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Abstract. Model Transformation has become central to most software
engineering activities. It refers to the process of modifying a (usually
graphical) model for the purpose of analysis (by its transformation to
some other domain), optimization, evolution, migration or even code
generation. In this work, we show our approach to express model trans-
formation based on graph transformation. This framework offers visual
and formal techniques based on rules, in such a way that model trans-
formations can be subject to analysis. Previous results on graph trans-
formation are extended by proving the termination of a transformation
if the rules applied meet certain criteria. We show the suitability of the
approach by an example in which we translate a simplified version of
Statecharts into Petri nets for functional correctness analysis.

1 Introduction

Diagrams are ever more frequently used in our everyday work as a means for
problem solving, specification and comprehension. Their use is pervasive in areas
such as computer science, with the increasing tool support and popularity of
notations (such as UML), and model-based development processes (such as the
one proposed by the MDA [24]). In this area, we are witnessing a paradigm shift,
where models are no longer mere (passive) documentation, but are used for code
generation, analysis and simulation as well.

Whereas the syntax of most notations is usually well-defined (sometimes by
means of a meta-model), semantics are often specified in a semi-formal way,
which prevents the use of analysis methods. Moreover, sometimes modelling is
easier using a certain notation, but the formalism lacks certain analysis tech-
niques to solve some of the user problems. One way to solve these difficulties
is by specifying transformations from the initial source formalism into a target
notation [9]. Once the model is translated, we can use the target notation anal-
ysis techniques to solve the initial problem. There are many other scenarios in
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the Segravis Research Training Network.

Dagstuhl Seminar Proceedings 05161
Transformation Techniques in Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2006/428

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62911458?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


which model transformations are present, such as model evolution, migration
(for example between different database schemata or between different versions
of the UML meta-model) or model optimization. Even code generation can be
seen as a transformation into the abstract syntax of the target textual language.

Problem statement. An important question is how to specify such model trans-
formations. A recent initiative of the Object Management Group aims at devel-
oping a standard for describing Queries, Views and Transformations (QVT) [20]
for UML (in fact, any MOF-based) models. Although the submitted approaches
vary a lot (e.g. in providing textual [14] vs. graphical specifications [23] for trans-
formations), high-level, graph-based and declarative specifications are proposed
in many of the submissions.

The correctness of model transformations, namely, to guarantee that certain
semantic properties hold for a transformation, is also a crucial aspect of transfor-
mation engineering. For instance, when transforming UML models into mathe-
matical domains, the results of a formal analysis can be invalidated by erroneous
model transformations as the systems engineers cannot distinguish whether an
error is in the design or in the transformation. Most typical correctness prop-
erties of a model transformation are termination, uniqueness (confluence) and
behaviour preservation.

Objectives. In the paper, we propose the use of graph transformation [25] over
typed and attributed graphs that provides rule and pattern-based manipulation
of graph models generalizing Chomsky grammars from strings to graphs. The
algebraic approach to graph transformation is based on concepts of category the-
ory (see [11]), and has a rich body of theoretical results that have been developed
in the last 30 years (see [25]). In this way, transformations expressed as graph
grammars become not only graphical and intuitive but also formal, declarative
and high-level models, subject themselves to analysis.

While the use of graph transformation for specifying model transformations
has been under intensive research, the main result of the paper is concerned with
the termination of model transformations. Although termination is undecidable
for graph grammars in general [22], in this paper we show that if graph grammars
with negative application conditions (see [15]) meet suitable termination criteria,
we can conclude that they are terminating. The criteria we propose are based
on assigning a layer to each rule, node and edge label (type).

Structure of the paper. The rest of the paper is organized as follows: Sec. 2
presents a running example, in which we specify (with graph grammar rules) a
transformation from a restricted version of Statecharts into Petri nets, with the
aim of subsequent analysis. Sec. 3 details the critera for termination of layered
graph grammars. Sec. 4 discusses the application of the criteria to the running
example, and sketches how the criteria can easily be applied to other interesting
model transformation examples. Sec. 5 discusses related work and finally Sec. 6
presents our conclusions and proposals for future work.



2 Motivating Example: From Statecharts to Petri Nets

In order to illustrate the idea of the proposed criteria for termination of model
transformation we introduce a model transformation from UML statecharts into
Petri nets. The running example is a simplified version of the original transforma-
tion that was designed and implemented in the VIATRA system [28] as part of
a Hungarian research project (IKTA 065/2000 – A framework for the modelling
and analysis of dependable and safety critical systems) and discussed in more
details in [27]. The transformation aims at formal verification of safety critical
applications designed by UML statecharts using semi-decision analysis methods
of Petri nets [21]. Similar transformations into various classes of Petri nets could
carry out dependability and performance analysis for the system model in early
stages of design.

2.1 Source modelling language: UML statecharts

UML statecharts are an object-oriented variant of classical Harel statecharts
[16] that describe behavioural aspects of (any instance of) a class in the system
under design. In fact, the statechart formalism itself is an extension of finite state
machines to allow a decomposition of states into a state hierarchy with parallel
regions that greatly enhance the readability and scalability of state models.

An extract of the metamodel of UML statecharts is depicted in the upper left
part of Fig. 1 (abbreviated as SC). In fact, this metamodel is a proper extension
of the standard UML metamodel (for which we assume the reader’s familiarity)
that explicitly introduces several notions of statecharts that are only implicitly
present in the standard (such as state configurations, queues, etc.). The necessity
and the guideline of these extensions to obtain a formal operational semantics
of statecharts is discussed in [27, 26].

In the paper, we consider a network of statemachines SM, each of which hav-
ing an associated event queue. A single statemachine captures the behaviour of
any object of a specific class by flattening the state hierarchy into state config-
urations and grouping parallel transitions into steps. 4

A Configuration is composed of a set of States that can be active at a time.
The activeness of a state is indicated by the isAct edge, while the initial config-
uration is identified by the initConf association.

A Step is composed of non-conflicting Transitions (which are, in turn, binary
relations between states) that can be fired in parallel. A step is leading from a
configuration fromConf to a configuration toConf, and it is triggered by a common
Event for all its transitions. The effect of a step is a sequence of Actions. For the
paper, we only consider send actions which send a message to a target (receiver)
queue in the form of a corresponding event.

Each statemachine has exactly one associated event Queue (handled as sets
and not FIFOs for presentation purposes) that store Events. The inQueue associ-

4 Note that configurations and steps can be collected at compile time, i.e. prior to the
statecharts to Petri nets model transformation (see [27] for further details).
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Fig. 1. The combined metamodel of statecharts and Petri nets

ation denotes if a certain event is present in the corresponding event queue. The
set of acceptable events in a certain queue is denoted by the association validEv.

2.2 Target modelling language: Petri nets

Petri nets (abbreviated as PN) are widely used to formally capture the dynamic
semantics of concurrent systems due to their easy-to-understand visual notation
and the wide range of available analysis tools. From a system modelling point
of view, transforming UML models to Petri nets may provide correctness, de-
pendability and performance analysis for the system model in early stages of
design.

Petri nets are bipartite graphs, with two disjoint sets of nodes: Places and
Transitions. Places may contain an arbitrary number of Tokens. A token distri-
bution defines the state of the modelled system. The state of the net can be
changed by firing enabled transitions. A transition is enabled if each of its input
places contains at least one token (if no arc weights are considered). When firing
a transition, we remove a token from all input places (connected to the transition
by InArcs) and add a token to all output places (as defined by OutArcs). A Petri
net metamodel is shown in the upper right corner of Fig. 1.

Reference metamodel. In order to interrelate the source and target modelling
languages, we use reference metamodels [28]. For instance, a reference node of
type RefState (in Fig. 1) relates a source State to a target Place.



2.3 Transforming state machines into Petri nets

An informal overview of graph transformation. The model transformation from
state machines into Petri nets is specified by graph transformation rules.

Graph transformation [25] (for the formal treatment see Sec. 3) provides a
rule-based manipulation of graph models. A graph transformation rule consists
of a left-hand side (LHS) graph L, right-hand side (RHS) graph R, and (an
optional) negative application condition N . Informally, L and N of a rule define
the precondition while R defines the postcondition.

The application of a rule to a host model graph G (e.g., a UML model built
by the user) alters the model graph by replacing the pattern defined by L with
the pattern of the R. This is performed by (i) finding a match of the L pattern in
model M ; (ii) checking the negative application conditions N which prohibits the
presence of certain model elements; (iii) removing a part of the model M that
can be mapped to the L pattern but not the R pattern yielding an intermediate
graph D; (iv) adding new elements to the intermediate graph D which exist in
the R but not in L yielding the derived graph H . In our example we follow the
Double Pushout Approach [7, 13]. Technical details are given as far as necessary
in Sec. 3.

For a more compact presentation of the rules, we abbreviate the L, N and R
graphs of a rule into one, and we only mark which (the images of) graph elements
need to be removed (del), or created (new). Due to the special structure imposed
by nondeleting rules (to be discussed in Sec. 3), all elements in the negative
application conditionN should also be present in R. Therefore, we assume for the
current model transformation that R and N are isomorphic, and we simply omit
the neg tags for the sake of clarity. The graph transformation rule generating
a PN transition for a SC step is depicted in both the mathematical and the
abbreviated notation in the upper-most part of Fig. 2.

The UML statechart to Petri net transformation. Transforming our flattened
UML statechart representation (with configurations and steps) into Petri nets is
relatively simple (see the transformation rules and an example in Fig. 2).

– Each SC state is modeled with a respective place in the target PN model
where a token in such a place denotes that the corresponding state is ac-
tive initially (rules ActState2TokenR, State2PlaceR). In addition, places are
generated to model messages stored in event queues of a state machine.
A separate place is generated for each valid event accepted by a certain
queue, and initialized according to the presence of corresponding events
(QueueEvent2PlaceR: the general case; InQueueEvent2TokenR: a special case).

– Each SC step is projected into a PN transition (Step2TransR). Naturally,
the Petri net should simulate how to exit and enter the corresponding states
in the statechart, therefore input and output arcs of the transition should
be generated accordingly (see StepFrom2InArcR and StepTo2OutArcR). Fur-
thermore, firing a transition should consume the token of the trigger event
(Trigger2InArcR), and should generate tokens to (the places related to) the
target (receiver) event queues according to the actions (Action2OutArc).
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– Finally, we clear up the joint model by removing all model elements from the
source and the reference metamodel by another set of graph transformation
rules. For instance, rule DelEdgeSrcStepR deletes all the src edges leading to
a Step, while rule DelNodeStepR deletes all Step nodes from the graph. All
the other deleting rules of similar kind (including those removing reference
nodes and edges) are omitted for space considerations.

3 Termination Criteria for Layered Graph Transformation
Systems

In this section we present and prove termination criteria for layered graph trans-
formation systems, which will be used in the next section to show termination of
our running example. In fact, our termination criteria are valid for a broad class
of graph transformation systems. The criteria for nondeleting rules are based
on the single – or double pushout approach (see [7]). For the applications in
Sec. 2 and 4 we use in this paper typed attributed graph transformation (see
[17, 12]) with injective rule morphisms l : K → L, r : K → R and injective
matches m : L → G. Moreover we use negative application conditions (NACs)
given by an injective morphism n : L → N . The match m : L → G satisfies
the NAC if there is no injective morphism q : N → G with m = q ◦ n. Rule
morphisms are depicted (in Fig. 2) by using the same node identifiers in LHS,
NAC and RHS. Labels LAB can be defined in the traditional way by label sets
or in correspondence with the metamodel.

Now we define layered graph grammars with deletion and nondeletion layers.
Informally, the deletion layer conditions express that the last creation of a node
with a certain label should precede the first deletion of a node with the same
label. On the other hand, nondeletion layer conditions ensure that if an element
of label l occurs in the LHS of a rule then all elements of the same label were
already created in previous layers.

Definition 1 (Layered Graph Grammar). A graph grammar with rules
RUL and labels LAB is called layered graph grammar if for each rule r ∈ RUL
we have a rule layer rl(r) = k with 0 ≤ k ≤ k0 (k, k0 ∈

�
) where k0 is the

number of layers and for each label l ∈ LAB a creation and a deletion layer
cl(l), dl(l) ∈ �

and a deletion layer or a nondeletion layer satisfying the follow-
ing conditions for all r ∈ RUL:
If k is a deletion layer
Deletion Layer Conditions

1. r is deleting at least one item

2. 0 ≤ cl(l) ≤ dl(l) ≤ k0 for all
l ∈ LAB

3. r deletes l ⇒ dl(l) ≤ rl(r)
4. r creates l ⇒ cl(l) > rl(r)

If k is a nondeletion layer
Nondeletion Layer Conditions

1. r is nondeleting, i.e. r : L → R
with r total and injective

2. r has NAC n : L→ N with n′ :
N → R injective s.t. n′ ◦ n = r

3. x ∈ L ⇒ cl(label(x)) ≤ rl(r)
4. r creates l ⇒ cl(l) > rl(r)



For the SC2PN transformation the layer conditions mean, for instance, that
rules creating Place nodes cannot be in the same layer with rule StepFrom2InArcR:
since Place nodes can be used as a pre-condition by a rule (StepFrom2InArcR)
only if its creation has finished, i.e. there are no more rules creating Place
nodes in the same layer or above. Thus rules ActState2TokenR, State2PlaceR, In-
QueueEvent2TokenR, and QueueEvent2PlaceR has to precede rule StepFrom2InArcR.

The termination of layered graph grammars expresses that no infinite deriva-
tion sequences exist starting from an initial graph if rules are applied within
layers as long as possible.

Definition 2 (Termination of Layered Graph Grammars). A layered graph
grammar with finite start graph G0 and rules RUL terminates, if there is no in-
finite derivation sequence from G0 via RUL = [RULk = {r ∈ RUL | rl(r) =
k}]k=0..k0 , where starting with layer k = 0 rules r ∈ RULk are applied as long
as possible before going over to layer k + 1 ≤ k0.

The termination of layered graph grammars are proved separately for the
deletion and the nondeletion layers.

Lemma 1 (Termination of Layered Graph Grammars with Deletion).
Each layered graph grammar with deletion terminates.

Proof (Lemma 1).
Step 0: Let c0 = card{x ∈ G0|dl(label(x)) = 0}.
By deletion layer conditions 1,3 the application of a rule r to G0 with rl(r) = 0
deletes at least one item x ∈ G0 with label l = label(x) and dl(l) = 0.
Moreover by deletion layer condition 4 each of the rules r can only create items x
with label(x) = l, where cl(l) > 0. This means by using deletion layer condition
2 that only items x with label(x) = l and dl(l) ≥ cl(l) > 0 can be created.
Hence at most c0 applications of rules r ∈ RUL0 are possible in layer 0 leading
to G0 ⇒∗ G1 via RUL0.
Step k: Given graph Gk as result of step (k − 1) for 1 ≤ k ≤ k0 then define
ck = card{x ∈ Gk | dl(label(x)) ≤ k}. Using now rules r with rl(r) = k each
r ∈ RULk deletes at least one item x ∈ Gk with dl(label(x)) ≤ k by deletion
layer conditions 1 and 3 and creates at most items x with cl(label(x)) > k
by deletion layer condition 4 which implies dl(label(x)) ≥ cl(label(x)) > k by
deletion layer condition 2. Hence at most ck applications of rules r ∈ RULk are
possible in layer k leading to Gk ⇒∗ Gk+1 via RULk.
After step n we have at most c = Σk0

k=0ck applications of rules r ∈ R leading to
G0 ⇒∗ Gk0+1, which implies termination. ut

Before proving termination for nondeletion layers, we need to define the no-
tion of essential matches. Informally, an essential match m0 of a match m1 :
L → H1 for a transformation G0 ⇒∗ H1 with G0 ⊆ H1 means that m1 can be
restricted to m0 : L→ G0.

Definition 3 (Transformation and Essential Match). Given a nondelet-
ing graph grammar with injective matches a nondeleting rule r is given by an



injective morphism r : L→ R, and a match m : L→ G is an injective morphism
leading to a transformation step G⇒ H via (r,m) defined by the pushout (1) of
r and m, where d : G→ H is called tracking morphism of G⇒ H via (r,m).

L
r //

m

��
(1)

R

m∗

��
G

d
// H

Since r and m are injective morphisms, pushout properties (1) imply that also
d and m∗ are injective. Given a transformation G0 ⇒∗ H1 i.e. a sequence of
transformation steps with induced injective tracking morphism d1 : G0 → H1 a
match m1 : L→ H1 of L in H1 has an essential match m0 : L→ G0 of L in G0

if we have d1 ◦m0 = m1. Note, that there is at most one essential match m0 for
m1, because d1 is injective.

The following lemma (which is proved in Appendix A) states that rules can
be applied at most once with the same essential match.

Lemma 2. In each derivation sequence starting from G0 of a nondeleting lay-
ered graph grammar with injective matches, each rule r : L→ R with r ∈ RUL0

can be applied at most once with the same essential match m0 : L → G0 and
m0 |= NAC.

Lemma 3 (Termination of Nondeleting Layered Graph Grammars).
Each nondeleting layered graph grammar with injective matches terminates.

Proof (Lemma 3).
Step 0 Given the start Graph G0 we count for each r ∈ RUL0 with r : L → R
and NAC the number of possible matches m : L→ G0 with m |= NAC

c0r = card{m0|m0 : L→ G0 match with m0 |= NAC}
We will show the following:
The application of rules r ∈ RUL0 creates by nondeletion layer condition 4 only
new items x with cl(label(x)) > rl(r) = 0, while each item x ∈ L for any rule
r ∈ RUL0 has cl(label(x)) ≤ rl(r) = 0 by nondeleting layer condition 3. This
means that for each derivation sequence G0 ⇒∗ H1 via RUL0 with injective
matches and injective morphism d1 : G0 → H1 (induced from G0 ⇒∗ H1 by
nondeleting layer condition 1) each match m1 : L→ H1 of some r ∈ RUL0 must
have an ‘essential match’ m0 : L→ G0 with d1 ◦m0 = m1.

From Lemma 2 we conclude that in step 0 we have at most

c0 =
∑

r∈RUL0

c0r

application of rules r ∈ RUL0 leading to G0 ⇒∗ G1 via RUL0.
Step k Given graph Gk as result of step (k − 1) for 1 ≤ k ≤ k0 then define for
each r ∈ RULk with r : L→ R and NAC



ckr = card{mk | mk : L→ Gk match with m |= NAC}.
Similar to step 0 each r ∈ RULk creates only new items x with
cl(label(x)) > rl(r) = k, while each item x ∈ L has
cl(label(x)) ≤ rl(r) = k. Now we can apply Lemma 2 for Gk, RULk, and mk

instead ofG0, RUL0, andm0 and can conclude to have at most ck =
∑
r∈RULk c

k
r

application of rules leading to Gk ⇒∗ Gk+1, via RULk.

After step n we have at most c =
∑k0

k=0 ck applications of rules r ∈ RUL leading
to G0 ⇒∗ Gk0+1, which implies termination.
This completes the proof of Lemma 3. ut

Theorem 1 (Termination of Layered Graph Grammars). Each layered
graph grammar with injective matches terminates.

Proof (Theorem 1). Starting with k = 0 we can apply for each deletion layer
the deletion layer conditions (see Lemma 1) and for each nondeletion layer the
nondeletion layer conditions (see Lemma 3). ut

4 Termination Analysis

4.1 Termination analysis of the running example

Now we apply the results (of Sec. 3) to prove the termination of the model
transformation of Sec. 2 from UML statecharts to Petri nets. Therefore, we first
assign the rules of Fig. 2 to four layers (three nondeletion and one deletion layer).
Then the creation and deletion layers of labels (types) in the metamodel of Fig. 1
are set to respect Def. 1. Finally, the check of the conditions in Def. 1 yields the
termination of the transformation according to Theorem 1.

Assigning rule layers. Let us define four layers for the model transformation
rules of Fig. 2 as follows:

Layer 0 Layer 1 Layer 2 Layer 3
nondeletion nondeletion nondeletion deletion
rl(r) = 0 rl(r) = 1 rl(r) = 2 rl(r) = 3
Step2TransR State2PlaceR StepFrom2InArcR delNodeStepR
ActState2TokenR QueueEvent2PlaceR StepTo2OutArcR delEdgeSrcStepR

InQueueEvent2TokenR Trigger2InArcR
Action2OutArcR

Assigning layers to labels (types). We define a possible way to automatically
assign creation and deletion layers to each label (type) in the metamodel based
upon the previous layer definitions for rules.

Definition 4 (Layer assignments). If we have a start graph G0 with start
labels T0 ⊆ LAB and then we can define for each l ∈ LAB the creation and
deletion layers as follows



cl(l) = if l ∈ T0 then 0 else max{rl(r)|r creates l}+ 1
dl(l) = if l is deleted by some r then min{rl(r)|r deletes l} else n

As only the elements in the source language are present initially in a model
transformations, exactly those labels are included in the start labels T0. Now
the creation and deletion layer of labels are assigned as follows (only a subset of
labels are considered due to space limitations).

Src label ls cl(l) dl(l) Ref label lr cl(l) dl(l) Trg label lt cl(l) dl(l)
State 0 3 RefState 2 3 Place 2 4
Step 0 3 RefStep 1 3 Trans 1 4
Queue 0 3 RefQEvnt 2 3 Token 2 4
Event 0 3 InArc 3 4
Conf 0 3 OutArc 3 4

Checking conditions of termination. Finally we show how the sufficient condi-
tions of deletion and nondeletion layers in Def. 1 are fulfilled by the previous
layer assignments.

– Nondeletion Layer Conditions. First, we notice that Conditions 1 and 2
are straightforwardly guaranteed by the construction (as NAC is isomor-
phic/identical with RHS). Now we only show the validity of Condition 3
and 4 for a single rule, namely, r = StepFrom2InArcR (while the rest of the
rules can be checked similarly). In Condition 3, for each graph element x
in the LHS, we need to check cl(label(x)) ≤ rl(r), which holds according to
the layer assignments above (as maxx∈L{cl(label(x)} = 2 and rl(r) = 2).
Condition 4 states that cl(l) > rl(r) for all l created by r which is justified
by cl(InArc) = 3 and rl(r) = 2 (and similar reasoning on edges).

– Deletion Layer Conditions. As a first observation, Condition 1 trivially holds
for the deletion rules of Layer 3. Condition 2 can be verified according to the
table above. Since all deletion rules in Fig. 2 are included in the last layer,
Condition 3 holds directly. Finally, the fact that these deletion rules do not
create new elements implies Condition 4.

Furthermore, we carried out critical pair analysis using the AGG system [1],
which builds upon the confluence results of [13]. As the graph transformation
rules within a single layer are free of critical pairs (potential conflicts), we can
conclude that our model transformation is a well-defined function from the class
of statecharts to that of Petri nets (i.e. it yields a unique result).

4.2 Further case studies

From the General Resource Model (GRM) to Petri nets. In order to provide
Petri net-based simultaneous optimization and verification of resource alloca-
tion problems, in [8] we aim at generating the application specific Petri net
model from a variant of the General Resource Modeling framework (GRM) [19]



using attributed graph transformation. The graph transformation system (im-
plemented in AGG [1]) consists of five rule layers as follows (where layers 0 and
2 are nondeletion layers while the others are deletion layers):

0. Target model elements are derived from core GRM elements like resource
types, activities, and control flow elements;

1. Petri net transitions and arcs are created between the already transformed
Petri net items according to the control flow in the source model;

2. The start and the end points of the process are marked by auxiliary edges;

3. The quantitative attributes of the Petri net elements are set;

4. All the auxiliary edges and the source model elements are deleted.

Since the rules are applied to the host graph using injective matches only, and
the GTS with a valid source model satisfies the Layered Graph Grammar Defi-
nition (Def. 1), the graph grammar fulfills the termination criteria of Theorem 1
hence the graph grammar terminates.

From Process Interaction Diagrams to Timed Petri nets. In [9], a model trans-
formation from a Process Interaction notation to Timed Transition Petri nets
is specified using graph transformation. The source language is customized to-
wards the area of manufacturing and allows building and simulating networks
of machines and queues through which pieces can flow. For the mapping, timed
transitions depict service times of machines, places are used to model queues
and machine states, and finally pieces are mapped to tokens. The transforma-
tion was divided in four layers, the first one being nondeleting, while the rest are
deleting. The first layer creates Petri net elements connected to the source ele-
ments. Rules in the second layer delete the pieces in the model, creating tokens
in the appropriate places. In the third layer, we connect the Petri net elements
following the connectivity of the source language elements. In addition, the con-
nectivity of the Process Interaction elements is deleted. Finally, the last layer
deletes the Process Interaction elements. The languages and the transformation
were defined with the AToM3 tool [10], and then analyzed using AGG.

5 Related Work

Termination of graph transformation systems is undecidable in general [22], but
several approaches have been considered to restrict a graph transformation sys-
tem such that termination can be shown. The classical approach of proving
termination is to construct a monotone function that measures graph proper-
ties, and to show that the value of such a function decreases with every rule
application. Concrete criteria such as the number of nodes and edges of cer-
tain types have already been considered by Aßman in [2]. However, he sticks to
these concrete criteria, while Bottoni et.al. [5] developed a general approach to
termination based on measurement functions.



With respect to termination for graph transformation systems, the current
work generalizes and formalizes the work begun at [9]. This, in fact, is an ex-
tension of the layering conditions for deleting grammars proposed in [6], which
were used for parsing.

With respect to the transformation from Statecharts into Petri nets, in [10]
graph grammars were also used to describe the translation. In that approach,
Statecharts were restricted to be flat (no hierarchy), termination was not proven
and intermediate elements for linking source and target language elements were
not formally defined.

6 Conclusion

In this paper, we have presented termination criteria for model transformation
expressed as graph transformation. The criteria are based on dividing the gram-
mar in (deleting or nondeleting) layers. A running example, showing a trans-
formation from Statecharts into Petri nets was verified to be terminating. The
applicability of the criteria to other examples was also discussed. The proposed
termination checks will be available in AGG soon.

In the future, it will be interesting to extend the termination criteria to graph
grammars with abstract rules [3]. These rules may contain nodes whose typing
is abstract, and are equivalent to all the rules resulting from the substitution of
the abstract nodes by nodes in its inheritance tree. This extension would allow
to use type graphs with inheritance for the definition of the source and target
languages in a model transformation.

A further direction of future research is to prove semantic compatibility be-
tween statecharts and Petri nets. A potential solution is to first capture the
operational semantics of statecharts and Petri nets in the form of graph trans-
formation rules (see [27, 26]) and then show the bisimilarity of the two graph
transformation systems at a certain level of abstraction.
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A Proofs

Lemma 2. In each derivation sequence starting from G0 each rule r : L → R
with r ∈ RUL0 can be applied at most once with the same ‘essential match’
m0 : L→ G0 and m0 |= NAC.

Proof (Lemma 2). Assume that in G0 ⇒∗ H1 rule r has been applied with the
same ‘essential match’ m0 already. This means we can decompose G0 ⇒∗ H1

into G0 ⇒∗ G ⇒ H ⇒∗ H1 with pushout(1) and injective morphisms G0
g→

G
d→ H

h1→ H1 satisfying d1 = h1 ◦ d ◦ g and d1 ◦m0 = m1 in Figure 3.
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Fig. 3. Second Application of Rule r with same essential match m0

In order to prove the lemma now it is sufficient to show that
m1 : L → H1 does not satisfy the NAC of r, i.e. m1 6|= NAC, where the
NAC is given by an injective morphism n : L → N with n′ : N → R injective
satisfying n′ ◦ n = r by condition 2. In fact we are able to construct an injective
q1 : N → H1 with q1 ◦ n = m1.
Let q1 = h1 ◦m∗ ◦n′, then q1 is injective because n′,m∗ and h1 are injective and
injectivity of m∗ follows from injectivity of match m. Moreover we have:

q1 ◦n = h1 ◦m∗ ◦n′ ◦n = h1 ◦m∗ ◦r = h1 ◦d◦m = h1 ◦d◦g ◦m0 = d1 ◦m0 = m1

This completes the proof of lemma 2. ut


