18,583 research outputs found

    Predictive modeling of housing instability and homelessness in the Veterans Health Administration

    Full text link
    OBJECTIVE: To develop and test predictive models of housing instability and homelessness based on responses to a brief screening instrument administered throughout the Veterans Health Administration (VHA). DATA SOURCES/STUDY SETTING: Electronic medical record data from 5.8 million Veterans who responded to the VHA's Homelessness Screening Clinical Reminder (HSCR) between October 2012 and September 2015. STUDY DESIGN: We randomly selected 80% of Veterans in our sample to develop predictive models. We evaluated the performance of both logistic regression and random forests—a machine learning algorithm—using the remaining 20% of cases. DATA COLLECTION/EXTRACTION METHODS: Data were extracted from two sources: VHA's Corporate Data Warehouse and National Homeless Registry. PRINCIPAL FINDINGS: Performance for all models was acceptable or better. Random forests models were more sensitive in predicting housing instability and homelessness than logistic regression, but less specific in predicting housing instability. Rates of positive screens for both outcomes were highest among Veterans in the top strata of model‐predicted risk. CONCLUSIONS: Predictive models based on medical record data can identify Veterans likely to report housing instability and homelessness, making the HSCR screening process more efficient and informing new engagement strategies. Our findings have implications for similar instruments in other health care systems.U.S. Department of Veterans Affairs (VA) Health Services Research and Development (HSR&D), Grant/Award Number: IIR 13-334 (IIR 13-334 - U.S. Department of Veterans Affairs (VA) Health Services Research and Development (HSRD))Accepted manuscrip

    A framework for applying natural language processing in digital health interventions

    Get PDF
    BACKGROUND: Digital health interventions (DHIs) are poised to reduce target symptoms in a scalable, affordable, and empirically supported way. DHIs that involve coaching or clinical support often collect text data from 2 sources: (1) open correspondence between users and the trained practitioners supporting them through a messaging system and (2) text data recorded during the intervention by users, such as diary entries. Natural language processing (NLP) offers methods for analyzing text, augmenting the understanding of intervention effects, and informing therapeutic decision making. OBJECTIVE: This study aimed to present a technical framework that supports the automated analysis of both types of text data often present in DHIs. This framework generates text features and helps to build statistical models to predict target variables, including user engagement, symptom change, and therapeutic outcomes. METHODS: We first discussed various NLP techniques and demonstrated how they are implemented in the presented framework. We then applied the framework in a case study of the Healthy Body Image Program, a Web-based intervention trial for eating disorders (EDs). A total of 372 participants who screened positive for an ED received a DHI aimed at reducing ED psychopathology (including binge eating and purging behaviors) and improving body image. These users generated 37,228 intervention text snippets and exchanged 4285 user-coach messages, which were analyzed using the proposed model. RESULTS: We applied the framework to predict binge eating behavior, resulting in an area under the curve between 0.57 (when applied to new users) and 0.72 (when applied to new symptom reports of known users). In addition, initial evidence indicated that specific text features predicted the therapeutic outcome of reducing ED symptoms. CONCLUSIONS: The case study demonstrates the usefulness of a structured approach to text data analytics. NLP techniques improve the prediction of symptom changes in DHIs. We present a technical framework that can be easily applied in other clinical trials and clinical presentations and encourage other groups to apply the framework in similar contexts

    Identifying predictors of suicide in severe mental illness : a feasibility study of a clinical prediction rule (Oxford Mental Illness and Suicide tool or OxMIS)

    Get PDF
    Background: Oxford Mental Illness and Suicide tool (OxMIS) is a brief, scalable, freely available, structured risk assessment tool to assess suicide risk in patients with severe mental illness (schizophrenia-spectrum disorders or bipolar disorder). OxMIS requires further external validation, but a lack of large-scale cohorts with relevant variables makes this challenging. Electronic health records provide possible data sources for external validation of risk prediction tools. However, they contain large amounts of information within free-text that is not readily extractable. In this study, we examined the feasibility of identifying suicide predictors needed to validate OxMIS in routinely collected electronic health records. Methods: In study 1, we manually reviewed electronic health records of 57 patients with severe mental illness to calculate OxMIS risk scores. In study 2, we examined the feasibility of using natural language processing to scale up this process. We used anonymized free-text documents from the Clinical Record Interactive Search database to train a named entity recognition model, a machine learning technique which recognizes concepts in free-text. The model identified eight concepts relevant for suicide risk assessment: medication (antidepressant/antipsychotic treatment), violence, education, self-harm, benefits receipt, drug/alcohol use disorder, suicide, and psychiatric admission. We assessed model performance in terms of precision (similar to positive predictive value), recall (similar to sensitivity) and F1 statistic (an overall performance measure). Results: In study 1, we estimated suicide risk for all patients using the OxMIS calculator, giving a range of 12 month risk estimates from 0.1-3.4%. For 13 out of 17 predictors, there was no missing information in electronic health records. For the remaining 4 predictors missingness ranged from 7-26%; to account for these missing variables, it was possible for OxMIS to estimate suicide risk using a range of scores. In study 2, the named entity recognition model had an overall precision of 0.77, recall of 0.90 and F1 score of 0.83. The concept with the best precision and recall was medication (precision 0.84, recall 0.96) and the weakest were suicide (precision 0.37), and drug/alcohol use disorder (recall 0.61). Conclusions: It is feasible to estimate suicide risk with the OxMIS tool using predictors identified in routine clinical records. Predictors could be extracted using natural language processing. However, electronic health records differ from other data sources, particularly for family history variables, which creates methodological challenges

    Processing of Electronic Health Records using Deep Learning: A review

    Full text link
    Availability of large amount of clinical data is opening up new research avenues in a number of fields. An exciting field in this respect is healthcare, where secondary use of healthcare data is beginning to revolutionize healthcare. Except for availability of Big Data, both medical data from healthcare institutions (such as EMR data) and data generated from health and wellbeing devices (such as personal trackers), a significant contribution to this trend is also being made by recent advances on machine learning, specifically deep learning algorithms

    Using XML and XSLT for flexible elicitation of mental-health risk knowledge

    Get PDF
    Current tools for assessing risks associated with mental-health problems require assessors to make high-level judgements based on clinical experience. This paper describes how new technologies can enhance qualitative research methods to identify lower-level cues underlying these judgements, which can be collected by people without a specialist mental-health background. Methods and evolving results: Content analysis of interviews with 46 multidisciplinary mental-health experts exposed the cues and their interrelationships, which were represented by a mind map using software that stores maps as XML. All 46 mind maps were integrated into a single XML knowledge structure and analysed by a Lisp program to generate quantitative information about the numbers of experts associated with each part of it. The knowledge was refined by the experts, using software developed in Flash to record their collective views within the XML itself. These views specified how the XML should be transformed by XSLT, a technology for rendering XML, which resulted in a validated hierarchical knowledge structure associating patient cues with risks. Conclusions: Changing knowledge elicitation requirements were accommodated by flexible transformations of XML data using XSLT, which also facilitated generation of multiple data-gathering tools suiting different assessment circumstances and levels of mental-health knowledge

    Role of assessment components and recent adverse outcomes in risk estimation and prediction:use of the Short Term Assessment of Risk and Treatability (START) in an adult secure inpatient mental health service

    Get PDF
    The Short Term Assessment of Risk and Treatability is a structured judgement tool used to inform risk estimation for multiple adverse outcomes. In research, risk estimates outperform the tool's strength and vulnerability scales for violence prediction. Little is known about what its’component parts contribute to the assignment of risk estimates and how those estimates fare in prediction of non-violent adverse outcomes compared with the structured components. START assessment and outcomes data from a secure mental health service (N=84) was collected. Binomial and multinomial regression analyses determined the contribution of selected elements of the START structured domain and recent adverse risk events to risk estimates and outcomes prediction for violence, self-harm/suicidality, victimisation, and self-neglect. START vulnerabilities and lifetime history of violence, predicted the violence risk estimate; self-harm and victimisation estimates were predicted only by corresponding recent adverse events. Recent adverse events uniquely predicted all corresponding outcomes, with the exception of self-neglect which was predicted by the strength scale. Only for victimisation did the risk estimate outperform prediction based on the START components and recent adverse events. In the absence of recent corresponding risk behaviour, restrictions imposed on the basis of START-informed risk estimates could be unwarranted and may be unethical

    An approach for data mining of electronic health record data for suicide risk management: Database analysis for clinical decision support

    Get PDF
    Background: In an electronic health context, combining traditional structured clinical assessment methods and routine electronic health-based data capture may be a reliable method to build a dynamic clinical decision-support system (CDSS) for suicide prevention. Objective: The aim of this study was to describe the data mining module of a Web-based CDSS and to identify suicide repetition risk in a sample of suicide attempters. Methods: We analyzed a database of 2802 suicide attempters. Clustering methods were used to identify groups of similar patients, and regression trees were applied to estimate the number of suicide attempts among these patients. Results: We identified 3 groups of patients using clustering methods. In addition, relevant risk factors explaining the number of suicide attempts were highlighted by regression trees. Conclusions: Data mining techniques can help to identify different groups of patients at risk of suicide reattempt. The findings of this study can be combined with Web-based and smartphone-based data to improve dynamic decision making for clinicians.This study received a Hospital Clinical Research Grant (PHRC 2009) from the French Health Ministry. None of the funding sources had any involvement in the study design; collection, analysis, or interpretation of data; writing of the report; or the decision to submit the paper for publication. This study was funded partially by Instituto de Salud Carlos III (ISCIII PI13/02200; PI16/01852), DelegaciĂłn del Gobierno para el Plan Nacional de Drogas (20151073), and the American Foundation for Suicide Prevention (LSRG-1-005-16)

    Sentiment analysis of clinical narratives: A scoping review

    Get PDF
    A clinical sentiment is a judgment, thought or attitude promoted by an observation with respect to the health of an individual. Sentiment analysis has drawn attention in the healthcare domain for secondary use of data from clinical narratives, with a variety of applications including predicting the likelihood of emerging mental illnesses or clinical outcomes. The current state of research has not yet been summarized. This study presents results from a scoping review aiming at providing an overview of sentiment analysis of clinical narratives in order to summarize existing research and identify open research gaps. The scoping review was carried out in line with the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guideline. Studies were identified by searching 4 electronic databases (e.g., PubMed, IEEE Xplore) in addition to conducting backward and forward reference list checking of the included studies. We extracted information on use cases, methods and tools applied, used datasets and performance of the sentiment analysis approach. Of 1,200 citations retrieved, 29 unique studies were included in the review covering a period of 8 years. Most studies apply general domain tools (e.g. TextBlob) and sentiment lexicons (e.g. SentiWordNet) for realizing use cases such as prediction of clinical outcomes; others proposed new domain-specific sentiment analysis approaches based on machine learning. Accuracy values between 71.5-88.2% are reported. Data used for evaluation and test are often retrieved from MIMIC databases or i2b2 challenges. Latest developments related to artificial neural networks are not yet fully considered in this domain. We conclude that future research should focus on developing a gold standard sentiment lexicon, adapted to the specific characteristics of clinical narratives. Efforts have to be made to either augment existing or create new high-quality labeled data sets of clinical narratives. Last, the suitability of state-of-the-art machine learning methods for natural language processing and in particular transformer-based models should be investigated for their application for sentiment analysis of clinical narratives

    Making sense of violence risk predictions using clinical notes

    Get PDF
    Violence risk assessment in psychiatric institutions enables interventions to avoid violence incidents. Clinical notes written by practitioners and available in electronic health records (EHR) are valuable resources that are seldom used to their full potential. Previous studies have attempted to assess violence risk in psychiatric patients using such notes, with acceptable performance. However, they do not explain why classification works and how it can be improved. We explore two methods to better understand the quality of a classifier in the context of clinical note analysis: random forests using topic models, and choice of evaluation metric. These methods allow us to understand both our data and our methodology more profoundly, setting up the groundwork for improved models that build upon this understanding. This is particularly important when it comes to the generalizability of evaluated classifiers to new data, a trustworthiness problem that is of great interest due to the increased availability of new data in electronic format
    • 

    corecore