94 research outputs found

    Approximating the multi-level bottleneck assignment problem.

    Get PDF
    We consider the multi-level bottleneck assignment problem (MBA). This problem is described in the recent book 'Assignment Problems' by Burkard et al. (2009) on pages 188-189. One of the applications described there concerns bus driver scheduling.We view the problem as a special case of a bottleneck m-dimensional multi-index assignment problem. We give approximation algorithms and inapproximability results, depending upon the completeness of the underlying graph. Keywords: bottleneck problem; multidimensional assignment; approximation; computational complexity; efficient algorithm.Bottleneck problem; Multidimensional assignment; Approximation; Computational complexity; Efficient algorithm;

    A Memetic Algorithm for a Bi-objective Bus Driver Rostering Problem

    Get PDF
    The Bus Driver Rostering Problem (DRP) consists of assigning bus drivers to daily duties during a planning period. The problem considers hard constraints imposed by institutional and legal requirements. Solutions should as much as possible satisfy soft constraints that qualify rosters according to either the company's or the drivers' interests. A bi-objective version of the DRP is considered and two models are presented. Due to the high computational complexity of DRP, this paper proposes the Strength Pareto Utopic Memetic Algorithm (SPUMA) a new heuristic algorithm specially devised to tackle the problem. SPUMA genetic component combines utopic elitism with a strength Pareto fitness evaluation and includes an improvement procedure. Computational results show that SPUMA outperforms an adaptation of one of the state-of-the-art most competitive multi-objective evolutionary algorithms, SPEA2

    Bi-objective Evolutionary Heuristics for Bus Drivers

    Get PDF
    The Bus Driver Rostering Problem refers to the assignment of drivers to the daily schedules of the company's buses, during a planning period of a given duration. The drivers' schedules must comply with legal and institutional rules, namely the Labour Law, labour agreements and the company's specific regulations. This paper presents a bi-objective model for the problem and two evolutionary heuristics differing as to the strategies adopted to approach the Pareto frontier. The first one, the utopian strategy, extends elitism to include an unfeasible solution in the population, and the second one is an adapted version of the well known SPEA2 (Strength Pareto Evolutionary Algorithm). The heuristics' empirical performance is studied with computational tests on a set of instances generated from vehicle and crew schedules. This research shows that both methodologies are adequate to tackle the instances of the Bus Driver Rostering Problem. In fact, in short computing times, they provide the planning department, with several feasible solutions, rosters that are very difficult to obtain manually and, in addition, identify among them the efficient solutions of the bi-objective model

    Solving Public Transit Scheduling Problems

    Get PDF
    Operational planning within public transit companies has been extensively tackled but still remains a challenging area for operations research models and techniques. This phase of the planning process comprises vehicle scheduling, crew scheduling and rostering problems. In this paper, a new integer mathematical formulation to describe the integrated vehicle-crew-rostering problem is presented. The method proposed to solve this multi-objective problem is a sequential algorithm considered within a preemptive goal programming framework that starts from the solution of an integrated vehicle and crew scheduling problem and ends with the solution of a driver rostering problem. Feasible solutions for the vehicle and crew scheduling problem are obtained by combining a column generation scheme with a branch-and-bound method. These solutions are the input of the rostering problem, which is tackled through a mixed binary linear programming approach. An application to real data of a Portuguese bus company is reported and shows the importance of integrating the three scheduling problems

    Revisiting the Evolution and Application of Assignment Problem: A Brief Overview

    Get PDF
    The assignment problem (AP) is incredibly challenging that can model many real-life problems. This paper provides a limited review of the recent developments that have appeared in the literature, meaning of assignment problem as well as solving techniques and will provide a review on   a lot of research studies on different types of assignment problem taking place in present day real life situation in order to capture the variations in different types of assignment techniques. Keywords: Assignment problem, Quadratic Assignment, Vehicle Routing, Exact Algorithm, Bound, Heuristic etc

    Unified Concept of Bottleneck

    Get PDF
    The term `bottleneck` has been extensively used in operations management literature. Management paradigms like the Theory of Constraints focus on the identification and exploitation of bottlenecks. Yet, we show that the term has not been rigorously defined. We provide a classification of bottleneck definitions available in literature and discuss several myths associated with the concept of bottleneck. The apparent diversity of definitions raises the question whether it is possible to have a single bottleneck definition which has as much applicability in high variety job shops as in mass production environments. The key to the formulation of an unified concept of bottleneck lies in relating the concept of bottleneck to the concept of shadow price of resources. We propose an universally applicable bottleneck definition based on the concept of average shadow price. We discuss the procedure for determination of bottleneck values for diverse production environments. The Law of Diminishing Returns is shown to be a sufficient but not necessary condition for the equivalence of the average and the marginal shadow price. The equivalence of these two prices is proved for several environments. Bottleneck identification is the first step in resource acquisition decisions faced by managers. The definition of bottleneck presented in the paper has the potential to not only reduce ambiguity regarding the meaning of the term but also open a new window to the formulation and analysis of a rich set of problems faced by managers.
    corecore