphologie als Basis für die generative Modellierung durchgeführt. Für die Bewertung der Hypothesen wird eine Gaußsche Likelihood-Funktion basierend auf Intensitätsunterschieden benutzt. Es wurde ein Mechanismus entworfen, der die Reihenfolge der Verwendung mehrerer Parameter für die Markoff-Kette basierend auf deren Charakteristik und Performance im letzten Schritt kontrolliert. Ein Baum wird nach der Extraktion der ersten Stufe von Ästen in drei typische Verzweigungstypen klassifiziert und es werden entsprechend Produktionsregeln von spezifischen L-Systemen verwendet. Basierend auf bereits extrahierten Ästen werden generische Prior-Verteilungen für die Parameter in einem Bayes’schen Rahmen verfeinert und in die MAP Schätzung integriert. Damit kann ein großer Teil der Verzweigungsstruktur außer kleinen Ästen extrahiert werden. Die Ergebnisse werden als VRML (Virtual Reality Modeling Language) Modelle dargestellt. Sie zeigen das Potenzial aber auch die noch vorhandenen Defizite des Ansatzes

    From Models to Simulations

    Get PDF
    This book analyses the impact computerization has had on contemporary science and explains the origins, technical nature and epistemological consequences of the current decisive interplay between technology and science: an intertwining of formalism, computation, data acquisition, data and visualization and how these factors have led to the spread of simulation models since the 1950s. Using historical, comparative and interpretative case studies from a range of disciplines, with a particular emphasis on the case of plant studies, the author shows how and why computers, data treatment devices and programming languages have occasioned a gradual but irresistible and massive shift from mathematical models to computer simulations

    Image-based tree variations

    Get PDF
    The automatic generation of realistic vegetation closely reproducing the appearance of specific plant species is still a challenging topic in computer graphics. In this paper, we present a new approach to generate new tree models from a small collection of frontal RGBA images of trees. The new models are represented either as single billboards (suitable for still image generation in areas such as architecture rendering) or as billboard clouds (providing parallax effects in interactive applications). Key ingredients of our method include the synthesis of new contours through convex combinations of exemplar countours, the automatic segmentation into crown/trunk classes and the transfer of RGBA colour from the exemplar images to the synthetic target. We also describe a fully automatic approach to convert a single tree image into a billboard cloud by extracting superpixels and distributing them inside a silhouette-defined 3D volume. Our algorithm allows for the automatic generation of an arbitrary number of tree variations from minimal input, and thus provides a fast solution to add vegetation variety in outdoor scenes.Peer ReviewedPostprint (author's final draft
    • …
    corecore