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Visual search tasks have often been used to investigate how cognitive processes

change with expertise. Several studies have shown visual experts’ advantages in

detecting objects related to their expertise. Here, we tried to extend these findings by

investigating whether professional search experience could boost top-down monitoring

processes involved in visual search, independently of advantages specific to objects

of expertise. To this aim, we recruited a group of quality-control workers employed

in citrus farms. Given the specific features of this type of job, we expected that the

extensive employment of monitoringmechanisms during orange selection could enhance

these mechanisms even in search situations in which orange-related expertise is not

suitable. To test this hypothesis, we compared performance of our experimental group

and of a well-matched control group on a computerized visual search task. In one block

the target was an orange (expertise target) while in the other block the target was a

Smurfette doll (neutral target). The a priori hypothesis was to find an advantage for

quality-controllers in those situations in which monitoring was especially involved, that is,

when deciding the presence/absence of the target required a more extensive inspection

of the search array. Results were consistent with our hypothesis. Quality-controllers were

faster in those conditions that extensively required monitoring processes, specifically,

the Smurfette-present and both target-absent conditions. No differences emerged in the

orange-present condition, which resulted to mainly rely on bottom-up processes. These

results suggest that top-down processes in visual search can be enhanced through

immersive real-life experience beyond visual expertise advantages.

Keywords: real-world cognitive enhancement, visual search, expertise, cognitive control, professional training

INTRODUCTION

Many daily activities require us to search around in order to locate particular items, such as an
icon on a messy computer desktop or a friend in a crowded bar. Search performance depends on
several factors, some involving the perceptual properties of stimuli and search contexts (Treisman
and Gelade, 1980; Duncan and Humphreys, 1989), and others the observer and her/his previous
experience (e.g., past knowledge about or affective attachment to the stimuli, Biggs et al., 2012).
As far as the observer’s factors are regarded, previous studies have investigated how expertise
affects object recognition and detection. Several studies report that experts in particular topics (e.g.,
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birds, cars or fingerprints) are faster in discriminating objects
pertaining to their area of expertise (Gauthier et al., 2000;
Busey and Vanderkolk, 2005; Curby and Gauthier, 2009;
Bukach et al., 2010). Moreover, other studies suggest that this
facilitation can potentially extend to other visual processes, such
as categorization (e.g., recognizing images of expertise from
fragments; Harel et al., 2011) and detection (e.g., localizing targets
of expertise among distractors from non-expertise categories or
in natural scenes; Golan et al., 2014; Reeder et al., 2016).

An interesting case of expertise involves professional
searchers. Radiologists, proofreaders, or airport security
screeners take advantage not only of their domain-specific
knowledge (e.g., knowledge of tumors, spelling errors, weapons,
respectively), but also of their task-specific training. In a study
with Transportation Security Administration Officers, Biggs et al.
(2013) investigated whether professional searchers’ expertise
could influence visual search performance beyond the task
they have been trained on. Comparing professional and non-
professional searchers, the authors found differences in visual
search strategies. More in detail, while search speed explained
most accuracy variance in non-professional and early-career
professional searchers, search consistency (i.e., trial-to-trial
RT variability) was the best accuracy predictor in experienced
professional searchers. The authors concluded that the effects
of professional training and experience were likely extended
to generalized search behaviors. Interestingly, since consistent
search behaviors may allow a more efficient use of cognitive
resources, the authors highlighted the importance of top-down
control in visual search performance. In this regard, Harel (2016)
describes visual expertise as an interactive process that emerges
from enhanced interactions between the visual system and
multiple top-down mechanisms including attentional control,
domain-specific knowledge, and task-specific strategies.

Summarizing, previous research seems to suggest that visual
expertisemost likely reflects an enhanced engagement ofmultiple
interactive processes that experts manifest with their objects of
specialization (Harel, 2016). However, in this study we wanted to
go beyond domain-specific aspects by addressing the following
question: does intense visual search experience enhance top-
down control mechanisms independently of the nature of the
target? Indeed, professional experience may influence search
behaviors in several ways independently of visual expertise. As
mentioned above, professional experience can improve search
behaviors through the acquisition of more efficient search
strategies, such as search consistency (Biggs et al., 2013; Biggs
andMitroff, 2014). Here, we further explored a possible influence
of expertise by testing the hypothesis that intense professional
search experience could boost top-down control processes
involved in generalized visual search behaviors.

Specifically, we focused on monitoring mechanisms, a series
of “quality check” processes that aim to optimize behavior (cf.
Stuss and Alexander, 2007; see Vallesi, 2012 for an overview).
Monitoring skills are required in many cognitive domains and
task contexts. For example, it has been shown that participants
monitor the elapse of time during a variable foreperiod task
(Vallesi et al., 2014; Capizzi et al., 2015), their performance to
successfully detect errors (Ullsperger et al., 2014), the occurrence

of critical events (Capizzi et al., 2016; Tarantino et al., 2017),
or their progress toward a desired goal (Benn et al., 2014).
Most germane to our study, monitoring is also involved in
visual search paradigms that require checking and evaluating the
presence/absence of a target embedded among distractors. When
the target is absent, monitoring should intervene more strongly
than when the target is present and clearly detectable (Vallesi,
2014). This is because while the detection of a present salient
target is mainly driven by bottom-up processes that automatically
attract participants’ attention (Treisman and Gelade, 1980),
determining the absence of a target needs a more extensive and
wider inspection of the search array.

In order to test the role of expertise in the monitoring
mechanisms during visual search, we compared a group of
quality-control employees working on the orange production line
of some citrus farms and a well-matched control group. The
daily job of these quality-control workers consists of many hours
spent inspecting and evaluating oranges rolling down a conveyor
belt, and discarding the oranges perceived as not suitable on the
basis of visual features such as size, color, or skin imperfections
that worsen their organoleptic properties. Quality-controllers
were selected as the experimental group since they routinely
perform a job that extensively engages monitoring processes,
which as a result should improve such processes in visual
search independently of the nature of the target. All participants
performed two blocks of a visual search task with images of
several objects. In one block the target was an orange while in the
other block was a Smurfette doll. If expertise advantages emerged
only with objects of expertise, we would expect to find quality-
controllers to be faster than control participants just with the
orange target. On the contrary, we predicted better controllers’
performance not only with the orange target, but in all the
situations in which monitoring is especially involved (Weidner
et al., 2009), mainly when the target is absent (Vallesi, 2014).

MATERIALS AND METHODS

Participants
Twenty-four quality-control employees on the production line of
orange fruits (12 women; mean age: 51.2 years, SD = 9.4, range:
25.5–65.9 years; mean education: 8.5 years, SD = 2; hereafter
referred to as quality-controllers) and 23 control participants
(13 women; mean age: 51.3 years, SD = 9.9, range: 24.7–64.7
years; mean education: 8.6 years, SD = 1.7), all recruited in
Sicily, Italy, voluntarily took part in the study. Quality-controllers
reported to work about 6–8 h in a day, for about 6–9 months per
year. Mean working experience was 13.9 years (SD = 8.2, range:
3–35). All participants reported to have normal or corrected-to-
normal visual acuity and normal color vision. The two groups
were equivalent in age [t(45) = 0.057, p = 0.955], education
[t(45) = 0.199, p = 0.843], and sex [Yates’ corrected χ

2(1,
N = 47) = 0.024, p = 0.876]. One further control participant
was excluded from analysis due to poor task performance. The
procedures involved in this study were approved by the Comitato
Etico per la Sperimentazione dell’Azienda Ospedaliera di Padova.
Participants gave their written informed consent, in accordance
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with the Declaration of Helsinki, and they were reimbursed 25
euros for their time.

Stimuli and Design
The visual search task was implemented in Matlab using the
Psychophysics Toolbox (Brainard and Vision, 1997; Kleiner et al.,
2007) and presented on a Dell Intel Core laptop computer.
Participants sat facing the screen at a viewing distance of
approximately 60 cm. Stimuli were 100 objects selected from the
1,000 images of the ALOI (Amsterdam Library of Object Images;
Geusebroek et al., 2005) database. The image of an orange
was selected as target for one of the two experimental blocks.
The other target was selected based on matched luminance and
surface area characteristics. Namely, for each ALOI image the
mean luminance across all pixels (defined as L dimension in the
CIE L∗a∗b∗ color space) and the object surface area (i.e., amount
of pixels) were computed. A bi-dimensional Euclidian space was
constructed, with Min-Max scaled luminance and surface (i.e.,
both measures brought into the range [0 1]) as dimensions.
The image with the smallest distance from the orange in the
luminance-surface Euclidian space was selected as the second
target, that is, the Smurfette doll (Figure 1A). Ninety-seven
images with low luminance-surface Euclidean distance from the
targets were pseudorandomly selected as distractors. Specifically,
they were chosen if located at a distance< 0.221 (median distance
of ALOI images from the midpoint between the two targets). The
final set of 97 distractors (Figure 1B) had a median distance of
0.080 (IQR= 0.220). One additional image (a spicy box) with low
distance from the targets (distance = 0.04) was pseudorandomly
selected as target for the practice block.

The task had a 2 × 3 × 2 factorial design with target type,
array size, and target presence as factors. The target type (orange
vs. Smurfette) was manipulated between blocks and the order
of blocks counterbalanced across participants. The search array
consisted of 12, 24, or 48 object images (2.66◦ × 2.00◦ of visual
angle) with transparent background displayed against a middle
gray background. The array was arranged in a grid of 6 × 8
available locations, each of which subtending a visual angle of
3.66◦ × 2.25◦. To perturb this grid-like arrangement and prevent
a line-by-line search, on each trial object locations were randomly
jittered by a maximum of 0.25◦ horizontally and 0.5◦ vertically
(Hershler and Hochstein, 2009).

Each experimental block consisted of 288 trials. At the
beginning of each block, the target was presented for as long
as participants demanded to memorize it. Next, on each trial
a fixation cross was displayed at the center of the screen for
an interval randomly jittered between 0.75 and 1.5 s to make
the onset of stimuli (equally) unpredictable. The cross was then
replaced by an array of object images (Figure 2) displayed until
participant’s response. Within blocks, each combination of array
size × target presence was presented 48 times in pseudorandom
order. For every array size, each of the 48 available positions was
occupied in turn by the target, while distractors were pseudo-
randomly assigned to one of the remaining locations. Participants
were required to press one of two response keys (“Z” or “M”) to
indicate whether the target was present or not. The assignment
of the two response keys to either target presence or absence was

counterbalanced across participants. Participants were instructed
to be as fast as possible, but also accurate. A low tone was
provided after errors. A practice block of 12 trials preceded the
two experimental blocks. After each practice trial, feedback on
accuracy and speed was provided: either a green tick for correct
responses or a red cross for wrong responses given in less than
5 s, or “Try to be faster . . . ” for response times (RTs) longer than 5
seconds (threshold based on previous findings from similar visual
search tasks: Hershler and Hochstein, 2005, 2009; VanRullen,
2006; Golan et al., 2014).

Statistical Analyses
All statistical analyses were performed using R (R Core Team,
2016). Trial-level measures (i.e., single-trial log-transformed RT
and dichotomous accuracy) were analyzed by conducting mixed-
effects models using the lme4 library (Bates et al., 2014). Mixed-
effects modeling has several advantages over traditional general
linear model analyses (such as repeated-measures ANOVA)
that make it suitable for trial-level measures (Baayen et al.,
2008; Quené and van den Bergh, 2008). First, since mixed-
effects model analyses are conducted on trial-level data (i.e.,
they do not require prior averaging of participant’s data to a
single value per experimental condition), they allow preserving
and taking into account any variability across individuals, thus
increasing the accuracy and generalizability of the parameter
estimate. Moreover, for the same reasons, they account for
intrinsic unreliability of participant’s average scores due to
differences in intra-individual performance variability (Kliegl
et al., 2011). Another advantage of mixed-effects modeling
over repeated-measures ANOVA is that it is not restricted to
predictors with categorical levels, but it easily allows to test for
the effect of discrete/continuous variables and their interactions
with categorical variables, usually with a gain in statistical
power (Kliegl et al., 2011). Especially concerning RTs, a further
advantage is the possibility to control for many longitudinal
effects during the task. First, there are the effects of learning
and fatigue (Baayen et al., 2008). Second, the response in a trial
is usually heavily influenced by what happens in the preceding
trial (for example RT in the preceding trial is often a good
predictor of RTs, Baayen et al., 2008). Usingmixed-effectsmodels,
all these sources of experimental noise are easily brought under
statistical control. Additionally, since mixed-effects models have
been extended to generalized linear models, they can be used to
efficiently model dichotomous data, such as accuracy in our task
(Quené and van den Bergh, 2008).

Summary variables, such as Signal Detection Theory measures
or item image properties, were analyzed using standard general
linear model analyses (such as repeated-measures ANOVA or
t-test).

RESULTS

Accuracy
Response accuracy at each trial, given its dichotomic nature,
was analyzed by conducting a Generalized Linear Mixed Model
(GLMM) with logit link function using the glmer function from
the lme4 library (Bates et al., 2014). Log-transformed RTs, target
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FIGURE 1 | Luminance and surface characteristics of targets and distractors. (A) Representation of the positions of selected targets and distractors in the [luminance,

surface] space. (B) The two boxplots show the Euclidian-distance distributions of all ALOI images (left) and of the selected distractors (right) from the midpoint

between the two targets in the [luminance, surface] space.

FIGURE 2 | Example of a trial display (orange-present condition; array size: 24).

presence, target type, array size, and group (with their interaction
terms) were entered into the model as fixed effects. A random
intercept varying among participants and among response bias
(C) within participants, as well as uncorrelated random intercept
and slope for trial order were entered into the model as random

effects (an R-notation formula of the model is presented in
Equation 1). In order to facilitate the convergence of the models,
continuous variables (i.e., array size, log RT, and trial order) were
scaled and centered within each participant using the R function
scale.
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accuracy ∼ trial + logRT + presence ∗ target ∗ array ∗ group

+
(

1
∣

∣id/c
)

+
(

0+ trial
∣

∣id
)

Response bias, from Signal Detection Theory, was computed for
each combination of target presence, target type, and array size,
and defined as C = −0.5∗(ZHit+ZFA), where ZHit and ZFA are
the standardized hit rates and false alarm rates, corrected as
indicated by Snodgrass and Corwin (1988). C was introduced
since it influences the probability of responding present/absent
in visual search tasks (Palmer et al., 2000). Uncorrelated random
intercept and slope for trial order were introduced to control
for possible effects of learning and fatigue. The log- transformed
RT for each trial was included to control for possible speed-
accuracy trade-off effects. To explore the influence of group on
accuracy, we first compared the model without fixed effects (i.e.,
null model; Macc0) with the model containing the predictor
group. The likelihood ratio test showed that group did not
significantly improve the model fit [χ2

(1) = 0.01, p = 0.971],
suggesting that accuracy did not change across groups. We
explored the influence of the other predictors by incrementally
adding each of them (with their interaction terms) to the null
model. Table 1 shows the results of the likelihood ratio test. The
model Macc5, which included all the fixed effects (and their
interaction terms) with the exception of group, resulted the best
model to explain accuracy data distribution. In contrast, the
inclusion of group and its interaction terms did not significantly
increase the goodness-of-fit of the model. No other variable (e.g.,
pre-accuracy) significantly improved the fitting of the model.
Marginal R2 (Johnson, 2014) of Macc5, which represents the
variance explained by the fixed effects, was 0.15; conditional R2,
which is the variance explained by both fixed and random effects,
was 0.21.

The Wald test (Wald, 1945) on the final model, Macc5,
revealed a number of significant effects. For these effects, we
report the estimated coefficient (b), the associated standard
error (SE) and the z-statistics (z). A significant interaction was
found between the predictors target presence, target type, and
array size (b = −0.59, SE = 0.17, z = −3.45, p < 0.001). To
interpret this three-way interaction, two GLMMs were fitted on
the two task blocks separately. In the Smurfette block, the Wald

test revealed a significant main effect of target presence (b =

−2.44, SE = 0.13, z = −18.86, p < 0.001), with lower accuracy
in the Smurfette-present than absent condition (Figure 3A).
This effect was modulated by the array size (interaction: b =

−0.87, SE = 0.12, z = −6.95, p < 0.001). In particular, the
difference between present and absent conditions increased with
increasing array size (Figure 3A). In the orange block, the Wald
test revealed a significant main effect of target presence (b =

0.50, SE = 0.14, z = 3.62, p < 0.001) with accuracy slightly
higher in the orange-present condition, and a main effect of
array size (b = −0.24, SE = 0.10, z = −2.44, p = 0.015)
with a slight decrease of accuracy with increasing array size
(Figure 3B).

Additionally, we analyzed sensitivity (d’) and response bias
(C) measures from Signal Detection Theory, in order to further
characterize visual search performance in terms of hits and
false alarms. Specifically, d’ provides a measure of the ability
to discriminate the target from the distractors (Verghese, 2001)
while controlling for possible biases (C) in using one response
more than the other (Palmer et al., 2000). For this analysis,
standardized hit (ZHit) and false alarm (ZFA) rates were computed
as described above. The sensitivity index was defined as d’ =
ZHit – ZFA, while response bias was as above-defined C =

−0.5∗(ZHit+ZFA). On each measure we separately conducted an
ANOVA with target type and array size as within-subject factors
and group as between-subject factor.

The ANOVA on d’ revealed significant effects of target
type [F(1, 45) = 28.48, p < 0.001, η

2
p = 0.39], with a lower

discriminability for Smurfette (d’= 3.61, SE= 0.06) as compared
to orange (d’ = 3.92, SE = 0.04), and array size [F(2, 90) = 19.70,
p < 0.001, η

2
p = 0.30]. A Newman-Keuls’ post-hoc test on the

latter result revealed that discriminability was higher for the 12-
item condition (d’= 3.92, SE= 0.05) as compared to the 24-item
ones (d’= 3.90, SE= 0.06; p= 0.009) and for the latter condition
as compared to the 48-item ones (d’ = 3.75, SE = 0.06; p <

0.001). The analysis also revealed that this effect was modulated
by target type [interaction: F(2, 90) = 7.79, p < 0.001, η

2
p =

0.15]. Post-hoc analyses showed that the above described effect
of array size on discriminability was significant for Smurfette
(12 > 24 > 48; ps < 0.015 and 0.001, respectively) but not for

TABLE 1 | Model fit analysis for accuracy data.

Fixed effects Model df Chisq (df) p AIC 1AIC RL

Macc0 Intercept 4 7,447

Macc1 Trial 5 17.19 (1) <0.001 7,432 15.19 >103

Macc2 Trial + logRT 6 45.62 (1) <0.001 7,388 43.62 >109

Macc3 Trial + logRT + presence 7 335.13 (1) <0.001 7,055 333.13 >1072

Macc4 Trial + logRT + presence × target 9 183.84 (2) <0.001 6,876 179.84 >1039

Macc5 Trial + logRT + presence × target × array 13 71.97 (4) <0.001 6,812 63.97 >1013

Macc6 Trial + logRT + presence × target × array × group 21 6.36 (8) =0.606 6,821 −9.64 0.008

Fixed effects and degrees of freedom (df) are reported for each model. Models were fitted using maximum likelihood. Chi-squared and degrees of freedom, Chisq (df), and probability

value, p, are based on the likelihood ratio test between successive models. 1AIC indicates the difference in Akaike Information Criterion (Burnham and Anderson, 2002) between the

model Macc(n−1) and the model Macc(n) [e.g., for the model Macc3, ∆AIC = AIC(Macc2) – AIC(Macc3)]. To compare the relative evidence of each model, we computed the relative

likelihood, RL = exp(∆AIC/2).
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FIGURE 3 | Effect display (Fox, 2003) for the interaction of presence and array size in the Smurfette (A) and orange (B) GLMMs fit to response accuracy data. Error

bars represent standard errors of the estimated effect.

orange (12 = 24 = 48; ps > 0.339 and 0.748, respectively) (see
Figure 4A). No other effect was significant.

The ANOVA on C yielded a similar pattern of results. Indeed,
it revealed significant effects of target type [F(1, 45) = 172.23, p <

0.001, η2
p = 0.79], with a conservative response bias for Smurfette

(C = 0.29, SE = 0.02) as compared to orange (C = −0.04, SE =

0.02), and array size [F(2, 90) = 25.72, p < 0.001, η2
p = 0.36]. Post-

hoc analyses on the latter result revealed that the mean C value
was lower for the 12-item condition (C = −0.06, SE = 0.02) as
compared to the 24-item one (C = 0.05, SE = 0.03; p < 0.001)
and for the latter condition as compared to the 48-item one (C
= 0.11, SE = 0.02; p = 0.001). Again, the analysis revealed that
this effect was modulated by target type [interaction: F(2, 90) =
21.21, p < 0.001, η2

p = 0.32]. Post-hoc analyses showed that the
above described effect of array size on C values was significant for
Smurfette (12 < 24 < 48; both ps < 0.001) but not for orange (12
= 24 = 48; ps > 0.143 and 0.405, respectively) (see Figure 4B).
No other effect was significant.

Response Times (RTS)
RTs were log-transformed to mitigate the influence of non-
normal distribution and skewed data. Log-transformed RTs were

analyzed by conducting a Linear Mixed Model (LMM) using
the lmer function from the lme4 library (Bates et al., 2014).
Error trials and post-error trials were excluded from the analysis.
The full model (Equation 2) included all the fixed and random
effects of the accuracy GLMM (with the exception of log-RTs).
Moreover, to control for the RT temporal dependency between
successive trials, we included as fixed effect the log-RT at the
preceding trial (Baayen and Milin, 2010).

logRT ∼ trial + pre_logRT + presence ∗ target ∗ array ∗

group+
(

1
∣

∣id/c
)

+
(

0+ trial
∣

∣id
)

As for the accuracy model, C was introduced since individual’s
response bias can affect RTs, for example by causing faster
responding to one condition than another. Initially, all the
models were fitted using the Maximum Likelihood criterion to
allow model comparisons (Bates et al., 2014). The full model
resulted the best-fitting model [χ2

(8) = 72.52, p < 0.001].
Visual inspection of the residuals showed that the model was
a bit stressed. As suggested by Baayen and Milin (2010), trials
with absolute standardized residuals higher than 2.5 standard
deviations were considered outliers and removed (1.55% of
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FIGURE 4 | Signal detection theory (SDT) measures of sensitivity d’ (A) and response bias C (B) as a function of target type (Orange vs. Smurfette) and array size (12,

24, 48). Error bars represent within-subjects standard errors of the mean (SEM; Morey, 2008).

the trials). After removing outlier trials, all the models were
refitted and compared using a likelihood ratio test, and again
the full model resulted the best-fitting model (Table 2). This
time, visual inspection of residual plots of the full model
did not show any evident violation of homoscedasticity and
normality.

At this point, the full model was refitted by minimizing the
REML (Restricted Maximum Likelihood) criterion, as suggested
by Bates (2014; see also Luke, 2017). Marginal R2 of the full
model was 0.54 and conditional R2 was 0.69. Table 3 shows
the statistical results of the type II ANOVA (as suggested
by Langsrud, 2003) with additional F statistics based on
Kenward-Roger’s approximation of denominator degrees of
freedom (Kenward and Roger, 1997). Overall, fitting mixed-
effects models with REML and deriving p-values using Kenward-
Roger’s approximation seems to ensure optimal Type 1 error rate
control (Luke, 2017). Figure 5 shows that RTs were longer in the
Smurfette block compared to the orange one, and longer when
both targets were absent. The effect of array size (i.e., an increase
of RTs with increasing array size) was slightly lower for orange
than for Smurfette, especially in the target-present condition
(Figure 5). Concerning group differences (Figure 6), the increase

in RTs in the Smurfette block (compared to the orange one) was
much greater for controls than for quality-controllers. The effect
of target presence (i.e., longer RTs in the target-absent condition
compared to the target-present one) was greater for controls
than for quality-controllers and this between-group difference
was larger in the Smurfette block. To further investigate the
three-way interaction between target presence, target type, and
group variables two LMMs were fitted on the two task blocks
separately. In the orange block, ANOVA results did not show
any significant main effect of the group variable [F(1, 64.5) = 1.8, p
= 0.181, ß = −0.11], whereas there was a significant interaction
between target presence and group [F(1, 12620) = 11.8, p < 0.001,
ß = 0.03]. Indeed, as shown in the Figure 6, quality-controllers
were faster than controls only in the orange-absent condition.
In the Smurfette block, there was a significant main effect of
the group [F(1, 74.1) = 6.3, p = 0.015, ß = −0.16], as well as a
significant interaction effect between target presence and group
[F(1, 11952) = 52.3, p < 0.001, ß = 0.06]. In the Smurfette block,
quality-controllers were faster than controls and this difference
in RTs was more pronounced in the target-absent condition
(Figure 6). No significant group difference was found to involve
array size, with the exception of a three-way interaction between
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TABLE 2 | Model fit analysis for log RTs data.

Fixed effects Model df Chisq (df) p AIC 1AIC RL

M0 Intercept 5 16,169

M1 Trial 6 25.08 (1) <0.001 16,146 23.08 102,492

M2 Trial + pre_logRT 7 168.36 (1) <0.001 15,980 166.36 >1036

M3 Trial + pre_logRT + presence 8 9949.45 (1) <0.001 6,032 9947.45 >10307

M4 Trial + pre_logRT + presence * target 10 564.25 (2) <0.001 5,472 560.25 >10121

M5 Trial + pre_logRT + presence * target * array 14 3587.81 (4) <0.001 1,892 3579.81 >10121

M6 Trial + pre_logRT + presence * target * array * group 22 91.03 (8) <0.001 1,817 75.03 >1016

The table shows model comparison statistics. Fixed effects and degrees of freedom (df) are reported for each model. Models were fitted using maximum likelihood. Chi-squared and

degrees of freedom, Chisq (df), and probability value, p, are based on likelihood ratio test between successive models. ∆AIC indicates the difference in Akaike Information Criterion

between the model M(n−1) and the model M(n) [e.g., for the model M3, ∆AIC = AIC(M2) – AIC(M3)]. To compare the relative evidence of each model, we computed the relative

likelihood, RL = exp(∆AIC/2).

TABLE 3 | Analysis of variance of log RTs data.

Fixed effects Sum

Sq

Num.

df

Den.

df

F

-value

p ß

Time 2.85 1 96.0 46.9 <0.001 −0.133

Pre_logRT 14.85 1 24772.7 244.3 <0.001 −0.065

Presence 873.80 1 24610.7 14372.8 <0.001 −0.380

Target 38.85 1 665.9 639.0 <0.001 0.439

Array 184.60 1 1150.8 3036.4 <0.001 0.545

Group 0.28 1 49.5 4.6 =0.037 −0.075

Presence × target 25.45 1 24606.4 418.7 <0.001 −0.146

Presence × array 78.27 1 24606.8 1287.4 <0.001 −0.219

Target × array 3.53 1 1109.8 58.0 <0.001 0.068

Presence × group 3.49 1 24610.8 57.3 <0.001 0.028

Target × group 0.86 1 674.6 14.1 <0.001 −0.098

Array × group 0.05 1 1188.5 0.8 =0.372 −0.012

Presence × target ×

array

1.83 1 24611.5 30.1 <0.001 0.039

Presence × target ×

group

0.62 1 24606.7 10.2 =0.001 0.030

Presence × array ×

group

0.25 1 24606.7 4.0 =0.044 0.015

Target × array ×

group

0.03 1 1138.8 0.6 =0.455 −0.012

Presence × target ×

array × group

<0.01 1 24612.1 <0.1 =0.957 −0.001

The table shows type III sums of squares. F-statistics and associated p-values were

calculated using Kenward-Roger’s approximation of degrees of freedom. Additionally,

standardized regression coefficients (ß) are shown.

target type, array size, and group that was barely significant.
To further explore this interaction, two LMMs were fitted for
the absent/present condition separately. In both conditions no
significant interaction between array size and group was found
[target present: F(1, 360) = 0.22, p= 0.638, ß= 0.02; target absent:
F(1, 1358.8) = 2.61, p= 0.106, ß=−0.02].

Image Analysis
Differences in RTs and search slopes between orange-present
and Smurfette-present conditions were not expected a priori.

Since these findings could be likely explained by low-level
visual properties, we compared the distinctiveness of the two
targets among their distractors. The AdaptiveWhitening Salience
(AWS) model (Garcia-Diaz et al., 2012) was used to estimate
the perceptual salience of each target. AWS is a bottom-up
saliency model that provides maps of the predicted probability
for each location in an image of being fixated on the basis of
its low-level visual features. Notably, this model has shown to
outperform important saliency models in predicting human eye
fixations and in reproducing several psychophysical phenomena
(Borji et al., 2013). For each target, we generated 144 images
representing search displays, one for each combination of array
size by target position. Saliency maps of these images were then
computed using the authors’ Matlab implementation of the AWS
model. From each map, a target salience score was obtained by
averaging the values of the points corresponding to the target
location. Target scores were finally compared using a paired-
sample t-test. Results did not show any significant difference
between the two targets [t(143) = 0.05, p = 0.963]. Since the
saliency analysis did not explain the orange-present advantage,
we compared perceptual similarity between the two targets and
their distractors. Indeed, previous findings have shown that
visual search difficulty increases with increased target-distractor
perceptual similarity (Duncan and Humphreys, 1989). Usually,
distinguishing real-world objects from one another is not easy on
the basis of low-level visual features. However, it is not the case
of the orange, which is highly characterized by its color. As with
AWS, saliency maps for the 144 search displays were computed
on the basis of a frequency-tuned approach (Achanta et al., 2009)
that estimates saliency maps using color and luminance features.
This method has been shown to outperform several state-of-
the-art saliency models in object segmentation. Following the
author’s algorithm, images were Gaussian filtered and converted
in the Lab color space. The L∗a∗b∗ space is characterized by the
luminance channel (L), a green-red opponent channel (a), and a
blue-yellow opponent channel (b). This color space is preferable
for its biological plausibility (Engel et al., 1997). Since selection of
our stimuli was performed controlling for luminance, for each
image the saliency map was computed finding the Euclidean
distance between the a∗b∗ pixel vector and the average a∗b∗

vector. Saliency maps were min-max-scaled and target saliency
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FIGURE 5 | Effect display for the interaction of presence, target, and array size in the full LMM (REML) fit to log-RT data, and averaged over groups. Error bars

represent standard errors of the estimated effect.

scores were computed and compared as for the AWS model.
Results showed that orange saliency was significantly higher than
Smurfette saliency [t(143) = 112.06, p < 0.001]. Similar results
were obtained by computing saliency maps as the Euclidean
distance between the L∗a∗b∗ pixel vector and the average L∗a∗b∗

vector [t(143) = 57.34, p < 0.001].

DISCUSSION

The goal of the present study was to investigate whether intense
professional visual search experience could enhance monitoring
processes involved in visual search. To achieve this aim, we
compared performance of a group of professional searchers (i.e.,
quality-controllers) with that of a well-matched control group on
a computerized visual search task. The a priori hypothesis was
to find an advantage for quality-controllers in those situations
in which monitoring is especially involved, that is, when looking
for the presence/absence of the target requires a more extensive
evaluation of the search array (Vallesi, 2014).

To facilitate the discussion of the main results, it seems
worthwhile to see how the overall performance pattern on
the task was. All participants were slower in the target-absent
condition, that is, the condition that was expected to rely

much more on monitoring processes. Moreover, checking for
the presence/absence of the target was more difficult in the
Smurfette block, as revealed by longer RTs for both Smurfette-
present/absent conditions (compared to the orange ones), and
by the lower Smurfette discriminability. This difference in
search efficiency for the two targets was not predicted a priori.
Looking at the two target-present conditions, slopes of RTs as a
function of array size (a measure often associated with perceptual
search efficiency, see Rauschenberger and Yantis, 2006) suggested
that differences in performance between searching for the two
targets could be accounted for by low-level visual features.
In order to verify whether low-level visual properties could
explain target differences in search efficiency, we analyzed the
perceptual salience of each target among their distractors. Results
showed that the color was a salient low-level visual feature that
more easily distinguished the orange (compared to Smurfette)
from distractors. Therefore, searching for an orange led to
more efficient search, likely because its color was a distinctive
feature (Wolfe, 1998; Liesefeld et al., 2016). Overall, these results
suggest that bottom-up selection processes likely favored orange
detection due to its perceptual properties, thus reducing the need
of evaluating each item of the array. Conversely, searching for
the Smurfette target led to a less efficient search accompanied by
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FIGURE 6 | Effect display for the interaction of presence, target, and group in the full LMM (REML) fit to log-RT data, and averaged over array size. Error bars

represent standard errors of the estimated effect.

more extensive monitoring needed to exhaustively evaluate the
search array.

Concerning between-group differences, the results were
consistent with our a priori hypothesis. Indeed, quality-
controllers were faster than controls in the target-absent
condition, the condition that, as discussed above, relied
much more on monitoring. Moreover, this quality-controllers’
advantage in the target-absent condition was more pronounced
in the Smurfette block. This result is consistent with the fact
that determining the absence of the Smurfette target required
a more exhaustive evaluation (i.e., monitoring) of the search
array compared to the orange target, as reflected by the general
difference in RTs between the two target-absent conditions.

The target-present condition revealed two unexpected
findings. First, according to studies on visual expertise (Hershler
and Hochstein, 2009; Golan et al., 2014; Reeder et al., 2016),
we expected to find a quality-controllers’ advantage in detecting
an object of expertise. However, no significant between-group
difference emerged in the orange-present condition. One
possible explanation for this negative finding could be a floor
effect. However, the increase in RTs as a function of the array size
makes this explanation unlikely. Indeed, even if it is plausible

to explain the lack of a significant between-group difference
as due to a floor effect in the 12-object array size, where RTs
were indeed at their minimum, there was room for observing
a quality-controllers’ advantage in the higher array sizes, since
RTs were longer in those conditions. A second explanation for
this unexpected result could be that searching for the orange in
our task mainly involved low-level visual mechanisms. Indeed,
a similar result was found in a previous study with car experts
performing a visual search task similar to ours (Golan et al.,
2014). In that study, the authors found higher search efficiency
for airplane targets than cars and butterflies across all groups
involved. Remarkably, car experts exhibited no difference in
search efficiency between their objects of expertise (i.e., cars)
and airplanes. Even in that case, the authors explained efficient
search for airplane in terms of discriminative perceptual features
used by low-level visual mechanisms and largely independent
of expertise with the target. A third non-mutually exclusive
explanation could be that, since the orange is a more familiar
target than Smurfette, it is possible that orange familiarity
led to a more efficient search in both groups (Mruczek and
Sheinberg, 2005; but see: Wang et al., 1994; Shen and Reingold,
2001).
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The other unexpected result was the quality-controllers’
advantage in detecting the Smurfette target, an object not related
to their expertise. However, since searching for the Smurfette-
target required monitoring to a greater extent, this quality-
controllers’ advantage was congruent with our hypothesis of
a professional search-experience boost of top-down control
processes, even in the absence of objects of expertise. Overall,
between-group differences emerged in those situations that
required a more extensive employment of monitoring processes.

An alternative interpretation of between-group differences
in search efficiency could be in terms of quality-controllers’
enhancement in general response speed (Castel et al., 2005).
However, the lack of differences in the orange-present condition
makes this interpretation implausible. Indeed, the experts’
advantages emerged only in the hard situations (i.e., lower search
efficiency), that is when their trained ability (i.e., monitoring)
was likely required. In this regard, our results are consistent with
recent studies showing that cognitive control can be shaped by
immersive real-life training (e.g., Yildiz et al., 2014; Babcock and
Vallesi, 2015; Arbula et al., 2016).

In summary, quality-controllers were faster in those
conditions that extensively required monitoring processes.
Moreover, differences between quality-controllers and controls
were independent of visual expertise with the targets (e.g.,
expertise for oranges). These findings extend previous research
on visual search and expertise, highlighting the importance of
control processes in search performance. The present results
provide evidence that top-down processes in visual search can

be enhanced through extensive professional search experience
beyond visual expertise specific advantages.
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