290 research outputs found

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems

    Get PDF
    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices.Mohamed Elgendi, Björn Eskofier, Socrates Dokos, Derek Abbot

    Cardiovascular data analytics for real time patient monitoring

    Get PDF
    Improvements in wearable sensor devices make it possible to constantly monitor physiological parameters such as electrocardiograph (ECG) signals for long periods. Remote patient monitoring with wearable sensors has an important role to play in health care, particularly given the prevalence of chronic conditions such as cardiovascular disease (CVD)—one of the prominent causes of morbidity and mortality worldwide. Approximately 4.2 million Australians suffer from long-term CVD with approximately one death every 12 minutes. The assessment of ECG features, especially heart rate variability (HRV), represents a non-invasive technique which provides an indication of the autonomic nervous system (ANS) function. Conditions such as sudden cardiac death, hypertension, heart failure, myocardial infarction, ischaemia, and coronary heart disease can be detected from HRV analysis. In addition, the analysis of ECG features can also be used to diagnose many types of life-threatening arrhythmias, including ventricular fibrillation and ventricular tachycardia. Non-cardiac conditions, such as diabetes, obesity, metabolic syndrome, insulin resistance, irritable bowel syndrome, dyspepsia, anorexia nervosa, anxiety, and major depressive disorder have also been shown to be associated with HRV. The analysis of ECG features from real time ECG signals generated from wearable sensors provides distinctive challenges. The sensors that receive and process the signals have limited power, storage and processing capacity. Consequently, algorithms that process ECG signals need to be lightweight, use minimal storage resources and accurately detect abnormalities so that alarms can be raised. The existing literature details only a few algorithms which operate within the constraints of wearable sensor networks. This research presents four novel techniques that enable ECG signals to be processed within the limitations of resource constraints on devices to detect some key abnormalities in heart function. - The first technique is a novel real-time ECG data reduction algorithm, which detects and transmits only those key points that are critical for the generation of ECG features for diagnoses. - The second technique accurately predicts the five-minute HRV measure using only three minutes of data with an algorithm that executes in real-time using minimal computational resources. - The third technique introduces a real-time ECG feature recognition system that can be applied to diagnose life threatening conditions such as premature ventricular contractions (PVCs). - The fourth technique advances a classification algorithm to enhance the performance of automated ECG classification to determine arrhythmic heart beats based on noisy ECG signals. The four novel techniques are evaluated in comparison with benchmark algorithms for each task on the standard MIT-BIH Arrhythmia Database and with data generated from patients in a major hospital using Shimmer3 wearable ECG sensors. The four techniques are integrated to demonstrate that remote patient monitoring of ECG using HRV and ECG features is feasible in real time using minimal computational resources. The evaluation show that the ECG reduction algorithm is significantly better than existing algorithms that can be applied within sensor nodes, such as time-domain methods, transformation methods and compressed sensing methods. Furthermore, the proposed ECG reduction is found to be computationally less complex for resource constrained sensors and achieves higher compression ratios than existing algorithms. The prediction of a common HRV measure, the five-minute standard deviation of inter-beat variations (SDNN) and the accurate detection of PVC beats was achieved using a Count Data Model, combined with a Poisson-generated function from three-minute ECG recordings. This was achieved with minimal computational resources and was well suited to remote patient monitoring with wearable sensors. The PVC beats detection was implemented using the same count data model together with knowledge-based rules derived from clinical knowledge. A real-time cardiac patient monitoring system was implemented using an ECG sensor and smartphone to detect PVC beats within a few seconds using artificial neural networks (ANN), and it was proven to provide highly accurate results. The automated detection and classification were implemented using a new wrapper-based hybrid approach that utilized t-distributed stochastic neighbour embedding (t-SNE) in combination with self-organizing maps (SOM) to improve classification performance. The t-SNE-SOM hybrid resulted in improved sensitivity, specificity and accuracy compared to most common hybrid methods in the presence of noise. It also provided a better, more accurate identification for the presence of many types of arrhythmias from the ECG recordings, leading to a more timely diagnosis and treatment outcome.Doctor of Philosoph

    Real-time signal detection and classification algorithms for body-centered systems

    Full text link
    El principal motivo por el cual los sistemas de comunicación en el entrono corporal se desean con el objetivo de poder obtener y procesar señales biométricas para monitorizar e incluso tratar una condición médica sea ésta causada por una enfermedad o el rendimiento de un atleta. Dado que la base de estos sistemas está en la sensorización y el procesado, los algoritmos de procesado de señal son una parte fundamental de los mismos. Esta tesis se centra en los algoritmos de tratamiento de señales en tiempo real que se utilizan tanto para monitorizar los parámetros como para obtener la información que resulta relevante de las señales obtenidas. En la primera parte se introduce los tipos de señales y sensores en los sistemas en el entrono corporal. A continuación se desarrollan dos aplicaciones concretas de los sistemas en el entorno corporal así como los algoritmos que en las mismas se utilizan. La primera aplicación es el control de glucosa en sangre en pacientes con diabetes. En esta parte se desarrolla un método de detección mediante clasificación de patronones de medidas erróneas obtenidas con el monitor contínuo comercial "Minimed CGMS". La segunda aplicacióin consiste en la monitorizacióni de señales neuronales. Descubrimientos recientes en este campo han demostrado enormes posibilidades terapéuticas (por ejemplo, pacientes con parálisis total que son capaces de comunicarse con el entrono gracias a la monitorizacióin e interpretación de señales provenientes de sus neuronas) y también de entretenimiento. En este trabajo, se han desarrollado algoritmos de detección, clasificación y compresión de impulsos neuronales y dichos algoritmos han sido evaluados junto con técnicas de transmisión inalámbricas que posibiliten una monitorización sin cables. Por último, se dedica un capítulo a la transmisión inalámbrica de señales en los sistemas en el entorno corporal. En esta parte se estudia las condiciones del canal que presenta el entorno corporal para la transmisión de sTraver Sebastiá, L. (2012). Real-time signal detection and classification algorithms for body-centered systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16188Palanci

    Wearable and Nearable Biosensors and Systems for Healthcare

    Get PDF
    Biosensors and systems in the form of wearables and “nearables” (i.e., everyday sensorized objects with transmitting capabilities such as smartphones) are rapidly evolving for use in healthcare. Unlike conventional approaches, these technologies can enable seamless or on-demand physiological monitoring, anytime and anywhere. Such monitoring can help transform healthcare from the current reactive, one-size-fits-all, hospital-centered approach into a future proactive, personalized, decentralized structure. Wearable and nearable biosensors and systems have been made possible through integrated innovations in sensor design, electronics, data transmission, power management, and signal processing. Although much progress has been made in this field, many open challenges for the scientific community remain, especially for those applications requiring high accuracy. This book contains the 12 papers that constituted a recent Special Issue of Sensors sharing the same title. The aim of the initiative was to provide a collection of state-of-the-art investigations on wearables and nearables, in order to stimulate technological advances and the use of the technology to benefit healthcare. The topics covered by the book offer both depth and breadth pertaining to wearable and nearable technology. They include new biosensors and data transmission techniques, studies on accelerometers, signal processing, and cardiovascular monitoring, clinical applications, and validation of commercial devices

    Acoustic sensing as a novel approach for cardiovascular monitoring at the wrist

    Get PDF
    Cardiovascular diseases are the number one cause of deaths globally. An increased cardiovascular risk can be detected by a regular monitoring of the vital signs including the heart rate, the heart rate variability (HRV) and the blood pressure. For a user to undergo continuous vital sign monitoring, wearable systems prove to be very useful as the device can be integrated into the user's lifestyle without affecting the daily activities. However, the main challenge associated with the monitoring of these cardiovascular parameters is the requirement of different sensing mechanisms at different measurement sites. There is not a single wearable device that can provide sufficient physiological information to track the vital signs from a single site on the body. This thesis proposes a novel concept of using acoustic sensing over the radial artery to extract cardiac parameters for vital sign monitoring. A wearable system consisting of a microphone is designed to allow the detection of the heart sounds together with the pulse wave, an attribute not possible with existing wrist-based sensing methods. Methods: The acoustic signals recorded from the radial artery are a continuous reflection of the instantaneous cardiac activity. These signals are studied and characterised using different algorithms to extract cardiovascular parameters. The validity of the proposed principle is firstly demonstrated using a novel algorithm to extract the heart rate from these signals. The algorithm utilises the power spectral analysis of the acoustic pulse signal to detect the S1 sounds and additionally, the K-means method to remove motion artifacts for an accurate heartbeat detection. The HRV in the short-term acoustic recordings is found by extracting the S1 events using the relative information between the short- and long-term energies of the signal. The S1 events are localised using three different characteristic points and the best representation is found by comparing the instantaneous heart rate profiles. The possibility of measuring the blood pressure using the wearable device is shown by recording the acoustic signal under the influence of external pressure applied on the arterial branch. The temporal and spectral characteristics of the acoustic signal are utilised to extract the feature signals and obtain a relationship with the systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively. Results: This thesis proposes three different algorithms to find the heart rate, the HRV and the SBP/ DBP readings from the acoustic signals recorded at the wrist. The results obtained by each algorithm are as follows: 1. The heart rate algorithm is validated on a dataset consisting of 12 subjects with a data length of 6 hours. The results demonstrate an accuracy of 98.78%, mean absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and a correlation coefficient of 0.998 with reference to a state-of-the-art PPG-based commercial device. A high statistical agreement between the heart rate obtained from the acoustic signal and the photoplethysmography (PPG) signal is observed. 2. The HRV algorithm is validated on the short-term acoustic signals of 5-minutes duration recorded from each of the 12 subjects. A comparison is established with the simultaneously recorded electrocardiography (ECG) and PPG signals respectively. The instantaneous heart rate for all the subjects combined together achieves an accuracy of 98.50% and 98.96% with respect to the ECG and PPG signals respectively. The results for the time-domain and frequency-domain HRV parameters also demonstrate high statistical agreement with the ECG and PPG signals respectively. 3. The algorithm proposed for the SBP/ DBP determination is validated on 104 acoustic signals recorded from 40 adult subjects. The experimental outputs when compared with the reference arm- and wrist-based monitors produce a mean error of less than 2 mmHg and a standard deviation of error around 6 mmHg. Based on these results, this thesis shows the potential of this new sensing modality to be used as an alternative, or to complement existing methods, for the continuous monitoring of heart rate and HRV, and spot measurement of the blood pressure at the wrist.Open Acces

    System-level design of energy-efficient sensor-based human activity recognition systems: a model-based approach

    Get PDF
    This thesis contributes an evaluation of state-of-the-art dataflow models of computation regarding their suitability for a model-based design and analysis of human activity recognition systems, in terms of expressiveness and analyzability, as well as model accuracy. Different aspects of state-of-the-art human activity recognition systems have been modeled and analyzed. Based on existing methods, novel analysis approaches have been developed to acquire extra-functional properties like processor utilization, data communication rates, and finally energy consumption of the system

    Evaluation of Dry Electrodes in Canine Heart Rate Monitoring

    Get PDF
    The functionality of three dry electrocardiogram electrode constructions was evaluated by measuring canine heart rate during four different behaviors: Standing, sitting, lying and walking. The testing was repeated (n = 9) in each of the 36 scenarios with three dogs. Two of the electrodes were constructed with spring-loaded test pins while the third electrode was a molded polymer electrode with Ag/AgCl coating. During the measurement, a specifically designed harness was used to attach the electrodes to the dogs. The performance of the electrodes was evaluated and compared in terms of heartbeat detection coverage. The effect on the respective heart rate coverage was studied by computing the heart rate coverage from the measured electrocardiogram signal using a pattern-matching algorithm to extract the R-peaks and further the beat-to-beat heart rate. The results show that the overall coverage ratios regarding the electrodes varied between 45-95% in four different activity modes. The lowest coverage was for lying and walking and the highest was for standing and sitting.Peer reviewe
    • …
    corecore