
This is a repository copy of Formal mutation testing for Circus.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102815/

Version: Accepted Version

Article:

Alberto, A., Cavalcanti, A. L. C. orcid.org/0000-0002-0831-1976, Gaudel, M.-C. et al. (1
more author) (2016) Formal mutation testing for Circus. Information and Software
Technology. pp. 1-23. ISSN 0950-5849

https://doi.org/10.1016/j.infsof.2016.04.003

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by White Rose Research Online

https://core.ac.uk/display/42627086?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Formal mutation testing for Circus

Alex Albertoa, Ana Cavalcantib, Marie-Claude Gaudelc, Adenilso Simãoa

aUniversidade de São Paulo, ICMC, São Carlos, Brazil
bUniversity of York, Department of Computer Science, York YO10 5GH, UK

cLRI, Université de Paris-Sud and CNRS, Orsay 91405, France

Abstract

Context: The demand from industry for more dependable and scalable test-devel-

opment mechanisms has fostered the use of formal models to guide the generation

of tests. Despite many advancements having been obtained with state-based models,

such as Finite State Machines (FSMs) and Input/Output Transition Systems (IOTSs),

more advanced formalisms are required to specify large, state-rich, concurrent systems.

Circus, a state-rich process algebra combining Z, CSP and a refinement calculus, is

suitable for this; however, deriving tests from such models is accordingly more chal-

lenging. Recently, a testing theory has been stated for Circus, allowing the verification

of process refinement based on exhaustive test sets.

Objective: We investigate fault-based testing for refinement from Circus specifica-

tions using mutation. We seek the benefits of such techniques in test-set quality asser-

tion and fault-based test-case selection. We target results relevant not only for Circus,

but to any process algebra for refinement that combines CSP with a data language.

Method: We present a formal definition for fault-based test sets, extending the Circus

testing theory, and an extensive study of mutation operators for Circus. Using these

results, we propose an approach to generate tests to kill mutants. Finally, we explain

how prototype tool support can be obtained with the implementation of a mutant gen-

erator, a translator from Circus to CSP, and a refinement checker for CSP, and with a

more sophisticated chain of tools that support the use of symbolic tests.

Results: We formally characterise mutation testing for Circus, defining the exhaustive

test sets that can kill a given mutant. We also provide a technique to select tests from

these sets based on specification traces of the mutants. Finally, we present mutation

operators that consider faults related to both reactive and data manipulation behaviour.

Altogether, we define a new fault-based test-generation technique for Circus.

Conclusion: We conclude that mutation testing for Circus can truly aid making test

generation from state-rich model more tractable, by focussing on particular faults.

Keywords: Circus, mutation, testing, formal specification

1. Introduction

Testing from formal models is currently advancing as a solid approach to support

the growing demand from industry for more dependable and scalable test-development

Preprint submitted to Information and Software Technology March 22, 2016

mechanisms. For instance, Model-Based Testing (MBT) benefits greatly from a precise

and clear semantics for models, as opposed to informal or semi-formal models whose5

semantics is dependent on the particular tool in use.

Many advancements have been obtained with state-based models, such as Finite

State Machines (FSMs) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and Input/Output Transition Sys-

tems (IOTSs) [11, 12, 13, 14, 15]. Those models, however, quickly become intractable

when dealing with larger systems. Thus, more advanced formalisms are required to10

facilitate the specification of large, state-rich, concurrent systems.

Circus is a state-rich process algebra combining Z [16], CSP [17], and a refinement

calculus [18]. Its denotational and operational semantics are based on the Unifying

Theories of Programming (UTP) [19]. Circus can be used to verify large concurrent

systems, including those that cannot be handled by model checking. Circus has already15

been used to verify, for example, software in aerospace applications [20], and novel

virtualization software by the US Naval Research Laboratory [21].

A theory of testing for Circus [22], instantiating Gaudel’s long-standing theory of

formal testing [23, 24, 25], is available. It is founded on the Circus operational se-

mantics [26], described and justified in the UTP [27]. As usual in testing, it considers20

divergence-free processes for the model and the system under test. More precisely, if a

system under test diverges, since one cannot decide whether it is deadlocked or diver-

gent, divergence is assimilated to an unspecified deadlock and detected as a failure.

The Circus testing theory introduces potentially infinite (symbolic) exhaustive test

sets. To achieve practical usefulness, it is, therefore, mandatory to rely on selection25

criteria both to generate and to select a finite set of tests.

Test-case generation in model-based testing is guided by testing requirements that

should be met by a test suite. Usually, the requirements are either coverage criteria

that state which elements of the model should be traversed (covered) by test execution,

or fault models, which define specific faults that the test cases are supposed to reveal,30

if present in the system. These approaches are usually complementary to each other.

Coverage-based testing is proposed for Circus in [28]. It is worth investigating how

fault-based testing can complement the coverage testing.

Mutation testing is recognized as one of the most effective fault-detection tech-

niques [29]. The systematic injection of feasible modeling faults into specifications35

allows the prediction of potential defective implementations. The faults are seeded by

syntactic changes that may affect the observable specified behavior. Such faulty models

are “mutants”. A mutant is “killed” by a test case able to expose its observable behavior

difference. Testing can benefit from mutation in two ways [30]: some quality aspects

of a test set can be measured by the number of mutants it can kill, and the analysis of a40

mutant model allows the selection of tests targeting specific faults or fault classes.

In this paper, we introduce an approach to apply mutation testing to Circus specifi-

cations. Most of the presented mutation operators, that is, the fault-injection strategies,

are based on previous works that have tackled similar challenges in related modeling

languages [31, 32, 33]. The outcome of all mutation operators are, however, analyzed45

considering the specific features and particularities of Circus. Moreover, our results are

valid in the context of other process algebras, especially those based on CSP [34, 35].

The contribution of this paper is manifold. First, we instantiate the notions of

mutation testing for a state-rich concurrent language, namely, Circus, and its formal

2

theory of testing. In particular, we face the challenge of associating mutations in the50

text of a Circus specification to traces of the Circus denotational semantics that define

tests that cover the mutation. Even though mutation testing has already been applied to

languages and theories upon which Circus is based, such as CSP [31] and the UTP [36],

the consideration of a state-rich process algebra for refinement with a UTP semantics

is novel. Second, we propose mutation operators for Circus, analysing and adapting55

existing ones for the underlying languages and designing some that are specific to

Circus. Third, we describe prototype tool support for the application of the mutant

operators and two approaches to generate tests that can kill these mutants. When it is

feasible to translate the considered Circus specification into CSP, we propose the use

of the FDR model checker. For the other cases, we identify a tool chain that copes60

directly with Circus specifications via slicing techniques and symbolic execution.

This paper is organized as follows. Section 2 gives an overview of the aspects of

Circus and its testing theory that we use here. Section 3 extends the testing theory

to consider mutation testing and describes our approach to generating tests based on

mutants. The mutation operators used to generate the mutants themselves are defined65

in Section 4. Tool support for automation of our approach is discussed in Section 5,

and an extra complete example is introduced in Section 6. Finally, we present some

related and future work and conclusions in Sections 7 and 8.

2. Circus and its testing theory

In this section, we give a brief description of the Circus language, its operational70

semantics [26], and its testing theory [22].

2.1. Circus notation and operational semantics

As exemplified is Figure 1, Circus allows us to model systems and their compo-

nents via (a network of) interacting processes. In Figure 1, we define a single process

Chrono that specifies the reactive behaviour of a chronometer. This is a process that75

recognises tick events that mark the passage of time, a request to output the current

time via a channel time , and outputs minutes and seconds via a channel out .

A Circus specification is defined by a sequence of paragraphs. Roughly speaking,

they define processes, but also channels, and any types and functions used in the pro-

cess specifications. In Figure 1, we define a type RANGE , including the valid values80

for seconds and minutes, and the channels tick , time and out . The channel out is

typed, since it is used to communicate the current minutes and seconds recorded in the

chronometer as a pair. The final paragraph in Figure 1 defines Chrono itself.

Each process has:

a state and some operations for observing and changing it in a Z style. In Chrono, the85

state is composed by a pair AState of variables named sec and min with integer

values between 0 and 59 (as defined by RANGE), and the data operations on

this state are specified by the three schemas AInit , IncSec, IncMin .

actions that define communicating behaviours in a CSP style. The overall behaviour of

a process is specified by the main action after the symbol •. In our example, it is a90

3

RANGE == 0 . . 59

channel tick , time

channel out : RANGE × RANGE

process Chrono =̂ begin

state AState == [sec,min : RANGE]

AInit == [AState ′ | sec′ = min ′ ∧ min ′ = 0]

IncSec == [∆AState | sec′ = (sec + 1) mod 60 ∧ min ′ = min]

IncMin == [∆AState | min ′ = (min + 1) mod 60 ∧ sec′ = sec]

Run =̂ tick → IncSec; ((sec = 0) N IncMin)

@
((sec , 0) N Skip)

@
time → out !(min , sec)→ Skip

• (AInit ; (µ X • (Run; X)))

end

Figure 1: A Circus specification of a chronometer

sequential composition of the schema AInit followed by the repeated execution

of the Run action. The Circus construct µ X • A(X) defines a recursive action

A, in which X is used for recursive calls.

The initialisation schema AInit defines the values sec′ and min ′ of the state com-

ponents after the initialisation. These components are declared using AState ′. The95

operation schemas IncSec and IncMin change the state, as indicated by the declara-

tion ∆AState . They also define values sec′ and min ′ of the state components after the

operations. In each case, the seconds and minutes are incremented modulo 60.

Run starts with an external choice (@) between the events tick and time . If the en-

vironment chooses the event tick , this is followed by the increment of the chronometer100

using the data operation IncSec. Afterwards, we have another choice between ac-

tions guarded by the conditions sec = 0 and sec , 0. If, after the increment, we

have sec = 0, then the minutes are incremented using IncMin . Otherwise, the ac-

tion terminates (Skip). If the event time occurs, then the values of min and sec are

displayed (output), using the channel out , before termination.105

Circus comes with a denotational and an operational semantics, based on Hoare

and He’s Unifying Theories of Programming (UTP) [19], and a notion of refinement.

We can use Circus to write abstract as well as more concrete specifications, or even

programs. A full account of Circus and its denotational semantics is given in [37].

The operational semantics [26] plays an essential role on the definition of testing110

strategies based on Circus specifications. It is briefly introduced below, and a signif-

icant part is reproduced in Appendix A. It is defined as a symbolic labelled transition

system between configurations. These are triples (c | s |= A), with a constraint c, a

state s, and a continuation A, which is a Circus action. Transitions associate two con-

4

c ∧ T , ∅ x < αs

(c | s |= d?x : T→ A)
d?w0
−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

c ∧ (s; g)

(c | s |= gN A)
ǫ
−→ (c ∧ (s; g) | s |= A)

Figure 2: Examples of two transition rules: for inputs, and for guards

figurations and a label. The labels are either empty, represented by ǫ, or symbolic115

communications of the form c?w or c!w, where c is a channel name and w is a symbolic

variable that represents an input (?) or an output (!) value.

The first component c of a configuration (c | s |= A) is a constraint over symbolic

variables that are used to define labels and the state. The constraints are texts that

denote Circus predicates over these symbolic variables. We use typewriter font for120

pieces of text. For example, x := w0 is the text that describes an assignment of a value

represented by a symbolic variable w0 to the variable x . On the other hand, x := w0 is

the predicative relation that defines the meaning of x := w0. The distinction is important

in the operational semantics, which manipulates pieces of text to define constraints.

The second component s is a UTP predicate, which defines a total assignment125

x := w of symbolic variables w to all variables x in scope, including the state compo-

nents. State assignments, however, can also include declarations and undeclarations of

variables using the constructs var x := e and end x. The state assignments define a

value for all variables in scope. These values are represented by symbolic variables

similarly to what is classically done in symbolic execution of programs [38].130

Two examples of rules are given in Figure 2. The first rule defines the transitions

arising from an input prefixing d?x : T→ A; it is rule (A.3) of Appendix A. The label

of the transition is d?w0, where w0 is a symbolic variable. The constraint that w0 is of

the right type (w0 ∈ T) is added to the constraint of the new configuration. The state

of the new configuration is enriched, via the UTP sequence operator “; ”, by a new135

component x , which is assigned value w0. The continuation of the new configuration

is the action A in an environment enriched by x as defined by let x • A.

The second rule of Figure 2 defines the transitions arising from a guarded action

g & A. The label of such a transition is empty, since the evaluation of g is not an

observable event; g is added to the constraint of the new configuration taking into140

account the assignments in the current state s . The continuation is A.

Traces of a process are defined in the usual way, that is, as sequences of observ-

able events. Due to the symbolic nature of configurations and labels, however, we

can obtain from the operational semantics constrained symbolic traces, or cstraces,

for short. These are pairs formed by a sequence of labels, that is, a symbolic trace,145

and a constraint over the symbolic variables used in the labels. Roughly speaking,

the constrained symbolic trace can be obtained by evaluating the operational seman-

tics, collecting the labels together, and accumulating the constraints over the symbolic

5

cst1 :(〈tick〉, true)

cst2 :(〈time , out!α0!α1〉, α0 = 0 ∧ α1 = 0)

cst3 :(〈tick , time , out!α0!α1〉, α0 = 0 ∧ α1 = 1)

cst4 :(〈tick〉60, true)

cst5 :(〈tick〉60 a 〈time , out!α0!α1〉, α0 = 1 ∧ α1 = 0)

Figure 3: Some constrained symbolic traces for Chrono

variables used in the labels. Figure 3 gives some examples of cstraces of Chrono.

A trace is an instantiation of a cstrace, where the symbolic variables used in the150

labels are replaced by values satisfying the constraint. For instance, the two traces

〈time , out!0!0〉 and 〈tick , time , out!0!1〉 are instances of cst2 and cst3.

2.2. Testing in Circus

Gaudel’s long-standing testing theory [23] has been instantiated for Circus in [22].

The conformance relation considered in that work is process refinement: the UTP no-155

tion of refinement applied to state-rich processes.

As previously explained, the Circus testing theory takes the view that, in specifica-

tions, divergences are mistakes. In addition, since in a system under test (SUT), they

are observed as deadlocks, altogether the results in [22] consider divergence-free spec-

ifications and SUT. For divergence-free models, the Circus refinement relation can be160

characterized by the conjunction of traces-refinement and the well known conf rela-

tion, as defined in [39], that requires reduction of deadlocks. This is proved in [40].

Accordingly, [22] defines separate exhaustive test sets for traces refinement and

conf , namely ExhaustT (SP) and Exhaustconf (SP), which we briefly present here.

A test for traces refinement is constructed by considering a trace of the Circus165

specification and one of the events that cannot be used to extend that trace to obtain a

new trace of the Circus specification [41]. Such events are called the forbidden con-

tinuations of the trace. For a specification SP , the exhaustive test set ExhaustT (SP)

includes all the tests formed by considering all the traces and all their forbidden con-

tinuations and inserting some special verdict events, as explained below.170

For a finite trace s = 〈a1, a2, . . . , an 〉 and an event (forbidden continuation) a , we

define the test process TT (s , a) as follows:

TT (s , a) = inc → a1 → inc → a2 → inc . . . an → pass → a → fail → STOP

Extra special events inc, pass and fail are used to indicate a verdict. In the execution

of a testing experiment, the test is run in parallel with the SUT and the last special event

observed in a testing experiment provides the verdict. Due the possibility of nondeter-175

minism, the submitted trace of the Circus specification is not necessarily performed by

the SUT. The inc event indicates an inconclusive verdict: the SUT has not performed

the proposed trace. If it does perform the trace, a pass event is observed, but if the SUT

proceeds to engage in the forbidden continuation a , then there is a fail event.

6

Example 1. For instance, a possible test of Chrono, based on the trace 〈tick , time〉180

and the forbidden continuation out .0.0 is:

inc→ tick → inc→ time → pass → out .0.0→ fail → Stop

�

This leads to the following definition of the exhaustive test set for traces refinement:

ExhaustT (SP) = {TT (s , a) | s ∈ traces(SP) ∧ s a 〈a〉 < traces(SP) }

The exhaustivity, that is, the equivalence of traces refinement to the absence of fail

verdict when running all the tests of ExhaustT (SP), is proved in [41] and [22] under185

– as usual in theoretical approaches to testing in the presence of nondeterminism –

the complete testing assumption [42]: when a test experiment is performed a sufficient

number of times all possible (nondeterministic) behaviours of the SUT are observed.

Traces and forbidden continuations are characterised symbolically leading to the

definition of SExhaustT (SP), an exhaustive set of symbolic tests based on cstraces190

and constrained symbolic forbidden continuations.

Example 2. An example of such a symbolic test for Chrono, based on the cstrace

(〈tick , time〉, true) and the forbidden constrained symbolic continuation defined as

out .α0.α1 : (¬(α0 = 0 ∧ α1 = 1)) is as follows:

inc→ tick : true → inc→ time : true → pass

→out .α0.α1 : (¬(α0 = 0 ∧ α1 = 1))→ fail → Stop

�195

In [22] it is proved that ExhaustT (SP) corresponds to all the tests that are valid in-

stances (that is, that satisfy the constraints) of some symbolic test in SExhaustT (SP).

The conf relation captures reduction of deadlock. Given SP1 and SP2, we have

that SP1 conf SP2 if, and only if, whenever SP2 engages in a sequence of events, that

is, a trace that can be accepted by SP1 as well, then SP2 can only deadlock if SP1 may200

as well. Formally, conf can be defined as follows:

SP2 conf SP1 =̂ ∀ t : traces(SP1) ∩ traces(SP2) • Ref (SP2, t) ⊆ Ref (SP1, t)
where Ref (SP , t) =̂ {X | (t ,X) ∈ failures(SP) }

For a trace t of a process P and a subset X = {a1, . . . , an } of the set of events of P ,

noted αP , the pair (t ,X) belongs to failures(P) if, and only if, after performing t ,

P may refuse all events of X . In other words, the parallel composition below may

deadlock just after t . We use proc(t) to represent a Circus process that accepts just the

execution of t before finishing; it can be defined using prefixing, for example.

P J αP K (proc(t); (a1 → P1 @ . . . @ an → Pn))

P J αP KQ is the parallel composition of the processes P and Q with synchronisation

required on all the events of P , that is, the events in the set αP .

7

Thus, given a system under test SUT and a specification SP , for SUT conf SP to

hold, the definition requires that, after performing every one of their common traces,205

the failures of SUT are failures of SP . Consequently, after a trace t of SP , SUT

may refuse all events refused by SP or accept some of them. Testing for conf based

on the refusals of SP would be, therefore, useless. What must be tested is that, after

every trace t of SP , SUT cannot refuse all events in a set X of events such that

(t ,X) < failures(SP). Such sets of events are called acceptance sets of SP after t .210

Thus, tests for conf are based on traces and acceptance sets. For a finite trace

s = 〈a1, a2, . . . , an 〉 and a(n acceptance) set X = {x1, . . . , xm } of events, we define the

Circus test process TF (s ,X) as shown below.

TF (s ,X) = inc → a1 → inc → a2 → inc . . . an → fail

→ (x1 → pass → Stop @ . . . @ xm → pass → Stop)

Example 3. An example of such a test for Chrono, based on trace 〈tick〉 and on the215

acceptance set {tick , time} is:

TF (〈tick〉, {tick , time}) = inc → tick → fail

→ (tick → pass → Stop @ time → pass → Stop)

�

An exhaustive test set of a specification SP for conf is made of all tests formed by

considering all traces of SP , and all the acceptance sets after each of them:

{TF (t ,X) | t ∈ traces(SP) ∧ (t ,X) < failures(SP) }

Actually Exhaustconf (SP) is defined as a subset of the set above where only minimal220

acceptance sets are considered, since as soon as some event in a set X is accepted after

a trace, any set containing X is an acceptance set after this trace. For instance, the test

in Example 3 is not in Exhaustconf (Chrono), but the two tests below are:

TF (〈tick〉, {tick }) = inc → tick → fail → (tick → pass → Stop)

TF (〈tick〉, {time}) = inc → tick → fail → (time → pass → Stop)

The symbolic counterpart of Exhaustconf (SP) is SExhaustconf (SP), defined in [22].

SExhaustT (SP) and SExhaustconf (SP) provide bases for defining strategies for225

test selection as definitions of subsets of ExhaustT (SP) and Exhaustconf (SP) via

uniformity or regularity hypotheses [23] and adequate instantiations [22], or coverage

criteria of the specification [28]. This paper addresses fault-based selection techniques.

The Circus testing theory for traces refinement can be seen as a fault-based testing

approach, because tests are constructed from (minimal) invalid traces. The fault consid-230

ered in a particular test is very specific: a single forbidden continuation; the exhaustive

test set considers all such possible faults. The theory for conf testing considers other

specific faults, namely refusals of the SUT that are not specified.

A practical question regards the use of more elaborated fault models. This is studied

in the next section, and mutation operators are presented in Section 4.235

8

3. Mutation testing in Circus

We assume that there is a specification (model), which is a Circus process that de-

scribes what the implementation should do. A mutant is also a Circus process, some-

how related to the original specification; it represents a fault in that specification. In

what follows, we may also refer to mutants as faulty models. In general, given a mutant240

defined as a Circus process, it can be used to generate tests to identify the fault it rep-

resents, that is, to “kill the mutant”. We apply the approach in [36] by Aichernig at al.

for mutation testing based on refinement, but consider the particular case of state-rich

process algebraic models, and Circus in particular.

A mutant FM is of interest if there exists at least one test that can kill it. This is not245

the case if it is a refinement of the specification. This is the counterpart at the model

level of the well known problem of equivalent mutants at the program level. In such a

case, the mutant is not a faulty model and so not relevant.

In Section 3.1 we formalise mutation testing when traces refinement is the confor-

mance relation of interest. Section 3.2 presents an example: a mutant and the tests they250

generate. Section 3.3 considers mutation when testing against the conf conformance

relation. Finally, in Section 3.4, we introduce a new kind of trace, closer to the text of

the specification, to relate tests and mutation points in the specification.

3.1. Killing faulty models against traces refinement

In the context of traces refinement, we consider a faulty model FM to be of interest255

if it is not a traces refinement of the specification model SP . In this case, there is at

least one trace of FM that is not a trace of SP ; this is not the empty trace 〈〉, because

〈〉 is a trace of all processes. To detect the fault in FM , we can use a test TT (s , a)

characterised by any of the minimal traces s a 〈a〉 of FM that are not traces of S .

Formally, we define the set FBTestsSP
T

(FM) of fault-based tests characterised by FM260

with respect to a specification SP as shown below.

Definition 1.

FBTestsSP
T

(FM) =

{s : traces(SP); a : Σ | s a 〈a〉 ∈ traces(FM) \ traces(SP) • TT (s , a) }

This is the set of all tests TT (s , a), formed from traces s of SP and events a from

Σ such that s a 〈a〉 is a trace of FM , but not of SP . A mutant FM is killed by

any test from FBTestsSP
T

(FM). As a direct consequence of its definition, we have that

FBTestsSP
T

(FM) is a subset of ExhaustT (SP), since it contains tests TT (s , a), where265

s ∈ traces(SP) and s a 〈a〉 < traces(SP).

Before generating tests based on a mutant FM , a first step is the confirmation that

it is not a traces refinement of the model SP . For that, it is of value to use a refinement

model checker, like FDR [43] for CSP, for example, to check SP ⊑T FM . If this does

not hold, FDR provides a counterexample: a minimal trace of FM that is not a trace of270

SP . As said above, this identifies a test to detect the fault specified in FM .

9

process MutatedChrono =̂

...
Run =̂ (tick → IncSec; (¬ (sec = 0) N IncMin)

@((sec , 0) N Skip)))

@(time → out !(min , sec)→ Skip)

• (AInit ; (µ X • (Run; X)))

...

Figure 4: a mutated chronometer

3.2. A first mutant of Chrono and some tests that kill it

Figure 2 presents the mutant MutatedChrono of the Chrono process, which is

obtained by the introduction of the negation (¬) operator in the first guard of the ac-

tion Run . The following change in behavior arises from this mutation: like Chrono,275

MutatedChrono starts with the AInit operation that initialises min and sec to 0 and,

after a tick , IncSec increases the value of sec to 1; afterwards, however, the mutant

behaves nondeterministically, either like Chrono, that is, executing Skip and then Run

again, or performing IncMin and then Run again, like Chrono in the case sec = 0.

This erroneously leads to a state where min = 1 and sec = 1. This mutated state can280

be later observed via an output on the channel out following a time event.

Thus 〈tick , time , out!(1, 1)〉 is a trace of MutatedChrono, but not of Chrono, for

which the only accepted event after 〈tick , time〉 is out!(0, 1). As seen above such

traces define tests that kill the mutant. An example is the test below:

inc→ tick → inc→ time → pass → out!(1, 1)→ fail → Stop

It is a member of FBTestsChrono
T

(MutatedChrono).

Actually, this test may kill the mutant since it is nondeterministic due to the overlap

of the guards in the choice operator (for the distinction between “may kill” and “must

kill”, see [44]). The test kills the mutant under the complete testing assumption.285

3.3. Killing faulty models against the conf conformance relation

Given a mutant FM , it is of interest if ¬ (FM conf SP). In this case, there is at

least one common trace s of SP and FM for which ¬ (Ref (FM , s) ⊆ Ref (SP , s)).

Therefore, according to the definition of Ref (P , s), there is at least one set of events

X such that (s ,X) ∈ failures(FM), but (s ,X) < failures(SP).290

The detection of the fault specified in FM with respect to conf is based on tests

TF (s ,X) characterized by (s ,X) ∈ failures(FM), where (s ,X) < failures(SP), and

s is a trace s of SP and FM . The full set FBTestsSP
F

(FM) of fault-based tests for

conf characterized by FM with respect to SP is defined as follows.

10

Definition 2.

FBTestsSP
F

(FM) =

{s : traces(SP) ∩ traces(FM); X : PΣ |

(s ,X) ∈ failures(FM) \ failures(SP) • TF (s ,X) }

As a direct consequence of the above definition, we have that FBTestsSP
F

(FM) is a295

subset of Exhaustconf (SP), since it contains tests TF (s ,X), where s ∈ traces(SP)

and (s ,X) < failures(SP). In words, X is an acceptance set of SP after s .

Theorem 1. For every mutant FM of a specification SP , the following statements are

equivalent:

1. FM is of interest; and300

2. FBTestsSP
T

(FM) , ∅ ∨ FBTestsSP
F

(FM) , ∅.

Proof. If FM is of interest, it is not a refinement of SP , that is, either it is not a traces

refinement of SP , or it does not satisfy FM conf SP .

In the first case, as shown in [22], there exists some T ∈ ExhaustT (SP) such that

its execution against FM yields a fail verdict. By definition of ExhaustT (SP), there305

are s and a , such that T = TT (s , a) and s ∈ traces(SP) ∧ sa〈a〉 < traces(SP). From

the definition of TT (s , a), since the fail event is reached, sa〈a〉 is a trace of FM . Thus,

from Definition 1, T belongs to FBTestsSP
T

(FM), and so FBTestsSP
T

(FM) , ∅.

With a similar argument, the second case implies FBTestsSP
F

(FM) , ∅.

Conversely, if FBTestsSP
T

(FM) , ∅, there exists some T = TT (s , a), where310

s ∈ traces(SP) and s a 〈a〉 ∈ traces(FM) \ traces(SP). T belongs to ExhaustT (SP)

and by construction yields a fail verdict when executed against FM . Therefore, from

the exhaustivity result of [22], FM is not a traces refinement of SP .

The proof that FBTestsSP
F

(FM) , ∅ implies that ¬ FM conf SP is similar. �

In Theorem 1, we formalise the previously introduced notion of mutants of interest: a315

mutant is of interest if its fault can be exposed by, at least, a test.

Example 4. Coming back to MutatedChrono, another change of behavior is that it

introduces a deadlock. When the mutated external choice is reached in a state where

sec = 0, because all the possible choices are guarded by the negation of this condition,

there is a deadlock. Due to the equation sec′ = (sec +1)mod 60 in the IncSec schema,320

it occurs after sixty tick events. After such a trace, Chrono must accept one more tick

event, or one time event, but the mutated specification refuses both. This leads to the

following tests, each of them killing the mutant under the complete testing assumption.

(inc→ tick)60→ fail → tick → pass → Stop

(inc→ tick)60→ fail → time → pass → Stop

We use (inc → tick)60 to denote a prefixing action where the events inc and tick are

offered in alternation, starting with inc, 60 times. �325

11

When generating tests based on given a mutant FM , a first step is the confirmation

that it is a traces refinement, but not a failures refinement of SP . If we can use a

refinement model checker, we can check SP ⊑T FM , and then use the counterexample

for SP ⊑F FM . In the case of FDR, for example, the counterexample is a minimal set

of acceptances of FM that is not a set of acceptances of SP . Alternatively, it gives a330

set of refusals of FM that is not a set of refusals of SP . It is this set of refusals that can

be directly used to define a test to detect the fault specified in FM .

In our framework, a set of mutants M of SP defines a set

TM
T
=̂ {M • FBTestsSP

T
(M)}

of subsets of ExhaustT (SP) and a set

TM
F
=̂ {M • FBTestsSP

F
(FM)}

of subsets of Exhaustconf (SP). Therefore, M is the basis of a test selection method335

in the sense of [22]. Besides, given a test suite T , it is adequate for M if, for each

m ∈ M , T ∩ FBTestsSP
T

(m) , ∅ or T ∩ FBTestsSP
F

(m) , ∅. From Lemma 1, we

know that for a set M of mutants of interest, there is always an adequate test suite.

3.4. Specification traces and mutation points

Mutations are related to the text of a specification. Traces and even constrained340

symbolic traces, however, are not related to the text of the specification. They record

a possible history of interactions, and it may well be the case that, in some specific

situations, we can relate interactions to events and communications in the text of spec-

ification. On the other hand, but there is no record of guards and data operations that

may have been evaluated or executed in the path to that interaction.345

As an example, we consider the constrained symbolic trace cst3 in Figure 3. Since

there is only one communication via out in the text of Chrono, in this special case, we

can relate out!α0!α1 to the anti-penultimate line of its definition. On the other hand,

cst3 has no record of AInit and IncSec, and of the guards sec = 0 and sec , 0, which

are considered in the path to that interaction and may be the object of a mutation.350

Therefore, we use specification traces, as defined in [45, 28], to build the tests

aimed at killing a mutant. In [28], specification traces are used to consider data-flow

coverage, which is also based on the text of a specification. While cstraces are useful

for trace selection based on constraints on the traces, they do not support selection

based on the text of the specification, as we explain in the sequel.355

In specification traces, labels are pieces of the specification: guards (predicates),

communications, data operations (schemas) or simple Circus actions. In case there

are repetitions of identical text pieces in the Circus specification, different occurrences

are distinguished in the labels using textual tags. The syntactic category of Labels is

defined in Figure 5; the sets Pred , Exp, CName , VName , and Schema are those of360

the Circus predicates, expressions, channel and variable names, and Z schemas [46].

In Figure 6, we present two rules of the transition system that characterises specifi-

cation traces. These transition rules correspond to those for the operational semantics

shown in Figure 2. We note that, the same notion of configuration is used and the tran-

sitions are the same, except for the labels. For instance, for an input, the label d?w0365

12

Label ::= Pred | Comm | LAct

Comm ::= ǫ | CName | CName!Exp | CName?VName

| CName?VName : Pred

LAct ::= VName∗ : [Pred ,Pred] | Schema | VName := Exp

| var VName : Exp | var VName := Exp | end VName

Figure 5: Syntax of specification labels.

c ∧ T , ∅ x < αs

(c | s |= d?x : T→ A)
d?x
=⇒ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(1)

c ∧ (s; g)

(c | s |= gN A)
g
=⇒P (c ∧ (s; g) | s |= A)

(2)

Figure 6: Transition rules that define specification traces

in the operational semantics uses a symbolic variable w0, while in the specification

traces it refers to the variable x used in the specification. Moreover, the transition for a

guarded action g N A is no longer unlabelled, but records the guard g .

In Figures 7 and 8, we list some specification traces for the processes Chrono and

MutatedChrono. The use of text pieces from the specifications in labels allows the370

identification and selection of traces that reach textual constructs affected by mutation.

Remark. In [28], a subset of specification traces, sptraces, is considered for the def-

inition of tests satisfying data-flow coverage criteria, namely, the set of specification

traces where the last event is an observable event. Some of the specification traces

given in Figures 7 and 8 are not sptraces. It is the case of spect1 and spect ′1, and of375

all the traces in Setspect ′5. The specification traces in this last set, for example, are of

great interest since they lead to a deadlock that is not in the original specification, and

thus provide bases for obtaining tests of FBTestsChrono
F

(MutatedChrono). �

Converting a specification trace to a cstrace requires the definition of an operational380

semantics for labels. Figure 9 presents its transition rules for input and guard labels.

We refer to Figure 2 for the corresponding rules of the operational semantics. Like in

the operational semantics, the configuration is a triple, but here, instead of a process or

action, there is a label associated with a constraint and a state assignment. Labels with

no guard, but with an input or output communication, are handled in the same way as385

input and output prefixes in the operational semantics. When there is a label (g, e, A),
with a guard that may be different from True, if the guard holds in the current state

then there is a transition to a label (e, A) with guard True, or no guard, for short. The

13

spect1 : 〈AInit, tick , IncSec, (sec , 0)〉

spect2 : 〈AInit, time , out!min!sec〉

spect3 : 〈AInit, tick , IncSec, (sec , 0), time , out!min!sec〉

spect4 : 〈AInit〉 a 〈tick , IncSec, (sec , 0)〉59 a 〈tick , IncSec, (sec = 0), IncMin〉

spect5 : 〈AInit〉 a 〈tick , IncSec, (sec , 0)〉59a

〈tick , IncSec, (sec = 0), IncMin , time , out!min!sec〉

Figure 7: Some specification traces for Chrono

spect ′1 :〈AInit , tick , IncSec,¬ (sec = 0), IncMin〉

spect ′2 :〈AInit , time , out!min!sec〉

spect ′3 :〈AInit , tick , IncSec, (sec , 0), time , out!min!sec〉

spect ′4 :〈AInit , tick , IncSec,¬ (sec = 0), IncMin , time , out!min!sec〉

Setspect ′5 :〈AInit , tick , IncSec〉a

(〈¬ (sec = 0), IncMin , tick , IncSec〉 | 〈(sec , 0), tick , IncSec〉)59

[deadlock]

Figure 8: Some specification traces for MutatedChrono

transition is unlabelled, like in the operational semantics.

The similarity between the operational semantics of labels and of Circus is not390

surprising. Conversion of specification traces (of labels) to a cstrace recovers the oper-

ational semantics of the Circus texts captured in the specification traces.

In Figures 3 and 10 we give the constrained symbolic traces converted from those

specification traces listed in Figures 7 and 8. The trace cst ′4 is that used in Section 3.2

as a basis for the first test that kills MutatedChrono. The trace cst ′5 is the unique395

translation of all the traces in Setspect ′5; it is the basis of the two other killer tests given

in Section 3.2. The conversion procedure of sptraces into cstraces is given in [28] and

trivially generalises to specification traces. As seen above, several specification traces

may correspond to the same cstrace. This follows from the fact that cstraces record

only observable symbolic events, while specification traces record internal events and400

may distinguish different ways of enchaining the same observable events.

To summarise, in considering mutation testing in Circus we use three kinds of

traces: specification traces, cstraces, and standard traces. We perform the selection

among specification traces and then generate from those some killer tests belonging

to FBTestsSP
T

(FM) and FBTestsSP
F

(FM), which are defined as sets of concrete tests405

based on standard traces. Since the operational semantics defines the traces of a speci-

14

c ∧ (s; g)

(c | s |= (g, e, A))
ǫ
−→ (c ∧ (s; g) | s |= (e, A))

c ∧ T , ∅

(c | s |= (d?x : T, A))
d?w0
−→ (c ∧ w0 ∈ T) | s; var x := w0 |= let x • A)

Figure 9: Operational semantics of labels

cst ′1 :(〈tick〉, true)

cst ′2 :(〈time , out!α0!α1〉, α0 = 0 ∧ α1 = 0)

cst ′3 :(〈tick , time , out!α0!α1〉, α0 = 0 ∧ α1 = 1)

cst ′4 :(〈tick , time , out!α0!α1〉, α0 = 1 ∧ α1 = 1)

cst ′5 :(〈tick〉60, true) [deadlock]

Figure 10: Constrained symbolic traces for MutatedChrono

fication as cstraces, there is an intermediate form of the tests based on cstraces, that is,

symbolic killer tests, that need to be adequately instantiated into some concrete tests.

We must take into account that a specification trace corresponds to one cstrace, but

that several specification traces may correspond to the same cstrace, as seen above, and410

that a specification trace of FM that is not a specification trace of SP may lead to a

cstrace that is the translation of another specification trace of SP . Given a mutant FM

of SP , we define a notion of relevant specification trace of FM .

Definition 3. Given a specification SP and a faulty model FM obtained by mutation

of SP , a specification trace of FM is relevant if:415

• it is not a specification trace of SP and its conversion into a cstrace is not a

cstrace of SP , or

• one of the instantiations of its conversion into a cstrace is part of some failure of

FM that is not a failure of SP .

The first case is the starting point for obtaining some tests in FBTestsSP
T

(FM) and the420

second case for some tests in FBTestsSP
F

(FM).

To determine whether a specification trace of FM is relevant, we need to compare

its cstrace to those of SP . We note that in the Circus testing theory, we use unique (up

to predicate equivalence) symbolic representatives of these traces using a fixed ordered

alphabet of symbolic variables. That allows a uniform account of these traces, and425

simplifies the management of names by avoiding renaming complications.

If there are no relevant specification traces of FM , it means that there exist no test

for killing FM , that is, the effect of the mutation is not observable, neither for traces,

nor for failures. FM is a refinement of SP and is not a mutant of interest.

15

The existence of non-relevant mutated specification traces is due to the possibility430

of specifying systems in an abstract way, with hidden operations on some state: the con-

sequences of a mutation of such operations may not be observable. This phenomenon

is not specific to Circus and similar issues are likely to occur in model-based mutation

testing as soon as there is a significant abstraction gap between the model and the SUT.

It is very likely that some mutations affecting the hidden state can be identified as435

prone to producing non-relevant specification traces, and then avoided in a particular

test-selection heuristic. These points are the subject of future work.

In conclusion, given a mutation of a Circus specification, the principle of the test-

generation process that we propose is as follows:

1. Select a specification trace spect of FM that reaches the mutation point;440

2. Convert it into its corresponding cstrace cst ;

3. Check whether cst is a cstrace of SP ;

4. If not, instantiate cst into a concrete trace and build the corresponding tests of

FBTestsSP
T

(FM) as defined in Section 3.1;

5. Check whether some instantiations of cst leads to failures that are not failures445

of SP and build the corresponding tests of FBTestsSP
F

(FM), as defined in Sec-

tion 3.3.

We discuss in Section 5 some tools to support this process. First, in the next section,

we present operators to produce mutants.

4. Mutation operators450

A mutation operator Op is a function that generates a set of mutants for a given

specification SP . In each mutant in Op(SP), one fault is inserted. Such an operator

only yields well-typed, syntactically correct, mutants. A mutation operator is valid for

a specification, if it generates at least one mutant of interest.

In this section, we present a list of mutation operators for Circus. Many of the455

mutation operators of CSP presented in [31] by Srivatanakul et al. are directly appli-

cable to Circus. These are discussed in Section 4.1. For the data and state aspects of

Circus, we can benefit from some mutation operators based on fault classes for predi-

cates, like those presented by Kuhn in [32] and enriched by Black et al. in [33]. These

are discussed in Section 4.2. We need to take into consideration, however, the specific460

features and particularities of our target language, Circus.

4.1. Modification of behavioural operators

Three classes of mutation operators are suggested for CSP in [31]: process defi-

nition, expression, and parameter modification operators. Each operator from the first

two classes is considered in this section, and we introduce some variations better suited465

to Circus models. When adequate, we refer to the rules of the Circus operational se-

mantics that formalise the affected behaviors.

Parameters are not as important in Circus as they are in CSP. Since Circus processes

can have a state, parametrisation is typically used to define generic processes. In this

16

Class Abbreviation Operator Source OPS Rules

B
eh

av
io

u
ra

l
O

p
er

at
o

rs

E
v
en

ts

ped Event Drop CSP 9, 30

per Event Replacement CSP 9, 30

pes Event Swap CSP 9, 30

pei Event Insert CSP 9, 30
O

p
er

at
o

rs
pco Choice Operator CSP 18 - 24

ppoParSeq Parallel Composition CSP* 14,15,25-30

ppoSeqPar Sequential Composition CSP* 25 - 30

ppoSeqInt Interleave CSP* 25 - 30

ppoParInt Interleave CSP* 25 - 30

ppoNameSet Parallel State Writing Circus 25 - 30

C
o

m
m

u
n

ic
. pmr Message Replacement CSP 10 - 12

pcr Channel Replacement CSP 10 - 12

pci Communication Insert CSP 10 - 12

pce Communication Elimination CSP 10 - 12

pcs Communication Swap CSP 10 - 12

N
am

e/
H

id
e pprAction Action Name Circus

pprSchema Schema Name Circus

pprHide Hide Events Circus 31 - 33

pprUnhide Unhide Events Circus 31 - 33

E
x

p
re

ss
io

n
O

p
er

at
o

rs

L
o

g
ic

al

eni Negation Insert CSP

eniGuard Guard Negation CSP* 17

elr Operator Replacement CSP

eld Operand Replacement CSP

A
ri

th
m

et
ic

al ear Operator Replacement CSP

eur Unary Insertion CSP

eak Add k to Operand CSP

esk Sub k from Operand CSP

ead Operand Replacement CSP

R
el

. err Operator Replacement CSP

Table 1: Mutation operators for Circus

case, parameters play the role of global constants in the scope of the process definition.470

We, therefore, do no consider parameter operators here.

Following the terminology in [31], synchronization events, that is, communications

without value passing, are called simply “events”. When values are passed, we refer to

the events as “communications”. Table 1 lists the operators presented in this section,

identifying their classification, abbreviation, name, source and, when available in Ap-475

pendix A, the associated operational semantics rules. The source column displays CSP

for operators originally proposed for CSP, CSP∗ for operators adapted from CSP to

match Circus constructs, and Circus for operators designed specifically for Circus.

We describe the operators as functions from texts (of actions) to texts, and identify

conditions in which they can or cannot be applied. A mutated process is obtained by480

applying one of these functions to one of its actions.

17

process ChronoEDropTime =̂

...
Run =̂ (tick → IncSec; ((sec = 0) N IncMin)

@((sec , 0) N Skip)))

@(out !(min , sec)→ Skip)

• (AInit ; (µ X • (Run; X)))

...

Figure 11: Mutation of Chrono after dropping time

In the sequel, we present mutations of events and communications, choice and

concurrency operators, name references, and hiding.

4.1.1. Mutations of events

Event Drop. (ped) removes one (arbitrary) occurrence of a prefixing event. Such muta-485

tion is likely to produce processes that are not a refinement of the original specification

in two ways: the removal of observable events from some traces and the possibility of

deadlock introduction in parallel compositions. This can be checked in the rules (A.2)

and (A.6) of the Circus operational semantics, reproduced in Appendix A, where out-

put and parallelism are described. The definition of the ped operator is as follows.490

ped (A[e→]) = A[]

Remark. We use A[t1] to indicate that in the text of action A there is an occurrence

of term t1. There may be several such occurrences and we assume that we can dis-

tinguish them (via their position in the text, for example). A[t1] refers to a particular

occurrence. A subsequent reference to A[t2] denotes the action obtained by replacing

the occurrence of t1 originally singled out by t2. In particular, A[] as used above de-495

notes the text of A with this occurrence replaced by an empty term. �

In using the above operator and others to follow, the terms singled out in the action

parameter, like e→ in A[e→] above, for example, need to be chosen.

Example 5. Figures 11 and 12 show the mutants of the Chrono process obtained via500

the mutations: ped (Chrono[time→]) and ped (Chrono[tick→]), which remove the

occurrences of the synchronization events time and tick from the Run action. Among

the traces of ChronoEDropTime that are not traces of Chrono, there are 〈out!(0, 0)〉
and 〈tick, out!(0, 1)〉, which lead to the tests below:

pass → out!(0, 0)→ fail → Stop

inc→ tick → pass → out!(0, 1)→ fail → Stop

They are members of FBTestsChrono
T

(ChronoEDropTime).505

18

process ChronoEDropTick =̂

...
Run =̂ (IncSec; ((sec = 0) N IncMin)

@((sec , 0) N Skip)))

@(time → out !(min , sec)→ Skip)

• (AInit ; (µ X • (Run; X)))

...

Figure 12: Mutation of Chrono after dropping tick

ChronoEDropTick is an example of a divergent mutant, since Run may recurse

indefinitely in an endless series of internal actions IncSec and IncMin . without ever

communicating with the environment. Thus, it is discarded.

�

Event Replacement. (per) replaces an event by another one within the current local510

scope (action) or the global scope (process). It affects traces in similar ways as the ped

operator, as described by the same rules of the operational semantics.

per (A[e→], f) = A[f→]

Event Swap. (pes) swaps two consecutive synchronization events in an action defi-

nition. If we apply it only to distinct events, this operator is prone to yielding mu-

tants of interest, although this cannot be assured. For example, swapping a and b in515

a→ b→ STOP @ b→ a→ STOP leads to a traces refinement. The behavior is defined

by the same rules (A.2) and (A.6) of the Circus operational semantics.

pes(A[e→ f→]) = A[f→ e→] where e , f

Event Insert. (pei) inserts an event by duplication. The mutated action may not be of

interest if the duplication occurs inside a loop.

pei (A[e→]) = A[e→ e→]

This concludes our list of event mutation operators.520

4.1.2. Mutations of choice and concurrency operators

The following operators target choice and concurrency operators.

Choice Operator. (pco) replaces the external choice by the internal choice operator.

From rules (A.4) and (A.8) to (A.11) of the operational semantics, we observe that

such mutation may introduce deadlocks. The traces of the original and mutated actions525

are the same, so we always have a traces refinement. Therefore, the only error that may

be introduced by such a mutation is a forbidden deadlock.

pco(A[@]) = A[⊓]

We note that replacing an internal with an external choice is not of interest, since A⊓B

19

is refined by A @ B , whether we consider traces or failures refinement.

Parallelism and sequence. (ppo) In [31], this operator can be used to replace an inter-530

leaving, a parallel or a sequential composition with each other. For Circus, we need to

consider manipulation of state values in concurrent actions. We, therefore, distinguish

the possible mutations for each type of composition.

Parallel composition of actions requires the explicit specification of which variables

are available for writing by each concurrent action. For instance, in the Circus parallel535

composition A J NSa | CS | NSb K B values written by A into the state variables are only

kept for the variables with names in the name set NSa . The same holds for the action

B and the name set NSb . These sets must be disjoint. Any change of value not match-

ing a name in the respective specified set is cancelled after the parallel composition

ends (see rules (A.5) to (A.7) of the operational semantics). There are several inter-540

esting possibilities for injecting faults in parallel composition operators. For instance,

to empty one or both name sets in a parallel composition is likely to yield unexpected

state configurations and is defined by the following operation.

ppoNameSet(A[NS]) = A[{}]

NS refers to a name set in a parallel composition. Removing or inserting arbitrary

elements in NS and other variations of this operator might also be of interest, provided545

the disjointness of the sets on both sides of the composition is preserved.

We define some specific operators for mutating the nature of the compositions.

Such mutations are likely to cause substantial observable changes, although there is no

guarantee that the result is a mutant of interest. Specific operators for changing parallel

to sequential and the inverse are defined as follows.

ppoParSeq(A[B J NSb | CS | NSc K C]) = A[B; C]
ppoSeqPar (A[;], CS) = A[JCSK]

The new sequential composition introduced by ppoParSeq ignores the extra parame-

ters of the original parallel composition, that is, NSa, CS, and NSb, and the new parallel

composition introduced by ppoSeqPar is designed to synchronize on all channels in a

given set CS and has no write access to any state values. We also define operators for

mutating any composition into an interleaving.

ppoParInt(A[JCSK]) = A[9]

ppoSeqInt(A[;]) = A[9]

Other forms of parallelism may be considered as well, but we do not pursue these here.

The needed considerations in all cases are similar to those above.

4.1.3. Mutations of communications

The following mutation operators target communications, whose behaviours are550

described in rules (A.2) and (A.3). For the sake of conciseness, we do not discuss

communications with multiple inputs or outputs.

The removal of an input communication can potentially introduce a syntax error,

because it implicitly declares a new variable. Except when the input variable is never

20

used, we may end up with references to variables that are not declared. For mutation555

operators that change or remove input communications, we, therefore, introduce a dec-

laration of the replaced or removed variable. A Circus variable declaration introduces

the variable in scope initialised with an arbitrary value from the variable domain.

Message Replacement. (pmr) changes the name of a variable used in a communication

to another name of a variable of the same type, selected from the current scope. As

explained above, missing variable names due to the introduced mutation are redeclared.

pmr (A[c!e[x]→], y) = A[c!e[y]→]

pmr (A[c?x→], y) = A[var x : T • c?y→]

T is the type of channel c (and, therefore, of the input variable x).

Channel Replacement. (pcr) changes the name of a communication channel to another

channel name of the same type.

pcr (A[c!e→], d) = A[d!e→]

pcr (A[c?x→], d) = A[d?x→]

Communication Insert. (pci) is similar to the event insert (pei) operator, but applied to

a communication instead of a synchronization event. It inserts a new communication

by duplicating an existing one.

pci (A[c!e→]) = A[c!e→ c!e→]

pci (A[c?x→]) = A[c?x→ c?x→]

Communication Elimination. (pce) removes one arbitrary input or output communi-560

cation from an action definition. As for the message replacement (pmr) operator, if

the eliminated communication is an input, a variable declaration must be introduced to

declare the input variable and avoid syntactic errors.

pce(A[c?x→]) = A[var x : T •]

pce(A[c!e→]) = A[]

If the mutated action terminates or deadlocks, it has maximal traces. If the eliminated

communication contributes only to the last events of maximal traces, its elimination565

leads to an action that is a traces refinement of the original action.

Communication Swap. (pcs) swaps two consecutive communication events, similarly

to the event swap (pes) operator.

pcs(A[c1!e1→ c2!e2→]) = A[c2!e2→ c1!e1→]

pcs(A[c1!e→ c2?x→]) = A[c2?x→ c1!e→], provided x is not free in e

pcs(A[c1?x→ c2?y→]) = A[c2?y→ c1?x→]

pcs(A[c1?x→ c2!e→]) = A[var x : T • c2!e→ c1?x→]

When swapping c1 and c2 where c1 is used in an input that declares a variable that

may be used in an expression communicated by c2, this change leads to a syntactic570

error. To avoid that, a declaration of the input variable is introduced.

21

4.1.4. Mutations of name references and hiding

Name Replacement. (ppr) substitutes name references in the right hand side of an

action definition by other process names in scope, including STOP and SKIP . For

Circus, we expand this operator to include the manipulation of schema names.575

pprAction(A[A1], A2) = A[A2]
pprSchema(A[S1], S2) = A[S2]

We also introduce two new operators for hiding and unhiding events and communi-

cations. The impact of such mutations on observable behavior is similar to event and

communication insertion or removal. The channel set for the hiding is an arbitrary sub-

set of the channels in scope. The operational semantics rules describing the behavior

of the hiding operator are (A.12) and (A.13).

pprHide(A1[A2], CS) = A1[A2 \ CS]
pprUnhide(A1[A2 \ CS]) = A1[A2]

Similar operators for hiding are also useful at the action level.

4.2. Expression modification operators

In Circus specifications, some logical and data aspects are modelled along with

the definitions of interactions via events. For instance, models typically include guard

predicates, variable definitions and assignments, and also data operations defined using580

Z schemas. We consider all these forms of data modelling in the design of mutation

operators that capture data and logic faults.

Some fault classes for predicates occurring in software specifications have been

proposed by Kuhn in [32]. They seem pertinent if we consider plausible modelling

mistakes in Circus: variable reference, variable negation, expression negation, asso-585

ciative shifting, operator reference, and missing expressions. We also consider the ex-

pression operators introduced for CSP in [31], since they cover most of the mentioned

fault classes. Finally, to complement the fault-classes coverage, we also introduce some

syntactical operators for Circus expressions inspired by the work of Black et al. [33].

Negation Insertion. (eni) inserts the logical negation operator (¬) before a boolean590

variable. This mutation is specially interesting when it affects guards, so we have a

more specific version of this operator targeting the negation of guards only.

eni (A[e]) = A[¬ e]

eniGuard (A[gN]) = A[¬ gN]

where e is a boolean expression in any Circus context, an action or a schema. For ex-

ample, MutatedChrono is obtained from Chrono via eniGuard (Chrono[(sec = 0)N]).

Logical Operator. (elr) exchanges between the logical “and” (∧) and “or” (∨) opera-595

tors. Other logical connectors might be considered, although the most used and more

subject to modelling mistakes are these mentioned [31].

elr (A[∧]) = A[∨]

elr (A[∨]) = A[∧]

22

Logical Operand. (eld) introduces mutations by replacing variable and expression log-

ical operands with true or false constant values.

eld (A[b], true) = A[true]
eld (A[b], false) = A[false]

Arithmetic Operator. (ear) replaces a basic arithmetic operator with one of the three600

others. The four operators considered are sum, subtraction, multiplication and division.

ear (A[op1], op2) = op1, where op2 ∈ {+,−, ∗, /} ∧ op1 , op2 • P[op2]

Unary Insertion. (eur) inserts the minus modifier in front of an arithmetic expression.

The variable e stands for an arithmetic expression in a process P .

eur (A[e]) = A[−e]

Add to Operand. (eak) increments an arithmetic operand by an integer constant k . The

variable v stands for a numeric variable used in an expression in any schema or action.605

eak (A[v], k) = A[(v + k)]

Subtract from Operand. (esk) is similar, but subtracts the integer constant k .

esk (A[v], k) = A[(v − k)]

Arithmetic Operand. (ead) arbitrarily replaces a numeric variable used as an arith-

metic operand with another, keeping the types compatible. The variables v and u stand

for numeric variables of the same type.

ead (A[v], u) = A[u]

Relational Operator. (err) replaces any of the relational operators <, ≤, >, ≥, =, ,610

with any of the others from this same set.

err (A[op1], op2) = op1, where op2 ∈ {<,≤, >,≥,=,,} ∧ op1 , op2 • A[op2]

A mutation operator is ideal for a specification if it generates only mutants of interest;

an ideal operator never leads to a refinement. Ideality is a strong requirement, not

always achievable. None of the operators above is ideal. In fact, there can be no ideal

operator for Circus: a single change to a process definition can never be guaranteed to615

lead to a non-refinement for every process. This can be seen by considering a process

Q , an arbitrary mutation operator Op, and a process P defined as P = Q ⊓Op(Q). In

applying Op to P , it is always possible to obtain P ′ = Op(Q) ⊓Op(Q). Properties of

Circus guarantee that P ′ = Op(Q), which does refine P .

4.3. Comparison with mutation testing based on LOTOS620

Several specification languages make it possible to mix data type and behaviour

descriptions. The approach followed above for the definition of a set of mutation op-

erators can be easily transposed to them. We take as an example the full LOTOS

23

specification language, whose mutations have been studied in [47], and whose testing

theory is developed in [25]. In a few words, LOTOS combines algebraic data type625

specifications and parameterised process definitions.

The LOTOS notation for process definition is syntactically close to those of Circus

and CSP; however, there are semantic differences that arise, as far as testing is con-

cerned, in the definition of refusals and acceptance sets. Given the definition of these

sets, symbolic exhaustive test sets have been defined for conf [24] and for the ioco [11]630

conformance relation [25]. The main difference to Circus is the notion of state, which

does not exist in LOTOS, and is simulated by process parameters like in CSP.

In [47], the authors propose a set of mutation operators. Most of them are not

special to LOTOS and, as ours, have been taken or slightly adapted from [33] and [31].

They correspond to those indicated with source CSP or CSP∗ in Table 1, and seem to635

provide a kernel of mutation operators for specification languages of this category. The

few specific operators defined in [47] and here are related to parameters in LOTOS,

and to action and schema names in the case of Circus.

5. Tool support

To support Circus mutation testing and explore the practical aspects of our tech-640

nique, we have implemented a prototype tool in Java to mutate specifications using

the mutation operators of Section 4. Syntax-tree manipulation is provided by the CZT

framework [48], using the Circus parser extension [49].

At the current stage, the prototype provides a simple command line interface that

takes as inputs a mutation operator reference and a LATEX Circus specification, ac-645

cording to the CZT style guide for Circus
1. The output is presented as LATEX Circus

specifications, one for each mutation produced by the selected operator. In Table 2, we

show the number of mutants produced by each operator when applied to Chrono (in

Figure 1). Operators not applicable to this example have not been considered.

Once the mutants are generated, we have to generate tests to kill them. We present650

below two approaches for the generation of mutant-killing test cases.

The first approach requires the use of a model checker. Similar approaches for

generating test cases using model checkers are popular; see, for instance, [50] for a

survey. In our case, the checker is used to establish whether a generated mutant is a

refinement of the original specification and, if not, to yield some counterexamples that655

provide a basis for building killer tests as illustrated in Section 3.

For Circus, there is no mature refinement model checker available at this time. It

is not the objective of our work to develop one (and there are ongoing efforts [51, 52]

in this direction). However, for some Circus specifications, we can overcome this

barrier via a translation of Circus models to CSP and the use of a well-known, mature660

refinement checker for CSP, FDR [53]. We detail this approach in Section 5.1.

The second approach for the generation of mutant-killing test cases is a (guided)

generation of traces directly from the Circus specification. The traces are then con-

1Available at: http://czt.sourceforge.net/latex/circus/circus-guide.pdf, accessed:

Dec/13/2015.

24

Abbreviation Operator Mutants Killed by FDR

ped Event Drop 1 1

per Event Replacement 2 2

pei Event Insert 2 2

pco Choice Operator 2 2

ppoSeqPar Sequential Composition 1 1

ppoSeqInt Interleave 1 1

pmr Message Replacement 2 2

pci Communication Insert 1 1

pce Communication Elimination 1 1

pprSchema Schema Name 6 6

eniGuard Guard Negation 2 2

eld Operand Replacement 4 4

ear Operator Replacement 1 1

eur Unary Insertion 2 2

eak Add k to Operand 6 6

esk Sub k from Operand 6 6

ead Operand Replacement 6 6

err Operator Replacement 10 8

Table 2: Analysis of generated mutants for Chrono

verted into test cases. Various techniques can be used to guide the trace generation in

order to obtain relevant traces. We describe this approach in Section 5.2.665

5.1. Test generation via CSP and FDR

This approach is applicable only to Circus specifications with simple data models

that can be directly encoded in CSP without further refinement. It has been, in any

case, very useful to validate our ideas and approach. We discuss below the translation

from Circus to CSP and the test-generation technique.670

5.1.1. Translating Circus specifications into CSP

As shown in [54], a subset of Circus can be automatically translated to CSP; the

main challenge is complex Z specifications. To carry out the experiments reported here

and validate our approach to testing, however, we have carried out translation by hand.

To work with FDR, the specifications must be translated into the machine readable675

dialect of CSP [55] following the guidelines below:

• Channels and types are kept;

• The state components are encapsuled into a single data type with constructor

AState , and passed as parameter to all processes and functions;

• A Circus action is translated into a CSP process;680

• A reference to a schema s in an action A is unfolded to an intermediary process

A s(s(AState));

25

• Loops are translated as tail recursive calls;

• State changes defined by Z operations are performed by CSP functions from

AState to AState .685

Example 6. For instance, Figure 13 shows the translation of Chrono. The AInit ,

IncSec and IncMin Circus schemas are translated to the ainit, incsec and incmin

functions. Arguments and results of these functions are yielded by the type constructor

AState, encapsulating values for the two state components sec and min . The anony-

mous main action of Chrono is translated into the CHRONO CSP process. The initiali-690

sation is captured by the parameter of the call to process RUN. The loop is captured by

parameterised recursive calls at the end of each choice of RUN. The references to the

schemas IncSec and IncMin inside the Run action are unfolded into the sub-process

RUN incsec and RUN incsec incmin.

�695

5.1.2. Using FDR for fault-based test-case generation

In Section 3 we have explained that counterexamples yielded by a refinement check

of a mutant against the original specification provide bases to build tests to kill the

mutant. Figure 14 shows the output of FDR for the check CHRONO ⊑F MCHRONO

for failures refinement in the context of the definitions in Figure 13. It defines the700

following trace s , forbidden continuation a , and acceptance set X .

s = 〈tick , time〉 a = out .1.1 X = {out .0.1}

For this experiment, the production of a counterexample gives rise to our account of

the mutant as killed in Table 2. As stated in Theorem 1, finding such counterexamples

is enough to assure that MCHRONO is a mutant of interest: it gives us the necessary

elements to build a test case for, at least, the failures fault-based set.705

In the particular example of the CHRONO ⊑F MCHRONO analysis, we have

both a failure and a forbidden continuation, allowing the construction of one test for

each of the FBTestsCHRONO
T

(MCHRONO) and FBTestsCHRONO
F

(MCHRONO)

sets. Such tests are constructed using the TT and TF functions.

TT (s , a) = inc → tick → inc → time → pass → out .1.1→ fail → Stop

TF (s ,X) = inc → tick → fail → time → fail → out .0.1→ pass → Stop

In the traces of the execution of a parallel composition between the mutant MCHRONO710

and any of these tests the last verdict event is fail , thus the tests kill the mutant.

All mutants generated for Chrono (in Figure 1) have been translated to CSP and

analysed with FDR. As shown in Table 2, only two of the mutants are not of interest.

Both are generated by the relational operator replacement err , and are in Figure 15.

The changes introduced by err in both ChronoErrEquiv1 and ChronoErrEquiv2715

occur in the expressions guarding the external choice between IncMin and Skip. In

ChronoErrEquiv1, the original guard (sec = 0) is replaced with (sec ≤ 0), and for

ChronoErrEquiv2, the guard (sec , 0) is replaced with (sec > 0). Both changes

cause no observable effect, since Range imposed lower boundary to sec is 0.

26

---- The chronometer in CSP_M

--Type and channels declaration

Range = {0..59}

channel tick, time

channel out:Range.Range

--State simulation with single data type

Minsec = {(min,sec) | min <- Range, sec <- Range}

datatype Clock = AState.Minsec

--AInit schema translation: state initialization min=0 and sec=0

ainit() = AState.(0,0)

--IncSec schema translation: increments sec by one within Range

incsec(AState.(min,sec)) = AState.(min,(sec+1)%60)

--IncMin schema translation: increments min by one within Range

incmin(AState.(min,sec)) = AState.((min+1)%60,sec)

--Anonymous action to RUN process, with ainit state inialization

CHRONO = RUN(ainit())

--Run action translation, stateful loop achieved using recursion

RUN(AState.(min,sec)) =

tick -> RUN_incsec(incsec(AState.(min,sec)))

[]

time -> out.min.sec -> RUN(AState.(min,sec))

--Run sub-process translation, applying incsec function

RUN_incsec(AState.(min,sec)) =

(sec == 0) & RUN_incsec_incmin(incmin(AState.(min,sec)))

[]

(sec != 0) & RUN(AState.(min,sec))

RUN_incsec_incmin(AState.(min,sec)) = RUN(AState.(min,sec));

--First mutant generated with eniGuard operator

MCHRONO = MRUN(ainit())

MRUN(AState.(min,sec)) =

tick -> MRUN_incsec(incsec(AState.(min,sec)))

[]

time -> out.min.sec -> MRUN(AState.(min,sec))

MRUN_incsec(AState.(min,sec)) =

--Negated guard mutation introduced below

(not sec == 0) & MRUN_incsec_incmin(incmin(AState.(min,sec)))

[]

(sec != 0) & MRUN(AState.(min,sec))

MRUN_incsec_incmin(AState.(min,sec)) = MRUN(AState.(min,sec));

Figure 13: Chrono in CSP

27

Result: Failed

Visited States: 7

Visited Transitions: 17

Visited Plys: 2

Estimated Total Storage: 67MB

Counterexample (Trace Counterexample)

Specification Debug:

Trace: <tick, time>

Available Events: {out.0.1}

Implementation Debug:

MRUN(AState.(0, 0)) (Trace Behaviour):

Trace: <tick, time>

Error Event: out.1.1

Figure 14: FDR output for CHRONO ⊑F MCHRONO

5.2. Test Generation from Circus specifications720

The generation of tests from Circus specifications has been investigated and auto-

mated in the CirTA tool [56, 57], which uses an exhaustive approach to collect cstraces,

along with their symbolic forbidden continuations and minimal acceptance sets, and

enriches them with inc, pass and fail verdict events. Since in that work there is no

selection based on the text of the specification, there is no need for specification traces.725

As explained in Section 3, for generating mutant-killing test cases, a first selection

step of relevant specification traces is needed. The mutant (or, more precisely, the part

where it differs from the specification) serves as a guide for the collection of these

traces. In this section, we elaborate on this idea, proposing a chain of tools for test

generation following the approach sketched at the end of Section 3.730

Figure 16 depicts our proposed tool chain. In the first step, the specification, the

mutation point, and the mutant are provided as input to a specification-trace genera-

tor (SpTG), which derives specification traces using a guided symbolic execution of the

mutant. The aim is to generate relevant specification traces, as defined in Section 3.4.

For that, techniques of slicing can be used, similar to what is done for program analysis735

[58] and communicating automata specifications [59]. A generator based on the transi-

tion system that characterises specification traces is under development. The slicer and

the check with respect to the original specification are the next steps.

We note that, instead of producing linear traces, the symbolic execution can easily

be adapted for producing some symbolic execution tree. Such a tree can be the basis740

of tree-shaped tests, which avoid inconclusive verdicts by relaxing the constraint in-

troduced by linear tests, that the SUT must follow one expected trace: the SUT can

choose among the correct traces embedded in the tree. Such a factorization of linear

tests, as discussed in [41], has the advantage of decreasing both the number of tests and

the number of inconclusive verdicts, but the drawback that it leaves some control to the745

SUT with the risk that some relevant traces are not attempted.

28

process ChronoErrEquiv1 =̂

...
Run =̂ (tick → IncSec; ((sec ≤ 0) N IncMin)

@((sec , 0) N Skip)))

@(time → out !(min , sec)→ Skip)

• (AInit ; (µ X • (Run; X)))

process ChronoErrEquiv2 =̂

...
Run =̂ (tick → IncSec; ((sec = 0) N IncMin)

@((sec > 0) N Skip)))

@(time → out !(min , sec)→ Skip)

• (AInit ; (µ X • (Run; X)))

Figure 15: Two equivalent mutants of Chrono exposed by FDR

Figure 16: Test Generation from Circus specifications.

In a second step, the set of specification traces are given as input to a cstrace gen-

erator (CsTG). Each specification trace is converted into one cstrace. A constructive

conversion procedure is formally specified in [28]. As explained in Section 3, it is

based on an operational semantics that characterises the behavior of the path of a Cir-750

cus specification identified by the labels of a specification trace. As can be expected,

since the events, guards, and actions identified in specification traces are components of

Circus actions, the operational semantics used in the conversion is very similar to a re-

stricted subset of the Circus semantics. The automation of the conversion is, therefore,

similar to the component of SpTG that calculates specification traces.755

A prototype tool for proving (or disproving) refinements of Circus specifications,

Isabelle/Circus, is presented in [60]2. For each translated cstrace, CsTG checks whether

it is a new cstrace or if it introduces any new deadlock, using Isabelle/Circus and

reusing some components of the CirTA tool; if not, the cstrace is also discarded. CsTG

2Available at: http://afp.sf.net/entries/Circus.shtml, accessed: Dec/13/2015.

29

yields a set of cstraces with their symbolic forbidden continuations and acceptance760

sets. Each cstrace is converted (by SyTG) into a symbolic test by adding the verdicts at

the appropriate points. These symbolic tests are adequately instantiated using an SMT

solver as reported and illustrated in [57]. An example is given in Section 6.

The tool chain is expected to work using a lazy scheme, that is, a computation is

only performed when its result is required. Thus, we avoid generating infinite sets of765

specification traces and cstraces, with, when necessary, some limitation on the length

of the considered specification traces or cstraces.

The classical undecidable problem of equivalent mutants of programs [61] arises

here under the form of checking whether a Circus model is a refinement of another one.

For such a rich specification language, the use of a powerful proof assistant is unavoid-770

able. The prototype Isabelle/Circus environment [60] is based upon the Isabelle/HOL

proof environment where theories and rules of Circus semantics and refinement have

been embedded. Once enriched with efficient dedicated proof tactics, it can be used

both for a preliminary refinement check for test generation and for rejection of those

cstraces that are cstraces of the original specification.775

Our efforts are now focused in prototyping the necessary parts of the tool chain

for automating the described strategy. The most complex and challenging tool is the

SpTG, whose implementation starts to yield some preliminary results for a small subset

of the Circus operational semantics. Considering the established theory background,

it is a matter of time to achieve an operational level, allowing us to shift our concerns780

into issues of optimization and scalability.

6. Cash Machine: Another example

In this section, we illustrate how the approach we propose can be used for guiding

test generation, using a more complex Circus specification as an example. We con-

sider several mutant operators and the respective mutants, and discuss some interesting785

characteristics of the process of analysing them and generating the killer tests.

Figure 17 presents a slightly modified version of the cash-machine example used

in [28]. First of all, we declare the set CARD of valid cards. Next, we declare some

channels. Requests for money are accepted by the cash machine through the channel

inc, which takes a card and the amount to be withdrawn. The amount is a positive790

natural number. Cards are returned through a channel outc. The notes in and dispensed

by the cash machine are those whose denominations are in the set Note . For simplicity,

we consider just a few notes, and do not address the fact that the amount requested

must be decomposable in terms of the notes available. If it is not, the machine fails

to dispense the cash. In our model, cash is represented as a bag of notes: elements795

of the set Cash . If there is enough money in the machine and a way of providing the

requested amount, the cash is output through a channel cash . The channel refill is used

to request the note bank of the cash machine to be refilled.

The cash machine accepts requests for cash and decides whether the cash should

be dispensed. The only state component of CashMachine is a function nBank that800

records, for each denomination, the amount of notes available. The state is defined by

a schema, CMState , which declares nBank as a total function.

30

[CARD]

channel inc : CARD × N1; outc : CARD ; cash : Cash; refill

Note == {10, 20, 50}

Cash == bagNote

process CashMachine =̂ begin

state CMState == [nBank : Note → 0 . . cap]

DispenseNotes

∆CMState

a? : N1

notes! : Cash

Σnotes! = a?

∀n : Note • (notes! ♯ n) ≤ nBank n ∧ nBank ′ n = (nBank n) − (notes! ♯ n)

DispenseError

ΞCMState

a? : N1; notes! : Cash

¬ ∃ns : Cash • Σns = a? ∧ ∀n : Note • (ns ♯ n) ≤ nBank n

notes! =|[]|

Dispense == DispenseNotes ∨ DispenseError

•

µ X •

inc?c?a→

outc!c→X

⊓

var notes : Cash •

Dispense;
(notes ,|[]|) N cash!notes → Skip

@
(notes =|[]|) N Skip

; outc!c→X

@
refill → nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap } ; X

end

Figure 17: Cash machine specification

31

Abbreviation Operator Mutants

ped Event Drop 1

pei Event Insert 1

pco Choice Operator 2

ppoSeqPar Sequential Composition 3

ppoSeqInt Interleave 3

pci Communication Insert 4

pce Communication Elimination 4

pprSchema Schema Name 2

eni Negation Insert 6

eniGuard Guard Negation 2

elr Operator Replacement 3

eld Operand Replacement 16

ear Operator Replacement 3

eur Unary Insertion 1

eak Add k to Operand 8

esk Sub k from Operand 8

ead Operand Replacement 6

err Operator Replacement 20

Table 3: Count of mutants generated for CashMachine

The DispenseNotes data operation takes an amount a? as input and produces a bag

of notes notes! as output; it also updates nBank . It is defined using a Z schema that

specifies a relation on CMState . The value of notes! is nondeterministically chosen: it805

is any bag notes! whose sum Σnotes! of its elements is equal to a?, and such that, for

each note denomination n , the number notes! ♯ n of occurrences of n is less than or

equal to the number nBank n of notes of denomination n in the bank.

If there is no such bag, we have an error: the output is the empty bag |[]|, and the

state is not changed. This is defined by the schema DispenseError . The total operation810

to Dispense cash is the schema disjunction of DispenseNotes and DispenseError .

The main action of CashMachine defines that it accepts a request inc?c?a; this

is an input of any card c and any amount a . It then decides whether to output the

card using outc and no money, or dispense the requested amount using cash . The

decision is nondeterministic; it is defined by factors outside of this model: status of the815

card, balance on the corresponding account, and so on. The cash machine also accepts

requests to refill the note bank. A recursion offers these choices over and over again.

We have used our mutant-generation prototype for the CashMachine example.

The resulting numbers are shown in Table 3. We consider some mutations below.

6.1. Communication elimination (pce) of the first occurrence of outc!c820

We consider first the mutant obtained by applying the pce operator to remove

the first occurrence of outc!c. We call MutatedCashMachine ′ the resulting process.

Among its specification traces that reach the mutation point, there are 〈inc?c?a , refill〉

32

and 〈inc?c?a , inc?c?a〉. The corresponding cstraces are shown below.

(〈inc?α0?α1, refill〉, α0 ∈ CARD ∧ α1 ∈ N1)
(〈inc?α0?α1, inc?α2?α3〉, α0 ∈ CARD ∧ α1 ∈ N1 ∧ α2 ∈ CARD ∧ α3 ∈ N1)

They are not cstraces of CashMachine , and so these traces of MutatedCashMachine ′825

are relevant for testing against traces refinement. The test generation can be done via

the selection of one of the specification traces above, its translation into its cstrace, and

the construction of the corresponding symbolic test. For the second one we have:

inc → inc?α0?α1 : (α0 ∈ CARD ∧ α1 ∈ N1)→ pass →

inc?α2?α3 : (α2 ∈ CARD ∧ α3 ∈ N1)→ fail → Stop

By resolution of the constraints on α0, α1, α2, α3, choosing cards α0 and α2, and amounts

α1 and α3, we can obtain a concrete test that kills MutatedCashMachine ′.830

6.2. Communication elimination (pce) of the second occurrence of outc!c

When removing the second occurrence of the outc!c event, the following specifi-

cation traces appear, that reach the mutation point:

〈inc?c?a, var notes, Dispense, notes , |[]|, cash!notes,Skip, inc?c?a〉
〈inc?c?a, var notes, Dispense, notes , |[]|, cash!notes,Skip, refill〉
〈inc?c?a, var notes, Dispense, notes = |[]|,Skip, inc?c?a〉
〈inc?c?a, var notes, Dispense, notes = |[]|,Skip, refill〉

The corresponding cstraces are shown below.

(〈inc?α0?α1, cash!α2, inc?α3?α4〉,
α0 ∈ CARD ∧ α1 ∈ N1 ∧ α2 ∈ Cash ∧ Σα2 = α1 ∧ α3 ∈ CARD ∧ α4 ∈ N1)

(〈inc?α0?α1, cash!α2, refill〉,
α0 ∈ CARD ∧ α1 ∈ N1 ∧ α2 ∈ Cash ∧ Σα2 = α1)

(〈inc?α0?α1, inc?α2?α3〉, α0 ∈ CARD ∧ α1 ∈ N1 ∧ α2 ∈ CARD ∧ α3 ∈ N1)

(〈inc?α0?α1, refill〉, α0 ∈ CARD ∧ α1 ∈ N1)

They are not cstraces of the original specification and can be used as bases for killer835

tests. The last two cstraces are the same as those obtained when dealing with the

removal of the first occurrence of outc!c in the previous section.

6.3. Substitution (pprSchema) of the reference to Dispense by DispenseError

As another example, we consider the mutant obtained by the application of the

pprSchema operator to the second occurrence of the Dispense schema name (that is,840

the use of Dispense in the variable block that declares notes in the main action of the

process CashMachine in Figure 17). We can use pprSchema to replace Dispense

with, for instance, DispenseError , whose precondition may not hold.

The specification trace below reaches the mutation point.

〈inc?c?a , var notes , DispenseError〉

It is a specification trace of the mutated specification because, in some cases, the pre-845

33

•

µ X •

inc?c?a→

outc!c→X

⊓

var notes : Cash •

Dispense;
(notes ,|[]|) N cash!notes → Skip

@
(notes =|[]|) N Skip

; outc!c→X

@
refill → refill → nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap } ; X

end

Figure 18: Mutated main action of CashMachine with event refill inserted/duplicated

condition of DispenseError is satisfied: it depends on the initialisation of nBank .

The corresponding cstrace is:

(〈inc?α0?α1〉, α0 ∈ CARD ∧ α1 ∈ N1)

It is a cstrace of the original specification, but after inc?c?a , the internal choice leads

either to (outc!c) or to DispenseError . If the precondition of DispenseError does

not hold, it behaviour is divergent. Therefore, this mutant is discarded.850

6.4. Insertion of event (pei) refill

The result of a mutation using pei to duplicate the event refill in the main action of

CashMachine is given in Figure 18. It has new specification traces, like, for instance:

〈refill, refill, nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap }〉

The corresponding cstrace is (〈refill, refill〉,True), which is a cstrace of the origi-

nal CashMachine process. We observe the same situation for all the new specification

traces: they are new because they embed the subtrace

〈. . . refill , refill ,nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap }, . . .〉

or finish with a double occurrent of refill . In the corresponding cstraces, these give

rise to subtraces (〈. . . refill, refill, . . .〉, . . .), which are admitted by CashMachine .855

This means that the original and the mutated processes have the same traces, and we

cannot distinguish them with a test for traces inclusion.

This mutant, however, has new failures. For example,

〈refill, nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap }, inc?c?a〉,

is a specification trace of CashMachine , but not of the mutated process. After the trace

〈refill〉, the only accepted event of the mutated process is refill and any instantiation860

34

of inc?c?a is refused. So, 〈refill〉 paired with a singleton set containing an event

inc.c.a is a failure of the mutated process, but not of CashMachine . On the other

hand, the singleton set is a minimal acceptance of CashMachine after 〈refill〉, and any

instantiation of the symbolic test below is a killer test.

inc → refill → fail → inc?α0?α1 : (α0 ∈ CARD ∧ α1 ∈ N1)→ pass → Stop

Instantiation requires the choice of values for α0 and α1 that satisfy the given constraint.865

6.5. Mutation of choice operator (pco)

A mutation of the external choice in the main action of CashMachine into an inter-

nal choice, using pco, gives rise to a situation similar to that of the previous section. As

noted in Section 4, such a mutation does not introduce new specification traces. It can,

however, introduce failures. For instance, refill may be refused after the empty trace870

by the mutated process, but not by CashMachine , which has a minimal acceptance

{refill } after the empty trace. A killer test is fail → refill → pass → Stop.

6.6. Communication insert (pci)

The communication insert operator pci is similar to the event insert pei operator

considered in the previous section. It is, however, applied to a communication instead875

of a synchronization. We consider here the duplication of cash!notes . A specification

trace that reaches the mutation point is as follows.

〈inc?c?a, var notes, Dispense, notes , |[]|, cash!notes, cash!notes〉

The corresponding cstrace is

(〈inc?α0?α1, cash!α2, cash!α3〉,
α0 ∈ CARD ∧ α1 ∈ N1 ∧ α2 ∈ Cash ∧ Σα2 = α1 ∧ α3 ∈ Cash ∧ α3 = α2)

It is not a cstrace of CashMachine and leads to the symbolic test below.

inc → inc?α0?α1 : (α0 ∈ CARD ∧ α1 ∈ N1)→ inc →

cash!α2 : (α2 ∈ Cash ∧ Σα2 = α1)→ pass →

cash!α3 : (α3 ∈ Cash ∧ α3 = α2)→ fail → Stop

Once the above test is instantiated, it yields a killer test.880

6.7. Mutation of sequential compositions (ppoSeqPar)

The new parallel compositions introduced by ppoSeqPar synchronise on all chan-

nels in a given set CS and have no write access to any variables. In the main action

of CashMachine , there are three sequential compositions. We show in Figure 19 the

result of mutating the one insider the variable block that declares notes .885

In this case, the mutated process may deadlock after Dispense . Both parallel ac-

tions act on the arbitrary initial value of notes . If that value is not the empty bag, since

the synchronisation on cash required by the external choice cannot happen, because

Dispense is not ready to communicate on cash , there is a deadlock. If, however, that

35

µ X •

inc?c?a→

outc!c→X

⊓

var notes : Cash •

Dispense

J{| inc, outc, cash , refill |}K
(notes ,|[]|) N cash!notes → Skip

@
(notes =|[]|) N Skip

; outc!c→X

@
refill → nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap } ; X

Figure 19: Mutation of the first occurrence of ; by ppoSeqPar

arbitrary initial value happens to be the empty bag, the mutated process does not dead-890

lock. It dispenses the card via outc without changing the state, since the changes made

by the parallel actions cannot be recorded in any variables. So, we have a fail safe.

The cstrace (〈inc?α0?α1〉, α0 ∈ CARD ∧ α1 ∈ N1) is associated with a set of

symbolic acceptances including (outc!α3, α0 ∈ CARD ∧ α1 ∈ N1 ∧ α3 = α0) and

(cash!α3, α0 ∈ CARD ∧ α1 ∈ N1 ∧ α3 ∈ Cash ∧ Σα3 = α1). This is not an acceptance895

of the mutated process, and can be used to define a killer test.

inc → inc?α0?α1 : (α0 ∈ CARD ∧ α1 ∈ N1)→ fail →
outc!α3 : (α0 ∈ CARD ∧ α1 ∈ N1 ∧ α3 = α0)→ pass → Stop

@
cash!α3 : (α0 ∈ CARD ∧ α1 ∈ N1 ∧ α3 ∈ Cash ∧ Σα3 = α1)→ pass → Stop

Instantiation keeps the restrictions on the inputs and defines specific values for outputs.

Above, the value of α3 has different constraints in the outputs via outc and cash .

Based on the examples in this section, we note that the construction of test cases

from mutants is a very challenging task, which demands the support of specialised900

tools. The tool support we discuss in Section 5 is paramount for making our approach

practical and we are placing efforts in developing it with the aid of frameworks for sym-

bolic manipulation and constraint solvers. In Appendix B, we include further examples

of mutants for a Circus specification (of an Emergency Recovery System).

7. Related Work905

Mutation has already been used for guiding test-case generation from (formal)

models in many different pieces of work [62, 63, 64, 31, 36, 65, 66, 67, 68]. As al-

ready mentioned, it is also used to assess the quality of a test suite. The possibility of

selecting on which errors to concentrate is a good mechanism to tackle the explosion

of test cases (see [50] and [66] for recent surveys). A more general survey on the main910

developments of mutation testing is found in [69].

36

Budd and Gopal [70] have pioneered the investigation on testing by mutating spec-

ifications. They propose the use of a mutant of a specification to generate tests for

programs. Specifications are based on predicate calculus. The mutant is a variation of

a predicate defining the expected behavior of the program. A test case is an input for915

which the original specification and the mutant produce different truth values.

Ammann et al. [71] use the SMV model checker to generate test cases from mutants

of a specification. The mutant operators are defined at the syntactical level, and the

test cases are traces of the specification but not of the mutant. The application of a

similar approach to an industrial case study is reported in [72]. Simulink models are920

mutated and the test cases are generated with CBMC (bounded model checker for C).

Generation of tests from mutated Simulink models is also investigated in [73].

The work of Papadakis et al. [74, 75, 76] automates white-box test-case generation

for programs, relying on symbolic and concolic execution, mutant schemata and the

weak mutation-testing criterion. The goals are to lower the cost of test-case generation925

and increase the quality of the obtained test suite.

Mutation testing has also been used to generate test cases for security-critical sys-

tems in [63]. The mutants are used to model vulnerabilities. A constraint solver is

employed to find a trace of the mutant that does not satisfy the security properties of

the system. If such a trace exists, the mutant introduces a vulnerability and the test case930

shows how to exploit it. This approach is similar to ours, but due to the nature of the

model we use, refinement verification is employed instead of a constraint solver. Sim-

ilarly, the work by John Clark et al. [31], whose mutant operators we have considered

in Section 4, uses mutation testing for checking system security. Moreover, Clark et

al. use the mutants to validate the specification, while we use them to generate tests.935

Krenn and Aichernig [64] mutate program contracts and use the SAT solvers Boo-

gie and Z3 to generate test cases for Spec# models. Their proposed technique auto-

matically generate tests that can distinguish whether an implementation refines a faulty

specification. We use mutants to select tests from our fault-based exhaustive test sets.

Aichernig and colleagues have advanced the application of mutation testing for940

models in various formalisms [36, 65, 62, 66]. A test case is seen as an abstraction

(according to a traces-refinement relation) of the specification, that is, an implemen-

tation (or specification) should refine the test case if it passes the test. Thus, test-case

synthesis is a reverse refinement problem. Mutants guide the generation of test cases; a

fault detecting test case is an abstraction of the specification, but not of the mutant. The945

theory is developed in the context of Hoare and He’s UTP [19]. Mutants are generated

both for the specification and the implementation. Our approach is on the same vein of

Aichernig and colleagues’ work, extending the main concepts to a new formalism.

8. Conclusions and future work

We have formally defined mutation testing for Circus by characterising (1) the950

exhaustive sets of tests that can kill a given mutant, considering both traces refinement

and conf , that is, process refinement in Circus as a whole; (2) a technique to select

tests from these sets based on specification traces of the mutants; and (3) an extensive

collection of operators to generate mutants considering faults related to both reactive

37

and data manipulation behaviour. Like the Circus testing theory, this work is of general955

relevance for state-rich algebras for refinement.

To make our ideas concrete, we have led some preliminary experimentation on

models that are both simple enough (regarding its data structures) and finite to enable

model checking via FDR. We have also developed a first tool in Java for mutant gen-

eration, which is the front-end both for using FDR and for a chain of tools we have960

defined for mutants analysis and killer-tests generation. The mutant analysis can make

use of the IsabelleCircus refinement checker, and the test generation can use some

components of the exhaustive test generator CirTA.

We, however, are not in a position to provide experimental results that address

scalability, since the tool chain we have available so far is not suitable for conducting965

such studies. The main bottleneck we foresee is the cost of the symbolic manipulation

of the model, which we expect to tackle using slicing techniques. Another issue is

related to decidability problems regarding the identification of useless mutants, namely,

those that refine the original model. We have not addressed this yet, but will in the

future steps of our research using model checking and automated theorem proving.970

Given a mutation operator such as one of those given in Section 4, it is attractive

to avoid constructing the mutants to generate the tests to kill them as described above.

For that, we need a way of calculating the traces and failures of the mutants without

constructing them. This calculation could take advantage of the knowledge of traces

and failures of the original process, but the effect of the mutation operators on the975

semantics of a process is not direct. More precisely, the semantic models of interest are

not a congruence for the mutant operators. This gives rise to an interesting challenge.

Generally, mutations are syntactic changes. Since our specification traces are close

to the syntax of the specifications, it may well be the case that they do provide an

adequate way to construct traces of the mutants in terms of those of the original speci-980

fication. An analysis of mutation operators for specification traces and their relation to

our operators is an interesting avenue for future work.

We also plan to investigate “semantic mutations”. The idea is to consider the sets

of traces and failures of the specification and to study mutations of these sets. This

will avoid the construction of the syntactic mutants. It is important to note that the985

mutations must preserve the properties of the sets, for instance, the set of traces is

prefix-closed, and the set of failures is subset-closed with respect to refusal sets.

Acknowledgments

We are grateful to the Digiteo research cluster for their financial support of our col-

laboration (Convention N2014-1411D), to the Brazilian Funding Agency CNPq (Grant990

400834/2014-6), and to the Royal Society.

Appendix A. Circus operational semantics

We reproduce here part of the Circus operational semantics as presented in [45].

As already said, as usual, the operational semantics of Circus is based on a transi-

tion relation that associates configurations. For processes, the configurations are pro-995

cesses themselves. For actions, they are triples as explained in Section 2.1.

38

To give the operational semantics of a process, we use a novel construct to define a

process. It records the current local state using a constraint and a state assignment. The

first transition rule for processes below introduces the record of the local state using

a (list of) fresh symbolic variable(s) w0. The constraint defines that w0 is (are) of the1000

appropriate type(s), and in the state assignment w0 is assigned to the state component(s)

x. In all rules, the symbolic variables introduced are assumed to be fresh.

begin

state [x : T]

• A

end

ǫ
−→

begin

state [x : T] | loc (w0 ∈ T | x := w0)

• A

end

(A.1)

The second transition rule for processes, which we omit here for conciseness, applies

to the extended form of a basic process. The rule allows a process to evolve in accor-1005

dance with the evolution of its main action in the state defined by the loc clause. We,

therefore, focus in the sequel on the transition relation for actions.

The evolution of an output prefixing d!e→ A is labelled. The label d.w0 involves

the fresh constant w0; the new constraint defines its value to be that of e in the current

state s. The remaining action to be executed is A.1010

c

(c | s |= d!e→ A)
d!w0
−→ (c ∧ (s; w0 = e) | s |= A)

(A.2)

The transition rule for an input prefixing d?x→ A is as follows.

c ∧ T , ∅ x < αs

(c | s |= d?x : T→ A)
d?w0
−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(A.3)

The label is d?w0. In the new the state, x is declared and assigned w0. The only restric-

tion on w0 is that it has the same type as d. The remaining action let x • A records1015

the fact that x is in scope in A as a local variable. The construct let x • A has been

introduced specifically for use in the operational semantics. When A terminates, a rule

for let x • Skip closes the scope of x in the state and removes the let x declaration.

For an internal choice A1 ⊓ A2, silent transitions are available to either A1 or A2 (in

a configuration with the same constraint and state assignment).1020

c

(c | s |= A1 ⊓ A2)
ǫ
−→ (c | s |= A1)

c

(c | s |= A1 ⊓ A2)
ǫ
−→ (c | s |= A2)

(A.4)

The treatment of parallelism is more subtle. We introduce a new form of action

par s | x • A to record a local state s of the parallel action A, with write control over

the variables in x . The first transition rule for a parallelism defines a silent transition

that rewrites it in terms of this new construct.1025

The rule below allows evolutions of the first parallel action A1 that are either silent

or do not involve a channel in the synchronisation set to be reflected in the parallelism.

39

A similar omitted rule considers independent evolutions of A2.

(c | s1 |= A1)
l
−→ (c3 | s3 |= A3) l = ǫ ∨ chan l < cs

c | s

|=
(par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)

l
−→

c3 | s

|=
(par s3 | x1 • A3)

JcsK
(par s2 | x2 • A2)

(A.5)

The next rule is for when the parallel actions can evolve by synchronising. In partic-1030

ular, A1 can carry out an input d?w1, and A2 an output d!w2, where d is a channel in

the synchronisation set, and the values communicated are equal. The transition rule

establishes that, in this case, the parallelism as a whole actually performs an output.

The new constraint records the restriction that w1 = w2.

(c | s1 |= A1)
d?w1
−→ (c3 | s3 |= A3) (c | s2 |= A2)

d!w2
−→ (c4 | s4 |= A4)

d ∈ cs c3 ∧ c4 ∧ w1 = w2

c | s

|=
(par s1 | x1 • A1)

JcsK
(par s2 | x2 • A2)

d!w2
−→

c3 ∧ c4 ∧ w1 = w2 | s

|=
(par s3 | x1 • A3)

JcsK
(par s4 | x2 • A4)

(A.6)

1035

Similar rules apply when A1 can output and A2 input, or when both A1 and A2 can

output. When they can both input, the parallelism also performs an input.

Perhaps the most interesting rule is the one that applies when both parallel actions

have terminated. In this case, the parallelism terminates.

c

c | s

|=
(par s1 | x1 • Skip)

JcsK
(par s2 | x2 • Skip)

ǫ
−→ (c | (∃ x′2 • s1) ∧ (∃ x′1 • s2) |= Skip)

(A.7)

1040

The state after the parallelism is defined by composing the local states of the parallel

actions. We keep from the local state s1 of the first action only the changes to the

variables in its name set x1. This is achieved by hiding (quantifying) the final value of

the variables in the complement set x2. The same applies to s2. The conjunction of the

quantifications defines the new state. We observe that, alternatively, we can define the1045

new state as s1; end x2 ∧ s2; end x1.

Rules for external choice require similar considerations. Actions in an external

choice can evolve independently, with local access to all variables, until the choice is

made, and consequently, the local changes become global. The new form of action

(loc c | s • A1) ⊞ (loc c | s • A2) records the initial state locally.1050

c

(c | s |= A1 @ A2)
ǫ
−→ (c | s |= (loc c | s • A1) ⊞ (loc c | s • A2))

(A.8)

40

Termination can resolve the choice.

c1

(c | s |= (loc c1 | s1 • Skip) ⊞ (loc c2 | s2 • A))
ǫ
−→ (c1 | s1 |= Skip)

(A.9)

Since external choice is commutative, similar rules apply for each of the actions in the

choice. We present just one of the two rules in each case. The next rule establishes that1055

silent transitions do not resolve the choice.

(c1 | s1 |= A1)
ǫ
−→ (c3 | s3 |= A3)

c | s

|=
(loc c1 | s1 • A1)

⊞

(loc c2 | s2 • A2)

ǫ
−→

c | s

|=
(loc c3 | s3 • A3)

⊞

(loc c2 | s2 • A2)

(A.10)

An event, however, does resolve the choice.

(c1 | s1 |= A1)
l
−→ (c3 | s3 |= A3) l , ǫ

(c | s |= (loc c1 | s1 • A1) ⊞ (loc c2 | s2 • A2))
l
−→ (c3 | s3 |= A3)

(A.11)

For a hiding A1 \ cs, the rules allow evolution of A1 to lead to evolution of the hiding1060

itself. In the rule below, evolution does not involve a hidden channel, so the label for

the hiding transition is that for the A1 transition.

(c1 | s1 |= A1)
l
−→ (c2 | s2 |= A2) chan l < cs

(c1 | s1 |= A1 \ cs)
l
−→ (c2 | s2 |= A2 \ cs)

(A.12)

If, on the other hand, A1 can communicate on a hidden channel, the corresponding

evolution of the hiding is silent.1065

(c1 | s1 |= A1)
l
−→ (c2 | s2 |= A2) l = ǫ ∨ chan l ∈ cs

(c1 | s1 |= A1 \ cs)
ǫ
−→ (c2 | s2 |= A2 \ cs)

(A.13)

An omitted rule specifies that if A1 terminates, so does the hiding.

Appendix B. Emergency Response System

In this appendix, we include another example to illustrate the approach proposed

in this paper. We consider the Emergency Response System (ERS), introduced in [77].

Targets, that is, incidents requiring emergency response, are identified by callers, that1070

is, members of the public, using the ERS and a set of operationally independent sub-

systems, such as Phone System, Radio System, Call Center, and Emergency Response

41

Unit (ERU). The ERS must ensure that every call should be sent to the correct tar-

get. More details about the ERS can be found in [78]. It is used in [52] to assess the

deadlock detection of a prototype model checker for Circus.1075

The Circus specification in Figure B.20 models a subset of the ERU, focusing on

the behavior of an emergency response unit manager, specified by the process ERU ,

and of a caller, process InitiateRescueOrFault . The latter sends rescue service re-

quests to the ERU and can trigger a message-drop fault, to be detected and treated by

a fault-recovery component, specified by a process Recovery omitted here.1080

All three processes run concurrently and synchronise on the sets of channels indi-

cated in the definition of their parallel composition. In broad terms, the ERU process

manages the amount of available and allocated response units. InitiateRescueOrFault

asks for idle units and the ERU allocates them accordingly. If a fault is triggered,

Recovery logs the occurrence and resend the dropped message to the manager.1085

This example illustrates mutations that may affect concurrency. The operators

ppoParSeq and ppoParInt are applicable in this context and yield interesting results

that we discuss in the following sections.

Appendix B.1. Mutations by ppoParInt

The mutation operator ppoParInt replaces a parallel composition with an inter-1090

leaving, causing the concurrent execution to take place without synchronization be-

tween the processes. For this example, this operator can be applied in both parallel

compositions to yield the mutants shown in Figure B.21.

Both mutants can be killed by test cases based on the fact that the minimal ac-

ceptance set for the original ERSystem after the empty trace contains only the event1095

start rescue. Other events available due to the mutation are forbidden continuations.

The test cases TT (s , a1) and TF (s ,X) below are based on the empty trace s = 〈〉,

forbidden continuation a1 = start recovery , and acceptance set X = {start rescue}.

TT (s , a1) = pass → start recovery → fail → Stop

TF (s ,X) = fail → start rescue → pass → Stop

They can both be used to kill ppoParIntERSystem1 and ppoParIntERSystem2.

Appendix B.2. Mutations by ppoParSeq1100

The parallel composition in the definition of ERSystem is changed to a sequential

composition by the concurrency mutation operator ppoParSeq . The result of the mu-

tation is shown in Figure B.22. In the two produced mutants, the first process of the

resulting sequential composition has a non-terminating looping behavior: both ERU

and InitiateRescueOrFault are non-terminating. This makes the second process in the1105

sequential composition unreachable. As an strategy to kill the mutants, test cases can

be based on traces that exercise events exclusively available in the unreachable process.

The behavior of the mutant parSeqERSystem1, for example, is restricted to that

defined by InitiateRescueOrFault , at the left of the sequential composition, in par-

allel with Recovery . Such behavior is identical to that of ERSystem while it holds

that allocated < total erus in the ERU process. To expose this, we need a trace to

reach a state in ERSystem where allocated = total erus and check for a forbidden

42

process ERU =̂ begin

state Control == [allocated , total erus : N]

InitControl == [Control ′ | allocated ′ = 0 ∧ total erus ′ = 5]

AllocateState == [∆Control | allocated ′ = allocated + 1]

Allocate =̂ allocate idle eru →AllocateState ; Choose

ServiceState == [∆Control | allocated ′ = allocated − 1]

Service =̂ service rescue → ServiceState ; Choose

Choose =̂ if (allocated = 0)−→Allocate

8 (allocated = total erus)−→ Service

8 (allocated > 0 ∧ allocated < total erus)−→
Allocate @ Service

fi

• InitControl ; Choose

end

process InitiateRescueOrFault =̂ begin

CallCentreStart =̂ start rescue → FindIdleEru

FindIdleEru =̂ find idle erus → (IdleEru @ (wait → FindIdleEru))

IdleEru =̂ allocate idle eru → send rescue info to eru → IR1

IR1 =̂ process message → FAReceiveMessage @ fault activation → IR2

FAReceiveMessage =̂ receive message → ServiceRescue

ServiceRescue =̂ service rescue → CallCentreStart

IR2 =̂ IR2Out @ error detection → FAStartRecovery

IR2Out =̂ drop message → target not attended → CallCentreStart

FAStartRecovey =̂ start recovery → end recovery → ServiceRescue

• CallCentreStart

end

channelsetERUSignals == {| allocate idle eru , service rescue |}

channelsetRecoverySignals == {| start recovery , end recovery |}

process ERSystem =̂

(InitiateRescueOrFault J ERUSignals K ERU) J RecoverySignals K Recovery

Figure B.20: ERS Specification

process ppoParIntERSystem1 =̂

(InitiateRescueOrFault 9 ERU) J RecoverySignals K Recovery

process ppoParIntERSystem2 =̂

(InitiateRescueOrFault J ERUSignals K ERU) 9 Recovery

Figure B.21: ppoSeqInt ERSystem mutants

43

process parSeqERSystem1 =̂

(InitiateRescueOrFault ; ERU) J RecoverySignals K Recovery

process parSeqERSystem2 =̂

(InitiateRescueOrFault J ERUSignals K ERU); Recovery

Figure B.22: Mutations by ppoParSeq

continuation a2 = allocate idle eru and acceptance set X2 = {wait}. Below, we have

a trace s1 of both parSeqERSystem1 and ERSystem .

s1 = 〈start rescue,find idle eru ,

allocate idle eru , send rescue info to eru ,

fault activation , drop message , target not attended〉

In ERSystem , in the execution of this trace, the state of the process ERU is changed by

increasing in the value of allocated by 1. Such trace can be repeatedly observed in the

execution of ERSystem up to five times, until allocated = total erus , when no more1110

units are available and the minimal acceptance set is a single wait event. The mutant

parSeqERSystem1, on the other hand, is able to perform the forbidden continuation

allocate idle eru and, therefore, can be killed by the test cases below.

TT (s1
5 a 〈start rescue,find idle eru〉, allocate idle eru)

TF (s1
5 a 〈start rescue,find idle eru〉, {wait})

We use s5
1

to represent the trace containing five consecutive copies of s1. We omit the

explicit definition of the above tests due to their size.1115

The mutation inflicted in parSeqERSystem2 removes the Recovery process from

the parallel execution, as it becomes the second part of the sequential composition. So,

the events in this process are absent in the mutant. The following trace

s2 = 〈start rescue,find idle eru , allocate idle eru , send rescue info to eru ,

fault activation , error detection , start recovery〉

is both a trace of parSeqERSystem2 and ERSystem . In ERSystem , however, the next

events are from Recovery , which is not reachable in the mutant parSeqERSystem2.

So, the following tests can kill the mutant.

TT (s2, end recovery) =

inc → start rescue → pass → find idle eru

→ pass → allocate idle eru → pass → send rescue info to eru

→ pass → fault activation → pass → error detection

→ pass → start recovery → pass → end recovery

→ fail → Stop

44

TF (s2, {log fault}) =

inc → start rescue → fail → find idle eru

→ fail → allocate idle eru → fail → send rescue info to eru

→ fail → fault activation → fail → error detection

→ fail → start recovery → fail → log fault

→ pass → Stop

Considering the trace s2, we can use the forbidden continuaton end recovery and the

minimal acceptance set {log fault} to obtain the tests shown above.1120

References

[1] T. S. Chow, Testing software design modeled by finite-state machines, IEEE

Trans. Softw. Eng. 4 (3) (1978) 178–187.

[2] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, A. Ghedamsi, Test selec-

tion based on finite state models, IEEE Trans. Softw. Eng. 17 (6) (1991) 591–603.1125

[3] A. Petrenko, N. Yevtushenko, Testing from partial deterministic FSM specifica-

tions, IEEE Trans. on Computers 54 (9).

[4] A. Petrenko, G. v. Bochmann, M. Yao, On fault coverage of tests for finite state

specifications, Computer Networks and ISDN Systems 29 (1) (1996) 81–106.

[5] R. Dorofeeva, K. El-Fakih, N. Yevtushenko, An improved conformance testing1130

method, in: Formal Techniques for Networked and Distributed Systems, Vol.

3731 of LNCS, Springer, 2005, pp. 204–218.

[6] R. M. Hierons, H. Ural, Optimizing the length of checking sequences, IEEE

Trans. on Computers 55 (5) (2006) 618–629.

[7] G.-V. Jourdan, H. Ural, H. Yenigün, D. Zhu, Using a SAT solver to generate1135

checking sequences, in: 24th Int. Symp. on Computer and Information Sciences,

ISCIS, 2009, pp. 549–554.

[8] R. M. Hierons, G.-V. Jourdan, H. Ural, H. Yenigün, Checking sequence construc-

tion using adaptive and preset distinguishing sequences, in: 7th IEEE Int. Conf.

on Sof. Eng. and Formal Methods, SEFM 2009, 2009, pp. 157–166.1140

[9] Q. Guo, R. M. Hierons, M. Harman, K. Derderian, Heuristics for fault diagnosis

when testing from finite state machines, Softw. Test., Verif. Reliab. 17 (1) (2007)

41–57.

[10] M. Gromov, K. El-Fakih, N. Shabaldina, N. Yevtushenko, Distinguing non-

deterministic timed finite state machines, in: Formal Techniques for Distributed1145

Systems, Joint 11th IFIP WG 6.1 International Conference FMOODS 2009 and

29th IFIP WG 6.1 International Conference FORTE 2009, Lisboa, Portugal, June

9-12, 2009. Proceedings, 2009, pp. 137–151.

45

[11] J. Tretmans, Test generation with inputs, outputs, and quiescence., in: TACAS’96,

Vol. 1055 of LNCS, Springer, 1996, pp. 127–146.1150

[12] M. Van Der Bijl, A. Rensink, J. Tretmans, Compositional testing with ioco, For-

mal Approaches to Software Testing (2004) 1102–1102.

[13] M. Weiglhofer, F. Wotawa, Asynchronous input-output conformance testing, in:

COMPSAC’09, IEEE, 2009, pp. 154–159.

[14] M. Weiglhofer, B. K. Aichernig, Unifying input output conformance, in: Uni-1155

fying Theories of Programming, Second International Symposium, UTP 2008,

Dublin, Ireland, September 8-10, 2008, Revised Selected Papers, Springer, 2008,

pp. 181–201.

[15] M. Krichen, A formal framework for black–box conformance testing of dis-

tributed real–time systems, Int. Jal of Critical Computer-Based Systems 3 (1)1160

(2012) 26–43.

[16] J. C. P. Woodcock, J. Davies, Using Z—Specification, Refinement, and Proof,

Prentice-Hall, 1996.

[17] A. W. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall Series in

Computer Science, Prentice-Hall, 1998.1165

[18] C. C. Morgan, Programming from Specifications, 2nd Edition, Prentice-Hall,

1994.

[19] C. A. R. Hoare, H. Jifeng, Unifying Theories of Programming, Prentice-Hall,

1998.

[20] A. L. C. Cavalcanti, P. Clayton, C. O’Halloran, From Control Law Diagrams to1170

Ada via Circus, Formal Aspects of Computing 23 (4) (2011) 465–512.

[21] L. Freitas, J. P. McDermott, Formal methods for security in the xenon hypervisor,

Int. Jal on Software Tools for Technology Transfer, 13 (5) (2011) 463 – 489.

[22] A. L. C. Cavalcanti, M.-C. Gaudel, Testing for Refinement in Circus, Acta Infor-

matica 48 (2) (2011) 97–147.1175

[23] M.-C. Gaudel, Testing can be formal, too, in: Int. Joint Conf., Theory And Prac-

tice of Software Development, Vol. 915 of LNCS, Springer, 1995, pp. 82–96.

[24] M.-C. Gaudel, P. J. James, Testing algebraic data types and processes : a unifying

theory, Formal Aspects of Computing 10 (5-6) (1998) 436–451.

[25] G. Lestiennes, M.-C. Gaudel, Testing processes from formal specifications with1180

inputs, outputs, and datatypes, in: IEEE Int. Symp.on Software Reliability Engi-

neering, ISSRE, 2002, pp. 3–14.

[26] J. C. P. Woodcock, A. L. C. Cavalcanti, M.-C. Gaudel, L. J. S. Freitas, Operational

Semantics for Circus, Formal Aspects of ComputingTo appear.

46

[27] M. V. M. Oliveira, A. L. C. Cavalcanti, J. C. P. Woodcock, Unifying Theories in1185

ProofPowerZ, Formal Aspects of Computing, online firstDOI 10.1007/s00165-

007-0044-5.

[28] A. L. C. Cavalcanti, M.-C. Gaudel, Data Flow coverage for Circus-based testing,

in: FASE 2014, Vol. 8441 of LNCS, 2014, pp. 415–429.

[29] M. Papadakis, N. Malevris, Automatic mutation test case generation via dynamic1190

symbolic execution, in: Software reliability engineering (ISSRE), IEEE, 2010,

pp. 121–130.

[30] Y. Jia, M. Harman, An analysis and survey of the development of mutation testing,

IEEE Trans. Software Eng. 37 (5) (2011) 649–678.

[31] T. Srivatanakul, J. A. Clark, S. Stepney, F. Polack, Challenging formal speci-1195

fications by mutation: a CSP security example, in: 10th Asia-Pacific Software

Engineering Conference, IEEE Press, 2003, pp. 340–350.

[32] D. R. Kuhn, Fault Classes and Error Detection Capability of Specification-Based

Testing, ACM Transactions on Software Engineering and Methodology 8 (4)

(1999) 411–424.1200

[33] P. E. Black, V. Okun, Y. Yesha, Mutation operators for specifications, in: Auto-

mated Software Engineering. ASE 2000, IEEE, 2000, pp. 81–88.

[34] C. Fischer, Combination and Implementation of Processes and Data: from CSP-

OZ to Java, Ph.D. thesis, Fachbereich Informatik Universität Oldenburg (2000).

[35] S. Schneider, H. Treharne, CSP Theorems for communicating B machines, For-1205

mal Aspects of Computing 17 (4) (2005) 390–422.

[36] B. Aichernig, H. Jifeng, Mutation testing in UTP, Formal Aspects of Computing

21 (2008) 3364.

[37] M. V. M. Oliveira, A. L. C. Cavalcanti, J. C. P. Woodcock, A UTP Semantics for

Circus, Formal Aspects of Computing 21 (1-2) (2009) 3–32.1210

[38] J. C. King, Symbolic execution and program testing, Commun. ACM 19 (7)

(1976) 385–394.

[39] E. Brinksma, A theory for the derivation of tests, in: Protocol Specification, test-

ing and Verification VIII, North-Holland, 1988, pp. 63–74.

[40] A. L. C. Cavalcanti, M.-C. Gaudel, A note on traces refinement and the conf1215

relation in the Unifying Theories of Programming, in: Unifying Theories of Pro-

gramming 2008, Vol. 5713 of LNCS, Springer, 2010, pp. 42–61.

[41] A. L. C. Cavalcanti, M.-C. Gaudel, Testing for Refinement in CSP, in: 9th

ICFEM, Vol. 4789 of LNCS, Springer, 2007, pp. 151–170.

47

[42] S. Fujiwara, G. v. Bochmann, Testing non-deterministic state machines with fault1220

coverage, in: IFIP TC6/WG6.1 4th Int. Wshop on Protocol Test Systems IV,

North-Holland, 1991, pp. 267–280.

[43] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, A. W. Roscoe, FDR3 A Mod-

ern Refinement Checker for CSP, in: Tools and Algorithms for the Construction

and Analysis of Systems, 2014, pp. 187–201.1225

[44] J. Huo, A. Petrenko, Transition covering tests for systems with queues, Softw.

Test., Verif. Reliab. 19 (1) (2009) 55–83.

[45] A. L. C. Cavalcanti, M.-C. Gaudel, Specification Coverage for Testing in Circus,

in: Unifying Theories of Programming, Vol. 6445 of LNCS, Springer, 2010, pp.

1–45.1230

[46] M. V. M. Oliveira, Formal Derivation of State-Rich Reactive Programs Using

Circus, Ph.D. thesis, University of York (2006).

[47] B. K. Aichernig, C. C. Delgado, From faults via test purposes to test cases: On

the fault-based testing of concurrent systems, in: FASE 2006, Vol. 3922 of LNCS,

Springer, 2006, pp. 324–338.1235

[48] P. Malik, M. Utting, CZT: A framework for Z tools, in: ZB 2005: Formal Spec-

ification and Development in Z and B, Vol. 3455 of LNCS, Springer, 2005, pp.

65–84.

[49] T. Miller, L. Freitas, P. Malik, M. Utting, CZT support for Z extensions, in:

Integrated Formal Methods, Vol. 3771 of LNCS, Springer, 2005, pp. 227–245.1240

[50] G. Fraser, F. Wotawa, P. E. Ammann, Testing with model checkers: a survey,

Software Testing, Verification and Reliability 19 (3) (2009) 215–261.

[51] L. J. S. Freitas, Model Checking Circus, Ph.D. thesis, University of York, De-

partment of Computer Science (2006).

[52] A. Mota, A. Farias, A. Didier, J. Woodcock, Rapid prototyping of a semantically1245

well founded Circus model checker, in: Software Engineering and Formal Meth-

ods, Vol. 8702 of LNCS, Springer, 2014, pp. 235–249.

[53] Formal Systems (Europe) Ltd, FDR: User Manual and Tutorial, version 2.28

(1999).

[54] M. V. M. Oliveira, A. C. Sampaio, M. S. Conserva Filho, Model-checking Cir-1250

cus state-rich specifications, in: Integrated Formal Methods, Vol. 8739 of LNCS,

Springer, 2014, pp. 39–54.

[55] B. Scattergood, P. Armstrong, CSPM: A Reference Manual (Jan. 2011).

[56] A. Feliachi, Semantics-based testing for circus, Ph.D. thesis, LRI, Universite de

Paris-Sud (2012).1255

48

[57] A. Feliachi, M.-C. Gaudel, B. Wolff, Symbolic test-generation in HOL-

TestGen/Cirta: A case study, Int. J. Software Informatics 9 (2) (2015) 177–203.

[58] R. M. Hierons, M. Harman, S. Danicic, Using program slicing to assist in the

detection of equivalent mutants, Softw. Test., Verif. Reliab. 9 (4) (1999) 233–262.

[59] S. Labbé, J.-P. Gallois, Slicing communicating automata specifications: polyno-1260

mial algorithms for model reduction, Formal Aspects of Computing 20 (6) (2008)

563–595.

[60] A. Feliachi, M. Gaudel, B. Wolff, Isabelle/Circus: A process specification and

verification environment, in: Verified Software: Theories, Tools, Experiments

-VSTTE 2012, Vol. 7152 of LNCS, Springer, 2012, pp. 243–260.1265

[61] L. Madeyski, W. Orzeszyna, R. Torkar, M. Jozala, Overcoming the equivalent

mutant problem: A systematic literature review and a comparative experiment of

second order mutation, IEEE Trans. Softw. Eng. 40 (1) (2014) 23–42.

[62] B. K. Aichernig, Mutation testing in the refinement calculus, Formal Aspects of

Computing 15 (2003) 280–295.1270

[63] G. Wimmel, J. Jurjens, Specification-based test generation for security-critical

systems using mutations, in: Proc. of ICFEM 02, Vol. 2495 of LNCS, Springer,

2002, pp. 471–482.

[64] W. Krenn, B. K. Aichernig, Test case generation by contract mutation in Spec#,

ENTCS 253 (2) (2009) 71–86.1275

[65] B. K. Aichernig, E. Jobstl, S. Tiran, Model-based mutation testing via symbolic

refinement checking, Science of Computer Programming 97, Part 4 (0) (2015)

383 – 404, special Issue: Selected Papers from the 12th International Conference

on Quality Software (QSIC 2012).

[66] B. K. Aichernig, Model-based mutation testing of reactive systems, in: Theories1280

of Programming and Formal Methods, Springer, 2013, pp. 23–36.

[67] O. Alkrarha, J. Hassine, Muasmetal: An experimental mutation system for as-

metal, in: 12th Int. Conf. on Information Technology - New Generations (ITNG),

2015, pp. 421–426.

[68] B. Aichernig, H. Brandl, E. Jobstl, W. Krenn, R. Schlick, S. Tiran, MoMut::UML1285

model-based mutation testing for UML, in: Software Testing, Verification and

Validation (ICST), 2015, pp. 1–8.

[69] Y. Jia, M. Harman, An analysis and survey of the development of mutation testing,

IEEE Trans. Softw. Eng. 37 (5) (2011) 649–678.

[70] T. A. Budd, A. S. Gopal, Program testing by specification mutation, Comput.1290

Lang. 10 (1) (1985) 63–73.

49

[71] P. E. Ammann, P. E. Black, W. Majurski, Using model checking to generate tests

from specifications, in: 2nd Int. Conf. on Formal Engineering Methods, ICFEM

’98, IEEE, 1998, pp. 46–54.

[72] W. Herzner, R. Schlick, H. Brandl, J. Wiessalla, Towards fault-based generation1295

of test cases for dependable embedded software, Softwaretechnik-Trends 31 (3).

[73] A. Brillout, N. He, M. Mazzucchi, D. Kroening, M. Purandare, P. Rummer,

G. Weissenbacher, Mutation-based test case generation for Simulink models, in:

FMCO, 2009, pp. 208–227.

[74] M. Papadakis, N. Malevris, Searching and generating test inputs for mutation1300

testing, SpringerPlus 2 (1) (2013) 1–12.

[75] M. Papadakis, N. Malevris, Mutation based test case generation via a path selec-

tion strategy, Information and Software Technology 54 (9) (2012) 915–932.

[76] M. Papadakis, N. Malevris, Automatically performing weak mutation with the

aid of symbolic execution, concolic testing and search-based testing, Software1305

Quality Journal 19 (4) (2011) 691–723.

[77] Z. Andrews, R. Payne, A. Romanovsky, A. Didier, A. Mota, Model-

based development of fault tolerant systems of systems, in: Sys-

tems Conference (SysCon), 2013 IEEE International, 2013, pp. 356–363.

doi:10.1109/SysCon.2013.6549906.1310

[78] Z. Andrews, J. Fitzgerald, R. Payne, A. Romanovsky, Fault mod-

elling for systems of systems, in: Autonomous Decentralized Systems

(ISADS), 2013 IEEE Eleventh International Symposium on, 2013, pp. 1–8.

doi:10.1109/ISADS.2013.6513445.

50

	Introduction
	Circus and its testing theory
	Circus notation and operational semantics
	Testing in Circus

	Mutation testing in Circus
	Killing faulty models against traces refinement
	A first mutant of Chrono and some tests that kill it
	Killing faulty models against the conf conformance relation
	Specification traces and mutation points

	Mutation operators
	Modification of behavioural operators
	Mutations of events
	Mutations of choice and concurrency operators
	Mutations of communications
	Mutations of name references and hiding

	Expression modification operators
	Comparison with mutation testing based on LOTOS

	Tool support
	Test generation via CSP and FDR
	Translating Circus specifications into CSP
	Using FDR for fault-based test-case generation

	Test Generation from Circus specifications

	Cash Machine: Another example
	Communication elimination (pce) of the first occurrence of outc!c
	Communication elimination (pce) of the second occurrence of outc!c
	Substitution (pprSchema) of the reference to Dispense by DispenseError
	Insertion of event (pei) refill
	Mutation of choice operator (pco)
	Communication insert (pci)
	Mutation of sequential compositions (ppoSeqPar)

	Related Work
	Conclusions and future work
	Circus operational semantics
	Emergency Response System
	Mutations by ppoParInt
	Mutations by ppoParSeq

