
This is a repository copy of SCJ-Circus : a refinement-oriented formal notation for Safety-
Critical Java.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/101442/

Version: Published Version

Article:

Miyazawa, Alvaro orcid.org/0000-0003-2233-9091 and Cavalcanti, Ana orcid.org/0000-
0002-0831-1976 (2016) SCJ-Circus : a refinement-oriented formal notation for Safety-
Critical Java. Electronic Proceedings in Theoretical Computer Science. pp. 71-86. ISSN 
2075-2180 

https://doi.org/10.4204/EPTCS.209.6

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Eerke Boiten, John Derrick & Steve Reeves (Eds.):

Refinement Workshop 2015 (Refine ’15)

EPTCS 209, 2016, pp. 71–86, doi:10.4204/EPTCS.209.6

SCJ-Circus: a refinement-oriented formal notation for

Safety-Critical Java

Alvaro Miyazawa Ana Cavalcanti

Department of Computer Science, University of York, York, YO10 5GH, UK

alvaro.miyazawa@york.ac.uk ana.cavalcanti@york.ac.uk

Safety-Critical Java (SCJ) is a version of Java whose goal is to support the development of real-time,

embedded, safety-critical software. In particular, SCJ supports certification of such software by

introducing abstractions that enforce a simpler architecture, and simpler concurrency and memory

models. In this paper, we present SCJ-Circus, a refinement-oriented formal notation that supports

the specification and verification of low-level programming models that include the new abstractions

introduced by SCJ. SCJ-Circus is part of the family of state-rich process algebra Circus, as such, SCJ-

Circus includes the Circus constructs for modelling sequential and concurrent behaviour, real-time

and object orientation. We present here the syntax and semantics of SCJ-Circus, which is defined by

mapping SCJ-Circus constructs to those of standard Circus. This is based on an existing approach for

modelling SCJ programs. We also extend an existing Circus-based refinement strategy that targets

SCJ programs to account for the generation of SCJ-Circus models close to implementations in SCJ.

1 Introduction

Safety-Critical Java (SCJ) [9] is a subset of the Real-Time Specification for Java (RTSJ) [19]. This is a

version of Java that targets the development of real-time software. It avoids the issue of unpredictable

timing associated with garbage collection by introducing memory areas.

SCJ restricts the RTSJ to facilitate certification; it imposes a particular structure for programs em-

bedding simplified memory and concurrency models. The structure of an SCJ application is composed

of a safelet (the main program), a mission sequencer that provides missions in a particular order, and a

number of missions that are composed by concurrent handlers. SCJ supports different types of handlers,

such as periodic and aperiodic handlers.

Start HaltMission

Cleanup

Mission

Execution

Select

Mission Initialization

Mission

MissionSequencer

Figure 1: SCJ programming model

Figure 1 depicts the programming model of SCJ, which essentially consists of a cycle where at each step

a new mission is selected, initialised, executed and terminated. During execution, a number of handlers

run in parallel. When there are no missions left, the program terminates. The memory model is based on

scoped memory regions, rather than garbage collection. The safelet, the missions, and the handlers have

associated memory regions, which are cleared at predictable points of the program control flow.

In [5], the SCJ standard is complemented with a design technique based on the Circus family of

languages for refinement. Circus [4] is a state-rich process algebra for refinement that has been applied



72 SCJ-Circus

to the verification of a variety of models including Simulink and Stateflow diagrams [3, 13]. The seman-

tics of Circus is based on Hoare and He’s Unifying Theories of Programming [7], which is a semantic

framework that supports the formalisation of paradigms in an independent fashion and their combination

through specific techniques. As refinement is a central concept in UTP, it is also an important aspect of

Circus as evidenced by its rich refinement calculus [15]. Circus has been extended to support a number

of different programming paradigms: for example, OhCircus [2] supports the specification of object-

oriented programs, and Circus Time [18] supports modelling real-time programs.

We introduce here a new member of the set of Circus languages: SCJ-Circus combines OhCircus and

Circus Time, and extends them with the abstractions introduced by SCJ. It supports either verification or

full development of SCJ programs from an abstract timed-model to an object-oriented timed model that

explicitly uses the SCJ abstractions. SCJ-Circus models define a safelet, a mission sequencer, missions

and handlers. Additionally, SCJ-Circus introduces object creation statements (new in OhCircus) tailored

to the hierarchical memory model adopted in Safety-Critical Java. Abstraction can still be achieved

using the constructs of Circus for data and behavioural modelling. Yet, the architecture of the models is

in direct correspondence with that of SCJ programs, although platform specific aspects of an application,

such as memory and thread availability, are not covered.

The refinement strategy proposed in [5] is based on the notion of anchors, which are models written

in different subsets of Circus following specific architectural patterns. There are four anchors related by

refinement: A, O, E and S. The first anchor (A anchor) defines an abstract model and the last anchor (S

anchor) describes a refinement of the A anchor that follows the programming paradigm of SCJ. The

O anchor introduces the object-oriented model, and the E anchor introduces the notions of missions,

handlers and memory areas. Whilst [5] details the refinement strategy between the three first anchors (A,

O and E), it only briefly indicates how to proceed from the E to the S anchor.

In this work, we extend [5] exploring the use of SCJ-Circus to define the S anchor. We specify the

syntax and semantics of SCJ-Circus, and describe the last phase of the refinement strategy to use SCJ-

Circus as target models. To define the semantics of SCJ-Circus, we build on a Circus semantics of SCJ

programs defined in [21]. To that end, we update that semantics to reflect fundamental changes to the

mode of interaction between handlers and mission termination. We also propose a different structure for

the Circus models to enable compositional refinement with respect to the SCJ-Circus components.

In Section 2, we introduce the Circus family of languages and Safety-Critical Java. In Section 3,

we discuss SCJ-Circus, its syntax and semantics, and Section 4 discusses the extension of the refinement

strategy proposed in [5] to reach SCJ-Circus programs. Finally, Section 5 concludes by relating our work

to the existing literature and discussing future work.

2 Preliminaries

In this section, we briefly describe the base notations relevant to our work. Section 2.1 introduces the

Circus family of languages, and Section 2.2 describes SCJ.

2.1 Circus

In this section, we use the Circus Time process PEHFW (periodic event handler framework) in Figure 2

that models the general behaviour of a periodic event handler to describe Circus and its timed variant.

The main modelling element of a Circus specification is a process (indicated by the keyword process)

that declares state components (identified by the keyword state), a number of auxiliary actions, and



A. Miyazawa & A. Cavalcanti 73

processPEHFW =̂ id : ID • begin

statePEHFWState == [start,period : N]
Execute =̂ waitstart;


µ X •




(handleAsyncEventCall!id!id−→handleAsyncEventRet!id!id−→Skip)◮period; X

@
done handler!id−→Skip




J{} | {|handleAsyncEventCall.id,done handler.id |} | {}K
(µ Y • ((handleAsyncEventCall!id!id−→waitperiod)◭0); Y)△done handler!id−→Skip




• µ X • (start peh?o!id?s?p−→ (start := s; period := p); Execute; X)
end

Figure 2: Framework process of the periodic event handler.

a main action (prefixed by •) that describes the overall behaviour of the process. In the case of our

example, the process PEHFW is parametrised by an identifier id of a given type ID, and declares two

state components, start and period both of type N.

PEHFW only declares one auxiliary action Execute. Actions are specified using a combination of

Z [20] for data modelling and CSP [16] for behavioural descriptions. The main action is defined by a

recursion (µ X • . . .) that at each step starts an instance of the event handler via a communication through

channel start peh. In this communication, the identifier o of the mission that requested the instantiation

is input, the handler identifier id is output, and its start time s and period p are input. Whilst the input

o is not needed for the execution, it is necessary to allow missions to reuse periodic event handlers in

the same application. The values of s and p are then assigned to the state components start and period.

The execution of a newly created handler is defined by the action Execute. It first waits for start time

units (wait start), and then starts two recursive actions in parallel (A1 J ns1 | cs | ns2 K A2) synchronising

on channels handleAsyncEventCall and done handler.

The first action specifies that at each step of the recursion there is an external choice (@) for com-

munication on channels done handler or handleAsyncEventCall in this way, the handler can be termi-

nated with a choice of done handler or the method handleAsyncEvent is called through the channel

handleAsyncEventCall. If handleAsyncEvent is called, the it must return, as indicated with a commu-

nication via handleAsyncEventRet within period time units. This is specified by the Circus Time action

A◮ e that defines that the action A must terminate within e time units.

The recursive parallel action in Execute adds a requirement that a call to handleAsyncEvent must

be started as soon as it is available, and should only be made available again after period time units. This

is achieved by imposing a restriction on the communication handleAsyncEventCall using the start by

operator (◭) that specifies that an action must start within a certain number of time units. The requirement

that handleAsyncEventCall is only offered after period time units is enforced by the action waitperiod

after the communication on handleAsyncEventCall. Since the first recursion can be terminated by a

synchronisation on the channel done handler, the second recursion must also be terminated. This is

achieved by allowing its interruption of the recursion by a synchronisation on done handler using the

interrupt operator (△).

In general, a Circus or Circus Time specification consists of a sequence of paragraphs that define

processes (as well as channels, constants, and other constructs that support the definition of processes).

Processes are used to define the system and its components: state is encapsulated and interaction is via



74 SCJ-Circus

p u b l i c c l a s s Checker e x t e n d s A p e r i o d i c E v e n t H a n d l e r {

B u f f e r b u f f e r ;

p u b l i c Checker ( B u f f e r b ) {

s u p e r ( new P r i o r i t y P a r a m e t e r s ( P r i o r i t i e s . PR98 ) ,

new A p e r i o d i c P a r a m e t e r s ( ) ,

s t o r a g e P a r a m e t e r s _ H a n d l e r s ) ;

b u f f e r = b ;

}

p u b l i c vo id hand leAsyncEven t ( ) {

i f ( b u f f e r . theSame ( ) ) d e v i c e s . Conso le . p r i n t l n ( " t r u e " ) ;

e l s e d e v i c e s . Conso le . p r i n t l n ( " f a l s e " ) ;

}

}

Figure 3: SCJ Level 1 example: Aperiodic Event Handler

channels. Processes can be composed, via CSP operators, to define other processes. In Circus Time, wait

and deadline operators can be used to define time restrictions. In OhCircus models, we can in addition

define paragraphs that declare classes used to define types. More information about these languages can

be found in [15, 18, 2]. In the sequel, we further explain the notation as needed.

2.2 Safety Critical Java

As previously mentioned, an SCJ application is formed by a safelet, mission sequencer, a number of

missions, and periodic and aperiodic event handlers. Each of these is characterised by an interface or

abstract class of an API that supports the development of SCJ programs via implementation and extension

of these components. A safelet instantiates a mission sequencer, and iteratively obtains a mission from

the mission sequencer, executes it and waits for it to terminate. The execution of a mission consists of

the parallel execution of all its periodic and aperiodic event handlers. Most of the actual behaviour of the

application is concentrated in the handlers, which are the focus of this section.

Our running example is a simple SCJ application: a communication medium that checks whether

the three copies of a message received are the same (and, therefore, reliable). It has a single mission

containing two handlers: one periodic event handler and one aperiodic event handler. The periodic event

handler reads an input every at every cycle, stores it in a buffer, and releases the aperiodic event handler.

Upon release, the aperiodic event handler examines the last three elements and outputs “true” or “false”

depending on whether the last three values of the buffer are all the same or not.

Figure 3 shows the code for the aperiodic handler in our example. It extends the SCJ API class

AperiodicEventHandler, and declares a local variable buffer, a constructor that receives an instance

of the class Buffer and assigns it to buffer, and a handleAsyncEvent method that defines the main

behaviour of the handler. The constructor of Checker calls the constructor of the superclass with prior-

ity 98, a new aperiodic parameter, and storage parameters that specify the amount of memory used by

the handler. The method handleAsyncEvent checks whether the last three elements of buffer are the

same using the method theSame; if they are, it prints “true”, otherwise it prints “false”. For simplicity,

we print the output of the checker, which in practice needs to be sent to another component of the system.

The complete program contains classes to implement the safelet, the mission sequencer, the mission

and the periodic handler. It can be found in http://www.cs.york.ac.uk/~alvarohm/er2015.zip.



A. Miyazawa & A. Cavalcanti 75

safelet Safelet =̂ . . .

sequencer Sequencer =̂ . . .

mission Mission =̂ . . .

periodichandler PeriodicHandler =̂ begin

start0periodP

state [ah : ID]
initial =̂ ah : ID • this.ah := ah

handleAsyncEvent =̂

((input?x−→Skip)◭ ID; setBuffer!(buffera 〈x〉)−→ release(); (wait0 . .PTB))◮ PD

end

aperiodichandler AperiodicHandler =̂ begin

handleAsyncEvent =̂


getBuffer?buffer−→


ifbuffer ∈ theSame −→ (output!true−→Skip)◭OD

8buffer 6∈ theSame −→ (output!false−→Skip)◭OD

fi


 ; wait0..ATB


◮ AD

end

Figure 4: SCJ Level 1 example: S-anchor

3 SCJ-Circus

As previously mentioned, SCJ-Circus extends OhCircus and Circus Time with abstractions that are spe-

cific to Safety-Critical Java. Below, Section 3.1 briefly discusses the syntax of SCJ-Circus, Section 3.2

presents the semantic models of the SCJ framework, that is, its API and programming model, and Sec-

tion 3.3 describes the semantics of the language based on the Circus models of Section 3.2.

3.1 Syntax

SCJ-Circus extends the syntax of OhCircus and Circus Time with paragraphs that allow the specifica-

tion of safelets, mission sequencers, missions and handlers. Figure 4 presents the specification of our

running example in SCJ-Circus. It matches the structure of our example, but further specifies timing

requirements. The periodic event handler reads an input every P time units, with an input deadline of ID

time units. Each cycle of the periodic event handler takes any time between 0 and PTB time units, and

must terminate within PD time units. The aperiodic event handler outputs values within OD time units,

and each release takes at most ATB time units, and must terminate within AD time units.

The constants PTB, ATB, ID, OD, PD, AD and P need to satisfy a number of conditions to ensure that

the two handlers run in lockstep. For the periodic event handler, these conditions require that the sum

of periodic time budget (PTB) and the input deadline (ID) does not exceed the periodic deadline (PD).

Additionally the sum of the periodic deadline (PD) and the aperiodic deadline AD must not exceed the

period P of the periodic event handler.

In general, as shown in Figure 3.1, an SCJ-Circus program is a sequence of SCJParagraphs, which

can be a Circus paragraph, or the declaration of a safelet, mission sequencer, mission or handler. The

structure of each of the SCJ-specific abstractions is determined by the values and behaviours that must

be specified for an application according to the SCJ standard [9]. For instance, a safelet must implement



76 SCJ-Circus

SCJProgram ::= SCJParagraph∗

SCJParagraph ::= Safelet |MissionSequencer |Mission | Handler | CircusParagraph

Safelet ::= safelet N =̂ begin

SCJSSafeletProcessParagraph∗

state Schema-Expression

SCJSafeletProcessParagraph∗

initialize =̂ SCJSafeletAction

SCJSafeletProcessParagraph∗

getSequencer =̂ res return : sequencer • SCJSafeletAction
SCJSafeletProcessParagraph∗

end

Figure 5: Syntax of SCJ-Circus (sketch)

the initialize method that allows the allocation of global objects, and the getSequencer method that

provides a mission sequencer.

Accordingly, the SCJ-Circus construct corresponding to a safelet in Figure 3.1 has a name taken from

the set of valid Circus names N, and allows the specification of state components (state), the initialisa-

tion (initialize) and getSequencer methods, as well as auxiliary actions (SCJSafeletProcessParagraph).

The state components model the fields of the safelet class. An SCJSafeletProcessParagraph allows the

specification of an action whose body is a SCJSafeletAction, which restricts the constructs that can be

used in an action of a safelet, in particular, the type of allocation constructs as discussed next.

SCJ enforces a hierarchical memory-model in which different components (safelets, missions and

so on) may only instantiate new objects in their memory areas or parent memory areas. We reflect this

discipline in SCJ-Circus by restricting syntactically which paragraphs may include allocations, through

different new keywords, to particular memory areas. For instance, a safelet may only instantiate objects

in the immortal memory, and therefore may only use the keyword newI for instantiation of new objects.

A handler, on the other hand, may allocate objects in the immortal memory area, mission memory area

(newM), per-release memory area (newPR) and private memory area (newPM).

These restrictions are reflected in the use of different syntactic categories for the actions and para-

graphs of the different constructs. For example, the getSequencer method of a safelet must be an

SCJSafeletAction and the handleAsyncEvent method of a handler must be as SCJHandlerAction. The

first only allows instantiation via newI, whilst the other allows all possible instantiation keywords.

The syntax of the SCJ-Circus paragraphs for the mission sequencer, missions and handlers are sim-

ilar, providing means for the specification of state components (state), constructors (initial), and the

methods of the corresponding element that must be provided by the developer. For further details about

the syntax of SCJ-Circus refer to [12].

3.2 Semantic model

In [21], an approach to modelling SCJ programs has been proposed; it is a translation strategy defined as

a semantic function that maps SCJ programs to Circus specifications. We adopt a similar approach here

to give semantics to SCJ-Circus. Our Circus models, however, are updated to consider recent significant

changes to SCJ and to cater for compositional reasoning about SCJ constructs.



A. Miyazawa & A. Cavalcanti 77

Figure 6: Structure of semantic models

Each Circus Time process is defined as the parallel composition of two processes: a framework

process that captures the behaviour of the corresponding SCJ component as an element of the SCJ pro-

gramming model, and a process that captures the behaviour of that component as defined in a particular

application. For example, the process PEHFW in Figure 2 presents the framework process for a peri-

odic handler. It defines the general flow of execution of such a handler without giving the details of a

particular handler implementation.

The framework and application processes of each SCJ element interact through a number of channels

that correspond to method calls in the implementation. For example, the channels safeletInitializeCall,

safeletInitializeRet, getSequencerCall and getSequencerRet in Figure 6 are used by the safelet framework

process SafeletFW to communicate with the application specific process S App and correspond to calls

to the methods initialize and getSequencer of the application.

In the models of SCJ programs presented in [21], the application processes are combined together in

interleaving, framework processes are grouped together in parallel, and both groups are then combined

in parallel to yield the semantic model of the whole application. This structure proved not ideal for the

compositional analysis of SCJ-Circus programs because the aspects relevant to a specific SCJ-Circus

construct, such as a handler, are spread through the complete model and cannot be isolated for reasoning

purposes. Figure 6 depicts the structure of the updated semantic model. Circus specifications model each

of the SCJ-Circus paragraphs as standard Circus Time processes.

It is worth mentioning that the model where application and framework processes are composed on

a per-element basis is a refinement of the model structured as in [21]. This fact is established in our

refinement strategy described in Section 4 because the framework is first introduced as a monolithic

process, and then distributed through the application processes.

The framework process that specifies the generic behaviour of a safelet is shown in Figure 7. It is a

process parametrised by the safelet identifier, and its behaviour consists of requesting to the application

process the initialisation of the safelet using the channels safeletInitializeCall and safeletInitializeRet,

obtaining a mission sequencer via the channels getSequencerCall and getSequencerRet, and if the se-



78 SCJ-Circus

processSafeletFW =̂ id : ID • begin

Execute =̂ getSequencerCall!id!id−→getSequencerRet!id!id?s−→


ifs 6= null −→ start sequencer−→done sequencer−→Skip

8s = null −→ Skip

fi




• safeletInitializeCall!id!id−→ safeletInitializeRet!id!id−→Execute;

end safelet app−→Skip

end

Figure 7: Framework process for Safelet.

quencer is different than null, starting it (using the channel start sequencer). At this point the safelet

framework process waits for the mission sequencer to complete its execution and signal on the chan-

nel done sequencer, in which case the safelet indicates to the application process that it is terminating

through the channel end safelet app, and terminates (Skip).

The complete definition of the model can be found in [12].

3.3 Semantics

The semantics of SCJ-Circus is formalised as a function from well-formed models written in accordance

with the abstract syntax of SCJ-Circus to Circus models, that is, elements of the category CircusProgram,

as defined in [15]. In order to improve readability, the semantics is presented in terms of translation rules

that output Circus concrete syntax. In essence, the semantic function composes the behaviours specified

in SCJ-Circus with the model of the SCJ framework discussed in Section 3.2 in a compositional way.

Formally, the semantics of an SCJ-Circus program p is given by the Circus program formed by the

Circus paragraphs that are obtained by applying specific semantic functions to the paragraphs of p. This

is specified below by the function J KSCJProgram that takes a well-formed SCJ-Circus program and outputs

a Circus program composed of the paragraphs produced by the semantic functions J KSCJParagraphs and

J KApplication. The first takes a sequence of SCJ-Circus paragraphs and outputs a sequence of Circus

paragraphs, and the second takes a program and outputs the definition of a process that composes the

processes defined in the previous paragraphs to specify the overall meaning of the application.

J KSCJProgram : SCJProgram 7→Program

∀p : WF SCJProgram • JpKSCJProgram = Jp.paragraphsKSCJParagraphs
a JpKApplication

We use the mathematical notation of Z [20] to specify our semantic functions, and explain any non-

standard use of notation as needed. In what follows, we focus on the semantic function for the safelet,

which is used by J KSCJParagraphs to give semantics to a safelet paragraph.

As explained in the previous section, the semantics of a safelet is given by the parallel composition

of a Circus process that characterises the application-specific behaviours and a Circus process that mod-

els the generic behaviour of the framework. It is given by the function J KSafelet below, which takes a

safelet s and outputs a sequence of two processes: the application process s app and the process that

models the complete behaviour of s as the parallel composition of s app and the framework process

SafeletFW instantiated by the identifier of s. In the definition of the semantic function, guillemots («»)

are used to distinguish the Circus syntax from the meta-language used to specify the rules. For instance,



A. Miyazawa & A. Cavalcanti 79

safelet app : Safelet 7→BasicProcess

∀s : WF Safelet •
safelet app(s) =


begin

state «s.state»

«for eachp : s.paragraphsof (N =̂ SCJSafeletParametrisedAction)do»

«N»Meth =̂ «translate method(name(s)ID,N,p.body)»
«end»

getSequencerMeth =̂ «translate method(name(s)ID,getSequencer,s.getSequencer)»
initializeApplicationMeth =̂ initializeApplicationCall?x!«name(s)»ID−→

«s.initialize»; initializeApplicationRet!x!«name(s)»ID−→Skip

Methods =̂ µ X •
getSequencerMeth; X @ initializeApplicationMeth; X

«for eachp : s.paragraphsof (N =̂ A)do»@«N»Meth; X«end»

@end safelet app−→Skip

• Methods

end




Figure 8: Semantic function safelet app.

«safelet app(s)», indicates that the function safelet app must be evaluated on the parameter s and the

resulting syntax tree must be substituted in place of «safelet app(s)».

J KSafelet : Safelet 7→ seqCircusParagraph

∀s : WF Safelet •

JsKSafelet =




process «name(s)» App =̂ «safelet app(s)»
process «name(s)» =̂

(SafeletFW(«name(s)»ID) J«SafeletCS(s)» K«name(s)» App)∖
«SafeletCS(s)»




As shown above, the definition of J KSafelet relies on the function safelet app that produces the application

specific process, and a function SafeletCS that calculates the channels on which the application and the

framework must communicate. These channels are internal to the safelet and therefore hidden (
∖

).

The safelet app function shown in Figure 8 takes a safelet s and constructs a process named af-

ter s using the function name concatenated with App, and with the same state as s. Each auxiliary

method of the safelet is translated into an Circus action using a pair of channels to model the call and

return of the method. Similarly, the methods getSequencer and initialize are translated into the ac-

tions getSequencerMeth and initializeApplicationMeth. All these actions are used to construct the action

Methods that recursively offers a choice between each of those actions, and the possibility to terminate

the recursion via a synchronisation on the channel end safelet app.

The overall behaviour of the process is the action Methods. The parallel composition of the process

obtained from the safelet and the framework process synchronises on the call and return channels used to

encode method calling, as well as on the channel end safelet app, and these channels are made internal



80 SCJ-Circus

using the hiding operator (
∖

).

The functions sequencer app, mission app, PEH app and AEH app that define the application pro-

cesses for mission sequencers, mission, periodic event handler and aperiodic event handlers are defined

similarly and are omitted. The complete semantics is defined in [12].

4 Refinement Strategy

The refinement strategy proposed in [5] covers the refinement of abstract Circus Time models into a

process written following a pattern in which some of the structure of an SCJ application is identified

but not explicitly described in terms of independent SCJ components, as can be done using SCJ-Circus.

Here, we further elaborate the original strategy to obtain an S-Anchor like that shown in Figure 4.

Our refinement strategy starts from an E-Anchor in the form shown in Figure 9, which is a single

Circus process in which each action models a component of the desired SCJ implementation, but the

different elements (e.g., safelet, mission sequencer, and so on) are not yet isolated. The only parallelism

is between the two handlers. The E-Anchor of our running example obtained through the application of

the refinement strategy in [5] to the abstract model is shown in Figure 10. It is a single Circus process

whose main action calls the safelet, which then calls the mission sequencer. The mission sequencer calls

the single mission of our example, which calls in parallel the periodic and aperiodic handlers as well as

an action that models the mission memory shared by both handlers.

In order to obtain the S-anchor, we propose a refinement strategy based on four phases: (1) introduc-

tion of SCJ control flow, (2) introduction of application process, (3) introduction of framework processes,

(4) conversion to SCJ-Circus. The resulting S-anchor for our example is shown in Figure 4.

The first phase introduces the patterns of control observed in SCJ-Circus models, such as call-return

channels, which model method calls, start and done channels that model the execution and termina-

tion of SCJ-Circus abstractions (e.g., Safelet), and release mechanisms. The second phase separates

application-specific behaviours (e.g., reading of input) from framework behaviours (e.g., request of mis-

sion sequencer in the safelet). The third phase takes the incomplete model of framework behaviour

isolated in the second phase and expands it by completing them with all possible behaviours of the

SCJ-Circus framework processes. This is necessary because the E-anchor does not cover aspects of the

framework that are not used by the application. For instance, our running example does not model termi-

nation and, therefore, the framework-specific behaviour isolated in the second phase does not cover the

termination mechanisms of the SCJ framework. These are introduced in the third phase. The fourth phase

introduces the paragraphs of the S-anchor, where the SCJ-Circus abstractions are explicitly declared.

4.1 E-anchor: starting point

We identify four main patterns of E-anchors with respect to the synchronisation between a number of

periodic and aperiodic event handlers. The first has both types of handlers executing cyclically in lockstep

and terminating within the period of the periodic event handler. In this pattern, all handlers are executed

at every cycle and must terminate before the next cycle.

The second pattern is similar, except that not all aperiodic handlers are executed at each cycle. The

handlers are executed cyclically, but not in lockstep. The common property to the first two patterns is that

the execution of both periodic and aperiodic event handlers finishes with the period of the application.

The third and fourth patterns are version of the first two where the deadline of the aperiodic event handlers

cannot be guaranteed. That is, the execution of an aperiodic event handler may not terminate before the



A. Miyazawa & A. Cavalcanti 81

processP =̂ begin

stateS

Handleri =̂ . . .

MAreaj =̂ . . .

Missionj =̂ (MAreaj ‖ (‖ k : handlersj • Handlerk))
MissionSequencer =̂ ; i : 1 . .n • Missioni

Safelet =̂ MissionSequencer

Application =̂ Safelet

• Application

end

Figure 9: Refinement strategy: starting point of first phase (E-anchor)

processSystem1 =̂ begin

MArea =̂ varbuffer : seqN • µ X •
(setBuffer?x−→buffer := x; X @getBuffer!buffer−→X @ stop−→Skip)

PeriodicHandler =̂

µ X •




(
(input?x−→Skip)◭ ID;

setBuffer!(buffera 〈x〉)−→ release−→ (wait0..PTB)

)
◮PD

9waitP


 ; X

AperiodicHandler =̂

µ X •




release−→


getBuffer?buffer−→wait0..ATB;


ifbuffer ∈ three0 −→ (output!true−→Skip)◭OD

8buffer 6∈ three0 −→ (output!false−→Skip)◭OD

fi





◮AD; X




Mission =







PeriodicHandler

J{} | {|stop,release |} | {}K
AperiodicHandler


∖{|release |}

J{} | {| . . . |} | {} KMArea



∖
{|setBuffer,getBuffer |}

MissionSequencer =̂ Mission

Safelet =̂ MissionSequencer

Application =̂ Safelet

• Application

end

Figure 10: SCJ Level 1 example: E-anchor

next cycle starts. In this paper, we focus on E-anchor of the first type: cyclic in lockstep. The model in

Figure 4 follows this pattern. Examples of the remaining patterns can be found in [12].

4.2 (CF) Introduction of SCJ control flow

This phase introduces some of the parallel structure observed in SCJ-Circus programs. Figure 11 shows

the structure of the process obtained by applying the first phase.



82 SCJ-Circus

processCF P =̂ begin

stateS

CF Safelet =̂ getSequencerCall−→geSequencerRet?x−→ start sequencer!x−→
done sequencer!x−→Skip

CF MissionSequencer =̂ . . .

CF Missionj =̂ . . .

CF Handleri =̂ . . .

CF Application =̂

(
CF Safelet ‖ CF MissionSequencer

‖ ((‖ i : 1 . .n • CF Missioni) ‖ (9i : 1 . .m • CF handleri))

)

• CF Application

end

Figure 11: Refinement strategy: target of CF phase

We recall that, as the first phase of the refinement, its starting point is an E-anchor described in

Figure 9, and illustrated in Figure 10 for our example. The target is shown in Figure 11. This is a model

is still a single process, but its main action composes a number of auxiliary actions in parallel, each of

which specifies the behaviours of an SCJ abstraction.

In this phase, parallelism introduction laws such as Law 1 are used to refine an action F(A) into a

parallelism where the subaction A is replaced by two communications on channels c1 and c2, and the

parallel action is formed by the first communication on c1, followed by the subaction A, followed by the

second communication on c2.

Law 1. Parallelism Introduction.

F(A)⊑ (F(c1 −→ c2 −→Skip) JusedV(F) | {|c1,c2 |} | userV(A) K c1 −→A; c2 −→Skip)
∖
{|c1,c2 |}

provided usedV(F)∩usedV(A) =∅ ∧ {|c1,c2 |}∩usedC(F(A)) =∅

This law can be proved by structural induction over the structure of the action F using distribution and

step laws such as the ones found in [15]. The provisos guarantee that c1 and c2 are not used in A, and that

the variables used in the action F and the subaction A form a partition of the state, so that they can be put

in parallel without creating race conditions. As shown, the Circus parallel operator for actions defines

partitions of the state for use of each of the parallel actions.

In general, Law 1 must be applied to the actions that model the safelet, the mission sequencer, the

missions, and the handlers. In our example, this law is applied to the action Safelet in Figure 10 to sep-

arate it from MissionSequencer, and then to the action MissionSequencer to separate it from Mission,

and finally to the action Mission to separate it from Handlers. At this point, we obtain the action

CF Application. The resulting structure is depicted in Figure 11, where the actions prefixed by CF

are the actions in Figure 10 modified by the application of the refinement laws.

4.3 (AP) Introduction of application processes

The target of this phase is shown in Figure 12: it defines a number of application processes, and refines

the process CF P into the parallel composition of the interleaved application processes and a modified

version of CF P (CF P FW), where application-specific behaviours have been replaced by calls to

actions of the application processes via channel communications using Call and Ret channels.



A. Miyazawa & A. Cavalcanti 83

process Handleri app =̂ . . .

process Missionj app =̂ . . .

process MissionSequencer app =̂ . . .

process Safelet app =̂ . . .

process AP P =̂ CF P FW ‖

(
Safelet app 9MissionSequencer app9
(9i : 1 . .m • Handleri app)9 (9i : 1 . .n • Missioni app)

)

Figure 12: Refinement strategy: target of phase AP

CF System

[ (
(input?x−→Skip)◭ ID;

setBuffer!(buffera 〈x〉)−→ release−→ (wait0 . .PTB)

)
◮PD

]

⊑


CF System

[
handleAsyncEventCall?x!PHID−→
handleAsyncEventRet!x!PHID−→Skip

]

J{} | {|handleAsyncEventCall,handleAsyncEventRet | {}K
PeriodicHandler App



∖
{| . . . |}

Figure 13: Introduction of application process for PeriodicHandler in our example.

In this phase, we use the process obtained in phase CF to identify the behaviours that are application

specific and construct application processes. Next, each application process is introduced in parallel with

the original process and the behaviour provided by the application process is replaced in the original

process by calls via the appropriate channels. This is achieved using refinement laws similar to Law

server-intro in [11], which supports the introduction of a server-client architecture.

Figure 13 illustrates the application of this phase to the CF PeriodicHandler action obtained after the

application of the first phase to the example in Figure 10. First, the process PeriodicHandler App is gen-

erated as a recursion that, at each step, offers the event handleAsyncEventCall, executes the behaviour of

the original periodic handler, and synchronises on handleAsyncEventRet. Next, the process CF System

obtained by the first phase containing the behaviour of the periodic handler (made explicit in Figure 13

by the square brackets after CF System) is refined into the parallel composition of the generated appli-

cation process PeriodicHandler App and CF System with the behaviour of the periodic event handler in

brackets replaced by the synchronisations on handleAsyncEventCall and handleAsyncEventRet (PHID is

the identifier of the periodic handler and is necessary to support multiple handlers).

4.4 (FW) Introduction of framework processes

The target of this phase is shown in Figure 14; it consists of the interleaved application processes in

parallel with the parallel composition of the framework processes discussed in Section 3.2.

This phase acts on the process of CF P FW in Figure 12, from which all application-specific be-

haviours have been removed (and distributed to the application processes). What remains in CF P FW

after the second phase are the framework behaviours that are relevant to the particular application. In

this phase, we complement these framework behaviours to account for the behaviours that are part of the

framework, but not used in CF P FW. This is achieved by the application of refinement laws such as



84 SCJ-Circus

process FW P =̂




(
SafeletFW ‖ SequencerFW ‖ (9i : 1 . .n • MissionFW(missioni)) ‖
(9i : 1 . .m • HandlerFW(handleri))

)

‖

(
Safelet app 9MissionSequencer app9
(9i : 1 . .m • Handleri app)9 (9i : 1 . .n • Missioni app)

)




Figure 14: Refinement strategy: target of phase FW

handler S Handleri =̂ . . .

mission S Missionj =̂ . . .

sequencer S MissionSequencer =̂ . . .

safelet S Safelet =̂ . . .

Figure 15: Refinement strategy: target of phase Conv

Law 2 to introduce the actions that correspond to the control flow present in the framework processes but

not used by the application processes.

Law 2. Unused behaviour introduction.

(a−→A Jns1 | cs | ns2 Ka−→B)⊑ (a−→A Jns1 | cs∪{|b |} | ns2 K (a−→B@b−→C))

provided a ∈ cs ∧ b 6∈usedC(A,B)

Law 2 allows the introduction of actions in a parallelism that are never used; it relies on the fact that the

channel b is not used anywhere else in the left hand side. Since b is in the synchronisation set of the

refined action, the action b−→C can never be started.

Finally, process parallelism introduction laws are used to refine the process CF P into the process

FW P defined as a parallel composition of processes whose main actions are FW A. The structure of

the refined process follows the structure of the main action of CF P. Figure 14 shows the structure of

process FW P obtained in this phase, where missioni is the identifier of the i-th mission, handleri is the

identifier of the i-th handler, and HandlerFW is either PEHFW or APEHFW depending on whether the

i-th handler is periodic or aperiodic.

4.5 (Conv) Conversion to SCJ-Circus.

The target of this phase is shown in Figure 15; it explicitly refers to the SCJ abstractions that have been

incorporated in SCJ-Circus. In this final phase of our refinement strategy, the top-level parallel actions

of FW P in Figure 14 are merged into a parallel composition of pairs of application and framework

processes. This is achieved by the application of a procedure similar to the one used in a refinement

strategy described in [14]. It relies on the syntactic structure of the parallel actions and the use of

refinement laws to eliminate or distribute the parallel composition over other Circus constructs such as

external choice, recursion and interleaving.

Next, each parallel composition of application and framework processes (A app ‖ A FW) is used

to define a new process A, and the process FW P is refined by replacing the parallelisms of the form

A app ‖ A FW by a call to the newly defined processes. The resulting processes are shown in Fig-

ure 16. At this point, each SCJ abstraction is defined by its own process that includes the application and



A. Miyazawa & A. Cavalcanti 85

process Safelet =̂ SafeletFW ‖ Safelet app

process MissionSequencer =̂ SequencerFW ‖ MissionSequencer app

process Missionj =̂ MissionFW(missionj) ‖ Missionj app

process Handleri =̂ HandlerFW(handleri) ‖ Handleri app

process FW P =̂ (Safelet ‖ Sequencer ‖ (9i : 1 . .n • Missioni) ‖ (9i : 1 . .m • Handleri))

Figure 16: Refinement strategy: parallelism elimination in phase FW

framework-specific behaviours in different parallel processes.

Finally, the semantics of SCJ-Circus is used to refine each newly defined process A into the cor-

responding SCJ-Circus abstraction, and the sequence of SCJ-Circus abstractions into a complete SCJ-

Circus program. Figure 15 shows the general structure of the program resulting from this phase, and

Figure 4 shows the result of applying our refinement strategy to the E-Anchor of our running example.

5 Conclusions

In this paper, we extend previous work [21, 5] on both the semantics of SCJ and refinement strategies

for SCJ programs. We propose a variant of Circus suitable for modelling SCJ concepts, update existing

models of SCJ to reflect changes to the SCJ specification and better suit the goal of compositional verifi-

cation, formalise the semantics of SCJ-Circus in terms of these updated models, and extend a previously

proposed refinement strategy to account for the refinement to SCJ-Circus specifications.

Other significant differences between our model of SCJ and that in [21] include: (1) the shift from

the use of events to trigger the execution of aperiodic event handlers in previous version of the SCJ

specification, to the direct use of the asynchronous method release of the aperiodic event handler,

and (2) modelling of handlers using two processes PEHFW (periodic event handler) and APEHFW

(aperiodic event handler) so that the distinction between periodic and aperiodic event handlers are made

at the framework level, instead of the application level.

The SCJ standard specifies the new constructs, the API, and the SCJ VM, but says nothing about

verification and design of programs. Our effort complements those in [8, 17, 6, 10]. Kalibera et al. [8]

apply model checking and exhaustive testing to perform scheduling and race-condition analysis in SCJ

programs. Haddad et al. [6] extend the Java Modeling Language [1] with timing properties to support

worst-case execution analysis of SCJ programs, whilst Tang et al. [17] use annotations to analyse SCJ

programs for memory safety and compliance to SCJ levels. Marriott et al. [10], on the other hand,

perform automatic verification of memory-safety without requiring the user to annotate the program.

We identify four main application patterns with respect to the timing properties of the periodic and

aperiodic event handlers. Whilst we focus our effort here on the refinement of one particular pattern

(cyclic in lockstep), the refinement strategy is general enough to be applied to the other patterns with

localized changes. We will address this issue in the context of SCJ in future work. We will also detail

the refinement strategy and mechanise it in a theorem prover in order to further validate it.

Acklowledgements. This work is funded by the EPSRC grant EP/H017461/1. No new primary data

was created during this study.



86 SCJ-Circus

References

[1] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino & E. Poll

(2005): An Overview of JML Tools and Applications. Int. J. Softw. Tools Technol. Transf. 7(3), pp. 212–232,

doi:10.1007/s10009-004-0167-4.

[2] A. Cavalcanti, A. Sampaio & J. Woodcock (2005): Unifying classes and processes. Software & Systems

Modeling 4(3), pp. 277–296, doi:10.1007/s10270-005-0085-2.

[3] A. L. C. Cavalcanti, P. Clayton & C. O’Halloran (2005): Control Law Diagrams in Circus. In J. Fitzgerald,

I. J. Hayes & A. Tarlecki, editors: FM 2005: Formal Methods, LNCS 3582, Springer-Verlag, pp. 253–268,

doi:10.1007/11526841 18.

[4] A. L. C. Cavalcanti, A. C. A. Sampaio & J. C. P. Woodcock (2003): A Refinement Strategy for Circus.

Formal Aspects of Computing 15(2 - 3), pp. 146–181, doi:10.1007/s00165-003-0006-5.

[5] A. L. C. Cavalcanti, F. Zeyda, A. Wellings, J. C. P. Woodcock & K. Wei (2013): Safety-critical Java

programs from Circus models. Real-Time Systems 49(5), pp. 614–667, doi:10.1007/s11241-013-9182-4.

[6] G. Haddad, F. Hussain & G. T. Leavens (2010): The Design of SafeJML, a Specification Language for SCJ

with Support for WCET Specification. In: Proceedings of the 8th International Workshop on Java Technolo-

gies for Real-Time and Embedded Systems, JTRES ’10, ACM, pp. 155–163, doi:10.1145/1850771.1850793.

[7] C. A. R. Hoare & J. He (1998): Unifying Theories of Programming. Prentice-Hall.

[8] T. Kalibera, P. Parizek, M. Malohlava & M. Schoeberl (2010): Exhaustive Testing of Safety Critical Java. In:

Proceedings of the 8th International Workshop on Java Technologies for Real-Time and Embedded Systems,

JTRES ’10, ACM, pp. 164–174, doi:10.1145/1850771.1850794.

[9] D. Locke, B. S. Andersen, M. Fulton B. Brosgol, T. Henties, J. J. Hunt, J. O. Nielsen, K. Nielsen, M. Schoe-

berl, J. Vitek & A. Wellings: Safety-Critical Java Technology Specification. Technical Report.

[10] C. Marriott & A. L. C. Cavalcanti (2014): SCJ: Memory-safety checking without annotations. In: Formal

Methods, LNCS 8442, Springer, pp. 465–480, doi:10.1007/978-3-319-06410-9 32.

[11] A. Miyazawa (2012): Formal verification of implementations of Stateflow charts. Ph.D. thesis, Department

of Computer Scinece, The University of York, York, UK.

[12] A. Miyazawa & A. Cavalcanti (2015): Refinement of Circus models into SCJ-Circus. http://www-users.

cs.york.ac.uk/~alvarohm/report2015a.pdf.

[13] A. Miyazawa & A. L. C. Cavalcanti (2012): Refinement-oriented models of Stateflow charts. Science of

Computer Programming 77(10-11), pp. 1151–1177, doi:10.1016/j.scico.2011.07.007.

[14] A. Miyazawa & A. L. C. Cavalcanti (2013): Refinement-based verification of implementations of Stateflow

charts. Formal Aspects of Computing 26(2), pp. 367–405, doi:10.1007/s00165-013-0291-6.

[15] M. V. M. Oliveira (2006): Formal Derivation of State-Rich Reactive Programs Using Circus . Ph.D. thesis,

University of York.

[16] A. W. Roscoe (2011): Understanding Concurrent Systems. Texts in Computer Science, Springer.

[17] D. Tang, A. Plsek & J. Vitek (2010): Static Checking of Safety Critical Java Annotations. In: Proceedings

of the 8th International Workshop on Java Technologies for Real-Time and Embedded Systems, JTRES ’10,

ACM, pp. 148–154, doi:10.1145/1850771.1850792.

[18] K. Wei, J. C. P. Woodcock & A. L. C. Cavalcanti (2012): Circus Time with Reactive Designs. In: 4th

International Symposium on Unifying Theories of Programming, LNCS, doi:10.1007/978-3-642-35705-3 3.

[19] Andrew Wellings (2004): Concurrent and Real-Time Programming in Java. John Wiley & Sons.

[20] J. C. P. Woodcock & J. Davies (1996): Using Z—Specification, Refinement, and Proof. Prentice-Hall.

[21] F. Zeyda, L. Lalkhumsanga, A. L. C. Cavalcanti & A. Wellings (2013): Circus Models for Safety-Critical

Java Programs. The Computer Journal, doi:10.1093/comjnl/bxt060.


	1 Introduction
	2 Preliminaries
	2.1 Circus
	2.2 Safety Critical Java

	3 SCJ-Circus
	3.1 Syntax
	3.2 Semantic model
	3.3 Semantics

	4 Refinement Strategy
	4.1 E-anchor: starting point
	4.2 (CF) Introduction of SCJ control flow
	4.3 (AP) Introduction of application processes
	4.4 (FW) Introduction of framework processes
	4.5 (Conv) Conversion to SCJ-Circus.

	5 Conclusions

