
FROM MODELS TO
SIMULATIONS

Franck Varenne

History and Philosophy of Technoscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PhilPapers

https://core.ac.uk/display/186330527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


From Models to Simulations

This book analyses the impact computerization has had on contemporary science 
and explains the origins, technical nature and epistemological consequences of 
the current decisive interplay between technology and science: an intertwining of 
formalism, computation, data acquisition, data and visualization and how these 
factors have led to the spread of simulation models since the 1950s.

Using historical, comparative and interpretative case studies from a range of 
disciplines, with a particular emphasis on the case of plant studies, the author 
shows how and why computers, data treatment devices and programming 
languages have occasioned a gradual but irresistible and massive shift from math-
ematical models to computer simulations.

Franck Varenne is Associate Professor of philosophy of science at the 
University of Rouen (Normandy – France) and associate researcher at IHPST 
(CNRS – Paris). His research focuses on the history and epistemology of formal 
models and computer simulations in contemporary science, especially in biology 
and geography. He has published around fifty-five articles and chapters. He has 
also published eight books and co-edited three collective books.



History and Philosophy of Technoscience
Series Editor: Alfred Nordmann

Titles in this series

 7 Standardization in Measurement: Philosophical, Historical and  
Sociological Issues
Oliver Schlaudt and Lara Huber (eds)

 8 The Mysterious Science of the Sea, 1775–1943
Natascha Adamowsky

 9  Reasoning in Measurement
Nicola Mößner and Alfred Nordmann (eds)

10 Research Objects in their Technological Setting
 Bernadette Bensaude Vincent, Sacha Loeve, Alfred Nordmann and Astrid 
Schwarz (eds)

11	 Environments	of	Intelligence:	From	Natural	Information	to	Artificial	
Interaction
Hajo Greif

12 A History of Technoscience: Erasing the Boundaries between Science 
and Technology
David F. Channell

13 Visual Representations in Science: Concept and Epistemology
Nicola Mößner

14 From Models to Simulations
Franck Varenne



From Models to Simulations

Franck Varenne



First published 2019
by Routledge
2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

and by Routledge
711 Third Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

 2019 Franck Varenne

The right of Franck Varenne to be identified as author of this work has been 
asserted by him in accordance with sections 77 and 78 of the Copyright, 
Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or 
utilized in any form or by any electronic, mechanical, or other means, now 
known or hereafter invented, including photocopying and recording, or in 
any information storage or retrieval system, without permission in writing 
from the publishers.

This book is a translation and an update of the French book Du modèle à la 
simulation informatique, Paris, Vrin, coll. “Mathesis”, 2007. Translated by 
Karen Turnbull. This publication is funded by MECS Institute for Advanced 
Study on Media Cultures of Computer Simulation, Leuphana University 
Lüneburg (German Research Foundation Project KFOR 1927).

Trademark notice: Product or corporate names may be trademarks or 
registered trademarks, and are used only for identification and explanation 
without intent to infringe.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data
Names: Varenne, Franck, author.
Title: From models to simulations / Franck Varenne.
Description: Abingdon, Oxon ; New York, NY : Routledge, [2019] |  

Series: History and philosophy of technoscience | Includes 
bibliographical references and indexes.

Identifiers: LCCN 2018013718| ISBN 9781138065215 (hardback : alk. paper) 
| ISBN 9781315159904 (e-book)

Subjects: LCSH: Biological systems—Mathematical models. | Biological 
systems—Computer simulation.

Classification: LCC QH324.2 .V37 2019 | DDC 570.1/13—dc23
LC record available at htps://lccn.loc.gov/2018013718

ISBN: 978-1-138-06521-5 (hbk)
ISBN: 978-1-315-15990-4 (ebk)

Typeset in Times New Roman
by Swales & Willis Ltd, Exeter, Devon, UK



Contents

List of figures viii
Acknowledgments ix
List of French abbreviations x

 Introduction 1

1 Geometric and botanic simulation 13

The probabilistic simulation of branching  
biological shapes: Cohen (1966) 13

The epistemic functions of modular programming,  
simulation and visualization 16

The first geometric and realistic simulation of trees  
(Honda–Fisher, 1971–1977) 18

The limitations of morphometry and of  
thermodynamics of trees 20

The first geometric simulation of an actual tree:  
Terminalia 21

A recap of geometric simulation 24 

2 The logical model and algorithmic simulation of algae 26

A botanist won over by logical positivism: the “theory  
of lifecycles” by A. Lindenmayer (1963–1965) 26

Unusable set of axioms and used set of axioms 29
From logical theory to automata theory (1966–1967) 30
The “developmental model” and the rules of  

rewriting (1968) 34
The dispute with Brian Carey Goodwin regarding “natural”  

formalisms 37
Recap: the computer as automata model and  

deductive machine 41



vi Contents

3 The limitations of biometric models and the transition  
to simulation in agronomy 45

The institutional and technical context of the  
IFCC (1966–1971) 45

Transferring a little bit of econometrics to biometrics:  
a problem of optimization (1974) 47

The first application of plant simulation in agronomics  
(1974–1975) 49

Fragmented modelling and geometric simulation: de  
Reffye (1975–1981) 52

Simulation, imitation and the sub-symbolic  
use of formalisms 61

4 A random and universal architectural simulation 69

Making headway in botany: the notion of “architectural  
model” (1966–1978) 70

The search for botanical realism (1978–1979) 72
Criticisms of theoretical models 75
Criticisms of biometric models 80
A mixed reception (1979–1981) 83

5 Convergence between integrative simulation and  
computer graphics 87

The relaunch of research into architectural simulation  
(1985–1991) 88

Jaeger’s thesis: the prefixed model and synthesis of  
botanical images (1987) 90

Blaise’s thesis: the simulation of bud parallelism (1991) 94
How can an integrative simulation be validated? 97

6 Convergence between universal simulation and  
forestry (1990–1998) 102

An epistemological dispute between modellers:  
INRA and CIRAD 103

Conceptual and institutional convergence: the  
CIRAD/INRA partner laboratory (1995) 106

The empirical value of simulation 108
Supra-simulations 111



Contents vii

7 The remathematization of simulations (from 1998 onwards) 118

The first mixed structure-function model: “water  
efficiency” (1997–1999) 119

The parallel evolution of algorithmic simulation:  
1984–1994 122

Simulating the individual plant in order to observe  
crop functioning (1997–2000) 129

The association between AMAP and INRIA: sub-structures  
and factorization (1998–2006) 130

Recap: pluriformalized simulation and convergence  
between disciplines 134

8 Twenty-one functions of models and three types of  
simulations – classifications and applications 143

General function, main functions and specific functions  
of models 144

General characterization and classification of computer  
simulations 148

System simulation, model simulation, system-simulation  
model and model-simulation model 155

Applications to different plant models and plant simulations 158

 Conclusion 168

Glossary 184
Selected bibliography 193
Index of names 212
Index of subjects 218



Figures

1.1 Tree-like shape generated using a Cohen simulation (1967) 15
2.1 Transition matrix for cell division (after Lindenmayer 1968) 35
2.2 Principle of Lindemayer’s logical growth and branching model 36
4.1 Coffee plant drawn by plotter (Roux’s architectural model) 82
5.1 Simulation of a chestnut tree in winter 94
6.1 Illustration of silver poplar created using AMAP-CIRAD  

software (1996) 108
6.2 The three steps of supra-simulation: the case of reflectance  

simulation 113
6.3 Five simulations of Araucaria at different ages 114
7.1 Tree simulated in 2006 by the Digiplante software from the  

École Centrale Paris (GreenLab team) 133



Acknowledgments

This book is an extended and updated translation of the work first brought out in 
2007 by the French publisher Vrin. Its release in English gives me the opportunity 
to thank, first and foremost, publishers Denis Arnaud (Vrin) and Robert Langham 
(Routledge), who backed this project, as well as Alfred Nordmann, who enthu-
siastically included this work in his collection. I also warmly thank the Institute 
of Advanced Study on Media Cultures for Computer Simulation (MECS) of the 
Leuphana University (Lüneburg, Germany) for helping me bring this project to 
fruition, first by inviting me to Lüneburg on a senior researcher fellowship in their 
extraordinary institute, and then helping to fund its translation costs. I would also 
like to warmly thank Sebastian Vehlken (MECS) who strongly supported this pro-
ject. My warmest thanks go to Karen Turnbull, who, in close collaboration with 
me, has provided a remarkable piece of translation. Her language skills, as well as 
her knowledge of scientific and philosophical matters, helped her overcome the 
challenges inherent in the French version. If any ambiguities remain in this work, 
the responsibility is mine alone.



French abbreviations

ADEME (Agence de l’Environnement et de la Maîtrise de l’Énergie) – 
French environment and energy management agency

AIP (Action Incitative Programmée) – a type of INRA manage-
ment policy aimed at setting up collaborations (both internal 
and with external laboratories) and stimulating funding for 
projects

AMAP (Atelier de Modélisation de l’Architecture des Plantes) – 
Plant architecture modelling workshop

ATP (Action Thématique Programmée) – Scheduled research 
initiative

bac+8 In the 1970s, French university students were required to 
submit two theses: a post-graduate thesis (known in French 
as the “troisième cycle” or “bac[calaureat] plus 8 [years]”), 
which is equivalent to the present-day PhD, and a State the-
sis (called a “thèse d’État” or “thèse d’habilitation”), which 
was often written over a period of many years

Café, Cacao, Thé (Literally “Coffee, Cocoa, Tea”) – IFCC Journal and also 
the name of an ORSTOM department

CIRAD (Centre de coopération internationale en recherche agronomique  
pour le développement) – Agricultural Research Centre for 
International Development

CNRS (Centre nationale de la recherche scientifique) – French 
National Centre for Scientific Research

DEA (Diplôme d’études approfondies) – Diploma of advanced 
studies, comparable with a British Master’s degree

DGRST (Délégation générale à la recherche scientifique et tech-
nique) – General delegation for scientific and technical 
research

EFPA (Écologie des forêts, prairies et milieux aquatiques) – Forest, 
Prairie and Aquatic Environments

ENGREF (École nationale du génie rural, des eaux et des forêts) – 
French National School of Forestry



List of french abbreviations xi

ENSAT (École Nationale Supérieure d’Agronomie) – French Higher 
National Engineering School of Agronomy – a competitive-
entry engineering institution

ENST (École Nationale des Télécommunications) – French 
National School of Telecommunications

EPHE (École Pratique des Hautes Études) – Practical School of 
Higher Studies

EPIC (Établissement Public à Caractère Industriel et Commercial) – 
Public-Sector Industrial and Commercial Enterprise – a type of 
public body established by statute in France

GERDAT From 1980–1984: (Groupement d’étude et de recherche pour 
le développement de l’agronomie tropicale) – Study and 
Research Group for the Development of Tropical Agronomy

GERDAT From 1985: (Gestion de la Recherche Documentaire et Appui 
Technique) – Management of Documentary Research and 
Technical Support (as of 1985, GERDAT became part of 
CIRAD, retaining the same acronym but with this new name)

IFCC (Institut Français du Café, du Cacao et autres plantes 
stimulantes) – French Institute of Coffee, Cocoa and other 
Stimulant crops (later renamed “IRCC”)

IN2P3 (Institut national de physique nucléaire et de physique des 
particules) – French National Institute of Nuclear Physics 
and Particle Physics

INAPG (Institut National Agronomique Paris-Grignon (INA P-G)) – 
French National Agronomic Institute, Paris-Grignon

INRA (Institut national de recherche agronomique) – French 
National Institute for Agricultural Research

INRIA (Institut national de recherche en informatique et automa-
tique) – French National Institute for Research in Computer 
Science and Automation, now known as the Institut national 
de recherche dédié au numérique – French National Institute 
for Computer Science and Applied Mathematics.

IRCC (Institut de Recherche sur le Café, le Cacao et autres plantes 
stimulantes) – Institute for Research on Coffee, Cocoa and 
other Stimulant Crops (see IFCC above)

IRD (Institut de Recherche pour le Développement) – Research 
Institute for Development, previously called ORSTOM

LHA (Laboratoire de l’Horloge Atomique) – Atomic Clock 
Laboratory of the CNRS

LIAMA (Laboratoire franco-chinois d’informatique, d’automatique et 
de mathématiques appliquées) – Franco-Chinese Laboratory 
of Informatics, Automation and Applied Mathematics

METALAU (METhode, Algorithmes et Logiciels pour l’AUtomatique) – 
Method, algorithms and software for automation



xii List of french abbreviations

ORSC (Office de la recherche scientifique coloniale) – Office of 
Colonial Scientific Research

ORSTOM (Office de la recherche scientifique et technique outre-mer) –  
Office of Overseas Scientific and Technical Research

PIAF (Physique et Physiologie Intégratives de l’Arbre en envi-
ronnement Fluctuant) – Integrative physics and physiology 
of trees in fluctuating environments

PNTS (Programme national de télédétection spatiale) – French 
National Programme for Space-based Remote Sensing

SESA (Société de services et des systèmes informatiques et 
automatiques) – Software and Engineering for Systems and 
Automata

SYRTE (Systèmes de Référence Temps Espace) – Time and Space 
Reference Systems

ULP (Université Louis Pasteur) – University of Strasbourg
UMR (Unité Mixte de Recherche) – Joint Research Centre
USTL (Université des sciences et technologies du Languedoc) – 

University of Science and Technology of Languedoc
UTC (Université de Technologie de Compiègne) – University of 

Technology of Compiegne
X-ENGREF Engineer from the École Polytechnique who has com-

pleted post-graduate practical training or internship (école 
d’application) at the French National School of Forestry 
(ENGREF: École nationale du génie rural, des eaux et des 
forêts)



Introduction

Many philosophical articles or books on computer simulation begin with general 
definitions or explanations, and then choose two or three specific sub-domains of 
science – along with a very small number of selected publications – that illustrate 
and confirm their definitions and interpretations. As a result, although they may 
be accurate regarding the epistemological meaning of a given technical solution, 
they sometimes lack a certain sensitivity to real field solutions, to their multi-
plicity and to the dramatic epistemological innovations that emerge mainly from 
the field. Other books on history or sociology of science may be more aware of 
both the diversity of technical solutions and the importance of field innovations. 
However, since a significant number of these books are multi-author volumes, 
they simply juxtapose, or at best loosely compare, the many descriptions of dif-
ferent technical and epistemological solutions, and their comparisons are made 
between simulations of different target systems with overly disparate formalisms, 
and methodological and computational solutions that are too heterogeneous. For 
this reason, although these publications may be particularly informative, most are 
not ultimately conclusive from an epistemological standpoint. Nor can they guard 
us against a sense of general dissonance. With such approaches, the meaning of 
the term “simulation”, or even its understandable polysemy, remains vague and 
somewhat disheartening.

Exceptions to these two frequent limitations of the current literature on computer 
simulations can be found in some works regarding simulation techniques in a specific 
domain of objects whose evolution is studied across a sufficient lapse of historical 
time. A brilliant example exists in nuclear physics, namely the work of Peter Galison.1 
Since the early 2000s, however, it has become clear that there is often a greater diver-
sity of simulation techniques and consequently of epistemological innovation in the 
biological and social sciences – which are constantly developing new computer 
simulations – than there is in physics, in contrast to the general rule in the techno-
sciences in the immediate post-war period. This book can be seen as an attempt to help 
fill the gap in this regard.

Starting from the undeniable achievements, as well as from the limitations, of 
the previous studies of many other researchers, and based on a longitudinal case 
study in quantitative, mathematical and computational biology, this book first 
adopts a historical and comparative approach to the different research programmes 
operating in the same field: modelling the growth and morphogenesis of single 
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vegetative plants in botany, forestry and agronomy. Having chosen this relatively 
vast domain, along with these three different types of approach, and without 
neglecting the personal, social and institutional factors, this book’s methodical 
approach is mainly based on an intellectual and comparative analysis of the differ-
ent solutions to modelling and simulation issues both in the theoretical approaches 
to plant growth and in the more applied and technoscientific approaches that have 
emerged since the 1950s.

It is important to note that the content of this book is based not only on analyses 
and comparisons of publications (in English, German and French), but also on 
more than twenty interviews or personal correspondence with some of the key 
actors. Using a diachronic and comparative perspective, the book describes the 
exact field involved, as well as the technical and formal reasons and the epistemo-
logical decisions that explain why each kind of computer simulation of the various 
aspects of plants gradually replaced the mathematical models, i.e., the pre-existing 
models that originated from theoretical biology, biometry or morphometrics. It 
is hoped that, as a consequence, this book will give the reader the epistemologi-
cal and conceptual acuity that seems necessary today to avoid many interpretative 
confusions: namely the confusions between quantification and formal modelling, 
between laws and models, between models and simulations, between mathematical 
models, computational models and simulation models, between simulations of mod-
els and models of simulations, and, last but not least, between different types of 
computer simulations.

With the aim of presenting an updated and extended version, supplemented 
with more in-depth epistemological insights, this English translation includes sev-
eral additions to the original introduction and conclusion, as well as to a number of 
the chapters. Chapter 8, entitled “Twenty-one functions of models and three types 
of simulation – classifications and applications”, is entirely new, however. This 
chapter’s aim is first of all to present a distinctive general classification of the 
epistemic functions of scientific models, as well as a classification of the different 
types of computer simulation. This approach is intended to remain very general 
in scope, in the hope that it will thus benefit research on models and simulations 
in completely different fields from those of plants or biology. Its content is the 
result of a work of comparison and induction carried out not only on the basis of the 
comparative history of plant models presented herein, but also on the basis of several 
collaborative research efforts that have been carried out since then, as well as on my 
own, even more recent, large-scale research in the field of comparative history of 
models and simulations in geography.2 Next, with the two-fold aim of confirming 
the relevance of these conceptual analyses based on the available evidence on 
the one hand, and, on the other, of reviewing the comparative history recounted in 
Chapters 1 to 7 from a more discerning and discriminating epistemological per-
spective, Chapter 8 will end with a systematic application of these classifications 
to the different types of models and simulations encountered in the case of plants.

It may be remarked that a fairly substantial portion of this book focuses on French 
research and researchers, leading to the conclusion that this reflects an unjustified 
bias. With regard to plant studies, however, there are certain situations specific to 



Introduction 3

France, such as the enduring existence of French research institutions in previously 
colonized tropical countries such as Côte d’Ivoire (see Chapter 3), even long after 
these countries obtained political independence. Such situations played a large part 
in the dynamics and focus of the research reported here insofar as they enabled quan-
titative botanists to have very early and direct access to the huge diversity of tropical 
flora, while, at the same time, providing them with access to adequate instrumenta-
tion. As a counterbalance to what may potentially be perceived as a French-oriented 
bias, however, I also describe in detail, in Chapter 1, how and why Jack B. Fisher, 
together with Hisao Honda, were among the first botanists to attempt to tackle the 
problem of using computers to faithfully represent the growth and architecture of 
vegetative plants. I also explain why, as a perhaps too rigorous botanist, Fisher ulti-
mately decided not to develop his simulations further. It is no accident that Fisher 
also worked in a quasi-tropical context, in the Fairchild Tropical Garden of Miami; 
like the researchers in Côte d’Ivoire, he was also exposed to the incentive of maxi-
mal diversity. The fact remains, however, that for a long time, apart from some 
tropicalists such as Fisher, most of the researchers in quantitative botany and for-
estry working in North America and Great Britain remained in the mainstream of 
classical mathematical modelling. Important exceptions can be found in Canada, 
in the Prusinkiewicz school in particular, and also – from the 1990s onwards – in 
Germany and Finland. I have also been careful to include these exceptions and their 
specific “pre-histories” in Chapters 2 and 7 in particular.

The period of history involved here covers the end of the 1960s up to the first 
few years of the 21st century. This period is, of course, not without antecedents. 
This work does not aim to dwell in detail on the periods that preceded it, but, in 
order to better understand its specific technical and epistemological aspects, and 
especially what I propose to identify as a transition “from mathematical model to 
software-based simulation”, I consider it necessary to give a preliminary outline 
in this introduction of the way in which the formal models took root and were 
originally grasped and used in the study of plant growth.3

Thus, when we examine the period prior to the one we will study – the period 
from the 1920s to the beginning of the 1960s – we can see two different epochs 
emerge fairly clearly. The first corresponds to the years before the spread of the 
digital computer. It extends from the 1920s to the end of the 1940s. In those years, 
mathematical modelling permeated several sectors of biology. Briefly put, it had a 
two-fold effect of increasing the available types of formalisms and of diversifying 
the epistemic functions of the mathematical formalizations, in contrast to the usual 
functions attributed to the mathematical laws and theories traditionally used in biol-
ogy. A second, much shorter epoch stretched from the beginning of the 1950s to the 
mid-1960s. This was the epoch of the first impacts of computerization on formal 
models, and it included, in particular, the appearance of the first computer simulation 
techniques. These techniques would interfere in both a competing and a constructive 
manner with the formal modelling practices that were then still flourishing. Over 
the next few paragraphs I will describe these two epochs in somewhat greater detail.

With regard to the first epoch, what the scientists often called the “formal-
model method” became progressively established in the quantitative biology 
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of morphogenesis, based on four different areas: biometry; population biology; 
mathematical biology; and biocybernetics. The formal-model method, in biome-
try in particular, had its roots in the epistemological decision of Ronald A. Fisher4 
to abandon the Bayesian interpretation of statistics and instead to propose – in 
line with the theory of errors that had emerged from works on astronomical obser-
vation, and in the wake of the famous article by Student5 on probable error in 
the estimation of a mean – a “hypothetical law” for estimating statistical param-
eters in the case of small sample sizes. In my view, this hypothetical law, which 
was explicitly free of any attempt at representation and thus of rootedness in the 
actual causal connections, acted as the first detached formalization, or first formal 
model in the full sense of the term as it is used in biology. The “hypothetical law” 
itself took the form of a frame of reference for field data, and was widely termed 
“model” from the end of the 1940s. It was this fictive and detached formaliza-
tion that would to a large extent serve as a prototype for the other types of formal 
model in biology, including in population biology, from the 1920s onward. This 
first epoch may be called the “epoch of detachment of formalisms”, since it is 
characterized by an increasing and normalized use of this type of formal construct, 
known as formal models.

In this context, by “formal model” I am referring to any type of formal construct 
of a logical or mathematical format with an axiomatic homogeneity that is capable 
of answering certain questions and fulfilling certain functions (cognitive, empiri-
cal, communication-related) with respect to an object, a system or an observable 
phenomenon. The formal model differs from theory in its validity, which is often 
only local, in its prior adaptation to certain questions that are posed at the outset, 
and in its inability to directly produce general results in the form of theorems. It 
should be pointed out already here that it also differs from simulation, although 
the term “simulation” is ambiguous, since it designates both a symbol-processing 
operation and the symbolic result of that processing. I will revisit all these points 
in greater detail in Chapter 8. We could say that, as a first approach, a computer 
simulation – insofar as it is a process – may be seen as a computer-assisted sym-
bolization and formalization technique consisting of two distinct steps. During the 
first step, termed operative, symbols that more or less realistically represent ele-
ments of an actual or fictive target system interact step by step in accordance with 
rules, and these rules themselves may represent certain real or fictive mechanisms 
of the target system. Adopting a term used in connectionist artificial intelligence, 
I consider that this step is based on a sub-symbolic6 use of certain formalisms and 
certain systems of symbols. The second step of a simulation consists of an equally 
symbolic processing of the results of the first step. This step may be described as 
observational, and it consists of a set of reckonings, measurements, observations or 
visualizations regarding the outcome of the first step. The main epistemic function 
of the computer simulations that were initially the most widespread, i.e., “numeri-
cal simulations”, was to replace impossible formal calculations with measurements 
carried out on these interaction results. Thus, these interactions did indeed take 
place between symbols that had also been given the status of sub-symbol: they 
were sub-symbols from the point of view of the resulting patterns. Not all the 
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computer simulations still have the primary function of replacing an analytically 
intractable calculation, but all retain this two-step structuration. One consequence 
of this structuration is that, as we will see in this historical and comparative case 
study, even though a computer simulation uses formal models, unlike those models 
it is not always a homogeneous formal construct. For that reason, a simulation does 
not necessarily have to be based on a single selective viewpoint on the target sys-
tem, and nor is it obliged to have a formal homogeneity because of its format. This 
point will form one of the main established facts of this investigation, and I will 
return to it in more detail, giving specific examples.

First, let us return to the characterization of the formal-model method in the 
empirical sciences, and to its innovative nature in biology in the first epoch, 
starting in the 1920s. It should be noted that – although mechanical models, in 
the sense still used by William Thomson (Lord Kelvin), Maxwell or Boltzmann 
in the 19th century, responded to a demand for visualization of calculations, or 
picturability, and although a formal model in that part of mathematics known as 
the mathematical theory of models was itself still considered to be a more con-
crete, albeit mathematical, representation of a purely formal theory – it was no 
longer the model’s concrete and representable nature or its ability to interpret a 
theory that were sought from the 1920s onwards in the “formal-model method”. 
Instead, what was sought was an ability to directly and formally represent certain 
relationships between observable properties or physical quantities, if necessary 
in a way that remained purely phenomenological, i.e., precisely without repre-
senting a credible underlying mechanism, but also without interpreting a formal 
theory that had been explained in advance. As a result, the formal model tended 
to be a direct formalization that was no longer based exclusively either on a prior 
physical model or on a more abstract theory. This type of epistemic function was 
new for models in the empirical sciences. By virtue of the model’s henceforth 
formal nature, and owing to this new function it was given, the model may seem 
to conflict with the nature and the epistemic functions of the traditional formal 
laws. Nevertheless, it was still recognized as a model and not as a law: these 
two characteristics – its local validity and the fact that the justification for its 
construction is based on a particular question and a precise perspective – are still 
used to differentiate between the scope and function specific to a formal model 
and those specific to a mathematical law.

Thus, because of the specific different epistemic functions now given to models, 
and because of the correlative divergences in terms of fieldwork epistemology, this 
first epoch, which saw the emergence of the model method, is characterized by a 
general renewal of the legitimization of formalisms in the life sciences, in particular 
for studying morphogenesis: the formalisms became more varied once they were no 
longer necessarily determined by representations resulting solely from physics or the-
ories that could be completely and formally mathematized. The legitimization of these 
formalisms could itself become more varied. The term “model”7 becomes more fre-
quent in the literature, and then systematic. In this, mathematics first played a purely 
pragmatic role as a tool for data investigation or data representation, combined with an 
epistemology favouring detached formalizations and pluralism, an epistemology that 
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was in fact often fictionalistic and instrumentalistic. Parallel to this effect favouring a 
pluralistic epistemology of formal models in applied biology, mathematics still played 
a major role for the most speculative of the bio-mathematicians in their theoretical-
mathematical models. This was no longer a role of symbolic replication of entities 
and elementary mechanisms (entity realism), however, but rather a role as a means of 
revealing the directly mathematical-type stable structures (structural realism). It is the 
recognition of the latter epistemic function that emerges, for example, in the transition 
from biophysics to biotopology that the biomathematician Nicholas Rashevsky first 
invoked in 1953.8 Thus, not only with regard to the rise of descriptive mathematics 
in applied biology, but also with respect to the most theoretical works, mathemati-
cal ingenuity was directed at what I have called a detachment of formalisms. To that 
extent, this mathematical ingenuity would partially replace the models and metaphors 
that traditionally derived from physics and its related disciplines.

Let us turn now to the second epoch, which precedes our own and extends from 
the end of the 1940s to the early 1960s. This epoch has a series of features that 
I will sum up briefly. First of all, owing to the availability of digital computers, 
digital simulation developed very early on alongside the formal models, but in 
an equally polymorphic manner. A different hurdle was cleared from the path of 
formal modelling for plant morphogenesis with each of the contributions from the 
new authors – all of whom were mathematicians and not biologists. Alan Turing 
(1952) emphasized the contribution of the discretization of formalisms. Murray 
Eden (1960) highlighted the need to formalize real random events with simu-
lated random events through “stochastic” models based on the laws of probability. 
Lastly, Stanislaw Ulam (1962) demonstrated the importance of the spatialization 
of formalisms in order to formalize spatial phenomena.9 This would mark the 
beginning of cellular automata. In this context, computer simulation proved from 
the start to be a formalization strategy that operated on a lower level of abstraction 
than classic formal modelling, with a complicated manual processing that was 
offset by a massively iterative processing delegated to the machine. It is in fact 
in this sense that computer simulation relies on a sub-symbolic use of the usual 
sets of axioms. The formal models in a computer simulation are not calculated 
formally by the computer thanks to deductive rules; instead it is their axiomatic 
functioning that is simulated by the sub-symbolic representations, which in turn 
possess their own set of rules and axioms. These other sets of rules and axioms 
are at times – but not always – of a more immediately interpretable nature, as is 
the case, for example, of discrete representations that use one-to-one relations 
between single-memory addresses in the computer and neutrons in the first 
computerized nuclear physics.

Until the beginning of the 1960s, however, each of these digital simulations 
of growing living beings, by selectively sub-symbolizing a formal representation, 
extended the power of expression of the formal model in accordance with a maxi-
mum of one or two dimensions that had until then been inaccessible to mathematics. 
Each of these simulations thus gave rise to just one selective digital representation. 
Moreover, none of these simulations could be fed precise field data, which would 
have enabled an effective calibration to be carried out. All of the results of these 
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digital simulation processes thus remained merely qualitative models. From this 
point of view, these simulation processes were ultimately comparable to the con-
temporaneous theoretical-mathematical models that, in their turn, still sought 
to explain by invoking a single fundamental or predominant mechanism, such as 
those of biophysics, biotopology, relational biology, differential topology or plant-
structure thermodynamics.10 In this context, a computer that simulates remains an 
unrefined and purely qualitative simulator. It produces graphs or curves that admit-
tedly bring to mind the shapes found in nature. But this similarity remains purely 
qualitative. Thus, whether it is a case of formal models or of those first computer 
simulations, formal multiplicity and diverging formal solutions remain the rule. It 
is the divergence and dispersion of mere intention, of speculation and of selective 
mathematical actions without a grip on the world of real plants.

As for field modelling, such as the modelling used during this second epoch in 
agronomy and forestry – the very modelling that was most expected to have a grasp 
on reality – formal divergence and diversity were in fact its method, its credo. For 
multifactor experimental designs applied to increase in biomass, for improvements 
in crop management, for problems of blight control, the biometric models of plant 
growth worked very well. They were designed to do so. Nonetheless, despite all this 
newly available formal diversity, these models failed when it came to focusing on 
monitoring of morphogenesis on the scale of the individual plant. As a result of this 
failure, they ultimately rather glaringly revealed the unavoidably perspectivist and 
selective nature of the formal model. The problem was, so they said, that the proper-
ties of a living organism could not all be formalized at the same time. But what may 
seem here to be a defect of the model, field biometrics often decides to interpret as 
a quality of nature, as proof that we are indeed dealing with nature, in its infinite 
complexity. These formal field models are selective in their perspective. What is 
more, they are mutually exclusive: nothing could be more normal, as we often read 
in the scientific literature itself, than this fruitful tension between representation and 
action. Beyond certain cultural differences, an epistemology of a pragmatic type 
that is adopted principally in the English-speaking countries due to the overwhelm-
ing influence of nominalism and of pragmatist philosophies may, strangely enough 
but very significantly, harmonize on certain points with a dialectic-type epistemol-
ogy that is more specifically adopted on the European continent, and in particular 
in France, due to the persistent influence in this context of Hegelian rationalism and 
dialectic materialism. During this epoch, these two epistemologies, which were oth-
erwise so distinct, could thus be seen to confirm each other’s intuitions, since both 
claimed that it was necessary to renounce the aim of simultaneously representing 
the infinite multiplicity of dimensions of the object under study. Both claimed that it 
was necessary to try to offset this impossibility by a multiplicity of formal and selec-
tive modelling approaches to that object.11 It is true that these formal approaches 
remain mutually incompatible, because they are axiomatically not co-calculable. As 
a result, they can only be juxtaposed but not aggregated. We may pass from one to 
the other, but they are never aggregated with each other.

As for mathematical models with a theoretical function, those who are dedicated 
to these models in theoretical biomathematics may lament their diversity, while at the 
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same time nonetheless also contributing to increasing this diversity. Thus they seek 
to make them not exclusive, but rather mutually absorbing, since in that way they 
can demonstrate that they are capitalizing on earlier works and that they are doing 
better than them. The metaphor I am suggesting here is that of absorption: this is the 
direct opposite of the metaphor of aggregation that applies for integrative simula-
tions. I would say that a theoretical-mathematical model is absorbent because it is 
conceived to replace and emulate one or several other models, while at the same time 
bringing its own epistemic contribution. It emulates other models in the sense that it 
seeks to be more general by dispensing with the explicit formulation of the preceding 
theoretical-mathematical model, but fulfilling almost the same epistemic functions 
of comprehension – and sometimes of partial prediction – as the previous one while 
adding several other functions of its own. From this point of view, the formalisms 
of theoretical biology are in competition with each other for theoretical dominance. 
They neither accept nor seek a peaceful juxtaposition. They seek to reduce each other 
in the secret hope that there will remain only one at the end: this is the process of 
absorption. But any contemporary historian of science can nonetheless see that bio-
mathematics fails to propose a final, convincing absorption, namely a comprehensive 
general theory of morphogenesis and growth that would be based, for example, on 
information, entropy, the mathematical theory of catastrophes, on fractals, or indeed 
on a general theory of signals or networks. The result of this relative failure is that, 
rather ironically, and even tragically from their point of view, these theoretical mod-
els actually become very different also in the scientific literature. In these multiple 
works of resistance to multiplicity, to perspectivist and pragmatist modelling, as well 
as to the dispersion of detached field models, the search for a unique and monofor-
malized theoretical model – i.e., one that is formalized in only one sole mathematical 
set of axioms – plays the role of substitute for the lost and seemingly direct rooting 
of the old models in the physical world.

This second epoch therefore is characterized, on the one side, by a calm acceptance 
of the mutual incompatibility of models as long as they promote human action, and on 
the other by an uneasy rejection of that dispersion because it heralds a loss of meaning, 
in particular for those who disagree with pragmatism or dialectic rationalism. This, 
then, is the portrait of an epoch that, for other equally fundamental reasons (such as the 
changing social demands with regard to science in the post-war period, the recognized 
limitations of the capabilities of instruments and formalisms, the changing objects of 
study), with relative coherence developed its own consensual epistemology of the 
plurality and dispersion of representations, ending with its later explicit affirmation 
during the 1980s in some research work and symposia on epistemology and science 
studies. In some ways, the movement towards a pluralization and dispersion of mod-
els that was specific to this second epoch is the same as what we are still witnessing 
today, in a large part of contemporary science. The epistemologies of the dispersion 
and disunity of science were able to come into being and find ways of justifying them-
selves during that epoch, in particular by exploiting the method of formal models and 
of correlative iconoclasm, or rejection of integral representation.

And yet, in the case of an object that is complex, because it is particularly com-
posite, such as the plant for example, it turns out that monoformalized models, even 
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when multiplied, or even when they have a statistical nature and only a pragmatic 
aim, are no more capable than monoformalized theories of providing predictive 
and effectively operational formalizations. And in the face of social demand, 
science has thus had to try to advance further still and circumvent this hurdle. 
This is essentially the reason why, as I will show more particularly in this work, 
from the mid-1970s onwards, botanists, agronomists, foresters and other plant 
specialists all turned towards integrative software-based computer simulation12  
based on an individual-based approach, since, thanks to the visualization devices 
and object-based computer languages, such simulation permitted the convergence 
of perspectives, scales and mechanisms, and thus of multiple formalisms. I will 
demonstrate that software-based simulation thus brought about two fundamen-
tal innovations. First, simulation broke with the supremacy of formal models and 
their associated epistemologies, albeit without downgrading them entirely. Next, it 
broke with the numerical simulation that had emerged in the immediate post-war 
period and that was still dependent on mathematical models and the assistance they 
provided. Indeed, software-based simulation made it possible to achieve precise 
calibration and, in many cases, quantitative prediction, or even – which remains a 
heresy for many – an outright “experiment on simulation”, also known as a “virtual 
experiment”. Its essential principle, as we will see, is what I propose to call pluri-
formalization or, in other words, a computer integration of formalisms of different 
natures (logical, mathematical) and from different points of view. This latest-
generation simulation, far from being simply a discretization of models, takes a 
position that is at times in competition with models and mathematics, insofar as 
it makes something that is not compatible mathematically compatible on the level 
of the programming language and of the computer program. This, to my mind, 
seems to be its most decisive contribution since the beginning of the 1990s. Its 
truly empirical nature obviously remains in question, and we will see this in detail 
during the investigation, and also in the conclusion, in the form of a comparative 
table. But the questions that arise in the matter of its empirical nature are in fact 
not all the same as those that have already arisen regarding the empirical nature 
of numerical simulation. I can already say that the formalization that such an inte-
grative simulation carries out takes on a compactness and a depth due to the fact 
that several different perspectives, and therefore the approaches of several differ-
ent disciplines (physiology, mechanics, architecture, etc.), are possible at the same 
time. Simulation thus breaks, at the very least, with the perspectivist and purely 
pragmatist epistemology that often accompanied the first formal models: model-
ling from a precise perspective, and with a precise objective. Software-based and 
object-based simulations go beyond an integrative pluralism13 as well as a selective 
realism,14 and truly implement an integrated plurality. It is thus a very different 
epistemic practice than traditional formal modelling and its technical extensions. It 
is therefore necessary to try to look at it in a different manner.

Although simulation was conceived from the practices of modelling, it has 
admittedly not made modelling disappear. But it has shifted, amplified and 
somewhat disaggregated modelling by giving a new status to the formalisms: 
a quasi-empirical status. It is here that lies the central role of the computer, the 
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half-material, half-formal instrument that has contributed to building bridges 
of various types between the practices of minimally abstracted replication and 
the more classic practices of abstraction and calculation. Computer simulation 
was developed first of all in the form of so-called numerical simulation. In 
this form, it first served to resolve the mathematical models that were other-
wise intractable, and in so doing made it possible to considerably extend the 
methods of calculation by finite elements that date back to mid-19th-century 
techniques for the calculation of structures. Since the 1990s, however, computer 
simulation has decisively broken with the monopoly of that single function of 
approximate calculation of models. At times, it even precedes the model. To 
such an extent that, for the past ten or fifteen years, far from limiting itself 
to the numerical resolution of mathematical models that have been conceived 
beforehand with one single set of axioms and from one single perspective, more 
and more scientists seek formal models on virtual integrative mock-ups or on 
pluriformalized integrative models of simulation. In such simulations, it is not 
just various homogeneous algorithmic rules that replace the mathematical laws 
(this is the case of the algorithmic simulations developed since the beginning 
of the 1960s), but these rules may go so far as to be fundamentally pluralistic, 
evolutive, heterogeneous and spread out over the different times and spaces of 
the computation. The order of priority between model and simulation is thus 
inversed: we simulate before we model. Software-based computer simulation 
thus is distinguished not just from numerical simulation, but also from algorith-
mic simulation.15 Having now become the complex double of a reality that is 
perceived and conceived as complex, computer simulation has ended up meld-
ing with the experimentation per se and the monoformalized modelling. Thus, 
since becoming software-based in the 1970s, simulations have had a tendency to 
become considerably more complex. They now allow an integrative and figura-
tive realism, and these detailed, multiscale and multi-process representations 
have taken on an altogether remarkable weight. In return, when they are validly 
calibrated and stabilized, these simulation strategies make it possible for mod-
ellers to leave behind the completely simulated approaches and to enter into a 
phase of formalization that, starting in Chapter 7, I propose to call remathemati-
zation. Thus, it becomes more and more clear that in certain domains that study 
objects, such as plants, that are considered to be complex, searching for a formal 
model directly from the data, without prior integrative simulation, now seems 
to be truly too arbitrary and something that should be avoided. Today, a math-
ematical modelling that aims to skip the step of integrative simulation, even if 
its declared aim is merely theoretical, heuristic or pragmatic, becomes more and 
more open to question. Thus this inversion of priority between the practice of 
simulation and the practice of mathematical formalization is not the least of the 
recent contributions of computerization in the sciences that use models.

What particular technical and epistemological choices determined this type of decisive 
innovation? What are the precise types of the various integrations and convergences that, 
after a period of detachment and then of pluralization and dispersion of formal models, 
characterize this new epoch into which we have entered – an epoch in which, as we will 
see, plant-growth models and simulations have been precursors to a considerable extent? 
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Might it not be said – with regard to the formalisms that are applied to the objects studied 
by the empirical sciences – that this epoch of integration and convergence of formalisms 
in fact testifies to a simple practice of “rerooting”? In other words: to what extent can it be 
said that the convergences made possible by computerizing the methods of formalization 
exhibit neither a return back towards a mathematicist essentialism according to which the 
world is seemingly written in a single mathematical language, nor an escape forwards to 
a naïve and illusory figurative realism, the result of our apparent fascination with images 
and virtual worlds, rather than a desire for comprehension and true science? For that 
matter, in what sense can it be said of a computer simulation that it possesses an empiri-
cal dimension? Is this true of all simulations? Otherwise, of which ones is this true, and 
why? What are the limitations of the knowledge conferred by software-based and object-
based simulations if we are already able to perceive them? What precise epistemological 
lessons can we already draw from this very recent evolution? And finally, what new 
conceptual and terminological propositions can the modern epistemology of models and 
simulations adopt to try to go a step further than the old epistemologies of models that, 
in the 20th century, were successively or concurrently of syntactic (logicism), dialectic, 
semantic and then pragmatic influence?16

This historical and interpretative investigation, which I have the honour to submit 
here in updated form for English-speaking readers, attempts to answer some of these 
questions. It does so by choosing to focus on certain scientific works that have, to my 
mind, played a large part in determining this recent transition from model to simula-
tion. As we will see, I have paid particular attention not only to the technical choices 
of these works, but also to the methodological and epistemological decisions that 
accompanied them, as well as, when necessary, to the administrative and institutional 
contexts that witnessed their emergence. This work, inspired by the reflections that 
cropped up during my own use of mathematical modelling and numerical simulation 
in the field of applied atomic physics,17 is based primarily on field-survey work, on 
a systematic collection and analysis of publications and archives, and on oral and 
written interviews carried out with some twenty-odd of the main protagonists of this 
story. It is also based on the interpretation and epistemological contextualization of 
the various recent schools and practices of modelling and simulation. Based on the 
idea that a philosophy of science cannot do without a history of science that is both 
very contemporary and highly comparative, this work aims to draw an epistemo-
logical lesson that is, if possible, enriched and differentiated regarding the different 
practices of formalization used in the empirical sciences – practices that have con-
tinued without cease to characterize modern science since its first great successes of 
the 17th century.

Notes
 1 P. Galison, Image and Logic, Chicago: University of Chicago Press, 1997.
 2 F. Varenne, Théories et modèles en sciences humaines. Le cas de la géographie 

[Theories and models in human sciences. The case of geography], Paris: Éditions 
Matériologiques, 2017.

 3 The comparative history of this earlier period was the focus of another book, which 
has not yet been translated: F. Varenne, Formaliser le vivant: lois, théories, modèles? 
[Formalizing living beings: laws, theories, models?], Paris: Hermann, 2010.



12 Introduction

 4 R.A. Fisher, “Studies in crop variation, I. An examination of the yield of dressed grain 
from Broadbalk”, Journal of Agricultural Sciences, 1921, 11, pp. 107–135.

 5 W.S. Gosset (alias “Student”), “The probable error of a mean”, Biometrika, 1908, 6, 
pp. 1–25.

 6 See glossary.
 7 Regarding the polysemy of this term, see glossary.
 8 F. Varenne, “Nicholas Rashevsky (1899–1972): de la biophysique à la biotopologie” 

[Nicolas Rashevsky, (1899–1972): from biophysics to biotopology], Cahiers d’Histoire 
et de Philosophie des Sciences, Special Edition, 2006, pp. 162–163.

 9 For a comparative analysis of these three contributions, see F. Varenne, Formaliser le 
vivant . . . , 2010, op. cit., partie III “La naissance des simulations” [Part III “The birth 
of simulations”], pp. 163–217.

 10 On these various theoretical approaches, see F. Varenne, Formaliser le vivant. . ., 2010, 
op. cit., partie IV “Le tournant mathématiste des théories” [Part IV “The mathematicist 
turning point of theories”], pp. 219–275.

 11 This mutual exclusion of multiple models is not necessary, however, suggests  
A.F. Schmid in L’âge de l’épistémologie [The age of epistemology], Paris: Kimè, 1998.

 12 “Integrative” in no way signifies “integral”.
 13 S.D. Mitchell, Biological Complexity and Integrative Pluralism, Cambridge: Cambridge 

University Press, 2003.
 14 P. Humphreys, Extending Ourselves: Computational Science, Empiricism and Scientific 

Method, Oxford: Oxford University Press, 2004.
 15 See the terminological distinctions set out in Chapter 8 and the glossary.
 16 For confirmation of this reading, see M.S. Morgan, M. Morrison (Eds), Models As 

Mediators, Cambridge: Cambridge University Press, 1999. For a debate on interpreta-
tion, see F. Varenne, Les notions de métaphore et analogie dans les épistémologies des 
modèles et des simulations [The concepts of metaphor and analogy in the epistemolo-
gies of models and simulations], Paris: Pétra, 2006.

 17 Between 1993 and 1996 I was first a trainee Engineer and then Research Engineer 
at the Laboratoire de l’Horloge Atomique (LHA – Atomic Clock Laboratory) of the 
CNRS (Centre national pour la recherche scientifique – National Centre for Scientific 
Research), at Orsay, near Paris, during two periods covering a total of 15 months. This 
laboratory has since merged with the SYRTE laboratory. The SYRTE department – 
Systèmes de Référence Temps Espace (Time and Space Reference Systems) – belongs 
to the Paris Observatory – Paris Sorbonne Lettres Research University and is also asso-
ciated with the CNRS – National Research Centre and University Pierre & Marie Curie 
(Paris 6) – Sorbonne University. Website: https://syrte.obspm.fr. I would like to take this 
opportunity to thank the colleagues I had the pleasure of working with then, and with 
whom I continued my training in physics and modelling: Pierre Cérez, Noël Dimarcq 
and Bertrand Boussert.
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