2,386 research outputs found

    Formal support for QVT-Relations with Coloured Petri nets

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-04425-0_19Proceedings of 12th International Conference, MODELS 2009, Denver, CO, USA, October 4-9, 2009QVT is the OMG standard language for specifying model-to-model transformations in MDA. Even though it plays a crucial role in model driven development, there are scarce tools supporting the execution of its sublanguage QVT-Relations, and none for its analysis or verification. In order to alleviate this situation, this paper provides a formal semantics for QVT-Relations through its compilation into Coloured Petri nets, enabling the execution and validation of QVT specifications. The theory of Petri nets provides useful techniques to analyse transformations (e.g. reachability, model-checking, boundedness and invariants) and to determine their confluence and termination given a starting model. We also report on using CPNTools for the execution, debugging, and analysis of transformations, and on a tool chain to transform QVT-Relations specifications into the input format of CPNTools.Work supported by the Spanish Ministry of Science and Innovation, projects METEORIC (TIN2008-02081) and MODUWEB (TIN2006-09678

    Solving the Petri-Nets to Statecharts Transformation Case with UML-RSDS

    Full text link
    This paper provides a solution to the Petri-Nets to statecharts case using UML-RSDS. We show how a highly declarative solution which is confluent and invertible can be given using this approach.Comment: In Proceedings TTC 2013, arXiv:1311.753

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    The Ecce and Logen Partial Evaluators and their Web Interfaces

    No full text
    We present Ecce and Logen, two partial evaluators for Prolog using the online and offline approach respectively. We briefly present the foundations of these tools and discuss various applications. We also present new implementations of these tools, carried out in Ciao Prolog. In addition to a command-line interface new user-friendly web interfaces were developed. These enable non-expert users to specialise logic programs using a web browser, without the need for a local installation

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Unfolding Shape Graphs

    Get PDF
    Shape graphs have been introduced in [Ren04a, Ren04b] as an abstraction to be used in model checking object oriented software, where states of the system are represented as graphs. Intuitively, the graphs modeling the states represent the structure of objects dynamically allocated in the heap. State transitions are then generated by applying graph transformation rules corresponding to the statements of the program. Since the state space of such systems is potentially unbounded, the graphs representing the states are abstracted by shape graphs. Graph transformation systems may be analyzed [BCK01, BK02] by constructing finite structures that approximate their behaviour with arbitrary accuracy, by using techniques developed in the context of Petri nets. The approach of [BK02] is to construct a chain of finite under-approximations of the Winskel’s style unfolding of a graph grammar, as well as a chain of finite over-approximations of the unfolding, where both chains converge to the full unfolding. The approximations may then be used to check properties of the underlying graph transformation system. We apply this technique to approximate the behaviour of systems represented by shape graphs and graph tranformation rules

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Termination Criteria for Model Transformation

    Get PDF
    Nowadays the usage of model transformations in software engineering has become widespread. Considering current trends in software development such as model driven development (MDD), there is an emerging need to develop model manipulations such as model evolution and optimisation, semantics definition, etc. If a model transformation is described in a precise way, it can be analysed lateron. Models, especially visual models, can be described best by graphs, due to their multi-dimensional extension. Graphs can be manipulated by graph transformation in a rule-based manner. Thus, we specify model transformation by graph transformation. This approach offers visual and formal techniques in such a way that model transformations can be subjects to analysis. Various results on graph transformation can be used to prove important properties of model transformations such as its functional behaviour, a basic property for computations. Moreover, certain kinds of syntactical and semantical consistency properties can be shown on this formal basis

    Proving Termination of Graph Transformation Systems using Weighted Type Graphs over Semirings

    Full text link
    We introduce techniques for proving uniform termination of graph transformation systems, based on matrix interpretations for string rewriting. We generalize this technique by adapting it to graph rewriting instead of string rewriting and by generalizing to ordered semirings. In this way we obtain a framework which includes the tropical and arctic type graphs introduced in a previous paper and a new variant of arithmetic type graphs. These type graphs can be used to assign weights to graphs and to show that these weights decrease in every rewriting step in order to prove termination. We present an example involving counters and discuss the implementation in the tool Grez
    corecore