4,752 research outputs found

    Formal mutation testing for Circus

    Get PDF
    International audienceContext: The demand from industry for more dependable and scalable test-development mechanisms has fostered the use of formal models to guide the generation of tests. Despite many advancements having been obtained with state-based models, such as Finite State Machines (FSMs) and Input/Output Transition Systems (IOTSs), more advanced formalisms are required to specify large, state-rich, concurrent systems. Circus, a state-rich process algebra combining Z, CSP and a refinement calculus, is suitable for this; however, deriving tests from such models is accordingly more challenging. Recently, a testing theory has been stated for Circus, allowing the verification of process refinement based on exhaustive test sets. Objective: We investigate fault-based testing for refinement from Circus specifications using mutation. We seek the benefits of such techniques in test-set quality assertion and fault-based test-case selection. We target results relevant not only for Circus, but to any process algebra for refinement that combines CSP with a data language. Method: We present a formal definition for fault-based test sets, extending the Circus testing theory, and an extensive study of mutation operators for Circus. Using these results, we propose an approach to generate tests to kill mutants. Finally, we explain how prototype tool support can be obtained with the implementation of a mutant generator, a translator from Circus to CSP, and a refinement checker for CSP, and with

    A Sublinear Tester for Outerplanarity (and Other Forbidden Minors) With One-Sided Error

    Full text link
    We consider one-sided error property testing of F\mathcal{F}-minor freeness in bounded-degree graphs for any finite family of graphs F\mathcal{F} that contains a minor of K2,kK_{2,k}, the kk-circus graph, or the (k×2)(k\times 2)-grid for any kNk\in\mathbb{N}. This includes, for instance, testing whether a graph is outerplanar or a cactus graph. The query complexity of our algorithm in terms of the number of vertices in the graph, nn, is O~(n2/3/ϵ5)\tilde{O}(n^{2/3} / \epsilon^5). Czumaj et~al.\ showed that cycle-freeness and CkC_k-minor freeness can be tested with query complexity O~(n)\tilde{O}(\sqrt{n}) by using random walks, and that testing HH-minor freeness for any HH that contains a cycles requires Ω(n)\Omega(\sqrt{n}) queries. In contrast to these results, we analyze the structure of the graph and show that either we can find a subgraph of sublinear size that includes the forbidden minor HH, or we can find a pair of disjoint subsets of vertices whose edge-cut is large, which induces an HH-minor.Comment: extended to testing outerplanarity, full version of ICALP pape

    SCJ-Circus : a refinement-oriented formal notation for Safety-Critical Java

    Get PDF
    Safety-Critical Java (SCJ) is a version of Java whose goal is to support the development of real-time, embedded, safety-critical software. In particular, SCJ supports certification of such software by introducing abstractions that enforce a simpler architecture, and simpler concurrency and memory models. In this paper, we present SCJ-Circus, a refinement-oriented formal notation that supports the specification and verification of low-level programming models that include the new abstractions introduced by SCJ. SCJ-Circus is part of the family of state-rich process algebra Circus, as such, SCJ-Circus includes the Circus constructs for modelling sequential and concurrent behaviour, real-time and object orientation. We present here the syntax and semantics of SCJ-Circus, which is defined by mapping SCJ-Circus constructs to those of standard Circus. This is based on an existing approach for modelling SCJ programs. We also extend an existing Circus-based refinement strategy that targets SCJ programs to account for the generation of SCJ-Circus models close to implementations in SCJ

    Java in the Safety-Critical Domain

    Get PDF

    Evaluation of formal IDEs for human-machine interface design and analysis: the case of CIRCUS and PVSio-web

    Get PDF
    Critical human-machine interfaces are present in many systems including avionics systems and medical devices. Use error is a concern in these systems both in terms of hardware panels and input devices, and the software that drives the interfaces. Guaranteeing safe usability, in terms of buttons, knobs and displays is now a key element in the overall safety of the system. New integrated development environments (IDEs) based on formal methods technologies have been developed by the research community to support the design and analysis of high-confidence human-machine interfaces. To date, little work has focused on the comparison of these particular types of formal IDEs. This paper compares and evaluates two state-of-the-art toolkits: CIRCUS, a model-based development and analysis tool based on Petri net extensions, and PVSio-web, a prototyping toolkit based on the PVS theorem proving system.This work is partially supported by: Project NORTE-01-0145-FEDER-000016, financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) PhD scholarship

    Atomic components

    Get PDF
    There has been much interest in components that combine the best of state-based and event-based approaches. The interface of a component can be thought of as its specification and substituting components with the same interface cannot be observed by any user of the components. Here we will define the semantics of atomic components where both states and event can be part of the interface. The resulting semantics is very similar to that of (event only) processes. But it has two main novelties: one, it does not need recursion or unique fixed points to model nontermination; and two, the behaviour of divergence is modelled by abstraction, i.e. the construction of the observational semantics

    SCJ-Circus: specification and refinement of Safety-Critical Java programs

    Get PDF
    Safety-Critical Java (SCJ) is a version of Java for real-time, embedded, safety-critical applications. It supports certification via abstractions that enforce a particular program architecture, with controlled concurrency and memory models. SCJ is an Open Group standard, with a reference implementation, but little support for reasoning. Here, we present SCJ-Circus, a refinement notation for specification and verification of low-level models of SCJ programs. SCJ-Circus is part of the Circus family of state-rich process algebras: it includes the Circus constructs for modelling of sequential and concurrent behaviour based on Z and CSP, and the real-time and object-oriented extensions of Circus, in addition to the SCJ abstractions. We present the syntax of SCJ-Circus and its semantics, defined by mapping SCJ-Circus constructs to those of Circus. We also detail a refinement strategy that takes a Circus design that adheres to a multiprocessor cyclic executive pattern and produces an SCJ program design, described in SCJ-Circus. Finally, we show how this refinement strategy can be extended for more complex program architectures
    corecore