94,238 research outputs found

    Context-dependent coloration of prey and predator decision making in contrasting light environments

    Get PDF
    A big question in behavioral ecology is what drives diversity of color signals. One possible explanation is that environmental conditions, such as light environment, may alter visual signaling of prey, which could affect predator decision-making. Here, we tested the context-dependent predator selection on prey coloration. In the first experiment, we tested detectability of artificial visual stimuli to blue tits (Cyanistes caeruleus) by manipulating stimulus luminance and chromatic context of the background. We expected the presence of the chromatic context to facilitate faster target detection. As expected, blue tits found targets on chromatic yellow background faster than on achromatic grey background whereas in the latter, targets were found with smaller contrast differences to the background. In the second experiment, we tested the effect of two light environments on the survival of aposematic, color polymorphic wood tiger moth (Arctia plantaginis). As luminance contrast should be more detectable than chromatic contrast in low light intensities, we expected birds, if they find the moths aversive, to avoid the white morph which is more conspicuous than the yellow morph in low light (and vice versa in bright light). Alternatively, birds may attack first moths that are more detectable. We found birds to attack yellow moths first in low light conditions, whereas white moths were attacked first more frequently in bright light conditions. Our results show that light environments affect predator foraging decisions, which may facilitate context-dependent selection on visual signals and diversity of prey phenotypes in the wild. Light environments are constantly changing and may alter visual appearance of prey, but also bias predators' decision making. Our findings using blue tits in visual search tasks and the wood tiger moth prey under two light environments demonstrate that birds show context-dependent predatory behavior. This suggests that light environments can play a major selective role and influence visual signaling in the wild.Peer reviewe

    Monitoring Processes in Visual Search Enhanced by Professional Experience: The Case of Orange Quality-Control Workers

    Get PDF
    Visual search tasks have often been used to investigate how cognitive processes change with expertise. Several studies have shown visual experts' advantages in detecting objects related to their expertise. Here, we tried to extend these findings by investigating whether professional search experience could boost top-down monitoring processes involved in visual search, independently of advantages specific to objects of expertise. To this aim, we recruited a group of quality-control workers employed in citrus farms. Given the specific features of this type of job, we expected that the extensive employment of monitoring mechanisms during orange selection could enhance these mechanisms even in search situations in which orange-related expertise is not suitable. To test this hypothesis, we compared performance of our experimental group and of a well-matched control group on a computerized visual search task. In one block the target was an orange (expertise target) while in the other block the target was a Smurfette doll (neutral target). The a priori hypothesis was to find an advantage for quality-controllers in those situations in which monitoring was especially involved, that is, when deciding the presence/absence of the target required a more extensive inspection of the search array. Results were consistent with our hypothesis. Quality-controllers were faster in those conditions that extensively required monitoring processes, specifically, the Smurfette-present and both target-absent conditions. No differences emerged in the orange-present condition, which resulted to mainly rely on bottom-up processes. These results suggest that top-down processes in visual search can be enhanced through immersive real-life experience beyond visual expertise advantages

    Signals of threat do not capture, but prioritize, attention: a conditioning approach

    Get PDF
    Research suggests that threatening information captures attention more rapidly than neutral information. However, in most studies threat stimuli differ perceptually from neutral stimuli and are instrumental to perform the task, leaving the question unanswered whether threat is sufficient to capture attention. In experiment 1, we designed a visual search task with stimuli of equal salience (colored circles) that have the potential to lead to efficient search (10 ms/item). In experiment 2, one of the colors (conditioned stimulus, CS+) was made threatening by means of fear conditioning. Participants responded to a target presented in one of the circles. Overall, the search was faster on congruent trials (where the target was presented in the CS+) than on baseline trials (where the CS + was absent). Furthermore, the search was slower on incongruent trials (where the target was presented in another color than the CS+) than on baseline trials. The search on congruent trials was affected by set size (90 ms/item), but to a lesser extent than on baseline trials (105 ms/item). We conclude that threat prioritizes, but does not capture attention

    Probabilistic modeling of eye movement data during conjunction search via feature-based attention

    Get PDF
    Where the eyes fixate during search is not random; rather, gaze reflects the combination of information about the target and the visual input. It is not clear, however, what information about a target is used to bias the underlying neuronal responses. We here engage subjects in a variety of simple conjunction search tasks while tracking their eye movements. We derive a generative model that reproduces these eye movements and calculate the conditional probabilities that observers fixate, given the target, on or near an item in the display sharing a specific feature with the target. We use these probabilities to infer which features were biased by top-down attention: Color seems to be the dominant stimulus dimension for guiding search, followed by object size, and lastly orientation. We use the number of fixations it took to find the target as a measure of task difficulty. We find that only a model that biases multiple feature dimensions in a hierarchical manner can account for the data. Contrary to common assumptions, memory plays almost no role in search performance. Our model can be fit to average data of multiple subjects or to individual subjects. Small variations of a few key parameters account well for the intersubject differences. The model is compatible with neurophysiological findings of V4 and frontal eye fields (FEF) neurons and predicts the gain modulation of these cells

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Visual marking and facial affect : can an emotional face be ignored?

    Get PDF
    Previewing a set of distractors allows them to be ignored in a subsequent visual search task (Watson & Humphreys, 1997). Seven experiments investigated whether this preview benefit can be obtained with emotional faces, and whether negative and positive facial expressions differ in the extent to which they can be ignored. Experiments 1–5 examined the preview benefit with neutral, negative, and positive previewed faces. These results showed that a partial preview benefit occurs with face stimuli, but that the valence of the previewed faces has little impact. Experiments 6 and 7 examined the time course of the preview benefit with valenced faces. These showed that negative faces were more difficult to ignore than positive faces, but only at short preview durations. Furthermore, a full preview benefit was not obtained with face stimuli even when the preview duration was extended up to 3 s. The findings are discussed in terms of the processes underlying the preview benefit, their ecological sensitivity, and the role of emotional valence in attentional capture and guidance

    Salience-based selection: attentional capture by distractors less salient than the target

    Get PDF
    Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing salience and visual search models assume noise in the map computation or selection process. Consequently, they predict the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific selection time distribution and attentional capture occurs when the selection time distributions of target and distractor overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on relative salience

    Surface-based constraints on target selection and distractor rejection: Evidence from preview search

    Get PDF
    In preview search when an observer ignores an early appearing set of distractors, there can subsequently be impeded detection of new targets that share the colour of this preview. This “negative carry-over effect” has been attributed to an active inhibitory process targeted against the old items and inadvertently their features. Here we extend negative carry-over effects to the case of stereoscopically defined surfaces of coplanar elements without common features. In Experiment 1 observers previewed distractors in one surface (1000 ms), before being presented with the target and new distractors divided over the old and a new surface either above or below the old one. Participants were slower and less efficient to detect targets in the old surface. In Experiment 2 in both the first and second display the items were divided over two planes in the proportion 66/33% such that no new planes appeared following the preview, and there was no majority of items in any one plane in the final combined display. The results showed that participants were slower to detect the target when it occurred in the old majority surface. Experiment 3 held constant the 2D properties of the stimuli while varying the presence of binocular depth cues. The carry-over effect only occurred in the presence of binocular depth cues, ruling out any account of the results in terms of 2-D cues. The results suggest well formed surfaces in addition to simple features may be targets for inhibition in search
    corecore