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Abstract

This paper studies a version of the fixed-charge multicommodity network design problem where
in addition to the traditional costs of flow and design, congestion at nodes is explicitly considered.
The problem is initially modeled as a nonlinear integer programming formulation and two solu-
tion approaches are proposed: (i) a reformulation of the problem as a mixed integer second order
cone program to optimally solve the problem for small to medium scale problem instances, and
(ii) an evolutionary algorithm using elements of iterated local search and scatter search to provide
upper bounds. Extensive computational results on new benchmark problem instances and on real
case data, are presented.

1. Introduction

Congestion is one of the causes for delay at freight hubs, e.g. yards, ports, or even cities. On 7
May 2012, a headline of a The New York Times article read “Freight Train Late? Blame Chicago”,
reporting that “Shippers complain that a load of freight can make its way from Los Angeles to
Chicago in 48 hours, then take 30 hours to travel across the city. A recent trainload of sulfur took
some 27 hours to pass through Chicago – an average speed of 1.13 miles per hour, or about a
quarter the pace of many electric wheelchairs.” 1 The article also claimed that the freight volume
in the United States is projected to grow by at least 80% in the next 20 years which will have
significant knock-on effects on delays. It is a well known fact that freight cars, in a rail network,
spend most of their time in terminals or classification yards (Li et al., 2014). This is due to the fact
that the same facility has to be used for consolidation and classification operations for a variety of
vehicles carrying different types of freight. In these yards, cars usually go through the following

1http://www.nytimes.com/2012/05/08/us/chicago-train-congestion-slows-whole-country.
html
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operations: inspection, classification, assembly, accumulation and connection. As Fernandez et
al. (2004) point out, the classification process constitutes the fundamental source of delay in the
terminals, and this increases with the amount of classification, which is correlated with the number
of cars to classify.

Congestion is prevalent not only in rail but in other transportation networks and modes as well,
and has been the subject of recent research. For example, Tirachini et al. (2014) looked at the
interplay of traffic congestion and bus crowding in public transport. By explicitly considering the
social impact of congestion, the authors experimented with various variables of the system and
found, among others, that an optimal frequency of the buses results from a the trade-off between
the passenger crowd in the bus and the traffic congestion on the streets. The most common way
of reducing the associtated social cost is by charging additional costs and preventing travelers
from using particular transportation links (and/or nodes), thus reducing congestion (Yao et al.
2010, Laval et al. 2015 ). Fosgerau (2011) proved that a fast lane can replace congestion tolls at
peak times, putting the focus on the balance between the capacity of the network and congestion
pricing.

Traffic congestion is also linked with increased vehicle idling, acceleration and braking, which in
turn increases engine related emissions. There is a rich literature on the environmental impacts of
transportation and distribution logistics, with a particular focus on emissions (e.g., Demir et al.,
2010). Chen and Yang (2012) presented different toll schemes for minimizing both congestion and
emissions in a bi-objective optimization approach. Franceschetti et al. (2013) looked at the impact
of the time spent on a route on the total emissions. In particular, the objective function accounts
for traffic congestion which, during peak hours, slows down the vehicles and increases emissions.
The proposed model determines the optimum speed for a vehicle on each link of a route with an
objective to minimize a broader objective function including emissions. Koç et al. (2014) studied
the problem of routing of a heterogeneous fleet of vehicles using environmental objectives.

Designing and building a robust transportation network is a difficult and a multi-faceted deci-
sion problem of strategic importance. The fixed-charge multicommodity network design (MCND)
model is extensively used to represent a wide range of planning and operation management prob-
lems in transportation, telecommunications, logistics and production-distribution. In its general
form, the network design problem consists of designing a network on a given graph by selecting
links to connect a set of nodes and to determine the amount of flow on each link such that the
demand of each node for a set of commodities is satisfied. The objective is to minimize the total
cost of establishing the links and flows. This basic variant is usually referred to as the uncapacitated
network design problem, which has extensions incorporating additional restrictions, such as capac-
ity limits on the amount of demand that may be transported on the links. Interested readers on
the problem may consult the surveys by Magnanti and Wong (1986), Minoux (1986) and Crainic
(2000).

In this paper, we model and study the fixed-charge MCND problem (MCNDP) where congestion
at nodes (e.g., yards) is explicitly taken into consideration. This problem, named as the congested
multicommodity network design problem (cMCNDP), is what we believe to be one of the first to incor-
porate congestion into this particular setting. Our primary motivation stems from the application
of this model in planning freight rail transportation systems and to be able to explicitly capture
congestion in the respective models and solution methods. The problem considered here also al-
lows for capacity expansion (Liu et al., 2008) for reducing congestion. The contribution of this
study is two-fold: (a) to describe a reformulation of problem as a mixed integer second order
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cone program (MISOCP) which is used to optimally solve the problem for small to medium scale
instances, (b) to present an evolutionary heuristic using iterated local search and scatter search.

The rest of the paper is structured as follows. Section 2 provides background on modeling delay.
Section 3 formally describes the problem and provides the notation as well as a small numerical
example. Section 4 describes an integer programming formulation and the MISOCP reformula-
tion. Section 5 describes the evolutionary algorithm and all of its components. Section 6 presents
results of extensive computational experiments on a large set of augmented benchmark instances
and on real case data. Conclusions are given in Section 7.

2. Modeling Delay

There are various approaches to model yard delays, simulation and queueing models being two
of them. The latter are more attractive in the sense that they can be used to derive analytical
expressions and are easy to incorporate in tactical decision models. Crainic (2005) mentions that
“most time-related functions are built to reflect the increasingly larger delays that result when
facilities of limited capacity must serve a growing volume of traffic. Such congestion functions are
typically derived from engineering procedures and queuing models”.

Various analytical expressions have been proposed in the literature to model yard delays. Petersen
(1977a, b) proposed several models for different components of the classification process and stud-
ied models that are based on the physical characteristics of the yard. Later, Turnquist and Daskin
(1982) proposed a batch arrival queuing model for the same operation. These two approaches are
based on individual characteristics of the yard. Crainic et al. (1984) argued that such precise data
may be difficult to obtain and may not be necessary within a tactical level planning perspective
and proposed two analytical formulas to calculate classification delays, both based on the M/M/1
queueing model. The first and the one relevant to our discussion can be used to calculate the mean
classification delay at a yard and is as follows:

Tt

T − tf
, (1)

where T denotes the length of the planning period, t is the mean service time for a yard and f is
the total amount of traffic to be classified at this yard. Fernandez et al. (2004) proposed to calculate
classification delays, not based on trains, but based on individual freight cars. The authors argued
that such an approach will result in a more precise and reliable modelling of classification delays.
The expression they propose instead to calculate the average classification delay for a freight car
in a yard is the following:

F + β

(
f

S

)α

, (2)

where F is the classification delay for a freight car under free flow conditions, f denotes the
amount of freight cars to be classified in the yard during the period of analysis, S is the classi-
fication capacity of the yard over the time of analysis, and β, α are the calibration parameters.
Since this function measures the average classification delay for a freight car in a particular yard,
the total delay in the yard with a flow of f freight cars will be,

Ff + β
fα+1

Sα
. (3)
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Expressions of type (3) are based on the delay functions initially proposed by the US Bureau of
Public Roads (see Gürel, 2011, for a related discussion). In the context of the MCND, the difficulty
in incorporating this type of functions is that they give way to nonlinear integer programming
formulations of the problem as will be shown below.

There is some literature on nonlinear multi-commodity network problems. The body of litera-
ture on the “flow” side includes the earlier work by Gerla (1973) and later on by Mahey et al.
(2001). An excellent survey of the convex multicommodity network flow problem is provided in
Ouorou (2000) where the structure of the continuous formulations presented therein is similar to
the formulation described here, with the difference being that the latter is discrete. Recently, Gürel
(2011) has presented ways of reformulating network flow problems with convex congestion func-
tions leading to an efficient way of solving the resulting nonlinear models. On the “design” side,
Crainic and Rousseau (1986) considered a nonlinear, mixed integer, multimodal, multicommodity
network flow problem and proposed a solution algorithm that is a combination of a heuristic and
a convex network optimization procedure. The latter procedure is based on column generation
and descent techniques. Croxton et al. (2003) considered a multicommodity network flow problem
with piecewise linear costs, described structural results for various formulations of the problem
and presented the results of extensive computational experiments carried out on these formula-
tions. A multicommodity network design problem with discrete node costs is studied in Belotti et
al. (2006), where node costs are stepwise functions of the facilities installed into the nodes. The au-
thors proposed, for the solution of this problem, a branch-and-cut algorithm based on two families
of valid inequalities. A variant of the MCND where capacity constraints are penalized was pre-
sented by Bektaş et al. (2010), which was modeled as a nonlinear MCND formulation for which
the authors described Lagrangean-based solution algorithms. Mathematical models for routing
problems incorporating delay constraints were presented in Ben-Ameur and Ouorou (2006) and
those featuring “on/off” constraints appear in Hijazi et al. (2012). A more recent and relevant
work is by Frangioni et al. (2015), who studied the single-flow and single-path routing problem
with constraints on delay. The authors showed that the problem can be formulated as a convex
mixed-integer nonlinear optimization problem, which can then be represented as second-order
cone models and solved by efficient general-purpose solvers.

There also exists work on incorporating congestion into other types of design problems. For ex-
ample, Elhedli and Hu (2005) looked at hub-and-spoke design where a congestion function of a
simple, but convex (quadratic) nature, was incorporated into the existing models. Elhedli and Hu
(2005) described methods based on Lagrangean relaxation to solve the resulting nonlinear models.
Later, Elhedli and Wu (2010) extended this problem in which capacity selection was considered
as an extra layer of decision. This work addressed the hub-and-spoke system as a network of
M/M/1 queues and proposed a Lagrangean heuristic for its solution. A more recent work look-
ing at congestion within telecommunication networks is by Miranda et al. (2011), who presented
a network design model for the problem incorporating a nonlinear convex function integrating
capacity expansion and congestion function. The authors described an algorithm based on Gen-
eralized Benders Decomposition to solve the nonlinear network flow problem arising when the
design variables in the model are fixed.

Recently, Khaled et al. (2015) presented a mathematical model for addressing disruptions in rail
networks. The authors explicitly considered delays that occur on links and yards as a result of
disruption, and looked at re-routing of trains onto links and nodes adjacent to the location suf-
fering from the disruption. Fan et al. (2010, 2012) examined congestion at ports and developed a
network flow model in an intermodal setting. Fan et al. (2012) stated that congestion is dominant
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in ports, traffic is diverted into different routes most of the time, and showed that expansion of
capacity would dramatically reduce congestion costs and waiting times.

3. Problem Description

The cMCNDP is defined on a directed graph G = (N ,A) where N is the set of nodes and A is the
set of arcs. For each node i ∈ N , we define the sets N+

i = {j ∈ N|(i, j) ∈ A} and N−
i = {j ∈

N|(j, i) ∈ A}. For each open arc in the network, there is a fixed charge denoted by fij . Note that,
the “open” arcs are the arcs that are selected to accommodate commodity flow. There exists a set of
commodities denoted by P . Each commodity has one origin o(p) and one destination d(p), and the
quantity of commodity p that is to be sent from o(p) to d(p) is denoted by wp. For convenience, we
define the parameter dpi for each i ∈ N that equals wp if i = o(p), −wp if i = d(p), and 0 otherwise.
If a commodity has more than one origin or destination, this can be modelled by splitting the
commodity into several commodities, each with a single origin and destination (see Holmberg
and Yuan, 2000). We denote by dpij the unit cost of routing the demand for commodity p over arc
(i, j). Each arc (i, j) in the network has a capacity uij . For any yard i ∈ N , let c0i > 0 denote
the yard’s initial capacity, ei denote the cost of upgrading/expanding the capacity of yard, and
let cδi > 0 denote the upgrade capacity. The assumption behind only one level capacity upgrade,
as opposed to multiple levels, is mainly dictated by current practice found in railyards. One
example is provided in Petersen (1977b) for a single-ended yard with an initial capacity of seven
classification tracks, where the expansion is achieved by adding three more classification tracks.
A more practical example is from the MacMillan Yard in Toronto, which has a dual hump with
two tracks (TSB, 2003). Prior experience of one of the authors is that the hump it is mostly used in
a single mode. Nevertheless, the existence of the dual lead tracks still provides some flexibility in
the in the way of a one-step capacity expansion (Crainic and Bektaş, 2006; Bektaş et al., 2009).

The function we use to measure congestion is (3) as described by Fernandez et al. (2004). The
free-flow congestion at yard i ∈ N is denoted by Fi, and the unit congestion cost is shown by
Di. The cMCNDP consists of finding flows for each type of commodity from its origin to its
destination by activating suitable arcs and performing capacity upgrades in network G so as to
minimize a total cost function and obey certain constraints. The total cost function is composed of
four components: (i) cost of routing commodities, (ii) cost of activating arcs, (iii) cost of upgrading
yard capacities, and (iv) cost of congestion in each yard. The constraints pertain to limits on
the amount of commodities that flows on each arc due to arc capacities and the total amount of
commodities flowing into each yard due to yard capacities.

3.1. A motivating example

This section provides an example on a small-scale instance to show the effect of taking congestion
into account in multicommodity network design. Assume a five node instance, as given in Figure
1, where all links have unit capacities and unit fixed-charge costs. The two links into and the two
out of node 3 have unit flow costs, links 1–4 and 2–5 have unit flow cost of 10 each. There are two
commodities p1 and p2 to be shipped, with wp1 = 1, o(p1) = 1, d(p1) = 4 and wp2 = 1, o(p2) = 2,
d(p2) = 5. We assume that node 3 in the network is a transhipment point (e.g., a rail-yard) with
a delay cost arbitrarily set equal to D3 = 5 given that the total congestion cost increases linearly
with this parameter. The capacity of node 3 has initially been set equal to the total amount of
commodity flows in the network, which is c03 = wp1 + wp2 = 2. All other nodes are origin or
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destination points with Di = 0, i = 1, 2, 4, 5 as they are either origin or destination nodes, for
which neither capacity nor congestion is relevant for the purposes of this numerical example. We
also assume the following initial settings on parameters α = 3, β = 3 and F = 1, but the effect of
changing the former two parameters against the capacity of node 3 will be shown later.

Figure 1: A five node MCND instance

An MCND solution on the sample 5-node instance is given in Figure 2(a) where both commodities
go through node 3 with a total cost of 8 units consisting only of flow and fixed-charge costs.
However, if one calculates the “hidden” cost of congestion through function (3), the overall cost
rises to 8+5(2+3(24/23)) = 48 units. Alternatively, a solution minimizing the total cost including
congestion is given in Figure 2(b) wherein the commodities are shipped from their origins to their
destinations as direct deliveries. The total cost of this solution is 22 units.

(a) G1 (b) G2

Figure 2: Two solutions on the sample instance: (a) minimizing fixed and flow costs and (b) minimizing congestion at
node 3

The two solutions shown in Figure 2 are two extreme cases one might encounter. The solutions
obtained will certainly vary with the parameters chosen for the congestion function but the ex-
ample shown here serves to illustrate cases where incorporating a congestion function into this
problem might significantly change the structure of the solution on the same instance. To provide
more information as to how the total cost of the solution changes with varying values of some of
its input parameters, we present Figure 3.

Figure 3 shows the shape of the total solution cost comprising fixed, variable and delay costs in
the vertical axis against varying values of initial capacity c03 in the horizontal axis. The total cost
is shown by Cost (α, β) as a function of the two calibration parameters. It is clear from the figure
that the total cost starts to level off when c03 exceeds a certain value, which, in this case is between
5 and 6. In fact, both solutions shown in Figures 2a and 2b become alternative optima for Cost
(3,3) when c03 = 4, and for values c03 > 4, the former is preferred over the latter. This figure also
shows that, for all the three cases, there is a significant drop in total cost when the initial capacity
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Figure 3: Congestion function with different values of α and β

c03 = 2 is increased by a single unit.

The following section presents the development of a mathematical model for the cMCNDP.

4. Mathematical Formulations

In this section, a notation of the problem is summarised followed by the mathematical formula-
tion. The following decision variables are defined to model the cMCND. Let xpij ≥ 0 denote the
amount of flow of commodity p ∈ P on arc (i, j) ∈ A. The binary variables of the model are given
below:

yij =

{
1 arc (i, j) ∈ A is used.
0 otherwise,

(4)

zi =

{
1 if node i ∈ N is upgraded
0 otherwise.

(5)

The following sets are used in the model:

• A: set of arcs,

• P : set of commodities,

• N : set of nodes.

The list of parameters used in the model are as follows:

• ei: fixed cost of upgrading the node i ∈ N ,

• fij : fixed cost of establishing (opening) an arc (i, j) ∈ A,

• dpij : the unit cost of routing the demand for commodity p ∈ P over arc (i, j) ∈ A,

• cδi : the upgrade capacity of node i ∈ N ,
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• c0i : the initial capacity of node i ∈ N ,

• wp: the quantity of commodity p ∈ P to be shipped,

• uij : the capacity of an arc (i, j) ∈ A,

• Di: the delay cost of node i ∈ N ,

• Fi: the free flow classification delay for node i ∈ N ,

• α, β: calibration parameters,

• vi: the total amount of flow into node i ∈ N .

Given the notation above, a mathematical programming formulation for the problem is presented
below:

M Minimize
∑

(i,j)∈A

fijyij +
∑

(i,j)∈A

∑
p∈P

dpijx
p
ij +

∑
i∈N

eizi +
∑
i∈N

gi(x, z) (6)

subject to
∑

j∈N+
i

xpij −
∑

j∈N−
i

xpji = dpi ∀i ∈ N , p ∈ P (7)

xpij ≤ w
pyij ∀(i, j) ∈ A, p ∈ P (8)∑

p∈P
xpij ≤ uijyij ∀(i, j) ∈ A, (9)

∑
j∈N−

∑
p∈P

xpji ≤ c
0
i + cδi zi ∀i ∈ N , (10)

yij ∈ {0, 1} ∀(i, j) ∈ A (11)
xpij ≥ 0 ∀(i, j) ∈ A, p ∈ P (12)

zi ∈ {0, 1} ∀i ∈ N . (13)

In formulationM, the objective function represents the total cost of design, routing and capacity
augmentation and cost of congestion. The function gi(x, z) that appears in the last term of the
objective function models congestion and is expressed as follows,

gi(x, z) = Di


Fi

∑
j∈N−

∑
p∈P

xpji + β

 ∑
j∈N−

∑
p∈P

xpji

α+1

(c0i + cδi zi)
α


, (14)

where α and β are calibration parameters.

In this formulation, (7) are the flow conservation constraints which ensure that the demands are
satisfied for each node. Constraints (8) make sure that the flow of any commodity on an arc is zero
when that arc is not selected. Constraints (9) imply that the amount of flow on an arc can be at
most equal to the capacity of the arc. Finally, constraints (10) limit the total inflow of the node i by
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its initial (i.e., zi = 0) or extended (i.e., zi = 1) capacity. Integrality and nonnegativity restrictions
on the decision variables are given by (11)–(13). ModelM has the structure of a nonlinear, mixed
integer, multicommodity network design problem including congestion effects and upgrading
decisions at nodes.

The following section will present a conic mixed integer programming formulation. The latter re-
quires the following notation change in the problem formulation. We first introduce an additional
variable, vi ≥ 0, which denotes the total amount of flow into node i ∈ N . The new variable is
expressed, in mathematical terms, as follows:

vi =
∑

j∈N−

∑
p∈P

xpji ∀i ∈ N . (15)

Under the new variable definition, the congestion function becomes

gi(v, z) = Di

(
Fivi + β

(vi)
α+1

(c0i + cδi zi)
α

)
.

In the following sections, we describe two methods for the problem, namely a conic mixed integer
programming reformulation ofM, and an evolutionary algorithm, in the given order.

4.1. MISOCP reformulation

FormulationM given in Section 4 is a mixed integer nonlinear programming problem due to the
second term g(v, z) appearing in the objective function. For the purposes of the reformulation, we
represent the nonlinear part of g(v, z) by gnl(v, z) as shown below (indices i are dropped for the
sake of simplifying the exposition).

gnl(v, z) = Dβ
(v)α+1

(c0 + cδz)α
.

The function gnl(v, z) gives rise to two congestion cost functions, gnl(v, 0) and gnl(v, 1), corre-
sponding to capacity levels c0 (i.e., z = 0) and c0 + cδ (i.e., z = 1), respectively. Figure 4 illustrates
these two cost functions.

Figure 4: Congestion Costs at Different Capacity Levels

Obviously, for a fixed value of z such that z > − c0

cδ
, gnl(v, z) reduces to a convex function of v
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given that α > 1. When z is not fixed gnl(v, z) defines a surface. Figure 5 presents the surface
defined by gnl(v, z) when restricted by the constraint v ≤ c0 + δz.

Figure 5: Surface Defined by gnl(v, z) and v ≤ c0 + cδz

In this section, we show that we can reformulateM as a conic mixed integer programming for-
mulation, for which the following result will be used.

Proposition 1. gnl(v, z) is a Second Order Cone Programming (SOCP)-representable function.

Proof. A function is SOCP-representable if its epigraph is so. Hence, we consider the following
inequality

Diβ
(vi)

α+1

(c0i + cδi zi)
α
≤ t ∀i ∈ N . (16)

Inequality (16) can be equivalently written as

Diβv
α+1
i ≤ t · (c0i + cδi zi)

α ∀i ∈ N , (17)

which is of the form
r2

l ≤ s1s2 · · · s2l , (18)

for r, s1, . . . , s2l ≥ 0. Inequalities of form (18) are SOCP-representable (Ben-Tal and Nemirovski,
2001). We can express inequality (18) by using O(2l) variables and O(2l) hyperbolic inequalities of
the form

u2 ≤ v1v2, u, v1, v2 ≥ 0. (19)

Each hyperbolic inequality (19) can be written as a second-order conic inequality

∥(2u, v1 − v2)∥ ≤ v1 + v2. (20)

Thus, gnl(v, z) can be represented via SOCP constraints.

Gürel (2011) has shown that a widely used form of congestion functions, which is a class of convex
power functions, can be represented via second-order conic inequalities. The same author has
also shown that, due to the polyhedral characteristics these functions have, they can be efficiently
computed in network flow problems. We observe that gnl(v, z) fall into this class and hence we
reformulate our problem as a conic formulation using the SOCP representation of gnl(v, z).
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As given in the proof of Proposition 1, when reformulating the problem, we first replace gnl(v, z)
with an auxiliary variable t ≥ 0, following which we include the SOCP representation of in-
equality (16) in our formulation. Example 1 shows how the SOCP representation for an example
function gnl(v, z) can be obtained.

Example 1. Consider a congestion cost function in which α = 3
2 ,Diβ = 1, c0i = 2 and cδi = 3. Then,

inequality (16) becomes v5/2 ≤ t(2 + 3z)3/2, which can be equivalently written as v5/2 ≤ ty3/2 and
y = 2 + 3z. The former is equivalent to v5 ≤ t2y3, which can be rewritten as,

v8 ≤ t2y3v3, (21)

which is a special case of inequality (18).

In order to obtain the SOCP representation of inequality (21), we follow the construction of Al-
izadeh and Goldfarb (2003). In particular, we build the inequality (21) by using a binary tree with
leaf nodes for {t, t2, t4, . . .}, {y, y2, y4, . . .}, and {v, v2, v4, . . .}. Then, using the binary representa-
tion of the exponents of t2, v3, and y3 on the right hand side of inequality (21) we form the leaves
of the construction tree as shown in Figure 6. Note that, in order to express an integer exponent,
we only use powers of 2 as the leaves of the binary tree. Each non-leaf node of the binary tree
represents a new hyperbolic inequality (19) and the new variable introduced.

Figure 6: Binary Representation Tree for Example 1

Using the construction above, we can express inequality (21) equivalently through the following
set of hyperbolic constraints: w2

1 ≤ vy, w2
2 ≤ w1t, w1 ≥ 0, w2

3 ≤ vy, v2 ≤ w2w3, w2 ≥ 0 and w3 ≥ 0.
One can easily check this equivalence by squaring the last inequality twice to achieve v8 on its
left-hand side and then substituting wi’s on the right-hand side appropriately. The hyperbolic
constraints are then written in SOCP form as: ∥(2w1, v − y)∥ ≤ v + y, ∥(2w2, w1 − t)∥ ≤ w1 +
y, ∥(2w3, v − y)∥ ≤ v + y, ∥(2v, w2 − w3)∥ ≤ w2 + w3.

As a result,M can be reformulated as follows,

MMISOCP Minimize
∑

(i,j)∈A

fijyij +
∑

(i,j)∈A

∑
p∈P

dpijx
p
ij +

∑
i∈N

eizi +
∑
i∈N

DiFivi +Diβti, (22)

subject to (7)–(9), (11)–(15), and

SOCP representation of vα+1
i ≤ ti(c0i + cδi zi)

α ∀i ∈ N . (23)
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5. Solution Procedure

This section describes an evolutionary algorithm for the cMCNDP. Recently proposed heuristic
methodologies for the traditional MCNDP use a trajectory-based algorithm (Ghamlouche et al.
2003, Crainic et al. 2006) or an evolutionary framework (Ghamlouche et al. 2004, Alvarez et al.
2005) to select the arcs of the network, following which an off-the-shelf optimizer is used to solve
the linear programming flow problem on the network configuration. In this paper, a similar ap-
proach is followed, although in this case the flow problem that arises within the algorithm is non-
linear. The details of the algorithm and the way in which the nonlinear subproblem is handled is
explained below.

The solution methodology is an adaptation of the Cycle-based Evolutionary Algorithm (CEA)
proposed by Paraskevopoulos et al. (2014), in which additional decisions and aspects that the
cMCNDP introduces are taken into account. In particular, a tailor-made cMCNDP evolutionary
algorithm is proposed wherein (a) the solution recombination takes into account both node up-
grading decisions and links establishments from the parent solutions to produce offspring (b) an
efficient perturbation strategy is used that uses long term memory to guide the search towards
unexplored regions of the solution space, (c) and the local search employs new neighbourhood
operators that explicitly consider congestion at nodes.

Algorithm 1: Evolutionary Algorithm
Input: λ (initial population size), µ (Reference Set size), ψ (number of local search iterations

without an improvement), κ (Candidate Set size), ϑmax (number of SOCP solver calls
within local search without an improvement)

Output: Reference Set(R), sbest ∈ R
1. Initialization phase
R← ConstructionHeur(λ, µ);

while termination conditions do
2. Scatter Search phase
M ← ∅,M ← SolutionCombination(κ, µ);

3. Education phase
for individual s of M do

s′ ← ILS(s, ψ, ϑmax);
UpdateRefSet(R, s′);

In summary, the evolutionary algorithm is based on principles of Scatter Search (SS) and inte-
grates an Iterated Local Search (ILS) as an improvement, or an “education” method. Within the
algorithm, the basic three-phase SS scheme is followed, namely (i) initialization, (ii) scatter search
to produce offspring, (iii) education phase using the ILS. These steps will be described in greater
detail below. A pseudecode of the overall framework is presented in Algorithm 1.

Figure 7 shows the flow chart of the proposed evolutionary algorithm. Within the algorithm, Scat-
ter Search comprises the Solution Combination method and the population of offspring, whereas
Iterated Local Search, described in Section 5.3.2, includes Local Search and Perturbation. Evalua-
tion of the solutions is performed by the Reference Set Update procedure, described in Section 5.2.
In the following, emphasis is given on the new aspects of the proposed methodology rather than
the generic framework, the details of which can be found in Paraskevopoulos et al. (2014).
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Figure 7: The flow chart of the Evolutionary Algorithm

5.1. Initialization phase

The initialization phase uses a constructive heuristic to initialize a pool of µ diversified and good-
quality solutions, which are hosted in the Reference SetR. A serial construction procedure routes a
particular commodity at each iteration, and finds the best path for that commodity by considering
options of splitting or routing the total amount as a whole. The paths are found by using Dijkstra’s
shortest-path algorithm. A greedy function is used that considers the fixed and flow cost of the
arcs, as well as the congestion and upgrading costs on the nodes, and ensures that arcs and nodes
capacities are always satisfied. Given the set of open arcs and the upgraded nodes, i.e., the 0–
1 decision variables yij and zi fixed in formulation MMISOCP , the resulting flow problem is a
SOCP formulation which is solved by a SOCP solver. Its solution provides an optimal flow of
commodities on the network.

This algorithm also handles the decisions on whether to upgrade a node or not internally as fol-
lows. At any iteration of the Dijkstra algorithm, let the end node of a given arc be a candidate that
is to be assigned a permanent label. Then, two congestion costs are calculated for this node; one
that assumes a capacity upgrade on the node, and one that does not. Then, the procedure will
assign a permanent label to the node that has the least total cost, including both the arcs costs and
the congestion costs at nodes. If at a particular iteration a node is chosen to be upgraded, it will
remain upgraded until the construction heuristic terminates and a complete solution is derived.

5.2. Reference Set Updating Criteria

There are certain criteria according to which the Reference Set R is updated with new solutions.
The goal is to maintain a balance between quality and diversity and to avert premature conver-
gence. A new solution is inserted into R if it is better than the ever best found in terms of the total
cost, or if it increases the average dissimilarity of the R and its cost is better than the worst-cost
solution in R. In both cases, the worst cost solution in R is removed and the new solution is in-
serted. To calculate the dissimilarity of the R, the current solution is temporarily inserted into R
and the worst-cost solution in R is temporarily removed. The distance of all pairs of solutions is
estimated by the Hamming distance, which is computed by considering both the arcs of solutions
and the upgraded nodes, and is given by the formula below:

H(s, s′) =
∑

(i,j)∈A

|ysij − ys
′

ij |+
∑
i∈N
|zsi − zs

′
i |, (24)
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where, for a given solution s, ysij is a binary variable equal to 1 if arc (i, j) ∈ A is open, or 0 if not.
Similarly, zsi is a binary variable equal to 1 if node i ∈ N is upgraded, or 0 if not.

5.3. Scatter Search Phase

In the scatter search phase, R is evolved via an efficient solution combination method and an
improvement method, namely the ILS. A subset generation method randomly selects κ solutions
from R repeatedly, and µ offspring are produced based on scatter search principles. ILS attempts
to improve the quality of each offspring, before the latter can be inserted into R according to the
elitist update criteria described in Section 5.2.

5.3.1. Solution Combination method

The proposed solution combination method combines the solution elements of κ solutions se-
lected from R to form the Candidate Set (C). These elements are both the arcs and nodes of the
solutions. Each arc and each node status, i.e., open (or closed) and upgraded (or not upgraded)
respectively, are assigned a value of preference. To calculate this value of preference κ weights are
introduced, as many as the number of solutions in C. If an arc (or node) is found open/closed (or
upgraded/not upgraded) in more than one solution, the value of preference of its status is calcu-
lated as the sum of the respective weights. A voting procedure is incorporated to determine which
status is the dominant for each arc and for each node, according to the formulae given below:

Arc preferences: Opij=
∑
s∈C

ysij
f(s) + γhits(s)

Clij =
∑
s∈C

1− ysij
f(s) + γhits(s)

∀(i, j) ∈ A,

(25)

Node preferences: Upi =
∑
s∈C

zsi
f(s) + γhits(s)

nUpi =
∑
s∈C

1− zsi
f(s) + γhits(s)

∀i ∈ N , (26)

where γ is a positive normalization parameter, i.e., average cost of an arc in the best so far solution
found,Opij andClij are the scores for the open and closed status, respectively, for the arc (i, j), and
Upi and nUpi are the scores for the status of the node i (upgraded or not). The first component
f(s) in the denominators of (25) and (26) is the cost of the solution s. The second component
denotes the number of times a particular solution s has participated in the recombination process.
The latter is used for diversification purposes to prevent the recombination process from choosing
frequently selected parents. The status with the higher value dominates, both for the arcs and the
nodes.

The output of the above procedure is a preferable status for each and every arc and node. To build
a feasible solution, one should determine also the commodities flows for each link, which is done
through solving the associated non-linear programming flow problem as described above.

Due to the nature of the recombination process, it might happen that the set of the open arcs
and upgraded nodes imply an infeasible flow problem. To restore feasibility, a reconstruction
mechanism, similar to the one described in the initialization phase, is implemented. The goal of
this mechanism is to produce a feasible solution which maintains as many of the open arcs and
upgraded nodes as the recombination process suggests. Towards this end, the open arcs obtained
by the SS are assigned very low costs, which forces the construction heuristic to choose them. For
example, if arc (i, j) has a preferred status open, we temporarily amend the fixed cost to fij/L and
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the flow cost to cij/L, where L is a large constant. The preferred status for the nodes is assigned
in a subsequent step, where given the flows the upgrading decision might be made to preserve
the capacity constraints at nodes. The latter overcomes the preferred status in case it is non-
upgrade, at the expense of preserving the capacity constraints at nodes. Towards the other end,
the reconstruction mechanism also incorporates a final check to see if there are any cost savings
by down-grading any of the upgraded nodes, provided commodity flows still remain feasible.

5.3.2. Education phase

The offspring produced by the evolution phase are improved using ILS, applied to each individual
offspring. ILS has two main components; a local search and a perturbation strategy. The proposed
local search introduces new neighbourhood structures and uses short term memory to enable
the escape from local optima. The perturbation strategy partially modifies the current solution
according to information gathered during the search. The components of the ILS algorithm are
shown in Algorithm 2.

Algorithm 2: Iterated Local Search
Input: s (current offspring), ψ (number of local search iterations without an improvement),

ϑmax (number of SOCP solver calls without an improvement)
Output: s
ϑ← 0,⃗h← 0;
while ϑ < ϑmax do

r⃗ ← 0 ;
s′ ← s
count = 1
while count < ψ do

N(s)← Neighbourhood Evaluation(s, r⃗)
s← mins′′∈N(s) f(s

′′)
Update Inefficient Chains(s′′)
Update Memory Structures(s′′, r⃗, h⃗)
if {f(s) < f(s′)} then

count = 1
s′ ← s

else
count = count+ 1

s′ ← SOCPsolver(s′);
if f(s′) > f(s) then

s∗ ← Perturbation(s′ ,⃗h)
s← s∗;ϑ← ϑ+ 1;

else
ϑ← 0; s← s′;

In Algorithm 2, the Update Inefficient Chains function creates new inefficient chains, following the
application of the local search operator is applied on solution s′ (see Section 5.3.3 for details). The
Update Memory Structures function then updates the memory structures r⃗ and h⃗ with information
relevant to previously selected moves and neighbours, to enable diversification. The Neighbour-
hood Evaluation procedure that appears in Algorithm 2 is shown in Algorithm 3.
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Algorithm 3: Neighbourhood Evaluation
Input: s (current solution), M a large number
Output: s′′ (best neighbour)
min =M ;
for All inefficient chains k of s and for all combinations of nodes i, j in k do
PI ← ListCommodities(k, i, j);
while PI is not empty do

if isItFeasible(k, i, j,PI ) then
s∗ ← GenerateNeighbour(k, i, j,PI );

else
RemoveFirstCommodity(PI );Continue;

if ∆fmove(s, s
∗) < min then

s′′ ← s∗ ; min = ∆fmove(s, s
∗) ;

RemoveFirstCommodity(PI );

In evaluating the neighbours, the function ListCommodities creates a list PI of different commodi-
ties that flow between nodes i and j of an inefficient chain k, function GenerateNeighbour generates
a neighbour of s′ by applying the flow rerouting, and function RemoveFirstCommodity erases the
first commodity of the list PI . Finally, the function isItFeasible returns “true” if a particular combi-
nation (k, i, j) leads to a feasible re-routing of commodity flow. The complexity of Algorithm 3 is
O(|N |2), where |N | is the number of nodes.

The sections below describe the components of the ILS in greater detail.

5.3.3. Neighbourhood topology-structures

The local search within ILS utilizes compound moves, new neighbourhood structures, and fre-
quency based memory to escape from local optima by penalizing previously visited neighbours.
For this purpose, an array r⃗ of size equal to the number of arcs is used to store the number of times
an arc (i, j) ∈ A has participated in a local move. This number is used in the form of a penalty.
Each time a better solution is found, r⃗ is re-initialized to zero (Paraskevopoulos et al., 2012). The
following formulae depicts the local move cost:

∆fmove = f(s′)− f(s) + ρ
∑

(ij)∈A

bijrij , (27)

where ρ is a normalization parameter, i.e., the average cost of an arc obtained by the best solution
found, and bij a binary parameter equal to 1 if arc (i, j) has participated in a local move, and 0
otherwise.

The cycle-based operator, originally proposed by Ghamlouche et al. (2003), considers each and
every pair of nodes in the network and attempts to relocate the commodity flows on the links
between the two nodes. The proposed neighbourhood search is applied on so-called “inefficient”
chains, in systematic fashion, and evaluates all possible re-routings between two nodes in such
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chains. Inefficient chains are constructed using the following formula:

In(ij) =

∑
p∈P x

p
ijcij + fij + gi(x, c, z) + gj(x, c, z)∑

p∈P x
p
ij

, (28)

where In(ij) is an inefficiency measure of arc (i, j). The inefficient arcs are those whose In(i, j)
values are higher than the average arc-inefficiency of the current solution. Inefficient chains are
formed by connecting such arcs. Each pair of nodes (and not only the adjacent) along these chains
are the nodes that participate into the local moves.

5.3.4. Node upgrading decisions

This section describes how node upgrading decisions are made within the ILS. Once an inefficient
chain for flow rerouting is identified, all commodities that flow on the chain are selected. Alter-
native paths, that these commodities can be rerouted on, are then identified by the Dijkstra-like
algorithm mentioned above. Within this algorithm, the labeling process is carried out such that
each path considers upgraded and regular capacities of the nodes on the paths, and permanent
labels are given to those that minimize the total cost. Hence the upgrading decisions on nodes
are made as the alternative paths are iteratively “built”. Once commodities have been rerouted
from their original path to another, a further set of decisions are made for the upgraded nodes that
appear on the original path as to whether downgrading results in better cost.

To be able to describe this process in greater detail, consider the example shown in Figure 8. In
Figure 8a, two different commodities are considered, one flowing on the path shown by solid
black lines (say ζ1) and the other flowing on the path shown by the dashed lines (say ζ2). Large
nodes in the figure represent upgraded nodes, whereas the smaller ones are those which are not
upgraded.

In this example, we assume that the path {3,4,6,7,8} define the part of the inefficient chain that will
be subject to flow rerouting. Let an alternative path for rerouting ζ1 be identified as {3,5,9,8}. Both
the arcs and the nodes on the alternative path are then duplicated. As seen in Figure 8a, although
nodes 5 and 9 can accommodate the “dotted” commodity flow, it may still be worth upgrading
one (or both) of the nodes to reduce the total cost. Figure 8b shows the next iteration, assuming
that only node 5 is to be upgraded. At this point, node 6 on the original path is checked to see
whether it should be downgraded to further reduce costs, as the flow running through this node
has now been reduced due to the rerouting. Finally, Figure 8c shows that the flow of commodity
ζ2 is rerouted on an alternative path shown by the grey lines between nodes 4 and 8. At this
point, the link costs of the original path are penalized to prevent the procedure from rerouting the
commodity to its current path.

5.3.5. Perturbation

To enable the search to escape from local optima, a perturbation procedure is applied whenever
the local search has performed ψ iterations without an improvement in the objective function
value. The perturbation strategy is to apply the local search introduced in Section 5.3.3 but with
a different objective representing diversified solution structures. In particular, an array h⃗, similar
to r⃗ introduced in Section 5.3.3, is used to store the number of times an arc has participated in a
local move. The only difference between r⃗ and h⃗ is that the latter is not re-initialized every time a
better local optimum is found, hence it retains a track record of the search history. To avoid large
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(a) Cycle operator step 1 (b) Cycle operator step 2

(c) Cycle operator step 3

Figure 8: A typical cycle-based local search operator

numbers, we perform a scaling down in all the elements of array h⃗, as soon as one of the elements
of the array reaches a large number Q. To guide the perturbation towards unexplored solutions
in the search space, the cost of each arc (i, j) is multiplied by its score hij and the perturbation
is applied by considering the revised cost of each arc. The perturbation procedure is applied for
ψ/2 consecutive iterations, enough to be able to produce diversified solution structures but not
long enough to “forget” the existing track record. The goal is to enable new arcs to participate to
the current solution, which may have been neglected within the local search procedure, or even
globally by the overall solution framework.

6. Computational Experiments

6.1. Generation of benchmark instances

To evaluate the proposed methods, new sets of cMCNDP benchmark instances were generated
by extending the 43 original MCNDP instances described in Gendron and Crainic (1994, 1996).
In particular, sets C and C+ were considered as “generating” instances, that include either 20,
25, 30 or 100 nodes, with the number of commodities ranging from 10 to 400, and the number
of arcs from 100 to 700. The generating instances include information pertaining to the MCNDP,
that is, the network structure (nodes and links), commodities (origins, destinations and amount),
fixed design costs, and variable flow costs. Additional parameters required for the cMCNDP, in
particular those related to nodes, were generated using the following ideas.
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The main goal was to define the initial capacity, upgrading capacity, upgrading cost and the unit
congestion cost, in a way that the upgrading decisions will be driven by cost savings, as opposed
to accommodating any excessive flow that the initial capacity of a node may not cope with. The
parameters generated are node-specific, to reflect the practical situations where some nodes may
be more expensive to upgrade, busier than others, or larger or smaller in terms of capacity. The
heuristic algorithm was used to define the node parameters. The main idea behind this process
was to identify the maximum and minimum flows that a node can accommodate by inspecting
several good-quality and diverse solutions produced by the heuristic and comprising set B, and
calculating the respective flow costs that each node has to cope with. The objective function cal-
ibration parameters were set as follows: Di = 5 and Fi = 1 for all i ∈ N , and α = 3, β = 1. The
heuristic was run with ψ = 30, θmax = 4 and µ = 40. For this experiment, the algorithm was not
allowed to converge; instead it was run for three generations of the recombination process.

Initial capacities of the nodes are defined as 1.2 times maximum flow that flows into a node, as
calculated from the elite pool of solutionsB produced by the heuristic. The additional 20% is used
as a safety margin to allow for higher values of flow, which might occur in solutions not discov-
ered by the heuristic. As for incremental (upgraded) capacities, two settings were used: 30% of
the initial capacity representing a minor upgrade investment, and 80% of the initial capacity cor-
responding to a major investment. For the general experiments, parameters α, β, and Fi remained
at 3, 1 and 1 respectively. In an effort to normalize the order of magnitude of node and the arc
costs, Di was defined as the maximum unit cost of flow that a node i can accommodate. More
specifically, if for a given solution s, ysij is as defined before and (xpij)

s is the amount of flow of
commodity p on arc (i, j), then

Di = max
s∈B


∑

j∈N−
i

fjiy
s
ji +

∑
j∈N−

i

cpji(x
p
ji)

s

∑
j∈N−

i

(xpji)
s

 . (29)

Finally, the upgrading cost is defined using the idea presented in Figure 9. In particular, this figure
shows two graphs of the congestion function (14) for a particular node, one with and one without
upgrading. The upgrading cost corresponds to an intersection point for these two functions, one
that is between [0.5c0i , c

0
i ]. We have chosen these values to be 0.6, 0.7 and 0.8 of the initial capacities,

and calculated the upgrade cost as a result of solving a system of equations for calculating the
intersection point for the three possible values.

Instance generation included therefore six problem instances for each of the original MCNDP
instances. Each generating instance is further characterized by a node parameter shown by (Ω1,
Ω2), where Ω1 corresponds to the two upgrading capacities (either 30% and 80% of the initial node
capacity), and Ω2 reflects the three incremental cost settings for the two capacity options. This
resulted in the generation of a total of 43 × 6 = 258 problem instances, which are available for
download in the following online repository: http://www.apollo.management.soton.ac.
uk/cMCNDPlib.htm. All experimentation has been performed by using CPLEX 12.1 running on
single thread, on a computing cluster with 2.4 GHz and 64 GB RAM.
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Figure 9: Congestion graphs with and without upgrading

6.2. Computational experimentation with the MISOCP reformulation

This section reports of our computational experience with solving MMISOCP , where all 258 in-
stances were attempted to be solved using CPLEX. To be able to see the effect of the computational
running time on the solution quality, two limits of 1000 and 3600 seconds are imposed on the so-
lution time. Table 1 presents average results, for each generating instance, the optimality gaps for
each set of MCNDP instances, averaged across the six cMCNDP instances contained within each
set. Full results are available and can be found at http://www.apollo.management.soton.
ac.uk/cMCNDPlib.htm.

As can be seen from Table 1, most instances can be solved to optimality using the MISOCP refor-
mulation of the cMCNDP, shown by 0.00% or 0.01%, both of which are within the default optimal-
ity tolerance settings of CPLEX. Instance set c56 had one instance for which CPLEX was unable to
derive an integer feasible solution within the computational time limit of 1000 seconds. A similar
situation was observed for all instances in sets c62 and c64. When the time limit was increased to
an hour, all instances were either solved to optimality or a feasible integer solution with a gap of
at most 2.9% was identified.

6.3. Computational experimentation using the evolutionary algorithm

6.3.1. Parameter calibration

The proposed evolutionary algorithm uses five parameters; the number λ of initial solutions ex-
amined to produce the pool R of solutions, the size µ of the R, the size κ of the C, the maxi-
mum number ψ of local search iterations without an improvement in the solution quality, and the
maximum number ϑmax of CPLEX calls for which an improvement in the current solution is not
observed. The termination criterion for the algorithm is a computational time limit of one hour.
The scaling parameters γ and ρ are self-adjusted during the solution process, and are equal to the
average cost of an arc in the current best solution found. The parameter λ was set equal to 500, as
it was found not to have significant impact in the algorithm’s performance. A further setting of
κ = 3 is used since it should be relatively small to ensure that a large number of possible combi-
nations of solutions, and larger than 2 to enhance the recombination process. The large number
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Table 1: Average optimality gaps for each group of cMCNDP instances

Generating Instance Average Optimality Gap % Generating Instance Average Optimality Gap %
1000 sec 3600 sec 1000 sec 3600 sec

25-100-10-V-L 0.00 0.00 100-400-10-F-L 3.70 1.42
25-100-10-F-L 0.00 0.00 100-400-10-F-T 3.50 2.74
25-100-10-F-T 0.00 0.00 100-400-30-V-T 0.21 0.13
25-100-30-V-T 0.01 0.01 100-400-30-F-L 2.10 1.07
25-100-30-F-L 0.01 0.01 100-400-30-F-T 3.72 2.90
25-100-30-F-T 0.01 0.01 c49 0.01 0.01
c33 0.00 0.00 c50 0.05 0.01
c35 0.01 0.01 c51 0.01 0.01
c36 0.01 0.01 c52 0.63 0.33
c41 0.01 0.01 c57 0.01 0.01
c42 0.01 0.01 c58 0.00 0.00
c43 0.01 0.01 c59 0.01 0.01
c44 0.01 0.01 c60 0.01 0.01
c37 0.66 0.24 c53 0.31 0.15
c38 2.63 1.66 c54 3.54 0.74
c39 0.19 0.03 c55 0.32 0.20
c40 1.79 1.22 c56 2.69* 0.83
c45 0.16 0.05 c61 0.60 0.36
c46 2.42 1.71 c62 N/A 2.43
c47 0.08 0.01 c63 0.44 0.30
c48 1.34 0.85 c64 N/A 1.57
100-400-10-V-L 0.01 0.01
*: One instance is unsolved
N/A: All six instances are unsolved

Q = 2000, which is the maximum value that an element of the array h takes, before a scaling down
of all the elements takes place.

Parameters ψ and ϑmax should be defined so as to keep the total number of local search iterations
balanced with the number of generations produced within the available computational time limit.
Our preliminary experimentation has showed that values of ϑmax equal to 6, 7, and 8 were ap-
propriate. Table 2 shows the results of the parameter calibration experimentation conducted on C
and C+ sets of benchmarks instances to determine the best values of ϑmax, ψ and µ with respect to
problem size. The instances are classified into six groups, according to the size of problems, and
the label for each group, shown in the first line of Table 2, is a vector showing the number of nodes,
the number of arcs and the number of commodities. For the experimentation, a single problem
from each group was chosen, using the (0.3, 0.6) node configuration. As for the values tested, for
large scale problems the reference set was assigned relatively small values and ψ was assigned
high values, whereas the settings were the opposite for the small to medium scale instances.

During the experimentation, it has been observed that small to medium scale problem instances
favoured a fewer number of local search iterations and a larger reference set, whereas large scale
problem instances needed more local search iterations with a relatively small reference set to pro-
duce the best results. The reason for that is the fact that local search is not capable to show its
strength in small scale problems, where the solution neighbourhoods are very small, and the evo-
lutionary strategy seems to have a significant impact. The results given in Table 2 show that there
is no significant variation of the solution costs derived from different parameter sets on the same
problem instance problem, showing that the algorithm’s performance is robust across different
parameter settings. However, the best result for each different group was used as the fixed pa-
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Table 2: Calibration of parameters ϑmax, ψ and µ of the evolutionary algorithm

Group 25-100-(10&30) 20-(230&300)-40 20-(230&300)-200
ϑmax, ψ, µ 25-100-30-FT ϑmax, ψ, µ c36 ϑmax, ψ, µ c39

6,50,40 210808.29 6,50,30 1489135.21 6,70,20 256166.62
6,50,50 210835.89 6,50,40 1488987.80 6,70,30 258577.84
6,50,80 210774.09 6,50,50 1486110.50 6,70,40 256486.94

Parameter 7,40,40 210964.53 7,40,30 1488493.88 7,60,20 256308.29
Sets 7,40,50 211879.33 7,40,40 1488722.68 7,60,30 258723.96

7,40,80 210808.27 7,40,50 1487995.55 7,60,40 256823.14
8,20,40 211065.17 8,30,30 1489397.69 8,40,20 257013.35
8,20,50 210872.88 8,30,40 1488902.80 8,40,30 258389.38
8,20,80 211375.76 8,30,50 1486607.47 8,40,40 256907.76

Best 6,50,80 210774.09 6,50,50 1486110.50 6,70,20 256166.62
Group 100-400-(10&30) 30-(520&700)-100 30-(520&700)-400

ϑmax, ψ, µ 100-400-30-FT ϑmax, ψ, µ c58 ϑmax, ψ, µ c64
6,70,20 338884.30 6,70,20 183074.46 6,70,10 343397.28
6,70,30 340756.68 6,70,30 183140.83 6,70,20 343259.43
6,70,40 339872.22 6,70,40 183337.17 6,70,30 344032.84

Parameter 7,60,20 339654.95 7,60,20 182453.26 7,60,10 342604.96
Sets 7,60,30 339013.72 7,60,30 182812.77 7,60,20 344646.10

7,60,40 340527.21 7,60,40 182597.53 7,60,30 344910.39
8,40,20 339826.27 8,40,20 183058.25 8,50,10 344203.15
8,40,30 338979.61 8,40,30 182597.53 8,50,20 343826.33
8,40,40 340559.80 8,40,40 183632.89 8,50,30 345033.68

Best 6,70,20 338884.30 7,60,20 182453.26 7,60,10 342604.96

rameter setting for that particular group. This setting is applied to solve the rest of the problems
in the group using a single run of the algorithm.

6.3.2. Computational results with the evolutionary algorithm

This section presents the results of the experiments where the evolutionary algorithm was com-
pared with the results obtained using CPLEX. Full results are given in Table A.2 in the online
appendix. A summary of the results is given in Table 3, showing averages for instances grouped
into four on the basis of the number of nodes, being 20, 25, 30 and 100 shown under the first col-
umn. In this table, the column shown by “Avg. Total Cost” shows the average total cost of all
the instances with the corresponding number of nodes, obtained within the time limits of 1000
and 3600 seconds. In this table, we also report the average number of nodes upgraded under col-
umn “UN”. The column titled “Opt. Ratio” denotes the ratio of the number of instances solved
to optimality out of the total number of instances tested within that group. The final column ti-
tled “Deviations (%)”shows the percentage deviations of the solution values obtained with the
heuristic from those obtained by CPLEX.

In Table 3, we are not able to report any deviation values for the 30-node instance group running
under a limit of 1000 seconds as CPLEX wasn’t able to produce any solutions. The comparison
results show that the heuristic was able to find solutions that are generally within 1%–2% of the
optimal or near-optimal solutions identified by CPLEX. The average deviation across the instances
shown is 1.12%. Out of the 43 instances shown in Table 3, the evolutionary algorithm was able
to produce solutions with deviation below 1.00% for 29 instances. For the 25 instances for which
optimal solutions were identified by CPLEX, the evolutionary heuristic was able to discover six of
these.
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Table 3: Summary of the comparison results of the evolutionary algorithm with CPLEX

Nodes
CPLEX Evolutionary Algorithm Deviations (%)Avg. Total Cost

UN
Avg. Total Cost

UN1000 sec. 3600 sec. Opt. Ratio 1000 sec. 3600 sec. Opt. Ratio 1000 sec. 3600 sec.
20 718089.6 718016.2 5.8 10/15 721457.6 720853.4 6.2 4/15 0.47 0.39
25 224316.2 224316.2 8.0 6/6 224509.7 224509.7 7.6 2/6 0.09 0.09
30 218804.2* 245114.0 8.9 7/16 250472.1 248272.1 10.6 0/16 - 1.27
100 269688.0 269301.2 13.8 2/6 272868.2 271802.2 14.6 0/6 1.17 0.92
*3 out of 16 solutions not found

6.4. Further numerical insight

6.4.1. Impact of congestion on the MCNDP solution

In this section, we provide further numerical insight on the impact that costs of congestion at
nodes may have on the overall solution structure. The full results are presented in Table A.2 in
the appendix, a summary of which are given in Table 4 where instances are grouped into four as
in the previous section. These tables report statistics on the flow cost (AC), congestion cost (CC),
total cost (TC) and the total number UN of upgraded nodes in the network. For a given instance,
tests were conducted in the following way. First, the classical MCNDP is solved (columns 2–3 in
Table 4). Then, using the solution of the MCNDP, a “manual” reconfiguration of the network to
reduce the resulting congestion in the network by upgrading some nodes (columns 4–6) without
changing the flows, which we call UpMCNDP. Finally, a cMCNDP is solved on the same instance
(columns 7–10). The last two columns Dev1 and Dev2 show the percentage deviation of solution
values of MCNDP and UpMCNDP from cMCNDP, respectively. The solutions for the MCNDP
are taken from Paraskevopoulos et al. (2014).

Table 4: Summary of comparison results between the classical MCNDP and the cMCNDP on benchmark instances of
Gendron and Crainic (1994, 1996)

Group Avg. MCNDP Avg. UpMCNDP Avg. cMCNDP Deviations (%)
AC CC CC TC UN AC CC TC UN Dev1 Dev2

25 94613.0 151075.3 139760.9 234373.9 12.0 98045.6 126270.5 224316.2 8.0 −9.53 −4.48
20 291211.9 714609.3 604777.3 895989.2 14.7 339727.3 378285.6 718012.9 6.1 −40.08 −24.79
100 115502.7 189132.9 185185.3 300687.9 19.7 121178.0 148123.2 269301.2 13.0 −20.78 −11.65
30 94492.9 310417.8 240630.2 322717.5 24.3 119746.4 125367.6 245114.0 8.7 −65.19 −31.66

As Table 4 shows there are high congestion costs associated with the best solutions obtained for
the classical MCNDP, which is obvious since congestion is not explicitly considered within this
problem. The UpMCNDP approach is able to improve the situation by relieving congestion, im-
plying improvements in the total cost from around 1% to 120%. The cMCNDP solution, on the
other hand, is able to substantially improve on the MCNDP solutions, with the savings in cost
ranging anywhere from 4.08% to beyond 200%. Interestingly, the flow cost (AC) in some cases,
is seen to increase with cMCNDP but this is at the expense of obtaining a better TC. Finally, we
observe that the number of upgraded nodes in cMCNDP is reduced in comparison to UpMCNDP,
indicating that there is no need for upgrading so many nodes in the system. The results suggest
that, instead of only upgrading nodes, a combination of upgrading with rerouting flows paths is
a better way of alleviating congestion in the network.

To shed more light into the way in which the solutions themselves change under from the tradi-
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Table 5: Statistics on capacity utilization of nodes for several problem instances

Instances
Average Capacity Utilization of Nodes

UpMCNDP cMCNDP
Avg. Max. Min. StDev. Avg. Max. Min. StDev.

20,230,40FT 0.530 0.715 0.229 0.206 0.484 0.641 0.245 0.157
20,300,40VL 0.591 0.845 0.260 0.181 0.504 0.641 0.183 0.159

30,520,100VT 0.591 0.965 0.404 0.101 0.473 0.653 0.274 0.130
100-400-10-VL 0.477 0.909 0.129 0.151 0.428 0.818 0.115 0.189
25-100-30-FT 0.567 0.813 0.459 0.083 0.539 0.632 0.265 0.148
25-100-10-FT 0.351 0.570 0.089 0.152 0.307 0.585 0.074 0.206

Table 6: Statistics on capacity utilization of arcs for several problem instances

Instances
Average Capacity Utilization of Arcs

UpMCNDP cMCNDP
Avg. Max. Min. StDev. Avg. Max. Min. StDev.

20,230,40FT 0.525 1.000 0.092 0.285 0.465 1.000 0.035 0.286
20,300,40VL 0.316 1.000 0.053 0.215 0.276 0.704 0.053 0.158

30,520,100VT 0.676 1.000 0.070 0.286 0.471 1.000 0.040 0.281
100-400-10-VL 0.544 1.000 0.056 0.311 0.519 1.000 0.014 0.344
25-100-30-FT 0.621 1.000 0.040 0.409 0.577 1.000 0.019 0.403
25-100-10-FT 0.624 1.000 0.074 0.396 0.628 1.000 0.049 0.410

tional MCNDP to the cMCNDP, we also present statistics on average (Avg.), minimum (Min.) and
maximum (Max.) capacity utilization of nodes and arcs in Tables 5 and 6 for six different instances,
as well as the standard deviations (StDev.). As this table shows, average capacity utilization on
nodes decreases when the upgrading decisions at nodes are made and reaches lower levels in the
cMCNDP solutions. Solving the cMCNDP typically results in an even distribution of the flows on
the nodes and alleviates congestion, which consequently reduces arc capacity utilization as well.

6.4.2. Impact of different nodes’ settings on the upgrading decisions

The reasoning behind defining node properties (as discussed in Section 6.1) was to investigate on
the impact different nodes capacities and upgrading costs would have on upgrading decisions,
and generally on the cMCNDP solution itself. To test this reasoning further, we provide results
of some experiments in Table 7 based on a selected set of instances. The first column of Table 7
shows the generating MCNDP instances with varying node properties in the second column. The
third column of the Table gives the status of the solution. In particular, “Optimal” or “Opt.Tol.”
indicates that an optimal solution was found. Otherwise the solutions are just “Feasible”. The last
two columns are as defined previously.

As seen from Table 7, as the upgrade costs increase, the number of upgraded nodes naturally
decreases. In this case, it is cost-effective to reduce the investment in nodes at the expense of
increased congestion. The reason behind the reduced number of upgraded nodes can be also
attributed to the fact that when larger capacities at nodes are considered, more flows can be ac-
commodated on a single node, removing the need to upgrade more nodes.
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Table 7: Computational results on problem instances with different node properties

Generating Instance Node properties Status TC UN

25-100-10-V-L

(0.3, 0.6) Optimal 30374.58 12
(0.3, 0.7) Optimal 30867.40 10
(0.3, 0.8) Opt.Tol. 31519.57 8
(0.8, 0.6) Opt.Tol. 29635.94 11
(0.8, 0.7) Opt.Tol. 30371.01 9
(0.8, 0.8) Optimal 31240.62 5

100-400-30-F-L

(0.3, 0.6) Feasible 130773.15 17
(0.3, 0.7) Feasible 131503.84 11
(0.3, 0.8) Feasible 132323.93 6
(0.8, 0.6) Feasible 129795.04 15
(0.8, 0.7) Feasible 131127.82 11
(0.8, 0.8) Feasible 132603.66 5

c44

(0.3, 0.6) Opt.Tol. 1545474.58 8
(0.3, 0.7) Opt.Tol. 1567386.50 5
(0.3, 0.8) Opt.Tol. 1586228.26 3
(0.8, 0.6) Opt.Tol. 1517143.54 7
(0.8, 0.7) Opt.Tol. 1548781.10 5
(0.8, 0.8) Opt.Tol. 1580478.01 4

c51

(0.3, 0.6) Opt.Tol. 129889.36 12
(0.3, 0.7) Opt.Tol. 131467.24 3
(0.3, 0.8) Opt.Tol. 131669.81 0
(0.8, 0.6) Opt.Tol. 128522.12 13
(0.8, 0.7) Opt.Tol. 130983.52 2
(0.8, 0.8) Opt.Tol. 131403.71 1

6.5. Real-life case study

To validate the proposed approach in a practical setting, we have applied it on a real-life (service)
network design problem. The problem arises within the Polcorridor study (Polcorridor, 2006),
which stems from a large European research project looking at the development of new rail-based
intermodal transport solutions on the area of Northern Europe, and has already been considered
in the relevant literature (Bauer et al. 2009, Andersen et al. 2009, Andersen and Christiansen 2009).
The problem consists of designing rail services to operate over three countries, namely Poland,
Austria and the Czech Republic, with the main hubs being located in two ports in Poland and
one in Vienna, between which goods are to be sent, for forwarding either to the northern or the
southern European networks. The original network consists of 17 nodes, including 11 internal
nodes in the three countries mentioned above, and the remaining external nodes that are beyond
the boundaries of these countries and not included in the design problem. Figure 10 shows the
map of the geographical region in which the problem is defined and the nodes that are part of the
design. The reader is referred to Polcorridor (2006) and the above references for further details on
the problem.

The original aim of the Polcorridor study was to design periodic rail services in an intermodal
setting. In our application, we look at the problem from a different point of view, namely that
of congestion at nodes, where goods are transferred from one service to another at hubs. This is
particularly the case at cross-border nodes between Poland and the Czech Republic, as the train
services in the two countries are not compatible and freight will need to be moved from one train
to another. We treat the commodities as a set of one-off shipments, hence are not concerned with
the periodicity of the services, although such requirements can be reflected in the approach we
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Figure 10: The Polcorridor supply system - Northern Europe

describe here. To apply the methodology, we first construct a time-space representation of the
network, where each internal node {1, . . . , 11} is replicated for t periods. In our case t is equal
to 150, to cover from the time at which the earliest commodity becomes available until the latest
possible time when all commodities can be sent to their destinations. There are 40 different types
commodities to be transported on the network. Each commodity originates from a node on the
network in the set {1, . . . , 11} and becomes available at a given point in time, which corresponds
to a unique node in the time-space network corresponding to the spatial and temporal attributes of
the commodity. Under the assumption that the commodities will need to be transported as quickly
as possible, a dummy node was introduced into the the time-space network for each geographical
node {1, . . . , 11}, and connected to the replicas of these nodes in each time period (see Figure 11
for a visual depiction). To enable the model to favour “earlier” rather than “later” arrivals to
destinations, the arcs (i, j) that connect the replicated nodes and the dummy node have variable
costs equal to citj∗i = (0.1t

∑
i,j∈A cij)/|A|, where it is the tth copy of the internal node i = 1, . . . , 11

in period t and j∗i the dummy node of the same internal node i. Each arc has its own variable
cost, which is equal to the distance between the two nodes it connects. We do not consider any
fixed costs for this case study as the arcs that correspond to the rail tracks are already in place. The
time-space network representation contains a total of 1671 nodes and 8385 arcs.

For defining the capacity of the each arc, the Evolutionary Algorithm was run in the same way as
was done for designing the benchmark instances (see Section 6.1). More specifically, the maximum
flow that an arc could accommodate throughout these runs was multiplied it by 1.5 plus 40, i.e.,
vij = 1.5maxFlow + 40 was used as capacity of the arc (i, j). Following the same procedure dis-
cussed in Section 6.1, we defined the initial capacity, the incremental capacity, and the incremental
cost for each node.
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Figure 11: A typical Time-Space representation for the Polcorridor network
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Table 8: Computational results on the Polcorridor case study (Google Maps)

Scenario MCNDP UpMCNDP cMCNDP Deviations (%)
AC CC CC TC UN AC CC TC UN Dev1 Dev2

1671,8385,40 491546 9753891 7189239 7680785 181 495653 7101202 7596855 180 −1.10 −34.86
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Figure 12: Upgrading decisions of nodes at different points in time

Table 8 reports the results of the Polcorridor case study. The table has an identical structure to
that of Table 4. The reported results show that the congestion cost is significantly high in the
MCNDP solution as compared to that of cMCNDP, i.e., the difference between the total cost of the
solutions is −34.86%. Even when one uses the MCNDP solution and “manually” upgrades the
congested nodes to reduce the resulting congestion in the network without changing the flows,
the UpMCNDP solution deviates by−1.10% from to the solution obtained by solving the proposed
cMCNDP.

The upgrading decisions (the number of which remained almost the same) are illustrated in detail
in Figure 12. One can observe that most of the main (geographical) nodes need to be upgraded
throughout a large part of the time horizon. Therefore rump up and rump down decisions can be
made to minimize the total cost, following the upgrading decisions shown in Figure 12.

7. Conclusions

This paper presented and described solution methods for a variant of the multicommodity Net-
work Design problem (MCNDP) where congestion at nodes is explicitly taken into account. The
so-called congested MCNDP (cMCNDP) aims at finding flows for each type of commodity by ac-
tivating suitable arcs and performing capacity upgrades at nodes, so as to minimize a function
including operational and congestion costs, and by meeting capacity constraints on both arcs and
nodes.

The paper also described a new set of benchmark cMCNDP instances that are publicly avail-
able and used for testing in this paper. Through extensive computational testing, the following
observations can be made. Of the two solution approaches presented, the reformulation of the
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problem is a viable way of solving small to medium (and a few large) scale instances to optimal-
ity. In particular, running the MISOCP reformulation on CPLEX, we were able to solve 133 of the
258 problem instances to optimality within an hour of computational time, including instances
of up to 100 nodes, 700 arcs and 200 commodities. Our experience here shows that MISOCP is
a good alternative to solve such problems, provided conic representations of the nonlinear terms
are available.

Our results have also shown that, for the problem considered here, the efficient evolutionary al-
gorithm that is equipped with long and short term memory structures, new local search operators
and innovative solution recombination processes, yields satisfactory results. There are instances
for which the evolutionary algorithm is able to find very good quality solutions in short computa-
tional times, which makes it a viable solution method for large scale cMCNDP instances for which
MISOCP formulation might fail to perform well. We also stress that the flow subproblems solved
within the evolutionary algorithm are nonlinear, and the resolution of these problems is made
possible using the SOCP representations described here.

The experiments have also shown that, through solving the cMCNDP, a more even distribution of
the flows can be obtained on the network, as well as reduction in congestion. Through reducing
the maximum capacity utilization, the cMCNDP enables the network to accommodate more com-
modity flows without increasing congestion too much. This is particularly useful in the context of
rail transportation, where one might be interested in adding more services to an existing service
configuration. Similar results were obtained on a real-life case study arising in a service network
design problem in Northern Europe, showing that a reduction of up to 35% of the total costs is
possible through the proposed methodology.

The cMCNDP is relevant to transportation, telecommunications and production, where conges-
tion issues are the main reason for deteriorating the efficiency of the operations as well as the
service quality delivered to the customers. Further research on this problem can include defining
toll pricing policies in motorways as a trade-off mechanism for alleviating congestion. On the
algorithmic side, development of collaborative solution frameworks that combine both exact and
heuristic components for solving the cMCNDP would be of interest.
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[19] Demir E., Bektaş T., and Laporte G. A review of recent research on green road freight trans-
portation. European Journal of Operational Research, 237(3):775 – 793, 2014.

[20] Elhedhli, S. and Hu, F.X. Hub-and-spoke network design with congestion. Computers &
Operations Research, 32(6):1615–1632, 2005.

[21] Elhedhli, S. and Wu, H. A lagrangean heuristic for hub-and-spoke system design with capac-
ity selection and congestion. INFORMS Journal on Computing, 22(2):282–296, 2010.

30



[22] Fan, L., Wilson, W.W. and Dahl, B. Congestion, port expansion and spatial competition for
us container imports. Transportation Research Part E,, 48(6):1121–1136, 2012.

[23] Fan, L., Wilson, W.W., and Tolliver, D. Optimal network flows for containerized imports to
the united states. Transportation Research Part E,, 46(5):735–749, 2010.

[24] Fernandez, J.E., De Cea, J. and Giesen, R. A strategic model of freight operations for rail
transportation systems. Transportation Planning and Technology, 27:231–260, 2004.

[25] Fosgerau M. How a fast lane may replace a congestion tol. Transportation Research Part B, 45:
845–851, 2011.

[26] Franceschetti A., Honhon D., Woensel T.V., Bektaş T. and Laporte G. The time-dependent
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Appendix: Supplementary Tables

Table A.1 shows computational results produced by the evolutionary heuristic in comparison to
the solutions obtained by CPLEX. Where relevant, the designation F denotes if the fixed costs are
more important relative to the variable costs, V if the variable costs are more important relative
to the fixed costs, L if the arc capacities are loose or T if the arc capacities are tight. For instances
for which CPLEX is unable to produce an optimal (or “Opt.Tol”) solution within 1000 seconds, a
second row is added to show the results obtained within 3600 seconds running time. In particular,
the following abbreviations are used: Opt. for the optimum solutions, Opt.Tol. for the optimum
solutions obtained within the default level of tolerance in CPLEX, Feas. for the feasible solutions
and No sol. when none solution was obtained. These tables report, for each instance, and for
CPLEX and for the evolutionary heuristic separately, the total cost of the best solution found (de-
noted TC), computational time (Time) in seconds, flow costs (AC), congestion costs (CC) and the
total number of upgraded nodes (UN). The last column shows the percentage deviation of the
solution found by the heuristic from that of CPLEX.
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Table A1: Comparison results between the evolutionary algorithm and CPLEX

Instances CPLEX Evolutionary Algorithm Dev

Status TC Time AC CC UN TC Time AC CC UN %
(sec) (sec)

c33 Opt.Tol. 1017737.3 2 478868.9 538868.4 11 1017737.0 12 478868.9 538868.4 11 0.00
c35 Opt.Tol. 853084.8 7 422505.6 538857.4 5 853331.8 2215 431405.4 421926.3 5 0.03
c36 Opt.Tol. 1482124.2 11 693467.5 788656.7 4 1486110.0 985 685943.5 800167.0 5 0.27
c41 Opt. 1123342.1 2075 484290.6 639051.5 8 1123342.0 11 484290.6 639051.5 8 0.00
c42 Opt.Tol. 1369561.1 2996 699135.9 670425.3 9 1379365.0 384 742666.0 636698.8 8 0.71
c43 Opt.Tol. 1136210.9 3541 536876.5 599334.5 10 1136211.0 418 536876.5 599334.5 10 0.00
c44 Opt.Tol. 1545474.6 3494 723268.0 822207.6 8 1545475.0 401 723268.0 822206.6 8 0.00
c37 Feas. 256451.8 1001 121156.9 135294.9 3 258805.0 733 120799.3 138005.7 3 0.91

Feas. 256355.6 3601 118497.1 137858.5 4 257875.2 3543 120875.1 137000.1 3 0.59
c38 Feas. 383448.8 1000 179673.7 203775.1 4 390643.0 987 189425.8 201217.7 4 1.84

Feas. 383402.8 3600 178457.3 204945.5 5 388913.2 3432 177402.5 211510.7 5 1.42
c39 Opt.Tol. 254535.0 1001 120919.9 133615.1 2 256166.6 881 127678.8 128487.8 5 0.64
c40 Feas. 362745.0 1001 172441.0 190304.0 5 369742.4 996 177620.6 192121.8 6 1.89

Feas. 362136.9 3600 167912.2 194224.7 5 368022.4 3589 175894.0 192128.3 7 1.60
c45 Opt.Tol. 195651.7 869 94448.7 101202.9 6 199082.9 738 94340.5 104742.4 5 1.72
c46 Feas. 308861.7 1001 145845.0 163016.7 4 314691.3 871 145575.6 169115.7 5 1.85

Feas. 308656.3 3601 148443.0 160213.3 5 313771.5 2786 143300.8 170470.7 8 1.63
c47 Opt.Tol. 206366.5 864 98190.8 108175.7 5 209091.6 2976 100568.6 108522.9 3 1.30
c48 Feas. 275748.3 1001 130478.7 145269.6 6 282069.8 739 139812.4 142257.4 7 2.32

Feas. 275507.2 3601 129411.1 146096.1 6 278305.3 2674 136072.3 142233.1 8 1.00
25,100,10VL Opt. 30374.6 1 15229.2 15145.4 12 30443.9 1 15317.0 15126.9 12 0.23
25,100,10FL Opt. 45154.8 1 19161.0 25993.8 2 45154.8 61 19161.0 25993.8 2 0.00
25,100,10FT Opt. 83888.1 4 52893.9 30994.2 1 84036.0 157 53467.9 30568.1 1 0.18
25,100,30VT Opt.Tol. 873455.0 2 370530.0 502924.9 10 873455.0 2 370530.0 502924.9 10 0.00
25,100,30FL Opt.Tol. 102975.1 12 42320.0 60655.1 6 103194.5 556 42227.3 60967.2 5 0.21
25,100,30FT Opt.Tol. 210049.5 4 88139.7 121909.9 17 210774.1 537 89943.8 120830.3 16 0.34
c49 Opt.Tol. 143270.6 23 70996.0 72274.6 10 144345.4 2422 72426.0 71919.4 12 0.74
c50 Opt.Tol. 235063.7 427 119528.0 115535.7 3 238690.7 2605 124401.9 114288.9 3 1.52
c51 Opt.Tol. 129889.4 146 60479.0 69410.4 12 131035.4 3310 62337.0 68698.4 13 0.87
c52 Feas. 237586.8 1001 118154.0 119432.8 8 242494.1 845 123403.9 119090.2 9 2.02

Feas. 237545.0 3601 118583.0 118962.0 8 240954.3 2567 123226.9 117727.4 9 1.41
c57 Opt.Tol. 125694.8 50 64203.0 61491.8 5 126244.8 1234 67011.7 59233.1 4 0.44
c58 Opt.Tol. 181220.5 24 87342.0 93839.7 3 182453.3 3550 89396.0 93057.3 2 0.68
c59 Opt.Tol. 129729.5 202 62954.0 66775.5 8 130199.4 936 64968.0 65231.4 8 0.36

Opt.Tol. 129729.5 202 62954.0 66775.5 8 129949.7 2451 64083.0 65866.8 8 0.17
c60 Opt.Tol. 144485.1 106 70661.0 73824.1 8 145020.0 3153 73514.0 71506.0 7 0.37
c53 Feas. 306543.8 1003 150563.9 155980.0 9 312009.9 889 152792.2 159217.7 11 1.75

Feas. 306543.8 3602 150563.9 155979.9 9 308551.4 3598 156385.0 152166.5 14 0.65
c54 Feas. 406604.2 1004 184697.5 221906.6 3 407731.5 804 204189.4 203542.1 14 0.28

Feas. 396769.2 3603 192000.1 204769.2 2 406544.3 3545 210937.1 195607.3 11 2.40
c55 Feas. 290383.3 1033 139456.2 150927.0 17 294844.2 763 143987.8 150856.4 18 1.51

Feas. 290377.0 3632 139937.6 150439.5 16 292148.5 3245 146197.5 145951.0 21 0.60
c56 No sol. 1002 399355.1 875 203170.7 196184.3 10 n/a

Feas. 388993.5 3606 188075.9 200917.6 14 396380.0 3324 200221.9 196158.1 11 1.86
c61 Feas. 269467.8 1003 128506.9 140960.9 8 275613.0 876 134764.7 140848.3 9 2.23

Feas. 268622.2 3604 127801.9 140820.3 9 272872.4 3567 134531.6 138340.7 12 1.56
c62 No sol. 1002 378083.6 856 193545.1 194401.1 9 n/a

Feas. 363242.9 3602 174608.5 188634.4 11 367236.5 3423 183349.0 183887.5 14 1.09
c63 Feas. 244515.5 1003 120739.3 123776.3 12 249494.3 910 124385.3 125109.0 12 2.00

Feas. 244390.1 3604 121839.7 122550.3 11 247322.2 3452 123151.0 124171.2 13 1.19
c64 No sol. 1000 349938.9 878 175433.1 176311.1 11 n/a

Feas. 335987.0 3608 166368.6 169618.4 10 342604.9 3433 175150.4 167454.6 11 1.93
100,400,10VL Opt.Tol. 64154.3 8 30319.0 33835.3 13 64281.8 917 30289.9 33991.8 14 0.20
100,400,10FL Feas. 51263.8 1023 29917.0 21346.8 17 53142.9 202 30714.0 22429.0 21 3.54

Opt.Tol. 50783.6 3649 27643.0 23140.6 13 52149.6 2567 31151.0 20263.6 17 2.62
100,400,10FT Feas. 117419.8 1001 66696.7 50723.1 0 123521.9 998 76084.8 47437.1 0 4.94

Feas. 116972.4 3603 66884.8 50087.7 0 121501.9 3345 73276.9 48225.0 0 3.73
100,400,30VT Feas. 916447.5 1001 397931.7 518515.8 19 923091.0 802 398319.1 524771.9 24 0.72

Feas. 916345.4 3601 397590.2 518755.2 19 922711.4 3345 396083.7 526627.7 19 0.69
100,400,30FL Feas. 130773.1 1025 57782.0 72991.1 17 131284.0 953 57654.8 73629.3 15 0.39

Feas. 130773.1 3641 57782.0 72991.1 17 131284.0 953 57654.8 73629.3 15 0.39
100,400,30FT Feas. 338069.6 1001 146598.8 191470.7 21 341887.5 965 153969.7 187917.8 13 1.12

Feas. 336778.2 3605 146848.9 189929.2 16 338884.3 3067 157244.9 181639.4 23 0.62
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