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Abstract 

The Bus Driver Rostering Problem (DRP) consists of assigning bus drivers to daily duties 

during a planning period. The problem considers hard constraints imposed by institutional 

and legal requirements. Solutions should as much as possible satisfy soft constraints that 

qualify rosters according to either the company’s or the drivers’ interests. 

A bi-objective version of the DRP is considered and two models are presented. Due to the 

high computational complexity of DRP, this paper proposes the Strength Pareto Utopic 

Memetic Algorithm (SPUMA) a new heuristic algorithm specially devised to tackle the 

problem. SPUMA genetic component combines utopic elitism with a strength Pareto fitness 

evaluation and includes an improvement procedure. Computational results show that SPUMA 

outperforms an adaptation of one of the state-of-the-art most competitive multi-objective 

evolutionary algorithms, SPEA2. 
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1. Introduction 

The rostering problem arises in several operational contexts, such as transport and health care 

systems. Ernst et al. extensively surveyed bibliographical references on personnel scheduling 

and rostering (Ernst et al., 2004). Rostering of bus drivers, unlike bus crew scheduling, has 

not attracted much attention of researchers. Nevertheless, the literature presents different 

models for transit crew rostering, namely, network models. Multilevel assignment models 

were proposed by Carraresi and Gallo (1984) and Bianco et al. (1992) for a particular bus 

driver rostering problem, and by Caprara et al. (1998) focusing on airlines and railway crew 

rostering. More recently, Cappanera and Gallo (2004) deal with rostering in an airline 

company by using a multicommodity flow model. All these works consider single objective 

models. 

However, in the rostering context, both the company's and the workers' conflicting interests 

must be taken into account which leads to problems with multiple objectives (Landa-Silva et 

al., 2004). Consequently, solutions should encompass the trade-off between these two axes. 

Multi-objective rostering has been considered in various rostering issues like airline crew 

rostering (Lucic and Teodorovic, 1999) or nurse rostering (Moz and Pato, 2007). Catanas and 

Paixão (1995) proposed a bi-objective bus driver rostering model based on a set covering 

formulation. The model considers the maximum roster duration minimization and 

minimization of the total roster cost and the first objective is taken into account implicitly by 

introducing side constraints.  

Hence, tackling multi-objective rostering problems still remains a challenging issue. On the 

other hand, memetic algorithms have been successfully applied to scheduling and timetabling 

(Burke and Landa-Silva, 2004). In this work, a bi-objective version of the Bus Driver 

Rostering Problem (DRP) is addressed and a new memetic algorithm is proposed and 

evaluated. 

Section 2 describes a bi-objective optimization problem for a particular set of constraints of a 

real problem occurring in a bus company. Two mathematical models are also presented: a 

multicommodity multi-objective network flow model, and a preemptive binary goal 

programming formulation. Section 3 introduces multi-objective evolutionary algorithms 

(MOEAs) and briefly describes one of the most competing MOEA. Section 4 proposes the 

Strength Pareto Utopic Memetic Algorithm (SPUMA) devised to solve the bi-objective DRP. 
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Computational results are reported and discussed in section 5, where SPUMA is compared 

with an adaptation of SPEA2. Finally, section 6 presents some final remarks. 

2. The Bus Driver Rostering Problem 

2.1 Problem Description 

The Bus Driver Rostering Problem is here defined in accordance with the institutional 

requirements and norms of a Portuguese urban bus company, besides the Portuguese Labor 

Law and the drivers’ union contracts. In the particular situation analyzed, the company 

enrolls a fixed set of drivers operating daily from 6:00 a.m. to 12:00 a.m. The DRP thus 

consists of assigning a set of drivers to a previously determined set of daily work duties, 

during a given period – the rostering period, here 28 days or 4 weeks. A work duty is a daily 

working period to be carried out by a single driver on a specific day and it consists of a 

sequence of pieces of work, including breaks and idle times. Two types of work duties are 

considered: early duties starting between 6:00 a.m. and 3:30 p.m., and late duties starting 

between 3:30 p.m. and 12:00 a.m. Every day, each driver is assigned to work in a particular 

duty (work duty) or has a day-off (non-work duty). Hence, for each driver, one must produce 

a line of work, that is, a sequence of work duties and days-off for the 28 days period. The 

solution of the DRP is called a roster - a set of lines of work for all the bus drivers. 

Rosters must comply with the conditions and rules imposed by labor union contracts, 

institutional and legal requirements which are viewed as hard constraints. These requirements 

concern the number of days-off per week, specific days-off per week, a minimum number of 

Sundays/weekends-off in the rostering period, a minimum and a maximum number of days 

for the length of a rest period, a minimum number of rest hours between two consecutive 

work periods and a minimum and a maximum number of consecutive working days, among 

others.  

The DRP studied in this paper imposes the contracts and company rules through the 

following hard constraints: 

(h1) each duty must be assigned to one and only one driver; 

(h2) each driver must be assigned one work duty or one day-off for each day; 
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(h3) some drivers must get specific days-off due to planned absences or get all weekends off 

due to seniority;  

(h4) drivers must rest a minimum of 11 hours between consecutive work duties, that is, early 

duties must not be assigned to drivers that worked at a late duty the day before; 

(h5) drivers must not work more than 6 consecutive days; 

(h6) drivers must get at least 2 days-off each week; 

(h7) drivers must get at least 1 Sunday off in each rostering period;  

(h8) drivers must work at most 48 hours per week and 176 hours per rostering period. 

With regard to company goals, good rosters generally present low cost assignments and small 

gaps between each driver's overall scheduled hours and the respective contracted hours per 

period. The company must also take into account the interests of the workers. It is well 

known that providing satisfaction to workers increases the quality of their performance and 

reduces the level of absences. Good rosters for the drivers are usually characterized by equity 

in the distribution of Sundays/weekends-off among drivers, equity in the distribution of 

overtime work, and equity in the distribution of late duties. 

Here, the search for attractive rosters is tackled through soft constraints that rosters should 

satisfy, as far as possible: 

(s1) equitably distribute overwork among drivers;  

(s2) keep the total cost of overwork as low as possible. 

Therefore, within the DRP, feasibility of rosters is ensured by the hard constraints, while the 

above soft constraints are considered as the two objectives: - objective 1 consists of 

minimizing the overtime of the driver with the maximum overtime. Implicitly this also entails 

distributing the work equitably among drivers; - objective 2 aims at minimizing the total 

overwork cost. This objective favors increasing the workload of the cheaper drivers, while 

objective 1 tends to equitably distribute it among all drivers.  
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To sum up, given a set of previously known duties, the aim of the DRP is to build a roster for 

a 4-week period satisfying hard constraints (h1)-(h8) and optimizing the above mentioned 

objectives. 

2.2 Mathematical formulations 

This problem can be modeled as a multicommodity and multi-objective network flow 

problem with additional constraints defined in a multilayer network. 

Consider a network with 28 layers of nodes: one per day of the rostering period (the day-

layers from layer 1 to 28) and 2 additional layers of nodes to initialize and finish the rostering 

process, layer 0 and layer 29. Taking M as the set of drivers of the company, each layer has 

|M| nodes, one per each work duty demanded on that day or per day-off. Each arc in this 

network links pairs of nodes of consecutive layers. Figure 1 displays the rostering network. 

 

h =0 h =1 h =2 h =28 h =29
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1,1
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driver v

 
Figure 1. The rostering network 

In the above multilayer network, a disjoint on the nodes |M|-commodity integer flow from 

layer 0 to layer 29, corresponds to a roster for the rostering period. Such a flow must satisfy 

all the hard constraints (h1) and (h8). Hard constraints (h1) and (h2) are imposed by the 

design of the network and constraints (h5) to (h8) are additional restrictions to be satisfied by 

the flow. Constraints (h3) and (h4) are imposed through the definition of costs associated 

with the arcs, depending on the driver (commodity) who flows through each arc. In fact, to 

avoid the assignment of unfeasible sequences of work duties, on consecutive days, the above 

referred costs are made equal to a big penalty, here represented by P.  
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The DRP consists of determining a multicommodity integer flow disjoint on the nodes, 

through the above defined multilayer network, satisfying additional hard constraints (h5) to 

(h8), minimizing total cost and, simultaneously, minimizing the two objectives representing 

the quality of the rosters, for drivers and for management. 

Next, the second model, a preemptive goal programming approach will be presented in detail. 

First the parameters and the sets of data are introduced: 

M – set of drivers of the company; 

F v  – set of obligatory days-off for driver v, defined by hard constraint (h3), all Mv∈ ; 

cv  – cost (in monetary units) of the overtime hour of driver v, all Mv∈ ; 

hhh TTT 321 ,,  – sets of early duties, late duties and non-work duties, respectively, of day h,  

h=1,…,28; 

;321 hhhh TTTT ∪∪=  





=
0
P

p v
ihj                all Mv∈ , all i∈Th, all j∈Th+1, h=1,…27, 

where v
ihjp  is equal to P if driver v cannot perform on consecutive days, h and h+1, the pair 

of duties i and j – due to the rest period of 11 hours imposed by constraint (h4) –, or if driver 

v cannot work on either duties i or j because at least one of them is a work duty and Fh v∈ , 

constraint (h3); and is equal to 0, otherwise; 

 







=
otherwise0,

period rostering previous  theofday on 
 workedhad driver  if,1

h 
v

ev
h , all Mv∈ , h=−5,…,0; 

 

tih – length (in hours) of work duty i on day h, all hh TTi 21 ∪∈ , h=1,…,28. 

 

The following variables are used to formulate the DRP: 

1=xv
ihj  if driver v performs duty i on day h and duty j on day (h+1) or not (=0);  

1=yv
ih  if driver v performs duty i on day h or not (=0); 

01 ≥
+δ – slack for the maximum overwork per driver (in hours); 

02 ≥+
δ

v
h – slack for the daily overwork of driver v (in hours) on day h. 



 

7

 

The preemptive binary goal programming formulation follows: 

Min     {
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01 ≥+δ  (16) 

02 ≥+δv
h , all Mv∈ , h = 1,…,28. (17) 

At the highest priority level, the minimization of the objective function in (1), by taking λ0  

equal to a big penalty associated to the function 0f , imposes rostering hard constraints (h3) 

and (h4). At the second level of goals, the coefficients λ1 and λ2∈ (λ1, λ2∈[0,1]) associated to 

functions 1f  and 2f  are forcing the satisfaction of the two soft constraints, (s1) and (s2), 

respectively.  

The first two sets of equalities (2)-(3) impose the hard constraints (h1) and (h2) and the 

following set, (4)-(5), hard constraints (h5). Inequalities (6)-(7) are related to the constraints 

(h6) and (h7) and, finally, constraints (h8) are forced by (8)-(9).  

The linking constraints (10)-(11) state the coherence of variables y and x and inequalities 

(12)-(13) define the slack variables used to formulate the second level goals of the problem. 

Finally, conditions (14)-(17) impose the domains of the variables. 

The DRP above formulated is an NP-hard problem as proved in Moz and Pato (2007) for a 

similar rostering problem regarding nurse rostering. 

Moreover, the computational experience shows the difficulty in solving some real driver 

rostering problems to reach optimality and even to obtain feasible solutions. In fact, using 

software CPLEX 10.2 optimizer, for the goal programming model above described, exact 

solutions were obtained only for some of the smallest test instances described in section 5. 

This experience motivated the development of evolutionary heuristics that in general are well 

equipped to deal with high complexity problems. 

3 Multi-objective evolutionary algorithms 

3.1 Context 

Early approaches to multi-objective problems consist of combining the objectives under 

consideration on a single objective function by assigning weights to the objectives and 

optimizing that function. However, these approaches are not able to reach some of the 

optimal solutions, the non-supported ones. Another important aspect of multi-objective 
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problems is that a single point in the objectives’ space usually corresponds to several 

solutions in the space of variables. In practice, this multiplicity of equivalent solutions should 

be taken under consideration, as decision-makers aim at analyzing other implicit criteria often 

enclosed and hard to translate into mathematical models. In general, optimizing methods lose 

this multiplicity of equivalent solutions. On the contrary, Multi-Objective Evolutionary 

Algorithms (MOEAs) show ability for dealing with the combinatorial complexity providing, 

at the same time, good approximations of the solution set as well as taking into account the 

multiplicity of equivalent solutions. 

In the last decades, diverse MOEAs have been proposed in the literature. Among the most 

competing state of the art MOEAs are Strength Pareto Evolutionary Algorithm (SPEA2) 

proposed by Zitzler et al. (2002) and Non-dominated Sorting Genetic Algorithm (NSGA-II) 

proposed by Deb et al. (2000). In both cases, some common features are used: individuals are 

evaluated under the concept of Pareto dominance, as defined in Goldberg (1989); and elitism 

is implemented by keeping potentially non-dominated individuals, found so far during the 

genetic search, in an external population (the archive). 

3.2 SPEA2 

In the following, a brief description of SPEA2 will be given to simplify reading of the MOEA 

under proposal.  

The most remarkable aspect of SPEA2 is its fine-grained fitness assignment scheme, which is 

based on dominance counting. Let Pop denote the population set and Arc denote the archive. 

Then, the strength of individual i , S(i), is given by the number of individuals, both in the 

population and in the archive, that are dominated by i . Hence, 

{ }jiArcPopjjiS f,|)( ∪∈= , where ji f  means that individual i  dominates j , i.e., i  

performs better than j in at least one of the objectives and does not perform worst on the 

remaining. The raw fitness of an individual i , R(i), is given by the total strength of 

individuals dominating i , ∑ ∪∈= ijArcPopj jSiR
f, )()( . An individual with a null raw fitness 

value is a potentially non-dominated solution for the multi-objective problem. For problems 

with a large number of solutions in the Pareto front, especially where variables have 

continuous domains, a diversity factor should be added to the raw fitness, as the latter alone 

can not ensure a convenient spread of points along the Pareto front (Zitzler et al., 2002). This 
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density factor ( )21)( += k
iiD σ , where k

iσ  is the distance of i  to it k-th nearest neighbor and 

ArcPopk +=  penalizes individuals in the more crowded regions. Finally, the fitness of 

individual i  is given by )()()( iDiRiF += . Hence, potentially non-dominated individuals are 

assigned fitness values in the interval [0,1], while the others have fitness value greater than 1. 

SPEA2 includes a special truncation procedure to manage the introduction of potentially non-

dominated individuals in the archive. 

 

In a first approach to DRP an adaptation of SPEA2 (ASPEA2) was developed (Moz et al., 

2007). It was compared with a utopic genetic heuristic and has shown ability to attain a better 

coverage of the Pareto front, while the utopic genetic heuristic found more diversity. Taking 

into account these two aspects, a new MOEA combining the best features of both algorithms 

was developed and will be described in the following section. 

4 Strength Pareto Utopic and Memetic Algorithm (SPUMA) 

4. 1 SPUMA general features 

As defined in section 2.1 the DRP under consideration is a bi-objective problem for which the 

Strength Pareto Utopic and Memetic Algorithm (SPUMA) was specially devised.  

Algorithm 1 describes the main steps of SPUMA.  

The algorithm applies a local search heuristic within a genetic evolution scheme combining 

utopic elitism with a strength Pareto fitness evaluation. The basic genetic components 

include, in each generation, a fixed dimension population, and archive, where each individual 

is characterized by a pair of chromosomes. In this pair, one of the chromosomes represents 

the list of duties and the other the list of drivers, and both are coded by integer vectors.  

SPUMA was developed on the basis of SPEA2 and additionally considers the insertion of a 

utopic individual and the potentially lexicographic individuals in the mating pool of each 

generation. The utopic individual is associated with a well fitted solution which is probably 

unfeasible. In each generation, each lexicographic individual is related to a feasible solution 

that is potentially the most adapted to optimize one of the objectives as it corresponds to one 

of the outer approximate front points in the objectives’ space. Here, as the DRP under study 

considers two objectives, two lexicographic individuals are considered. 
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Algorithm 1 Strength Pareto Utopic and Memetic Algorithm (SPUMA) 

Step 1. Initialization: Set the number of generations 0=t . Create an initial population 0Pop  

with |Pop| randomly generated individuals. Create an empty archive 0Arc . Insert 

individuals corresponding to the lexicographic points 1lex  and 2lex  and the utopic 

individual into 0Arc . 

Step 2. Fitness assignment: For each individual tt ArcPopi ∪∈  compute fitness value )(iF .  

Step 3. Environmental selection: Update individuals corresponding to lexicographic points, if 

needed, and insert them as well as the utopic individual in the archive of the next 

generation, 1+tArc . Sort the remaining individuals in tt ArcPop ∪  by increasing order 

of fitness. Fill 1+tArc  with the first |Arc|-3 individuals in the obtained ordering. 

Step 4. Termination: If the maximum number of generations has been reached, stop and set 

the solution equal to the set of non-dominated individuals in tArc .  

Step 5. Mating selection: Build a mating pool by selecting individuals in tt ArcPop ∪  by 

binary tournament with replacement. 

Step 6. Variation: Perform crossover and mutation over the mating pool giving rise to the 

population of the next generation 1+tPop . Increment current generation 1+= tt . 

Return to step 2. 

 

The initial population is randomly generated and a given number of warm-up generations are 

performed to attain feasibility. 

At each generation, a decoder procedure, described in Algorithm 2, transforms each pair of 

chromosomes into a DRP solution, allowing for its evaluation. 

Because the decoder does not ensure feasibility, rosters that do not satisfy all the hard 

constraints get a penalization in both objectives’ values and, as a result, these individuals are 

less prone to be chosen for reproduction. The penalization value – a big real non-negative 

value – is the same for all the situations where unfeasibility occurs, without differentiating 

the hard constraints or the amount of unfeasibility of the constraints. 
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Algorithm 2 Decoder procedure 

Step 1. All work duties are set non-assigned. For each day of the rostering period, all drivers 

are set free. 

Step 2. Select the next non-assigned work duty and search for a driver free in the 

corresponding day to assign it ensuring satisfaction of the hard constraints.  

If such a driver exists, perform the assignment and mark both elements (work duty 

and driver) as non-free.  

Step 3. Repeat step 2 while it was possible to assign the current work duty and there are free 

work duties.  

Step 4. If all work duties were assigned (a feasible solution was found), compute the two 

objective values of the solution. 

Otherwise (the solution is unfeasible), assign a big value to both objective values, 

penalizing the individual. 

 

In previous experience with ASPEA2, it was observed that a single run of the algorithm was 

quite ineffective in generating wide spread fronts. This can be explained by the fact that the 

problem is discrete and instances have a small number of efficient solutions, leading to a poor 

exploration of the SPEA2 diversity component. Consequently, in SPUMA, fitness is 

computed without the density factor D , meaning that the fitness of individual i is given by its 

raw fitness )()( iRiF = . 

A mating pool is built using binary tournament. Selection is performed considering the 

individuals in the archive and those in the population. Note that, SPEA2 also use binary 

tournament but only over the archive. 

Recombination is done by applying the order crossover operator (OX) on each pair of 

chromosomes. The mutation operator is the swapping operator which for each chromosome 

in a pair swaps the position of two alleles chosen at random. Both genetic operators act in the 

same way and independently on the two types of chromosomes of individuals selected from 

the mating pool. 
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As mentioned above, SPUMA considers elitism and utopia. Besides the elitism of SPEA2, 

the utopic individual and the lexicographic individuals, previously determined, are included 

in the archive and are considered for the reproduction process, at each generation. Whenever 

a better approximation of an outer point of the true Pareto front is found, the corresponding 

lexicographic individual is updated. 

 

4.2 Computing the lexicographic and the utopic individuals  

The lexicographic and utopic individuals are previously computed by a single objective 

evolutionary algorithm that runs before SPUMA. Algorithm 3 describes the generic 

procedure where the specificity of the individual under search is mainly oriented by the 

fitness function. As in the main component of SPUMA, Algorithm 3 considers a fixed 

dimension population of Pop  individuals, coded in the same way. Elitism is implemented by 

keeping record of the best individual found so far, which is inherited by the population of the 

next generation. 

 

Algorithm 3 Single objective evolutionary algorithm to obtain the lexicographic jlex  

individual 

Step 1. Initialization: Set the number of generations 0=t . Create an initial population 0Pop  

with |Pop| randomly generated individuals. Initialize best individual with an 

individual randomly chosen among the population. 

Step 2. Fitness assignment: For each individual tPopi∈  search for the corresponding DRP 

solution using the decoder and compute the fitness value according to the objective 

function )i(f j . Update best individual. 

Step 3. Mating selection: Build a mating pool by selecting individuals in tPop  by binary 

tournament with replacement. 

Step 4. Variation: Perform crossover and mutation over the mating pool giving rise to the 

population of the next generation 1+tPop .  

Step 5. Termination: If the maximum number of generations has been reached, stop and set 

the solution equal to the best individual.  

Otherwise, increment current generation 1+= tt . Return to step 2. 
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At the end, the solution corresponding to the best individual is adopted for the purpose under 

consideration. The above algorithm runs three times, in each one minimizing a given fitness 

function.  

Each of the lexicographic individuals is obtained by considering as fitness function the value 

of the corresponding objective. In step 1, the best individual is initialized with a randomly 

chosen one. Here, the decoder considers all the hard constraints of the DRP, forcing 

feasibility of the corresponding solutions.  

Algorithm 3 runs once again to obtain the utopic individual. However, in step 1, instead of 

choosing at random an individual from the population, the best individual is initialized with 

one of the lexicographic. In step 2, the decoder only considers the hard constraints (h1), (h2) 

and (h4), all the other hard constraints being relaxed. This produces solutions that may be 

unfeasible with respect to the original problem. Here, the fitness function is such that one 

tries to bring the points as close as possible to the origin. As the objectives have different 

scales, a standardization brings objective values to the interval [0,1]. Let ),( 1
2

1
1

1 lexlexlex =  

and ),( 2
2

2
1

2 lexlexlex =  denote the lexicographic points. Hence, 1
1lex  and 2

2lex  approximate 

the optimum values of (s1) and (s2), respectively. The individual i , associated with point 

))(),(( 21 ifif  in the objective space, is assigned a fitness value 

( ) ( )21
22

22
11 /)(/)()( lexiflexifiF +=  that measures the Euclidean distance of 

( )1
22

2
11 /)(,/)( lexiflexif  to (0,0). The procedure minimizes )(iF  searching for a point lying 

inside the first quarter of the circle of radius one centered at the origin, as illustrated in Figure 

2. It should be noticed that the utopic does not necessarily dominate the lexicographic. 
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4.3 Local search 

The local search component tries to find a feasible solution if at a given generation the only 

individuals in the population(s) that correspond to feasible solutions are the lexicographic. In 

that case, the improvement procedure presented in Algorithm 4 is applied to a randomly 

selected individual. It is a constructive heuristic working alike the decoder, but ensuring 

feasibility by searching for better local neighbors. 

 

Algorithm 4 Improvement decoder procedure 

Step 1. All work duties are randomly ordered and considered not assigned. For each day of 

the rostering period, all drivers are set free. 

Step 2. Select the next non-assigned work duty and search for a driver free in the 

corresponding day to assign it ensuring satisfaction of the hard constraints.  

If such a driver exists, perform the assignment and mark both elements (work duty 

and driver) as non-free.  

Step 3. Repeat step 2 while it was possible to assign the current work duty and there are free 

work duties.  

Step 4. If all work duties were assigned (a feasible solution was found), compute the two 

objective values of the solution. Stop. 

Step 5. It was not possible to assign the current duty, say A, to any driver. 

If A is not in the first position, then       

 Backtrack to the last work duty already assigned, say B.    

 Set work duty B non-assigned and set the driver assigned to it free for that day.

 Insert A in the position of B, pushing B and its successors one position forward.

 Go to step 2. 

Step 6. A was not assigned and no feasible solution was found. Stop. 
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The procedure stops when all the duties are assigned or when it reaches a duty that cannot be 

assigned. In the latter case, the pair of chromosomes still represents an unfeasible solution, 

and this leads to stopping SPUMA main cycle.  

The next section describes the computational experiments and presents their respective 

results. The experiments aim at comparing the performance of SPUMA against those 

obtained with the adaptation of SPEA2 (ASPEA2).  

5 Computational tests 

5.1 Description of the instances 

Each instance of DRP is defined by the following data: 

• number of drivers; 

• last day-off and last work duty for each driver in the previous roster; 

• set of work duties per day (week days and weekend); 

• for each work duty, the beginning time and the duration. 

Computational tests with the evolutionary algorithms were performed over data obtained 

from instances of the Integrated Multi-depot Vehicle and Crew Scheduling Problem (VCRP) 

solved by Mesquita et al. (2006). The first set includes 10 DRP instances resulting from the 

solution of 80 trips VCRP-instances. These DRP instances include 504 work duties for the 

rostering period on average. The 11 DRP instances in the second set come from solutions of 

100 trips VCRP-instances (DRP instances with 620 work duties on average). All the VCRP 

instances are benchmark random instances provided by Huisman et al. (2005). Finally, the 

third set includes 15 DRP instances based on real data from the Portuguese urban bus 

company under study. In this set, the average number of work duties is 643 on average.  

For all these problems the number of drivers considered is 70 and the other data came from 

the files of the company.  

5.2 Implementation details 

Concerning the parameters’ values, for both genetic algorithms, the probability of 

reproduction was set to 0.8, while the mutation probability was set to 0.2. As stopping 

condition a maximum number of 2000 generations is considered. Feasibility is checked at 

generation 200 and the improvement decoder applies, if necessary. Each of the lexicographic 
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individuals is achieved by performing 500 generations of the Algorithm 3 described in 

section 4. The utopic is obtained by performing 500 generations of the same algorithm. 

In all the experiments 40=Pop  and 10=Arc . 

Results for each algorithm were obtained by performing 10 runs and, at the end, computing 

the final approximation of the Pareto front by merging the fronts obtained in all the single 

runs and extracting the non-dominated individuals. 

Both algorithms were coded in C language and the experiments were made on a Pentium 4 

processor running at 3.2 GHz and using 1 GB of RAM. 

5.3 Performance metrics 

In the context of this application, rostering has been done manually by human planners that 

will remain in charge of choosing the solution to implement. Furthermore, they are interested 

in examining a variety of optimal solutions. Therefore, the cardinality of the Pareto front 

approximation is one of the performance metrics used to evaluate SPUMA regarding 

diversity. This metric, also known as front occupation was first used by Veldhuizen (1999). 

The experiments evaluate the number of potentially non-dominated individuals obtained in 

the populations (main population and archive) of the last generation. Its counterpart in the 

design space will also be evaluated through the corresponding number of potentially efficient 

solutions. 

As mentioned above, in previous experience with ASPEA2, it was observed that a single run 

of the algorithm was quite ineffective in generating wide spread fronts. Consequently, the 

front spread, introduced by Zitzler (1999), will also be evaluated. 

As the individuals under evolution may correspond to unfeasible DRP solutions, the number 

of feasible solutions in the population of the last generation is measured. Additionally, the 

ratio of potentially efficient solutions over the number of feasible solutions is also evaluated, 

the feasibility rate. This metric is specially devised for the MOEAs under assessment as it 

aims at evaluating the ability to produce feasible solutions. 

For each set of instances the analysis of the results is reported and discussed through two 

perspectives. Firstly, the above metrics will be computed to evaluate average results per run 

of each algorithm. In the sequel, the focus goes to the final approximation of the Pareto front 
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( FAP ) obtained by all the performed runs of each algorithm per instance of the problem. 

This set is obtained by merging the potentially non-dominated points in all these runs and, 

afterwards, eliminating all the dominated points. Again, the front occupation of FAP  will be 

analyzed as well as the front spread.  

Finally, a measure of the relative strength of FAP  is used for pair-wise comparing the two 

algorithms. Consider 1FAP  and 2FAP  two approximations of the Pareto front. The relative 

strength of 1FAP  over 2FAP  is given by { } 1',2':1 FAPiiFAPiFAPi f∈∃∈ , that counts 

the number of points in 1FAP  that dominate at least one point in 2FAP  over the total 

number of points in 1FAP . A similar metric within the solutions’ space was proposed in 

Zitzler and Thiele (1999). 

Figure 3 presents graphically an example of typical final Pareto front approximations for one 

instance. The squares represent the SPUMA solution, the triangles are the two initial 

lexicographic solutions, inserted in the population of generation zero, the diamond represents 

the utopic solution, and, the solution obtained by ASPEA2 is represented by crosses.  
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Figure 3. Final approximations of the Pareto front obtained by SPUMA and ASPEA2 

In this example, SPUMA was able to generate a wider spread (261 against 54) and diverse 

front, as the lexicographic individuals work like attractors to the true Pareto front outer 

solutions, while the utopic has provided genetic material to generate better solutions. 

Additionally, SPUMA attained a better front occupation (8 against 4) and, in particular, the 

relative strength of its solution is 1.  
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5.4 Numerical results 

Table 1 reports the average results obtained per run. For each run with a specific instance, the 

metric values were evaluated and averages per each set of instances were computed. The 

table is divided into three sections, showing the results for both SPUMA and ASPEA2 over a 

given set. The columns refer to: the average front occupation; the average front spread; the 

average number of feasible solutions; the average number of potentially efficient solutions; 

the average efficiency rate (in percentage); and the total CPU time in seconds, respectively. 

 

Table 1 Average results per run 

instances  algorithm front 

occupation 

front 

spread 

number of 

feasible 

solutions 

number of 

efficient 

solutions 

efficiency 

rate 

(%) 

CPU time 

(sec.) 

set 1 SPUMA 5.2 224.6 48.0 5.8 12 328 

 ASPEA2 4.0 65.6 47.8 6.4 13 409 

set 2 SPUMA 6.6 555.3 44.1 7.5 17 437 

 ASPEA2 4.3 379.7 42.1 4.8 12 508 

set 3 SPUMA 3.7 160.2 35.2 5.4 16 430 

 ASPEA2 1.9 21.6 35.3 2.8 8 482 

 

The CPU time required to pre-compute the utopic and the lexicographic individuals within 

SPUMA was averaged over the number of runs and added to the time value presented. 

The front occupation and front spread values show that a single run of SPUMA, on average, 

was able to reach more diverse front approximations for all sets of instances, than ASPEA2. 

Regarding the front occupation, about 50% more solutions were found. In all cases, the 

number of efficient solutions is higher than the front occupation confirming the capacity of 

the algorithms to grasp the multiplicity of equivalent solutions, than ASPEA2. The efficiency 
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rate shows that SPUMA was always able to produce a larger number of equivalent solutions. 

Both algorithms revealed a similar performance in their capacity to obtain feasible solutions. 

Concerning differences between the sets, the real based instances (set 3) presented smaller 

front occupation values for both algorithms. It is interesting to notice that in this case, the 

number of feasible solutions was much smaller than that of the other sets. This happens 

because in set 3 there are very difficult instances, where solutions show a larger occupancy of 

the drivers.  

Finally, SPUMA also presents lower CPU time, although it outperformed ASPEA2 in 

solution quality. This is explained by the suppression of the density factor in the fitness 

function, which was rather time consuming though useless for this particular application. 

Table 2 displays the average results for the final approximations of the Pareto front. Again, 

the table is divided into three sections, each of which reporting algorithms’ results over a 

given set. The columns present, respectively, average values of the front occupation, the front 

spread, and the relative strength of the two algorithms (in percentage).  

 

Table 2 Average results from final approximations of the Pareto front 

instances algorithm front occupation front spread relative strength (%) 

set 1 SPUMA 7.0 298 45 

 ASPEA2 5.8 272 40 

set 2 SPUMA 8.0 586 40 

 ASPEA2 5.8 500 37 

set 3 SPUMA 8.2 586 90 

 ASPEA2 2.0 424 10 
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The results in Table 2 show that SPUMA clearly outperforms ASPEA2. The values of front 

occupation and front spread are always greater for SPUMA, revealing its superiority in 

producing solutions with diversity. This difference is of particular evidence for the real based 

instances, where the front occupation is four times greater than the one of ASPEA2. 

Concerning the relative strength, SPUMA has presented greater values than ASPEA2, 

meaning that, on average, it was able to achieve better final approximations to the Pareto 

front. Although this superiority is not relevant for sets 1 and 2, for the real-based instances 

SPUMA reached a relative strength of 90% over ASPEA2 against the relative strength of 

10% of ASPEA2 over SPUMA. 

Comparing the values for the front occupation and front spread in the two tables, it is evident 

that the final approximations were much better than those obtained per run. This reveals that 

a single run of the algorithm is not sufficient to produce an adequate approximation of the 

true front, in terms of diversity and coverage. Again, the difficulty of instances in set 3 

explains a larger difference between these values, as for SPUMA the final front occupation is 

8.2 against 3.9 per run, and the final front spread is 586 against 160 per run. 

6 Conclusions 

This paper is devoted to a new memetic evolutionary heuristic for a Bus Driver Rostering 

Problem. This specially devised algorithm, SPUMA, is compared with an adaptation of a 

standard procedure, SPEA2, in three sets of instances obtained from real and randomly 

generated data and taking into account Law and institutional rules for a Portuguese urban bus 

company. The innovation of SPUMA consists of introducing in the mating pool of each 

generation a utopic individual and two lexicographic individuals, one for each objective of 

DRP, both previously computed by a single objective evolutionary algorithm.  

The computational results revealed that the strategy adopted in SPUMA, though conceptually 

simple, is quite effective at improving the approximation to the Pareto front as compared with 

the most competitive MOEAs. Besides, it is inexpensive in terms of computational effort.  

The proposed approach seems to be adequate for real-life applications as it provides planners 

with a wide variety of potentially efficient rosters that are difficult to obtain manually and, in 

addition, allow for the choice of the most preferable solutions.  
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Moreover, SPUMA may be easily adapted to other hard combinatorial optimization 

problems, eventually with more than two objectives, occurring in scheduling or other 

contexts. In fact, as the constraints are considered, in the algorithm, as rules to be imposed 

through the decoder, additional constraints can be easily introduced. 
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