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Abstract  

  
The Bus Driver Rostering Problem refers to the assignment of drivers to the daily schedules of the 

company’s buses, during a planning period of a given duration. The drivers’ schedules must comply 
with legal and institutional rules, namely the Labour Law, labour agreements and the company’s 
specific regulations. This paper presents a bi-objective model for the problem and two evolutionary 
heuristics differing as to the strategies adopted to approach the Pareto frontier. The first one, the 
utopian strategy, extends elitism to include an unfeasible solution in the population, and the second one 
is an adapted version of the well known SPEA2 (Strength Pareto Evolutionary Algorithm). The 
heuristics’ empirical performance is studied with computational tests on a set of instances generated 
from vehicle and crew schedules. This research shows that both methodologies are adequate to tackle 
the instances of the Bus Driver Rostering Problem. In fact, in short computing times, they provide the 
planning department, with several feasible solutions, rosters that are very difficult to obtain manually 
and, in addition, identify among them the efficient solutions of the bi-objective model. 
 

Keywords: bus drivers rostering, bi-objective problems, genetic algorithms 

 

1. Introduction 

Personnel scheduling and rostering has been in the operation researchers’ agenda since Dantzig’s paper 
on scheduling collectors at toll booths (Dantzig 1954). 

 
The rostering problem may arise in several contexts, namely, in the transportation sector and in the 

health care sector. Transport operators, in particular, require very careful management of human 
resources in view of the increasing burden of costs and the need to provide a high quality service. All 
rosters must satisfy institutional and legal regulations, and a good roster should also comply with 
workers’ preferences. These are not only important for the workers themselves, but also for the 
employer, insofar as worker satisfaction lowers the incidence of professional illness, accidents and 
absenteeism. Consequently, bus driver rostering naturally calls for a multi-objective model. 

 
There are many bibliographical references on personnel rostering, as recently surveyed by Ernst et 

al (2004). However, only a few studies have been published on transit crew rostering. Most of these 
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studies are based on sequential heuristic procedures designed to tackle particular cases (Odoni et al. 
1994). 

 
The mathematical models for transit crew rostering found in the literature are either based on 

multilevel networks (Carraresi and Gallo 1984’ seminal work; Bianco et al. 1992); or within set 
covering/partitioning (Catanas and Paixão 1995). These approaches do not cope with some real world 
specificities, since transit crew rostering gives rise to high dimension instances. Multi-objective models 
have already been proposed for the air crew rostering problem (Lucic and Teodorovic 1999). But, to 
the authors’ knowledge, there is no work in the literature on multi-objective models for transit crew 
rostering. For a general survey on multi-objective issues for scheduling under different contexts see 
Silva, Burke and Petrovic, 2004. 

 
Hence, new methodologies to efficiently tackle real instances of this class of highly constrained 

multi-objective problems are called for. In this paper, a bi-objective model for the Bus Driver 
Rostering Problem is presented in section 2 and two evolutionary heuristics are proposed in section 3, 
followed by computational results in section 4 and final comments in section 5.    

2. Problem Description 

The Bus Driver Rostering Problem (BRP) consists of building a schedule for the company’s bus 
drivers over a planning period of length m (m – number of days, usually multiple of 7), the rostering 
period, so as to cover the demand of day t, dt (t=1,…, m), that is, to cover all the daily duties of the 
period.  

 
By the word ‘schedule’ one means a sequence of daily duties and days off with length m, while 

‘duty’ refers to a set of pieces of work with breaks and idle times, to be performed by a single driver 
during a specific day. The set of all the drivers’ schedules in a planning period is called a roster. This 
problem takes as input the duties of each day of the rostering period, that is, the output of m crew 
scheduling problems. 
 

Rosters must comply with the conditions and rules imposed by labour union contracts, institutional 
and legal requirements that establish the hard constraints, such as the number of days-off per week, 
specific days-off per week, a minimum and a maximum number of days for the length of a rest period, 
a minimum number of Sundays/weekends off in the planning period, a minimum number of rest hours 
between two consecutive work periods and a minimum and a maximum number of days for the length 
of a work period. 

 
Rosters that cover the demand and satisfy the established conditions and rules may be distinguished 

by the different features that qualify them as good or bad, according to distinct interests or points of 
view. For example, good rosters are characterised by equity in the distribution of weekends/Sundays 
off among drivers, equity in the distribution of overtime work, equity in the distribution of late duties 
and, where company’ goals are concerned, low cost of assignments, and small gaps between each 
driver’s overall scheduled hours and the respective contracted hours per period. These requirements are 
generally taken as soft constraints, as distinct from hard ones. 

 
Therefore, the BRP sets out to determine a roster capable of fulfilling the demand, besides satisfying 

the hard conditions, and of optimising one or more objectives defined from the soft constraints. 
 
The BRP under study applies the rules of a Portuguese bus transit company with a fixed set of 

drivers to perform two types of duties: the early duties that start between 6:00 h and 15:30 h and the 
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late duties that may start after 15:30 h until 24:00 h. For each rostering period of m days, the set of 
duties to be covered, as well as the respective type and length and also the ideal workforce size (ni), 
are known in advance.  

 
The hard constraints of the BRP may be summarised as follows: 
 
− each driver must have two or three consecutive days off; 
− each driver must have at least two days off in each week;     
− each driver must not work more than six consecutive days; 
− drivers must, on average, work no more than eight hours per day;  
− each driver must have at least one Sunday off in each rostering period; 
− some drivers must have weekends off; 
− drivers must rest eleven hours between two consecutive duties, meaning that an early duty in 

a day cannot be assigned to a driver that has worked on a late duty the previous day. 
 

As soft constraints this problem considers that: 
 
− overtime work should be fairly distributed among drivers; 
− the number of scheduled drivers should be less than or equal to the ideal workforce size. 

 
This rostering problem is formulated as a bi-objective optimisation model imposing the satisfaction 

of the two soft constraints as objectives and defining the feasible region by the hard constraints. 
Different measures to evaluate the satisfaction of the soft constraints can be used. Here, however, the 
option favoured, for the first soft constraint, the maximum of the individual overtime work, whereas, 
for the second, the scheduled workforce over the ideal dimension, in other words: 

 
− objective 1: minimise max {f1, f2, …, fn}, where fj is the overtime of driver j during the 

rostering period; 
− objective 2: minimise max{nw-ni,0}, where nw is the number of drivers scheduled during the 

rostering period. 
 

Note that, the two objectives in fact represent the interests of both entities involved in the problem: 
bus drivers and company’s administration. Minimising the scheduled workforce over the ideal number 
of drivers (objective 2) allows the assignment of nonscheduled workers to other departments, and at 
the same time increases the workload of the drivers scheduled. On the other hand, objective 1 not only 
reduces this extra work, but also distributes it equitably among drivers.  
 

This is a highly complex problem, similar to crew rostering problems arising in air transport 
companies (Cappanera and Gallo 2004) and nurse rostering in hospital units that has been proved to be 
NP-hard (Moz and Pato 2006). Due to the high complexity of the problem and to the dimension of its 
real life instances, heuristics are generally appropriate, and particularly the evolutionary heuristics that 
have been successfully applied to other bi-objective problems, including the nurse (re)rostering issue 
(Pato and Moz 2006). 

3. Evolutionary Heuristics 

Two evolutionary heuristics were developed for the problem: a Utopic Genetic Heuristic (UGH) and 
an Adapted SPEA2 (ASP), which differ as to the strategy used to approximate the Pareto frontier. 
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3.1 Common Features 

The encoding of individuals and the decoder (to obtain solutions from the individuals) are identical for 
both evolutionary algorithms being tested.  
 

Each individual is characterised by a pair of chromosomes, one representing the list of tasks and the 
other the list of drivers. The two lists, with tasks and drivers taken randomly, are represented by integer 
vectors.  

 
In order to obtain a solution for the BRP, i.e., an individual, one must take a pair of different type 

chromosomes and run the decoder that corresponds to a specific constructive heuristic, as shortly 
represented in figure 1. Briefly, the constructive heuristic has a main step where each non-assigned 
task is given to a driver according to hierarchically ordered rules which impose satisfaction of the hard 
constraints. It is important to stress that this simple heuristic may yield an unfeasible solution, that is, a 
roster that does not satisfy all hard constraints. 

 
 

chromosometasks     < _  _ … _ >

 a roster

one individual

decoder

chromosomedrivers     < _  _ … _ >

 
 

Fig. 1. Encoding and decoding 

The genetic operators act independently on the two types of chromosomes of individuals taken from 
the mating pool, previously created by selection. The crossover operator applies in the same way to the 
parents’ pairs of chromosomes of the same type (tasks or drivers). Then, two new individuals are 
generated by applying the decoder. For the mutation operator, one opted in favour of swapping the 
position of two genes of each chromosome of an individual that has just been selected for mutation. 
The crossover and the mutation probabilities are respectively 0.8 and 0.2.  

 
All these features were developed for a single objective nurse rerostering problem by Moz and Pato 

(2006). 
 

In each of the 2000 generations of the bi-objective evolutionary approaches, the dimension of the 
population is fixed at 40 individuals. The initial population is generated by running a single objective 
evolutionary heuristic guided by objective 1, defined in section 2, and sharing with UGH all the other 
features, except the fitness function. If after 200 generations, the genetic initialisation search has gone 
beyond the feasible region, then one individual is randomly chosen from the population and feasibility 
is enforced by using an improved constructive heuristic, acting as the decoder but in a more 
sophisticated way.  
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3.2 Utopic Genetic Heuristic 

UGH includes the components of the abovementioned single objective genetic heuristic, although the 
fitness of the individuals comes from a Pareto genetic approach (Goldberg 1989) enhanced with a 
utopic elitism adapted from Pato and Moz (2006) for a nurse re-rostering issue involving different 
objectives than those tackled here. Several possibilities for the algorithm parameters were tested, in a 
real case from nurse rostering, and the option favoured the values that are used. In figure 2, the basic 
components of UGH are synthesised. 

 
 

40.          <_ _ _ _..._>
               <_ _ _ _..._> 

.

.

.

1.           <_ _ _ _..._>
utopic      <_ _ _ _..._> 

4.           <_ _ _ _..._>
             <_ _ _ _..._> 

40.          <_ _ _ _..._>
               <_ _ _ _..._> 

.   .   .

generation t 's population generation (t+ 1)'s population

selection

mating pool

recombination
mutation
elitism

.   .   .

1.           <_ _ _ _..._>
utopic      <_ _ _ _..._> 

2.           <_ _ _ _..._>
lexic1       <_ _ _ _..._> 

2.           <_ _ _ _..._>
        

         <_ _ _ _..._> 

3.           <_ _ _ _..._>
lexic2       <_ _ _ _..._> 

 
 

Fig. 2. The Utopic Genetic Heuristic 

The fitness of each individual must reflect the bi-objective nature of the problem. Hence, as mentioned 
above, in the case of the UGH it is calculated according to the position of the respective point in the 
objectives’ space relatively to the Pareto frontier, the so-called Pareto rank. The fitness is defined as 
the inverse of the Pareto rank. For the rosters that do not satisfy all the hard constraints, the respective 
fitness value is penalised. As a result, those individuals belong to the last rank and obtain the least 
fitness value. 

 
The selection operator is based on the roulette wheel procedure: the probability of an individual to 

enter the mating pool, in each generation being directly proportional to its fitness.  
 
Then, the genetic operators act over the individuals of the mating pool, thus creating the population 

for the next generation. The recombination operator is a standard PMX crossover, specific for natural 
encoding, that randomly matches individuals from the mating pool. 

 
Elitism is performed by forcing into the population, in each generation:  
 
− two individuals corresponding to the lexicographic points, each registering the best value for 

one of the objectives; 
− one individual corresponding to an ideal unfeasible solution, the utopic individual. 

 
This utopic individual corresponds to a feasible solution of a relaxed problem and is obtained by 

relaxing some hard constraints through the application of an auxiliary genetic approach. Its fitness 
value is set to equal to 1. Thus the utopic individual will have the highest probability of being selected 
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by the roulette wheel for the mating pool. Such a strategy not only enforces the search towards the 
exact Pareto frontier, attracting individuals to the optimal set, but also creates population diversity. 

3.3 Adapted SPEA2 

ASP is an adaptation of the SPEA2 – the improved Strength Pareto Evolutionary Algorithm (Zitzler et 
al. 2002). SPEA2 has been compared with other recent multi-objective heuristic techniques producing 
very good results. The main features of the algorithm include elitism, a fine-grained fitness assignment 
scheme and diversity of solutions in each generation. The elitism is enforced by keeping potentially 
non-dominated individuals in an archive of size equal to 10. As stated above, ASP embeds the main 
components of UGH, including the two chromosome representation of each individual, the decoder, 
and the initialisation procedure.  
 

In each generation, the fitness value of each individual is computed in three steps. Firstly, the force 
of each individual counts the number of individuals it potentially dominates. Secondly, the raw fitness 
of each individual sums up the forces of all the individuals that potentially dominate it. Thirdly, an 
estimation for the diversity measure is added to the raw fitness aiming at penalising the solutions in 

more crowded regions of the objectives’ space. This measure is given by  
2

1
+kσ

,  where kσ  is the 

distance to the kth  nearest neighbour with k=7, the integer part of the square root of the total number of 
individuals in the generation (40+10). The algorithm searches for solutions with minimum fitness and 
potentially efficient solutions receive a fitness value below 1. 
 

The mating pool is built by performing selection through a binary tournament over all the 
individuals. This operator consists of randomly choosing two individuals from the union of the current 
population with the current archive. The individual with the lowest fitness is introduced into the mating 
pool. The recombination operator is a standard OX crossover. 

4. Computing Results 

The proposed approaches were tested over 21 instances obtained from the output provided by the exact 
solutions of the integrated multi-depot vehicle and crew scheduling problem (Mesquita et al. 2005) and 
the institutional requirements and norms of a bus company in Lisbon, besides the Portuguese Labour 
Law and the drivers’ union contracts. 
 

The main data of these instances is as follows: 
 
− length of the rostering period, m=28 days; 
− number of drivers, n=45, and ideal workforce size, ni; 
− last day off and last duty assigned to each driver in the previous period; 
− number of duties to cover in each day, dt (t=1,...,28), different for work days and weekend 

days; 
− starting time and duration of duties. 

 
At this point, one does not know if the solutions obtained from the evolutionary heuristics are 

indeed efficient ones, nor does one know the distance of the respective approximate Pareto frontiers to 
the exact frontier. However, the approximate frontiers built by these heuristics were studied from 
different standpoints, by using some metrics defined, for instance, in Collette and Siarry (2006).  
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Tables 1, 2 and 3 present average results taken from the last generation of 10 runs per instance, 

identified in column 1. The BRP instances are grouped according to the size of the integrated multi-
depot vehicle and crew scheduling instances from which they come. One set involves 80 trips (P0_80 
to P10_80), and the other 100 trips (P1_100 to P10_100). 

 
The following columns found in tables 1 and 2 show some absolute metrics for the quality of the 

population of the last generation of UGH and ASP respectively, whereas table 3 evaluates both 
evolutionary heuristics through a relative behaviour metric – the dominance metric – and the 
computing times in seconds. The computational experiment undertaken with UGH ran on a 2.6Ghz and 
256Mb RAM Intel Pentium 4 processor and the respective procedures were coded in Pascal (Borland 
Delphi 5.0). ASP procedures were coded in C and ran on a 2.8Ghz and 512Mb RAM Intel Pentium 4 
processor. 
 

Table 1. Computational results of UGH – averages from 10 runs per instance 

1 2 3 4 5 6 

          UGH - absolute metrics   
instances n. feas. sol. effic. ratio Pareto fr. dim. spread wave 

P0_80 39.00 0.10 3.20 19.19 15.90 
P1_80 39.00 0.07 2.00 13.46 19.20 
P2_80 39.00 0.08 2.40 11.90 19.50 
P3_80 39.00 0.08 2.20 6.50 16.10 
P4_80 39.00 0.07 2.20 14.58 17.70 
P5_80 39.00 0.11 2.10 16.48 18.60 
P6_80 39.00 0.06 1.80 8.04 18.70 
P7_80 39.00 0.08 2.20 9.61 17.60 
P8_80 39.00 0.10 2.80 11.18 16.30 
P9_80 39.00 0.08 2.50 13.62 16.50 

P10_80 39.00 0.10 2.00 5.54 16.40 

tot. average_80 39.00 0.09 2.31 11.80 17.50 

P1_100 39.00 0.05 1.00 0.00 10.20 
P2_100 39.00 0.04 1.30 2.15 14.80 
P3_100 39.00 0.03 1.10 1.40 14.80 
P4_100 39.00 0.11 1.60 5.65 16.20 
P5_100 39.00 0.03 1.00 0.00 12.70 
P6_100 39.00 0.04 1.00 0.00 10.90 
P7_100 39.00 0.04 1.00 0.00 9.50 
P8_100 39.00 0.09 3.20 22.98 17.40 
P9_100 39.00 0.07 1.50 3.94 16.00 
P10_100 39.00 0.07 1.00 0.00 9.90 

tot. average_100 39.00 0.06 1.28 3.61 13.24 
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In tables 1 and 2, columns 2 and 3 present the average number of feasible solutions in the last 
population of each evolutionary process and the average values of the efficiency ratio – the proportion 
of efficient solutions in the total number of feasible solutions, for the respective heuristic.  
 

Table 2. Computational results of ASP – averages from 10 runs per instance 

1 2 3 4 5 

 ASP - absolute metrics 
instances n. feas. sol. effic. ratio Pareto fr. dim. spread 

P0_80 26.30 0.25 1.00 0.00 
P1_80 29.80 0.21 1.00 0.00 
P2_80 33.30 0.21 1.00 0.00 
P3_80 28.00 0.19 1.00 0.00 
P4_80 28.50 0.22 1.00 0.00 
P5_80 34.30 0.22 1.00 0.00 
P6_80 34.30 0.25 1.00 0.00 
P7_80 12.70 0.35 1.00 0.00 
P8_80 35.40 0.22 1.00 0.00 
P9_80 34.90 0.22 1.00 0.00 
P10_80 34.90 0.22 1.00 0.00 

tot. average_80 30.17 0.23 1.00 0.00 

P1_100 22.60 0.31 1.00 0.00 
P2_100 28.30 0.22 1.00 0.00 
P3_100 27.10 0.30 1.00 0.00 
P4_100 34.20 0.25 1.00 0.00 
P5_100 22.90 0.34 1.00 0.00 
P6_100 27.10 0.28 1.00 0.00 
P7_100 24.20 0.36 1.00 0.00 
P8_100 32.50 0.24 1.00 0.00 
P9_100 32.00 0.28 1.00 0.00 

P10_100 21.30 0.37 1.00 0.00 

tot. average_100 27.22 0.30 1.00 0.00 

 
Columns 4 and 5 of the same tables display the average dimension of the Pareto frontier of the last 

generation – the number of non-dominated points in the objective’s space, and the average spread 
metric – the Euclidean distance between the two lexicographic points, whereas column 6 in table 1 
refers to the wave metric – the average number of different ranks, again in the population of the last 
generation. 
 

As for the feasible solutions (columns 2 and 3 in tables 1 and 2), one may see that UGH always built 
more feasible solutions than ASP, and that, on average, ASP attained a larger proportion of efficient 
solutions. 
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From the objective’s space perspective, the analysis of the last generation (columns 4 to 6 in table 1 
and columns 4 and 5 in table 2) shows that ASP found one single non-dominated point, while the three 
metrics for UGH reveal a considerable diversity of points in the last population: the Pareto frontier 
dimension is, on average, 2.31 for all the runs with the 11 instances of 80 trips, and 1.28 in the case of 
100 trips (column 4, table 1); the spread metric is, on average, 11.8 and 3.61, respectively (column 5, 
table 1); the wave metric per instance ranges, on average, from 9.5 different Pareto ranks (for P7_100) 
to 19.2 (for P2_80).  

Table 3. Comparative computational results of the evolutionary heuristics – averages from 10 runs per instance 

1 2 3 4 5 

  relative metrics time 
  dominated dominated (in seconds) 

instances UGH ASP UGH ASP 
P0_80 0.33 0.00 513.34 607.00 
P1_80 0.66 0.00 427.80 369.15 
P2_80 1.00 0.00 398.54 341.00 
P3_80 0.50 0.00 437.33 399.55 
P4_80 0.25 0.00 433.95 390.71 
P5_80 0.00 1.00 436.19 366.05 
P6_80 0.50 0.00 427.63 346.99 
P7_80 0.66 0.00 443.58 390.75 
P8_80 1.00 0.00 473.59 460.93 
P9_80 1.00 0.00 431.16 377.50 

P10_80 0.00 0.00 476.30 393.12 

tot. average_80 0.54 0.09 445.40 403.89 

P1_100 0.00 1.00 570.46 478.58 
P2_100 0.00 1.00 526.02 430.20 
P3_100 0.00 1.00 531.30 431.47 
P4_100 0.00 0.00 504.05 397.06 
P5_100 0.00 1.00 534.93 428.93 
P6_100 0.00 1.00 493.96 352.45 
P7_100 0.00 1.00 534.71 409.81 
P8_100 0.00 0.00 551.55 468.29 
P9_100 0.00 1.00 575.05 477.36 
P10_100 0.00 1.00 477.03 312.93 

tot. average_100 0.00 0.80 529.91 418.71 

 
The relative metrics of table 3 are used to compare the two candidate Pareto frontiers. Column 2 

shows the proportion of non-dominated points in the last generation of UGH that are dominated by the 
non-dominated points in the last generation of ASP, whereas column 3 shows the same measurement 
for ASP. For the set of 80-trip instances, one can see that on average 54% of UGH’s points are 
dominated by or equal to those of ASP, while only 9% of ASP’s points are dominated by UGH’s. The 
behaviour of the heuristics for the 100-trip’s group of instances is the opposite. Here UGH is far more 
favourable, as 80% of ASP’s non-dominated points are dominated by UGH. 



10      Margarida Moz1,3,  Ana Respício2,3, Margarida Vaz Pato1,3 

 

 
The computing times, in columns 4 and 5, are acceptable for both heuristics and remain far below 

the two hour limit stipulated by the planning department. 
 

In summarising, both evolutionary approaches achieve several feasible solutions. These will provide 
the decision-making agents with more alternatives from which they may choose the roster to be 
published for the next planning period. However, the Utopic Genetic Heuristic reveals a higher 
diversity of solutions, which is important in this context. But, on the other hand, ASP attained more 
solutions that are candidates for efficiency, bearing in mind that we do not, as yet, know the exact 
Pareto frontier. 

5. Final Comments 

Two bi-objective evolutionary heuristics, UGH and ASP, were designed to cope with a wide variety of 
rostering situations. In this paper, the computational experiment concerns the specific case of a bus 
transport company in Portugal, enabling one to evaluate the proposed heuristics behaviour and 
compare them using performance metrics.  
 

The tests performed on two sets of different sized instances have shown that both algorithms can 
obtain good results while consuming an acceptable amount of CPU time. In fact, both produced a lot of 
feasible solutions – rosters for the company’s bus drivers that comply with all the hard constraints. 
They also yielded several solutions with low global violations of soft constraints. Since, for the 
moment, the exact Pareto frontier for the bus driver rostering bi-objective model is not known, the 
solutions obtained are candidate efficient solutions.  

 
Bus driver rostering is the last decision-making problem in a hierarchy concerned with planning the 

operations of a transit company. It precedes implementation of the operations. However, the rostering 
must be conceived only once a month. Therefore, a higher CPU consumption is not prohibitive, 
considering the quality of the solutions we may achieve by using bi-objective evolutionary algorithms.  

 
Concerning the objectives’ space, in general, small dimensioned Pareto frontier approximations 

were achieved by the evolutionary heuristics. Nevertheless, even for a single non-dominated point, the 
bi-objective optimisation approach provided a set of equivalent decision solutions (multiple solutions 
on the decision space). This allows the scheduler to consider different choices at once, in detail, thus 
providing an in depth knowledge of the solution space. As regarding the means of supporting decision-
making in a real-world context, the leading conclusion is that, in practice, the bi-objective optimisation 
approach is quite appropriate. 

 
The behaviour of UGH outperformed ASP for the larger sized instances, thus revealing that the 

elitism based on the utopic and the lexicographic individuals attract more individuals to the efficient 
solutions set.  

 
In the future, one intends to test both heuristic methods in a broader set of real instances. Moreover, 

one would particularly like to explore the innovative elitism with a view to improving the SPEA2 
based heuristic. 
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