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Java in the Safety-Critical Domain

Ana Cavalcanti, Alvaro Miyazawa, Andy Wellings, Jim Woodcock, Shuai Zhao

Department of Computer Science, University of York, UK

Abstract. Safety-Critical Java (SCJ) is an Open Group standard that
defines a novel version of Java suitable for programming systems with
various levels of criticality. SCJ enables real-time programming and cer-
tification of safety-critical applications. This tutorial presents SCJ and
an associated verification technique to prove correctness of programs
based on refinement. For modelling, we use the Circus family of notations,
which combine Z, CSP, Timed CSP, and object orientation. The tech-
nique caters for the specification of functional and timing requirements,
and establishes the correctness of designs based on architectures that
use the structure of missions and event handlers of SCJ. It also considers
the integrated refinement of value-based specifications into class-based
designs using SCJ scoped memory areas. As an example, we use an SCJ
implementation of a widely used leadership-election protocol.

1 Introduction

Java needs no introductions: it has a wide base of programmers, an impressive
collection of libraries, and continues to evolve with the backing of a very large
number of companies. However, it lacks effective support for real-time application
development, in particular it has poor facilities for real-time scheduling and
unpredictable memory management. This has led to the creation of the Real-
Time Specification for Java (RTSJ) [47], which augments the Java platform
to provide a real-time virtual machine and support preemptive priority-based
scheduling and a complementary region-based memory management mechanism.

Java augmented by the RTSJ provides a comprehensive set of facilities suit-
able for a wide range of real-time applications. Safety-critical applications, how-
ever, require the use of a controlled engineering approach, to ensure reliability,
robustness, maintainability, and traceability. Many of them also require certifi-
cation based on standards before they can be deployed. For these reasons, it is
common to reduce complexity (and with it flexibility) via the adoption of lan-
guage subsets. Examples are SPARK Ada [3] and MISRA C [37]. In this context,
RTSJ is far too rich: it includes the whole of Java, and more.

SCJ has been designed under the Java Community Process: JSR 302. It de-
fines a minimal set of capabilities required for safety-critical applications using
Java implementations. As a result of this effort, we have an SCJ specification,
a reference implementation, and a technology compatibility kit, which contains
benchmark examples used to confirm that a particular implementation is com-
patible with the SCJ specification. The goal is to support certification under, for
example, the DO-178 [42]. Nothing is said, however, about design techniques.



As opposed to the RTSJ, SCJ enforces a constrained execution model based
on missions, event handlers, and memory areas [46]. SCJ restricts the RTSJ.
It prohibits use of the heap and defines a policy for the use of memory areas,
which are cleared at specific points of the program flow to avoid the unpredictable
garbage collection of the heap. The SCJ design is organised in Levels (0, 1, and
2), with a decreasing amount of restrictions to the execution model.

In this tutorial, we give a detailed description of SCJ and its programming
and memory models. For illustration, we use a Level 1 implementation of a
leadership-election protocol, which is widely used for coordination of distributed
systems. SCJ Level 1 corresponds roughly to the Ravenscar profile for Ada [6].

We also present here a technique for verification by refinement of SCJ Level 1
programs [12]. It uses the Circus family of notations [10], which combine con-
structs from Z [49] for data modelling, CSP [40] for behavioural specification,
and standard imperative commands from Morgan’s refinement calculus [34]. We
cover Circus Time [45], with facilities for time modelling from Timed CSP [39],
and OhCircus [11], based on the Java model of object-orientation. This tutorial
gives an overview of Circus and its constructs relevant for modelling SCJ designs.

Our technique is based on the stepwise development of SCJ programs based
on specification models that do not consider the details of either the SCJ mission
or memory models. Development proceeds by model transformation justified by
the application of algebraic laws that guarantee that the transformed model
is a refinement of the original model. Before, presenting the SCJ refinement
technique, we give an overview of algebraic refinement.

The verification technique is a refinement strategy: a procedure for appli-
cation of algebraic refinement laws. Four Circus specifications characterise the
major development steps: we call them anchors, as they identify the (interme-
diate) targets for model transformation and the design aspects treated in each
step of development. Each anchor is written using a different combination of the
Circus family of notations. The first anchor is the abstract specification written
in Circus Time. The last is written in SCJ-Circus; it is so close to an SCJ program
as to enable automatic code generation. This tutorial describes this technique
using the verification of the leadership-election protocol as an example.

Next, we present the notations used in our work, namely, SCJ, in Section 2,
and Circus, in Section 3. Algebraic refinement is the subject of Section 4. Finally,
Section 5 presents our refinement strategy. We draw some conclusions, where we
identify open problems on refinement for SCJ, in Section 6.

2 Safety-Critical Java

This section provides an introduction to the Safety-Critical Java programming
model and gives an example of a simple program that can control several robots.
The robots are shown in Figure 1 and they perform a coordinated dance. One
of them is elected the leader robot and initiates the dance routine. The oth-
ers are followers and perform the actions indicated by the leader. During the
dance, robots can fail and, if necessary, a new leader can be elected. An identi-



cal SCJ program runs on each robot. We present the overall architecture of the
application and then focus on the details of the election algorithm.

Fig. 1. Dancing Robots

An SCJ program is executed under the auspices of an SCJ virtual machine,
which provides core Java services and an infrastructure to manage the life-cycle
of safety-critical applications. The core services are those typically provided by
a standard Java virtual machine and include support for bytecode execution and
memory management. The infrastructure is provided in a Java extension library
namedjavax.safetycritical. It supports the main programming abstractions
defined by SCJ and requires specialised support from the core services, not found
in standard Java virtual machines. Typically, an SCJ virtual machine is hosted
on a high-integrity operating system (such as Green Hills Integrity real-time
operating system), as illustrated in Figure 2.

Fig. 2. Safety-Critical Java: VM and Infrastructure

In order to understand the SCJ programming model, there are three main
topic areas that must be mastered:

1. applications, missions and mission sequencers;



2. concurrency and scheduling; and
3. memory management.

These topics are covered in the next three sections. Throughout, we use the
robot leadership-election application as an illustrative example.

2.1 Applications, missions and mission sequencers

An SCJ program is started by invoking the SCJ virtual machine with a parameter
that identifies the application’s main program. This is called a safelet in SCJ, as
it is analogous to an applet in which Java code executes in a constrained web-
browser environment. The SCJ infrastructure defines the interface to a safelet,
and the application must provide a class that implements this interface.

The application itself consists of the execution of a sequence of missions,

where a mission represents an application’s activity that must be completed.
For example, a program that controls the flight of an aircraft might have three
main missions: one that manages the take-off activity, one that maintains the
flight at its cruising altitude, and one that oversees the landing procedures.

In our robot application, there are two missions. During the first mission a
leader is elected. Once the election is completed, the robots perform their dance
mission. If a failure occurs, the robots return to the election mission.

As illustrated in Figure 3, each mission has three phases of operation:

Fig. 3. Safety-Critical Application Phases[29]

1. Initialization – during which the resources needed to complete the mission
are acquired and initialised. In our robot application, the initialisation of the
election mission acquires access to a wireless network and establishes links
with the other robots.

2. Execution – during which the activity of the mission is performed: it starts
after the initialization phase has been completed. In our robot application,
the execution phase of the election mission implements a communication
protocol to elect a new leader robot.



3. Cleanup – starts after completion of the execution phase, and is responsible
for returning any resources and performing any other needed finalization
code. In our robot application, all resources are returned automatically to the
operating system when the program terminates. Hence, there is no explicit
application cleanup code.

The order of execution of missions is controlled by an application-defined mission

sequencer as also illustrated in Figure 3.
Hence, the Safelet interface contains the following two methods:

1 package javax.safetycritical;
2
3 public interface Safelet<M extends Mission<M>> {
4 public void initializeApplication();
5 public MissionSequencer<M> getSequencer();
6 ...
7 }

The initializeApplication method is called by the SCJ infrastructure af-
ter the SCJ virtual machine has been initialised. Following this, it calls the
getSequencer method to obtain the application mission sequencer that will
oversee the sequence of execution of the missions.

As mentioned in the previous section, SCJ has three compliance levels. The
SCJ uses Java generics to ensure that a mission sequencer and its missions have
been designed for the same compliance level and are type safe.

The structure of the code for the robots example is shown below:

1 import javax.safetycritical.∗;
2
3 class RobotApp implements Safelet<RobotMission> {
4
5 @Override
6 public MissionSequencer<RobotMission> getSequencer() {
7 return new RobotSequencer(...);
8 }
9

10 @Override
11 public void initializeApplication() {
12 ...
13 }
14 }

All missions that are scheduled by an application must have a common super-
class. In the robots example, this is called RobotMission and appears as the
generic parameter at line 2. The getSequencer method at line 5 now can only
return a mission sequencer that schedules missions of type RobotMission.

For this tutorial, we ignore a mission sequencer’s parameters and just consider
one of its main methods: getNextMission on line 10 below. This method is called



by the infrastructure to select the initial mission to execute, and subsequently,
each time a mission terminates, in order to determine the next mission to execute.

1 package javax.safetycritical;
2
3 public abstract class MissionSequencer<M extends Mission<M>>
4 extends ManagedEventHandler {
5
6 /∗∗ Construct a MissionSequencer object to oversee
7 ∗ a sequence of mission executions
8 ∗/
9 public MissionSequencer(...) {

10 ...
11 }
12
13 protected abstract M getNextMission() {
14 ...
15 }
16 ...
17 }

A mission sequencer is an asynchronous event handler (ASEH): it executes in
its own thread of control. This is considered in depth in Section 2.2.

The structure of the robot mission sequencer can now be given:

1 import javax.safetycritical.∗;
2
3 class RobotSequencer extends MissionSequencer<RobotMission> {
4
5 private Mission mission;
6 private boolean electing = true;
7
8 public RobotSequencer(...) {
9 super(...); . . .

10 }
11
12 @Override
13 public Mission getNextMission() {
14 if (electing) {
15 return new ElectionMission();
16 } else {
17 return new DanceMission();
18 }
19 }
20
21 }

The boolean variable electing on line 4 indicates whether a new leader needs
to be elected. If it has value true, then the method getNextMission in line 12
returns a mission to perform this task: an instance of ElectionMission.



The Mission class encapsulates the direct infrastructure support for an SCJ
mission; its main methods are shown below. The application extends this class
and overrides its initialize and cleanUp methods.

1 package javax.safetycritical;
2 public abstract class Mission<M extends Mission<M>> {
3 public Mission() {}
4
5 protected abstract void initialize();
6 protected boolean cleanUp() {...}
7
8 /∗ Request that this mission be terminated ∗/
9 public final boolean requestTermination() {...}

10
11 /∗ Is there an outstanding termination request for this mission ∗/
12 public final boolean terminationPending() {...}
13
14 /∗ Obtain the controlling sequencer ∗/
15 public MissionSequencer<M> getSequencer() {...}
16
17 /∗ Obtain the current mission.∗/
18 public static <M extends Mission<M>> M getMission() {...}
19 }

A typical implementation of initialize instantiates and registers all the ASEHs
that constitute the Mission. Besides, initialize may also instantiate and ini-
tialise mission-level data structures. The infrastructure ensures that ASEHs can
only be instantiated and registered during the initialize method. The infras-
tructure also arranges to begin executing the registered ASEHs associated with
a particular Mission upon return from its initialize method.

The cleanUp method is called by the infrastructure after all asynchronous
event handlers registered with the mission have terminated.

The requestTermination method is called by the application to initiate
mission termination. When it is called, the infrastructure invokes the method
signalTermination (see Section 2.2) on each ASEH registered in the mission.
Additionally, the infrastructure (1) disables all periodic event handlers (PEHs)
associated with this Mission, so that they experience no further releases; (2) dis-
ables all aperiodic event handlers (APEHs), so that no further releases are hon-
oured; (3) clears the pending event (if any) for each event handler (including any
one-shot event handlers), so that the event handler can be effectively shut down
following completion of any event handling that is currently active; (4) waits for
all of the ASEH objects associated with this mission to terminate their execu-
tion; (5) invokes the cleanUp methods for each of the ASEHs associated with
this mission; and (6) invokes the cleanUp method associated with this mission.

In our robot example, the Election and Dance missions have a common
superclass: the RobotMission class sketched below. Irrespective of the mission’s
main functionality, it must manage communication between the robots across
the wireless network. The common initialization code, therefore, creates and



registers two ASEHs. On line 4 below, the Receiver class is a PEH. Its goal is
to receive communication from the robots.

1 public abstract class RobotMission extends Mission<RobotMission> {
2 ...
3 protected void initialize() {
4 Receiver receiver = new Receiver(...);
5 receiver.register();
6
7 Sender sender = new Sender(...);
8 sender.register();
9 }

10 }

Similarly on line 7, the Sender class is also a PEH. Its goal is to broadcast
communication to the other robots. Both of the robot’s missions extend this
class; for instance, the election mission is given below.

1 class ElectionMission extends RobotMission {
2 @Override
3 protected void initialize() {
4 super();
5 Elector elector = new Elector(...);
6 elector.register();
7 }
8 ...
9 }

ElectionMission creates and registers an additional PEH. Its goal is to use the
state of each robot to determine whether it should be a leader or a follower.

2.2 Concurrency and scheduling

In general, there are two models for creating concurrent programs. The first is a
thread-based model in which each concurrent entity is represented by a thread
of control. The second is an event-based model, where an event handler executes
in direct response to the firing of its associated event. The RTSJ, upon which
SCJ is based, supports a rich concurrency model allowing real-time threads and
asynchronous events. The SCJ Level 1 concurrency model simplifies this and
relies exclusively on asynchronous event handling.

An ASEH executes in response to invocation requests (known as release

events); the resulting execution of the associated logic is a release. Release re-
quests are categorised as follows: periodic, sporadic, or aperiodic. If Ri denote
the time at which an ASEH has had the i th release event occur, then:

1. an ASEH is periodic when there exists a value T > 0 such that, for all i ,
Ri+1 − Ri = T , where T is called the period;

2. an ASEH that is not periodic is said to be aperiodic; and



3. an aperiodic ASEH is said to be sporadic when there is a known value T > 0
such that for all i , Ri+1−Ri ≥ T . T is then called the minimum interarrival
time (MIT).

PEHs are timed triggered in SCJ, which means that they are indirectly released
via the passage of time (using a real-time clock). APEHs and sporadic (SEH)
handlers can be both timed triggered or released directly from application code.

SCJ specifies a set of constraints on the RTSJ concurrency model. This con-
strained model is enforced by defining a new set of classes, all of which are
implementable using the concurrency constructs defined by the RTSJ. As an
example, the following shows the class for a PEH. This class permits the au-
tomatic periodic execution of code. The handleAsyncEvent method behaves as
if the handler were attached to a periodic timer. This method is executed once
for every release. The class is abstract; non-abstract sub-classes must override
handleAsyncEvent and may override the default cleanUp method.

1 package javax.safetycritical;
2
3 public abstract class PeriodicEventHandler extends ManagedEventHandler
4 {
5 /∗ Constructs a periodic event handler.
6 ∗ priority: specifies the priority parameters for this periodic event handler.
7 ∗ release: specifies the periodic release parameters, in particular the
8 ∗ start time, period and deadline miss handler.
9 ∗/

10 public PeriodicEventHandler(PriorityParameters priority,
11 PeriodicParameters release, ...) {...}
12
13 /∗ Applications override this method to provide
14 the code to be executed on each release ∗/
15 public void handleAsyncEvent() {...}
16
17 /∗ Register this handler with its mission ∗/
18 public void register() {...}
19
20 /∗ Called by the infrastructure during the mission cleanup phase ∗
21 public void cleanUp() {...}
22
23 /∗ Called by the infrastructure to indicate that the enclosing mission
24 ∗ has been instructed to terminate. ß∗/
25 public void signalTermination() {...}
26 }

The SCJ supports communication between ASEHs using shared variables, and so
requires support for synchronisation and priority-inversion management proto-
cols. On multiprocessor platforms, it is assumed that all processors can access all
shared data and resources, although not necessarily with uniform access times.
SCJ requires implementations to support priority-ceiling emulation, a particular
protocol that allows the synchronisation to be analysed for its timing properties.



Fig. 4. The Architecture of the Robots Safety-Critical Application

Fig. 5. Optimised Architecture of the Election Mission

Scheduling in SCJ is performed in the context of a scheduling allocation

domain. The scheduling allocation domain of an ASEH consists of the set of
processors on which that schedulable object may be executed. Each ASEH can
be scheduled for execution in only one scheduling allocation domain. At Level 1,
multiple allocation domains may be supported, but each domain must consist of
a single processor. Hence, from a scheduling perspective, a Level 1 system is a
fully partitioned system. Within a scheduling allocation domain, multiple ASEHs
are scheduled for execution in priority order using a priority-based scheduler. If
ASEHs have the same priority, then they are scheduled in a FIFO order, that
is, the order in which they become schedulable.

In the robot example, there are several PEHs in each mission. Two handlers
are responsible for robot-to-robot communication in each mission. The other
ones focus on the main activity of the mission (electing a leader, detecting a
change in leadership, and performing the dance). The full software architecture
of the program is illustrated in Figure 4.

For small embedded systems, it is often required that we optimise the solution
in order to reduce the scheduling overheads. One possibility is to combine the
PEHs responsible for communication into one handler. The Elector can then be
transformed into an APEH which is released on successful receipt of one round
of communication. This is illustrated in Figure 5.

2.3 Memory Management

In standard Java all objects are allocated on a heap. Traditionally, dynamic
memory allocation and the resulting heap management (garbage collection) has
been vetoed by the authorities who certify safety-critical systems on the grounds



that it is too unpredictable. For this reason, the RTSJ introduces the notion of
a memory area; this is a chunk of memory from where the memory for object
allocation is taken. The Java heap is an example of a memory area.

The RTSJ supports two additional types of memory areas: immortal and
scoped memory. Every object allocation is performed with an allocation context.
It can change dynamically by a thread of control entering into and exiting from
a memory area. The current allocation context at the time an object allocation
is requested determines which memory area its space comes from.

Objects created in immortal memory are never collected: once created they
exist for the lifetime of the application. Objects in scoped memory areas are
automatically freed when no thread of control has an active allocation context
for that memory area, that is, it has entered but not exited that memory area.

SCJ constrains the memory model of RTSJ by not allowing the heap memory
area. It also distinguishes between scoped memory areas that can be entered by
multiple ASEHs (called mission memory) and those that are private to an ASEH
(called private memory). Each mission has a single mission memory. Each ASEH
has a single private memory area (called per-release memory area), which is
entered into automatically when the ASEH is released and exited automatically
(and hence has all its objects collected) when the release completes. Each ASEH
may also have nested private memories for ephemeral objects. All objects stored
in mission memory are collected at the end of each mission.

In addition, all ASEHs have a thread stack where they can store references
to objects created in the various memory areas. Figure 6 illustrates the memory
hierarchy of an SCJ program. In order to maintain the referential integrity of all
objects in SCJ programs, a reference to an object A cannot be assigned in a field
of an object B if object A’s lifetime is less than object B’s lifetime. If allowed,
object A could disappear and leave object B with a dangling pointer.

In our robot example, the system state is stored in immortal memory, data
that must be communicated between handlers is stored in mission memory, and
all other data is stored in private memory areas or on the handlers stack. This
is a typical data design for valid and efficient SCJ programs.

2.4 The election details

For the election, each robot has the following associated information:

– Id: this uniquely identifies the robot and its IP address;
– Petition: a unique ranking among the robots that indicates how badly the

robot wants to be the leader. The robot with the highest petition that is
online is elected the leader;

– Status: an indication of whether the robot is the leader, a follower or unde-
cided.

The application maintains in immortal memory an array with this information;
it has one position for each robot. The array includes a logical timestamp that
indicates the freshness of the state of the information received. The timestamp
is incremented by the Elector and Detector handlers in every period.
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Fig. 6. Memory Hierarchy of an SCJ Program

The Sender PEH broadcasts its robot’s state every 500 milliseconds. The
Receiver PEH receives as many messages as are available every 500 milliseconds.
The Elector reviews the global state each 3000 milliseconds and decides whether
its robot should elect itself as leader or become a follower. When the global
state shows that all robots have decided and that there is only one leader, the
mission terminates, and the Dancing mission is executed. During this mission,
the Detector continues to monitor the global state every 3000 milliseconds. If the
status quo is changed, then the Dance mission terminates and a new Election

mission is executed. The Dancer PEH sends and receives dancing commands
every 3000 milliseconds depending on whether it is the leader or the follower.

The full code for the leadership-election example that is presented here is
at www.cs.york.ac.uk/circus/hijac/code/LeaderElectionPaper.zip. The
pseudo code shown Figure 7 summarises the overall optimized approach.

Essentially there are two parallel activities (the Communicator – lines 4 - 9
and the Elector – line 9-19). The Communicator is responsible for periodically
sending out a robot’s state to its neighbouring robots, and then acquiring their
current states. The Elector is aperiodic and is released after the Communicator has
acquired all its neighbours states. It analyses the global state and if a leader has
been globally agreed, it requests termination of the current mission. Otherwise,
if its petition is the highest among all the robots, then it makes a claim to be
the leader, or then it settles for being a follower.

In the next section, we present a formal specification for the robot application.
We develop the optimized approach.



1 For each robot:
2
3 IN PARALLEL
4 Communicator:
5 PERIODIC
6 IN SEQUENCE
7 broadcast my state to neighbours
8 get state from each of my neighbours
9 Elector:

10 APERIODIC
11 IN SEQUENCE
12 analyse global state
13 IF no leader agreed
14 IF I have highest petition
15 Claim leadership
16 ELSE

17 Claim follower
18 ELSE

19 Request mission termination as leader has been established

Fig. 7. Pseudo-code for the optimised leadership-election algorithm

3 Circus

The search for increasing levels of abstraction is a key feature in software engi-
neering, and, particularly, in language design. For example, the concept of class
embeds a notion of an abstract data type and allows a structured modelling
of real-world entities, capturing both their static and dynamic properties. The
notion of process abstracts from low-level control structures, allowing a system
architecture to be decomposed into cooperative and active components.

Despite the complementary nature of constructs for describing data and con-
trol behaviour, most programming languages focus only on one or the other
aspect. Java is no exception: it offers (abstract) classes, interfaces, and packages;
in contrast, only the low-level notion of threads is available. There are excep-
tions like Ada [23], whose design has clearly addressed abstract data and control
behaviour (with packages and tasks), but even so there are several limitations;
for example, a package is not a first-class value.

The design of specification languages has followed a similar trend, with state-
based and property-oriented formalisms concentrating on high-level data con-
structs [5], and process algebras exploring control mechanisms. A current and
active research topic is the integration of notations to achieve the benefits of
both abstract data and control behaviour [20, 44]. Circus is one of these inte-
grated notations, whose focus is refinement (to code).

In this section, we present a combination of Z [49] and CSP [41], traditional
languages for data modelling and a process algebra. Their combination in a
language called Circus supports the specification of both data and behavioural



aspects of concurrent systems, and a development technique. Such a combination
has obvious advantages: Z is good at describing rich information structures using
a predicative style (based on invariants, and pre and postconditions), and CSP is
good at describing behavioural patterns of communication and synchronisation.

In Circus, Z constructs can be combined with executable commands, like
assignments, conditionals, and loops. Reactive behaviour, including communica-
tion, parallelism, and choice, is defined with the use of CSP constructs.

In this section, we give an overview of Circus: we describe the structure of
the Circus models, and explain how Z and CSP are combined. Beforehand, we
say a bit more about Z (Section 3.1) and CSP themselves (Section 3.2). As an
example, we provide a model of the leadership-election protocol (Section 3.3).

3.1 Z

A system specification in Z consists basically of a definition for a state and a
collection of operations. The state is composed by variables representing infor-
mation used and recorded in the system. The operations take inputs and produce
outputs, and possibly update the state. Both the state and the operations are
defined by schemas, which group variable declarations and a predicate.

Example 1. As a very simple example, we consider a system presented in [35]
that calculates the mean of a sequence of numbers. The state of this system has
only one component: the sequence seq of integers input so far.

Calculator

seq : seqZ

The state definition gives it a name, Calculator , and declares its component.
This system has three operations. The first, Init , initialises the state.

Init

Calculator ′

seq ′ = 〈〉

The reference to Calculator indicates that this is an operation over that state. In
an operation definition, we can refer to seq and to seq ′. The former refers to the
value of the state component before the operation, and the latter, to the value
after the operation. The dash decoration on Calculator , however, indicates that
Init , as an initialisation, can refer to seq ′ only. The predicate of Init specifies
that, after the initialisation, the value of seq is the empty sequence.

The second operation, Enter , records an input value in the sequence.

Enter

∆Calculator

n? : Z

seq ′ = seq a 〈n?〉

The ∆ in front of Calculator indicates that Enter changes the state. The variable



n? represents an input of Enter : the number to be inserted. The predicate defines
that the new sequence of numbers can be obtained by inserting the input at the

end of the existing sequence; a is the concatenation operator.
The last operation, Mean, calculates the mean of the numbers input so far.

Mean

ΞCalculator

m! : Z

seq 6= 〈〉
m! = (Σseq) div (# seq)

The Ξ indicates that Mean does not change the state. The output is repre-
sented by the variable m!. The specification requires that the sequence seq is
non-empty. This is a precondition for this operation: even though Mean can be
executed when this condition is not satisfied, its result is not predictable in such
a situation. If, however, the precondition is satisfied, the specification requires
the output to be the sum of the elements in the sequence divided by its size.
The Σ operator is not directly available in Z, but can be easily specified. �

3.2 CSP

In CSP, a system and its components are modelled by processes that interact
with their environment not via inputs and outputs, like in Z, but via synchro-
nisations that characterise events. These events, however, can model exchange
of data, as well as simple interactions of interest. In the description of a CSP
process, a first element of interest is the set of events in which it can participate;
the definition of an event simply gives it a name.

Example 2. A process that controls a revolving door can be characterised in
terms of the events step-in, revolve, step-out , and stop; the first denotes the
arrival of someone in the area around the door, the second represents the start
of the revolving movement, step-out is the event that captures the exit of a
person from the door area, and, finally, stop occurs when the door stops moving.

In the specification of the door, inputs and outputs are not a concern; the
relevant issue is the form in which the door interacts with the environment: the
people that use the door. Below, we present the definition of processes Door(i),
where i is the number of people already using the door.

If there are no people using the door, the only possible event is for someone to
arrive; afterwards, the door starts revolving, and proceeds to behave as a door
that is being used by one person. In the specification of Door(0), we use the
prefix operator a → P , which gives the unique event a in which the process is
prepared to engage, and a process P that characterises its behaviour afterwards.

Door(0) = step-in → revolve → Door(1)

We use prefixing twice: first, the door is prepared to record the event step-in,
then the only possible event is revolve, before the door behaves as Door(1).



If there is one person using the door, then either someone else arrives or that
person leaves. We use the choice operator P @ Q to specify this behaviour: this
process is prepared to behave as P or Q ; the choice is made by the environment.

Door(1) = step-in → Door(2) @ step-out → stop → Door(0)

If the event step-in takes place, then the door behaves as a door used by two
people. If step-out takes place, the only possible event is stop, and then we have
the behaviour of Door(0) again. The definitions of Door(0) and Door(1) are
mutually recursive; the use of recursion is very common in CSP.

Doors with two or more people are similar; for n > 1, Door(n) is below.

Door(n) = step-in → Door(n + 1) @ step-out → Door(n − 1)

If someone steps in an door with n people, for n greater than 1, then we have the
behaviour of a door with n +1 people. If someone steps out, then the behaviour
is that of a door with n − 1 people.

In a big building, we usually have a number of these doors. They work in
parallel, but independently. We define a process entrance with m doors as follows.

Entrance = 9 i : 1 . .m •

Door(0)[step-in.i , revolve.i , step-out .i , stop.i/step-in, revolve, step-out , stop]

In this process we have m copies of Door(0) recording events step-in.i , revolve.i ,
step-out .i , stop.i , for i between 1 and m. The set of events of Entrance comprise
all of the m × 4 events: 4 for each of the m doors. The parallel operator 9 is for
an interleaving composition, where the parallel processes do not interact with

each other. Above we use the iterated form (9) of this operator.
A polite door contains an additional component: a process that detects that

someone has arrived and welcomes this person with a greeting message. This
Polite process can be specified as follows.

Polite = step-in → welcome → Polite

The extra event welcome signals the play of the greeting. The polite door can
be characterised by the parallel execution of the standard Door(0) and Polite.

PDoor = Door(0) J {step-in} K Polite

In this parallel process (J...K), there is interaction between the two components;
they are not independent as in the previous example. Since step-in is an event
of both Door and Polite, they synchronise on this event. Every time someone
steps in, Door(0) and Polite act jointly; from the point of view of PDoor , just
one event occurs. �

As already explained, Circus includes both Z and CSP constructs. We present
Circus next via our running example: the leadership-election protocol.



3.3 Leadership election in Circus

A Circus model is formed by a sequence of paragraphs that specify types, con-
stants, functions, and, crucially, processes. Like in CSP, processes define systems
and their components. Their definitions use the types, constants and functions
defined globally, as well Z and CSP constructs.

In our example, we first define two types: DEVICEID and STATUS .

DEVICEID == N

STATUS ::= leader | follower | undecided | off

These types are sets that contain the valid identifiers for devices, and constants
leader , follower , undecided , and off that represent the status of a device. For
simplicity, we define the identifiers of the devices to be natural numbers. We
need to use an ordered set, because the election conditions use the order of the
devices to resolve ties. We could make this more abstract by requiring only a set
of identifiers with a total order, but it is simpler to use the natural numbers.

We also have some global constants. UP LMT is the maximum value for
the petition of a device. P is the period of the protocol. TIMEOUT is how long
a device waits for information from a neighbour before giving up, and marking
it as offline. ID and OD are the input and output deadlines. The set devices

contains all the identifiers of the devices in the network: a subset of DEVICEID .

UP LMT : N
P ,TIMEOUT , ID ,OD : N
devices : PDEVICEID

TIMEOUT ≤ P ∧ ID ≤ P ∧ OD ≤ P ∧ # devices > 0

A constraint ensures that the timeout, input and output deadlines are all less
than or equal to the period P . Moreover, there must be at least one device.

The process that defines the functional requirements of the protocol is called
ABReqsLE . It is introduced below.

processABReqsLE =̂ begin

In its body, the first few paragraphs define the state space.
The state of a device includes its identifier id , status, and petition.

DeviceState

id : DEVICEID

status : STATUS
petition : N

id ∈ devices

petition ≤ UP LMT

Constraints on the type ensure that id is for a device in the network, and the
petition is valid, that is, below the limit defined by UP LMT .



To execute the election protocol, a device needs additional information, cap-
tured in records of the type ElectionState. In addition to the state components
in DeviceState described above, ElectionState records the highest petition of a
device claiming to be a leader as well as its identifier: highest and highestid in
the schema, that is, record type, Highest below.

Highest == [highest : N; highestid : DEVICEID ]

The schema ElectionState includes all the components of DeviceState and Highest .
It also records the number nLeaders of leaders in the network, the index i of the
device currently communicating (lines 7-8 in Figure 7) in a sequence nodes that
records information about individual devices, and a function next that gives the
index (in nodes) of the device considered in the next cycle.

ElectionState

DeviceState

Highest

nLeaders : N
i : N; nodes : seqDeviceState; next : N→ N

+

i ∈ domnodes

∀n : N+ • next n = ((n − 1) mod (#nodes)) + 1
devices = {d : rannodes • d .id}
#nodes = # devices

θDeviceState ∈ rannodes

The invariant states that the index i is an index for nodes. Moreover, the function
next identifies indices of nodes in a way that iterates through this sequence,
circling back to the beginning at the end.

The set devices includes the identifiers in the range of nodes. By requiring
that the size of this set and the size of nodes are equal, we ensure that the range
of nodes does not include two records for the same device identifier. Finally, the
invariant establishes that the current device, identified by a record θDeviceState,
containing the fields of DeviceState in ElectionState, is also in the range of nodes.

Unlike CSP processes, a Circus process has a state defined by a schema. It
ElectionState that defines the state of the process ABREqsLE being specified.

state st == ElectionState

The next few paragraphs define data operations. Initially, there is no leader, the
highest petition is 0 and the index i is that for the device itself.

InitElectionState

ElectionState ′

nLeaders ′ = 0 ∧ highest ′ = 0 ∧ (nodes ′ i ′).id = id

This means that when all devices are in a network, in the first step of the
protocol, they all broadcast their status to the others.



When a status valC ? and petition valP? is received from a device whose
identifier is idDev?, we can update the fields of Highest if the device claims to
be a leader and the petition valP? is higher than previously recorded, or if it is
the same and the identifier idDev? is greater than the previous identifier.

UpdateHighest

∆Highest

idDev? : ID ; valC ? : STATUS ; valP? : N

valC ? = leader

valP? > highest ∨ (valP? = highest ∧ idDev? > highestid)
valP? > highest ⇒ highest ′ = valP? ∧ highestid ′ = idDev?
valP? = highest ⇒ highest ′ = valP? ∧ highestid ′ = idDev?

This operation is partial; it should only be used when an update to highest or
highestid is needed as indicated. This is ensured by its use in UpdateDevice,
shown below, which also modifies the remaining components of ElectionState.

UpdateDevice

∆ElectionState

idDev? : ID ; valC ? : STATUS ; valP? : N

let d == (µ x : rannodes | x .id = idDev? • x ) •


d .status = leader ∧ valC ? 6= leader ∧ nLeaders ′ = nLeaders − 1
∨
d .status 6= leader ∧ valC ? = leader ∧ nLeaders ′ = nLeaders + 1
∨
d .status = leader ∧ valC ? = leader ∧ nLeaders ′ = nLeaders

∨
d .status 6= leader ∧ valC ? 6= leader ∧ nLeaders ′ = nLeaders




nodes ′ = nodes ⊕ {(nodes ∼ d)) 7→
〈|id == idDev?, status == valC ?, petition == valP?|〉}

θDeviceState = θDeviceState ′ ∧ next ′ = next ∧ i ′ = i

UpdateHighest ∨ [ΞHighest | ¬ (preUpdateHighest)]

UpdateDevice takes the information d on idDev? in nodes using the definite
description operator µ and updates the number of leaders nLeaders depending on
the previous d .status and current value valC ? of its status. It also overrides (⊕)
nodes with the newly received information; with nodes ∼ d , we get the index of d .
UpdateDevice also leaves the components of DeviceState, the function next and
index i unchanged, and updates the components of Highest using UpdateHighest ,
if necessary, as captured by the precondition preUpdateHighest of this operation.

In a Circus process, the Z data operations can be combined to define actions.
In the definition of actions, we can also use CSP constructs.

The action BReq1 specifies the communications the protocol. It identifies
which device ((nodes i).id) is to be considered (recorded by i). If it is id itself,



it broadcasts its state using the action Broacast .

BReq1 =̂
if(nodes i).id = id −→ Broadcast(id , status, petition)
8(nodes i).id 6= id −→



receive.(nodes i).id?valC ?valP−→
UpdateDevice((nodes i).id , valC , valP)

@
timeout −→UpdateOff ((nodes i).id)


 ;

if status = undecided −→


if nLeader > 0 −→ status := follower

8nLeader ≤ 0 −→


if id = next i −→


if

(
(highest = petition ∧ highestid < id) ∨
highest < petition

)
−→

status := leader

8¬

(
(highest = petition ∧ highestid < id) ∨
highest < petition

)
−→

status := follower

fi




8id 6= next i −→ status := undecided

fi




fi




8status = leader −→


if nLeader > 0 −→ status := undecided

8nLeader ≤ 0 −→


if id = next i −→
petition := min(UP LMT , petition + 1); status := leader

8id 6= next i −→ status := leader

fi




fi




8status = follower −→


if nLeader = 0 −→ status := undecided

8nLeader 6= 0 −→ status := follower

fi




fi

fi

If the device under consideration ((nodes i)) is not id itself, the protocol waits
for information about the device on the channel receive and updates the state
using the operation UpdateDevice shown above, or for a timeout on the channel
timeout , in which case it udpates the state using the action UpdateOff . The
CSP operator @ offers an external choice between these actions. The next section
gives a concise overview of basic features of the CSP notation. After updating
the state with the received information, the device decides its own status based
on its previous status (if status = undecided −→ . . .fi). We notice that the
operation UpdateDevice does not change the device’s own state.



If the device is undecided, its new status depends on the number of leaders.
If there are leaders, it becomes a follower (assignment status := follower), other-
wise, the protocols considers the device next i . If it is id itself, then it compares
its petition to the highest petition and becomes a leader or follower depending on
whether or not its petition (or identifier) is greater than the highest petition (or
identifier) recorded. If the next device is not id , the status remains undecided.

If id ’s status is leader , and there are other leaders (besides itself as nLeaders
only refer to leaders among the neighbours), then it becomes undecided. Other-
wise, it remains a leader and increments its own petition (up to the maximum
UP LMT ) if it is the next device to be considered. Finally, if id is a follower
and there are no leaders, it becomes undecided. Otherwise, it stays a follower.

The actions used in BReq1 above are defined next.

Broadcast =̂ val id : DEVICEID ; status : STATUS ; petition : N •

9 i : devices \ {id} • send .id .i .status.petition −→ skip

Broadcast sends in interleaving (9) the status and petition of the device to each
of the neighbouring devices using the channel send . These are the devices d in
nodes whose identifier is not id itself. The parameters of send are the identifiers
of the source and target devices, the status and petition values. The protocol
assumes an asynchronous bus, so this communication does not deadlock even if
the target device is unavailable. Since communications in Circus are synchronous,
the model requires the definition of the bus (omitted here).

UpdateOff =̂ val idDev : DEVICEID • var valC : STATUS ; valP : N •
valC , valP := off , 0; UpdateDevice

UpdateOff uses the schema operation UpdateDevice to update the state of the
process. It sets the status and petition to off and 0, before updating the state.

As already said, the process ABReqsLE describes the behavioural require-
ments for the protocol on a single device. Its behaviour is defined below by the
main action. It initialises the state using the schema operation InitElectionState

and starts a recursive action (µX • ...X ), which at each step executes the action
BReq1 and updates the index i using the function next .

• InitElectionState; (µX • BReq1; i := next i ; X )
end

The timing requirements are specified in a separate process ATReqsLE shown
below. Its main behaviour is also defined by a recursion, but at each iteration
it offers a choice between receiving information on receive, indicating a timeout
using the channel timeout , or sending information to all neighbours in inter-
leaving through the channel send . The particular values communicated through
these channels are irrelevant here; they are defined in ABReqsLE specified above.
Here, on the other hand, the time in which these events occur is important.

Communications on send and receive must start within OD and ID time
units as defined by the deadline operator ◭. OD and ID are global constants



previously defined. All communications lead to an action that potentially lets
time pass until the end of a period P . The Circus statement wait 0 . . (P − t) is a
nondeterministic choice of a delay of 0 up to P − t time units. In the example, t
is the time between the communication being offered and actually taking place.
In each case, that is recorded via the @ operator, like in timeout@t .

processATReqsLE =̂ begin

TReq1 =̂ (TReqCycle ◮ P 9 waitP); TReq1
TReqCycle =̂

(9 i : 1 . .# devices − 1 • (send?x?y?z?w@t −→wait 0 . . (P − t))◭OD)

@
(receive?x?y?z?w@t −→wait 0 . . (P − t))◭ ID

@
(timeout@t −→wait 0 . . (P − t))◭ P

• TReq1
end

Finally, the overall specification is given by the process LeaderElection.

processLeaderElection =̂

(ABReqsLE J {| send , receive, timeout |} K ATReqsLE ) \ {| timeout |}

It is the parallel composition (J...K) of the behavioural and timing processes,
synchronising on the external channels send and receive, and on timeout , which is

hidden (\) and, therefore, internal to LeaderElection. We note that parallelism is
used not to define a parallel architecture for a design, but to define a conjunction
of requirements: the behavioural requirements of ABReqsLE and the timing
requirements of ATReqsLE . Synchronisation ensures that the communications
transmit values as defined in ABReqsLE within the times defined by ATReqsLE .

In Section 5, we explain how we can refine this abstract specification of the
leadership-election protocol to obtain a model of an SCJ program. Beforehand,
in the next section, we say more about refinement and the Circus approach.

4 Algebraic refinement

Circus distinguishes itself in that it is aimed at the (calculational) refinement of
specifications. Besides Z and CSP, Circus also includes specification constructs
usually found in refinement calculi [34, 2, 36] and Dijkstra’s language of guarded
commands [16], a simple imperative language with nondeterminism. The extra
constructs that we use here are familiar: assignments, conditionals, and so on.

As a refinement language, Circus is a unified programming language, in which
we can write specifications (in a combination of Z, Morgan’s specification state-
ments, and CSP), designs (using choice and concurrency constructs of CSP, for
instance), and programs, and can relate all these kinds of artefacts to each other
via refinement. Data refinement, failures-divergences refinement, and refinement
to code (as a special case of data refinement) can all be carried out using Circus.



The notion of refinement captures the essence of the daily tasks of software
engineers, who design systems based on their specifications, and programmers,
who implement these designs. In both cases, the main objective is the construc-
tion of systems and programs in accordance with their specifications. The final
product, above all, should be, or has to be, correct.

Refinement is the relationship that holds between a specification and its cor-
rect designs and implementations. Formal methods of program development are
based on this notion, as are all other methods in some way. A formal technique,
however, goes further since refinement of an initial specification to obtain an
acceptable implementation is the primary aim. Acceptability may be judged,
for instance, in terms of performance, but the guarantee provided is that the
specification and the implementation are related by refinement.

In this section, at first we present the classical notions of refinement. Initially,
refinement was extensively studied in the context of sequential programs [26,
27, 4], where the concern is the relation between inputs and outputs. It was
identified that there are basically two ways of refining a specification. The first
is the introduction and transformation of programming and control structures,
like assignments, conditions, and loops. This is called algorithmic refinement.

The second form of refinement is related to the data structures used in the
program. Systems may be specified in terms of data types that are appropri-
ate to describe properties of the application domain, without, for example, any
considerations related to efficiency. During design, however, ingenious decisions
usually involve the introduction of data structures that are available in the pro-
gramming language and make the computation tasks easier or faster. The change
of data representation involved in this task is called data refinement [21, 24, 25].

For an object-oriented language like Java, there are new concerns related
to the presence of classes and their use as data types [28]. Refining a class
is very much like refining a data structure in a traditional imperative setting.
Nevertheless, due to the presence of, for instance, type tests, type casts, and
dynamic binding, new techniques are needed. Type tests and casts may be used
to distinguish objects of different classes. Even if we have two classes with the
same fields and methods, but different names, type tests (and casts) can be used
to distinguish objects of these classes. Dynamic binding means that a method
call may lead to the execution of several different pieces of code. To ensure
correctness, we need to consider all possibilities. Pointers are also a challenge.

For concurrent reactive systems like those that we can specify in Circus and
program in SCJ, the main concern is their interactions with other systems and
the environment [40]. Like we have discussed in the previous section, function-
ality is not characterised by a relation between inputs and outputs, but by the
ways in which communications and synchronisations can take place; inputs and
outputs are particular forms of communications. Termination is not a strong re-
quirement as systems that run indefinitely, but continuously interact with their
environments in a useful way, are very much of interest. Refinement, in this con-
text, has to consider the behaviour of the systems in each of their interactions.



Refinement of imperative programs, including data and algorithmic refine-
ment is the subject of Section 4.1; there we use Z as a concrete notation. Refine-
ment of concurrent reactive systems is addressed in Section 4.2.

4.1 Basic Concepts

A formal specification is the starting point of any formal development method.
Correctness is a relative notion: a program is correct or wrong depending on
whether it implements its specification or not; the specification is the basis for
the evaluation. To guarantee correctness, we need a formal specification.

Specifying a system is the first step to get its implementation right. A formal
development method takes such a specification as a basis to produce a correct
implementation: one that refines the specification.

Refinement is based on the idea that a specification is a contract between
the client and the developer. The client cannot complain if, when executed in
situations that satisfy their preconditions, the operations of the implementation
produce outputs that satisfy the properties stated in the specification. In this
case we have a correct implementation.

Data refinement Our first opportunity for refinement typically comes in the
change of representation of state components. As said before, a Z specification
describes the relation between inputs and outputs when the system is initialised
and a sequence of operations is executed. The values of the state components,
however, are not visible. Similarly, in Circus, the state of a process, which is
defined in Z, is not visible. We can only observe the behaviour of a process via
its interactions with its environment, which use the channels that are in scope.

In Example 1, for instance, we use a sequence to record the numbers input;
this is a natural way of describing the system. It is less space-consuming, however,
to record just the sum and the number of integers input. If the operations are
updated accordingly, it is perfectly valid to change the representation of the
state in this way. This sort of change is known as data refinement; the original
specification is regarded as abstract and the new specification, as concrete.

The other opportunity for refinement is the development of implementations
for the operations; this is the subject of the next section, where we discuss al-
gorithmic refinement. Since these implementations are affected by changes in
the state, we consider data refinement first. At this stage, we change the oper-
ations only to adapt them to the new data types. In Z, we write the concrete
specification in the same style as that used for the abstract specification.

Example 3. The concrete state suggested above can be defined as follows.

CalculatorC

size, sum : Z

There are two components: the size of the sequence input and its sum.



The new definition for the operations is as follows. The initialisation, InitC ,
records that no numbers have been input.

InitC

CalculatorC ′

size ′ = 0 ∧ sum ′ = 0

The operation EnterC , which inputs a number, increments size and updates
sum by adding the input to it.

EnterC

∆CalculatorC ′

n? : Z

size ′ = size + 1 ∧ sum ′ = sum + n?

The operation that calculates the mean has a much simpler specification.

MeanC

ΞCalculatorC ′

m! : Z

size 6= 0
m! = sum div size

The needed values are readily available in sum and size. �

After providing the concrete specification, we have to prove that it satisfies
the refinement property mentioned above: clients that agreed on the abstract
specification cannot complain if they get an implementation of the concrete
specification [17, 49, 38]. The most widely used technique to carry out such a
proof is known as simulation. It involves the definition of a relation between the
abstract and concrete states that specifies how the information in the abstract
state is represented in the concrete state. In the context of Z, this relation is
known as a retrieve relation and is specified using a schema.

There are, actually, two simulation techniques that can be applied: for-
wards (or downwards) simulation and backwards (or upwards) simulation. Here,
we concentrate on the forwards simulation technique, as it is often enough in
practice. Upwards simulation is a similar technique. (The difference lies in the
way it handles nondeterminism in data operations.)

For our example, the appropriate retrieve relation can be specified as follows.

Retrieve

Calculator

CalculatorC

size = # seq ∧ sum = Σseq

The inclusion of the abstract and of the concrete state definitions Calculator



and CalculatorC reflects the fact that we are specifying a relation between them.
Basically, a concrete state is related to an abstract state when the value of size
is indeed the size of seq and sum is the sum of the numbers in this sequence.

Given the retrieve relation, we need to check first that the initialisation is
adequate: given an initial concrete state, there is a corresponding abstract initial
state. In general, if A and C are the schemas that specify the abstract and
concrete states, AI and CI are the corresponding initialisation operations, and
R is the retrieve relation, then we have to prove the following.

∀C ′ • CI ⇒ ∃A′ • AI ∧ R′ (initialisation)

The use of schemas in predicates is common in Z. We are required to prove that,
for all values that the components of the concrete state may assume, if these
values are those of an initial state, then there are initial values that can be as-
signed to the abstract state components that are related to those of the concrete
initial state. The use of C ′, A′, and R′ is necessary because the predicates of CI
and AI are written in terms of the dashed version of the state components.

For our data refinement, we are required to prove the following property.

∀ size ′, sum ′ : Z • size ′ = 0 ∧ sum ′ = 0 ⇒
∃ seq ′ : seqZ • seq ′ = 〈〉 ∧ size ′ = # seq ′ ∧ sum ′ = Σseq ′

With two applications of a one-point rule we get 0 = #〈〉 ∧ 0 = Σ〈〉, which is
true as the size of and the sum of the elements of the empty sequence are 0.
This reflects the fact that the initialisation of CalculatorC chooses values to size

and sum that are in accordance with the initial value of seq . This is, of course,
relative to the way in which we represent seq using size and sum.

We also need to prove that each of the operations CO of the concrete spec-
ification is in accordance with the specification of the corresponding operation
AO of the abstract specification. We have to prove the following, where preAO

and preCO refer to the precondition of the operations.

∀A; C • preAO ∧ R ⇒ preCO (applicability)
∀A; C • preAO ∧ R ⇒ (∀C ′ • CO ⇒ ∃A′ • AO ∧ R′) (correctness)

When refining an operation, there are usually two separate concerns: its pre-
condition and its effect, also known as postcondition. The precondition of an
operation characterises the situations in which it behaves properly. The first
proof obligation above, applicability, requires that, whenever the precondition of
the abstract operation holds, the related concrete states satisfy the precondition
of the concrete operation. So, this proof obligation requires that whenever the
abstract operation behaves properly, so does the concrete operation.

In our example, the preconditions of Enter and EnterC are both true, there-
fore applicability is not interesting. For Mean, the precondition is seq 6= 〈〉. For
MeanC , the precondition is size 6= 0. Applicability is as follows.

∀ seq : seqZ; size, sum : Z •
seq 6= 〈〉 ∧ size = # seq ∧ sum = Σseq ⇒ size 6= 0

This is also a simple proof-obligation: if seq is not empty, and size is its length,



then size is certainly different from 0.
The second proof-obligation, correctness, is related to the effect of the opera-

tions. First of all, we are only interested in the situations in which the precondi-
tion of the abstract operation holds; if it does not, then there are no requirements
on the concrete operation. If it does, for all states resulting from the execution
of the concrete operation in a related state, exists a related abstract state that
could be obtained with the execution of the abstract operation.

For Mean and MeanC , correctness is as follows.

∀Calculator ; CalculatorC • seq 6= 〈〉 ∧ Retrieve ⇒
(∀CalculatorC ′ • MeanC ⇒ ∃Calculator ′ • Mean ∧ Retrieve ′)

Three applications of the one-point rule (and basic predicate calculus properties)
reduces this predicate to true.

A special case of simulation that involves simpler proof obligations is that in
which the retrieve relation is a total function from the concrete to the abstract
state. Most proof-obligations generated in a refinement, however, are long, but
simple, and a lot of help is provided by tools [31]. Data refinement can also be
applied to variable blocks and to modules. As long as we have a structure for
information hiding, this kind of change of representation is always possible.

Algorithmic refinement Once we have decided on the data types to be used in
the program, we can proceed to work on the implementation of the operations.
There are basically two approaches to refinement in general: verification and
calculation. For data refinement, we have proposed a new specification and then
proved that it is satisfactory: we verified the proposed refinement to be correct.

For algorithmic refinement, we can use a calculational approach [34, 2, 36].
In such techniques, the initial specification is the starting point for a sequence
of transformations, each captured by a refinement law, to gradually transform
the specification into a program. Because refinement is a transitive relation, this
establishes that the initial specification is refined by the final program.

Each law captures a model transformation, which is the essence of the very
popular model-based approach to design and programming. Distinctively, how-
ever, laws of refinement, guarantee that the transformations that they specify
preserve the behaviour of the original program. For Z, such a refinement calculus
has been presented in [7, 13, 9], and it is called ZRC. Its laws can also be used
to transform Z operations defined in a Circus process.

The language of ZRC, as of all refinement calculi, can be used to write spec-
ifications, designs, which involve programming and specification constructs, and
programs. Besides Z, this language includes assignments, conditionals, iterations,
and procedures, among other constructs, like in Circus. In a design, we may have,
for instance, a loop whose body is a schema. Specifications, designs, and pro-
grams are all regarded as programs; refinement is a relation between programs
in this more general sense. The refinement relation is usually denoted by ⊑.

For a calculation, the differentiated roles of preconditions and postconditions
are very relevant. Since schemas do not distinguish them, it can be convenient to



transform a schema into a so called specification statement. This is a construct
that takes the form w : [pre, post ], where w is a list of variables, and pre and
post are predicates: the precondition and the postcondition. The list of variables
is the frame, which determines the variables that can be changed.

For instance, EnterC can be specified by the specification statement size, sum :
[true, size ′ = size + 1 ∧ sum ′ = sum + n?], where the state components are
explicitly listed as part of the frame. Similarly, MeanC can be specified as
m! : [size 6= 0,m! = sum div size]. A refinement law in [13] explains how
the conversion can take place. That work also includes laws that refine elaborate
schema expressions to more refined programs; we have, for instance, a law to
translate schema disjunctions into conditionals.

Refinement laws can be applied to transform a specification statement into
a design or program; they embody common intuition about programming. We
present assigI , a law that transforms a specification statement to an assignment.

Law assigI Assignment introduction
w , v : [pre, post ] ⊑ v := e provided pre ⇒ post [e/v ′][ /′]

Since the assignment v := e potentially modifies the variable v , it must be in
the frame of the specification statement. The proviso ensures that, when the
precondition of the specification statement holds, its postcondition is satisfied if
v ′ assumes the value e established by v := e. To put it more simply, it certifies
that this assignment really implements the specification statement. The predi-
cate post [e/v ′][ /′] is that obtained by substituting the expression e for v ′ and
removing the dashes from the free variables of post .

With an application of assigI , we can transform the second specification
statement presented above to m! := sum div size. The proviso generates the
proof-obligation size 6= 0 ⇒ sum div size = sum div size, which follows by
reflexivity of equality. The precondition is ignored; if it does not hold, the result
of the assignment is not predictable. This is in accordance with the specification.

More interesting developments give rise to a sequence of law applications.
Substantial examples can be found later on in Section 5. To give a flavour of the
approach, we consider the law below, which splits a specification statement into
another specification statement and an assignment.

Law fassigI Following assignment introduction
w , v : [pre, post ] ⊑ w , v : [pre, post [e ′/v ′] ]; v := e

This law introduces an assignment, which does not implement the specification
statement by itself. We are still left with a specification before the assignment,
which has the same precondition as the original one, but a modified postcon-
dition. A substitution of e, with its free variables dashed, for v ′ records the
fact that the assignment that follows makes the value of v to become e. With
the substitution, the original postcondition is required to be established when v

takes value e. This should be an easier task as illustrated next.



To refine size, sum : [true, size ′ = size+1 ∧ sum ′ = sum +n?], we can apply
fassigI to introduce the assignment to sum. We are left with the program below.

size, sum : [true, size ′ = size + 1 ∧ sum ′ + n? = sum + n?];
sum := sum + n?

Since, the assignment already updates the sum, the new postcondition actually
requires only that its value is not changed: sum ′ + n? = sum + n? is equivalent
to sum ′ = sum. This is an easier task. With an application of law assigI we can
refine the remaining specification statement to size := size + 1.

Due to space restrictions, we cannot discuss ZRC or refinement calculi in more
detail. Many interesting issues are involved in the development of code from
specification using these techniques. An important point is that the sequence
of laws applied defines the structure of the obtained program. In the simple
examples above, we have just an assignment, or a sequence whose last component
is an assignment. Conversely, if we have a program of a particular structure in
mind, to a large extent, that defines the sequence of laws that need to be applied.
So, we can use the calculational approach also to verify an existing program, by
reconstructing the sequence of laws that can be used to generate it.

The refinement strategy presented in the next section can be applied in this
spirit, to verify an existing SCJ program. As we discuss there, the constrained
architecture of an SCJ program determines to some extent a particular sequence
of Circus refinement laws that are useful to establish refinement. It is, therefore,
possible to define a procedure (or strategy) to apply such laws.

We note, however, that the applications of the laws require additional infor-
mation. For instance, if our target program has a sequence of statements ending
in an assignment, we may decide to use the Law fassigI above to derive it. We,
however, still need to define the particular variable that is to be assigned last,
and the expression that is to be assigned to it. Specifically, in the application of
fassigI , we need to define v and e; these are parameters of this law. If the target
program is known in advance, it determines the right arguments for v and e. In
this case, the application of the refinement law is fully determined.

Before presenting the refinement strategy for SCJ, we discuss refinement of
processes, considering both CSP and Circus processes as examples.

4.2 Process refinement

Further challenges are present when we consider the development of concurrent
programs: processes that interact with each other and an external environment.
When developing a process, we are not only interested in the inputs and out-
puts, but also in each of the interactions in which the process may engage. As
previously explained, inputs and outputs are forms of interaction in this context.

Specification, design, and implementation of processes has been carefully
studied in the context of CSP [22, 40]. Like the languages of the refinement
calculi discussed in Section 4.1, this is a unified language with an associated
notion of refinement that can support the development of programs.



Refinement is based on the possible interactions of the processes. Basically,
the interactions of the implementation process have to be interactions that could
be performed by the specification process. For our example, we observe that it is
not realistic to assume that an arbitrary number of people can use a door at the
same time. A possible implementation of Door(0) can be obtained if we consider
that there is a limit max to this number of people and define Door(max ) as
follows, where we assume max > 2.

Door(max ) = step-out → Door(max − 1)

When the maximum number of people is reached, the door is not prepared to
accept the arrival of any further people. The only event enabled is step-out .

We observe that the number of people using a door is part of the state of
Door and is not visible to the environment. In Circus and CSP, each process
encapsulates its state information; interaction between the processes is achieved
through events. Refinement, as said above, is concerned with these events.

On the other hand, since the state is hidden, we can consider data refinement.
In the case of Circus, since the state and its data operations are defined using Z,
the simulation technique adopted in Z can be used to data refine Circus processes.
In CSP, the state is defined by parameters and the data model uses a functional
language, so we have a simpler set up. For instance, we could use the negative
integers to represent the number of people using a door, as shown below.

DoorN (0) = step-in → revolve → DoorN (−1)

DoorN (−1) = step-in → DoorN (−2) @ step-out → stop → DoorN (0)

DoorN (−n) = step-in → DoorN (−n − 1)
@
step-out → stop → DoorN (−n + 1) if − n < −1

The processes Door(0) and DoorN (0) are equivalent. This sort of refinement,
however, has not been the interest of the CSP community as the data language
of CSP is very simple. The main concern is really interaction.

A further concern involved in the refinement of concurrent processes is related
to the events in which a process may refuse to engage, and to the sequence of
events that may lead to a divergent process. For instance, the specification of the
door is a process that does not refuse the arrival of people in any circumstance;
the implementation, on the other hand, may refuse this event if the door is full.
From this point of view, it is not really a proper implementation.

Due to space restrictions, we do not discuss this any further. We note, how-
ever, that refinement in CSP and Circus ensures that safety and liveness proper-
ties are preserved. Safety requires that the sequences of interactions (traces) of
the program are possible for the specification. Liveness requires that deadlock
or divergence in the program can occur only if allowed in the specification.

Finally, we note that we use Circus Time in our work for SCJ. Refinement in
Circus Time also ensures preservation of time properties. This requires that the
deadlines and budgets defined in the specification are enforced by the deadlines
and budgets defined for the components of the program.
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5 Refining from Circus to SCJ

In this section, we describe the steps of our refinement approach.
In our strategy, refinement is carried out in three main steps, each charac-

terised by an anchor: a Circus model written in a particular subset of Circus

and following a particular pattern. Besides defining a target for a model trans-
formation, an anchor captures a significant aspect of an SCJ program develop-
ment: abstract specification, object-oriented design, missions, and SCJ infras-
tructure. Figure 8 shows the four Anchors: A, O, E, and S. The objective is to
guarantee that the anchors are related by refinement.

The first refinement step produces the O anchor, and tackles the object-
oriented data model of the program. The second step introduces the E anchor,
and tackles the correctness of the mission and handler decomposition and of the
use of memory areas. Finally, the third step, produces the S anchor, and tackles
the correctness of the algorithms implemented. It also describes the sequence of
missions and parallelism of handlers in the E anchor in terms of SCJ constructs.

Each of these refinement steps is divided into phases, which tackle individ-
ual aspects of the design of the target anchor. Typically, a refinement phase is
realised in a series of stages, captured by the application of refinement laws. For
some phases, specific refinement laws are always applicable. In other cases, there
is a choice of laws depending on the design of the target anchor.

For the leadership-election protocol, for example, the Circus model described
in Section 3 is the A anchor. Below, Sections 5.1 to 5.3 describe the phases of
each of the three refinement steps, and their stages.

5.1 Anchor O: concrete state with objects

The first step of our refinement strategy is a data refinement: it introduces
concrete data to represent the abstract data types of the A anchor, and the
shared data. The target is an O anchor, which introduces the use of classes
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and objects. The object-oriented constructs employed are those of OhCircus,
which basically includes the possibility to define types via classes. The design of
OhCircus is inspired by the Java approach to inheritance.

Due to the nature of data refinement (in Circus), the structure of the O

anchor, in terms of processes and actions, is the same as that of the corresponding
A anchor. As explained in Section 4, data refinement only replaces or adds state
components to the model. The types of the concrete components may be specified
by OhCircus classes, but creation and allocation of objects are not considered
yet. The structure of the actions is not changed.

Although in a data refinement particular algorithms are not considered, it
is unrealistic to assume that the developer makes no consideration of how the
concrete data types proposed can be efficiently used to realise the functionality
of the program. In the case of our strategy, in this step we do not consider
explicitly the structure of missions and handlers of the target program. On the
other hand, it is only to be expected that a developer is aware of the need to
provide the program functionality via missions and handlers, and of the sharing
of data that might be required between them.

Figure 9 describes our proposed strategy for this step. We take inspiration
from Morgan’s auxiliary variables technique [33] to facilitate the specification of
the concrete components. So, in the first two phases of this step, CS and SD, we
introduce components of the concrete model, but eliminate those of the abstract
model only in the third and final phase, EL.

Automation is restricted here, since data refinement embeds design decisions
related to the way in which data is to be efficiently represented and shared
in the program. On the other hand, once that creative design is carried out, as
discussed, it may be possible to calculate the specification of the concrete model,
if there is a functional relation between the concrete and the abstract states.

The phases address the following concerns: (a) refinement of abstract (model)
variables by concrete variables used by the program (in Phase CS); and (b) intro-
duction of state components for data shared between handlers and missions (in
Phase SD). In all phases, including EL, we carry out a data refinement using sim-
ulation. If any of the new components have a class type, it needs to be declared.
Introduction of a new class definition is a trivial refinement; the only complexity
comes from the specification of the class itself.

For the leadership-election protocol, this step is not needed. In the case of a
protocol, even the A anchor provides a data model that is already very concrete.



processSCJsystem =̂ begin

state SCJstate == [x , y , z : . . . | . . .]
Init =̂ . . .

Handler1 =̂ . . .var a, b, c • . . .

Handler2 =̂ . . .

. . .

InitM 1 =̂ . . .

HandlersM 1 =̂ (Handler1 ‖ Handler2 ‖ . . .) \ swevts

MArea1 =̂ var l ,m,n . . .

Mission1 = InitM 1; (HandlersM 1 J ns | mcs | {} K MArea1) \mcs

. . .

System =̂ Mission1; Mission2; . . .
• Init ; System

end

Fig. 10. Anchor E: sketch of its structure

So, in this case, the A and O anchors are the same. For an example of a refinement
to an SCJ program that involves a substantial data refinement, we refer to [14].

5.2 Anchor E: execution model

The second step of the refinement strategy introduces the architectural design
of the program in accordance with the SCJ paradigm. The target E anchor
embeds the structure of the missions and handlers. It is defined by a single
process (and associated type and class definitions), still written using standard
Circus, OhCircus, and Circus Time constructs.

The E anchor process for a non-terminating program takes the shape sketched
in Figure 10, where we consider a process named SCJsystem. Other patterns are
considered in [32]. The state components of the E anchor, in Figure 10, x , y , and
z , are the variables that should be allocated in immortal memory (since they
can be referenced by all missions). In the SCJ program, they can become, for
instance, static fields of the Safelet subclass.

In the main action of the E anchor process, we call the local actions Init and
System in sequence. Init is the specification of the program initialisation (which
can be implemented in the initialize method of the Safelet subclass). System
is a sequence of Mission actions; in Figure 10, we have Mission1, Mission2, and
so on. For applications in which the sequence of missions to be executed is defined
dynamically (on the basis of values of variables in the immortal memory), the
specification of System needs to be more elaborate.

For each mission, the E anchor process has a group of actions; in Figure 10
we show those for Mission1. The variables to be allocated in mission memory
are defined as local variables of an action MArea. These are the variables that
are shared between two or more handlers. In Figure 10, we show MArea1 with



variables l , m, and n. Internal channels represent calls to data operations that
use or change these variables. Typically, these are methods of the objects held
in these variables. An initialisation action, InitM 1 in Figure 10, specifies how
the values of these variables are to be initialised.

The handler actions, which in Figure 10 are Handler1, Handler2, and so on,
define the behaviour of the releases of the handlers. Their local variables are
allocated in per-release memory. More elaborate algorithms may use temporary
private memory areas to control allocation and deallocation of objects.

The Handlers action specifies the behaviour of the handler releases during
the mission; in Figure 10, we show HandlersM 1. In the parallelisms between the
handler actions, the synchronisation sets (omitted in Figure 10) contain channels
that represent the releases, if any, of aperiodic handlers by other handlers.

Access of handlers to objects in immortal memory is determined by the name
sets in these parallelisms. Due to the restrictions on parallelism in Circus, we
cannot have a race condition arising from handlers accessing the same state
component (here, variable in immortal memory) at the same time.

As already said, the behaviour of the mission itself is given by a mission
action; in Figure 10, we sketch Mission1. What we have is a parallelism between
the Handlers and the MArea actions. The synchronisation set mcs in this par-
allelism contains all channels representing calls to methods of the objects in the
mission memory (which are defined in the MArea action). The name set asso-
ciated with the Handlers action (that is, ns in Figure 10) identifies the objects
in immortal memory used by the handlers. The name set associated with the
MArea action is always empty, since this action already encapsulates the data
that it uses: the object variables to be allocated in mission memory.

The E anchor for the optimised leadership-election protocol in Figure 7 is
sketched in Figure 11. In this case, we have a single mission, which we model
using the action ElectionMission. All variables are allocated in the mission mem-
ory, and so are all local to MArea. As indicated in Figure 7, we also have one
periodic handler CommunicatorH and am aperiodic handler ElectorH .

It is the objective of the second step of our strategy to transform the O anchor
to obtain a process in the shape of the E anchor identified in Figure 10. Five
phases define the refinement strategy in this step as depicted in Figure 12. The
first phase, CP, removes any parallelism used in the A anchor (and preserved in
the O anchor) to specify requirements, since these parallelisms are typically not
related to the concurrent design of the program.

As already mentioned, for the leadership-election protocol, for instance, we
use parallelism in the A anchor to separate the behavioural and timing require-
ments. In Circus models automatically generated from domain-specific languages,
typically, we have a parallelism between the components of the high-level model.
It is the objective of our refinement strategy to change that architecture to that
adopted by the mission paradigm of SCJ, without introducing errors.

The second phase, MS, introduces the sequences that reflect the architecture
of the missions. The next two phases, HS and SH are repeated for each of the
missions. In HS, we introduce the parallelism that reflects the behaviour of the



processElectionE =̂ begin

CommunicatorH =̂ µX • geti?i−→



if(nodes i).id = id −→ Broadcast(id , status, petition);
seti !(next i)−→ skip

8(nodes i).id 6= id −→



receive.(nodes i).id?valC?valP−→
UpdateDevice((nodes i).id , valC , valP))◭ ID

@
wait(ID + 1); UpdateOff ((nodes i).id)



 ;

electorHrelease −→ skip

fi

9waitP





; X

ElectorH =̂ µX • electorHrelease −→





if status = undecided −→ . . .

8status = leader −→ . . .

8status = follower −→ . . .

fi



 ;

geti?x −→ seti !(next x )−→ X

. . .

MArea =̂ var id : DEVICEID ; status : STATUS ; petition : Z; . . . • µX •
setid?x −→ id := x ; X @ getid !id −→ X

@
setstatus?x −→ status := x ; X @ getstatus!status −→ X

. . .

ElectionMission =̂

(MArea ‖ CommunicatorH ‖ ElectorH ) \ {| . . . |}

ElectionMissionSequencer =̂ ElectionMission

ElectionSafelet =̂ ElectionMissionSequencer

• ElectionSafelet

end

Fig. 11. E anchor for the leadership-election protocol

handlers releases, and the control mechanisms that orchestrate their execution.
In SH, we define how variables are shared between handlers. The final phase AR

uses algorithmic refinement to derive the implementation of the methods.

5.3 Anchor S: Safety-Critical Java

The S anchor is written using SCJ-Circus. As explained in Section 3, a Circus

model is composed of a sequence of paragraphs: syntactic units that introduce
types, constants, processes, and so on. SCJ-Circus is based on Circus, OhCircus,
and Circus Time, but includes several new paragraphs [32]. We have paragraphs
for the declaration of safelets, mission sequencers, missions, and handlers. Their
semantics is defined by standard Circus processes and actions.
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In the last step of our refinement strategy, the process that defines the E an-
chor is split to yield the definition of these special SCJ paragraphs that compose
the S anchor. For example, the state components of the E anchor, if any, become
state components of the safelet paragraph. The Init action gives rise to the
definition of the safelet initialize paragraph. For statically defined sequences
of missions, a simple sequencer paragraph is always adequate. Each Mission

action gives rise to a mission paragraph, and so on.
The introduction of the new SCJ paragraphs in this last step is justified by

a refinement strategy detailed in [32]. The missions and handlers are already
identified in the E anchor. What the transformations in this final step of the
refinement strategy check is whether the design suggested in the structure of the
E anchor indeed matches the concurrency model of SCJ.

As an example, we present, the S anchor for the leadership-election protocol.
The paragraph safelet defines the initialize and cleanUp methods. In our
example, they are empty (skip), and so this paragraph is omitted.

The paragraph for our mission sequencer is shown below. We note that, since
we are considering just the election mission, the getNextMission paragraph
only ever returns the identifier ElectionMission of a single mission.

sequencer MainMissionSequencer =̂ begin

state MainMissionSequencerState == [mission done : bool ]

initial =̂ mission done := false

getNextMission =̂
if mission done = false −→

mission done := true; ret := ElectionMission

8 mission done = true −→ ret := null

fi

end

The state paragraph of an SCJ-Circus component defines the fields of the corre-
sponding SCJ class, and the initial paragraph defines its constructor. The other



paragraphs of these specialised components define methods of the SCJ class.
Special paragraphs correspond to API methods. For instance, above we have
getNextMission corresponding to the SCJ getNextMission method.

We use identifiers to refer to specific components: missions and handlers.
For example, above, we use ElectionMission as an identifier for a mission. It is
defined by the next SCJ-Circus paragraph.

The fields and constructor of the mission Election are defined by the schemas
ElectionState and InitElectionState previously presented. In its API initialize

method, it simply instantiates and registers the handlers CommunicatorH and
ElectionH . As previously shown, the first is a periodic handler and the sec-
ond, aperiodic. Creation of a handler H , specified by an SCJ-Circus paragraph
periodic H or aperiodic H , is defined by the special expression newHdlr H .

missionElectionMission =̂ begin

state st == ElectionState

initial =̂ InitElectionState

initialize =̂ var ch, eh : ID •
eh = newHdlrElectorH ;
ch = newHdlrCommunicatorH (eh);
eh.register(); ch.register()

end

Like in SCJ, corresponding to handlers, we have objects, instances of an OhCircus

class. Such objects, like eh and ch in the example above, respond to a register

method. It identifies the handler as part of the mission.
We note how close the definition of ElectionMission above is to an SCJ

class that implements a mission. On the other hand, ElectionMission defines a
Circus process, as do CommunicatorH and ElectorH used there, although these
processes use classes that model the data of the handlers and mission. The
meaning of the special method calls, like the calls to register , for instance, is
given by a (hidden) event. In the case of register , it triggers a data operation that
enriches the (encapsulated) state of the mission process to record an instance
of the relevant handler. So, what we have is a Circus semantics for the SCJ
paradigm, (very much as explained in [50] for SCJ itself).

The periodic handler CommunicatorH is introduced as shown below.

periodicCommunicatorH =̂ begin start 0periodP

This paragraph also defines the start time and the period of the protocol as
P (as required in the timing specification given by ATReqsLE in the A anchor).
It starts right at the beginning of the mission.

The state of CommunicatorH records the instance of ElectionH used in the
mission. Its value is defined by the constructor.

state st == [electorH : ID ]
initial =̂ val eh : ID • electorH := eh

At each cycle, the release of ElectionH checks which device is being considered.



If the current device is itself, then it broadcasts its information just like in
ABReqsLE and increments the index i to point to the next device. Otherwise it
waits for either a communication on receive that must happen within ID time
units and updates the state accordingly. If ID+1 time units pass without receive
occurring, it updates the current device’s information to indicate it is inactive.
It then initiates an election by releasing the aperiodic handler electorH .

handleAsyncEvent =̂
if(nodes i).id = id −→ Broadcast(id , status, petition); i := next i

8(nodes i).id 6= id −→


receive.(nodes i).id?valC ?valP−→
UpdateDevice((nodes i).id , valC , valP))◭ ID

@
wait(ID + 1); UpdateOff ((nodes i).id)


 ;

electorH .release()
fi

end

The actions used in handleAsyncEvent are also defined inside ElectionH .
Their definitions are as presented previously.

The variables in the state of the mission ElectionMission are those to be
allocated in mission memory. Accordingly, they are directly accessible in the
handlers, like nodes, id , status, petition, and next above.

The ElectorH handler implements the conditional over status in ABReqsLE .

aperiodicElectorH =̂ begin

handleAsyncEvent =̂


if status = undecided −→ ...
8status = leader −→ ...
8status = follower −→ ...
fi


 ;

i := next i

end

It is not difficult to see that thee SCJ-Circus model can be automatically trans-
lated to SCJ code, actual Java code that can be compiled and executed.

6 Conclusions

In this tutorial, besides a didactic account of SCJ, we have given a brief in-
troduction to Circus. In both cases, we have used the practical examples of a
leadership-election protocol to illustrate the notations and concepts. Further-
more, we have reviewed the notion of refinement and formal techniques of pro-
gram development in the context of both a traditional modelling language, like
Z, and process algebra, namely, CSP and Circus.

To the best of our knowledge, all existing combinations of Z with a process
algebra [19, 30, 44] model concurrent programs as communicating abstract data



types, where events are identified with operations that change the state. This is
not the Circus approach. Events are just atomic instantaneous interactions like
in CSP, and data operations have to be explicitly called, if needed. This is in
keeping with the approach used in programming languages, and facilitates the
use Circus to verify correctness of programs. Besides the general Circus refinement
calculus [10], there are results for Ada [8].

We did not, of course, aim at a comprehensive view of all the issues and
techniques available. We hope, however, to have given general pointers to the
subject to support further reading. Most of all, we hope to have made it clear
that refinement is about organised and clear justification of the intuition that
millions of programmers use everyday to reassure themselves and others of the
correctness of their designs and programs. The lack of such a framework has lead
to poorly documented, intricated, and many times mistaken developments.

An understanding of refinement as the underpinning notion of all develop-
ment methods can help good engineers or programmers to achieve their goal
more successfully. Knowledge of the properties of the refinement relation, in the
form, for example, of refinement laws, can lead to improved programming skills,
even if a formal refinement technique is not really applied.

Other tasks involved in the construction of programs, like testing [1], refactor-
ing [15], and compilation [43, 48, 18] have already been characterised as related to
refinement. A lot has already been achieved by the formal methods community
in the last two or three decades; there is a lot yet to be done.
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