1,404 research outputs found

    Interactive Gaming Reduces Experimental Pain With or Without a Head Mounted Display

    Get PDF
    While virtual reality environments have been shown to reduce pain, the precise mechanism that produces the pain attenuating effect has not been established. It has been suggested that it may be the ability to command attentional resources with the use of head mounted displays (HMDs) or the interactivity of the environment. Two experiments compared participants’ pain ratings to high and low levels of electrical stimulation while engaging in interactive gaming with an HMD. In the first, gaming with the HMD was compared to a positive emotion induction condition; and in the second experiment the HMD was compared to a condition in which the game was projected onto a wall. Interactive gaming significantly reduced numerical ratings of painful stimuli when compared to the baseline and affect condition. However, when the two gaming conditions were directly compared, they equally reduced participants’ pain ratings. These data are consistent with past research showing that interactive gaming can attenuate experimentally induced pain and its effects are comparable whether presented in a head mounted display or projected on a wall

    Improving Dental Experiences by Using Virtual Reality Distraction: A Simulation Study

    Get PDF
    Dental anxiety creates significant problems for both patients and the dental profession. Some distraction interventions are already used by healthcare professionals to help patients cope with unpleasant procedures. The present study is novel because it a) builds on evidence that natural scenery is beneficial for patients, and b) uses a Virtual Reality (VR) representation of nature to distract participants. Extending previous work that has investigated pain and anxiety during treatment, c) we also consider the longer term effects in terms of more positive memories of the treatment, building on a cognitive theory of memory (Elaborated Intrusions). Participants (n = 69) took part in a simulated dental experience and were randomly assigned to one of three VR conditions (active vs. passive vs. control). In addition, participants were distinguished into high and low dentally anxious according to a median split resulting in a 362 between-subjects design. VR distraction in a simulated dental context affected memories a week later. The VR distraction had effects not only on concurrent experiences, such as perceived control, but longitudinally upon the vividness of memories after the dental experience had ended. Participants with higher dental anxiety (for whom the dental procedures were presumably more aversive) showed a greater reduction in memory vividness than lower dental-anxiety participants. This study thus suggests that VR distractions can be considered as a relevant intervention for cycles of care in which people’s previous experiences affect their behaviour for future events

    Virtual reality in the treatment of pain

    Get PDF
    Many medical procedures produce acute pain that in most cases is quite disturbing for the individual. Medication is the treatment of choice for acute pain. However, given the involvement of psychological aspects in the experience of pain, psychological techniques are being used as an effective adjunct to alleviate pain related to medical procedures. In the last years a new technology is demonstrating an enormous potential in this field: Virtual Reality (VR) distraction. In this article we review studies that explore the efficacy of immersive VR distraction in reducing pain related to different medical procedures. We include clinical studies and analogue studies with healthy participants. We discuss the results achieved by these studies and recommend future directions of VR pain control research

    Attenuation of capsaicin-induced ongoing pain and secondary hyperalgesia during exposure to an immersive virtual reality environment

    Get PDF
    Introduction: There is growing evidence that virtual reality (VR) can be used in the treatment of chronic pain conditions. However, further research is required in order to better understand the analgesic mechanisms during sensitised pain states. Objectives: We examined the effects of an immersive polar VR environment on capsaicin-induced ongoing pain and secondary hyperalgesia. We also investigated whether the degree of analgesia was related to baseline conditioned pain modulation (CPM) responses. Methods: Nineteen subjects had baseline CPM and electrical pain perception (EPP) thresholds measured prior to the topical application of capsaicin cream. Visual analogue scale (VAS) ratings were measured to track the development of an ongoing pain state and EPP thresholds were used to measure secondary hyperalgesia. The effects of a passive polar VR environment on ongoing pain and secondary hyperalgesia were compared to sham VR (i.e. 2D monitor screen) in responders to capsaicin (n=15). Results: VR was associated with a transient reduction in ongoing pain and an increase in EPP thresholds in an area of secondary hyperalgesia. Baseline CPM measurements showed a significant correlation with VR-induced changes in secondary hyperalgesia, but not with VR-induced changes in ongoing pain perception. There was no correlation between VR-induced changes in pain perception and VR-induced changes in secondary hyperalgesia. Conclusions: Virtual reality can reduce the perception of capsaicin-induced ongoing pain perception and secondary hyperalgesia. We also show that CPM may provide a means by which to identify individuals likely to respond to VR therapy

    An interoceptive predictive coding model of conscious presence

    Get PDF
    We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness

    A rift between implicit and explicit conditioned valence in human pain relief learning

    Get PDF
    Pain is aversive, but does the cessation of pain (‘relief’) have a reward-like effect? Indeed, fruitflies avoid an odour previously presented before a painful event, but approach an odour previously presented after a painful event. Thus, event-timing may turn punishment to reward. However, is event-timing also crucial in humans who can have explicit cognitions about associations? Here, we show that stimuli associated with pain-relief acquire positive implicit valence but are explicitly rated as aversive. Specifically, the startle response, an evolutionarily conserved defence reflex, is attenuated by stimuli that had previously followed a painful event, indicating implicit positive valence of the conditioned stimulus; nevertheless, participants explicitly evaluate these stimuli as ‘emotionally negative’. These results demonstrate a rift between the implicit and explicit conditioned valence induced by pain relief. They might explain why humans in some cases are attracted by conditioned stimuli despite explicitly judging them as negative

    A mixed-methods investigation into the acceptability, usability and perceived effectiveness of active and passive virtual reality scenarios in managing pain under experimental conditions

    Get PDF
    Burns patients often suffer excruciating pain during clinical procedures, even with analgesia. Virtual Reality as an adjunct to pharmacological therapy has proved promising in the management of burn pain. More evidence is needed regarding specific forms of Virtual Reality. This mixed-method study examined the impact of active and passive Virtual Reality scenarios in experimental conditions, gathering data relating to user experience, acceptability and effectiveness in managing pain. Four scenarios were developed or selected following a consultative workshop with burns survivors and clinicians. Each was trialled using a cold pressor test with 15 University students. Data were gathered regarding pain threshold and tolerance at baseline and during each exposure. Short interviews were conducted afterwards. The two active scenarios were ranked highest and significantly extended participants pain threshold and tolerance times compared to passive and baseline conditions. Passive scenarios offered little distraction and relief from pain. Active scenarios were perceived to be engaging, challenging, distracting and immersive. They reduced subjective awareness of pain, though suggestions were made for further improvements. Results suggested that active Virtual Reality was acceptable and enjoyable as a means of helping to control experimental pain. Following suggested improvements, scenarios should now be tested in the clinical environment

    Selected topics on the neuroscience of altered perceptions and illusory beliefs

    Full text link
    Six neuropsychological topics illustrating altered perceptions and illusory beliefs are explored with particular emphasis on the neurobiological underpinnings of such phenomena. The first five topics are phantom limb, out-of-body experiences including depersonalization and near-death experiences, delusions with an emphasis on the effects of psychedelic drugs, autonomic reflex actions including respiration and heartbeat, and virtual reality. The last topic focuses on three disorders impairing perception and cognition, namely, Anton-Babinski, Charles Bonnet, and Diogenes Syndromes. Many of the related neurobiological mechanisms reflect disturbances of both lower-level and multisensory processing along with specific cortical impairments such as at the temporoparietal junction. The latter has been linked, for example, to out-of-body experiences. Similarly, aberrant neural learning and signaling such as that based on synaptic receptor disturbances show how the interplay between lower-level brain activity and that in the prefrontal cortex contributes to delusions. Specific hypotheses set forth to explain these alterations in perception and cognition are reviewed, such as a remapping theory which depicts cortical reorganization in response to synaptic changes mediated by receptors. The effects of these perceptual/cognitive distortions on experiential pleasure/pain and on adaptability are also explored

    Is Your Virtual Self as Sensational as Your Real? Virtual Reality: The Effect of Body Consciousness on the Experience of Exercise Sensations

    Get PDF
    Objectives: Past research has shown that Virtual Reality (VR) is an effective method for reducing the perception of pain and effort associated with exercise. As pain and effort are subjective feelings, they are influenced by a variety of psychological factors, including one’s awareness of internal body sensations, known as Private Body Consciousness (PBC). The goal of the present study was to investigate whether the effectiveness of VR in reducing the feeling of exercise pain and effort is moderated by PBC. Design and Methods: Eighty participants were recruited to this study and were randomly assigned to a VR or a non-VR control group. All participants were required to maintain a 20% 1RM isometric bicep curl, whilst reporting ratings of pain intensity and perception of effort. Participants in the VR group completed the isometric bicep curl task whilst wearing a VR device which simulated an exercising environment. Participants in the non-VR group completed a conventional isometric bicep curl exercise without VR. Participants’ heart rate was continuously monitored along with time to exhaustion. A questionnaire was used to assess PBC. Results: Participants in the VR group reported significantly lower pain and effort and exhibited longer time to exhaustion compared to the non-VR group. Notably, PBC had no effect on these measures and did not interact with the VR manipulation. Conclusions: Results verified that VR during exercise could reduce negative sensations associated with exercise regardless of the levels of PBC
    corecore