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Abstract

Today, we are surrounded by a plethora of different processor systems in our everyday life and almost
every situation. Mobile and wearable devices are equipped with embedded processors to provide
advanced functionality and assistance in everyday situations. Furthermore, embedded systems can be
found in our daily vicinity, be it at home, in offices, public places or in transport. Besides pervasive
integration, embedded systems have seen a transformation from single processor systems to powerful
multi-processor systems on chip, in order to overcome technological limitations in form of heat
dissipation. Furthermore, the diversity of processor architectures has increased to heterogeneous multi-
processor systems that offer trade-offs between energy demands, computational power, and flexibility
for a wide range of application-specific demands. With technological advances, assistive systems have
seen a further development by industry and research as well. As a fundamental requirement, in order
to provide us with relevant services, our current activity needs to be known by the assistive system.
Consequently, assistive systems must be able to infer our activities automatically by observations,
without additional, possibly obtrusive interaction.
Inertial sensors have gained an important role for such observations, as advances in micro-electro-
mechanical systems technology allow them to be manufactured as small and unobtrusive, but also
energy-efficient and cheap components. Since then, sensor-based human activity recognition systems
have increasingly been subject to research and development towards high recognition accuracy, but
also many conceptual and algorithmic optimizations with respect to low latency and energy efficiency
have been developed. The diversity and availability of computational resources as well as algorithmic
solutions leads to promising possibilities for system designs such that software components can be
executed on suitable processing units, in order to meet application-specific requirements on latency,
data throughput, and energy consumption.
However, the huge number of possibilities comes at the price of a vast design space, that becomes
increasingly hard to explore. In order to reduce design time, methods to quantify and thus substantiate
design decisions early in the design process become crucial. The thesis at hand proposes model-based
design and analysis techniques as a possible solution. To this end, dataflow models of computation are
evaluated towards their ability to capture abstracted behavior of human activity recognition systems.
These models can further capture design decisions with respect to mappings, schedules, functional
parameters, and existing conceptual optimizations of human activity recognition system, and allow a
formal analysis of extra-functional properties.
To this end, the thesis at hand contributes an evaluation of state-of-the-art dataflow models of computa-
tion regarding their suitability for a model-based design and analysis of human activity recognition
systems, in terms of expressiveness and analyzability, as well as model accuracy. Different aspects
of state-of-the-art human activity recognition systems have been modeled and analyzed. Based on
existing methods, novel analysis approaches have been developed to acquire extra-functional properties
like processor utilization and data communication rates, which directly influence energy consumption
of the system. Furthermore, energy consumption models are introduced with which hardware elements
can be annotated, in order to estimate the impact of design decisions on the energy consumption at
design time.



Kurzfassung

In unserem heutigen Alltag sind wir von einer Vielzahl verschiedener Prozessorsysteme umgeben.
Mobile und tragbare Geräte sind mit unterschiedlichsten Prozessoren ausgestattet, um erweiterte
Funktionalitäten und Unterstützung bereitzustellen. Darüber hinaus finden wir eingebettete Systeme in
unserer täglichen Umgebung, sei es zu Hause, in Büros, an öffentlichen Orten oder im Transportwesen.
Neben allgegenwärtiger Integration haben sich eingebettete Systeme von Einzel-, zu leistungsstarken
Multiprozessorsystemen entwickelt, um technologische Einschränkungen durch unzureichende Wärme-
ableitung zu überwinden. Darüber hinaus hat die Vielfalt an heterogenen Multiprozessorsystemen
zugenommen, die Abwägungen zwischen Energiebedarf, Rechenleistung und Flexibilität für an-
wendungsspezifische Anforderungen ermöglicht. Mit dem technologischen Fortschritt wurden auch
Assistenzsysteme durch Industrie und Forschung weiterentwickelt. Als Grundvoraussetzung um uns
relevante Dienste bereitstellen zu können, muss unsere aktuelle Aktivität dem Assistenzsystem bekannt
sein. Folglich müssen Assistenzsysteme in der Lage sein, unsere Aktivitäten eigenständig durch
Beobachtungen abzuleiten.
Inertialsensorik hat für solche Beobachtungen eine wichtige Rolle eingenommen, da sie dank der
Fortschritte in der mikroelektromechanischen Systemtechnologie als kleine und unauffällige, aber
auch energieeffiziente und kostengünstige Komponenten hergestellt werden können. Seitdem wurden
sensorgestützte Aktivitätserkennungssysteme zunehmend erforscht und entwickelt, um eine hohe
Erkennungsgenauigkeit zu erreichen. Es wurden jedoch auch konzeptionelle und algorithmische
Optimierungen hinsichtlich Latenz und Energieeffizienz entwickelt. Die Vielfalt und Verfügbarkeit
von Rechenressourcen sowie Algorithmen bietet vielversprechende Möglichkeiten für den System-
entwurf, sodass Softwarekomponenten auf geeigneten Prozessoreinheiten ausgeführt werden können,
um anwendungsspezifische Anforderungen zu erfüllen.
Der Entwurfsraum wird mit zunehmender Größe jedoch schwieriger zu explorieren. Um die Ent-
wurfszeit zu verkürzen, werden Methoden zur Quantifizierung und dadurch zur Untermauerung von
Entwurfsentscheidungen früh im Entwurfsprozesses von entscheidender Bedeutung. Die vorliegende
Arbeit schlägt modellbasierte Entwurfs- und Analysetechniken als mögliche Lösung vor. Zu diesem
Zweck werden Datenflussberechnungsmodelle dahingehend bewertet, ob sie das abstrahierte Verhalten
von Aktivitätserkennungssystemen erfassen können. Diese Modelle können Entwurfsentscheidungen
in Bezug auf Bindung, Ablaufplanung, Funktionsparameter und vorhandene konzeptionelle Opti-
mierungen von Aktivitätserkennungssystemen erfassen und eine extrafunktionale Eigenschaftsprüfung
ermöglichen.
Zu diesem Zweck liefert die vorliegende Arbeit eine Bewertung bestehender Datenflussberechnungs-
modelle hinsichtlich ihrer Eignung für den modellbasierten Entwurf und Analyse von Aktivitätser-
kennungssystemen basierend auf ihrer Ausdrucksmächtigkeit und Analysierbarkeit sowie Modell-
genauigkeit. Verschiedene Aspekte modernster Aktivitätserkennungssysteme wurden dazu model-
liert und analysiert. Basierend auf vorhandenen Methoden wurden neuartige Analyseansätze entwi-
ckelt, um extrafunktionale Eigenschaften wie Prozessorauslastung und Datenkommunikationsraten
zu berechnen, die den Energieverbrauch des Systems direkt beeinflussen. Darüber hinaus werden
Energieverbrauchsmodelle eingeführt, mit denen Hardware-Elemente annotiert werden können, um die
Auswirkungen von Entwurfsentscheidungen auf den Energieverbrauch zur Entwurfszeit abzuschätzen.
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1 Introduction

With the advances in microelectronics and computer architectures, Human Activity Recognition (HAR)
as a research field has increasingly gained attention in the past 25 years. The demand of automatic
detection and classification of human behavior by computer systems has been increasing in various
social, medical, safety, and security areas. While approaches based on computer vision have been
dominating the first attempts, the technological advances in inertial sensor systems have shifted
the focus to sensor-based human activity recognition systems. Inertial sensors are composed of
accelerometers and gyroscopes that, when attached to an object, allow the measurement of acceleration
and angular speed of that object into the direction and around the rotation axis of the sensor, respectively.
By integrating three of these sensors perpendicular to each other, the 3D movement and rotation can be
captured. Often inertial sensors are combined with magnetometers, in order to measure the magnetic
field in each axis, which allows to transform the measured signals into the earth coordinate system and
further calculate object orientation from it. Especially the introduction of Micro-Electro-Mechanical
System (MEMS) technology into the development, has lead to inertial sensor systems, that are small
and unobtrusive enough to be worn on the human body. This can be in form of dedicated sensing
devices or integrated in mobile and wearable devices like smartphones, smart watches, fitness trackers,
glasses, or ear plugs. Figure 1.1 depicts the package configuration of an BMI260 IMU sensor from
Bosch Sensortec GmbH, the dimensions of which are 3.0x2.5x0.83mm3 [1].

Application-Specific Instruction-Set Processors (ASIPs) can be integrated with MEMS sensors of
different modalities as so-called Systems-in-Package (SiP). These ASIPs provide the interface to the
host system that the sensor sub-system is embedded into, provide sample timestamps, execute signal
correction algorithms for offset or drift compensation, and perform signal fusion to derive further
information, e.g., sensor orientation. Modern sensor sub-systems also perform basic gesture or activity
recognition, which is executed on their ASIP [2]. The signals acquired from IMU sensors are mostly
equidistantly sampled timeseries of multiple dimensions whose sampling frequencies typically span
from a few hertz up to one or two kilohertz, which however varies depending on the application
domain. In human gesture and activity recognition systems, typical sampling frequencies range from
25−200Hz. In Figure 1.2, the signal from an accelerometer attached to the foot of a walking person
is depicted.

In the thesis at hand, sensor-based human activity recognition refers to the classification of human
gestures or activities from signals that are derived from IMU sensors, which are attached to the human
body, e.g., in form of wearable devices.

Figure 1.1: BMI260 IMU sensor from Bosch Sensortec GmbH. From [1].
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Figure 1.2: Sensor signal acquired from an accelerometer attached to the foot of a walking person.

The general principle of sensor-based human activity recognition was summarized by Bulling et al. in
[3], in terms of an Activity Recognition Chain (ARC). An ARC consists of several processing stages
from raw sensor signals to the final classification results, that can be typically found in state-of-the-art
HAR systems in the literature. Generally, the stages involve data acquisition from inertial sensors
in the first place, and a following pre-processing, e.g., the application of smoothing, low-pass, or
high-pass filters, or general signal enhancement approaches. The pre-processed, potentially infinitely
long signals are then segmented into finite lengths, e.g., by a sliding window, in the segmentation stage.
For each segment, descriptive features are calculated in the feature extraction stage. The resulting
feature vectors of each segment are then classified by an appropriate classification algorithm in the
classification stage. However, due to the possibly high number of dimensions of the feature vector,
which can cause a poor discriminative performance of the classification algorithm, a dimensionality
reduction stage is often implemented after feature extraction, in order to transform the high dimensional
feature vector into a lower dimensionality in which decisive characteristics are still retained. Principle
Component Analysis (PCA) or Linear Discriminant Analysis (LDA) are commonly applied methods
for dimensionality reduction.

Although many HAR systems follow this general pattern, the variety of methods that are utilized for
each stage is huge. In the data acquisition stage, sensor data can be sampled from accelerometers,
gyroscopes, magnetometers, or a combination of these, which have different energy consumption
demands. Pre-processing can range from no pre-processing, to simple moving average filters to
computationally intensive sensor fusion algorithms, e.g., Kalman filters. Segmentation methods are
typically sliding window approaches. However, window sizes and overlaps have a huge impact on
the run time of the feature extraction stage, and on the frequency with which subsequent stages are
executed. Other approaches involve segmentation algorithms which lead to dynamically sized windows.
Feature extraction can be composed of statistical moments like mean and variance, which can be
efficiently computed, but also computationally intensive frequency domain features which involve a
Fast Fourier Transform (FFT) to be computed. Therefore, size and type of features have a huge impact
on the computational effort, energy consumption, and computation time. Dimensionality reduction is
typically performed by PCA or LDA, which have a typically small computational overhead, but again
depend on the dimensionality of the input and the output of the stage. Finally, for classification, a huge
amount of algorithms exist, ranging from computationally lightweight classifiers like, decision trees,
to more computationally intensive algorithms like Support Vector Machines (SVM). Furthermore,
computation time and memory demands of classification algorithms are usually a trade-off between
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training time and run time. For example, the training time of k-Nearest Neighbors (k-NN), is usually
zero1.1, as the complete set of training features is provided at run time, to find the k nearest feature
vectors in the feature space and classify the sample under test by a majority voting of the k nearest
feature vector classes. Execution time for classification and memory consumption therefore depend on
the size of the training dataset. On the contrary, other classification algorithms, e.g., SVMs, might
need an increased execution time for training to adjust discrimination functions adequately, but a
shorter execution time for classification at run time. This variety of parameters and algorithms in each
stage leads, therefore, to disparate HAR systems w.r.t. computational effort, memory consumption,
and latency, finally depending on the anticipated application, activities to be recognized, and the
available sensor sources and their quality. Note that Artificial Neural Networks (ANN) are considered
as possible classifiers in the classification stage of the ARC. Yet, due to the focus on systems that
follow the ARC structure, approaches that are processing all the steps contained in an ARC in a single
ANN with many layers, i.e., deep learning approaches, are not considered in this work in general.
However, this limitation could be relaxed for ANNs, which can be structured as several stages that
could be processed in a pipelined or distributed manner, e.g., based on a certain degree of sparsity in
the weights. This approach however, requires further research and is not covered in this thesis.

Despite the variety of possible ARC setups, many HAR systems share a similar set of requirements,
which are first and foremost functional properties regarding recognition accuracy. However, when
a suitable ARC setup for the anticipated application has been developed and tested regarding its
recognition accuracy, the transformation into a final system must satisfy requirements on extra-
functional properties. In the thesis at hand, the extra-functional properties of interest are real-time
performance, latency, and energy consumption. Real-time performance denotes the ability of the
HAR system to process the stream of continuously sampled sensor data during run time of the system,
without the loss or congestion of sensor data at any ARC stage. As a result, the system throughput is a
direct indicator of its real-time performance, which has to be higher than the highest input data rate
that can be expected during run time of the system. Latency is defined as the time from sampling a
particular sensor sample, until the classification result of the corresponding segment containing that
sample is computed by the HAR system. As multiple samples are usually contained in a segment, and
segment size can vary, the worst-case latency is decisive. Finally energy consumption of the system, or
of components of the underlying hardware architecture is of importance as, e.g., for wearable devices,
it directly influences the time until the batteries are drained and thus impacts the usability of the system.

Typically, HAR systems premise all of the aforementioned requirements, but however, these strongly
depend on the anticipated application. As an example, the latency requirements of an assistive system
for kitchen tasks may be rather relaxed in the range of seconds. An industrial worker assistive system
in contrast, may have a requirement of a few milliseconds or even microseconds on latency for the
detection of an emergency situation, in order to stop machinery like, e.g., industrial robot arms, to
prevent any harm to the worker. Likewise, requirements on throughput and energy consumption are
depending on the activities to be recognized, anticipated sensor sampling rates that are required for the
recognition task at hand, and on deployed hardware and batteries.

Apart from the aforementioned, there are many more requirements on HAR systems, e.g., memory
utilization, robustness, or security, which however, are out of scope in the thesis at hand.

1.1Here, a standard k-NN approach is assumed, without optimizations as, e.g., space partitioning data structures like

K-D-Trees [4], the construction of which would include additional pre-processing.



4 1 Introduction

1.1 Problem Statement and Approach

Although many technological, algorithmic, and conceptual approaches exist to accelerate sensor-based
human activity recognition systems and to reduce energy consumption of utilized hardware components,
the impact of proposed optimizations highly depends on the particular software and hardware that is
deployed. Generalized statements about their improvement factor are thus not possible and have to be
evaluated per application. Furthermore, the software complexity of human activity recognition systems
is steadily increasing by means of individual processing stages from the acquisition of sensor data until
the final inference of the currently performed gesture or activity. Likewise, the hardware architecture
that is used for human activity recognition systems is getting increasingly complex as well. Sensor sub-
systems with integrated on-chip microcontrollers for sensor fusion and pre-processing, are combined
with low-power wireless controllers on wireless sensor nodes. Possible processor architectures for
data aggregation from multiple wireless sensors, i.e., of smartphones, tablets, smart watches, or
dedicated on-body devices, are composed of heterogeneous processing units ranging from of ultra
low power microcontrollers for data aggregation, heterogeneous general purpose processors (GPPs),
to powerful digital signal processors (DSPs), graphics processing units (GPUs), and ASIPs. Further
processing units are located in the vicinity of protagonists like home servers, processor architectures
in cars, or assistive systems in public buildings or offices. Due to their static location and constant
power supply, these can be deployed with powerful Multi-Processor Systems-on-Chip (MPSoCs).
The communication between hardware components is composed of equally diverse standards, that
are low-power wireless standards like Bluetooth Low Energy (BLE), Narrowband-IoT, or LoRa for
unobtrusive and small devices with respectively small batteries, to high throughput standards like WiFi
and 5G connecting devices that are less battery-constrained like static servers or wearable devices
with increased battery technology and capacities. The resulting possibilities of a suitable hardware
platform for human activity recognition systems are huge and constitute a likewise complexity that has
to be managed by the system designer. However, the distribution of software to hardware has a huge
impact on important extra-functional properties like latency, throughput, and energy consumption.
Substantiation of design decisions based on prototype implementations and measurements of said
extra-functional properties is unfeasible considering the huge design space spanned by the number
of possible software to hardware mappings. In order to approach this problem, design-time analysis
methods are crucial to reduce time to market and still provide system designs that meet necessary
requirements.

A possible solution are model-based design and analysis approaches. In a model-based design flow,
software and hardware are specified as formal models, with which hardware selection, software
mapping, and scheduling decisions can be formally specified as a design point. Furthermore, design
points can be formally evaluated with respective analysis and optimization methods that have been
developed for the modeling formalism that is used. Moreover, analysis results of different design
points can be compared, in order to substantiate design decisions at design time.

The thesis at hand proposes a model-based design and analysis of energy-efficient sensor-based online
human activity recognition systems to address the aforementioned open problems. The model-based
approach is based on Models of Computation (MoC) that have become a quasi-standard in the design
of signal processing and streaming applications, i.e., dataflow graph models. To this end, the thesis at
hand deals with the following research questions:
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RQ1 Which dataflow MoC is suitable to capture state-of-the-art human activity recognition
systems?

There exists a variety of dataflow MoCs that differ in analyzability and expressiveness. As
a general trend, the analyzability of available dataflow MoCs decreases with expressiveness.
To this end, suitable MoCs have to be identified, that are expressive enough to capture state-
of-the-art human activity recognition systems, but still allow for the analysis of important
extra-functional properties like latency, throughput, and energy consumption at design time.

RQ2 How can important extra-functional properties be accurately analyzed from dataflow
graph models?

While there exist a plethora of formal analysis techniques for dataflow graphs regarding timing
behavior, comparably little research has been undertaken towards the estimation of energy
consumption from dataflow graph models in the literature. Furthermore, the accuracy of energy
analysis approaches is of interest.

RQ3 Can existing conceptual optimizations regarding latency, throughput, and energy con-
sumption of sensor-based human activity recognition systems be represented in dataflow
graph models?

As indicated earlier, many optimization techniques exist in the literature, that reduce energy
consumption and improve timing behavior of human activity recognition systems. However,
the impact thereof highly depends on the application structure and hardware selection. Since
generalized assumptions on the improvement factor are not possible, a model-based approach
should be able to represent such optimizations and their impact should be quantifiable at design
time.

RQ4 Can dynamic behavior of human activity recognition systems be captured by dataflow
graph models and corresponding analysis methods?

Many human activity recognition systems are subject to changes at run time, which are based
on data-dependent, context-aware, or hardware-related changes in order to improve recognition
accuracy, decrease latency, or conserve energy of deployed battery-powered devices. Dynamic
behavior is a challenging aspect in the model-based representation of applications, as it often
requires a certain degree of expressiveness that contrasts its analyzability. While there exist
dataflow MoCs that allow to model a certain degree of dynamic behavior, the proposed model-
based analysis techniques w.r.t. energy consumption indicators should be extendable to such
MoCs.

In the following section, the contributions of the thesis at hand towards the aforementioned research
questions are summarized.
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1.2 Contributions

Model-based design and analysis approach of sensor-based human activity recognition systems
(Chapter 3) The key contribution of the thesis at hand, is a novel design approach for sensor-based
human activity recognition systems based on well-known models of computation, i.e., dataflow graphs.
General system structures of HAR systems in the literature have been identified and translated into
a model-based representation, allowing further analysis methods to be applied. Based on existing
analysis methods, novel approaches have been developed to analyze key properties w.r.t. energy
efficiency from dataflow models at design time, that are processor utilization and data communication
rate on hardware components. Due to the integration of the input data process into models, introduced
analysis methods are enabled to evaluate worst-case behavior at design time.

Energy consumption estimation of hardware components (Chapter 3) Based on the aforemen-
tioned analysis methods regarding processor utilization and data transmission rates, energy consump-
tion models have been introduced that capture the relationship to said indicators, allowing to quantify
effects of decisions at design time. Introduced energy consumption models differ from existing ap-
proaches in the sense, that a long-run average estimate on energy consumption rate can be acquired, in
contrast to an absolute energy consumption w.r.t. an execution of a particular sequence of instructions.
The latter neglects the rate which the sequence of instructions is executed with. Energy consumption
models are estimated from measurements in the thesis at hand which, however, is orthogonal to
existing approaches, i.e., can be acquired formally, as proposed in existing literature. Finally, energy
consumption models are separated from the dataflow representation of the software and annotated to
components of the hardware model, allowing to abstract and encapsulate technological aspects into
separate models.

System-level parallelization on multi-processor architectures (Chapter 4) Introduced model-
based design and analysis approaches are evaluated w.r.t. their ability to represent state-of-the-art
parallelization approaches of computationally intensive processing stages within human activity
recognition systems on multi-processor architectures. The representation of system-level parallelization
into system models allows to evaluate corresponding effects of system throughput, latency, and the
distribution of processor utilization at design time. Furthermore, their trade-offs can be considered
to substantiate design decisions and possibilities for further reduction of energy consumption, i.e.,
clock-gating or dynamic voltage and frequency scaling, can be assessed.

Scenario-based dynamic behavior (Section 5.1) The proposed modeling and analysis approaches
have been extended to existing models of computation, that allow the representation of a certain degree
of dynamic behavior. That is, dynamic changes between a finite set of static scenarios. This allows, to
represent human activity recognition systems, that change their system configuration at run time based
on the environment, i.e., context awareness, system properties like battery-level-dependent dynamic
sensor or feature selection of wireless sensor nodes, or data-dependent data reduction algorithms like
piecewise linear approximation of sensor signals, that confine to a small finite set of static behaviors.
Aforementioned approaches have been introduced in the literature to increase recognition accuracy
and reduce energy consumption of human activity recognition systems. In order to substantiate design
decisions regarding their deployment for the anticipated application, their impact must be quantifiable
at design time. To this end, the model-based design approach in the thesis at hand is extended to
models of computation that are expressive enough to allow the representation of dynamic changes
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between static scenarios, but are still analyzable w.r.t. key properties. Proposed analysis methods w.r.t,
processor utilization have been extended for the selected model of computation.

Piecewise linear approximation of sensor signals (Section 5.2) The proposed model-based design
and analysis approaches in the thesis at hand, foster awareness of predictability and analyzability of
algorithms developed for energy-efficient online human activity recognition systems. A key aspect in
this regard is the data-independent timing behavior of algorithms. Apart from model-based design
and analysis, the thesis at hand contributes to the algorithmic optimization of existing data- and thus
energy consumption reducing techniques based on piecewise linear approximation of sensor signals.
Two novel piecewise linear approximation algorithms are proposed in the thesis at hand, that advance
existing methods, towards a small and constant per-sample execution time and memory complexity
w.r.t. their compression ability. As a result, their execution time per sensor sample and their memory
utilization is small enough to be implemented on resource constrained sensor sub-systems without
compromising any functional properties regarding their approximation quality. More importantly,
their execution time is predictable at design time, allowing them to be modeled and analyzed with the
approaches proposed in the thesis at hand.

1.3 Author’s Publications

Most of the work presented in this thesis has been previously published by the author. The thesis
at hand refines and unifies published concepts and results and provides a consistent presentation of
such. In the following, a summary is presented, that relates the key aspects of each chapter to the
corresponding publications of the author in which they were initially introduced. Furthermore, the
author’s contributions to the corresponding publications are highlighted.

Energy-Efficient Sensor Networks (Chapter 3) In Chapter 3, the modeling approach for wireless
on-body sensor networks in the context of human activity recognition systems is presented. The
motivation of trading-off energy consumption of different hardware components based on their
workload stems from initial studies on the topic which was presented in [G1]. The author of this thesis
has developed the main concept, performed implementation, and conducted the experiments in [G1].
Furthermore, the analysis of processor utilization as well as data communication rate from dataflow
graph models of wireless sensor networks in human activity recognition systems was introduced in
[G2] and [G3] and the concept of corresponding energy consumption models was published in [G4].
The author of the thesis at hand developed the presented concepts and implemented, performed, and
evaluated corresponding experiments.

Thread-Level Parallelism (Chapter 4) In Chapter 4, the dataflow-based modeling of parallelization
strategies for online gesture and activity recognition systems is presented and evaluated on experi-
mental implementations in different configurations. Model-based analysis results are evaluated with
measurements from the experiments. The experimental implementation and evaluation of the presented
parallelization approaches have been published in [G5] and [G6]. In [G6], a first dataflow graph model
has been introduced to capture respective parallelization approaches, which has been later refined for
the thesis at hand, based on the modeling approach in [G2]. The author of the thesis at hand, developed
the respective concepts and implemented, performed, and evaluated corresponding experiments in the
aforementioned publications.
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Scenario-Based Dynamic Behavior (Section 5.1) In Section 5.1, the modeling and analysis ap-
proaches are extended to scenario-aware dataflow graphs to support the representation of dynamic
changes between static scenarios in the system models. Analysis methods w.r.t. processor utilization
have been adapted to the selected MoC. The basic concept of using scenario-aware dataflow graphs as
a MoC and a corresponding analysis technique towards processor utilization, was initially published
in [G7]. The modeling approach and especially the analysis of processor utilization is thoroughly
refined in the thesis at hand, including its limitations to the application domain. The author of this
thesis developed the concept and implemented, performed, and evaluated the experiments in [G7]. The
analysis of scenario occurrence probabilities from scenario-aware dataflow graphs was conceived and
implemented by the co-author Bart D. Theelen.

Data-Dependent Dynamic Behavior (Section 5.2) In Section 5.2, two novel piecewise linear
approximation algorithms for sensor signals are introduced, i.e., CPLR and fastSW. The concept,
implementation, and evaluation of CPLR was previously published in [G8]. The concept and implemen-
tation of fastSW has not been published at the time of submission of the thesis at hand. The presented
evaluation of fastSW in Section 5.2 is based on and integrated into the experimental evaluation of
CPLR presented in [G8]. The author of this thesis developed the concept and implemented, conducted,
and evaluated the experiments in [G8] and conceived and implemented fastSW.
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2 Fundamentals

In the thesis at hand, model-based system-level design and analysis approaches for sensor-based human
activity recognition systems are introduced, with which extra-functional properties can be acquired
at design time in order to evaluate different system configurations early in the design process. The
introduced approaches are based on formal models, i.e., dataflow-based MoCs, and their respective
analysis methods. The fundamentals regarding dataflow MoCs on which this thesis builds on are
discussed in Section 2.1. In Section 2.2, the system modeling approach that is used throughout the
thesis is introduced.

2.1 Dataflow Models of Computation

In the literature exist several dataflow MoCs with a considerable range in expressiveness, analyzability,
and implementation efficiency [5]. As a general trend, analyzability is inversely proportional to the
expressiveness. However, analyzability is generally desirable, e.g., schedules that can be derived at
design time, can be implemented statically or quasi-statically and therefore avoid overheads at run
time. In contrast, expressiveness is important as well, as with more expressive models, the behavior
of the system under design can be captured more accurately. As a result, the selection of appropriate
MoCs is a trade-off between analyzability and expressiveness

The MoCs that have been used for modeling HAR systems in the thesis at hand are introduced in the
following together with a short reasoning about the respective choices. For a review and classification
of a broader range of dataflow MoCs, the interested reader is referred to [5].

2.1.1 Synchronous Dataflow Graphs

Synchronous Dataflow (SDF) graphs are weighted directed graphs and have been introduced by Lee
and Messerschmitt in [6]. A notion of timing is associated with SDF graphs, in order to allow analysis
of schedules or throughput at design time [7]. In the following, timed SDF graphs are assumed when
referred to SDF graphs. Let N= {1,2,3, . . .} denote the set of natural numbers. Furthermore, the set
of non-negative integers is denoted by Z0+ = {0,1,2,3 . . .} and analogously R0+ denotes the set of
non-negative real numbers including zero.

Definition 1 (SDF graph) An SDF graph G = (V,E, prod,cons,D0,δ ), consists of a set of vertices V ,

directed edges E : V ×V , production rates prod : E → N, consumption rates cons : E → N, an initial

token distribution D0 : E → Z0+, and an execution time function δ : V → T.

In Figure 2.1, an example of an SDF graph is depicted. Vertices of SDF graphs, so-called actors V (A,
B, and C in Figure 2.1), are representing function executions and communicate data over unidirectional
channels with First-In-First-Out (FIFO) semantics, represented by edges e = (v,v′) ∈ E (c0,c1,c2, and
c3 in Figure 2.1). Actors v and v′ are said to be the source and destination of e = (v,v′), denoted by
src(e) and dst(e), respectively. Presence and number of (units of) data on channels is represented by
tokens. A number of initial tokens D0(e) is associated with each channel e ∈ E, which is depicted with
bullets and can be found on channels c0 and c2 in Figure 2.1. In general, each bullet represents one
initial token. Alternatively, for the sake of readability, a number next to a bullet may represent the
corresponding number of initial tokens. The number of tokens a source actor v produces on an outgoing
channel e = (v,v′) ∈ E is represented by the production rate prod(e) of e. Likewise, the number of



10 2 Fundamentals

A

B

C

δ = 1

δ = 3

δ = 2

1
c1

2 1

1c2
••

21
c3

c0
•

Figure 2.1: Example of a synchronous dataflow graph.

tokens a destination actor v′ ∈V consumes from an incoming channel e = (v,v′) ∈ E is denoted by the
consumption rate cons(e) of channel e. Production and consumption rates of channels are expressed as
numbers next to edges, e.g. prod(c1) = 1 and cons(c1) = 2 in Figure 2.1. For the sake of readability,
edges whose production or consumption rates equal one, may be visualized without the corresponding
annotation. For example, edge c0 has a production and consumption rate of prod(c0) = cons(c0) = 1
in Figure 2.1. Actor delays δ (v) specify an execution time of represented functions and can either
be continuous (T = R0+) or discrete (T = Z0+). Typically, the latter is the case, which is depicted
in Figure 2.1 with annotations next to actors, e.g., δ (A) = 1. Actors without delay annotations are
assumed to have zero delay, if not otherwise indicated.

The channel state of an SDF graph G is captured by a function D : E → Z0+, that assigns a number of
tokens to each channel of G. The channel state of an SDF graph dictates, whether actors are enabled
to fire or not.

An actor is enabled to fire, if a minimum number of tokens, denoted by the consumption rate, is present
on each input edge, i.e., an actor v is enabled to fire if ∀e = (v′,v) ∈ E : D(e)≥ cons(e) holds. When
an actor v ∈V fires, cons(e) tokens are removed (consumed) from each incoming edge e = (v′,v) ∈ E
and prod(e′) tokens are added (produced) on all outgoing edges e′ = (v,v′′) ∈ E after δ (v) time units.
In Figure 2.1, only actor C is enabled to fire in the depicted initial channel state.

If the channel state allows, SDF graphs explicitly permit the simultaneous firing of multiple instances
of the same actor. This behavior is referred to as auto-concurrency and can be constrained by a
self-edge ((v,v) ∈ E) on an actor v with unit production and consumption rate and as many initial
tokens as maximal simultaneous firings are desired. In Figure 2.1, the auto-concurrency of actor A
is eliminated by self-edge c0 with unit production and consumption rate and a single initial token.
As a result, only a single instance of actor A can be fired at a time, forcing a sequential execution.
Self-edges can thus be used to model stateful functions. In contrast, actors B and C are allowed for
simultaneous firings. In particular, two instances of actor C are enabled to fire in the initial channel
state depicted in Figure 2.1.

Definition 2 (Consistency) Let ˜︁γG : V → N, denote a vector, that for each actor v ∈ V assigns a

number of firings. If a vector ˜︁γG exists that solves the balance equations ∀e = (v,v′) ∈ E : ˜︁γG(v) ·
prod(e) = ˜︁γG(v′) · cons(e), the SDF graph is said to be consistent, i.e., the execution of all actors

v ∈V firing exactly ˜︁γG(v) times, has no net effect on the token distribution of the SDF graph G.
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The same channel state of a consistent SDF graph is revisited after ˜︁γG(v) respective firings of all v ∈V .
This furthermore implies, that for a consistent SDF graph, infinitely many vectors ˜︁γG exist, i.e., all
integer multiples of ˜︁γG solve the balance equations as well. The smallest of such vectors γG = min ˜︁γG

with γG(v) ∈ N for all v ∈V is referred to as repetition vector. As a result, the existence of a repetition
vector indicates consistency. The example SDF graph in Figure 2.1 is consistent and has a repetition
vector of γ = [2,1,1]T with corresponding order [A,B,C]T . Hence, A has to be fired twice and both B
and C have to be fired once to reach the initial channel state again.

Definition 3 (Iteration) If G = (V,E, prod,cons,D0,δ ) is a consistent SDF graph, with repetition

vector γG, a set of executions in which each actor v ∈V fires exactly γG(v) times, is called an iteration.

Consistency guarantees that a channel state of an SDF graph is revisited after a single execution of an
iteration. Thereafter, an infinite sequence of iterations can be executed with finite buffer sizes.

Definition 4 (State) Let G = (V,E, prod,cons,D0,δ ) be a timed SDF graph. Its state can be captured

by a tuple S = (D,τ), with D denoting the channel state of G, and τ : V → T∗ a time structure2.1, that

assigns remaining execution times to all instances of an actor that concurrently execute [8]. The initial

state of G is thus, (D0,τ0), with ∀v ∈V : τ0(v) = {}.

The timing of SDF graphs allows the analysis of timing behavior or schedules. Since execution times
may vary due to different hardware aspects like caches, branches, or interrupts, a fully static schedule is
often not practical. As a solution, actors are annotated with worst-case execution times of the functions
that they represent. This permits so-called self-timed schedules [9]. In a self-timed schedule, each
actor fires as soon as it is ready to fire. This allows an ordering on actor executions to be determined at
compile time when annotated with worst-case execution times, which can be deployed without timing
information in a final implementation, thus avoiding run-time scheduling overheads. Furthermore, by
assuming self-timed execution, formal analysis of timed SDF graphs considers the best possible timing
behavior. In Figure 2.2, the self-timed execution of the SDF graph from Figure 2.1 is depicted.

Due to timing of actors, the initial state s0 = (D0,T0) ∈ S may not be reached again in the self-timed
execution. However, in [8], Ghamarian et al. prove, that consistent and strongly connected timed SDF
graphs reach a steady state in the self-timed execution after a so-called transient phase, i.e., a recurring
state s′ ∈ S is revisited periodically. Ghamarian et al. show furthermore that, for strongly connected
and consistent SDF graphs, the steady state in the self-timed execution is an integer multiple (including
zero) of an iteration. Note that a zero multiple of an iteration indicates a deadlock. However, efficient
methods to check for deadlock freedom in SDF graphs exist as well [6, 8]. In the thesis at hand, only
consistent and deadlock-free SDF graphs are considered.

In Figure 2.2, the SDF graph is in its initial state s0 = ((1,0,2,0),{{},{},{}}) at time 0 and starts with
an immediate state transition to ((1,0,0,0),{{},{},{2,2}}) by starting to fire two instances of C at
time 0. The steady-state of the self-timed execution begins at time 4 in state ((0,0,0,1),{{1},{3},{}}).
Note that multiple state transitions without time progress are represented by a combined transition and
thus actor A and B started their firing in the final state at time 4 already. The same state is revisited at
time 11 after two graph iterations. As a result, the steady-state period takes 7 time units to execute. It
is important to note that iterations can overlap in time, as it can be seen in Figure 2.2.

2.1Here, T∗ denotes the Kleene star operator ∗ on the set T, representing the set of all possible sequences of elements

from the set T, including the empty set {}.
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Figure 2.2: Self-timed schedule of the example SDF graph in Figure 2.1.

In the thesis at hand, strong connectedness is not assumed generally. As a result, the self-timed
execution of an arbitrary consistent and deadlock-free SDF graph can lead to unbounded channels [10].
Hence, a self-timed schedule is not guaranteed to form a periodical phase in the execution state space.
However, Ghamarian et al. introduce in [10] the property of so-called self-timed boundedness and a
corresponding analysis method. Self-timed boundedness guarantees, that an arbitrary consistent and
deadlock-free SDF graph can execute infinitely often in a self-timed schedule with finite buffer sizes
on its channels. The maximum achievable average rate, at which an iteration of a consistent SDF graph
G can be executed with finite buffer sizes of all its channels e ∈ E, is referred to as the throughput
T H(G) of graph G. Furthermore, the corresponding maximal average rate at which an actor v ∈V of a
consistent SDF graph G can be executed with finite buffer sizes of all its channels e ∈ E, is referred to
as actor throughput T H(v). Due to its consistency, the relationship between T H(G) of SDF graph G
and T H(v) and T H(v′) of any actors v,v′ ∈V is:

∀v,v′ ∈V : T H(G) =
T H(v)
γG(v)

=
T H(v′)
γG(v′)

. (1)

In [10], it is shown, that the throughput of a consistent and deadlock-free SDF graph G, corresponds to
the self-timed execution of G if G is self-timed bounded. Furthermore, Ghamarian et al. show in [10],
how the throughput T H(G) of an arbitrary consistent and deadlock-free SDF graph G can be acquired
by subsequently calculating the throughput of all its Strongly Connected Components (SCCs).

In the thesis at hand, the average time between two consecutive iteration executions in a schedule of a
consistent SDF graph G that achieves the throughput T H(G) is referred to as the average iteration
period TG, and is calculated by:

TG =
1

T H(G)
. (2)

The average iteration period of the example SDF graph in Figure 2.1, is 3.5 and its corresponding
throughput is 1

3.5 .

There exist many different techniques to analyze the throughput of SDF graphs in the literature. A
straight forward method is the transformation of an SDF graph in its corresponding Homogeneous
Synchronous Dataflow (HSDF) graph, which is the equivalent of the SDF graph w.r.t. actor firings,
however with unit production and consumption rates on edges, and a maximum of one initial token
on any edge. Furthermore, in contrast to SDF, HSDF graphs are multigraphs, i.e., multiple equally
directed edges can exist between two actors. The transformation of an SDF graph into its equivalent
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HSDF representation is described in [7]. From this HSDF representation, the throughput of the
corresponding SDF graph can be calculated by a Maximum Cycle Mean (MCM) or Maximum Cycle
Ratio (MCR) analysis. For a detailed description of SDF to HSDF transformation and a review and
comparison of MCM and MCR analysis methods, the interested reader is referred to [7] and [11],
respectively. Although originally limited to strongly connected SDF graphs, throughput analysis
based on HSDF conversion can make use of the techniques presented in [10], in order to check for
self-timed boundedness or to analyze the maximum achievable throughput for bounded executions.
Since conversion from SDF to HSDF graphs may result in an exponential growth of the graph, a
more efficient method for acquiring the throughput of SDF graphs from their execution state space is
explained in [8]. However, this approach is restricted to strongly connected SDF graphs. De Groote
et al. introduced another improvement in [12], that converts an SDF graph into a more reduced
representation than HSDF graphs, i.e., Linear Constraint Graphs (LCGs), that allow the throughput
computation in a shorter time and a more compact representation than HSDF graphs in many cases.
Again, that approach can be applied to arbitrary consistent and deadlock-free SDF graphs with the
techniques from [10].

Throughput of consistent and deadlock-free SDF graphs is an essential property on which the proposed
methods in the thesis at hand are based on. A tool, that has been extensively used for the evaluations
in the thesis at hand is the SDF3 framework of Stuijk et al. [13]. The SDF3 framework implements
a parser for SDF graphs represented in XML format and offers a wide range of analysis techniques,
including consistency, deadlock freedom, repetition vector, and throughput.

Their static consumption and production rates as well as execution times allow for a variety of
analyses of SDF graphs at design time. However, their expressiveness is limited and often demands a
high abstraction and overestimation when modeling and analyzing state-of-the-art dataflow-oriented
applications, leading to pessimistic results. Therefore, a more expressive MoC, that still allows for
design-time analysis of properties, that the approaches in the thesis at hand build on, is explained in
the following section.
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2.1.2 Cyclo-Static Dataflow Graphs

The Cyclo-Static Dataflow (CSDF) MoC was introduced by Bilsen et al. in [14] as an extension of a
special form of SDF graphs, namely SDF graphs without the ability for auto-concurrency. Such SDF
graphs are extended by the concept of cyclic changing behavior. A formalization of the CSDF concept
as a proper extension of SDF graphs, i.e., allowing auto-concurrency, was introduced by Stuijk et al. in
[15]. Furthermore, Stuijk et al. introduced a formalization of execution times to CSDF actors, similar
to timed SDF. In the thesis at hand, the definition of CSDF graphs is based on this formalization. Let
i mod1 n be shorthand notation for (i−1) mod n+1, with mod defined as the modulo operator, i.e.,
a mod b = a−b

⌊︁a
b

⌋︁
.

Definition 5 (CSDF graph) A CSDF graph G is defined by G = (V,E, p,c,D0,d) with vertices V ,

edges E : V ×V , production rates p : E → Zn
0+, consumption rates c : E → Zn

0+, an initial token

distribution D0(e) : E → Z0+, and a delay function d : V → Tn.

In Figure 2.3, an example CSDF graph is depicted. Similar as timed SDF graphs, CSDF graphs
are composed of actors v ∈V represented by vertices, e.g., A, B, and C in Figure 2.3. Actors v ∈V
communicate tokens over unbounded FIFO channels, referred to as edges e = (v,v′) ∈ E (c0, c1, c2,
and c3 in Figure 2.3). Presence and number of tokens on channels, i.e., the channel state is represented
by D(e), with initial channel state D0(e), that is depicted by bullets in term of number and presence
on edges, e.g., on channels c0 and c2 in Figure 2.3. In CSDF, actors v ∈ V are associated with a
number of phases φ(v) ∈ N. The phases represent different behaviors of actors that change in a
cyclic manner. Accordingly, the production rates p(e) = [p1, p2, . . . , pφ(v)] and consumption rates
c(e′) = [c1,c2, . . . ,cφ(v)] of edges e = (v,v′) ∈ E and e′ = (v′′,v) ∈ E that an actor v ∈V is connected
to as source or destination actor, respectively, are sequences of length φ(v). Furthermore, associated
delays d(v) = [d1,d2, . . . ,dφ(v)], representing execution times of an actor v ∈V , are sequences of size
φ(v). Execution time sequences d(v), production rate sequences p(e),e = (v,v′)∈ E, and consumption
rate sequences c(e′),e′ = (v′′,v) ∈ E, represent the behavior of actor v ∈ V in its different phases
that repeat with a period of φ(v), with ∀v ∈ V,∀e = (v,v′) ∈ E,∀e′ = (v′′,v) ∈ E : |p(e)| = |c(e′)| =
|d(v)|= φ(v). Edges without annotations, are assumed to have unit production and consumption rates
in each phase of its source and destination actor, respectively. In Figure 2.3, actor A has three phases,
and produces 2 and 1 tokens on channel c1 and c0, respectively, consumes two and one tokens from
channels c3 and c0, respectively, and has an execution time of two, in its first firing. Furthermore,
CSDF actors v ∈ V with φ(v) = 1 resemble SDF actors. In Figure 2.3, actors B and C each have
one phase and thus resemble SDF actors. The number of tokens produced on channel e = (v,v′) ∈ E
by the i-th firing of actor v ∈ V is represented by function prod(e, i) = pi mod1 φ(v), i ∈ N. Likewise
cons(e, i) = ci mod1 φ(v), i ∈ N denotes the number of tokens that actor v consumes from channel e in
its i-th firing. Finally, δ (v, i) = di mod1 φ(v), i ∈ N denotes the execution time of the i-th firing of actor
v ∈V .

A CSDF actor v in its current phase j ∈ [1, . . . ,φ(v)] is enabled to fire, if sufficient tokens on all of its
input edges (v′,v) ∈V are available, i.e., if ∀(v′,v) ∈ E : D(e)≥ cons(e, j) holds. When an actor v ∈V
fires in its j-th phase, it consumes cons(e, j) tokens from its input channels e = (v′,v) ∈ E, produces
prod(e′, j) tokens after δ (v, j) time units on all of its output edges e′ = (v,v′′) ∈ E, and changes its
phase to ( j+1) mod1 φ(v). In Figure 2.3, two instances of actor C are enabled in the initial channel
state depicted in Figure 2.3. While auto-concurrency of CSDF graphs is assumed throughout the thesis
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Figure 2.3: Example of a cyclo-static dataflow graph.

at hand, the presented approaches are applicable for CSDF graphs without auto-concurrent behavior to
most extend. This is further detailed at the end of this section.

Note that in contrast to the above definition, the number of phases of all actors v ∈V needs to be equal
when using SDF3 for analysis. The presented methods in [15] however, as well as design and analysis
approaches introduced in the thesis at hand, are applicable to CSDF graphs with different lengths of
phase sequences among its actors. Furthermore, as stated in [15], the sequence of actor phases can be
concatenated for each actor in a way, such that the length of the resulting sequence is equal to the least
common multiple of all actors individual lengths of phase sequences before concatenation, to acquire
an CSDF graph that can be analyzed with SDF3.

The repetition vector γG ∈ N|V | of a CSDF graph G is composed of γG(v) = φ(v) · r(v) for all actors
v ∈V , with r ∈ N|V | being the smallest vector that solves the following balance equations:

∀e = (v,v′) ∈ E : r(v) ·
φ(v)

∑
i=1

prod(e, i) = r(v′) ·
φ(v′)

∑
j=1

cons(e, j).

Similar to SDF graphs, the existence of a vector r and thus a repetition vector γG of CSDF graph G
guarantees consistency and γG describes an iteration of G. Furthermore, after executing an iteration of
CSDF graph G, the same channel state as before the execution is reached again. The depicted CSDF
graph in Figure 2.3 is consistent and has a repetition vector of γ = [3,2,2]T with corresponding order
[A,B,C]T .

In [15], Stuijk et al. generalize from [8]. Hence, the state space of CSDF graphs with bounded storage
space consists of a transient phase followed by a steady-state. Consequently, considering the results
from [10], the steady-state represents the self-timed execution in case the CSDF graph is self-timed
bounded, otherwise it represents the fastest possible schedule in terms of throughput, which can be
executed infinitely often with finite buffer size usage on all channels. The self-timed schedule of the
example CSDF graph in Figure 2.3, is depicted in Figure 2.4. The CSDF graph is consistent, deadlock
free, and strongly connected (and therefore self-timed bounded [10]) and its steady-state begins at time
4 which is revisited at time 11. Its steady-state consists of a single iteration, which is highlighted in
Figure 2.4.

Similar to SDF graphs, the throughput T H(G) of a consistent CSDF graph G is defined as the maximum
achievable average rate of iterations, that can be executed infinitely often with finite buffer size usage
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Figure 2.4: Self-timed schedule of the example CSDF graph in Figure 2.3.

of all channels e ∈ E. Accordingly, the actor throughput T H(v) of any actor v ∈V can be derived from
the graph throughput T H(G) and the repetition vector entry γG(v) by Equation (1). In the thesis at
hand, the reciprocal of the throughput T H(G) of a consistent CSDF graph G is denoted as average
iteration period TG, calculated by Equation (2). The throughput of the example CSDF graph from
Figure 2.3, is T H(G) = 1

7 and its corresponding average iteration period is thus TG = 7.

Throughput of CSDF graphs can be calculated by a transformation into equivalent HSDF graphs and
subsequent MCR analysis [14]. For arbitrary consistent CSDF graphs, the subsequent throughput
calculation on all SCCs of the HSDF graph can derive the maximum achievable throughput of all
infinite schedules with bounded channels [10]. Multiple optimizations have been introduced to
transform a CSDF graph into a reduced presentation of SDF graphs [16] or HSDF graphs [12, 17]
from which throughput can be calculated by using the techniques of [10].

Since the definition of CSDF graphs in [15] as well the implementation of [13] allow auto-concurrency
of CSDF actors, the order of tokens produced on a channel by subsequent firings of an actor can change
due to different execution times and thus break so-called functional determinacy [17, 18]. That is, in
general, the order of actor firings in SDF graphs and thus, the execution times of actors do not influence
the result. However, if a concurrent phase of an actor can overtake another, the result might indeed
be changed, i.e., the graph is not functionally determinate anymore. However, in the modeling and
analysis approach presented in the thesis at hand, analysis models are eliminating auto-concurrency of
CSDF actors. Additional actors with enabled auto-concurrency for model refinement may be added to
analysis models, as will be explained in Section 4.5.4. However, these additional actors are restricted
to SDF actors, which preserves functional determinacy [16].

Due to the cyclic behavior of actors, the CSDF MoC is more expressive than SDF. Although analysis
of CSDF graphs may require a higher computational effort, due to subsequent transformations to
SDF or directly HSDF graphs and a corresponding increase in graph size [16], design-time analysis
of important properties like consistency and throughput is still possible. Thus CSDF graphs allow a
tighter modeling of dataflow-oriented applications and systems, that follow a periodic behavior.

However, dynamic behavior, e.g., data-dependent execution, cannot be modeled efficiently with CSDF
graphs. There exist a variety of dataflow MoCs allowing for data-dependent behavior, such as Boolean
Dataflow (BDF), Dynamic Dataflow (DDF), or Kahn Process Network (KPN), which in general
however, are not analyzable w.r.t. throughput, consistency, or deadlock freedom at design time [5].
As a remedy, the scenario-aware dataflow (SADF) MoC allows to represent dynamic behavior that
is restricted to a finite number of scenarios for which the behavior is static, but scenario changes can
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occur. The SADF MoC is analyzable w.r.t. throughput, consistency, deadlock freedom, and a variety
of long-run average metrics, at design time. In the following section, the SADF MoC and the most
important properties that can be analyzed from it are explained in more detail.

2.1.3 Scenario-Aware Dataflow Graphs

The Scenario-Aware Dataflow (SADF) MoC has been introduced by Theelen et al. in [19]. Scenario-
aware dataflow graphs express dynamic behavior in form of finite sets of operational modes of actors
with corresponding probabilistic information on possible execution orders. SADF graphs are therefore
more expressive than CSDF graphs, but still analyzable at design time.

SADF graphs extend SDF and CSDF graphs by the concepts of scenarios. To this end, two kinds of
actors exist for SADF graphs, namely kernels and detectors. Kernels are similar to actors in SDF and
CSDF, but can operate in different scenarios. Detectors are special actors, that control the scenarios of
kernels. The scenario of a kernel can be controlled by a detector, via a so-called control channel that
transports control tokens, which select the corresponding scenario of the kernel. Dynamic behavior
is modeled by scenario transitions. In the SADF MoC that is used in the thesis at hand, scenario
transitions are modeled by probabilistic choices, i.e., as a discrete-time Markov chain. Besides the
aforementioned, there exists another variant of SADF, namely Finite State Machine (FSM) SADF, that
models choices by a finite state machine [5]. In FSM-SADF, however, zero production or consumption
rates, like in CSDF, are not allowed, while Markov chain SADF does allow for zero production and
consumption rates. In turn, Markov chain SADF does not support auto-concurrency as described in
[19], which is possible in CSDF and FSM-SADF. However, as discussed in Section 2.1.2, this does not
affect the modeling and analysis approaches introduced in the thesis at hand, as auto-concurrency is
removed from final analysis models. Hence, the thesis at hand focuses on Markov chain SADF, which
will be referred to as SADF in the following.

Let Ψ denote a finite set of scenarios. The set of all possible non-empty sequences of scenarios ψ ∈ Ψ,
is denoted by Ψ+2.2. A sequence of scenarios is indicated by ˜︁ψ ∈ Ψ+ and the length of a scenario
sequence is denoted by |˜︁ψ|. Furthermore, a sequence of n equal scenarios ψ ∈ Ψ is denoted by ψn.

Definition 6 (SADF graph) An SADF graph is defined as G = (V,E, p,c,D0,d) with vertices V =

Vk ∪Vd , edges E = Ed ∪Ec, with Ed : V ×V and Ec : Vd ×Vk, production rates p : E → Zn
0+∪Ψ+n,

consumption rates c : E → Zn
0+, an initial token distribution D0 = (Dd0 ,Dc0), with Dd0 : Ed → Z0+

and Dc0 : Ec → Ψ+, and a delay function d : V → Tn.

An example SADF graph is depicted in Figure 2.5. Similar to CSDF actor phases, SADF actors v ∈V
are associated with a set of scenarios Ψv. However, in SADF graphs, scenarios are not necessarily
changing in a cyclic manner, but are rather controlled by special actors. To this end, two kinds of
actors, i.e., kernels Vk and detectors Vd , build the set of actors V = Vk ∪Vd , with |Vk| ≥ 1. Actors
are depicted as vertices, with solid lines for kernels (A,B, and C in Figure 2.5(a)) and dashed lines
for detectors (det in Figure 2.5(a)). According to the original definition in [19], an SADF graph
can consist of multiple detectors. However, for the sake of brevity, the number of detectors in Vd is
assumed to equal one in the thesis at hand, i.e., |Vd |= 1. Furthermore, an actor v ∈V can either be

2.2Here, Ψ+ denotes the Kleene plus operator + on the set Ψ, representing the set of all possible sequences of elements

from the set Ψ, which are non-empty.
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Figure 2.5: Example of a scenario-aware dataflow graph.

kernel or detector, with Vk ∩Vd =∅. Kernels and detectors communicate tokens over unbounded FIFO
channels E represented by edges. The set of channels E is composed of data channels Ed ⊆V ×V
(similar to channels of SDF and CSDF graphs) which are depicted as solid edges and so-called control
channels Ec ⊆Vd ×Vk depicted as dashed edges, with E = Ed ∪Ec and Ec ∩Ed =∅. Moreover, the
number of control channels between each pair of detector vd ∈Vd and kernels vk ∈Vk is at most one,
i.e., ∀(vd ,vk) ∈ Vd ×Vk : |{(vd ,vk) ∈ Ec}| ≤ 1. While data channels ed communicate abstract units
of data between actors without values (like in SDF and CSDF), each control channel ec = (vd ,vk) is
associated with a finite set of control token values, that corresponds to the set of scenarios ψvk of the
controlled kernel vk.2.3 To this end, for each control channel ec = (v′,v) ∈ Ec, Ψv also denotes the
finite set of possible token values that can be transferred over the control channel, which is referred
to as channel alphabet. The production rate of an actor v ∈ V in its scenario ψv ∈ Ψv on channel
e = (v,v′) ∈ E is denoted by p(e,ψv). Function p(e,ψv) returns a number n ∈ Z0+ in case e ∈ Ed is a
data channel. Otherwise, i.e., if e ∈ Ec is a control channel, p(e,ψv) returns a non-empty sequence˜︁ψ = ψn,ψ ∈ Ψv′ ,n ∈N of scenarios of its destination kernel v′ ∈Vk. The consumption rate on channel
e′ = (v′′,v) is denoted by c(e′,ψv) and returns a number n ∈ Z0+ in case e′ ∈ Ed and c(e′,ψv) = 1,
in case e′ ∈ Ec. That is, the consumption rate on each control channel equals one. Furthermore, the
consumption rate on all channels (v,vd)∈ Ed is equal in all scenarios of detector ψvd ∈ Ψvd . Production
rates and consumption rates that are changing among scenarios are depicted as parameters on edges,
e.g., a, b, and d in Figure 2.5(a). Their corresponding values for each scenario can be found in
Table 2.1.

While in [19], an execution time distribution with a finite sample space is associated with each actor
v∈V for each of its scenarios ψv ∈Ψv, in the thesis at hand, execution times are assumed to be fixed per
scenario, which are denoted by d(v,ψv). Furthermore, execution times are assumed to be non-negative
integers, i.e., T= Z0+. Execution times are depicted next to actors by either their corresponding value

2.3This definition and the following definitions are adapted to the case of a single detector, which is assumed in the thesis

at hand. For a definition with multiple detectors, the interested reader is referred to [19].
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in all scenarios if applicable (SDF actors δB and δC in Figure 2.5(a)), or by parameters (δA and δdet in
Figure 2.5(a)) in case of varying execution times among scenarios. The corresponding execution times
of the example SADF graph in Figure 2.5(a) can be found in Table 2.1 for each scenario.

In the thesis at hand, the channel state D of an SADF graph G is captured by a tuple (Dd ,Dc). It is
composed of the data channel state Dd(e), assigning a number of tokens to each data channel e ∈ Ed ,
and the control channel state Dc(e), assigning a control token sequence ˜︁ψ ∈ Ψ∗

v′ to each control channel
e = (vd ,v′) ∈ Ec that kernel v′ is connected to as destination actor. The initial channel state is denoted
by D0 = (Dd0 ,Dc0), depicted as bullets on data edges, e.g., on c3 in Figure 2.5(a), or by bullets and
their associated value on control channels, e.g., on channel c5 in Figure 2.5(a). Note that according to
its original definition in [19], in the initial channel state, the number of control tokens on each control
channel ec ∈ Ec is zero. However, in the thesis at hand, this restriction is relaxed, which is in line with
the SADF implementation in [20].

Kernels vk ∈Vk without a control channel (B and C in Figure 2.5(a)), are supposed to represent static
behavior, i.e., SDF behavior. and their number of scenarios equals |Ψvk |= 1. Kernels with a control
channel are referred to as controlled kernels (A in Figure 2.5(a)). Furthermore, while kernel scenarios
are controlled by consuming control tokens values from their control channels, the detector scenarios
ψvd ∈ Ψvd are changed by an associated Markov chain [21] with detector vd . A Markov chain is a
triple (S, ι ,P), with S denoting a finite set of states, ι denoting an initial state with probability 1, and
P denoting an |S|× |S| matrix. Each entry P(S,T ) ∈ [0,1] denotes a transition probability from state
S ∈ S to T ∈ S with ∑T∈SP(S,T ) = 1, for all S ∈ S. The set of states S of its Markov chain, represents
the scenarios Ψvd of detector vd ∈Vd . Hence, the scenarios of detectors are controlled by its Markov
chain states and change with their associated transitions and corresponding transition probabilities. The
Markov chain of detector det in Figure 2.5(a) is depicted in Figure 2.5(b), with states ψdet1, ψdet2, and
ψdet3 and scenario transitions as dashed edges annotated with their associated transition probabilities.
Note that edges representing transitions with zero probability are omitted. The initial state ψdet1 is
indicated by a dashed edge without a source node. An important property of the Markov chain for
the computation of long-run average metrics from the SADF graph, is ergodicity. That is, the Markov
chain has a single strongly connected component of recurrent states and possibly multiple components
of transient states. A recurrent state is a state that is reachable from all other states with probability 1.
Otherwise it is called transient [19].

Similar as in (C)SDF, an SADF actor can fire, when sufficient tokens are available on all its input
channels. However, each actor firing is preceded by a transition phase, in which the actor performs
a scenario transition, based on a consumed control token for controlled kernels vk ∈ Vk when it is

Table 2.1: Scenario parameters of the example SADF graph in Figure 2.5.

Scenario d δdet a b δA

ψdet1 ψA1 3 / / /
ψdet2 ψA2,ψA2,ψA2 1 / / /
ψdet3 ψA1 2 / / /
ψA1 / / 3 3 2
ψA2 / / 1 1 1
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available on its control channel (vd ,vk) ∈ Ec, or based on a Markov chain state transition for detector
vd ∈ Vd . Kernels without a control channel simply remain in their single scenario. The transition
phase can happen earliest when an actor finished its previous firing and additionally for controlled
kernels when a control token is present on its control channel. Note that this explicitly excludes
auto-concurrency for SADF graphs. After the transition phase, each actor v ∈V waits until sufficient
data tokens are available on all edges (v′,v) ∈ Ed that v is connected to as destination actor, i.e., until
Dd(ed)≥ c(ed ,ψv). After sufficient data tokens are available, actor v ∈V can start firing by consuming
c(ed ,ψv) tokens from all channels ed = (v′,v) ∈ Ed and producing p(e′,ψv) tokens on all channels
e′ = (v,v′) ∈ E after d(v,ψv) time units.

Let prod : Ed × ˜︁ψ → N denote a function, that returns the accumulated number of tokens that actor
v ∈V produces on data channel e = (v,v′) ∈ Ed after an execution of a particular sequence ˜︁ψ ∈ Ψ+

v
of its scenarios Ψv, with prod(e, ˜︁ψ) = ∑ψ∈˜︁ψ p(e,ψ). Accordingly, let cons : Ed × ˜︁ψ → N denote
a function, that returns the accumulated number of tokens that actor v′ ∈ V consumes from data
channel e = (v,v′) ∈ Ed after an execution of a particular sequence ˜︁ψ ∈ Ψ

+
v′ of its scenarios Ψv′ , with

cons(e, ˜︁ψ) = ∑ψ∈˜︁ψ c(e,ψ). Function δ : V × ˜︁ψ → Z0+ returns the accumulated execution times of an
actor v ∈V corresponding to an execution of a particular sequence ˜︁ψ ∈ Ψ+

v of its scenarios ψv ∈ Ψv,
with δ (v, ˜︁ψ) = ∑ψ∈˜︁ψ d(v,ψ). Let further subs(v,ψvd ) denote a function, that assigns to each actor
v ∈V a so-called sub-scenario sequence ˜︁ψ = ψn

v of one of its scenarios ψv ∈ Ψv with n ∈ N, for each
scenario ψvd ∈ Ψvd of detector vd , with:

subs(v,ψvd ) :

⎧⎪⎨⎪⎩
ψvd if v = vd ,

ψv if ∄(vd ,v) ∈ Ec,

p((vd ,v),ψvd ) otherwise,

with ∄ denoting non-existence. That is, in case v ∈ V is the detector vd itself, each sub-scenario
sequence of vd for each of its scenarios ψvd ∈ Ψvd is simply the corresponding scenario ψvd itself. In
case v ∈ V is a kernel without a control channel, each of its sub-scenario sequences subs(v,ψvd ) is
simply its single static scenario ψv ∈ Ψv itself. Otherwise v ∈V reflects a controlled kernel, for which
each of its sub-scenario sequences subs(v,ψvd ) reflects the scenario sequence represented by the control
token production rate p((vd ,v),ψvd ) of detector vd ∈Vd in scenario ψvd ∈ Ψvd on its control channel
(vd ,v) ∈ Ec. With this, the repetition vector of an SADF graph G can be conveniently constructed.

In the thesis at hand, a repetition vector γG of an SADF graph G is a function γG : V ×Ψ → N that
assigns for each detector scenario ψvd ∈ Ψvd a number n ∈ N to each actor v ∈ V , such that the
following two balance equations are solved:

∀ψvd ∈ Ψvd ,∀e = (v,v′) ∈ Ed :

γG(v,ψvd ) · prod(e,subs(v,ψvd )) = γG(v′,ψvd ) · cons(e,subs(v′ψvd )),
(3)

∀ψvd ∈ Ψvd ,∀e = (vd ,v′) ∈ Ec :

γG(vd ,ψvd ) · |p(e,ψvd )|= γG(v′,ψvd ).
(4)

Equation (3) states, that the number of produced data tokens on each data channel of G equals the
number of consumed tokens, in each detector scenario. Equation (4) states, that the number of produced
control tokens equals the number of consumed control tokens on each control channel of G in each
individual detector scenario. Equation (4) directly follows from the unit consumption rate of control
channels.



2.1 Dataflow Models of Computation 21

The existence of a repetition vector is a necessary condition for bounded infinite executions and the
absence of deadlocks for an SADF graph G. However, iterations do not necessarily correspond to
single scenarios, but can span over multiple detector executions with corresponding scenario transitions.
To this end, the property of strong consistency was introduced in [19].

Definition 7 (Strong consistency) An SADF graph G is said to be strongly consistent if and only if it

has a repetition vector γG, whose entries for the detector equal one in all of its scenarios ψvd ∈ Ψvd ,

i.e., ∀ψvd ∈ Ψvd : γG(vd ,ψvd ) = 1. The smallest repetition vector γG of a strongly consistent SADF

graph is referred to as the repetition vector of G.

The example SADF graph in Figure 2.5(a) is strongly consistent, and its repetition vector for sce-
narios ψdet1, ψdet2, and ψdet3 returns [1,3,1,1]T , [3,3,1,1]T , and [1,3,1,1]T , respectively, with order
[A,B,C,det]T .

Due to the concept of choice of scenarios, an iteration of an SADF graph G is not as straight forward
to define as for (C)SDF graphs. As a result, an iteration of an SADF graph always corresponds to a
particular scenario ψvd ∈Ψvd of the detector, in the thesis at hand. In all scenarios ψvd ∈Ψvd , each actor
v ∈V fires exactly γG(v,ψvd ) times. For the same reason, only the actor throughput T H(v) is defined
for strongly consistent SADF graphs as an expected long term average rate of firing completions of
v ∈V . By considering all possible scenario transitions and their respective transition probabilities, the
actor throughput T H(v) of a strongly consistent SADF graph G is the maximum achievable rate with
which an actor v ∈V can fire per time unit on average, among all possible execution schedules that
correspond to the transition probabilities of the associated Markov chain and which can be executed
infinitely often with finite buffer sizes of all channels e ∈ E. Note that due to considering the transition
probabilities of the detector Markov chain, the actor throughput does not reflect a worst-case achievable
actor throughput for an associated application with worst-case execution time annotations, as it does
not correspond to the worst-case execution path among all possible scenario transitions, as, e.g., in
[22]. However, it indeed corresponds to a worst-case actor throughput of an application modeled as a
corresponding SDF or CSDF graph, if the Markov chain would consist of a single state, or transitions
would enforce a strictly cyclo-static transition scheme, respectively.

Furthermore, the throughput analysis of SADF graphs additionally relies on so-called strong depen-
dency, which relates to strong connectedness for SDF and CSDF graphs, but across scenario transitions.
For a detailed explanation, the interested reader is referred to [19]. While for SDF and CSDF graphs
the throughput analysis methods implicitly return the throughput of the fastest schedule that is infinitely
often executable with finite buffer sizes in case the graph is not strongly connected, the throughput
analysis methods for SADF graphs require strong dependency. However, some of the analysis ap-
proaches in the thesis at hand rely on modeling only such channels that actually communicate data in
the anticipated system. As a result, feedback channels between processors or devices might not exist in
the analysis models, which would break strong connectedness or strong dependency, respectively. As a
solution, a maximal buffer size with a corresponding value is specified for such channels in SADF
models. Specifying a maximum buffer size of a channel is equally treated by SADF analysis methods
in [20] as modeling a corresponding feedback channel in the model with the respective number of
initial tokens.

The execution of an SADF graph can be captured by a Markov state space, which is, for the sake of
brevity, not explained in the thesis at hand. For a detailed description of the execution state space of
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SADF graphs and the corresponding derivation of analysis methods, the interested reader is referred to
[19] and [23]. Furthermore, in [20], existing analysis techniques categorized into extrema, reachability,
and long-run average metrics are summarized and implemented as a module that extends SDF3 [13].

One of the worst-case metrics of an SADF graph that is important for the approaches in the thesis
at hand, is the maximum inter firing latency (IFL) of an actor v ∈ V . This is the maximum time
between two successive completed firings of an actor v ∈V corresponding to the self-timed schedule
considering all possible execution paths in the Markov state space of SADF graph G. Similarly, the
average inter firing latency IFL(v) denotes the long-run average time between successive firings of an
actor v ∈V , which is reciprocal to its throughput, i.e., IFL(v) = 1

T H(v) .

Another important worst-case metric for the approaches in the thesis at hand, is the maximum response
time of an actor v ∈V , that is the latest time at which an actor v ∈V completes its first firing in the
self-timed schedule considering all possible paths in the Markov state spaces of an SADF graph G.

Finally, modeling and analysis approaches presented in the thesis at hand, rely on the scenario
occurrence probability of actor scenarios in SADF graphs, which was introduced in [G7]. The scenario
occurrence probability π(v,ψv) is a long-run expected occurrence probability for each scenario ψv ∈Ψv

of actor v ∈ V of an SADF graph G, with ∑ψv∈Ψv π(v,ψv) = 1, for all actors v ∈ V . It is calculated
from the equilibrium distribution of the detector Markov chain and the scenario value of the associated
sub-scenario sequence of actor v.

2.2 System Modeling

In the thesis at hand, a basic system-modeling approach has been chosen that is based on the well-
known Y-chart methodology [24], specifying individual models for the application and the architecture.
Both models are then combined by a software to hardware mapping and a scheduling. Many modeling
approaches are utilizing this concept of separation of concerns [25–28] (sometimes also referred to
as orthogonalization of concerns [29]) since it allows the quantification of design choices regarding
software, hardware, mapping, or scheduling. Furthermore, separation of concerns fosters application
model and hardware model reuse.

In the thesis at hand, the application model is represented by dataflow-based MoCs, as presented in
the previous sections. An SDF application model of an example software is shown in Figure 2.6(a).
Actor S1 models a sensor sampling process with a period of 20ms. A self-edge cSE−0 ensures to
eliminate auto-concurrent behavior. Each sample consists of two units of data, e.g., an accelerometer
and gyroscope sample. Actor P1 consumes each token and processes it individually, i.e., consumption
rate of 1 on channel c1. This actor represents a stateless function that can be executed in parallel for
each sample. Finally, actor P2 represents a second function, consuming both processed samples from
P1 together. In order to execute this application, a model of a hardware platform needs to be specified.

Let pre(v) of actor v ∈V of a (C)SDF or SADF graph G denote a predecessor v′ ∈V that is connected
to v via a data channel (v′,v) ∈ Ed with v ̸= v′.
A hardware model H = (P,S,T ) consists of heterogeneous processing elements P, data source elements,
i.e., sensors S, and a set of directed communication channels T ⊆ S×P∪P×P from sensors s ∈ S
and to and between processors p ∈ P. Processors p ∈ P can execute actors that have predecessor
actors. Sensors s ∈ S are representing data sources and thus, execute actors without predecessors.
Hardware communication channels t ∈ T communicate data between sensors s ∈ S and processors
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Figure 2.6: Depiction of the design flow from an application model (a), a hardware model (b)

including mapping (c), and scheduling (d) to an analysis model.

p ∈ P. In the thesis at hand, at most one hardware channel per direction is assumed to connect
two processing elements or sensors, i.e., ∀(p, p′) ∈ S×P∪P×P : |{(p, p′) ∈ T}| ≤ 1. An example
hardware model is shown in Figure 2.6(b), consisting of a sensor SE1, a processing unit PU1, and a
hardware communication channel t0 from SE1 to PU1.

In order to select, which actor is executed on which hardware element, a mapping needs to be specified.
Given a dataflow graph G and a hardware model H, a mapping M = (MV ,ME) consists of an actor
mapping MV : V → S∪P that maps each actor v ∈V of G to a processing element p ∈ P or sensor s ∈ S,
and a channel mapping ME ⊂ Ed ×T that assigns data channels e ∈ Ed of G to hardware channels
t ∈ T of H, such that each channel e ∈ E of G is assigned at most once to one of the hardware channels
t ∈ T of hardware model H, i.e., ∀e ∈ E : |{(e′, t)∈ ME | e′ = e}| ≤ 1. Note that this explicitly excludes
the mapping of control channels of SADF graphs. Furthermore, a mapping is only valid if the pair
of actors connected by an edge (v,v′) ∈ E are either mapped to the same processor or to sensors
and processors which are directly connected by an equally directed hardware channel t ∈ T of H,
i.e., ∀e = (v,v′) ∈ E, ∃(v, p),(v′, p′) ∈ MV : ∃(p, p′) ∈ T ∨ p = p′. Furthermore, the number of actors
mapped to a sensor s∈ S is at most 1, i.e., ∀s∈ S : |{(v,s′)∈MV | s′ = s}| ≤ 1 and no predecessor pre(v)
exists for actors v∈V that are mapped to one of the sensors s∈ S, i.e., ∀(v,s)∈MV : ∄ pre(v). Note that
due to the restriction of a single hardware channel per direction between processing elements or sensors,
channel mapping ME can be implicitly derived from MV and is not further indicated in figures in the
thesis at hand. Note that actor execution times typically depend on the underlying processor hardware.
As a result, actor execution times in the application model are assigned based on a particular mapping.
In Figure 2.6(c), an example mapping M = ({(S1,SE1),(P1,PU1),(P2,PU1)},{(c1, t0),(c2,∅)})



24 2 Fundamentals

between the application graph in Figure 2.6(a) and the hardware model in Figure 2.6(b), is depicted by
red dashed mapping edges.

To finalize the specification of the system, concurrent execution of actors mapped to the same processor
need to be eliminated. This is achieved, by introducing self-edges with unit production and consumption
rates and a single token on them to all actors, in order to avoid auto-concurrency. Secondly, scheduling
edges need to be added in a way, such that all executions of actors mapped to the same processor unit
are executed sequentially. Techniques to derive viable schedules are out of scope in the thesis at hand.
However, several works exist on scheduling SDF, CSDF and dataflow graphs in general [30–33], that
only use elements of the respective MoC. This allows analysis of the resulting model with existing
dataflow-based techniques. The resulting mapped and scheduled model, is referred to as analysis
model. The final analysis model of the mapped and scheduled example application with scheduling
edges in green and self-edges in blue, is depicted in Figure 2.6(d).

Note that although the dataflow graph of the analysis model (see Figure 2.7) implicitly contains
decisions regarding a particular mapping and schedule, the explicit information of the hardware
platform and mapping cannot be discarded, as these and additional annotation of hardware components
allow estimation of further extra-functional properties, which will be subject in Section 3.4 of the
following chapter.
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Figure 2.7: Dataflow graph of the example analysis model.
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3 Energy-Efficient Sensor Networks

The approaches and results described in the following have partially been published previously by the
author in the following publications:

• Towards Energy Efficient Sensor Nodes for Online Activity Recognition [G1]

• Energy Efficient On-Sensor Processing for Online Activity Recognition [G4]

• Model-Based Design of Energy-Efficient Human Activity Recognition Systems with Wearable
Sensors [G2]

• Model-Based Real Time Analysis of Distributed Human Activity Recognition Stages in Wireless
Sensor Networks [G3]

The energy consumption of wireless sensor nodes in human activity and gesture recognition systems
plays a key role in the applicability and usability of the entire system. Lower energy consumption
prolongs the lifetime of batteries or allows to deploy batteries with smaller capacities, which can be
smaller in size and thus more unobtrusive for the user. However, existing optimization techniques
for reduced energy consumption of HAR systems are either application specific or do not allow a
quantitative estimate on the energy consumption saving between possible configurations. Furthermore,
estimating energy consumption at design time is crucial in order to substantiate design decisions early
in the design process. Orthogonal to existing optimization techniques for energy-efficient activity
recognition systems, the thesis at hand focuses on the energy-efficient distribution of recognition
software onto the hardware of the system, i.e., mapping. Different mappings result in differently
utilized processing units and communication channels. Their respective energy consumption is thus
affected and needs to be traded off for optimal energy consumption of devices. In order to compare
different mappings at design time, design and analysis approaches are necessary that capture important
extra-functional properties of the system. These have to provide a sufficient accuracy w.r.t. the final
implementation of the system. As a necessary prerequisite for the aforementioned methodology, this
chapter focuses on the question how human activity recognition systems can be efficiently modeled
at a system-level, that is abstract enough w.r.t. analysis speed, but still allows for accurate enough
estimations of device energy consumption. To this end, presented approaches are evaluated on
state-of-the-art systems and compared to their respective implementations in experiments.

In the thesis at hand, modeling and analysis methods are based on dataflow graphs that capture
important software and hardware aspects. Based on existing analysis techniques, novel methods for
estimating device energy consumption at design time are introduced. As a resulting methodology,
activity recognition software that has been designed and optimized towards recognition accuracy offline
is modeled and analyzed at design time to estimate energy consumption savings between possible
configurations. To this end, the available hardware for the target architecture of the system is modeled,
and software to hardware mappings as well as scheduling is represented in the dataflow graph models.
State-of-the-art methods to analyze extra-functional properties that indicate real-time performance, i.e.,
system throughput, are applied to substantiate design decisions w.r.t. timing behavior. Furthermore,
novel methods are presented and applied that extend existing timing analysis towards extra-functional
properties that are indicators for energy consumption of the wireless sensor devices, i.e., processor
utilization and communication data rates, and finally energy consumption itself.
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In the course of this chapter, the developed techniques are applied and tested on examples which cover
the recognition software up to the feature extraction on the software side (cf. Figure 3.1 on page 30) and
the wireless network of sensor nodes and a data aggregating device, i.e., a smartphone, on the hardware
side. The reduced scope has two reasons: a) the proposed techniques can be shown in an appropriate
level of detail and b) the real-time performance of the wireless sensor network is mainly affected by
processing stages up to the feature extraction, as in most scenarios it is the last processing step that
can be performed on individual sensor signals or signal dimensions. For classification or a possible
dimensionality reduction, feature information from multiple sensors need to be aggregated, potentially
on a device that offers substantial computational resources. Therefore, the latter is excluded from the
scope of this chapter. Nevertheless, possible hardware architectures with sophisticated computational
resources for classification will be covered in Chapter 4 and Chapter 5.

The chapter is structured as follows. In Section 3.1, related work is presented and its relation to the
proposed methods in the thesis at hand is described. Thereafter, a case study will be introduced in Sec-
tion 3.2 on which the proposed methods are explained during the course of this chapter. In Section 3.3,
the modeling approach of human activity and gesture recognition is explained. Corresponding analysis
methods proposed by the thesis at hand are introduced in Section 3.4 together with a discussion of
their limitations. In Section 3.5, experiments and the acquired results are presented, with which the
proposed model-based energy consumption estimation is evaluated. Finally, the experimental results
and conclusions are discussed in Section 3.6.

3.1 Related Work

The proposed methods for system-level design and analysis of energy-efficient wireless sensor nodes
in activity recognition systems are related to existing work from the areas of dataflow graphs and
human activity recognition. Their respective relation to the presented approaches in the thesis at hand
is described in the following.

Dataflow graphs Dataflow graphs are a quasi-standard for the model-based design and analysis of
streaming applications on multi-processor architectures. In particular, SDF Graphs, CSDF graphs,
Finite State Machine (FSM) SADF, and Markov chain SADF graphs play a particular role, due
to their trade-off in expressiveness and analyzability. Many research has been undertaken towards
formal analysis of their timing behavior, e.g., throughput analysis [8, 12, 22, 34, 35], buffer-sizing
[15, 36–38], and latency analysis and optimization [39–44]. However, design-time estimation of
energy consumption from system-level dataflow graph models has not attained much attention yet in
the literature.

Regarding analysis of energy consumption from system-level models based on synchronous dataflow
graphs, the approach in [45] and [46] is related to the methods proposed in the thesis at hand. Das et al.
study energy-aware task-mapping and scheduling optimization techniques for heterogeneous MPSoCs
in [45] and [46]. Although they focus on the joint optimization of throughput, computation energy, and
communication energy for reactive fault tolerance of MPSoCs, their computation and communication
energy estimation approach from SDF graphs is highly related to the methods presented in the thesis
at hand. In [45] and [46], absolute dynamic energy consumption per graph iteration is calculated,
however, neglecting the iteration period in comparisons between configurations, and thus the frequency
which an iteration is executed with, i.e., throughput. Furthermore, overlapping of iteration periods is
not considered as well, which can vary for different mappings and schedules. In contrast, in the thesis
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at hand, an average energy consumption rate is estimated, rather than an absolute energy consumption.
This takes the throughput of the graph into account. Furthermore, energy consumption rate estimates
are decoupled from graph analysis by an intermediate step, calculating the average processor utilization.
Average processor utilization as acquired from the graph representation is defined as the ratio of active
time of the processor core to active time and idle time together (iteration period). As a second step,
the acquired processor utilization is then used to estimate an average energy consumption rate from
a corresponding energy consumption model, that captures the respective relationship. As a result,
technological details about the processor core, e.g., clock-gating or deep sleep modes, are abstracted
into the energy consumption models.

In addition to the technological abstraction, energy consumption models can be acquired by various
approaches, e.g., mathematically, as presented in [45] and [46], by measurements, as carried out in the
thesis at hand, or by other potential modeling approaches [47, 48]. The aforementioned distinction
from methods described in [45] and [46] applies for the energy consumption rate estimation of
communication channels accordingly. Finally, the methods for estimating energy consumption in [45]
and [46] are applied to SDF graphs, while in the thesis at hand, the approach is extended and applied
to the more expressive CSDF and SADF MoCs.

Energy-efficient human gesture and activity recognition The energy-efficient design of gesture
and activity recognition systems is crucial, as energy consumption directly affects battery lifetimes and
therefore, the applicability of wireless sensor-based recognition systems. As a result, energy-efficient
solutions are prominently represented in the state-of-the-art literature and are ongoing research.

A variety of energy-efficient approaches for sensor-based online activity and gesture recognition
systems can be found in the literature. In [49], [50], and [51], sensors are dynamically turned off in
situations for which certain sensor modalities do not contribute to the overall recognition accuracy.
Due to the dynamic deactivation of negligible sensors, a considerable amount of energy can be saved,
prolonging the battery usage times. Saving energy at a conceptual level can be achieved by feature
selection strategies, to only spend computation time and thus, energy on the calculation of features that
contribute to the overall recognition accuracy [52, 53]. Additional to appropriate classifier selection,
Anguita et al. have studied the energy savings from adapted classification algorithms using fixed-point
arithmetic [54].

While the aforementioned approaches focus on different hardware and software aspects that can be
optimized w.r.t. energy consumption, other approaches concentrate on the mapping of software to
the available hardware [55–59]. By performing the feature extraction stage on wireless sensor nodes,
feature values are transmitted to a data aggregating device that performs the final classification or
stored in flash memory for offline evaluation. On the one hand, feature extraction adds computational
load to the processing unit of the sensor node and thus, increases its energy consumption. On the other
hand, the amount of data communicated via wireless transceivers or stored in flash memory is reduced
and thus, decreases their energy consumption. As a result, the total device energy consumption is a
trade-off between processor utilization and data reduction, and can possibly be reduced by on-sensor
feature extraction.

In [60], a classification is introduced that structures different energy efficiency techniques. A compari-
son between possible architectures indicates as well that the mapping of software onto the available
hardware is a crucial aspect, as trade-offs between energy consumption of processing units and
communication channels are a result. However, although aforementioned literature reports possible
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energy savings by particular software to hardware mappings, generalized design decisions cannot be
concluded, due to different energy consumption characteristics of the available hardware components
and the high diversity in software designs for different application scenarios.

In the field of Wireless Sensor Networks (WSN), some studies that are concerned with device energy
consumption are related to the methods in the thesis at hand. In [61] and [62], design space exploration
approaches for energy-efficient task mapping and scheduling for latency-constrained applications,
and latency minimal task mapping and scheduling for energy-constrained applications in WSN are
introduced. Their task-mapping and scheduling is based on directed acyclic graphs, which correspond
to acyclic HSDF graph representations. Their real-time criterion is based on latency. In contrast, in
the thesis at hand, HAR systems are modeled with more expressive dataflow MoCs, i.e., CSDF and
SADF. Furthermore, the models in the thesis at hand have cyclic dependencies, which is crucial for
the presented real-time criterion based on graph throughput. Furthermore, the presented methods to
acquire device energy consumption from dataflow graphs are relying on the throughput and express
energy consumption in terms of a rate. In [61] and [62], throughput is not considered in their approach,
and total energy consumption for a single execution of the models is calculated, without considering
an execution rate. However, in [61] and [62], energy consumption of WSN nodes is mathematically
acquired, similarly as in [45], but by considering static power dissipation as well. As a result, the
approaches described in [61] and [62] and the presented approaches in the thesis at hand, can be
considered as complementary. The energy consumption models presented in the this thesis could
be well substituted by more accurate analytical methods as described in [61] and [62]. In turn, the
dataflow-based modeling and analysis approaches in the thesis at hand could extend the methods from
[61] and [62] by relying on more expressive MoCs and their corresponding analysis approaches that
allow for cyclic dependencies, throughput analysis, and thus energy consumption rate estimations.

In [63] and [64], a design methodology for WSN applications based on Kahn Process Networks (KPN)
is introduced. Kahn process networks are MoCs that can model dynamic behavior and are more
expressive than SDF, CSDF, and SADF [5]. While the authors of [63] and [64] mention, that their
KPN-based approach is deterministic and ensures deadlock freedom, very little information on the
actual analysis is provided. Furthermore, their approach is focused in synthesizing communication
protocols within the WSN, instead of analyzing extra-functional properties at design time. The
modeling and analysis approaches described in the thesis at hands are not generally applicable to WSN
systems, as the latter are usually control-flow-oriented systems, whose structure can change during run
time. Furthermore, sensor sampling is not generally performed at constant rates in WSN and can occur
sporadic. The software of HAR systems is, in contrast, mainly dataflow-oriented with little control
flow, and sensor sampling is typically performed with predefined sampling frequencies.

In order to substantiate design decisions for sensor-based HAR systems early in the design process,
system-level modeling and analysis methods are proposed in the thesis at hand, from which timing
behavior in terms of system throughput and latency as well es energy consumption can be estimated
at design time. The proposed approach is based on well studied models of computation and their
respective timing analysis techniques, which have become a quasi-standard for the design of signal
processing and streaming applications on homogeneous and heterogeneous multi-processor on chip
architectures. Existing timing analysis techniques have been utilized to acquire energy consumption
estimations at design time from model-based representations of the software and hardware at a system
level.
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3.2 Case Study

The presented modeling and analysis approach will be explained alongside a case study. In [65], an
activity recognition and action reconstruction system is designed as an experimental study for the
applicability of computational state space models for inference in realistic state spaces. The system
was designed to infer the sequential states of a meal preparation routine in a kitchen environment
from sensor data. To this end, protagonists were instrumented with wearable IMU sensors. Although
the study in [65] focuses on the classifier part of the system, sensor configurations and feature
extraction setup represents a viable candidate configuration for activity recognition systems that can be
implemented with wireless sensor nodes. Moreover, the chosen study is a representative of today’s
and future recognition systems that involve many different processing stages in order to successfully
infer activities in real life scenarios. However, the focus in [65] does not lie on designing an online
recognition system, but rather on the applicability of a particular classification method.

The modeling and analysis approach presented in this chapter is applied to such recognition systems,
which have yet been evaluated functionally, i.e., sensor modalities, sampling frequencies, segmentation
methods, features, dimensionality reduction techniques, and others, that offer best performance in terms
of recognition accuracy. These systems are possibly implemented in application-specific programming
languages as offline systems, in order to optimize them for recognition accuracy. In order to develop
an applicable online system, a target hardware has to be chosen, the recognition algorithms have to be
mapped to the hardware and finally implemented on it. However, implementing different mappings for
comparisons regarding extra-functional properties is time consuming and possibly has to be performed
in multiple iterations until requirements are met, if at all.

A model-based design approach for software, hardware, corresponding possible mappings, and
scheduling representations enables formal analysis of extra-functional properties from these models to
substantiate decisions early in the design process. As this chapter focuses on real-time performance and
energy consumption in sensor networks as an essential part of online activity and gesture recognition
systems, the part of the recognition software from [65] that can potentially be executed within the
wireless sensor network, is modeled and analyzed with the presented methods as a case study.

Target software The functional parameters of the recognition system under design are depicted in
Figure 3.1 in form of an ARC. The first ARC stage represents the sensor data acquisition process, in
which 3D sensor data is sampled from each an accelerometer and a gyroscope at 100Hz of in total
5 sensor devices attached to the body of a human protagonist. Note that in [65] the sensor data is
actually sampled at 120Hz. However, the available sensor hardware that has been chosen to evaluate
the presented approaches in experiments only offers sampling frequencies that are power of two
multiples of 12.5Hz. Therefore, the nearest sampling frequency of 100Hz has been chosen. For the
pre-processing stage of the sensor data, no specific techniques have been reported in [65]. Here, the
proprietary correction algorithms, which are already implemented in the target hardware sensors, are
used. In the segmentation stage, a sliding window with a size of 128 samples and an overlap of 75%
is used to segment the continuous stream of sensor data into windows, with a resulting window rate
of 3.125Hz. In the feature extraction stage, for each window (on all 6 dimensions separately), the
mean, variance, skewness, and kurtosis, as well as its dominant frequency (referred to as peak in
[65]) and corresponding magnitude (referred to as energy in [65]) are calculated as features for each
sensor device. The result of each window is thus a 36-dimensional feature vector per sensor device,
which in total results in a stream of 180-dimensional feature vectors at 3.125Hz which are subject
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Figure 3.1: Example activity recognition chain based on [65].

to a dimensionality reduction in form of a principal component analysis. In [65] different number of
principal components are used in the experimental part. However, since the principal components
calculation is performed on entire 180-dimensional feature vectors, the feature extraction stage is the
last stage in the ARC that can possibly be executed on the hardware of the sensor devices within the
sensor network, as until there, every signal dimension can be processed individually. The computation
of the principal components has to be performed on a device that has access to the feature vectors of
all 5 sensor devices together for its computation. Therefore, it is considered to be performed on a data
aggregating device in the study at hand. The dimensionality reduction as well as following ARC stages,
which are concerned with the actual classification task do therefore not affect the sensor network and
are thus excluded from the modeling and analysis part in this chapter. For sake of completeness, these
stages are depicted in Figure 3.1 in gray.

Target hardware As a target hardware, an on-body network of wireless sensor nodes from Bosch
Sensortec GmbH has been set up. Each sensor node, referred to as DIANA board is equipped with a
BHI160 ultra low power sensor-hub [2] housing a BMI160 Inertial Measurement Unit (IMU) with
a triaxial accelerometer and gyroscope as well as support for external sensors that can be connected
via an external sensor Inter-Integrated Circuit (I2C) interface. Additionally, the BHI160 integrates a
32-bit floating-point domain-specific microcontroller, referred to as Fuser Core. This is used to offer
additional sensor correction and fusion support, i.e., the computation of orientation quaternions or
step detection algorithms. Sensor fusion on the Fuser Core also integrates sensors connected via the
external sensor interface. A triaxial magnetometer BMM150 and an environmental sensor BME280
sensing relative humidity, barometric pressure, and ambient temperature, are connected via the external
sensor interface but are not considered to be used in the system under design. The BHI160 is connected
via I2C to a DIALOG DA14583 microcontroller with an integrated BLE stack and radio for data
transmission. The DIALOG controller is used to send sensor sample packets received from the BHI160
to a data aggregating device. A Samsung Galaxy S5 smartphone has been chosen, which collects data
from all 5 wireless sensors and either pre-processes it on board or sends it to a possibly computationally
more powerful computing architecture. An overview of the main components of the wireless sensor
nodes is given in Figure 3.2.

In the study at hand, only the BMI160 is considered as data acquisition device to sample accelerometer
and gyroscope data, and the Fuser Core for early sensor signal processing. The DA14583 BLE
controller is entirely reserved for establishing the BLE connection and transmission of sensor samples
to the smartphone.
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Figure 3.2: Wireless sensor node DIANA board.

3.3 Modeling

In this section, it will be shown how online activity recognition systems can be modeled with (C)SDF
semantics at different levels of abstraction. For the sake of comprehensibility, a simple example ARC
setup is modeled with SDF graphs first. The final model for the selected case study will then be
presented at the end of this section.

Due to its dataflow-oriented individual stages, the ARC can be directly represented as an SDF graph.
In Figure 3.3, an example SDF graph is shown, that represents a simple ARC setup, that is explained in
the following. In the graph, each token represents a 3D floating-point sample (either raw, pre-processed,
or as feature vector entry). To this end, the data acquisition stage (actor DA) produces two tokens in
each firing, representing a 3D accelerometer and a 3D gyroscope sample. The execution time of DA is
5,000 µs, corresponding to a 200Hz sampling frequency. A self-edge c0 with a single initial token
restricts auto-concurrency of DA, i.e., DA can only fire again as soon as its previous firing is finished.
The pre-processing stage, calculating the 3D sensor orientation from the accelerometer and gyroscope
sample, is modeled by actor PP, consuming the two sensor sample tokens from c1 and producing a
single token on c2, representing the 3D orientation sensor sample. In the segmentation stage, a sliding
window of length 4 without window overlap is implemented, represented by actor SW. As soon as
four samples have been aggregated on c2, actor SW can fire, producing four tokens at once onto c3 for
the feature extraction. The feature extraction stage calculates the mean, variance, and the dominant
frequency based on an FFT for each sensor axis, producing in total three 3D floating-point features per
window. Actor FE represents the feature extraction, consuming four tokens from c3, performing the
calculations, and producing the three tokens onto channel c4.

DA PP SW FE CL

δ = 5,000µs

2
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2 1 4
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4 3
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Figure 3.3: SDF graph of an example ARC.
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Finally, for each produced feature vector, i.e., three tokens, actor CL consumes all of them and performs
the classification routine, e.g., a k-NN algorithm. The output of CL is not explicitly modeled. The
repetition vector of the SDF graph shown in Figure 3.3 is γ = [4,4,1,1,1]T .

Although the example ARC translates intuitively into SDF semantics, in few systems, the segmentation
stage will actually be implemented explicitly, but rather in combination with the feature extraction
stage as a function combining both stages by filling a buffer for the sliding window and a counter.
Whenever the counter indicates a complete sliding window, the feature extraction can be directly
performed on the buffer. Furthermore, not all features need the entire data of a sliding window, but
can rather be updated incrementally with each new sensor sample in the buffer. Lastly, a window
overlap is often desired when deploying a sliding window segmentation in activity recognition systems,
in order to capture important gesture or activity transitions, start, or end points. In order to model
the aforementioned concepts in a level of abstraction that accounts for the desired system behavior,
represents exact data communication, and avoids explicitly modeling implied schedules in order to
reduce model complexity, a model refinement is shown in the following section.

3.3.1 Model Refinement

Combined segmentation and feature extraction In order to combine the sliding window segmen-
tation and feature extraction, actor SW can simply be removed from the model in Figure 3.3. The
snippet of the resulting model from the pre-processing stage PP to the classification stage CL is shown
in Figure 3.4(a). The actor FE is fired every four samples (after a new window is filled) and extracts
three features that are produced on its outgoing edge. Hence, the buffering of samples within a sliding
window takes place on the edge between PP and FE implicitly. However, this step does not allow
modeling the buffering of each new sample with its execution time, which will be addressed at the end
of this section.

To this end, the following example execution times are assumed. The execution time of the feature
extraction from a single window is assumed to be in total 108 µs. This represents the accumulated ex-
ample execution times of an FFT of 100 µs, and the calculation of mean and variance with incremental
steps of together 1 µs per sample and a final calculation of 4 µs for mean and variance together. The
reasoning behind this apportionment will get obvious during the refinement steps in the following.

Sliding window overlap If a sliding window with an overlap is desired, there are actually multiple
sliding windows in parallel with a relative displacement defined by the overlap OSW ∈ [0,1). Note that
the overlap is defined as a ratio w.r.t. the window length. To model overlapping sliding windows, as
many actors as parallel processed windows (⌈ 1

1−OSW
⌉) are included, with additional initial tokens to

interleave the sliding windows with a displacement of sizeSW ·OSW samples. See Figure 3.4(b) for an
example of the sliding window with sizeSW = 4 and OSW = 0.5. However, modeling the overlapping
sliding windows in SDF semantics requires initial tokens on the output edges and production rates
of the FE actors twice as high, in order to synchronize the firing of actor CL. This results in a token
production of the actors FE and a token consumption of actor CL that is actually higher than it would
be implemented in the final system. To overcome this, CSDF semantics can be used to cycle the input
rates of CL, matching the actual token consumption rate and reducing the token production rate of the
actors FE to its actual amount of calculated features. The principle is shown in Figure 3.4(c).
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Figure 3.4: Modeling of the sliding window-based feature extraction at different levels of abstraction.

Fine grained feature calculation Up to now, the calculation of three features of a whole, completely
filled window has been modeled. In the example, the feature extraction is composed of a mean
value of all samples in the window, its variance, and the most dominant signal frequency calculated
by an FFT. All three features are calculated whenever four samples have been gathered into a new
window. However, in order to reduce the computation delay after the fourth gathered sample, some
features can be calculated on partial windows, i.e., incrementally updated with each new sample in
the window. Examples are one-pass computations of statistical moments of arbitrary order [66, 67]
such as mean, variance, skewness, and kurtosis, which are often-used features in activity recognition
systems [65, 68, 69]. As an example, for computing the variance, a mean and a mean of squares is
updated with each new sample. After updating with the last sample of the window, the actual variance
is calculated from the squared mean and the mean of squares in an O(1) step. In such sample-based
calculation, the feature extraction is calculating the fraction of an entire window corresponding to each
new sensor sample but only produces an output with the last sample filling the window. However, this
principle cannot be applied to the FFT calculation, which is performed on the whole window after it is
filled. This behavior can also be captured with CSDF actors as shown in Figure 3.4(d). If the updating
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of mean and mean of squares takes 1 µs for each new sample, and the finalizing, after updating with
the last sample, takes 4 µs, the delay function of such an actor would be [1 µs,1 µs,1 µs,5 µs] and
the corresponding production rate is [0,0,0,2] for a sliding window of sizeSW = 4. Calculating two
windows in parallel because of a window overlap of 50%, the actual delays and production sequences
are superpositioned with a displacement of two samples, resulting in a periodical firing of two cycles
with a delay of [2 µs,6 µs] and a production rate of [0,2]. This sample-based feature calculation of mean
and variance is included in Figure 3.4(d) in actor SB together with the window-based FFT calculation
WB (previously FE) producing a single token. Note again, execution times of the aforementioned
explanations are examples, annotated for the sake of comprehensibility.

To analyze real-time performance of processing units and communication channels, as well as estimat-
ing energy consumption from the CSDF models, it is necessary that the actual processing times of
actors and the correct token consumption rates match the implementation in order to extract the proces-
sor load and the transmission overhead on hardware communication channels, which will be addressed
in Section 3.4. Although refinement of developed analysis methods is possible by considering token
sizes specified in the model, which is a feature in the SDF3 tools [13], tokens should represent unified
data sizes in the model, e.g., a 3D single-precision floating-point vector, in order to apply analysis
methods as presented in Section 3.4.

Reduction of model complexity On wireless sensor nodes with integrated microcontrollers, feature
extraction functions can be implemented in a sample-based fashion. These perform both the update of
the sample-based feature calculations with each new sample, and the buffering of samples for the last
invocation for window-based calculations, e.g., an FFT. These functions are invoked with each new
sample and imply a static order schedule of the different feature calculations. Such implementation
can be represented by a single CSDF actor, summarizing the feature extraction calculations in its
cycling invocations, which is shown in Figure 3.4(e). Note that a fixed sized segmentation is assumed,
to actually result in a cyclo-static behavior in the long run of the system. The delay of actor FE
summarizes the added processing times of all firing actors in each cycle, and their token production rate
as well. This, on the one hand, simplifies the CSDF graph, but prevents the mapping of different feature
calculations to different processing units and implies a certain schedule of actor firings. However,
this level of abstraction is continued in the following sections, as it matches with the implementation
scheme of the firmware development kit of the target architecture, i.e., the BHI160 sensor sub-system.

The full CSDF application model of the aforementioned example feature extraction, together with
example delays for actor PP and actor CL, is shown in Figure 3.5. Note that execution times in
Figure 3.5 are examples, annotated for the sake of comprehensibility. In the design flow, execution
times will be actually annotated to the analysis model, i.e., after mapping the application to the
particular hardware model, which will be described in Section 3.3.3.
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Figure 3.5: Example CSDF application graph.
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Figure 3.6: Application model of the case study activity recognition chain.

3.3.2 Application Model

Based on the modeling approach in the previous section, the CSDF model of the case study is
introduced in the following. Although the system under design is constructed for five sensor nodes, the
corresponding models in this chapter will only include three out of these five sensors for the sake of
readability. The extension towards five sensors is straightforward. The analyzed model of the on-body
sensor network of the experiments as well as the experimental implementation does indeed include all
five sensors.

The application model of the case study is shown in Figure 3.6. For the sake of readability, production
and consumption rates are captured in parameters, which can be found in Table 3.1. In Table 3.1, the
dimensionalities of parameters correspond to the number of phases of CSDF actors. The dimensionality
is shown next to the parameter name, with Zn

0+ denoting an n-dimensional non-negative integer
parameter vector. Without a dimensionality indication, the number of phases is one, i.e., SDF behavior.
Furthermore, if only a single parameter value is shown on the right hand side of Table 3.1, although
the parameter’s dimensionality is greater than one, the parameter is considered to be equal across all
the phases of the particular actor. Finally, a repetition of a parameter value x for subsequent phases
is indicated by {x}×n, with n denoting the number of repetitions of x, e.g., [{0}×3,1] is a shorthand
notation for [0,0,0,1].

Table 3.1: Application model graph parameters in all configurations of the case study.

Graph Parameters Parameter Values

δDAx 9900 µs

ODAx 2
IPPx 2
OPPx 2
IFEx ∈ Z32

0+ 2
OFEx ∈ Z32

0+ [{0}×31,12]
IxCL 12
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Corresponding to the ARC of the case study in Figure 3.1, the sensor sampling actors DA1-DA3
have a self-edge with one initial token to avoid auto-concurrency. Although the target sampling
frequency is 100Hz, the sampling frequency can deviate by ±1% according to the specification, which
has to be considered for the input triggered system when worst-case performance is analyzed w.r.t.
real-time requirements. As a result, the maximum sensor sampling frequency of 101Hz is chosen in
order to evaluate worst-case behavior. This corresponds to a sampling period of 9,900 µs, which is
annotated as execution time δDAx. The production rate of actors DAx on c11 − c13 is two, representing
a 3D accelerometer and a 3D gyroscope sample. The pre-processing is captured by actors PP1-PP3,
consuming each two tokens and producing two tokens on edges c21 − c23. The feature extraction is
captured in CSDF actors FE1-FE3, each firing in a cycle of 32 phases (75% of the sliding window size
of 128 samples), consuming two pre-processed tokens from c21−c23 in each invocation, but producing
12 tokens (six 3D features of the accelerometer signal and six 3D features of the gyroscope signal)
every 32 firings. Finally, the 12 features of each sensor are consumed by actor CL, abstracting the last
ARC stages of the case study into placeholder actor CL for classification.

Note that execution times are abstracted into parameters as well, as these depend on the particular
hardware they are executed on. However, the execution time annotation of sensor sampling processes
DA1-DA3 is already given in Table 3.1, as it does not represent a software execution, and does not
change for different mappings, unless the system specification is changed to other sampling rates. The
execution time parameters of software actors are assigned according to a particular mapping, which
will be addressed in the following section.

3.3.3 Analysis Model

In this section, the application model of the case study will be transformed into analysis models, which
represent different mapping configurations. As a first step, an abstract model of the target hardware is
constructed. This consists of sensors, communication channels, and processor units, that are allocated
for executing functions of the recognition software. For the presented target hardware in Section 3.2,
the Fuser Core of each sensor node, as well as the smartphone processor are selected as possible
candidate processing units for feature extraction. Additionally, the BMI160 sensors are modeled in
order to map the sensor sampling actors accordingly. The hardware model of the target architecture is
shown in Figure 3.7. The BMI160 sensors are represented by hardware units SE1-SE3, the Fuser Core
of each sensor sub-system is represented by units FU1-FU3, and the smartphone Application Processor
(AP) is represented by unit AP. Hardware channels t01 − t03 represent the I2C channel between the

SE1 FU1

SE2 FU2 AP

SE3 FU3

t01

t11

t02 t12

t03

t13

Figure 3.7: Hardware model of the selected case study with three out of five wireless sensor nodes.
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Figure 3.8: CSDF graph in mapping A, where the feature extraction is computed on the Fuser Core.

BMI160 and the Fuser Core, and hardware channels t11 − t13 represent the BLE connection between
BHI160 and Smartphone AP. The BLE controllers are abstracted to communication channels, as
their sample-based processing into BLE packets and transmission can be considered constant per
communicated sample and scale with the throughput.

In order to avoid multiple instances of a single actor to be executed concurrently on a processor unit
(auto-concurrency), to each software actor, a self-edge with a single initial token is attached, before
mapping. In the study at hand, two possible mappings are evaluated to asses the affect of on-sensor
vs. off-sensor feature extraction w.r.t. real-time performance of the on-body sensor network and the
energy consumption of the sensor nodes. The two mappings A and B, representing on-sensor feature
extraction and off-sensor feature extraction, are depicted in Figure 3.8 and Figure 3.9, respectively.
The corresponding production rates, consumption rates, and initial tokens are listed in Table 3.2.

In mapping A, feature extraction actors FE1-FE3 together with the pre-processing actors PP1-PP3
are mapped to the Fuser Core of each sensor node FU1-FU3. Sensor sampling actors DA1-DA3 are
mapped to sensors SE1-SE3. Mappings are indicated by red dashed edges in Figure 3.8. In order
to sequence the executions of actors that are mapped to the same processor unit, scheduling edges
are added in a way, such that none of these actors can fire concurrently. Initial tokens have to be
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Figure 3.9: CSDF graph in mapping B, where the feature extraction is computed on the smartphone

application processor.

Table 3.2: Graph parameters of the analysis models in all configurations of the case study.

Graph Parameters Parameter Values

ODAx, IPPx,OPPx, IFEx 2
OFEx ∈ N32 [{0}×31,12]
IxCL ∈ N32 [{0}×31,12]
OCL ∈ N32 [{0}×31,32]
D(cFB−CL) 32
δDAx 9900 µs

δPPx 1250 µs

δFEx ∈ N32 [407 µs,{275 µs}×30,23500 µs]

δCL ∈ N32 [{0 µs}×31,1000 µs]
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annotated in order to provide the correct start condition. The schedule of mapping A was modeled,
such that actors PP1-PP3 execute first on each sensor, before feature extraction (FE1-FE3) takes place.
Scheduling edges are shown in green in Figure 3.8.

Methods to model different scheduling schemes is out of scope for the thesis at hand. However, for the
sake of completeness, the interested reader is referred to [30–33, 70, 71] for relevant literature on the
scheduling of SDF, CSDF, and dataflow graphs in general.

In mapping B, the feature extraction actors FE1-FE3 together with the classification placeholder CL
are mapped to AP, representing the smartphone application processor. Pre-processing actors PP1-PP3
are mapped to the Fuser Core of each sensor node, as they are part of the Fuser Core firmware. In
order to sequence the executions of FE1-FE3 and CL on the smartphone processor AP, scheduling
edges have been added with corresponding initial tokens, depicted in green in Figure 3.9.

For each mapping option, execution times of software actors have been annotated with their Worst-
Case Execution Times (WCETs) on the corresponding processing unit. Note that in general WCETs
are acquired by analysis, e.g., on assembler code, and represent a guaranteed worst-case bound on
a specific hardware. However, in the study at hand, WCETs of actors have been measured on the
Fuser Core, which merely results in an observed WCET, and not necessarily represents a guaranteed
worst-case bound. However, these observed WCETs have been annotated to the model and will
be referred to as WCETs in the following. Furthermore, the performance of the wireless on-body
network has only been analyzed w.r.t. the wireless sensor nodes. The different mappings represent
the difference of BLE transmission throughput and processor utilization of the sensor nodes between
on-sensor and off-sensor computation of the feature extraction stage. In the latter case, the features are
neither calculated on the Fuser Core nor on the smartphone, as the smartphone AP computations does
not influence the sensor nodes. For the sake of simplicity, the same execution times on the Fuser Core
have been annotated to the actors mapped to the smartphone.

In terms of real-time performance of the sensor network, both mappings represent different throughputs
on the BLE transceivers of the sensor nodes, as well as the processor utilization of the Fuser Core,
which are both constrained. Furthermore, both mappings represent a trade-off between processor
utilization of the Fuser Core and BLE transmission throughput, which both affect the total energy
consumption of the sensor nodes. Based on the two mappings, corresponding analysis methods will be
introduced in the following section, which will also be evaluated in experimental studies.

In general, the deployed model is rather complex w.r.t. the number of mapping choices that are
evaluated, which might raise the question of its applicability, especially given that actor WCETs have
to be analyzed for each hardware unit individually. By having N actors and M different hardware units,
in total N ·M measurements or WCET analyses, respectively, have to be performed and annotated.
However, with these annotations, MN different mapping options can be analyzed formally. As a result,
the number of WCET analyses increases linearly with the number of actors or additional hardware
units, while the number of possible mappings that can be analyzed with it increases exponentially with
the number of actors N and polynomial with the number of processing units M. Given the increasing
complexity of software and hardware of today’s and future activity recognition systems, and the
increased number of possible mappings that can be analyzed at design time, the number of WCET
analyses to be performed is worth the comparably low effort. Note that the additional number of
possible configurations that can be analyzed, based on graph parameter changes, e.g., sensor sampling
rates, window overlaps, or schedules, are not contained in the aforementioned approximation yet.



40 3 Energy-Efficient Sensor Networks

In the course of this chapter, a particular mapping and scheduling of an application model to the target
hardware will be referred to as system configuration. In contrast, a particular set of ARC parameters
(e.g., sliding window size, overlap, or number and type of extracted features) will be referred to
as application configuration. Both system configuration and application configuration are together
referred to as configuration during the course of this chapter. Each configuration affects the utilization
of processor units as well as the communication data rates on hardware communication channels. This
further influences the energy consumption of single components or a group of components together,
e.g., all hardware units that belong to the wireless sensor nodes. However, a configuration can be
fully captured in the presented analysis models. It can then be analyzed and compared to different
configurations, according to whether a change in system configuration, application configuration or
both is desirable. The developed analysis methods that can be applied to the presented analysis models
will be introduced in the following section.

3.4 Analysis

The analysis methods presented in the thesis at hand are capable of estimating worst-case properties,
i.e., processor utilization, communication throughput, and finally energy consumption. However, the
presented methods only produce meaningful worst-case estimates for configurations that meet a certain
real-time constraint, i.e., system throughput, which will be explained in the following section.

In the design of activity recognition systems, other extra-functional properties such as latency, can
be considered as real-time indicators as well. Although analysis methods for latency in synchronous
dataflow graphs exist [39], it is not considered as a real-time requirement in this chapter, but will be
subject in Chapter 4 and Chapter 5. The following section describes necessary real-time analysis
methods, before energy consumption indicators are explained in Section 3.4.2.

3.4.1 Real-Time Behavior

In order to guarantee real-time performance of gesture and activity recognition systems, the system
throughput is of major concern. In the thesis at hand, system throughput refers to the amount of data
that the system can process per time unit. Thus, the throughput states the data rate limit, which the
system can process without causing data congestion or loosing data from the sensors at the inputs.

In terms of dataflow semantics, the throughput is defined as an event rate, that corresponds to the
average number of graph iterations per time duration in the steady state of the graph execution [8].
However, both definitions correspond to each other, as in (C)SDF graphs, the number of tokens
produced by the sensors (actors DAx in Figure 3.8 and Figure 3.9) within each graph iteration is
constant. Therefore, graph throughput can be considered as a measure of system throughput.

In the thesis at hand, the sensor data input and its data throughput is explicitly modeled into the
application and analysis models. The real-time behavior of the system is thus verified, if the processing
of data is not slower than the input data process. In terms of dataflow semantics, the throughput
of the input data process T H(DA), which has a constant behavior, is exactly the reciprocal of its
annotated execution time (sampling period). In case the processing of data performs at a smaller
throughput than necessary, i.e., the analysis model is not self-timed bounded [10], a corresponding
decreased throughput of the input data process T H(DA) indicates that the analysis model represents a
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configuration that is not performing in real time. In other words, the corresponding model cannot be
implemented with a self-timed schedule, without the congestion of data at the input.

Note that throughput constraints of communication channels can limit the system throughput in a
likewise manner. However, this presumes, that throughput constraints are implicitly modeled into the
communication channels of the analysis models. This however, has not been intended in the current
chapter, in favor of an explicit analysis. The latter allows to infer energy consumption indicators, which
will be explained with the introduction of communication data rate on page 42. However, the implicit
modeling of constrained communication throughput will be subject in Chapter 4 and Chapter 5.1.

Processor performance Due to the mapping and scheduling, the processor core performance is
implicitly modeled into the analysis models. By checking the actor throughput of the input data process
against its execution time annotation, the real-time performance of the processor cores can be verified.

In addition to implicit processor performance, the utilization of each processor core can be analyzed
explicitly, with certain restrictions. In the thesis at hand, the processor utilization is defined as the
fraction of active time of a processor within a given period, i.e., software is actively executed, within
an observation period, divided by that period. In terms of CSDF semantics, an intuitive observation
period is the average iteration period. As a result, the processor utilization ˆ︁U(p) is an accumulation of
all execution times of mapped actors v ∈V ′ w.r.t. each executed phase multiplied by their repetition
vector entries and the graph throughput T H(G). The set of actors that are mapped to the processor
under analysis p ∈ P, is denoted by V ′, i.e., V ′ = {v ∈V | ∃(v, p) ∈ MV}. In the scope of the analyses,
processor utilization denotes the average processor utilization across an average iteration period, which
equals its long-run average processor utilization for SDF and CSDF graphs. Formally, the processor
utilization can be calculated by:

ˆ︁U(p) = T H(G) · ∑
v∈V ′

γG(v)
φ(v)

φ(v)

∑
i=1

δ (v, i), (5)

with T H(G) being the graph throughput, V ′ the set of mapped actors to processor core p ∈ P, φ(v) the
number of CSDF phases of each actor v ∈V ′, γG(v) its repetition vector entry, and δ (v, i) the execution
time of its i-th phase. The notation ˆ︁U indicates a model-based estimate.

Let mP(v, p) indicate if an actor v ∈V is mapped to a particular processor p ∈ P, with:

mP(v, p) =

{︄
1 if (v, p) ∈ MV ,

0 otherwise.

Due to consistency, and the relationship between graph throughput T H(G), actor throughput T H(v),
and repetition vector γG(v), (cf. Equation (1)), the average processor utilization ˆ︁U(v, p) induced by a
particular actor v ∈ V on processor p ∈ P, can be calculated by:

ˆ︁U(v, p) = mP(v, p) · T H(v)
φ(v)

φ(v)

∑
i=1

δ (v, i). (6)

Note that processor utilization calculated by Equation (5) and (6) only represents a useful estimate,
when none of the actors representing software executions lie on the critical path regarding graph
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throughput. In other words, the critical path regarding throughput must lie on the actor or actors
representing a constant input data rate, which thus has to be modeled as well. Otherwise, the iteration
period of the graph does only represent the worst case and can be shorter in a real application. This
leads to a variability depending on execution times within the nominator as well as the denominator of
the calculated processor utilization, which cannot be interpreted in a meaningful way. Therefore, the
aforementioned real-time analysis w.r.t. the actor throughput T H(DA) is a prerequisite for estimating
the processor utilization. Furthermore, in order to receive worst-case estimates regarding processor
utilization and its induced energy consumption, the modeled input data process has to be annotated
with execution times, corresponding to the highest input data throughput that can be possibly expected
in the final application. In turn, the software actors have to be annotated with their WCET, in order to
get worst-case estimates on the processor utilization.

As Equation (5) iterates over all phases of all mapped actors, its computation time scales in the worst
case with the accumulative number of phases φ(v) of all actors v ∈ V , as possibly all actors can be
mapped to a processor core p. Its computational complexity is thus O(|V | ∗φ), with φ , denoting the
average number of phases of all actors v ∈V .

Note that the computational complexity applies to the calculation of processor utilization of a single
processor p, but also for the calculation of all processor core utilizations in the system, as each actor
can only be mapped once.

Communication data rate In order to analyze the data rate on communication channels, an explicit
analysis method is presented, as it forms the basis for analyzing energy consumption indicators as
introduced by the thesis at hand. However, implicit modeling and analysis is possible as well, which
will be applied in Chapter 4.

In the thesis at hand, data rate ˆ︁r(t) on a hardware communication channel t ∈ T is defined as the
amount of data that is communicated per time unit. In terms of dataflow semantics, this corresponds to
the total number of tokens that is consumed on all edges e ∈ E ′ per iteration. Here, E ′ denotes the set
of edges that are mapped to the hardware channel t ∈ T , that is, E ′ = {e ∈ E | ∃(e, t) ∈ ME}.

Formally, the average data rate ˆ︁r(t) on hardware channel t is calculated for mapped and scheduled
CSDF graphs by:

ˆ︁r(t) = T H(G) ∑
(v,v′)∈E ′

γG(v′)
φ(v′)

φ(v′)

∑
i=1

cons(e, i). (7)

Let mT (e, t) indicate if a channel e ∈ E is mapped to a particular hardware channel t ∈ T , with:

mT (e, t) =

{︄
1 if (e, t) ∈ ME ,

0 otherwise.

Similar to processor utilization, the average data rate ˆ︁r(e, t) induced by a particular edge e = (v,v′)∈ E
on a hardware communication channel t ∈ T can be calculated from the destination actor v, by:

ˆ︁r(e, t) = mT (e, t) ·
T H(v′)
φ(v′)

φ(v′)

∑
i=1

cons(e, i),e = (v,v′). (8)
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Similar to processor utilization, the data rate is calculated over an average iteration period, which
represents the long-run expectation for SDF and CSDF graphs. Furthermore, similar to worst-case
average processor utilization, the average data rate calculated by Equation (7) and (8) only represents
the worst case, when none of the actors representing software executions lie on the critical path
regarding graph throughput. Therefore, it is only meaningful, when the real-time criterion w.r.t. actor
throughput of the input data process is met.

The computation of Equation (7) scales in the worst case with the number of edges |E| and with
the total number of phases φ(v) of all actors v ∈V . Its computational complexity is thus O(|E| ∗φ),
with φ , denoting the average number of phases of all actors v ∈V . However, there are optimization
possibilities, as the iteration over the phases of actors that are destinations of multiple relevant edges,
only has to be done once per actor and intermediate results can be reused. Therefore, Equation (7) can
be calculated in O(|E|+ |V | ∗φ) time, which can be faster, as the number of edges |E| may potentially
be higher than the number of actors |V |. However, this comes at the price of a space complexity
of O(|V |), as for each actor the intermediate result needs to be stored. Note that the computational
complexity is not affected by scheduling edges, as these are only added between actors mapped to the
same processor core. Further note that the aforementioned computational complexity applies to the
calculation of the data rate of a single hardware channel t, to which potentially all edges e ∈ E are
mapped, but it also applies to the computation of data rate of all hardware channels together, as edges
can only be mapped once. The calculated data rate ˆ︁r(t) can then be checked with the maximum data
rate of the communication channel of the target architecture, in order to explicitly asses if real-time
performance of the configuration under test is possible.

In on-body sensor networks, wireless low energy standards, e.g., BLE, are often used to communicate
data. For shared communication mediums, generally message scheduling has to be considered
which can affect timing behavior like throughput and latency. However, for wireless communication
mediums, which are additionally prone to collision and data loss, scheduling can be difficult to pre-
determine. Additionally, the clocks of wireless sensors can drift and, without additional synchronization
mechanisms, clocks can vary among wireless sensors within the same network. This poses additional
non-determinism for an exact construction of a schedule. Worst-case approximations instead of explicit
schedules are a possible solution, e.g., in form of upper and lower bound service curves as deployed by
real-time calculus [72], which has been shown for the performance analysis of marked graphs in [73]
and more recently been applied to model and analyze worst-case latency bounds on shared resources
for systems modeled with FSM-SADF graphs [41].

3.4.2 Energy Trade-Off

Across different configurations, the major characteristics that influence total energy consumption
of the wireless sensors are sampling frequency, processor utilization, and data rate on the wireless
communication channels. Furthermore, the total device energy consumption is often a trade-off
between increased processor utilization and reduced wireless transmissions, or vice versa. In any case,
the energy consumption needs to be evaluated per configuration, which is possible if, for each individual
hardware component the relationship between said characteristics and its energy consumption is known.

Energy consumption rate of the aforementioned components can be either acquired from technical
specifications, calculated formally [45, 46] (given that necessary properties of the hardware are known)
or fitted in small experiments. By analysis of processor utilization and data rate on communication
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Figure 3.10: BMI160 energy consumption rate in relation to the sensor modality and the sampling

frequency. Based on [74].

channels, differences in total device energy consumption rate can be assessed between individual
configurations. Since energy consumption is the power consumption integrated over a time interval,
analyses based on graph iterations naturally describe time intervals in which changes in power
consumption repeat periodically. Thus, energy consumption or its differences between configurations
can be calculated from average power consumption over a graph iteration, multiplied by its iteration
period. However, for meaningful comparisons, graph iteration periods have to be equal in such case.
Alternatively, average power consumption during the graph iteration periods can be compared directly.
The latter was chosen in the thesis at hand and is in the following referred to as energy consumption rate.

Relationships between energy consumption rate can be linear or non-linear w.r.t. the aforementioned
component characteristics. The energy consumption rate in relation to the sampling frequency of the
BHI160 sensor sub-system used in the conducted experiments depends on the sensor type, and for the
accelerometer is also non-linearly dependent on the sampling frequency, as Figure 3.10 depicts. For
each sensor modality, a model-based estimate ˆ︁P( fSE) denotes the expected energy consumption rate at
a certain sensor sampling frequency of the sensor SE in the hardware model of the DIANA boards.

The energy consumption rate of processor cores, depends on their architecture. Architectures without
cache, branch predictions, pipelining and in general data-independent behavior, like microcontrollers,
can be expected to have a rather linear relationship between processor utilization and energy consump-
tion, since during idle time the controller has a smaller energy consumption rate compared to active
time. This is shown in a small experiment with five sensors and five measurements per sensor. For each
measurement, the processor load is changed by varying the amount of calculations within a loop, for
each processed sensor sample. The calculations of the loop body are based on repeated Multiply and
Accumulate (MAC) operations, which are representing the majority of instructions in the application
domain. The corresponding processor utilization is calculated from measurements of execution time
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Figure 3.11: Energy consumption rate in relation to the Fuser Core utilization (left) and the BLE

transmission frequency (right).

of the predefined processing load, divided by the period with which the code is executed, i.e., sensor
sampling period. The detailed setup and execution of the experiments is explained in Section 3.5.4,
as the same setup and method has been used there to evaluate the model accuracy. The relationship
between processor utilization and energy consumption rate of the BHI160 Fuser Core can be seen on
the left hand side in Figure 3.11.

Likewise, the relationship between energy consumption rate and data rate of the wireless communica-
tion over BLE has been derived from five of the sensors in experiments. Here, the energy consumption
rate can be expected to increase linearly with the data rate. The data rate has been changed for
different measurements, by communicating only each second, fourth, eights, etc., sample, without
altering the sampling frequency. Note that the measured relationship, actually represents the change
in energy consumption rate of the I2C channel between sensor and BLE controller, the processor
utilization of said BLE controller and the BLE transmissions together, in relation to the data rate.
However, this can be considered as appropriate, as these components together represent the abstract
communication channel within the dataflow model. The relationship between energy consumption rate
and communication data rate is depicted on the right hand side in Figure 3.11.

From the conducted experiments, it can be seen that device energy consumption rate linearly depends
on the processor load of the microcontroller and the BLE communication channel. The slopes of
the fitted measurements represent model-based estimates of energy consumption rate ˆ︁P in relation to
the Fuser Core processor utilization ˆ︁P(U(FU)) and the BLE transmition rate ˆ︁P(r(t1)) on channel t1
of the hardware model. The energy consumption rate models ˆ︁P(U(FU)), ˆ︁P(r(t1)), and ˆ︁P( fSE), can
be used to annotate the results acquired from the analysis model, and summed up for each analyzed
configuration, to allow for comparison across configurations. With an additional baseline configuration,
for which the total energy consumption rate of the sensor node is known or measured, total worst-case
device energy consumption rate for other configurations can be estimated. This will be shown in
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the experimental evaluation, assessing model accuracy. The measurements in Figure 3.11 have been
fitted by linear regression, approximating ˆ︁P(r(t1)) = 0.0119mW/Hz BLE packet rate à 20bytes andˆ︁P(U(FU)) = 0.0214mW/% processor utilization.

3.5 Experiments

An experimental study has been conducted to evaluate the accuracy of predicted energy consumption
rates from analysis models. The worst-case energy consumption rate acquired from the models is
compared to the measured energy consumption rate of five wireless sensor nodes with corresponding
implementations on the Fuser Core. In order to provide additional test scenarios, five additional
configurations to that of the case study have been designed for an extended evaluation, which will be
described in the following.

3.5.1 Configurations

A set of five different on-sensor feature extraction configurations (mapping A) and two off-sensor
feature extraction configurations have been selected, which are listed in Table 3.3. The first off-sensor
feature extraction configuration is used as a reference for which the total energy consumption rate of
the wireless sensor node is measured. By model-based analysis, differences in energy consumption
rate to all other configurations w.r.t. the reference are analyzed. This allows to acquire an estimate of
the total energy consumption rate of all other configurations, in order to compare with experimental
implementations.

In the first column of Table 3.3, the configurations are named from C1 to C6. The second column spec-
ifies the sensor modality, which is either accelerometer (ACC), gyroscope (GYR), or both. Sampling
frequencies of the sensors are listed in the third column, ranging from 50Hz to 200Hz. The column
Window Length specifies the size in samples of the sliding window segmentation. Note that ANY is
used to indicate, that in configurations with mapping B, no feature extraction is actually implemented.
The fifth column specifies the window overlap of the sliding window segmentation in % of the sliding
window length. In the second to last column, the feature set is specified. The feature set description is
a combination of abbreviations of mean (M), variance (V), skewness (S), kurtosis (K), peak (P), energy
(E), and a sum (∑), that are calculated over each axis of sensor data within the sliding window.

Table 3.3: Sensor settings, sampling frequencies f , sliding window parameters, feature sets, and

mappings of all configurations.

Cfg. Sensor f (SE) [Hz] Window Length Overlap Features Mapping

Ref. ACC 100 ANY ANY ANY B
C1 ACC, GYRO 100 128 75% MVSKPE A
C2 ACC, GYRO 50 128 75% MVSKPE A
C3 ACC 100 128 75% MVSKPE A
C4 GYRO 200 50 0% ∑ A
C5 ACC 100 128 25% MV A
C6 GYRO 200 ANY ANY ANY B
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Figure 3.12: Two different mappings, calculating the feature extraction on (a) the Fuser Core

(mapping A) or (b) the smartphone (mapping B).

Configuration C1 from Table 3.3 represents the feature set of the case study calculated on the wireless
sensor node, i.e., Fuser Core. Furthermore, the reference configuration in the first row of Table 3.3
corresponds to C3, but in a different mapping, as well as C4 and C6 correspond to each other in
mapping A and mapping B, respectively.

For the sake of simplicity, the analysis models have been reduced to represent only a single wireless
sensor node of the full on-body-network, as extra-functional properties of all sensors are equal in
same configurations in the dataflow representation. The analysis models are shown in Figure 3.12.
Model annotations that change across configurations are abstracted and listed in Table 3.4. In each
configuration, the number of sensor modalities (accelerometer and/or gyroscope) equals the production
rates of DA on c0 and PP on c1 and the corresponding consumption rates of PP from c0 and FE from c1.
These are denoted as |S| in Figure 3.12 and listed in Table 3.4 for each configuration.

In order to acquire worst-case estimates of total device energy consumption rate of the wireless sensor
nodes, the difference in energy consumption rates of the configuration under analysis and the reference
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must be worst-case estimates. To this end, worst-case execution times and sensor sampling frequencies
(highest) have been annotated to the analysis models of configurations C1-C6, but best-case execution
times and sensor sampling frequencies (slowest) have been annotated to the analysis model of the
reference configuration.

For each analysis model, execution times of software actors have been annotated with their correspond-
ing worst-case or best-case execution times on the corresponding processing unit. In the study at hand,
software execution times captured by actors have been measured on the Fuser Core. Furthermore,
the performance of the wireless on-body network has only been analyzed until the BLE receiver of
the smartphone. Thus, for mapping B, the features are neither calculated on the Fuser Core nor on
the smartphone, as the smartphone AP computations do not affect the sensor nodes. Hence, the same
execution times on the Fuser Core have been annotated to the actors mapped to the smartphone, for the
sake of simplicity. For the same reason, actor CL is annotated with a placeholder execution time of
δCL = 1,000 µs.

The corresponding implementation of each configuration is presented in the following section.

3.5.2 Implementation

For the experimental study, five of the wireless sensor nodes have been used to implement the
configurations explained in Section 3.5.1. In mapping B, the wireless sensor nodes send pre-processed
sensor samples to the smartphone. Each 3D single-precision floating-point sensor sample is packed
together with a one-byte ID value specifying the sample type (raw sample or feature vector entry and
in the latter case, its feature ID), into a 20-byte BLE packet (remaining bytes are zeros). The same
packing scheme is used across all different configurations in the experiments.

For mapping A, the window-based feature extraction has been implemented on the Fuser Core as a
virtual sensor routine. In each invocation, the new sensor samples of accelerometer and/or gyroscope
are stored in a ring buffer for the sliding window segmentation. Furthermore, the online one-pass
computation of mean, variance, skewness, and kurtosis [66] has been implemented for each of the
overlapping sliding windows. The implementations are based on an existing implementation from J. D.
Cook [75] for configurations C1, C2, C3, and mean and variance only in C5. For C4, the sum of sensor
sample values ∑ is also implemented as an online updating of its current value with each new sample.
In the last invocation (32-th for C1,C2, and C3, 50-th for C4, and 96-th for C5), the final values for

Table 3.4: Analysis model parameters of all configurations.

Cfg. δDA [µs] |S| φ(FE) OFE δPP [µs] δFE [µs] ICL Mapping

Ref. 10101 1 32 [{0}×31,6] 375 [{93}×31,11343] 6 B
C1 9900 2 32 [{0}×31,12] 1375 [407,{375}×30,23500] 12 A
C2 19801 2 32 [{0}×31,12] 1375 [407,{375}×30,23500] 12 A
C3 9900 1 32 [{0}×31,6] 563 [219,{204}×30,11766] 6 A
C4 4950 1 50 [{0}×49,1] 1094 [{32}×49,63] 1 A
C5 9900 1 96 [{0}×95,2] 563 [110,{94}×94,188] 2 A
C6 4950 1 50 [{0}×49,1] 1094 [{32}×49,63] 1 B
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mean, variance, skewness, kurtosis, and ∑ are calculated for the entire window. Furthermore, for C1,
C2, and C3, an FFT is calculated in the last invocation over the 128 samples that have been buffered in
the window. The FFT is a 128-point implementation composed of seven Radix-2 butterfly stages as
described by Cooley and Tukey in [76], which are computed over an in-place buffer with Decimation
In Time (DIT). To this end, the in-place array of 128 complex single-precision floating-point values
is filled and re-ordered at initialization with the 128 input samples of the window with bit reversed
indexing. For faster computation, twiddle factors have been calculated at compile time and stored in
an array, which is indexed at run time.

However, as the FFT calculation in C1, C2, and C3 for all three axes of a sensor signal together
requires more time than the sensor sampling period of C1 and C3, i.e., 10ms, a general implementation
scheme has been selected for C1, C2, and C3, in which the FFT computation for each individual
axis of a sensor signal is distributed to the following virtual sensor routine invocations. Although not
represented by the analysis models, this leads to the same throughput and average processor utilization
across 32 sampling periods. In the analysis models, the last CSDF phase of the feature extraction actor
is annotated with the execution time of computing the FFT for all sensor axes in a single invocation.
Although this exceeds the sampling period, it does not exceed together with the execution time of each
invocation of the pre-processing actor the iteration period of the analysis models. This is possible
due to the FIFO buffer characteristics of graph edges, which are unbounded in the analysis models.
However, in the implementation on the Fuser Core, such buffering of samples is not possible. As
a result, in the implementation, the FFT calculation of each axis needs to be sequenced over the
following virtual sensor routine invocations. Nevertheless, the inability to buffer samples can be
integrated in the analysis models by feedback channels with the corresponding number of initial tokens.
This results in a throughput constraint of the graph, which is lower than the modeled sensor sampling
frequency when the FFT for all sensor axes in performed in each 32-th invocation. Thus it indicates a
performance which does not meet real-time requirements, similar to a corresponding implementation.
However, unbounding the channels in the analysis model, does not reflect the buffering constraint
on the target hardware but leads to the same graph results w.r.t. graph throughput, transmission
throughput, and processor utilization, as if buffers were bounded, and sequenced FFT calculations were
modeled. Although, the analysis models in its presented form (not including buffer constraints and
FFT sequencing) do not reflect the same time behavior as the actual implementation, e.g., w.r.t. delay,
they reflect the important extra-functional properties, that are of concern in this chapter, i.e., BLE
transmission throughput, system throughput, and processor utilization. This has been substantiated by
an additional analysis model, that reflects the aforementioned implementation details, which however,
is not shown for the sake of brevity.

In order to allow an FFT calculation of each axis sequenced over the following invocations of the
virtual sensor routine, the ring-buffer containing samples of all overlapping sliding windows for C1,
C2, and C3 is implemented with a size of 230 samples 3.1, instead of 224 samples.

Also different to the analysis models, the virtual sensor routine does not sent all calculated feature
vector entries at the same time after the 32-th (C1, C2, C3) or 96-th (C5) sample has been processed
as part of one of the overlapping windows. The feature vector entry sending is rather sequenced

3.1The 230 samples in the ring buffer account for a full sliding window (128), the additional samples of the three following

overlapping sliding windows (128 · (1−0.75) ·3), and the oldest six (maximum number of axes among C1, C2, and C3,

for which the FFT calculation is sequenced) samples that need to be stored for the following six invocations due to the

sequenced FFT calculation.
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over the following virtual sensor routine invocations as well, as the firmware of the BHI160 does not
allow a burst communication of several 3D sensor samples within a single routine invocation into
its FIFO buffer. However, this restriction might not be known at design time of the system and is
therefore not considered in the analysis models, leading to a different delay, but the same throughput
on the BLE channels between wireless sensor nodes and smartphone. Nevertheless, if such hardware-
specific knowledge is known at design time, it can be integrated in the analysis models by adapting
the production rates of corresponding CSDF actor phases. In fact, the additional analysis model
mentioned for verification of the sequenced FFT calculation includes this communication behavior of
the implementation as well and does indeed produce equal results w.r.t. graph throughput and data
throughput on the BLE channels as the presented analysis models in Figure 3.12.

As for each configuration, data transmission rates are known by application parameters, a corresponding
BLE connection interval has been chosen for each configuration that is as large as possible to just
allow the necessary transmission throughput including a margin of +1%. The margin accounts for the
uncertainty of the sensor sampling frequency, as stated in the data sheet of the BHI160 [2]. For each
configuration a corresponding connection interval length has been chosen, based on the maximum
number of BLE packets per connection interval of the Samsung Galaxy S5. The number of BLE
packets per connection interval of the Samsung Galaxy S5 has been empirically determined to be four.
A non-exhaustive list of number of packets per connection interval for common smartphones can be
found in [77]. The BLE latency, i.e., the number of BLE connection intervals that can be skipped by
the BLE controller of the sensor nodes before sending a particular BLE packet, was set to zero. In
other words, each BLE packet that is ready to be send, must be sent at the next possible point in time
within the connection interval progression between BLE sender and receiver.

3.5.3 Model Evaluation

For each configuration, repetition vector and throughput have been analyzed from the analysis models
by using the SDF3 tools [13]. From throughput and repetition vector, processor utilization U(FU) of
the Fuser Core and the BLE packet transmission rate r(t1) have been calculated by using Equation
(5) and (7), respectively, as described in Section 3.4. Based on processor utilization, BLE transmis-
sion throughput, and sensor sampling frequency, together with sensor energy consumption models,
differences of device energy consumption rates between all configurations and the reference have
been calculated. Furthermore, they have been added to the measured energy consumption rate of the
reference configuration, in order to acquire worst-case estimates of total device energy consumption
rates ˆ︁P(D) for each configuration. The acquired results are summarized in Table 3.5. Note that
according to the analysis models, actor CL should only fire once per iteration, and thus should have a
repetition vector entry of γ(CL) = 1. However, although CSDF in general allows different number of
phases for different actors, the SDF3 implementation is restricted to a uniform number of CSDF phases
across all CSDF actors. This can either be achieved, by modeling CL and all other actors with as many
phases as the least common multiple of number of CSDF phases across all actors with equal behavior
of CL in each of its firings. However, since actor CL is firing once every 32, 50, or 96 samples, this
would lead to a graph iteration that is a hyper period of 32, 50, or 96 samples and the corresponding
phases of CL, increasing the analysis time. Instead, actor CL, was modeled with 32, 50, or 96 phases,
of which the first 31, 49, or 95, respectively, have been annotated with a production rate, consumption
rate, and execution time of zero, in order to avoid hyper period iterations but without additional timing
affects on the graph results.
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3.5.4 Experimental Setup

In this section, the experimental setup is described, with which device energy consumption rate of the
wireless sensor nodes is acquired for each configuration. Due to its ease, the approach from [78] has
been followed to measure device energy consumption rate. The wireless sensor nodes are supplied by
a constant 3V power supply with a 100Ω shunt resistor RS in series. The voltage drop over RS has
been measured by a DSO-X 3034A oscilloscope from Agilent Technologies. For each configuration,
the voltage drop has been measured and averaged in 10ms windows with a resulting resolution of
10MSamples/s by the oscilloscope over a time of at least 100s. The temperature dependency of the
measured result was considered to be neglectable, although environmental temperature at the begin and
end of all experiments as well as air humidity have been put on record in the experiment protocol. Due
to the abstract nature of energy consumption rate estimation from analysis models, a certain degree of
error is expected w.r.t. final implementations. Since these errors are expected to predominate acquired
results, an estimation and propagation of measurement error has not been carried out.

The energy consumption rate of each sensor node has been measured individually for each configuration.
To this end, each sensor node has been placed in a distance of 50cm from the smartphone. After
establishing the BLE connection between sensor node and smartphone, the arrival of sensor data at
the smartphone has been monitored. After successful transmission of sensor data over a period of
approximately 10s, the measuring process on the oscilloscope has been started, which ran at least
100s before results were stored on an attached flash drive.

3.5.5 Experimental Results

The energy consumption rate P of each sensor node measured in all configurations is depicted on the
left hand side of Figure 3.13. The corresponding mean energy consumption rate P across all sensor
nodes in each configuration and standard deviation sP is depicted on the right hand side of Figure 3.13.
The underlying measurements P , their mean P, and Coefficient of Variation (CV) CVP, are summarized
in Table 3.6 and corresponding relative deviations of measurements from the model-based results are
summarized in Table 3.7. Note that in the thesis at hand, a relative deviation ∆r [%] is calculated by
subtracting the measured results from the model-based results (absolute deviation ∆) and divided by
the measured results. Thus, a relative deviation of ∆r reads as: "the model-based results deviate ∆r %
from the measurements".

Table 3.5: Model-based analysis results.

Cfg. T H(G) [µs−1] γG ˆ︁U(FU) ˆ︁r(t1) [s−1] ˆ︁P(D) [mW ]

Ref. 3.09375E −06 [32,32,32,32]T 3.7% 99.00 4.051
C1 3.15657E −06 [32,32,32,32]T 25.0% 37.88 6.031
C2 1.5782E −06 [32,32,32,32]T 12.5% 18.94 5.802
C3 3.15657E −06 [32,32,32,32]T 11.4% 18.94 3.099
C4 4.0404E −06 [50,50,50,50]T 22.8% 4.04 5.402
C5 1.05E −06 [96,96,96,96]T 6.6% 2.10 2.897
C6 4.04040E −06 [50,50,50,50]T 22.1% 202.02 7.761
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Figure 3.13: Measured (left) and comparison with model-based results (right) of the average energy

consumption rate in all configurations.

The mean energy consumption rate P between different configurations ranges from 2.89mW to
7.62mW . This shows the high impact of application configurations as well as system configurations
(compare C5 and C6) on the device energy consumption rate. The coefficient of variation shows a
small deviation across different sensor nodes in the same configuration in the range of single-valued
percentages. However, the coefficient of variation of C3 is by far the highest, which is caused by a
substantial deviation of sensor S3 in configuration C3, which can be seen on the left hand side of
Figure 3.13. A Grubbs test over all relative differences between model-based and measured results from
Table 3.7 showed sufficient confidence (at a significance threshold of α = 0.05) that the measurement
from S3 in C3 is an outlier, with G(N = 30) = 4.57, p < 0.001. Furthermore, a Dixon test over
the relative differences of only C3 from Table 3.7 could confirm with sufficient evidence, that S3 in
C3 is an outlier, with Q(N = 5) = 0.90, p < 0.001. Note that a Dixon test has been used over the
measurements from C3, since the sample size of N = 5 is too small for a meaningful Grubbs test. This
outlier can be caused by a damaged sensor or power supply of the sensor node.

Table 3.6: Measured average energy consumption rate of the DIANA boards in all configurations.

Cfg. P(S1) [mW ] P(S2) [mW ] P(S3) [mW ] P(S4) [mW ] P(S5) [mW ] P [mW ] CVP

C1 6.03 6.06 6.15 5.99 6.10 6.07 1.01%
C2 5.78 5.63 5.79 5.64 5.74 5.72 1.34%
C3 3.15 3.21 3.81 3.21 3.20 3.32 8.41%
C4 5.25 5.28 5.45 5.24 5.35 5.31 1.67%
C5 2.85 2.90 2.93 2.90 2.88 2.89 1.02%
C6 7.49 7.63 7.88 7.46 7.63 7.62 2.16%
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Table 3.7: Relative deviations of the model-based estimates from the measured energy consumption

rates.

Cfg. ∆r P(S1) ∆r P(S2) ∆r P(S3) ∆r P(S4) ∆r P(S5) ∆r P

C1 −0.02% −0.44% −1.95% 0.65% −1.12% −0.58%
C2 0.40% 3.14% 0.26% 2.84% 1.01% 1.51%
C3 −1.76% −3.51% −18.75% −3.33% −3.04% −6.56%
C4 2.90% 2.21% −0.91% 3.18% 0.91% 1.64%
C5 1.72% −0.17% −0.99% −0.03% 0.72% 0.24%
C6 3.62% 1.77% −1.49% 4.01% 1.77% 1.90%

A comparison to the results acquired from the models is depicted on the right hand side of Figure 3.13.
Apart from sensor node S3 in configuration C3 as previously discussed, the highest deviation from the
model-based results is approximately −3.51% (S2 in C3). Although model-based results are supposed
to represent worst-case estimates, not all measurements have been found below model-based estimates.
However, a trend can be seen by comparing the average measurements with model-based results.
Furthermore, except comparably small deviations otherwise, energy consumption rate of sensor S3
can be observed highest among all sensor nodes in each configuration, which might be an indicator
for a faulty soldered joint in the power supply of the sensor node. Moreover, for all sensor nodes,
configuration C3 seems to be generally under estimated by the model. A two-factorial Analysis of
Variance (ANOVA) of the relative differences between model-based and measured results excluding
C3 from S3, with factors sensor and configuration, showed a significant effect for configuration on
the relative prediction error, with F(5,19) = 16.05, p < 0.001, and a significant effect for sensor,
with F(4,19) = 8.05, p < 0.001. As a result, it can be concluded that the dataflow graph model does
not account for all effects on the device energy consumption. This can be explained by the level of
abstraction of the simplistic energy models. As these merely relate the average energy consumption
of, e.g., the processing units, to its processor utilization by means of execution time, the type of code
that is actually executed (e.g., fixed-point operations, floating-point operations, or memory operations)
is not accounted for in the models. Furthermore, the difference between sensors can be explained
by small deviations due to manufacturing of the sensor nodes, as well as in the soldering of cables
for voltage supply for the conducted experiments. The impacts by means of group mean differences
between configurations and between sensors can be seen from the ANOVA coefficients summarized
in Table 3.8. It can be observed, that the configurations tend to have a higher impact on the relative
differences between model-based and measured results than the sensors.

Table 3.8: ANOVA coefficients of the relative deviations between model predictions and

measurements.

(Intercept) S2 S3 S4 S5 C2 C3 C4 C5 C6

0.34% −0.64% −2.89% 0.08% −1.10% 2.10% −2.83% 2.23% 0.82% 2.51%
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However, a t-test of all relative differences between model and measurements does not show a
significant difference from zero, with t(28) = 1.10, p = 0.28, w.r.t. the significance level of α = 0.05.

The aforementioned statistical tests have been performed under the assumption of normally distributed
relative differences, which however, is not generally evident from the acquired results. Therefore, the
performed tests have been complemented by additional non-parametric tests (Friedmann rank sum test
[79] and Wilcoxon signed rank test [80], respectively), which could substantiate the aforementioned
conclusions. As a result, the acquired model-based analysis results show a sufficient accuracy w.r.t.
to their corresponding implementations in order to substantiate design decisions regarding system
configuration as well as application configuration.

3.6 Discussion

In this chapter, state-of-the-art activity recognition systems have been modeled with cyclo-static
dataflow graphs up to the dimensionality reduction stage in an activity recognition chain. Furthermore,
an on-body sensor network of wireless sensor nodes with integrated processing capabilities has been
modeled, to which dataflow actors have been mapped and scheduled. From the model-based mapping
and scheduling representations, formal analysis of throughput and repetition vector has been conducted
with available frameworks. From these, a new approach for estimating worst-case energy consumption
rate of the wireless sensor nodes has been applied and evaluated by experiment with corresponding
implementations on a selected target hardware. In the conducted experiments an average estimation
accuracy of over 92% could be achieved.

The proposed model-based estimation approach for device energy consumption rate showed a sufficient
accuracy to substantiate design decisions in early design stages of energy-efficient human activity
recognition systems. However, the proposed estimation approach for device energy consumption
rate has its limitations in applicability. Firstly, the data source has to be explicitly modeled into the
system model, in order to acquire system throughput estimates that are expected during run time of the
system. Based on these, worst-case processor utilization and transmission throughput can be further
analyzed as a foundation for the estimation of device energy consumption rate. Secondly, for accurate
estimation, the highest input data rate during run time of the system should be known at design time
and modeled into the system model, in order to represent worst-case behavior. As a requirement, input
data rates have to be deterministic across iteration periods, or even constant. This requirement cannot
generally be assumed. However, sensor-based human activity recognition systems tend to fulfill the
aforementioned criteria, as predetermined sampling rates are typical in the application domain.

The results in this chapter are focused on dataflow-oriented ARC designs with very little to no control
flow. The presented techniques are expected to have a significantly lower estimation accuracy, when
the system is dynamically changing, e.g., in context-aware applications, or in dynamic approaches for
feature and sensor selection. Here, an estimate of the worst-case behavior is possible, but likely to be
too pessimistic. Although, dynamic changes have not been addressed in the chapter at hand, applicable
dataflow models of computation exist, to successfully capture dynamic behavior and estimate extra-
functional properties that indicate energy consumption rates. Corresponding design and analysis
approaches are presented in Section 5.1.
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4 Thread-Level Parallelism

Contents of this chapter have been previously published in the following publications:

• Exploiting Thread-Level Parallelism in Template-Based Gesture Recognition with Dynamic
Time Warping [G5]

• Sensor-Based Online Hand Gesture Recognition on Multi-Core DSPs [G6]

This chapter investigates different parallelization strategies for multi-processor architectures based on
task- and data-level parallelism in computationally intensive ARC stages. The goal is to identify the
impact of parallelization on different extra-functional properties like throughput, latency, but also on
load balancing and thus indirectly on the energy efficiency of the overall system. More importantly, it
is evaluated how different parallelization approaches can be represented by dataflow models. As the
mapping and scheduling of the recognition software onto the available hardware directly influences
said extra-functional properties, design-time estimations are of major importance to avoid costly design
cycles. To this end, analysis results of latency, throughput, and processor utilization from system-level
models are compared with experimental implementations to evaluate model accuracy.

Finding the best mapping and scheduling of a recognition software onto an available hardware w.r.t. to
some extra-functional property at design time is one of the major motivations of model-based analysis.
However, a crucial requirement of that process is the evaluation of how accurate model-based analysis
results can represent a real implementation. To this end, state-of-the-art parallelization approaches are
represented into analysis models and compared with corresponding implementations. More specifically,
the accuracy of extra-functional properties analyzed from such models is evaluated w.r.t. corresponding
implementations.

The extra-functional properties that play a major role for activity and gesture recognition systems
are throughput, latency, and energy efficiency. The energy consumption induced by communication
channels, as presented in Chapter 3, is not considered in this chapter, as the majority of data communi-
cation is performed via shared-memory, which is abstracted in dataflow actors in the deployed models.
In general, energy efficiency is not directly evaluated as the total energy consumption of the system
in this chapter, but indirectly by means of processor utilization and the corresponding implications
for energy reduction techniques. Furthermore, processor utilization is affected by other application
parameters like sensor sampling frequency, window lengths, or window overlap. As a result, processor
utilization is evaluated as an indirect indicator for energy efficiency. The evaluations in this chapter are
focused on these extra-functional properties.

The chapter is structured as follows. In Section 4.1, related work is discussed and distinguished from
methods applied in this chapter. In Section 4.3, a hand gesture recognition application is introduced to
which different parallelization approaches have been applied as a case study. Fundamentals on dynamic
time warping, on which the hand gesture recognition system is based, are provided in Section 4.2.
This is followed by the description of the selected parallelization approaches and their representation
in dataflow-based system-level models in Section 4.4. In Section 4.5 the experimental setup of the
hand gesture recognition system in different parallelization configurations is described as well as
the derivation of the corresponding analysis models from the application model. Details about the
implementation of the hand gesture recognition system can be found in Appendix A. The evaluation of
the model accuracy as well as recognition accuracy of the experimental implementation is conducted
in Section 4.6. Lastly, conclusions are drawn in Section 4.7.
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4.1 Related Work

Dynamic time warping For the evaluation part of this chapter, a hand gesture recognition system
has been developed. Hand movements are captured with a glove that is fitted with accelerometer
sensors. In the literature, different classification algorithms can be found for the recognition of hand
gestures performed with a sensor glove. A k-NN approach has been studied in [81] and compared to
a Dynamic Time Warping (DTW) approach. The latter showed slightly better recognition accuracy,
but at higher computational costs. Other approaches make use of Hidden Markov Models (HMM)
[82] or Artificial Neural Networks (ANN) [83]. A comparison of recognition algorithms for hand
gestures performed with a Wii controller showed a superior performance of DTW compared to HMMs,
SVMs, k-NN, and ANNs. Based on the aforementioned results, the hand gesture recognition system
developed for evaluation purposes in Section 4.6 is based on DTW.

Some studies show, that a DTW-based recognition on mobile devices is not optimal, due to the high
computational complexity and its quadratic memory consumption [84]. To this end, a DTW imple-
mentation with linear space complexity has been used in the evaluation part. A high computational
complexity is considered as a suitable choice, as the purpose of exploiting parallelism in the clas-
sification of gestures and activities is to reduce latency and increase throughput of computationally
demanding algorithms. To this end, DTW is considered as a suitable candidate. Furthermore, the
selected platform for evaluations is a multi-processor DSP platform. DSP architectures have shown a
good suitability for DTW-based recognition systems [85].

Some studies exist, exploiting instruction-level parallelism to accelerate DTW [86]. As application-
specific architectures are required, this has not been adopted in the thesis at hand. Furthermore,
inter-core communication could be identified as a major impact on the overall performance. As a result
shared-memory architectures are recommended in [87]. Therefore, a shared-memory architecture has
been selected for implementations described in this chapter. In contrast to instruction-level parallelism,
thread-level parallelism could be successfully exploited for DTW implementations in [88]. Among
others, this parallelization approach has been adopted in Section 4.4 as well.

Parallelized classification algorithms In the last two decades, there have been attempts to accelerate
classification algorithms by exploiting parallelism of different kinds. A parallel implementation of an
SVM classifier on GPUs was introduced in [89], increasing the throughput for offline classification in
large datasets. In [90], parallel implementations of a variety of classification algorithms are introduced,
i.e., k-NN , Naive Bayes, and Decision Trees (DT). The parallel implementations are based on
MapReduce [91] to batch process large datasets on computing clusters. Run-time environments like
MapReduce [91] and Dryrad [92] are exploiting thread-level parallelism in batch processing tasks of
large datasets and offer an efficient distribution and scheduling of the software onto multi-core CPUs
of a single computer up to large clusters of computing systems. The parallelization scheme is evaluated
on dataflow representations of the software. However, while the underlying parallelization approaches
derived from dataflow representations can be adopted for online activity and gesture recognition,
Dryrad and MapReduce are designed for batch processing tasks, and are suited for offline classification
tasks in datasets, rather than online recognition with embedded systems.

Zaki et al., introduced a parallel implementation of DTs on a shared-memory multi-processor architec-
ture [93]. Specifically, they propose an approach for the construction of parallel decision trees during
the training phase. Their approach resembles a candidate for inter-segment parallelization, which will
be introduced in Section 4.4.1.
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A parallel implementation of HMMs as a low-level classifier on multiple sensor nodes has been
proposed by Zappi et al. in [51]. Furthermore, a dataflow representation of the system software is
used to activate data acquisition and processing from different sensors at run time. The online sensor
selection approach allows prolonging system lifetime in case some sensors become unavailable due to,
e.g., drained batteries, while preserving a certain recognition accuracy. Dataflow representations of the
system software are used for decisions on the sensor selection, at run time. The approach proposed
by Zappi et al. exploits system-level parallelism by executing low level classifier on different sensor
nodes and uses dataflow representation for optimal mapping and scheduling at run time. However, no
design-time estimation is performed, although it could complement and extend the run-time control by
selecting configurations that allow a certain recognition accuracy and a maximum latency, minimum
throughput, or energy consumption of the system. The approaches discussed in this chapter are
complementary to their work.

Parallelism in dataflow representations Several approaches of exploiting parallelism from dataflow
representations exist in the literature. One of these approaches is implemented in the run-time
environment Sprout [94]. As Sprout is introduced to speedup the execution of streaming applications,
it has been applied to video-based gesture and activity recognition systems [95]. Although, no design-
time analysis is performed to substantiate design decisions, the proposed parallelization approaches
have been adopted in Section 4.4.

Other approaches automatically exploit task-, instruction-, and data-level parallelism from software
written in programming languages that are based on dataflow representations like StreamIt [96]. These
dataflow representations are SDF alike and allow automated exploitation of the aforementioned par-
allelism by integrated compiler analysis [50, 97–99]. Some of these are estimating execution time
at compile time for optimal mapping and scheduling on the underlying multi-processor hardware
[50]. Activity and gesture recognition systems qualify as streaming applications as defined by [96].
That is, they follow typical characteristics, e.g., large streams of data, stable communication patterns,
enumerable occasional modifications of the stream structure, and high performance expectations [96].
However, the aforementioned approaches assume that software is written from scratch. In human
activity recognition, often implementations of software stages already exist as a result of an offline eval-
uation w.r.t. recognition accuracy. These are typically implemented in various programming languages
(e.g. Python, C, R, Tcl/Tk, Java). Furthermore, activity recognition systems are often composed of
multiple heterogeneous devices and processor architectures, that come with their individual compilers
and programming languages, e.g., Java and Kotlin for Android, C/C++ for multi-processor DSPs
like the TI TMS320C6678, or embedded sensor controllers in modern sensor sub-systems. Thus, a
rewriting of available software stages in a specific language causes increased development time and
compilers for various devices in such language might not be available. Therefore, these languages
have a rather restricted application for the design of activity and gesture recognition systems.

Moreover, approaches to automatically exploit parallelism are integrated in compilers of specific
processor architectures and devices [50, 97–99]. Thus, they can only operate on a partition of the
distributed system software that is executed on a device supporting these approaches.

The model-based system-level approaches introduced in the thesis at hand, can be considered as the
system-level counterparts of the aforementioned platform-based approaches. In contrast to these, the
focus of the thesis at hand is on mapping and static order scheduling at design time together with
a design-time analysis of extra-functional properties, e.g., throughput, latency, processor utilization.
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Furthermore, a domain-specific language for system-level design of embedded gesture and activity
recognition systems does not exist. To this end, task- and data-level parallelism is exploited by hand
directly on abstract system-level models based on synchronous and cyclo-static dataflow graphs.

4.2 Dynamic Time Warping

In this chapter, the studied parallelization approaches are applied to a hand gesture recognition system
as a case study. This system is based on dynamic time warping, in order to detect gestures within
the sensor signals that capture the hand movements of a person. Consequently, DTW will be briefly
introduced in the following.

Dynamic time warping is an algorithm to determine the similarity of two time-discrete signals. This
is done by calculating a distance measure4.1 between the two signals while the signals are non-
linearly aligned along their time axes. This allows for comparison of signals of difference length.
The application of the DTW algorithm ranges from speaker or voice recognition [85, 100], activity
recognition [101], hand written word recognition [102, 103], to gesture recognition [104, 105].

DTW aligns, or warps, the time axes of two signals in a non-linear way to achieve maximal similarity
between the signals. The global distance of the two signals is the accumulation of the local distances
between the corresponding signal values of the best non-linear time alignment. Figure 4.1 shows
the warping of two time-discrete signals. Every dashed line represents the correspondence of two
signal values for the best alignment. In Figure 4.1, color coding is used to represent local distances
of corresponding signal values. In order to find the best signal alignment and the corresponding
global distance, a dynamic programming approach is applied on a cost matrix D. The cost matrix
is an N ×M matrix, with N and M corresponding to the lengths of two time-discrete signals X =
(x[0],x[1], ...,x[N−1]) and Y = (y[0],y[1], ...,y[M−1]). Each matrix element D[i, j] with 0≤ i≤N−1
and 0 ≤ j ≤ M−1 corresponds to the pair (x[i],y[ j]) and captures the distance of the path with the
currently smallest accumulated local distances d from the origin of the matrix, i.e., D[0,0] to the
corresponding element D[i, j]. The local distance d(x[i],y[ j]) between the signal values x[i] and y[ j]
can be any distance metric. Commonly, the euclidean distance is used for d. The path is restricted to
begin at the origin of the matrix and follow only neighboring elements that either correspond to an
incremental step in one or in both signals along their time axes. Hence, no signal value is skipped. The
cost matrix is filled either row or column wise beginning in D[0,0] by calculating each element value
D[i, j] with the following equation:

D[i, j] = min

⎛⎝ D[i−1, j]
D[i−1, j−1]

D[i, j−1]

⎞⎠+d(x[i],y[ j]). (9)

The global distance of the two non-linear aligned signals X and Y is represented by D[N−1,M−1]. The
path with the smallest accumulated distance from the origin D[0,0] to the last element D[N −1,M−1]
is called the warping path and represents the best alignment between the two signals w.r.t. to the
accumulated local distances along the path. In order to acquire the warping path, a backtracking from
D[N −1,M−1] to D[0,0] has to be performed. However, for applications that only require the DTW

4.1Note that although the calculated DTW distance between two signals might be based on local distance metrics, the

overall resulting DTW distance is not a distance in the sense of a metric. However, the term DTW distance is established in

the literature and is used as such in the thesis at hand.
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Figure 4.1: Visualization of warping two signals using dynamic time warping.

distance, e.g., to compare a new signal to a set of reference signals in terms of global distances and
select the most similar one, the warping path and thus backtracking is not necessary.

The computational complexity of DTW is O(N ·M). However, some optimizations exist that either
constrain the warping path [106, 107] or approaches that successively calculate the cost matrix from
a coarse to a more fine grained resolution, reducing the computation time [108]. However, these
approaches speed up the DTW calculation by a constant factor but still have a computational complexity
of O(N ·M) [108]. The space complexity of the DTW algorithm is O(N ·M) when a backtracking of
the warping path is necessary. Otherwise, the row or column wise filling of the cost matrix requires only
memory space for the current and the previous row or column, respectively. Such an implementation
has a memory complexity of O(n), with n being the length of the signal along which the cost matrix is
filled.

In the experimental implementation, which is introduced in Section 4.5, the DTW algorithm with-
out aforementioned computation time optimizations but with linear memory complexity has been
implemented. The computation time optimizations have not been applied, as the focus of the im-
plementation lies in the evaluation of different parallelization approaches of recognition systems on
multi-processor architectures. However, as the computation time optimizations of DTW are orthogonal
to the parallelization approaches, no mutual dependencies regarding performance effects are expected.

4.3 Case Study

In order to apply and evaluate different parallelization approaches and their effect on throughput,
latency, and other extra-functional properties, a hand gesture recognition system has been developed as
a case study. This is due to the idea, that latency tends to play an even more important role in gesture
recognition than activity recognition.

The system should detect hand gestures which are performed by a person. In order to capture hand
movements, a sensor glove is worn by the user. Sensor signals are acquired by accelerometers attached
to the fingertips of the glove. Multiple templates of gesture classes are recorded during training of
the system. At run time, a sliding window of sensor data is compared to all templates based on DTW
distance calculations. The gesture class of that template yielding the lowest distance to the sensor
signal contained in the current window is selected as the classification result.
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Figure 4.2: Activity recognition chain of the developed hand gesture recognition system.

In Section 4.5.1, the recognition system will be described in more detail. However, the ARC structure is
necessary to build a first application model, on which different parallelization strategies are explained.
The corresponding ARC of the recognition system is depicted in Figure 4.2. Sensor data is sampled
from three sensors with a sampling rate of 50Hz. A sliding window lengths of 125 samples has
been selected, which is shifted by two samples, corresponding to a window rate of 25Hz. The DTW
distances between sliding window and 25 templates will be calculated. The sliding window will
be labeled with the class label of the template that has the smallest DTW distance. For the sake of
comprehensibility, only five out of 25 templates will be assumed when parallelization approaches will
be discussed in the following. The final application model however, will be presented in Section 4.5.3.

In Figure 4.3(a), the simplified application model is depicted as an SDF graph. The data acquisition of
accelerometer sensors sampled at 50Hz is modeled by actor DA, with a self-edge and an execution
delay of 20ms. The sliding window segmentation is modeled by actor SW with a consumption rate of
two, corresponding to the sample skip of the sliding window. The size of the windows of 125 samples
equals the production rate on all outgoing channels of SW. To each window, the DTW distance to all
templates will be calculated, which is modeled by actors D1-D5 representing the five DTW executions,
each corresponding to a particular template. Note that these actors are modeled as parallel actors, as
these can be subject to different parallelization approaches. Finally, actor CL receives the distances
from each DTW execution and performs the arg min classification for the corresponding window.

This model is a simplification of the final application, but it includes all necessary properties to show
the principle of different parallelization approaches.

4.4 Parallelization Approaches

In order to reduce latency or increase throughput of the DTW distance calculations compared to a
sequential single-processor execution, multiple processor cores can be utilized in different paralleliza-
tion approaches. In this chapter, possible parallelization strategies will be discussed and applied to the
DTW distance calculation of the template-based hand gesture recognition system of the introduced
case study. For the sake of comprehensibility, the preceding and succeeding ARC stages, namely
segmentation and arg min evaluation, respectively, are performed on individual processor cores. To
this end, an initiator-worker-evaluator structure is applied to the available processor cores. That is, one
of the processor cores takes the role as initiator, one takes the role as evaluator, and the remaining
processor cores, referred to as worker cores, perform the DTW distance calculations to all templates
with different parallelization strategies. Hence, the segmentation is performed on the initiator core, the
DTW distance calculations will be performed on the worker cores, and the distance evaluation and win-
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Figure 4.3: Reduced application model (a) and hardware model (b) of the hand gesture recognition

system.

dow labeling will be performed on the evaluator core. In Figure 4.3(b), the initiator-worker-evaluator
structure is depicted, with IN representing the initiator, W1-W4 the worker cores, and EV the evaluator.

4.4.1 Intra-Segment Parallelization

The first parallelization approach distributes the DTW calculations for a single segment of the sensor
signal stream to multiple processors cores, in order to reduce execution time. Thus, the templates are
distributed over all worker cores, calculating their DTW distances to the sliding window in parallel.
This parallelization approach, that can be considered as task-level parallelization, has already been
introduced by Yoder and Siegel [88] as "Serial-Parallel" approach for DTW in particular.
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Figure 4.4: Visualization of the intra-segment parallelization approach.

Furthermore, Yoder and Siegel compare this approach to other instruction-level parallelization ap-
proaches on Single Instruction, Multiple Data (SIMD) and application-specific Very Large Scale
Integration (VLSI) processors for DTW-based algorithms. However, the focus of this chapter is on
parallelization approaches exploiting task- and data-level parallelism at a system-level, as this can
be exploited by algorithm distribution on multi-processor hardware, without the need for ASICs.
Therefore, only the Serial-Parallel approach from [88] is considered for investigation in the thesis
at hand. In [94], the same approach has been introduced to reduce latency in video processing ap-
plications and applied to video-based activity recognition in [95]. In their work, it is referred to as
"intra-frame parallelization" [95]. Due to the broader sense of segments, this approach is referred to as
intra-segment parallelization in this thesis. In general, the same approach can be applied to a variety
of sensor-based activity recognition algorithms. The instances to be distributed can either be class
models, i.e., HMMs [51], a database of feature vectors, e.g., for k-NN classifiers, parallel decision tree
implementations [93], or templates in template-based gesture recognition. The latter, realized by a
DTW-based approach, was selected in this thesis, in order to apply model-based design, parallelization,
and analysis approaches and evaluate the model accuracy. For these evaluations recognition accuracy
is of minor concern.

For the selected case study of DTW-based gesture classification, the templates for all gestures are
distributed statically among the set of worker cores. That way all templates are partitioned into a
number of blocks matching the number of worker cores. The initiator sends the acceleration signals of
the current sliding window to all worker cores. Each worker core calculates the DTW distances between
the templates which have been assigned to it and the signal contained in the window. After each worker
core has finished its DTW calculations, the distances are sent to the evaluator for comparisons. The
evaluator then selects the class label from the template that has the smallest distance to the sliding
window among all templates. This comparison is started as soon as the distance information of all
worker cores have been received by the evaluator. In Figure 4.4 this process is depicted as a Gantt
chart.

Since calculating the DTW distances of all templates to the current sliding window is performed in
parallel, the response time is expected to be reduced compared to a serial computation. However, the
DTW computation time for each template to the sliding window scales with NSW ·NT , where NSW is the
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number of samples of the sliding window and NT is the number of samples of the template. Although
NSW is constant for each calculation, NT can differ for each template. Therefore, the execution time
depends linearly on the template size. Since the distribution of templates among a number of cores not
necessarily leads to an even distribution in accumulated template size, the response time to complete
the classification for a single sliding window depends on the core with the highest accumulated size
of assigned template gestures. This is depicted in Figure 4.4 as well. Consequently, the speedup of
classifying a single sliding window with this parallelization approach will be less than the number of
cores W . Additionally, as pointed out by Yoder and Siegel in [88], the aforementioned parallelization
approach can only be effective with W ≤ M worker cores, with W being the number of worker cores
and M being the number of templates. With more than M worker cores, W −M worker cores would
remain idle.

Modeling From a modeling perspective, this approach is a straightforward mapping of the DTW
instances (templates) to the available worker cores. As depicted in Figure 4.3, the example application
consists of five templates and thus five DTW instances that can be executed in parallel. Furthermore,
there are four worker cores to which individual DTW instances can be assigned to. In Figure 4.5 an
example mapping including a static order schedule is shown. Note that processor cores W1 to W4
are color coded w.r.t. the sliding window that they are processing. When applying intra-segment
parallelization, all processors are coded in the same color, as they are processing data from the same
sliding window concurrently. The idea behind color coding will get more obvious with the following
parallelization approaches.

Since in this example, there are more DTW instances (templates) than available worker cores, at least
one worker core has to be assigned with more than one DTW instance. In Figure 4.5, this is worker
core W4 to which D1 and D2 are assigned. For the scheduling of processor cores to which only a
single SDF actor is assigned, a self-edge is sufficient to avoid overlapping executions of different actor
firings. For multiple actors mapped to the same processor core, i.e., actors D1 and D2 on W4, a static
order schedule is achieved by creating a dependency through a scheduling edge between them and a
feedback edge with one initial token.

In Figure 4.5 it can be seen that actor CL can only fire, after all DTW actors have finished their
executions on their assigned processor cores. Therefore, the efficient distribution of actors to worker
cores is of major importance w.r.t. the latency.

4.4.2 Inter-Segment Parallelization

A second approach is based on a parallel computation of subsequent segments, i.e., windows, on differ-
ent worker cores. This parallelization approach, that can be considered as data-level parallelization, has
been introduced by Pillai et al. [94] as "inter-frame parallelization" for video processing applications
including video-based activity recognition. As it is applied to segments in a broader sense, it is referred
to as inter-segment parallelization in the thesis at hand.

For this approach, each worker core performs a sequential processing of an entire sliding window.
Instead of distributing the DTW distance calculations of a single sliding window onto multiple cores,
consecutive sliding windows are processed in a cyclo-static manner on different cores. This approach is
useful in systems where the classification of a single sliding window can not be efficiently distributed to
multiple cores but the execution on a single core does not meet the necessary throughput for the desired
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Figure 4.5: Mapped and scheduled application graph with intra-segment parallelization.

application, i.e., the execution time of an entire sliding window processed on a single core exceeds the
period between consecutive sliding windows. While the current sliding window is processed by one
of the worker cores the succeeding sliding window is processed by another worker core. Figure 4.6
depicts this concept.

For the selected case study, each worker core contains all templates and calculates their DTW distances
to the sensor signal in the sliding window that it receives. When a new sliding window arrives at the
initiator it will be sent to the next free worker core. This will lead to a cyclo-static behavior of window
processing if enough worker cores are used for real-time performance. In contrast to intra-segment
parallelization, this approach can also be effective with W > M worker cores, with W being the number
of worker cores and M being the number of templates. Although the classification latency is not
reduced by this approach compared to a single-core implementation, the throughput of the system can
be increased to meet real-time performance.
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Figure 4.6: Visualization of the inter-segment parallelization approach.

Modeling In contrast to intra-segment parallelization, all DTW actors of the dataflow graph are
mapped to a single worker core. For the sake of readability in the following steps, all actors D1-D5 are
mapped to the same worker core and are abstracted into a single actor D with accumulated execution
times. The resulting model is presented in Figure 4.7.

In order to model the cyclo-static processing of sliding windows, a technique called partial expansion
can be used which is described in [109] by Tran et al. Partial expansion is used to expose task and
data parallelism in SDF graphs. To fully expose parallelism, an SDF graph can be expanded into
its equivalent HSDF graph. However, the transformation can lead to an exponential growth in the
number of actors and edges of the original SDF graph. Furthermore, a full expansion does not take into
account the number of available processing elements. In order to control the degree of parallelism and
the actors to be expanded, partial expansion of selected actors can be performed by the designer or a
design tool [109]. In contrast to other approaches [99, 110], the partial expansion technique described
by Tran et al. comes without the need for additional split/join actors or buffer managers.

The application graph in Figure 4.7 shall be partially expanded towards a parallel processing of
consecutive sliding windows. Therefore, actor D can be expanded to a degree which corresponds to the
number of available processor cores. Since Tran et al. indicated a poor trade off between buffer sizes
and performance gains for expansion rates higher than the number of available processor cores, the
expansion rate for the example at hand is chosen to match the number of available processor cores, i.e.,
four. As a result, actor D is expanded to four instances, i.e., Da, Db, Dc, and Dd . Actor SW is converted

DA
δDA = 20ms

SW
δSW

D
δD

CL
δCL

1

c0

2 125 125

c1

1

c2

1

• •

Avoid auto-concurrency

Figure 4.7: Application graph of the hand gesture recognition with actor D representing a sequential

processing of an entire sliding window by all DTW instances.
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Figure 4.8: Partially expanded application graph of the hand gesture recognition with inter-segment

parallelization.

into a CSDF actor, cyclo-statically producing its 125 tokens of a sliding window to one of the actors
Da, ...,Dd . Likewise, actor CL is converted into a CSDF actor, consuming cyclo-statically from one of
its incoming channels from the actors Da, ...,Dd . This expansion corresponds to the combination of
cases 2 and 4 in [109] as actor D is consumer and producer with equal production and consumption
rates on each of its incoming and outgoing channels. The resulting graph is shown in Figure 4.8.

Due to the partial expansion, the graph iteration has been unfolded by four w.r.t. the repetition vector
entries for DA, SW, and CL, whereas in each fold one of the actors Da to Dd fires (in cyclo-static order)
with its original repetition vector entry. After partial expansion of actor D, each expanded instance
can be mapped to a different worker core. The resulting mapped and scheduled CSDF graph is shown
in Figure 4.9. Note that the color coding of the processor cores indicates, that each processor core is
processing a different sliding window. The sliding window x will be processed on processor core W4,
while x+1 is processed on W3, x+2 on W2, x+3 on W1, and x+4 on W4 again.

4.4.3 Hybrid Parallelization

Finally, as indicated by Chen et al. [94], a hybrid of the two aforementioned parallelization approaches
is possible. This can be beneficial, if the classification of a single sliding window cannot be parallelized
to the same degree as number of available processor cores. In [G6], this approach has been introduced
by utilizing the concept of tiles. To this end, the available processor cores are divided into groups of
cores referred to as tiles. The size of a tile should be a number of processor cores to which a single
sliding window classification can be efficiently distributed. If this distributed processing reduces
execution time that is still higher than the time between two sliding windows, the succeeding window
can be processed on another tile. This way, intra-segment parallelization is applied within a tile to
reduce latency and inter-segment parallelization is applied between tiles to increase throughput of the
system.

In general, the processor cores within a tile not necessarily need to be homogeneous. Furthermore, the
number and type of processor cores not necessarily needs to be equal among different tiles. However,
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Figure 4.9: Mapped and scheduled application graph with inter-segment parallelization.

for the sake of comprehensibility only equally composed tiles of homogeneous groups of processor
cores are considered in the remainder of this chapter. Note that this implies equal communication
channels between processor cores within a tile and among different tiles. This way, the classification
of a single sliding window can be expected to have the same execution time on any of the available
tiles, given an equal software distribution within all tiles.

In order to apply the hybrid parallelization approach for the selected case study, the available worker
cores are grouped into K equal tiles. A tile is responsible for the parallel processing of a sliding
window. To this end, the templates are distributed onto the worker cores of a tile. While one tile
processes one sliding window at a time, the succeeding sliding window will be dispatched to the next
available tile in the system. Figure 4.10 depicts this concept.

Modeling From a modeling perspective, the initial synchronous dataflow graph in Figure 4.3 is
mapped to the hardware architecture, corresponding to intra-segment parallelization. However, instead
of mapping the actors D1 - D5 to all available worker cores, they are only mapped to the processor
cores of a single tile. In Figure 4.11, an example mapping to the tile composed of processors W3 and
W4 is depicted. Actors D1 and D2 are mapped to W4 and actors D3, D4, and D5 are mapped to W3.
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Figure 4.10: Visualization of the hybrid parallelization approach with 2 tiles.

An example schedule is shown in green. The resulting graph represents intra-segment parallelization
for a single tile. For the sake of comprehensibility, in the following steps actors D1 and D2 are merged
into actor D1’ which is mapped to W4 and actors D3, D4, and D5 are merged into actor D2’ which is
mapped to W3. Similar to the modeling of inter-segment parallelization, actors D1’ and D2’ will be
expanded by an expansion rate, equal to the number of tiles. In this example, the worker cores W1-W4
are grouped into two tiles. Thus, the SDF graph will be expanded by an expansion rate of two. The
second fold of the expanded part is then mapped to the remaining tile, processing every other sliding
window. The resulting CSDF graph is depicted in Figure 4.12.

4.4.4 Parallelization Configurations

Without loss of generality, all of the aforementioned parallelization approaches are deployed by tiling
the available processor cores. Furthermore, only homogeneous symmetrical tiles are considered,
such that the number of processor cores divided by the number of tiles results in an integer number
of cores per tile. This is not generally necessary, but eases comprehensibility and deployment of
different parallelization approaches in the experiments. In order to distinguish different parallelization
approaches, each is identified by the number of deployed tiles NK , which will also be referred to as the
parallelization configuration CNK , e.g., configuration C2 is deployed with two tiles: NK = 2. To this
end, the number of processor cores per tile NWK is determined by the number of available processor
cores NW divided by the number of tiles NK , i.e.:

NWK =

⌊︃
NW

NK

⌋︃
.

Generally, the result is rounded down in case NW is not a multiple of NK or NWK . However, in
the experiments of the thesis at hand, for each evaluated configuration NWK ·NK = NW holds. Each
configuration is considered as an realization of the hybrid parallelization approach with different
number of tiles. Thereby, the configuration NW = NWK and thus NK = 1 inherently represents intra-
segment parallelization, and NW = NK and thus NWK = 1 represents inter-segment parallelization, as
those are the extremes of the hybrid approach.
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Figure 4.11: Mapped and scheduled application graph of the hand gesture recognition application to a

multi-core tile.

4.5 Experiments

In order to evaluate the accuracy of the dataflow models, the hand gesture recognition system has been
implemented in the presented parallelization approaches. In the following section, the hand gesture
recognition system will be explained in more detail.

4.5.1 Hand Gesture Recognition Application

The system was designed to recognize five different gestures performed with a sensor glove. To this
end, a sensor glove fitted with BNO055 [111] sensors at the fingertips has been used to capture 3D
acceleration of the fingers. Figure 4.13 shows the sensor glove.
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Figure 4.12: Mapped and scheduled application graph with hybrid parallelization.

Five gestures have been defined that should be recognized from the captured acceleration signals. The
gestures to be detected have been defined as swipe left and swipe right with two fingers, drawing a
circle clockwise (CW) and counter clockwise (CCW) with the index finger and a grasp motion. In order
to reduce dimensionality of the data stream, only the sensors attached to the thumb, index finger, and
middle finger are used as they are expected to have the least redundant information among all fingers.
Each accelerometer samples sensor data at 50Hz in a range of ±4G with a fixed-point resolution of
14bits. However, each sensor sample is converted into a single-precision floating-point value (4bytes)
per axis. This leads to a 3D sensor sample size of 12bytes per finger and 36bytes in total.

For the sake of reproducibility, training and test sequences have been recorded offline. For each defined
gesture, five templates have been recorded, resulting in 25 templates ranging from 21 to 123 samples
(0.42s to 2.46s, respectively) in total. A test dataset for evaluating recognition accuracy and model
accuracy has been recorded, which consists of 19 test sequences with a total of 28,876 samples and an
average of 7.5 performed gestures per sequence. In total 144 test gestures have been recorded. The
distribution of gesture classes in the test dataset can be found in Table 4.1. Furthermore, a training
dataset of gestures has been recorded in order to train parameters for gesture segmentation, that will
be introduced later in this section. The training set has also been used to acquire model annotations
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Table 4.1: Training and test dataset composition.

Class Training Dataset Test Dataset
Occurrences Ratio Occurrences Ratio

Grasp 12 22% 34 24%
Swipe Left 11 20% 28 19%
Swipe Right 11 20% 34 24%
Circle CCW 11 20% 21 15%
Circle CW 10 18% 27 19%

by measuring particular code sections, which will be discussed in Section 4.5.3. The training dataset
consists of seven training sequences. In total 55 performed gestures have been recorded in the training
dataset. The distribution of gesture classes in the training dataset can be found in Table 4.1 as well.

The classification of gestures is based on calculated DTW distances. To this end, test sequences are
segmented into sliding windows of 125 samples in length (2.5s), in order to fit the largest among the
templates. The sliding window is shifted by two samples. All windowed sensor signals are compared
to all 25 templates. Therefore, a DTW procedure for 3D signals with a linear memory utilization
w.r.t. window length has been implemented to reduce memory footprint. Note that this is sufficient
as only the final distance between window and template is necessary instead of the actual warping
path information. The final distances are normalized with the template lengths, in order to reduce
their influence on the DTW distances. Although a scaling with the length of the actual warping path
might have been a more accurate scaling method, the implemented method was selected in favor
of a linear memory complexity. To this end, the DTW distance between a sliding window and a
template is calculated for each finger individually and accumulated over all three fingers into a single

Figure 4.13: Sensor glove with 5 BNO055 sensors mounted at the fingertips.
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Table 4.2: Empirically determined class-dependent DTW distance thresholds.

Class DTW distance threshold

Grasp 1.20
Swipe Left 2.50
Swipe Right 2.00
Circle CCW 2.20
Circle CW 1.75

distance value. The calculated distances to all templates are recorded for the particular window. In
order to account for a possible null class, class-dependent thresholds on the DTW distance have been
empirically determined by experiments. The distance of each template to the window is compared to
its class-dependent threshold and discarded in case of exceedance. An arg min evaluation selects the
class label among the remaining distance values of a window. The selected class-dependent distance
thresholds are listed in Table 4.2.

Since a gesture can span over multiple sliding windows, the begin and end of a performed gesture needs
to be detected. Therefore, the fluctuation of sensor data within each window is calculated as proposed
by [112]. To this end, each sensor sample is considered as a 9-dimensional vector #»v [t] at time t. The
squared euclidean norm of the derivative signal, that is an element-wise subtraction of subsequent
sensor samples, is calculated by: η [t] = || #»v [t]− #»v [t −1]||22. Here, || #»x ||2 denotes the euclidean norm
of a vector #»x . This squared euclidean norm η [t] is then averaged over a window by an Exponential
Moving Average (EMA) filter EMA[t] = (1−α) ·EMA[t − 1]+α ·η [t] with a smoothing factor of
α = 0.2 as recommended by [112]. Although [112] used this approach without sliding windows, but
on the continuous stream of sensor data to detect the begin and end of an gesture by thresholds, this
can also be implemented on a window-based segmentation. Using fixed sized sliding windows, the
processing time of calculating DTW for a particular sliding window is independent of the length of
the performed gesture. However, in contrast to [112], the EMA in a window-based processing detects
the begin and end of a gesture among multiple windows. Furthermore, since the EMA emphasizes
fluctuations in more recent sensor samples, a higher correlation between actual and detected gesture
start and end points is expected compared to an evely weighted average.

The detection of gesture start and end is finally performed by an activation threshold and a release
threshold on the EMA value of an entire window. The activation threshold, which is greater than the
release threshold, has to be exceeded by the EMA to detect the start of a gesture. The end of a gesture
is detected when the EMA falls below the release threshold. The resulting hysteresis effect is intended
to avoid false positives and false negatives at the transitions. The values for activation and release
threshold have been empirically determined by experiments as 20.0 and 2.0, respectively.

After calculating the DTW distances to all templates and the EMA of a window, the class assignment is
performed in the following way: If the EMA value indicates no gesture or none of the DTW distances
falls below its class-dependent distance threshold, the window is labeled as null. Otherwise, the
arg min evaluation selects the class label among the remaining distance values that fall below their
class-dependent distance threshold.
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The aforementioned recognition system can be optimized in many ways regarding computation
time and recognition performance. Especially the latter is necessary for a practical application
of the system. This however is beyond the scope of the implementation, as it solely serves as
an experimental implementation for the evaluation of model accuracy in different parallelization
approaches. Nevertheless, one optimization that gets immediately obvious, is the disabling of DTW
calculations for windows without signal fluctuations (and thus, no gestures to be classified), as detected
by the EMA. This however, imposes data-dependent behavior which cannot be captured by CSDF
graphs. The modeling and analysis of HAR systems with dynamic behavior is discussed in Chapter 5.

4.5.2 Hardware Architecture

In order to facilitate parallel processing, the described DTW-based recognition system has been
implemented on a multi-processor system in different parallelization configurations. As a hardware
platform, the Texas Instruments (TI) TMS320CC678 8-core fixed- and floating-point digital signal
processor [113] has been chosen. The TMS320C6678 features 8 homogeneous DSP cores with clock
rates of 1.0GHz, 1.25GHz, or 1.4GHz.

Each DSP core has 32KB of first level Static Random-Access Memory (SRAM) for program (L1P)
and data (L1D), each, which can be partially or fully configured as cache. The SRAM that is not
configured as cache is used as scratchpad memory. Supported L1P and L1D cache sizes are 0KB,
4KB, 8KB, 16KB, and 32KB. When configured as such, the L1P cache is direct mapped, while L1D
is two-way set associative. Furthermore, each processor core features 256KB second level SRAM for
data (L2D), that can be fully or partially configured as four-way set associative cache in sizes of 0KB,
32KB, 64KB, 128KB, 256KB, or 512KB.

Additionally, all processor cores share 4MB of so-called Multicore Shared Memory (MSM) SRAM.
The MSM can either be configured as L2 shared SRAM which can only be cached by L1 caches or
configured as L3 shared SRAM which can also be cached by L2 caches. As development platform the
TMDSEVM6678L evaluation board has been used, which additionally provides 512MB shared L3
DDR3 RAM which is, together with the MSM, managed by the Multicore Shared Memory Controller
(MSMC).

The so-called Multicore Navigator offers 8192 multipurpose hardware queues and a queue manager as
well as a Direct Memory Access (DMA) unit for zero-overhead data transfers. The communication
between processor cores, MSMC, Multicore Navigator, and other peripherals is realized by a Network-
On-Chip (NoC) based on a non-blocking switch fabric, called TeraNet.

For an overview see Figure 4.14. Implementation details on the hand gesture recognition system on
the TMS320C6678 architecture can be found in Appendix A.

4.5.3 Analysis Model

The Application model of the hand gesture recognition system for the experiments is shown in Fig-
ure 4.15(a), together with the hardware model in Figure 4.15(b). In order to analyze different mappings
and schedules the application model is annotated with mapping edges. Accordingly, execution times
depending on the underlying hardware component are attached. For the experiments, all actor execution
times have been measured from an actual implementation on the target hardware. Furthermore a
schedule has to be added to the application model. The resulting model represents the analysis model.



74 4 Thread-Level Parallelism

Figure 4.14: Block diagram of the TMS320C6678 multi-core DSP architecture by Texas Instruments.

From [113].

Note that mapping edges are only used as an intermediate step in the construction of the analysis
model, and are not part of the resulting dataflow graph to be analyzed.

Four representative generic mappings and schedules have been chosen for the experiments. In each
configuration, actor DA is mapped to the sensor SE, the sliding window segmentation is mapped to the
initiator core IN, and the evaluation is mapped to the evaluator core EV. The differences between the
four configurations regarding the mapping are mainly the different distributions of DTW instances to
the available processor cores of a single tile, while a tile consists of different processor cores in each
configuration as described in Section 4.4.4.

Since the gesture recognition system is performing 25 DTW distance calculations, the application
graph consists of 25 DTW actors D1-D25, which generally could be executed in parallel. Note
that the actual DTW calculation is solely depending on the length of the templates and the sliding
window. However, in the experiments the sliding window has a fixed size of 125 samples. Therefore,
the actual DTW execution time in the experiments is directly depending on the template sizes. The
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Figure 4.15: Application model (a) and hardware model (b) of the hand gesture recognition system.

DTW calculation of a particular template is referred to as a DTW instance. As an example, the DTW
calculation for template x will be referred to as DTWx, and likewise the corresponding execution time
will be referred to as δDTWx . Additionally, the EMA calculation can be assigned in parallel to the DTW
instances as well. Thus, in theory all actors D1-D25 and EMA can be processed in parallel in the
application model. However, during the mapping, actors are assigned to available worker cores of the
system, i.e., W1-W6, and a sequential static order schedule is constructed. Since finding the optimal
mapping involves a selection among 626 ≈ 1.7 ·1020 different mapping options, and a design space
exploration is out of scope for the thesis at hand, a simple heuristic has been used to select a mapping
for each configuration.
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Table 4.3: Actor mapping of the application model to the hardware architecture in all four

configurations.

Actor Configuration Template Size [Samples]

C1 C2 C3 C6

DTW14 W1 W1 W1 W1 189
DTW23 W1 W1 W1 W1 1,107
DTW10 W1 W1 W1 W1 279
DTW22 W1 W1 W1 W1 918
DTW13 W2 W1 W1 W1 306
DTW21 W2 W1 W1 W1 864
DTW15 W2 W1 W1 W1 315
DTW17 W2 W1 W1 W1 810
DTW11 W3 W2 W1 W1 315
DTW20 W3 W2 W1 W1 783
DTW12 W3 W2 W1 W1 342
DTW2 W3 W2 W1 W1 720
DTW1 W3 W2 W1 W1 360
DTW18 W4 W2 W2 W1 702
DTW9 W4 W2 W2 W1 387
DTW25 W4 W2 W2 W1 693
DTW6 W4 W2 W2 W1 459
DTW16 W5 W3 W2 W1 675
DTW4 W5 W3 W2 W1 549
DTW19 W5 W3 W2 W1 612
DTW7 W5 W3 W2 W1 477
DTW24 W6 W3 W2 W1 585
DTW8 W6 W3 W2 W1 513
DTW3 W6 W3 W2 W1 459
DTW5 W6 W3 W2 W1 522
EMA W6 W3 W2 W1 /

DA SE SE SE SE
SW IN IN IN IN
CL EV EV EV EV

To this end, the templates, and thus the DTW instances are first sorted is descending order w.r.t. their
number of samples and then reordered by subsequently selecting instances from the top and bottom
of the sorted list in an interleaved manner, starting with the longest template. The EMA is appended
to the reordered list. The reordered list can be found in the first column of Table 4.3 along with the
corresponding template sizes in the last column. The mapping of each configuration is then defined by
a generic mapping function taking the number of cores per tile NWK of a particular configuration as a
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parameter. Furthermore, the function takes the index j ∈ [0,NWK −1] of a worker core within a tile and
returns a closed interval [s, t] which specifies the indices (starting at zero) within the reordered list of
DTW instances that are mapped to a worker core j, with:

[s, t] =
[︃⌊︃

j · ND

NWK

+0.5
⌋︃
,

⌊︃
( j+1) · ND

NWK

+0.5
⌋︃
−1
]︃
, (10)

where ND is the number of DTW instances (templates) and NWK is the number of cores per tile of that
configuration. The last worker core WNWK−1 of a tile additionally gets EMA appended to its mapping
list. For the sake of readability, the mapping edges have been omitted in Figure 4.15. Instead, the
mapping for each configuration is listed in Table 4.3.

For each particular mapping, a generic schedule has been selected. Since in the experiments all of
DTW and EMA actors could start at the same point in time, i.e., when a new window has arrived, and
the results are only sent to EV when the last DTW or EMA instance has finished, the processing order
on a particular worker core has no impact on the total latency of a sliding window. Therefore, a simple
static order schedule from s to t in ascending order has been implemented, with [s, t] calculated from
Equation (10). Additionally, EMA is executed at last on the last worker cores WNWK−1 of each tile.

4.5.4 Model Refinement

To account for timing on the selected target hardware, a model refinement has been performed for the
analysis models, which will be explained in the following. To reduce model complexity, all actors
mapped to the same worker core are merged into a single actor. Each chosen configuration for the
experiments is utilizing six worker cores, either as a single tile (configuration C1) or as multiple tiles as
discussed in Section 4.4.4. Therefore, each analysis model has exactly six actors D1-D6 representing
DTW and EMA calculations on each worker core. By merging all actors on a worker core, the channels
of the dataflow model are altered. This is in line with the implementation, as will be explained in the
following.

Instead of sending entire windows over the network-on-chip, messages are used to communicate
pointers to the corresponding addresses in shared memory containing the sliding window data. Thus,
the communication of sliding window data is performed as a combination of message passing and
shared memory communication. To account for the message sending and receiving as the primary direct
communication and synchronization between processor cores, token production and consumption rates
between SW and DTW actors have been changed from 125 to 1, as only a single message is sent.
Furthermore, merging all DTW actors mapped to the same worker core into a single actor, refines the
message sending as well, as only a single message is sent to a processor core in the implementation.
This is shown in Figure 4.16 for the analysis model in configuration C2. It can be seen that, in addition
to self-edges of stateful actors of the application model as well as scheduling edges during mapping,
a feedback channel from CL to SW with six initial tokens has been added. The feedback channel is
synchronizing the execution of SW and CL in order to indicate that a particular tile is available for
processing a new sliding window. The production and consumption rate on the feedback channel
correspond to the number of messages, i.e., the number of worker cores per tile, which have to be sent
back to SW in order to dispatch the next window to the worker cores. In a configuration with two
tiles and thus, three worker cores per tile (C2), the production and consumption rate on said feedback
channel is 3 correspondingly. This is shown in Figure 4.16 as well. However, note that six initial
tokens are on the feedback channel, as in every configuration 6 worker cores are processing in parallel.
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Figure 4.16: Analysis model in configuration C2 with merged actors on each worker core.

To account for the actual timing of message passing and shared memory communication, the refinement
is continued in the following.

As mentioned in Section 3.4.1, the real-time performance of the communication channels can be
modeled implicitly. This is straight forward for the selected hardware platform, as messages are
communicated over non-shared hardware queues. In order to implicitly model throughput constraints
into the analysis model, communication channels between different processor cores have to be modeled
by additional actors.

In Figure 4.17, an example SDF graph is shown. Actors A and B are mapped to different processor
cores P1 and P2. A communication channel c between A and B is implicitly mapped to the hardware
communication link t. When A produces n tokens on c, these tokens immediately become available
for B in the example dataflow graph. However, in an actual implementation, communication of data
is limited by a certain throughput constraint of the channel, i.e., due to the transmission time tT of a
message. Additionally, communication is subject to a delay, e.g., the Time of Flight (ToF) which is the
time that passes during propagation of each bit over the hardware link from the sender to the receiver.
Furthermore, each communication latency is subject to a sending and receiving overhead, which in
the context of this thesis is defined as the active time of the processor that is spend when sending or
receiving data, respectively.

To refine the analysis model towards the transmission delay of data, a mapped dataflow channel can be
represented by additional dataflow actors representing the aforementioned timing aspects, i.e., ToF,
transmission time, sending overhead, and receiving overhead. In very short communication links,
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Figure 4.17: Mapped synchronous dataflow graph model with inter-processor communication between

the two actors A and B.

e.g., NoCs, ToF might be in the scale of picoseconds to nanoseconds which may allow to neglect this
aspect in the dataflow model, depending on the level of abstraction. In the experiments section of
this chapter, ToF has been neglected and was not included in the model. However, for the sake of
completeness, both versions, with and without ToF will be discussed in the following. The refined
model of Figure 4.17 is shown in Figure 4.18(a) and Figure 4.18(b), without and with ToF, respectively.

The sending overhead is modeled by actor MS. As it represents active time on the processor core, this
actor must be mapped to the same processor core as the actor whose data sending it represents. For the
same reason, this actor is subject to scheduling. As one token represents a defined unit of data for the
application model, the production rate of actor A represents n units of data. To this end, the execution
time δMS of the sending overhead MS is the time overhead for a single data unit, which has to be fired n
times and thus has a repetition vector entry of γ(MS) = γ(A) ·n. Finally, n initial tokens are required as
initial start condition of the graph on the scheduling channel between MS and A or on the channel from
A to MD, depending on the initial start condition. Alternatively, MS could represent the communication
of n units at once, which would result in a consumption from and production to A of n tokens instead
of one and a correspondingly scaled execution time by n. Likewise, the receiving overhead on actor B
is modeled with actor MR, which is subject to mapping and scheduling accordingly.

The transmission time of data over the hardware link is modeled by actor MT (see Figure 4.18(a)
and Figure 4.18(b)) or more specifically, by its execution time δMT . As there can only be one data
transmission on a hardware channel at a time, this actor receives a self-edge, to avoid auto-concurrency.
This actor and its self-edge model the maximum throughput of the hardware channel, which is 1

δMS
,

resulting from its transmission time of one data unit over the hardware link. To this end, the production
and consumption rate of MT equals one. This is also necessary, as production and consumption rates
of A and B, respectively, may be co-prime. Using a production and consumption rate of one for MT

allows actor B to be fired as soon as m tokens are received, i.e. m data units have arrived at B, instead
of waiting for an integer multiple x of n units of data to arrive at B with x ·n ≥ m.

Finally, as mentioned above, the ToF or other additional delays, which are not affecting the throughput
but each unit of data equally, can be modeled as an additional actor, e.g., actor MD in Figure 4.18(b).
This actor has no self-edge, as it represents a delay that does not affect the throughput. Hence, each unit
of data will be affected by a constant delay, which allows auto-concurrency for the corresponding actor
in the model. Again, the production and consumption rate equals one, as the delay applies to each unit
of data individually and immediately upon propagation. Note that additional actors without self-edges
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Figure 4.18: Refinement of inter-processor communication (a) without and (b) with constant

propagation delay of the hardware link and abstraction of sending and receiving overheads (c) without

and (d) with constant propagation delay of the hardware link.

are restricted to SDF actors in case of CSDF analysis models, as otherwise functional determinacy
might be compromised [16]. However, in the experiments of this chapter, ToF is neglected due to the
comparably short structures of the NoC and thus, is not part of the analysis models.

The above refinement has been performed for the analysis models of each configuration in the
experiments. In order to account for the shared memory communication, the worst-case timing of
copying the current window from shared memory to the scratchpad memory of the worker core is
contained in its receiving overhead. This memory copying is referred to as MCP in the following.
Likewise, writing back the DTW and EMA results into the message is contained in the sending
overhead of each worker core. The memory write back is referred to as MWB in the following. The
time of reading the results of all messages together is abstracted into the execution time of CL. This
abstraction is based on the worst case, i.e., configuration C1, with six messages arriving to CL. As
a result, the annotated execution time of CL does not need to be changed for different mappings of
D1-D6 and is thus, independent of the parallelization configuration in the models. Furthermore, actor
SW does not contain shared memory writes of sliding window data in its sending overhead, as in
the experiments, data for the whole test sequence is already present in shared memory. Therefore,
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Figure 4.19: Refined analysis model of the hand gesture recognition system in configuration C2.

the timing analysis can be considered from the time as soon as sensor data samples are received and
written to shared memory of the initiator core.

During model refinement, the model complexity is increasing due to added refinement actors. Therefore,
the refined analysis model is abstracted again, although with a different focus. This is performed for
the analysis models in the experiments, in order to reduce scheduling complexity of message sending
and receiving overheads. To this end, the schedule between an actor and its receiving overheads, e.g.,
actors A and MS in Figure 4.18(a), is abstracted to its worst-case behavior. An actor A and its receiving
overhead are merged into a single actor and their execution times are accumulated by a weighted sum
w.r.t. their repetition vector entry ratio. As an example, the repetition vector entry of actor MS equals
γ(MS) ·n = γ(A). Thus, the resulting execution time of the merged actor AR equals δAR = δA +n ·δMS .

The resulting merged actor AR is depicted in Figure 4.18(c). The aforementioned merging, abstracts the
sending time of each unit of data to the sending time of the last unit of data that is propagated over the
hardware channel. Furthermore, this step can be applied to the sending overheads of multiple messages
from one actor to different channels, abstracting the schedule of message sending to its worst-case
behavior. Likewise, the same abstraction can be applied to the receiving overhead of the receiver actor,
i.e., actors B and MR, which results in actor BR in Figure 4.18(c). For the sake of completeness, the
corresponding graph with additional ToF modeling is depicted in Figure 4.18(d).

The aforementioned abstraction has been performed for the analysis models of all four configurations
in order to reduce model complexity. All sending overheads and receiving overheads of SW, D1-D6,
and CL have been merged and included into the execution times of said actors. The resulting analysis
model of configuration C2 is depicted in Figure 4.19. For the sake of brevity, only the analysis model
of configuration C2 is shown, as its contains the modeling aspects within, as well as between different
tiles.
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Model annotation All execution time annotations for the refined models have been measured on the
target platform. Therefore, timestamp functions have been used before and after the individual code
section of each actor. Measurements for model annotation have been performed on the training dataset.
Especially, the worst-case execution times δMCP, δDTW1 − δDTW25 , δEMA, δMWB, and δCL have been
measured for each sliding window and their maximum values have been used for actor annotations.
The execution times δMS and δMR have been measured in loops at initialization time of the software as
well as the round trip time tRT T of sending a message from initiator to different processor cores which
immediately sent it back. From the sets of measured sending and receiving overheads tMS and tMR and
the round trip time tMRT T , the worst-case transmission time δMT has been calculated by:

δMT =
max tMRT T

2
− (min tMS +min tMR).

The resulting WCET of message transmission times resulted in δMT = 11,894ns. The underlying
minimum (min t), maximum (max t), and average (t) of the measurements together with their corre-
sponding standard deviation st , coefficient of variation CVt , and the number of all measurements # are
summarized in Table 4.4.

The execution time δSW ∗ basically consists of sending and receiving overheads, since the sliding
window data is already in shared memory. Therefore, δSW is assumed to be close to zero and thus
δSW ∗ solely consists of six sending and receiving overheads. Note that δSW ∗ as well as δCL∗ include six
sending and receiving overheads regardless of the configuration. This abstracts its timing behavior
to the WCET among all configurations and reduces design complexity by keeping δSW ∗ and δCL∗

independent from the configuration. As a result, only execution time annotations of actors the mapping
relations of which are actually affected by different configurations have to be adapted.

From the coefficients of variation in Table 4.4 it can be seen that most of the code sections are subject
to very little timing variations. This is a) due to the dataflow-oriented nature of most of the recognition
software stages with little control flow and b) the rather high determinacy of the hardware architecture,
especially considering the implemented memory configuration with scratchpad memories instead of
caches. However, for CL and MWB, the measured values are subject to high variations in execution
time with coefficients of variation of up to almost 60%. The reason behind the high variation in
execution time of MWB is its linear dependency w.r.t. to the number of DTW distances that have to
be written to memory and thus the number of executed DTW instances on a worker core. Therefore,
the execution time of MWB is directly dependent on the configuration. This could be substantiated by
analyzing its statistical timing parameters per configuration, leading to a coefficient of variation less
than 0.4% for each configuration individually.

Lastly, the high coefficient of variation of 28.77% in execution time of CL is caused by two factors.
The timing of CL depends on the number of messages to evaluate for a single sliding window and thus
on the configuration. However, its high level of control flow in the management of asynchronously
arriving messages, the selection of DTW values that fall below their class-dependent thresholds, and
the arg min evaluation of remaining DTW values is causing high variations in its execution time as
well. While all other actor WCET annotations are rather close to their mean values, the high level of
control flow of actor CL suggests a proper WCET analysis for model annotation. This however, has
not been performed in the experiments, and its maximum observed execution time has been annotated
in the analysis models.
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Table 4.4: Execution time tex measurements for CSDF analysis model annotation.

Name # tex [ns] stex [ns] CVtex min tex [ns] max tex [ns]

DTW1 22,053 5,848,250 4,051 0.07% 5,837,706 5,862,066
DTW2 22,053 11,666,500 13,433 0.12% 11,629,310 11,709,908
DTW3 22,053 8,901,620 6,139 0.07% 8,882,718 8,922,812
DTW4 22,053 7,453,820 5,307 0.07% 7,439,192 7,475,085
DTW5 22,053 8,459,820 7,094 0.08% 8,438,800 8,489,155
DTW6 22,053 7,449,020 4,216 0.06% 7,437,838 7,466,050
DTW7 22,053 7,763,200 4,715 0.06% 7,750,156 7,783,218
DTW8 22,053 8,304,760 5,410 0.07% 8,289,191 8,327,348
DTW9 22,053 6,301,300 3,355 0.05% 6,292,621 6,315,007
DTW10 22,053 4,555,650 2,122 0.05% 4,549,821 4,564,800
DTW11 22,053 5,118,320 2,368 0.05% 5,112,592 5,127,810
DTW12 22,053 5,549,230 3,004 0.05% 5,540,701 5,560,983
DTW13 22,053 4,980,820 2,629 0.05% 4,975,045 4,991,360
DTW14 22,053 3,100,000 1,413 0.05% 3,096,055 3,105,033
DTW15 22,053 5,120,380 2,501 0.05% 5,113,399 5,129,857
DTW16 22,053 11,002,000 8,701 0.08% 10,972,647 11,036,159
DTW17 22,053 13,148,000 11,813 0.09% 13,109,106 13,188,169
DTW18 22,053 11,395,400 9,767 0.09% 11,365,694 11,431,977
DTW19 22,053 9,924,200 6,219 0.06% 9,905,805 9,947,128
DTW20 22,053 12,734,400 10,715 0.08% 12,702,107 12,774,217
DTW21 22,053 14,062,100 15,056 0.11% 14,020,475 14,112,473
DTW22 22,053 14,870,600 21,123 0.14% 14,821,051 14,945,991
DTW23 22,053 17,927,400 23,368 0.13% 17,872,229 17,997,618
DTW24 22,053 9,528,740 7,143 0.07% 9,509,424 9,554,205
DTW25 22,053 11,266,300 10,789 0.10% 11,231,304 11,299,466
EMA 22,053 25,960 0 0.00% 25,960 25,960
CL 22,053 584 168 28.77% 350 1,038
MCP 56,529 15,046 39 0.26% 15,014 15,252
MWB 56,529 709 425 59.94% 316 1,766
MS 336,000 4,425 12 0.27% 4,422 5,282
MR 336,000 104 1 0.96% 104 742
MRT T 1,008,000 31,215 108 0.35% 31,143 32,839
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4.6 Evaluation

In this section, the accuracy of model-based results is evaluated experimentally by comparison to
corresponding implementations. As a result, the performance metrics to be evaluated need to be
measured from the implementation. The conducted performance assessments are described in the
following section and the acquired results are be presented in Section 4.6.2.

4.6.1 Performance assessment

As each parallelization configuration imposes different effects on the throughput of the application,
the real-time behavior of the application is monitored. Real-time performance w.r.t. throughput is
achieved when each released sliding window is successfully dispatched to one of the tiles of the system.
Each tile, when a sliding window is dispatched to it, remains unavailable from the moment the initiator
core sent its messages to the individual worker cores of that tile until the initiator receives the messages
back from the evaluator which evaluated the DTW distance results and the EMA value of that particular
window. Therefore, the time of sending a window to the worker cores of a tile, processing the window,
sending the results to the evaluator, evaluating the DTW distances and EMA result, and sending the
messages back to the initiator needs to be shorter than NK ·TSW with NK being the number of tiles and
TSW being the period between two consecutive sliding windows, i.e., 40ms. If this is satisfied, at least
one tile is available upon dispatching of a new sliding window. Otherwise, windows have to be skipped
due to insufficient throughput. Thus, a simple monitoring of successfully dispatched windows to one
of the tiles is sufficient to assess real-time performance in the experiments. The results are recorded
along with sliding window IDs and written to a file after all windows of a test sequence have been
processed. The recording is performed at the end of the initiator loop, in order to not interfere with the
the sending of sliding windows and thus influencing the timing behavior.

Another performance metric that is of importance is the latency of the recognition system, as it directly
influences its responsiveness and thus, its usability. In this context, latency is described as the time
that elapses from the release of a new window on the initiator, until the classification of the window
at the evaluator core, based on its calculated EMA and DTW distance values. In order to measure
latency, timestamp modules provided by the TI SYS/BIOS kernel have been used. However, since
the DSP processor cores have individual clock sources which are not synchronized w.r.t. each other,
taking a start timestamp at the initiator and an end timestamp on the evaluator is not meaningful. To
this end, a timestamp task with a higher priority than the classification task has been implemented on
the evaluator. The timestamp task is implemented as a loop with a blocking message read at its entry.
Note that special timing messages and corresponding message queues have been implemented, in order
to distinguish these from messages with DTW distance information. The timestamp task implements a
timestamp read upon successful return of the timing message read operation and saves the timestamp
in the timing message before sending back to its origin, i.e., the initiator. The initiator uses this
functionality and sends a timing message to the evaluator and waits for its return before sending a
new sliding window to the worker cores. The returned timing message result will then be written and
carried along within the messages that communicate sliding window pointers to the worker cores and
DTW distances to the evaluator. At the evaluator side, a second timestamp is taken after labeling an
evaluated window. The differences are recorded along with sliding window IDs and written to a file
after the test sequence of sensor data has been entirely processed. However, the overhead, resulting
from the additional transfer of the timing message from evaluator to initiator, has been removed
from the latency measurements. Due to the independent hardware queues provided by the Multicore
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Table 4.5: Measured round trip time of time messages between initiator and evaluator core.

# tRT T,t [ns] stRT T,t [ns] CVtRT T,t min tRT T,t [ns] max tRT T,t [ns]

228,000 21,969 41 0.19% 21,919 22,763

Navigator and the fixed message sizes, the transmission time of a timing message can be expected
to suffer from only minor variations, which could be substantiated by further evaluation. In order
to assess the imposed latency overhead due to the additional timing message transmission time, the
round trip time tRT T,t of that timing message path is measured 3,000 times at initialization. Note that
the t subscript is used to distinguish the round trip time for timing messages from the round trip time
of messages that contain sliding window and DTW distance information. The 3,000 measurements
have been evaluated regarding mean tRT T,t , standard deviation stRT T,t , coefficient of variation CVtRT T,t ,
minimum min tRT T,t , and maximum max tRT T,t among all 19 test sequences in all four configurations,
i.e., 228,000 measurements in total. The results are listed in Table 4.5, which show that the variation
in transmission time is comparably small. These measured values have been used to compensate the
measuring overhead. From all timing measurements of the recognition process, half of the measured
RTT of the time messages is subtracted in order to compensate the induced overhead. Note that for
mean latency, half of the mean RTT has been subtracted but for minimum and maximum latency,
half of the maximum and minimum RTTs have been subtracted, respectively, in order to calculate
consistent worst- and best-case results.

The third performance indicator that has been measured is the processor utilization. In the thesis at
hand, processor utilization Up is defined as the average ratio of active time ta in which the processor
is actively executing the application code and the observation time to. Hence, the difference to − ta
denotes the idle time of the processor core or time that the processor is executing code that is not part
of the actual application, e.g., performance assessment related code. In order to measure processor
utilization, TI System Analyzer instrumentation libraries have been integrated into the application
code, in order to monitor performance indicators like processor load, execution traces, and events
by logging and uploading to a host computer at run time. The execution analysis feature has been
utilized, which allows for building execution graphs, analyzing concurrency, and profiling tasks. To
this end, log buffers have been configured for the worker cores and the System Analyzer module has
been compiled into the application for run-time task profiling. From the acquired logs, which include
start and end times of threads, processor utilization has been analyzed.

4.6.2 Evaluation Results

In this section, model-based analysis results and their corresponding measurements on the experimental
implementation are presented and compared with each other.

Model results The analysis models have been analyzed with CSDF analysis tools of SDF3 [13], w.r.t.
repetition vector and throughput. However, since the CSDF analysis tools do not include a maximum
response time analysis, all analysis models have additionally been converted to their corresponding
SADF equivalent with sdf3convert-csdf-sadf, since the SADF tools include maximum response
time analysis. The repetition vector of all analysis models is shown in Table 4.6.



86 4 Thread-Level Parallelism

Table 4.6: Repetition vector γG entries of the CSDF analysis models.

Cfg. DA SW M1 M2 M3 M4 M5 M6 M7 M8 M9

C1 2 1 1 1 1 1 1 1 1 1 1
C2 4 2 1 1 1 1 1 1 1 1 1
C3 6 3 1 1 1 1 1 1 1 1 1
C6 12 6 1 1 1 1 1 1 1 1 1

Cfg. M10 M11 M12 M13 D1 D2 D3 D4 D5 D6 CL

C1 1 1 1 6 1 1 1 1 1 1 1
C2 1 1 1 6 1 1 1 1 1 1 2
C3 1 1 1 6 1 1 1 1 1 1 3
C6 1 1 1 6 1 1 1 1 1 1 6

The maximum response time max ˆ︁trsp acquired from the analysis models is representing the latency of
the recognition pipeline. That is the time between a new sliding window is released by the initiator until
the window is classified by the evaluator. The maximum response time results of each configuration
acquired from the analysis models are listed in Table 4.7. It can be seen that configurations with less
tiles have a shorter latency. As an example, in configuration C6, a sliding window is processed in
sequence on a worker core. However, the processing of a window cannot generally be parallelized to
an arbitrary degree. This can also be observed from the maximum response times of all configurations.
Ideally, with N processor cores, configuration C1 would be performed in 1/N time w.r.t. to its single
core computation. However, as Amdahl states in [114], most of real world computing tasks are not
fully parallelizable. Therefore, the maximum response times are not linearly decreasing w.r.t. the
number of processor cores of a tile. In fact, although latency itself cannot be used as a measure of
real-time behavior in terms of the system throughput, it can be seen that the maximum response time
of configuration C1 exceeds its sliding window period of 40ms. The maximum response times of
configurations C2, C3, and C6 fall below their tile-specific sliding window periods, i.e., 80ms, 120ms,
and 240ms, respectively.

The real-time indicator at hand however, is the actor throughput T H(DA) which directly informs about
the ability of processing sliding windows at the desired rate with which sensor data is sampled. From
Table 4.7 it can be seen, that this is not the case for configuration C1, while all other configurations

Table 4.7: Response time max ˆ︁trsp, graph throughput T H(G), and throughput T H(DA) of actor DA

analyzed from the CSDF analysis models.

Cfg. max ˆ︁trsp [ns] T H(G) [s−1] T H(DA) [s−1] Real Time

C1 41,155,100 24.26 48.51 No
C2 78,155,500 12.50 50.00 Yes
C3 119,190,000 8.33 50.00 Yes
C6 227,264,000 4.17 50.00 Yes
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Table 4.8: Processor utilization acquired from the CSDF analysis models.

Cfg. ˆ︁U(W1) ˆ︁U(W2) ˆ︁U(W3) ˆ︁U(W4) ˆ︁U(W5) ˆ︁U(W6) ˆ︁U
C2 97.57 % 96.96 % 89.48 % 97.57 % 96.96 % 89.48 % 94.67 %
C3 99.24 % 90.08 % 99.24 % 90.08 % 99.24 % 90.08 % 94.66 %
C6 94.65 % 94.65 % 94.65 % 94.65 % 94.65 % 94.65 % 94.65 %

provide the necessary throughput T H(DA) = 50s−1. Hence, the mapping of DTW instances on 6
processor cores (configuration C1) is either not possible in an efficient way, or is at least not efficient
enough in the particular chosen mapping. Consequently, configuration C1 is not further analyzed w.r.t.
processor utilization. For configurations C2, C3, and C6, the model-based results suggest real-time
performance.

The processor utilization ˆ︁U(p) of the worker cores is analyzed from the analysis models, as introduced
in Section 3.4.1. With Equation (5) all worker core processor utilizations have been calculated from
the analysis models of configurations C2, C3, and C6. The results are shown in Table 4.8. Inspecting
the average processor utilization among all worker cores ˆ︁U , it can be seen that the configuration does
not have a substantial impact on the total processor utilization among all worker cores. Although
the discrete nature of distributing differently sized software instances on a set of processor cores is
noticeable in the processor utilization of each particular core, it does not impact the overall processor
utilization of the MPSoC significantly. However, the number of worker cores per tile does influence
the total processor utilization slightly. In a configuration with NWK worker cores per tile, the sliding
window data has to be loaded from shared memory NWK times, which also increases the active time of
each worker core to some degree. In Table 4.8, a slight decrease in average processor utilization for
configurations with more tiles and thus, less worker cores per tile, can be observed.

Measured results In order to compare the aforementioned model-based results, timing of the
corresponding implementations has been measured in experiments. Therefore, the recognition software
has been executed on all 19 test datasets. For each processed sliding window, the latency (response
time trsp) has been measured as described in Section 4.6.1, and the drop of windows due to insufficient
throughput has been monitored. The worst and best case response times min trsp and max trsp,
respectively, as well as the mean response time trsp, its standard deviation strsp , and its coefficient of
variation CVtrsp are listed in Table 4.9.

Table 4.9: Response times trsp measured from the implementation.

Cfg. # trsp [ns] strsp [ns] CVtrsp min trsp [ns] max trsp [ns] Real Time

C1 2,807 40,237,123 20,757 0.05 % 40,169,856 40,311,056 No
C2 5,955 76,303,161 48,464 0.06 % 76,162,442 76,468,304 Yes
C3 6,108 116,404,797 63,106 0.05 % 116,208,746 116,646,730 Yes
C6 6,538 222,041,748 99,997 0.05 % 221,731,938 222,476,012 Yes
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Figure 4.20: Measured and model-based maximum response time results.

It can be seen, that similar to the model-based results, the mean, max., and min. response times of
configuration C1 are higher than the sliding window period of 40ms. Response times of all other
configurations are below their tile-based sliding window periods, i.e., 80ms, 120ms, and 240ms for
configuration C2, C3, and C6, respectively. However, in order to verify real-time behavior, it has been
logged whether all windows could be dispatched successfully or some had to be discarded due to
unavailability of worker cores. While for configuration C2, C3, and C6 no window was discarded, in
configuration C1 every other window had to be discarded due to unavailable tiles upon window release.
Hence, configuration C1 is not performing in real time, while configurations C2, C3, and C6 do. This
could be correctly indicated by the throughput results of the analysis models.

Furthermore, the small coefficients of variation of the response times in Table 4.9 indicate a highly
dataflow-oriented performance of the recognition system with little control flow. This substantiates the
motivation to model and analyze human activity recognition systems with dataflow graphs.

In order to evaluate the accuracy of model-based results, a comparison between measured maximum
response times and model-based analysis results is shown in Figure 4.20. Additionally, the underlying
values are listed in Table 4.10, including the absolute and relative difference between model-based
and measured maximum response times. It can be seen that the model-based results indeed show a
worst-case estimation in the conducted experiments, as the worst-case measured response times fall
below the model-based worst-case estimations. Furthermore, the relative difference is rather small
with 2.09% to 2.21%, which offers an accuracy that is sufficient to substantiate design decisions at
design time.

Table 4.10: Comparison of measured (max trsp) and model-based analysis (max ˆ︁trsp) response time

results.

Cfg. max ˆ︁trsp [ns] max trsp [ns] ∆ max trsp [ns] ∆r max trsp

C1 41,155,100 40,311,056 844,045 2.09 %
C2 78,155,500 76,468,304 1,687,197 2.21 %
C3 119,190,000 116,646,730 2,543,271 2.18 %
C6 227,264,000 222,476,012 4,787,989 2.15 %
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Table 4.11: Measured processor utilization from implementation.

Cfg. U(W1) U(W2) U(W3) U(W4) U(W5) U(W6) U

C2 96.34 % 95.76 % 88.18 % 96.34 % 95.76 % 88.34 % 93.46 %
C3 98.08 % 88.79 % 98.08 % 89.03 % 98.08 % 89.03 % 93.52 %
C6 93.29 % 93.81 % 93.81 % 93.81 % 93.81 % 93.81 % 93.72 %

In a second experiment, the recognition software has been performed on all 19 test datasets and
analyzed by the TI System Analyzer tool to log task profiling indicators, i.e., begin and end timestamps
of task executions on the worker cores. From these task profiling logs, processor utilization has been
analyzed. Table 4.11 summarizes the results.

As the model-based results already indicated, it can be seen that the processor utilization of all worker
cores in configurations C6 is balanced best, which is due to the same amount of processing effort
on each worker core in this configuration. A comparison of model-based and measured processor
utilization is depicted in Figure 4.21. The calculated relative differences ∆r are additionally listed in
Table 4.12. The model-based worst-case estimates of all configurations are higher than the results
measured on the implementation. Furthermore, the relative differences between model-based and
measured results are less than 1.4%.

It can be seen, that similar to the model-based results, the average processor utilization among all
processor cores is mostly independent of the parallelization configuration. However, slight differences
can be observed, which are contrasting the model-based results, i.e., the average processor utilization
is slightly increasing with the number of tiles. Since the increase in processor utilization is comparably
small and within the worst-case abstraction of model-based results, a further investigation of the cause
has been abstained from in this chapter. However, a possible cause is the instrumentation of processor
cores itself, which is investigated in more detail in Section 5.1.

Although the average processor utilization is not considerably affected by the chosen parallelization
configuration, the processor utilization of each individual worker core depends on the distribution of
templates. Such results allow to consider possible approaches reducing dynamic energy consumption,
e.g., reduction of clock rate and operating voltage, for individual processor cores, if applicable.
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Figure 4.21: Measured and model-based processor utilization.
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Table 4.12: Relative differences between model-based and measured processor utilization analysis

results.

Cfg. ∆r U(W1) ∆r U(W2) ∆r U(W3) ∆r U(W4) ∆r U(W5) ∆r U(W6) ∆r U

C2 1.27 % 1.25 % 1.48 % 1.28 % 1.25 % 1.29 % 1.30 %
C3 1.18 % 1.46 % 1.18 % 1.18 % 1.18 % 1.18 % 1.22 %
C6 1.47 % 0.90 % 0.90 % 0.90 % 0.90 % 0.90 % 0.99 %

To this extend, considerations regarding energy efficiency of the processor cores in a particular
parallelization approach and their task mapping can be made at design time from model-based analysis
results.

In general, the experimental results indicate a model accuracy which is sufficient to substantiate design
decisions at early design stages. The model-based analysis allows to evaluate real-time behavior in
terms if throughput and latency, as well as unused processor resources in terms of processor utilization
to make use of possible energy reduction methods, e.g., voltage an frequency scaling or clock-gating.

Recognition accuracy Finally, the recognition accuracy has been evaluated in all configurations.
As the ground truth has been recorded in terms of gesture sequences instead of labeled timestamps, a
string-based evaluation has been used. To this end, the Levenshtein distance between the ground truth
gesture sequence and the sequence of detected gestures has been calculated. This, however, does not
allow for exact reasoning about recognition accuracy in terms of timing. Anyhow, since recognition
performance is of minor importance for the conducted performance evaluations, a subsequent recording
of new gesture datasets including time-based ground truth annotations has been abstained from.

From the string-based Levenshtein distance, the precision, recall, and F1-score has been calculated.
The results are listed in Table 4.13. It can be seen, that the overall recognition accuracy of the system
is rather mediocre. However, the experimental implementation does not have the aspiration to be a
ready to use gesture recognition system, and was thus not optimized in this regard. One main reason
for the rather mediocre recognition performance is the relatively small number of templates w.r.t. the
high dimensionality of the signals, i.e., nine dimensions. Furthermore, some of the sensor signal axes
might not hold important information for discriminating between the selected gestures, which can
be interpreted as noise that accumulates in the DTW distances. However, optimization regarding the
recognition accuracy is beyond the focus of the thesis at hand.

Table 4.13: Recognition performance of the experimental hand gesture recognition system.

Configuration Precision Recall F1-Score

C2 59.31 % 52.76 % 55.84 %
C3 59.31 % 52.76 % 55.84 %
C6 59.31 % 52.76 % 55.84 %
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What can be seen from the results in Table 4.13, is that the parallelization configurations do not have an
impact on the recognition accuracy. This is in line with the concept, as none of the decisive parameters
like sampling rate, window length, or window overlap is changed among different configurations.
Indeed, such parameters have not been optimized for the experimental implementation and are likely
off from the optimal parameters w.r.t. recognition accuracy. However, functional parameters like
sampling rate, window size, and window overlap are in fact influencing extra-functional properties
like latency, throughput, and processor utilization. Thus, it is crucial to analyze extra-functional
properties as early in the system design as possible to substantiate that selected parameters during
training allow a real-time and energy-efficient system design on a chosen hardware. A design-time
analysis of extra-functional properties takes functional parameters like sampling frequency or window
length and overlap into account. This allows for fast optimization cycles on the functional parameters
providing possibilities for trade-offs with extra-functional properties like throughput, latency, or energy
efficiency.

4.7 Discussion

In this chapter, state-of-the-art parallelization approaches for HAR systems on multi-processor archi-
tectures have been evaluated w.r.t. system throughput, latency, and processor utilization. Furthermore,
their representation in a MoC, i.e., CSDF, has been presented in order to model and analyze their impact
on said extra-functional properties at design time. The model-based estimation of extra-functional
properties has been evaluated with corresponding implementations on a state-of-the-art multi-processor
DSP system-on-chip, which could achieve an average accuracy above 97%. The acquired results
show, that CSDF graphs are a well suited MoC to capture dataflow-oriented processing stages of
sensor-based human activity and gesture recognition systems and respective parallelization strategies.
The accuracy of model-based results in the experiments is accurate enough to substantiate decisions on
parallelization approaches w.r.t. their impact on latency, throughput, and processor utilization early in
the design process.

The parallelization approaches that have been applied in this chapter represent a trade-off between
throughput and latency. While inter-segment parallelization is suitable to reduce latency of classification
tasks which can be partitioned into sub-tasks that can be performed individually, intra-segment
parallelization can still be used to preserve a high throughput when the classification of a single
segment can not be partitioned. The hybrid of both is suitable to find a trade-off, when the number
of possible partitions is still to small to utilize all available resources efficiently or when partitioning
would result in highly unbalanced partitions. However, these approaches are limited to cases, where
the processing of subsequent segments does not impose any dependencies. Furthermore, only equally
sized segments have been considered in this section. When constraints on the maximum segment
lengths can be guaranteed, presented approaches are applicable to worst-case behavior. However,
without a restriction on segment length or for segments with a high variability in lengths, the proposed
methods in this section are unsuitable and modeling and analysis approaches for dynamic behavior are
necessary. Therefore, the following section will focus on dynamic behavior.



92 4 Thread-Level Parallelism



93

5 Context Awareness and Dynamic Behavior

The approaches and results described in this chapter have partially been published previously by the
author in the following publications:

• Dataflow-Based Modeling and Performance Analysis for Online Gesture Recognition [G7]

• Time and Memory Efficient Online Piecewise Linear Approximation of Sensor Signals [G8]

This section investigates data-dependent behavior of the activity recognition chain. Data-dependent
behavior complicates early design-time analysis by adding another level of complexity to the system.
Furthermore, appropriate models of computation are studied that capture dynamic system behavior,
which are still analyzable w.r.t. decisive extra-functional properties like throughput, latency, and
processor utilization.

Possible cases of data-dependent behavior are feature or sensor selection strategies combined with
context awareness. Here, different feature sets or sensors are evaluated based on different user
situations, which are referred to as context. For some contexts, the possibilities of activities and
gestures of the user to perform may be unlikely, which can be exploited by the recognition software by
tailoring templates or feature sets and sensors to each specific context. Hence, specific stages or the
entire ARC can be different for each context, which can be dynamically selected with context changes
at run time.

Here, contexts can be of different nature like location, daytime, or the overall battery level of sen-
sors [51]. Such systems, i.e., systems that dynamically change a predefined finite set of behaviors at
run time, can be represented by multiple ARCs that can differ in some or even all stages. However,
real-time capabilities and energy efficiency of configurations, mappings, and schedules must suffice in
all possible contexts. To this end, different contexts need to be integrated into a model-based design.
Corresponding analysis methods are necessary to estimate a real-time and energy-efficient execution
in and across all possible contexts at design time. In the thesis at hand, this kind of dynamic behavior,
which is characterized by a finite number of different scenarios that can change during run time, is
referred to as scenario-based dynamic behavior. For each of the scenarios, a static ARC exists. The
behavior of which can be modeled statically or cyclo-statically as described in the previous chapter.
This type of scenario-based dynamic behavior is investigated in the first part of this chapter beginning
with Section 5.1.

In the second part of this chapter (Section 5.2), examples of ARC stages with data-dependent ex-
ecution times are discussed. Although SADF is expressive enough to capture discrete execution
time distributions and scenario dependencies within a Markov chain, algorithms with a non-constant
computational complexity due to data-dependent factors can only be modeled to some extend, i.e.,
worst-case abstractions. Finally, fully data-dependent behaviors can be modeled by dynamic dataflow
models, which however, do not allow design-time analysis of important properties like latency and
throughput in general [5]. Furthermore, algorithms with a non-constant computational complexity
are not only difficult to analyze at design time, they impose a difficulty for real-time implementations
on embedded devices with harshly constrained resources, e.g., embedded sensor sub-systems. For
such implementations, the execution time needs to be constrained in order to guarantee real-time
performance by possibly reducing their functionality. A prominent example in the gesture and activity
recognition domain is the Piecewise Linear Approximation (PLA) of sensor signals. PLA techniques
are used to reduce the amount of data that needs to be stored on the device or sent over wireless net-
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works. However, state-of-the-art PLA algorithms impose linear (or worse) computational or memory
complexities w.r.t. the lengths of the linear segments. Hence, they have a data-dependent execution
time and memory demand. Rather than providing a model-based design and analysis approach for
such dynamic behavior, an algorithmic solution is described in the second part of this chapter, leading
to two novel PLA algorithms.

5.1 Scenario-Based Dynamic Behavior

In this section, scenario-based dynamic behavior in activity recognition systems is investigated with
a possible modeling and design-time analysis of extra-functional properties like throughput, latency,
and processor utilization. The notion of dynamic behavior that is considered in this section can be
defined as a finite collection of quasi-static behaviors of an application. As an example, a feature
or sensor selection approach for a context-aware activity recognition might be used for optimized
trade-offs between recognition accuracy and energy consumption. For each context that the recognition
system is able to derive, an optimized ARC can be designed, which is as computationally efficient
as possible but still achieves a reasonable recognition accuracy for its application by using sensor or
feature selection approaches. The corresponding ARC configurations are then selected at run time
when context switches are detected by the system. In this example, a context can be considered as a
scenario with a static behavior while context switches change the ARC to predefined configurations at
run time. As a basic case study, the gesture recognition system in Chapter 4 can be considered. There,
an EMA filter is applied to the derivative signal of squared vector lengths of the raw nine-dimensional
sensor samples within a sliding window. This EMA filter is used to quantify fluctuations of the
sensor signals and thus detect movements of the sensors. Thresholds on the filter value are used to
detect the begin and end of a movement and thus exclude non-movement regions from the recognition
process. However, the system in Chapter 4 has a static ARC and for non-movement segments a gesture
recognition is still performed although the results are discarded and the corresponding windows are
labeled as a null class. A possible optimization w.r.t. the utilization of computational resources and
thus energy efficiency can be achieved by avoiding the execution of costly recognition algorithms
within regions of non-movement in the sensor signals. As a result, the system can perform in two
scenarios, i.e., Full Power (FP) and Low Power (LP), on regions of the sensor signals with and without
signal fluctuations, respectively.

The ARC of both scenarios is shown in Figure 5.1. The ARC depicted in Figure 5.1(a) is identical to
the system described and implemented in Chapter 4. It is used as the ARC of scenario FP, in which the
gesture recognition is performed on sliding windows, due to detected signal fluctuations. In situations
without signal fluctuations, the scenario LP is performed. The ARC of scenario LP is depicted in
Figure 5.1(b). In contrast to scenario FP, the gesture recognition is omitted in scenario LP, but the
EMA calculation is still performed for the sliding windows. Furthermore, no arg min classification is
performed, but the sliding windows are constantly labeled as null while executing in scenario LP.

Note that DTW and EMA calculations are placed in the same ARC stage in Figure 5.1. Although
it would be more intuitive to separate both in two ARC stages with a corresponding order of EMA
followed by the DTW calculations, they have been placed in the same ARC stage, in order to follow the
mapping from Chapter 4. This allows to partially reuse the models and experimental implementation
from Chapter 4 but has some effects on the accuracy and timing behavior as will be discussed in
Section 5.1.6.
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Figure 5.1: Activity recognition chain of the hand gesture recognition system in two scenarios, (a) FP

with movements in sensor signals and (b) LP with non-movement in sensor signals.

In order to model the scenario-based dynamic behavior, different dataflow variants are available.
Among others, Variable-Rate Phased Dataflow (VPDF) [115], SADF[19], Finite State Machine
Scenario-Aware Dataflow (FSM-SADF) [5], and Parametrized FSM-SADF (PFSM-SADF) [116],
are possible examples. A comparison between different MoCs, expressiveness, succinctness, imple-
mentation efficiency, and finally their analyzability can be found in [5]. Considering the requirement
for analysis of extra-functional properties like throughput, latency, and processor utilization and the
capability to capture CSDF behavior, SADF has been selected to model the ARCs in Figure 5.1.

5.1.1 Related Work

This chapter extends the CSDF models of different parallelization configurations of Chapter 4. As a
result, most of the related work was already discussed regarding SDF and CSDF. Additionally to that,
there exists some SADF-specific work which is related to the following section. In order to tightly
capture a certain degree of control flow within dataflow-oriented streaming applications, SADF has
been applied for MPEG-3 and MPEG-4 decoders in [23] and [20], respectively. Furthermore, SADF
has also been used for selecting proper DVFS modes for streaming applications in [117]. Resource
utilization with SADF has been addressed in [118] and [119]. In [118], a run-time configuration based
on trade-offs between resource utilization, memory consumption, and energy consumption, that are
assumed to be provided at design time, has been introduced. However, the evaluation of resource
utilization at design time is not described. In the thesis at hand, processor utilization is analyzed from
mapped and scheduled dataflow models at design time.
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Figure 5.2: CSDF Analysis model in configuration C2 in scenario FP.

5.1.2 Modeling Scenario-Based Dynamic Behavior

Before modeling the dynamic changes between scenarios FP and LP, the adoption of the CSDF analysis
model from Chapter 4 and how it is correspondingly modeled in SADF will be described first. In
Figure 5.2, the CSDF analysis model of configuration C2, with two tiles, and three cores per tile is
shown. It represents the behavior of scenario FP, and has to be converted to an SADF model, in order
to model scenarios changes. For the sake of simplicity, the analysis model without message refinement
is used to explain the adoption.

Cyclo-static behavior with SADF In order to model the CSDF behavior of sliding window dis-
patching to the tiles in a cyclo-static manner, actor SW and actor CL will execute in two different
scenarios depending on their mode, i.e., a and b, sending a window to tile a or b, respectively. In
scenario a, actor SW has a production rate of one on each channel to actors D1a-D3a, and a production
rate of zero on each channel to actors D1b-D3b. Correspondingly, actor CL has a consumption rate
of 1 on each channel from actors D1a-D3a and a consumption rate of zero on each channel from
actors D1b-D3b in scenario a. In scenario b, the consumption rates of one and zero are swapped on
channels to and from actors D1a-D3a and D1b-D3b for actors SW and CL, correspondingly. In order
to change both scenarios in a cyclo-static manner, a detector is added to the graph. The detector det
and its control channels which change the two scenarios are depicted in Figure 5.3. Note that the
shown tokens on the control channels from det to SW and CL are intended to depict a controlled single
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Figure 5.3: SADF analysis model in configuration C2 in scenario FP.

execution of SW and Cl in scenario a, instead of representing initial tokens. The actual number of
initial tokens should match the number of tiles, in order to allow the tiles to execute interleaved in
parallel. Furthermore, their control values should exhibit the corresponding cycling pattern of scenarios
a and b. The corresponding Markov chain of detector det is shown in the top right corner in Figure 5.3.
The transition probabilities between the states are 1.0, and the transition probabilities on the self-edges
are 0.0 and therefore omitted. The initial state is marked as a. With the given parameters, the Markov
chain actually resembles a finite state machine cycling between a and b, with a as the initial state.
Note that the detector Markov chain states represent its sub-scenarios. The actual token values send
over the control channels control the actual scenario of each controlled actor. For the CSDF behavior
replication, Markov chain sub-scenarios and corresponding control token values (actor scenarios) are
equal. As a result, the cyclo-static behavior of the original CSDF graph is achieved, controlled by the
additional detector det.

Alternatively to introducing a separate detector, actors SW and CL could also be modeled as detectors
themselves, each having the same Markov chain as depicted in Fig 5.3 controlling their scenarios
locally. However, their behavior needs to be adapted further when integrating scenario changes between
FP and LP into the model, which are conceptually controlled in the evaluation stage of the software.
Therefore, detector det is modeled separately. By annotating detector det with an execution time of
zero, the timing behavior of the evaluator core is not affected by the added detector and scheduling
edges do not need to be adapted.
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Figure 5.4: SADF analysis model in configuration C2 in scenario FP1 (a) and corresponding Markov

chain (b).

By the aforementioned changes, the SADF model imposes an identical timing and communication
behavior as the corresponding CSDF model in Figure 5.2, except for the additional control tokens,
which have to be excluded from possible data rate analysis techniques on the hardware channels. In
the next step, the integration of scenarios FP and LP into the SADF model will be described.

Scenario modeling with SADF In order to model the scenario changes between LP and FP, actors
D1a - D3b can execute in 2 different scenarios, namely FP and LP (plus a third null scenario, which will
be introduced shortly). The scenario transition probabilities are example probabilities, with p = 0.7
for staying in FP or LP, respectively, and p = 0.3 for changing from FP to LP or vice versa. In order
to acquire annotations for the Markov chain transition probabilities for activity recognition systems,
a priori knowledge, expectations, or case studies about the system behavior need to be available,
either from specifications of the system or in form of user studies that represent expected or corner
cases of the system. These can be analyzed w.r.t. the frequency or ratio of staying in the specified
scenarios and transitioning from such into other scenarios. This procedure has been conducted on test
sequences for offline evaluations of recognition accuracy in the thesis at hand and will be shown for the
analysis models in Section 5.1.3. The resulting Markov chain is a product of the Markov chain defining
the cyclo-static behavior from Figure 5.3 and the aforementioned scenarios LP and FP with their
corresponding transition probabilities. The resulting Markov chain is depicted in Figure 5.4(b). The
structure allows a change from FP to LP at any state with the aforementioned transition probabilities,
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Figure 5.5: SADF analysis model in configuration C2 in scenario LPb (a) and corresponding

Markov chain (b).

but only allows progressions that exhibit the cyclo-static pattern between a and b. The corresponding
control tokens for a single execution of all controlled actors of the SADF graph in sub-scenario FPa are
shown in Figure 5.4(a). Note that while actors D1a-D3a receive the corresponding FP control tokens,
actors D1b-D3b receive a null control token. This is an extra scenario for possibly all controlled actors,
which specifies a production and consumption rate of zero on all incoming and outgoing data channels,
as well as an execution time of zero. The scenario null is implemented for the sake of consistency w.r.t.
the repetition vector entry of the corresponding actor, allowing it to fire without influencing the timing
or communication behavior of the model.

Furthermore, note that the scenarios of actors D1a-D3b only specify the scenario LP or FP (and null)
for the corresponding sub-scenario of det, while their cyclo-static execution is controlled by placing the
right control tokens on the control channels from det. However, for actors SW and CL, the scenarios
actually match all sub-scenarios of det, namely the product of FP and LP and a and b, as not only the
cyclo-static behavior needs to be controlled, but also the production rates on channels to a specific tile
depending on its scenario (FP or LP).

In Figure 5.4(a), the production rate on each channel to actors belonging to tile 1 is simply 1, as in FP
all cores of that tile are performing DTW executions. However, in scenario LP only the last worker
core of a tile is actively executing the EMA calculation and therefore the production rate on the channel
to that actor is 1 while all others are 0. The corresponding control tokens on the actors D1x-D3x are
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Table 5.1: Scenario control tokens for each Markov chain sub-scenario in Figure 5.5(b).

Sub-Scenario SW CL D1a D2a D3a D1b D2b D3b

FPa FPa FPa FP FP FP null null null
FPb FPb FPb null null null FP FP FP
LPa LPa LPa null null LP null null null
LPb LPb LPb null null null null null LP

LP for the last core and null for the remaining cores of each tile, respectively. This is depicted in
Figure 5.5 representing a single execution of all controlled actors in sub-scenario LPb. A summary of
all control tokens sent to controlled actors for each sub-scenario encoded in the Markov chain states is
shown in Table 5.1.

For the different configurations of the model, the CSDF behavior exhibits different number of modes
that are cyclo-statically changing, i.e., the number of modes of SW and CL equals the number of tiles.
Hence, the Markov chain needs to be constructed for each configuration individually, by building the
product of a cyclic Markov chain with as many states as tiles and the two scenarios FP and LP. For the
sake of comprehensibility, the SADF analysis model and corresponding Markov chain of the gesture
recognition system in configuration C3 is shown in Figure 5.6(a), again with highlighted control tokens
for a single execution of all controlled actors.
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Figure 5.7: Refined SADF analysis model in configuration C3.

5.1.3 Analysis Models

The previous section showed the basic principle on how to integrate scenario changes as well as
cyclo-static behavior into the analysis models. However, the analysis model in the previous section did
not integrate the refinement regarding message communication between different worker cores. As a
result, the analysis models need to be extended for that purpose, in order to get comparable results with
the models from Chapter 4. To this end, the additional step from the SADF model of configuration C3
from the previous section towards a corresponding analysis model with communication refinement
will be explained next.

The basic changes that need to be made are the integration of actors M1-M13 on the channels between
actors executing on different worker cores. These are basically the channels from and to actors D1a-D2c

and on the feedback channel between actor CL and SW, with their corresponding executing time
capturing the communication throughput. The additional execution times of sending and receiving
messages on each core are integrated, as explained in Chapter 4, accordingly.

However, with introducing scenarios for actors SW, D1a-D2c, and CL, additional scenarios for M1-M12
have to be introduced as well. As the sizes of the messages are not changing in different scenarios
and the throughput of hardware communication channels is not changing either, the only scenario that
needs to be integrated is an additional null scenario. Any time, one of the actors D1a-D2c is executing
in a null scenario and the corresponding production and consumption rates on its channels from SW
and to CL are zero, the corresponding actor Mx is receiving a null control token as well. Otherwise,
the actors M1-M12 are executing their default scenario, regardless of the scenario of the corresponding
Dx actor. The final SADF analysis model of configuration C3 is shown in Figure 5.7. For the sake of
readability, control edges from detector det to all controlled actors are omitted in Figure 5.7 and rather
summarized in Table 5.2, together with the corresponding control tokens sent in each sub-scenario and
initial token distribution on all control channels. Note that the initial scenario for each analysis model
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Table 5.2: Scenario control tokens of the SADF analysis model in configuration C3.

Actor FPa FPb FPc LPa LPb LPc Initial Tokens

SW FPa FPb FPc LPa LPb LPc FPa,FPb,FPc
M1 def null null null null null def,null,null
M2 def null null def null null def,null,null
M3 null def null null null null null,def,null
M4 null def null null def null null,def,null
M5 null null def null null null null,null,def
M6 null null def null null def null,null,def
D1a FP null null null null null FP,null,null
D2a FP null null LP null null FP,null,null
D1b null FP null null null null null,FP,null
D2b null FP null null LP null null,FP,null
D1c null null FP null null null null,null,FP
D2c null null FP null null LP null,null,FP
M7 def null null null null null def,null,null
M8 def null null def null null def,null,null
M9 null def null null null null null,def,null
M10 null def null null def null null,def,null
M11 null null def null null null null,null,def
M12 null null def null null def null,null,def
CL FPa FPb FPc LPa LPb LPc FPa,FPb,FPc

is defined as FP, which will be triggered for the first N iterations, with N denoting the configuration
number or number of tiles, respectively.

The SADF analysis models of all other configurations are adapted accordingly. The execution times of
all actors are composed in the same way as in Chapter 4 except for actors in scenario LP, in which the
DTW execution times are excluded, and except for scenario null, in which all execution times are zero.
The measurements for annotating the scenario LP are shown in Table 5.3. Note that only functions,
the execution time of which is affected by the scenario LP, have been measured. For all remaining
functions, the results from Table 4.4 have been reused.

Table 5.3: Execution time tex measurements for SADF analysis model annotation in scenario LP.

Name # tex [ns] stex [ns] CVtex min tex [ns] max tex [ns]

EMA 25,237 25,960 0 0.00% 25,960 25,960
CL 25,237 106 13 12.26% 92 148
MCP 25,237 15,039 38 0.25% 15,014 15,234
MWB 25,237 15 0 0.00% 15 15
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Table 5.4: Markov chain transition probabilities acquired from a test sequence of gestures.

(LP,LP) (LP,FP) (FP,LP) (FP,FP)

99.05% 0.95% 3.17% 96.83%

In order to analyze long-run average worst-case processor utilization, scenario transition probabilities
have been acquired from a selected test sequence of gestures, that has been recorded for the purpose of
recognition accuracy evaluation. The test sequence has been analyzed offline with the implemented
EMA filter, and evaluated w.r.t. the number of times that the system will stay in each of the LP and FP
scenarios and the number of times that the system will switch from LP to FP and from FP to LP, for
that particular input sequence. The transition probability annotation of a particular scenario transition
(ψ1,ψ2) has been calculated as the ratio of the number of analyzed scenario transitions (ψ1,ψ2) and
the total number of transitions from ψ1 into any scenario. The resulting transition probabilities are
shown in Table 5.4.

5.1.4 Model Analysis

In order to verify real-time performance for SADF-based analysis models, a slightly different approach
is used than in the previous chapters. While for SDF and CSDF graphs, the actor throughput T H(DA)
represents the maximum throughput at which it can be scheduled such that the entire system execution
is bounded in terms of finite buffer size usage on all channels, the actor throughput in SADF represents
a long-run average metric considering scenario transition probabilities. For a corresponding real-time
verification, the worst-case actor throughput, e.g., as defined by [22] for FSM-based SADF graphs,
is of importance, that is however not implemented for SADF graphs in the module [20] extending
SDF3 [13]. As a solution, the maximum inter firing latency (max IFL(DA)) of actor DA is utilized to
analyze real-time performance.

If max IFL(DA) of an SADF graph is greater than its annotated execution time, there exists a path in
the execution space, for which the system throughput is smaller than the data input throughput. As a
result, the SADF graph does not represent a real-time enabled system. However, since the IFL of actor
DA cannot be smaller than its execution time annotation (which is constant in all scenarios), due to the
eliminated auto-concurrency, a maximum IFL that matches its execution time annotation indicates,
that (at least one) critical path w.r.t. its actor throughput and thus graph throughput lies on DA itself.
In other words, the IFL of actor DA is constant across all possible execution paths. This allows to
infer real-time behavior of the system modeled with SADF graphs by observing the maximum IFL of
its input data process, i.e., max IFL(DA). Furthermore, it follows, that the actor throughput T H(DA)
is constant across all possible scenario transitions in case max IFL(DA) matches its execution time
annotation.

Note that this is not valid for SADF graphs in general, and limited to real-time-enabled models in
which the input data process is modeled explicitly with a constant execution time in all scenarios with
eliminated auto-concurrency. This can either represent a constant input data process or its worst-case
behavior, i.e., representing the highest input data throughput that can be expected in the anticipated
application.
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The long-run average processor utilization ˆ︁U(p) of processor core p ∈ P is its average active time
(executing actors) along the execution state space considering scenario transition probabilities, divided
by the total elapsed time. The input actor of analysis models that meet the real-time criterion of the
thesis at hand, is known to have a constant inter firing latency. This can be utilized as a reasonable time
basis for the total elapsed time during a graph iteration for each particular detector scenario ψvd ∈ Ψvd .
Let V ′ denote the set of actors that are mapped to processor p, i.e., V ′ = {v∈V |mp(v, p)= 1}. For each
detector scenario ψvd ∈ Ψvd , the active time of processor p ∈ P induced by a particular actor v ∈V ′ is
then the accumulated execution time of each firing of v ∈V during its sub-scenario sequence in ψvd , i.e.,
δ (v,subs(v,ψvd )), corresponding to the iteration period. The processor utilization of p induced by v in
scenario ψvd is then the active time divided by the iteration period, which is the accumulated execution
time of actor DA during its sub-scenario sequence in ψvd , i.e., δ (DA,subs(DA,ψvd )), or alternatively
its inter-firing latency multiplied by the number of repetitions in ψvd , that is, 1

T H(DA) · γG(DA,ψvd ).

The average processor utilization ˆ︁U(v, p) of processor p ∈ P induced by an actor v ∈ V ′, w.r.t. the
scenario occurrence probabilities π(vd ,ψvd ) of detector scenarios ψvd ∈ Ψvd , is calculated by:

ˆ︁U(v, p) =
∑ψvd∈Ψvd

π(vd ,ψvd ) ·δ (v,subs(v,ψvd ))

∑ψvd∈Ψvd
π(vd ,ψvd ) ·δ (DA,subs(DA,ψvd ))

. (11)

Equation (11) is a straight forward derivation from a combined metric of sample average (average active
time per iteration) and an event rate (average number of firings per time unit, i.e., actor throughput)
from [23]. The derivation of Equation (11), which is based on detector scenarios, is limited to strongly
consistent and strongly dependent SADF analysis models that meet the real-time criterion as defined
in the thesis at hand, i.e., max IFL(DA) = δ (DA,ψDA) with |{ψDA ∈ ΨDA}|= 1.

Note that for real-time configurations max IFL(DA) = IFL(DA), and thus, δ (DA,subs(DA,ψvd ))
equals 1

T H(DA) · γG(DA,ψvd ). Furthermore, 1
T H(DA) is constant across all scenarios and corresponding

transitions. As a result, Equation (11) can be rewritten to:

ˆ︁U(v, p) = T H(DA) ·
∑ψvd∈Ψvd

π(vd ,ψvd ) ·δ (v,subs(v,ψvd ))

∑ψvd∈Ψvd
π(vd ,ψvd ) · γG(DA,ψvd )

. (12)

Finally, to acquire the total average processor utilization ˆ︁U(p) of each processor p ∈ P, the average
processor utilizations ˆ︁U(v, p) of p induced by actors v ∈V ′ need to be accumulated for all v ∈V ′:

ˆ︁U(p) = T H(DA) · ∑
v∈V ′

∑ψvd∈Ψvd
π(vd ,ψvd ) ·δ (v,subs(v,ψvd ))

∑ψvd∈Ψvd
π(vd ,ψvd ) · γG(DA,ψvd )

, (13)

with V ′ denoting the set of actors v ∈ V that are mapped to processor p ∈ P, i.e., V ′ = {v ∈ V |
(v, p) ∈ MV}. The throughput T H(DA) and scenario occurrence probabilities π(vd ,ψvd ) of all detector
scenarios ψvd ∈ Ψvd can be acquired from the SADF module [20] and the extension described in
[G7], respectively. The repetition vector γG(DA,ψvd ) can be acquired from transformation of each
single scenario ψvd into a corresponding SDF graph with sdf3transform-sadf to fix the detector
scenario and sdf3convert-sadf-sdf for the transformation into a corresponding SDF graph [20].
The corresponding SDF graphs can then be analyzed w.r.t. their repetition vector with SDF analysis
tools [13]. Execution times and sub-scenario sequences are directly acquired from the specified
analysis model.
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5.1.5 Experiments

For evaluating the model-based results, the same implementation as introduced in Section 4.5 has been
used. In order to integrate the scenarios LP and FP, the sliding window is only sent to the last core of a
tile in scenario LP for EMA calculation. Scenario FP corresponds to the original implementation as in
Section 4.5. The selection of the scenario is based on the EMA result of the last evaluated window
on the evaluator core. This is due to the original application graph structure in Section 4.3, in which
EMA and DTW instances for a sliding window can be calculated in parallel without interdependencies.
A more straightforward application design would calculate the EMA before any DTW calculation is
performed and possibly on the initiator core. However, as the integration of a low power scenario was
not initially intended for the recognition system in Chapter 4, and for the sake of reusing experimental
implementations, the application structure is kept in line with that introduced in Section 4.3. As a
result, the EMA of the currently evaluated sliding window is used for the scenario choice of the next
sliding window that will be dispatched. Note that this implies a latency between detecting an end
point of a gesture and the actual time of ending the DTW calculations for subsequent, but yet already
dispatched sliding windows. This will be explained in more depth in the following evaluation.

5.1.6 Evaluation

The evaluations are based on the same test sequences which have been used in Section 4.5. However,
for the average processor utilization, only one test sequence has been used, i.e., for which the scenario
occurrence probabilities in Table 5.4 have been analyzed.

Real-time behavior and latency The model-based analysis results indicate a real-time behavior
in all configurations of the system, when the execution is fixed to scenario LP. The results are listed
in Table 5.5. However, with scenario transitions, configuration C1 is not performing in real time, as
scenario FP is not real-time enabled itself (cf. Section 4.6.2). The model-based real-time analysis
results with scenario transitions are listed in Table 5.6. In the experiments it could be verified that in
configuration C1 every other window is skipped, when the system operates in scenario FP. Therefore,
this configuration is not real-time enabled. In all other configurations, no windows are skipped due to
sufficient throughput of the system.

Furthermore, the maximum response times acquired from the analysis models in scenario LP and in
executions with scenario transitions between LP and FP are listed as well in Table 5.5 and Table 5.6,
respectively. Note that the latter correspond to the results of scenario FP from Chapter 4.

Table 5.5: Maximum response time max ˆ︁trsp, actor throughput T H(DA), and real-time performance

analyzed from the SADF analysis models in scenario LP.

Configuration max ˆ︁trsp [ns] T H(DA) [s−1] Real Time

C1 83,217 50.00 Yes
C2 83,217 50.00 Yes
C3 83,217 50.00 Yes
C6 83,217 50.00 Yes
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Table 5.6: Maximum response time max ˆ︁trsp, actor throughput T H(DA) , and real-time performance

analyzed from the SADF analysis models with scenario transitions.

Configuration max ˆ︁trsp [ns] T H(DA) [s−1] Real Time

C1 41,155,100 49.83 No
C2 78,155,500 50.00 Yes
C3 119,190,000 50.00 Yes
C6 227,264,000 50.00 Yes

The measured response times in scenario LP are appended in Table B.1. A comparison is depicted in
Figure 5.8. The corresponding absolute and relative differences are listed in Table 5.7. In comparison,
the model-based maximum response times max ˆ︁trsp are up to 1.19% smaller than the measured results
max trsp in scenario LP.

Processor utilization in scenario LP The processor utilization in scenario LP acquired from analysis
models is depicted in Figure 5.9. The underlying values are appended in Table B.2 as supplementary
information. The average processor utilization among all worker cores in scenario LP, acquired from
the analysis models, is approximately 0.02%. The measured processor utilization in scenario LP is
depicted in Figure 5.9 as well. The underlying values are appended in Table B.3. It can be seen, that
the implemented low power scenario can reduce the processor utilization to approximately 0.022%
in situations where no gestures are performed. This is a substantial saving compared to scenario FP
from Table 4.11 in Chapter 4. As a result, the long-run average worst-case processor utilization highly
depends on the scenario transitions and thus on the usage of the sensor glove.

However, a comparison of the model-based results reveals a much higher difference to the measured
processor utilization, when compared to the model accuracy in Chapter 4. Furthermore, the model-
based estimates on processor utilization in scenario LP underestimate the implementation, although they
are supposed to provide upper bounds. The corresponding relative differences are listed in Table 5.8. It
can be seen that the model-based results underestimate the measured results by approximately 11.4%
to 11.8%. This rather high deviation is partially induced by additional context change overheads
between threads that are executed on the worker cores. These overheads increase the active times of the
worker cores, which has not been taken into account into the annotation of actors in the analysis models.
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Figure 5.8: Measured and model-based maximum response time results in scenario LP.
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Table 5.7: Comparison of measured (max trsp) and model-based (max ˆ︁trsp) maximum response time

results in scenario LP.

Cfg. max ˆ︁trsp [ns] max trsp [ns] ∆ max trsp [ns] ∆r max trsp

C1 83,217 84,221 −1,004 −1.19%
C2 83,217 83,795 −578 −0.69%
C3 83,217 83,597 −380 −0.45%
C6 83,217 83,665 −448 −0.53%
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Figure 5.9: Measured and model-based processor utilization in scenario LP.

Table 5.8: Relative difference of processor utilization between model-based and measured results in

scenario LP.

Cfg. ∆r U(W1) ∆r U(W2) ∆r U(W3) ∆r U(W4) ∆r U(W5) ∆r U(W6) ∆r U

C1 / / / / / −11.482% −11.482%
C2 / / −11.615% / / −11.615% −11.615%
C3 / −11.549% / −11.549% / −11.549% −11.549%
C6 −11.747% −11.747% −11.747% −11.747% −11.747% −11.747% −11.747%
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Since the LP scenario results in a substantially smaller processor utilization, due to its comparably
small active time of approximately 50 µs, the context change overhead with 4.2 µs on average has a
significantly higher influence than on the active time in scenario FP (approximately 70ms to 225ms).
An additional analysis of the task profiling logs reveals, that without the context change overhead
the model-based results would deviate by 3.9% to 4.4% from the measurements. The resulting
relative differences between model-based and measured processor utilizations without context change
overheads are listed in Table 5.9. After removing the influence of context change overheads, a minor
increase in the relative differences between model-based and measured results with an increasing
number of deployed tiles can still be observed in the last column of Table 5.9. A linear regression of
all active times of the worker cores that are computing in scenario LP w.r.t. the number of deployed
tiles (and thus cores) shows a significant linear dependency w.r.t. a significance threshold of α = 0.05,
with β1 = 46.67ns/#cores, t(10) = 61.97, p < 0.001. Furthermore, the number of deployed cores
explains a significant proportion of the variance in the active time in scenario LP on the worker cores,
with R2 = 0.997, F(1,10) = 3840, p < 0.001. These results suggest a dependency between active
time of processor cores in scenario LP and the number of deployed tiles.

All worker cores receive the exact same binary. The execution time of the LP code on different worker
cores does not have any obvious dependency on other worker cores or on the number of worker cores
that are computing, since, although different sliding windows are dispatched to different cores, e.g.,
configuration C6, the processing of a window (approximately 50 µs) is already finished before a new
window is dispatched after 40ms. As a result, the involved worker cores do neither compute, perform
memory operations, nor communicate concurrently, which could be substantiated by evaluating the
task profiling information. As a consequence, the increase in active time is assumed to be caused by
the task profiling routines itself. In that case, the intercept of the above mentioned linear regression
represents an estimate of active time without that influence. This would leave a relative difference
between model-based and measured results of ∆r =−3.8% for each configuration.

In general, the aforementioned influences are explained by the measuring system itself and the context
changes between threads that should have been taken into account into model annotations given
the small range of execution times. The reason why this has not been performed is consistency
with the models for the static FP scenario in Chapter 4. The introduction of scenario LP has been
performed after the modeling, implementation, and analysis of the models and experiments in Chapter 4
and consistently embedded into the SADF models. However, the acquired results suggest that for
annotations of comparably low execution times w.r.t. the performance and domain-specific architectural
optimizations of the target hardware, overheads in execution time can have a significant influence,

Table 5.9: Relative difference of processor utilization in scenario LP between model-based and

measured results without context change overheads.

Cfg. ∆r U(W1) ∆r U(W2) ∆r U(W3) ∆r U(W4) ∆r U(W5) ∆r U(W6) ∆r U

C1 / / / / / −3.920% −3.920%
C2 / / −3.998% / / −3.998% −3.998%
C3 / −3.998% / −3.998% / −3.998% −3.998%
C6 −4.464% −4.464% −4.464% −4.464% −4.464% −4.464% −4.464%
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Figure 5.10: Measured and model-based processor utilization with scenario transitions.

which have to be taken into account into the modeling by refined models or by additional worst-case
abstractions. Additionally, as stated in Section 3.3.3, typically WCETs of actor code are acquired by
analysis, e.g., on the assembler code, and provide worst-case guarantees. However, in the thesis at hand,
actor annotations have been measured on the target hardware, and reflect worst-case observed execution
times of the individual code segments. When implemented into the final binaries without timestamp
functions to measure individual execution times, the source code was re-compiled. Since the compiler
of the TMS320C6678 architecture performs optimizations which are rather unpredictable based on the
surrounding source code, the acquired annotations can indeed be smaller than the corresponding code
that appears in the final implementation. This has to be taken into account, and if possible, actor code
should be kept pre-compiled and only linked into the final application in order to avoid differences due
to compiler optimizations.

The remaining underestimation of approximately −3.8% indicates that the measured WCETs for model
annotation were not worst-case representatives, caused by the aforementioned compiler optimizations
when actor annotations have been measured. Furthermore, additional run-time overheads due to
context changes have not been taken into account into the annotations of the model, which results in
rather high relative differences between model-based and measured results for scenario LP of up to
11.7% in the conducted experiments.

Processor utilization with scenario transitions The model-based results of long-run average worst-
case processor utilizations with scenario transitions are depicted in Figure 5.10. The underlying values
are appended in Table B.4. The effect of the reduced processing in situations without movement
of the sensor glove, can be observed in the long-run average worst-case processor utilization of all
worker cores. The model-based estimations indicate a reduction by approximately 76.9% compared to
scenario FP in Table 4.8 from Chapter 4. This reduction in expected worst-case processor utilization
is induced by the reduced processing for windows that do not contain gestures. The corresponding
processor utilizations measured from the experimental implementation are depicted in Figure 5.10 as
well. The underlying measurements are appended in Table B.5 as supplementary material. The relative
differences between model-based and measured results are listed in Table 5.10. The model-based
results including scenario transitions show an even higher difference from the measurements of the
corresponding implementation, ranging from −4.59% to −14.65%. By looking at the mean processor
utilizations in Figure 5.10, it can be seen that the measured results are higher than the model-based
results, increasing with the number of tiles, e.g., the measured mean processor utilization among
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Table 5.10: Relative difference of processor utilization between model-based and measured results

with scenario transitions.

Cfg. ∆r U(W1) ∆r U(W2) ∆r U(W3) ∆r U(W4) ∆r U(W5) ∆r U(W6) ∆ U

C2 −4.959% −5.031% −5.004% −4.147% −4.218% −4.193% −4.592%
C3 −6.556% −6.598% −5.370% −5.416% −9.938% −9.969% −7.308%
C6 −16.944% −15.054% −16.944% −11.014% −11.016% −16.947% −14.653%

all cores in configuration C6 is higher than in configuration C3 or C2. The reason behind this is a
discrepancy in behavior between analysis models and corresponding implementations which leads to
different scenario occurrence distributions and thus, average processor utilization.

In the analysis models, scenario control tokens are consumed in order. This means, in a configuration
with N tiles, the scenario selection for the next sliding window is based on the N-th to last processed
window, due to the possibly parallel processing of N windows in a pipelined manner, depending on
their actual processing time. That is, windows are cyclo-statically dispatched to different tiles, but due
to the processing time that is smaller than the time between subsequent sliding windows in scenario LP,
windows are in effect processed sequentially in that scenario. In scenario FP however, the processing
time of a window spans multiple sliding window periods, such that N windows are processed in
parallel in a configuration with N tiles. Due to consistency between scenario transitions, the selection
of scenarios is consistent among different scenarios. Thus, the scenario selection solely depends on the
N-th to last processed window in a configuration with N tiles, regardless of the scenario.

However, in the implementation, the most recent scenario selection of the evaluator is considered
for the next window. This scheme leads to different scenario selection delays for the two scenarios.
In scenario LP, scenario selection for a sliding window is based on the EMA result of the previous
window, since in LP the processing of a window is finished before a new window is dispatched. In
scenario FP however, the scenario selection of a sliding window is based on the N-th to last processed
window in a configuration with N tiles. As a result, scenario selection delay in scenario FP matches
between analysis models and implementation while it differs in scenario LP.

The decision on the scenario selection scheme, that reduces scenario selection delay when possible,
was made during implementation, in order to optimize the detection latency w.r.t. the beginning of
gestures among subsequent windows. However, as the experimental results show, this discrepancy
does have an impact on the processor utilization.

While in the model, scenario selection delay is constant among scenarios transitions, in the implemen-
tation, scenario selection delays match with the model behavior in scenario transitions from FP to
LP, but are much shorter from LP to FP depending on the implemented configuration. Hence, sliding
window processing in FP starts in effect earlier in the implementation compared to the model, but
stops similarly. As a result, the actually observed scenario occurrence ratio of scenario FP in the
implementation is higher than the scenario occurrence probability analyzed from the model. This can
be observed by comparing scenario occurrence probabilities analyzed from the SADF models with a
posteriori observed scenario occurrence distributions in the experiments. The a posteriori observed
scenario distribution between FP and LP in the experiments is listed in Table 5.11 together with the
scenario occurrence probabilities from the SADF models. It can be seen that with an increasing number
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Table 5.11: A posteriori observed scenario occurrences in the experiments and model-based scenario

occurrence probabilities.

Scenario Core Measured Model
C2 C3 C6 All

LP 1 75.42 % 75.00 % 71.88 % 76.98 %
2 75.42 % 75.00 % 72.50 % 76.98 %
3 75.42 % 75.31 % 71.88 % 76.98 %
4 75.63 % 75.31 % 73.75 % 76.98 %
5 75.63 % 74.06 % 73.75 % 76.98 %
6 75.63 % 74.06 % 71.88 % 76.98 %

FP 1 24.58 % 25.00 % 28.13 % 23.02 %
2 24.58 % 25.00 % 27.50 % 23.02 %
3 24.58 % 24.69 % 28.13 % 23.02 %
4 24.38 % 24.69 % 26.25 % 23.02 %
5 24.38 % 25.94 % 26.25 % 23.02 %
6 24.38 % 25.94 % 28.13 % 23.02 %

of tiles (and thus, with an increase in scenario selection delay) the FP scenario in the implementation
has a higher ratio of occurrences than predicted from the SADF models. This difference is caused by
the aforementioned latency optimization in the implementation. Other possible influences regarding
timing behavior could be excluded by additional investigations which are described in the following.

In order to exclude that conducted experiments might have been too short to observe the expected long
run scenario distribution (scenario occurrence probabilities), the mixing time of the SADF Markov
chain, i.e., the number of transitions after which the probabilities of being in each of the Markov chain
states is close to its equilibrium distribution, has been analyzed. In the thesis at hand, the mixing
time is defined as the number of transitions, until the probabilities Pr(ψt) of all Markov chain states
ψ ∈ Ψvd after t transitions differ less than 0.1% from their corresponding equilibrium distribution
entries, i.e., scenario occurrence probabilities π(vd ,ψ). According to [120], the total variation distance
δtv, which represents that difference taking all Markov chain states into account, can be calculated by:

δtv =
1
2 ∑

ψ∈Ψvd

|Pr(ψt)−π(ψ)|. (14)

By analyzing the total variation distance w.r.t. the number of successive Markov chain transitions in
configuration C1, it could be observed that after 159 transitions (graph iterations), the total variation
distance is below 0.1%. The plotted total variation distance over time (number of graph iterations) t
in configuration C1 is provided in Figure B.1 as supplementary material. The actual experiments
measuring the average processor utilization were conducted over 960 iterations (sliding windows).
As a result, the experiments can be considered as sufficiently long to reach the mixing time and thus
observe the corresponding long-run scenario distribution of FP and LP. However, a posteriori observed
and model-based estimated scenario distributions differ in the conducted experiments.



112 5 Context Awareness and Dynamic Behavior

W1 W2 W3 W4 W5 W6 Mean
C2

0

5

10

15

20

25

30

W1 W2 W3 W4 W5 W6 Mean
C3

0

5

10

15

20

25

30
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Figure 5.11: Measured and model-based processor utilization with a posteriori observed scenario

occurrence probabilities.

These differences lead to the comparatively high discrepancy between model-based estimates and
measured average processor utilization. This could be substantiated by a model-based estimation
of processor utilization, by taking into account the a posteriori observed distribution of scenario
occurrences among the whole experimental run (not per core as listed in Table 5.11) instead of scenario
occurrence probabilities acquired from the analysis models. The results are depicted in Figure 5.11.
The relative differences between model-based results and measurements are listed in Table B.6 as
supplementary information.

Indeed, when knowledge about the actual distribution of scenario occurrences is available, the relative
differences between model-based estimates and measurements are in the range of 1.45% to 1.55%
regarding the mean of all worker cores, which is a reasonable accuracy. These results reflect the model
accuracy, when timing behavior between analysis models and implementation matches. However,
when looking at configuration C6 in Figure 5.11, a difference between measurements and a posteriori
adjusted model-based results can still be observed. The latter are equal among different tiles (cores) in
configuration C6, as the workloads in scenario FP are equal among cores, and the scenario occurrences
for each individual tile (and thus, worker core in configuration C6) are equally reflected in the
scenario occurrence probabilities acquired from the analysis models (cf. Table5.11). However, in the
experiments, the actual scenario occurrences for each tile can differ, as sliding windows are dispatched
in a cyclo-static manner. That is because the actual time at which a scenario transition occurs is
decisive for the scenario occurrence distribution of each individual tile. Therefore, the scenario
occurrences observed for individual tiles in the experiments are not equally distributed among each
other as predicted by the model. This effect can also be observed from measured processor utilizations
(in red) of the last tile in configuration C3 (W5 and W6) compared to the second tile (W3 and W4) in
Figure 5.11.

These differences observed between tiles is indeed explained by the lengths of experiments. Due the
cyclic window dispatching to tiles (and thus between cyclo-static Markov chain states that correspond
to either LP or FP), the ratios between LP and FP for individual tiles are expected to equal each other
in the long run. The Markov chain mixing time however is not an indicator for an appropriate lengths
in this regard and the decisive factor is the number of actual scenario transitions within the test dataset,
which is rather small in the conducted experiments. As a conclusion, these differences are a result of
comparing model-based long-run estimates with finite experiments, and are expected to decrease with
longer runs.
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However, although the model-based long-run average results could not be observed within the con-
ducted experiments as estimated by the analysis models, the work load ratios within a tile, as well as
the total or mean of all processor utilizations is contained in the models with an accuracy of up to 98%,
when the behavior of analysis models and implementation and thus, their scenario occurrence distribu-
tion match. The discrepancy in token consumption order between analysis models and implementation
however, leads to a relative difference of up to 14.65% between model-based and measured processor
utilization. As a result, a mismatch between analyzed models and the corresponding implementation
can cause long-run average metrics to be skewed and a consistent implementation w.r.t. analysis
models should be prioritized in order to preserve design time estimates. The expected results thereof
are represented by the model-based estimates with a posteriori observed scenario occurrences, which
show an accuracy of total processor utilization among all cores of up to 98%.

In general, the long-run average processor utilization depends on the equilibrium distribution of the
SADF Markov chain under the real-time constrain that has been introduced in the thesis at hand.
However, in order to get reliable estimates, annotations have to be rather accurate, as deviations can
have an substantial impact on the resulting scenario distribution and thus the long-run average metric
under analysis.

Recognition accuracy Finally, the recognition accuracy has been evaluated with integrated scenario
transitions. The introduced scenario transitions do not change the results of the gesture detection for
scenario FP in general, as in contrast to the scenario selection, the gesture results are always evaluated
for the current sliding window. However, a transition from LP to FP still imposes a delay on the begin
of a gesture by a single sliding window (for the implemented mapping in the experiments), as a gesture
cannot be evaluated in scenario LP, although the EMA value indicates a start of a gesture. The gesture
detection will be activated for the next sliding window. As the end of a gesture is detected for the
current sliding window, a gesture that does only appear in a single sliding window will not be detected
by the system. This needs to be considered when the sliding window overlap is decreased. However,
this behavior is induced by the ARC design, as EMA and DTW for a sliding window are calculated in
the same ARC stage, which could be solved when processed in sequence.

A scenario transition from scenario FP to LP imposes a scenario selection delay w.r.t. the age of the
sliding window. However, it does not influence the detection of the end of a gesture in general. As
due to scenario selection delay, DTW calculation may be performed on subsequent sliding windows
although the end has already been detected in a previous window, it does not delay the detection of the
corresponding end point of that gesture. Therefore, a single scenario transition from FP to LP does
not influence the recognition delay and accuracy. However, in cases of a sliding window progression

Table 5.12: Recognition performance of the experimental hand gesture recognition system with

scenario transitions.

Configuration Precision Recall F1-Score

C2 58.45% 50.92% 54.43%

C3 58.45% 50.92% 54.43%

C6 56.46% 50.92% 53.55%
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between two gestures, with the number of non gesture sliding windows NSWNG of 1 ≤ NSWNG ≤ Nk−1 in
a configuration with Nk tiles, the FP to LP scenario selection delay causes a false negative recognition
in the second window after the detection of the beginning of the second gesture. Although this can be
prevented by specifying and implementing a minimal time that has to pass between two successive
gestures, it has not been implemented for the experiments at hand.

Both situations influence the recognition accuracy compared to the static FP implementation in
Chapter 4. However, as both situations occur comparably rare within the test dataset, the recognition
accuracy dropped only slightly to a still rather mediocre recognition performance. The precision, recall,
and F1-scores for all configurations are summarized in Table 5.12. It can be seen that the F1-score
decreased by roughly 1-2% compared to the static FP implementation (cf. Table 4.13 on page 90).

5.1.7 Discussion

In this sub-chapter, modeling approaches of parallelization strategies for (cyclo-) static ARC setups
have been extended to MoCs capturing dynamic changes between static scenarios, i.e., SADF. Proposed
analysis techniques w.r.t. processor utilization have been extended from CSDF to SADF in the context
of sensor-based online human activity and gesture recognition systems.

While the applied parallelization approaches still consider equally sized segments, an approach has
been shown, that can be applied to dynamic changes between static scenarios. In cases of segments
with a high variability in size, the range of possible segment sizes can be divided into a number of
finite scenarios, each representing the worst case of the sub-range of segment sizes that it covers. This
approach has already been shown for an MPEG-4 simple profile decode in [19].

The integration of scenarios allows the modeling of context-aware systems that change their ARC
parameters or entire ARC stages at run time. This allows to integrate low power modes or scenario
changes into the model and further allows the design-time estimation of worst-case and long-run
expectations of extra-functional properties like real-time capability, latency, and processor utilization.
While design time estimates are accurate enough to substantiate design decisions early in the design
process, the results of this chapter show, that a consistent implementation of the modeled behavior is
crucial to preserve the acquired extra-functional properties in the final system.

When considering that scenario transition probability annotations should be acquired by user studies,
in order to analyze the system for an expected user behavior (e.g., expected number and lengths of
gestures per day), the acquired model-based estimations can be far off at run time of the system,
in which the user might behave differently. Moreover, scenario occurrence distributions in the first
place, can be easier to specify and analyze in user studies than scenario transition probabilities. As a
consequence, instead of parameterizing a Markov chain for design-time analysis, an expected scenario
occurrence distribution from user studies or specifications is sufficient for design-time estimation of
long-run average metrics. However, this requires the SADF models to satisfy the real-time criterion
introduced in the thesis at hand. As a result, an FSM could substitute the Markov chain, which
still permits analysis of worst-case throughput and thus real-time behavior, as well as the introduced
analysis approaches for extra-functional properties that indicate energy consumption of the system
at design time. Furthermore, an FSM-based approach could allow for more efficient timing analysis
methods, e.g., as for FSM-SADF graphs [5].



5.1 Scenario-Based Dynamic Behavior 115

As a further interesting consequence, system specification could provide probability distributions
of scenario occurrence distributions, e.g., in form of Dirichlet distributions. Since long-run average
metrics of real-time capable SADF graphs are linear combinations of single scenario metrics weighted
by their occurrence distribution, Dirichlet distributions of user behavior or other factors that model
context, could allow to estimate extra-functional properties at design time that give a tighter expectation
and standard deviation or variance of all possible user behaviors or context changes. This approach
however, has not been studied in the thesis at hand and may be subject to future work.

In conclusion, the results from this sub-chapter could show, that the SADF MoC is expressive enough
for modeling context-aware human activity recognition systems. Furthermore, SADF is analyzable
enough for the estimation of extra-functional properties like real-time ability, latency, throughput,
and processor utilization, in order to substantiate design decisions on, e.g., mapping, scheduling,
parallelization, or platform choices as well as on functional ARC parameters. This chapter extends
the state of the art by introducing novel analysis approaches of long-run average processor utilization,
which can act as indicators for energy consumption of processing units.
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5.2 Data-Dependent Dynamic Behavior

Apart from context-aware or scenario-based dynamic behavior, that is, dynamic changes within a
finite number of static or cyclo-static behaviors, there exist algorithms the execution time of which is,
e.g, linearly, dependent on some factor that dynamically changes at run time. A prominent example
is piecewise linear approximation. Piecewise linear approximation is an approximation technique
that, in the context of activity recognition, is applied to sensor signals. It approximates the sensor
signals with linear segments (cf. Figure 5.12 on page 123), of which only the beginning and end points
of segments need to be stored or transmitted for further processing. However, many state-of-the-art
PLA algorithms impose a linear (or worse) execution time w.r.t. the lengths of the linear segments.
As a result, design-time analysis with the presented approaches in the thesis at hand only allow for
worst-case bounds, which might be very pessimistic on the on hand and constrain the functional
properties of such algorithms, e.g., by constraining the maximum lengths of linear segments, and
thus data compression, on the other hand. Although MoCs exist to capture higher levels of dynamic
behavior (see BDF and DDF [121], or KPNs [122]), no analysis techniques exist in general for such
MoCs regarding the extra-functional properties that are crucial to be estimated at design time for
gesture and activity recognition systems.

In the thesis at hand, state-of-the-art PLA techniques that produce connected linear segments are
evaluated. From their PLA representation, the samples can be reconstructed (with an implied loss of
information) by interpolation on the receiver side or segments can be used as is, depending on the
application. Furthermore, PLA algorithms take a maximum bound on the segment error as a user-
defined parameter that ensures a certain approximation quality of the PLA signal. Most commonly,
the Sum of Squared Residuals (SSR) error is used in the literature. Gesture and activity recognition
approached like dense motif discovery [123] or continuous string and sequence matching [101, 124]
are based on transforming the raw sensor signals into PLA signals. Segments are either converted into
symbol sequences for string matching or into numerical representations, such as segment angles, along
with sequence matching algorithms.

While providing a concise representation of the signal shape for gesture and activity recognition,
another main motivation of using PLA is the reduction of data that either needs to be transmitted from
wireless sensors, stored on flash memory, or processed by embedded microprocessors. Reducing the
sensor data, reduces energy consumption for transmission, storage, or processing. Hence, PLA is a
known approach for energy savings of resource constrained hardware like wearable wireless sensors.

In online PLA algorithms, an update function is called for each new sensor sample, that tries to include
that sample into the currently growing segment. Based on the maximum segment error the current
segment is extended to include the new sensor sample or a segment point is created until the previous
sample and a new segment is started including that new sample. As a result, for each invocation of
the update routine, either a new segment point will be created or not. This output behavior could be
well modeled with SADF including two scenarios with an output rate of one or zero and scenario
transition probabilities representing the data characteristics. However, state-of-the-art SSR-based PLA
algorithms have a computational complexity for processing a single sensor sample, that depends on
the segment length. As an example, the well-known Sliding Window (SW) method [125] has a linear
computational complexity w.r.t. the segment length. The reason for the execution time dependency lies
in the recalculation of the SSR error of that segment, with each newly added sensor samples. However,
from a modeling and design-time estimation perspective, this data-dependent execution time prevents
to derive a WCET without limiting the segment length and thus the data compression ability of SW.
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Furthermore, the increased execution time with each new sample within a segment increases processor
utilization and thus energy consumption of the processor unit and offsets the anticipated energy savings
from the reduced amount of data transmissions.

A possible solution of preventing the data-dependent SSR error calculation is the definition of other
residual limits. In [126], a PLA algorithm referred to as Swing Filter is introduced, which creates
segments based on a least squares approximation of segments. However, the SSR is not explicitly
computed and not used as a segment error bound. Instead, an upper and lower bound of the segment
angle is updated with each new sample. While this reduces the execution time to a constant time com-
plexity of processing a single sensor sample, the error bound of the resulting segments is conceptually
different to that of SSR-based PLA algorithms.

As an alternative solution, two new PLA algorithms are introduced in the thesis at hand, referred to as
fastSW and Connected Piecewise Linear Regression (CPLR) which are based on SW and Swing Filter.
Both algorithms offer a comparable approximation quality to state-of-the-art PLA algorithms, while
maintaining a constant computational complexity with a small deterministic worst-case execution
time and a bound on the SSR error for each segment. The alternative SSR calculation introduces a,
in practice neglectable, decrease of numerical precision but a constant time complexity, allowing for
WCET estimations at design time. This makes it possible to model the PLA calculation with SADF,
similarly to the discussed modeling approach in section 5.1. Furthermore, the new PLA algorithms
come with a constant memory requirement which is small enough to be implemented on embedded
processors with harsh memory constraints. Lastly, in contrast to all state-of-the-art SSR-based PLA
algorithms, the absence of a buffer for sensor data, not only reduces memory complexity, but also
removes the constraint and the parameter of a maximum segment length and allows for maximal data
reduction.

5.2.1 Related Work

In the literature, PLA algorithms are sometimes also referred to as segmentation algorithms. Keogh et
al. introduced in [125] the prominent PLA algorithm SWAB (Sliding Window and Bottom Up), which
is a combination of two formerly known segmentation algorithms Bottom-Up and SW, the origins of
which are unapparent from the literature. The combination of the offline Bottom-Up algorithm and the
online SW algorithm is motivated by Keogh et al. by the superior approximation quality of Bottom-Up
and the online character of Sliding Window. However, SWAB being an online PLA algorithm, SW is
such as well, and the approximation quality of it could not be verified as inferior in the experiments of
this thesis. Furthermore, the computational complexity of SW is O(n) for processing a single sensor
sample w.r.t. the segment length, in contrast to the O(n2) computational complexity of SWAB, which
makes SW an equally entitled candidate for online PLA on its own.

Van Laerhoven et al. introduced a conceptual optimization of SWAB in [101] called mSWAB,
which was further optimized for resource constrained wearable sensor nodes by Berlin et al. in [127],
called emSWAB. The computational complexity of mSWAB and emSWAB processing a single sensor
sample is still O(n2) w.r.t. the segment or buffer length, but the processing time is reduced by a constant
factor. Furthermore, the error bound of emSWAB has been adapted from an SSR error calculation
to a sum of absolute distances in [127] for a faster error calculation. Although this optimization
is neglectable compared to the O(n2) time complexity w.r.t. the buffer size, emSWAB is the most
optimized version and is therefore, included in the evaluations of this sub-chapter.
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Due to the increase in the execution time of the aforementioned PLA algorithms with the size of
segments, the processing effort of a single sensor sample is dependent on the maximum achievable
data reduction. Thus, the more transmission energy is saved due to data reduction, the more processing
power is consumed by the algorithms, resulting in a trade-off between transmission and processor
energy. The resulting total energy consumption depends on the final hardware architecture. However,
due to the increasing energy consumption of the processor, the potential energy savings due to decreased
data transmission cannot be fully utilized by the aforementioned PLA algorithms.

Furthermore, all aforementioned PLA algorithms need to store the raw sensor samples of a segment
in a buffer, until that segment is finalized and outputted. This introduces another constraint to the
data reduction ability when implemented on architectures with harsh memory constraints, e.g. sensor
sub-systems. Although memory consumption and execution time can be reduced by constraining the
maximum segment length and thus the buffer, it limits the ability to reduce and represent sensor data
efficiently in terms of data compression.

The PLA algorithms introduced in the thesis at hand eliminate the aforementioned limitations, providing
a small and (quasi-) constant execution time per sensor sample and a small and constant memory
consumption. Furthermore, the approximation quality in terms of total SSR error of the entire sensor
signal is comparable with state-of-the-art PLA algorithms. Lastly, despite a possible limit due to
numerical precision, the PLA algorithms introduced in the thesis at hand allow for theoretically
unconstrained segment lengths due to the absence of a buffer and the computational complexity of
O(1) per sample, w.r.t. the segment lengths.

In the fields of data mining, gesture, and activity recognition, the aforementioned PLA algorithms
are commonly chosen for the sake of data reduction and signal representation. However, other PLA
algorithms can be found in the literature as well. Liu et al. introduced the PLAMLiS PLA algorithm
in [128] to reduce collected data in WSN. Pham et al. [129] introduced an optimization of that PLA
algorithm. Again, both algorithms are buffer based. While no computational complexity of processing
a single sensor value is given, the computational complexity of approximating a signal of n samples is
given with O(n2) for the original PLAMLiS algorithm [128] and for its improved version [129]. As a
result, the processing time of a single sensor sample is not constant and increases with the buffer size,
and thus with the possible compression factor.

Fuchs et al. introduced a segmentation algorithm based on Polynomial Least-Squares Approximation
with polynomials of arbitrary order in [130], referred to as SwiftSeg. Since their approximation
algorithm also includes first order polynomials, i.e., linear segments, its first order variant resembles a
PLA algorithm. Furthermore, their algorithm has a constant computational complexity and depending
on the windowing method a linear (sliding window) or constant (growing window) memory complexity,
w.r.t. the segment length. When the sum of squared residual error is used as a segmentation condition,
their growing window method is comparable in computational and memory complexity to CPLR. This
is due to the fact that similar updating techniques are used for their polynomial segment representation.
However, the main difference of their first order variant to CPLR is, that their approximating polynomial
includes the intercept term. As a result, their approximation leads to optimal in the least square sense,
but not connected segments. In contrast, CPLR is based on linear regression without an intercept term,
in order to produce connected segments that are optimal in a least squares sense. Hence it is named
Connected Piecewise Linear Regression.
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Elmeleegy et al. introduced a PLA algorithm in [126] named Swing Filter (SF). Their algorithm is
closest related to CPLR as it produces connected linear segments based on linear regression and creates
segments with slopes which, in the best case, are optimal in the least squares sense. However, their
algorithm is not bounding the sum of squares error of a segment, but rather bounding the trajectory of
the created segment by constantly constraining the slope of the segment with updating lower and upper
bounds depending on each new sample. While this segment constraint allows a constant computational
and memory complexity for processing each sample, it is conceptually different to an SSR bound of
segments. The fast SSR error calculation of the PLA algorithms introduced by the thesis at hand offer
a constant computational and memory complexity w.r.t. the segment lengths and bound the segments
to a user-defined maximum SSR error. Furthermore, with CPLR created segments are guaranteed to be
optimal in a least squares sense, in the context of connected linear segments.

Luo et al. introduced a PLA algorithm with constant update time in [131]. However, their PLA
algorithm is buffer-based with a worst-case space complexity of O(n) and uses around 1 KB memory
in their experiments which does not allow it to be executed on embedded microprocessors with harsh
resource constraints. Furthermore, their approach is a mixture between connected and non-connected
piecewise segments.

To the author’s best knowledge, CPLR and fastSW are the only SSR-based online PLA algorithms
that produce connected linear segments with a computational and memory complexity of O(1) w.r.t.
segment lengths, at the time of writing the thesis at hand. Both algorithms will be explained in more
detail, after a short recap of basics regarding simple linear regression in the following section.

5.2.2 Simple Linear Regression

This section summarizes the mathematical representation of simple linear regression as a foundation of
the derived SSR calculation for the introduced PLA algorithms. In simple linear regression, the linear
relation of a dependent variable is described as a function of an independent variable in terms of the
minimal SSR error. The linear model, referred to as regression line can be described by the function
y = α +βx, with x and y being the independent and dependent variables, respectively, α the intercept
with the y coordinate, and β the slope of the regression line.

As the introduced PLA algorithms should lead to an approximation with connected linear segments,
the regression line should pass the origin, i.e., y = 0 at x = 0. The resulting regression line without an
y offset has the form:

y = βx. (15)

In case of sensor signal approximation, a linear model will not perfectly describe sensor samples in
general. Instead, sensor samples will deviate from the regression line, which introduces an error. The
errors can be described as residual errors ei and included into the linear model that describes n sensor
samples. The resulting linear model including residual errors can be described by:

yi = βnxi + ei, (16)

with 1 ≤ i ≤ n and βn describing the slope that models the n sensor samples. For a given estimator ˆ︁βn

of the slope that fits the n sensor samples best, the SSR error SSRn of that regression line is calculated
by:

SSRn =
n

∑
i=1

e2
i =

n

∑
i=1

(yi − ˆ︁βnxi)
2. (17)
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The Ordinary Least Squares (OLS) estimator ˆ︁βn that represents the data with the minimal SSR error is
calculated by: ˆ︁βn =

∑
n
i=1 xiyi

∑
n
i=1 x2

i
=

xyn

x2
n

, (18)

with xyn =
∑

n
i=1 xiyi

n and x2
n =

∑
n
i=1 x2

i
n denoting the mean values of all xiyi products and x2

i squares up to
the n-th value, respectively. This can be derived by either finding ˆ︁βn that minimizes SSRn by derivation
of Equation (17), or from the well-known OLS estimator of multiple linear regression with multiple
independent variables: ˆ︁βn = (XT X)−1XTY, (19)

where Y ∈ Rnx1 is the vector of responses yi for all i = 1, . . . ,n observations and (XT X)−1XT is the
Moore-Penrose pseudoinverse of X . Here, X ∈ Rnxm is the design matrix with each row being the
observation vector xi ∈ R1xm for each observation i = 1, . . . ,n and with columns j = 1, . . . ,m for each
independent variable (regressor). In that case, ˆ︁βn ∈ Rmx1 is the vector of parameters for each of the
m regressors. The constant term (intercept) is implicitly included by the first column in X filled with
ones, i.e., xi1 = 1. Thus, the first parameter of ˆ︁βn gives the intercept term, which is therefore contained
in the number of regressors m.

Reducing to only one regressor and eliminating the intercept, i.e., m = 1, the design matrix becomes
X ∈Rnx1. Furthermore, ˆ︁βn becomes a scalar and the matrix multiplications with XT on the left sides in
Equation (19) resolve to scalar products of vectors X and Y , resembling Equation (18):

ˆ︁βn =

(︄
n

∑
i=1

xixi

)︄−1 n

∑
i=1

xiyi. (20)

Updating the means xyn and x2
n along with each new value can be done in O(1) time and allows to

recalculate ˆ︁βn for each new sensor sample as well in constant time. In order to calculate the SSRn from
the updated variables and the OLS estimator ˆ︁βn for each new data point, Equation (17) needs to be
resolved with the binomial formula to:

SSRn =
n

∑
i=1

y2
i −2ˆ︁βn

n

∑
i=1

xiyi + ˆ︁β 2
n

n

∑
i=1

x2
i . (21)

Each sum can then be rewritten using the corresponding mean values multiplied by n:

SSRn = y2
nn−2ˆ︁βnxynn+ ˆ︁β 2

n x2
nn. (22)

Resolving ˆ︁β 2
n x2

n to ˆ︁βnxyn from Equation (18) gives:

SSRn = n(y2
n − ˆ︁βnxyn). (23)

Note that the last step is only possible, if ˆ︁βn was actually calculated by Equation (18). This will be
the case for CPLR. However, for fastSW, the slope will be calculated differently, preventing the last
simplification of Equation (22) to Equation (23).
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Incremental updating In order to recalculate the slope ˆ︁βn and the error SSRn with each new sensor
sample, the means x2

n, xyn, and y2
n have to be updated incrementally with each new sensor sample as

well. In general, a mean zn of samples zi can be calculated by:

zn =
∑

n
i=1 zi

n
=

∑
n−1
i=1 zi + zn

n
. (24)

Substituting ∑
n−1
i=1 zi with zn−1 · (n−1) gives the equation updating the mean zn with the new sample zn

from [66]:

zn =
zn−1(n−1)

n
+

zn

n
. (25)

For sake of less multiplication and division instructions on a processor, Equation (25) can be restruc-
tured to:

zn = zn−1 +
zn − zn−1

n
, (26)

to reduce the processing time. Equation (26) can be used for updating all means x2
n, xyn, and y2

n

with each new sensor sample to recalculate ˆ︁βn and SSRn with Equations (18) and (23), respectively, in
constant time.

5.2.3 Online Piecewise Linear Approximation

In the following, the problem of online piecewise linear approximation of sensor signals will be defined.
A sensor signal can be sampled at different timestamps, which not necessarily have to be equidistant
in time. Sampling a sensor signal, leads to a series S of sensor samples s[m] = (v[m],τv[m]) ∈ SN,
with S = R×T and m ∈ [1,2, . . . ,M], M possibly going to infinity. Each sample (v,τv) consists of the
signal value v ∈ R and the corresponding timestamp τv ∈ T. Note that the above definition considers
one-dimensional signals. The relation to signals with an arbitrary number of dimensions and the
application of developed algorithms to these is explained at the end of this section. Furthermore,
without loss of generality, timestamps are assumed to be discrete, i.e., T= Z0+, in the thesis at hand.

A piecewise linear approximation of a sensor signal is a series ˜︁S of segment points ˜︁s[k] = (˜︁v[k],τ˜︁v[k]) ∈˜︁SN, with ˜︁S = R×T, and k ∈ [1,2, . . . ,K], K possibly going to infinity as well. Each segment point
(˜︁v,τ˜︁v) consists of a signal value ˜︁v ∈ R and its corresponding timestamp τ˜︁v ∈ T and represents the end
point of the previous and the starting point of the next segment. A segment is thus represented by
a pair of consecutive segment points ((˜︁v[k− 1],τ˜︁v[k− 1]),(˜︁v[k],τ˜︁v[k])). Furthermore, each segment
point has a timestamp that equals a timestamp of one of the original sensor signal samples, i.e.,
∀(˜︁v,τ˜︁v) ∈ ˜︁S ∃(v,τv) ∈ S : τv = τ˜︁v holds.

An example of a piecewise linear approximated Electrocardiography (ECG) signal can be seen in
Figure 5.12.

For some PLA algorithms, each segment point is a sensor sample including both signal value and
timestamp from the original sensor signal, i.e., ∀(˜︁v,τ˜︁v) ∈ ˜︁S : (˜︁v,τ˜︁v) ∈ S holds. Algorithms of which the
last statement holds include SWAB, mSWAB, emSWAB, and SW. However, other PLA algorithms,
e.g., the Swing Filter, do not represent that special case. The thesis at hand introduces for each case a
novel PLA algorithm with constant computational and memory complexity, that both produce segments
that are bounded by a user-defined threshold on the maximum segment SSR error.
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Figure 5.12: Excerpt of the ECG signal from [132] approximated with fastSW.

In order to achieve a piecewise linear approximation ˜︁S of a sensor signal S online, the sensor signal
needs to be continuously represented, i.e., the segment corresponding to the last sensor sample needs
to be outputted as soon as its end point is determined due to an exceeded threshold. Therefore, online
PLA algorithms perform a sample-based processing, which means that the algorithm is invoked with
each new sensor sample. The processing time for each invocation of the algorithm is referred to as its
execution time.

In the process of online approximation, the average execution time needs to be smaller than the
sampling period, in order to allow a real-time performance. To avoid additional latencies and additional
memory consumption due to input buffering, even the worst-case execution time should be smaller
than the sampling period. Moreover, a data-independent WCET is preferable, as this guarantees a
predictable maximum sampling period at which the algorithm is able to approximate the signal in real
time without compromising the compression abilities.

The PLA algorithms fastSW and CPLR introduced in the thesis at hand, are based on two state-of-the-
art PLA algorithms from the literature, namely SW and Swing Filter, respectively.

FastSW approximation The fastSW algorithm follows a mathematically equal, but algorithmically
different SSR error calculation as SW. The SW algorithm adds a new sample to the current segment in
its buffer, each time the algorithm is invoked. It creates a segment from the previous segment end point
to the newly added sample and calculates the residual error of this segment by linear interpolation.
This error calculation involves n steps for a segment length of n and has to be recalculated each time a
new sample is added to the buffer. If the calculated segment error is below the SSR error bound, which
is a user-defined threshold T H, the routine returns without outputting that segment and will be invoked
with the next incoming sensor sample. If the segment error is above T H, the segment from the previous
invocation is recreated, which still satisfied the maximum error guarantee and is outputted. A new
segment is started from that point to the new sensor sample. Due to the error calculation, the execution
time of the SW algorithm depends on the current segment length and increases with each invocation in
which the segment error has not reached T H. Furthermore, the memory consumption for buffering the
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last n sensor samples increases likewise. Thus, with longer segments, both the execution time and the
memory consumption of each invocation increases. In order to guarantee a maximum execution time
and memory consumption, the maximum buffer size needs to be constrained to a possibly small size,
which in turn limits the compression ability of the algorithm.

As a solution, a new PLA algorithm referred to as fastSW is introduced in the thesis at hand. The
principle of sensor signal approximation is equal to that of SW, except the calculation of the segment
SSR error. Instead of buffering all sensor samples of a corresponding segment and recalculating the
SSR error iterating over all these samples in each invocation, the SSR is recalculated by applying
Equation (22). The running variables x2

n, xyn, and y2
n are updated with Equation (26), correspondingly,

with xn representing the difference of the current sample timestamp τv[m] and the segment starting
point timestamp τ˜︁v[k−1], k being the index of current segment end point, and m being the index of the
newest sensor sample. Likewise yn represents the difference of the newest sample value v[m] and the
value of the segment start point ˜︁v[k−1]. Thus, xn and yn represent the coordinates of the new sensor
sample value v[m] and timestamp τv[m], respectively, projected onto the coordinate system, the origin
of which is located at the last segment end point or the current segment start point (˜︁v[k−1],τ˜︁v[k−1]),
respectively.

In contrast to linear regression, the segments of SW and also fastSW are connecting two original sensor
samples, i.e., the last segmentation point and possibly the newest sensor sample, depending on the
corresponding SSR. To this end, the slope βn is calculated as the fraction βn = yn/xn. This additionally
implies, that the new sensor sample coordinates (xn,yn) are directly located on the segment, with a
residual error en = 0.0. As a result, the SSRn of the segment in the current invocation includes all
samples represented by that segment so far, except the n-th sample. Thus, SSRn is calculated by using
the new segment slope βn = yn/xn and the running variables from the last invocation with:

SSRn = (y2
n−1 −2βnxyn−1 +β

2
n x2

n−1)(n−1). (27)

In case SSRn is below T H, the running variables x2
n, xyn, and y2

n will be updated with yn and xn for
the next invocation.

The pseudo code of the function processing a new sensor sample with fastSW is shown in Algorithm 1.
The threshold value T H is set upon initialization and needs to be stored globally. When starting the
online approximation of a sensor signal, the very first sample (v[1],τv[1]) will be used as the initial
segment point (˜︁v[1],τ˜︁v[1]) = (v[1],τv[1]). The routine PROCESS_SAMPLE is called for each new
sensor sample s = (v,τv), which is the first parameter given to the function along with the array ˜︁S for
storing segments and the index k for specifying at which position in ˜︁S the new segment will be stored.
Note that the array of segments ˜︁S does not necessarily need to store all created segments, e.g., when
immediately transmitting each new segment point to another device. However, ˜︁S needs a size of at
least two: for the previous segment end point and the current segment endpoint, which will be written
to it when created. The variables n, x2

n−1, xyn−1, y2
n−1, xn−1, and yn−1 need to be stored globally and

must be initialized with zero before starting the online approximation of a sensor signal. All other
variables can be implemented as local variables.

At the beginning, the size n of the current segment is incremented by the new sample in line 2. In line
3 and 4, the coordinates yn and xn of s = (v,τv) within the coordinate system of the last segment
end point (˜︁v[k−1],τ˜︁v[k−1]) are calculated, respectively. The function value() returns the value part
and timestamp() returns the timestamp part of the segment point (˜︁v[k−1],τ˜︁v[k−1]) and the sensor
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Algorithm 1 FastSW.

1: procedure PROCESS_SAMPLE(sample s, segment array ˜︁S[], index k)

2: n = n+1

3: yn = value(s)− value(˜︁S[k−1])

4: xn = timestamp(s)− timestamp(˜︁S[k−1])

5: βn = yn/xn

6: SSRn = (y2
n−1 −2βnxyn−1 +β 2

n x2
n−1) · (n−1)

7: if SSRn <= T H then
8: x2

n−1 = x2
n−1 +((xn · xn)− x2

n−1)/n

9: xyn−1 = xyn−1 +((xn · yn)− xyn−1)/n

10: y2
n−1 = y2

n−1 +((yn · yn)− y2
n−1)/n

11: xn−1 = xn

12: yn−1 = yn

13: return 0

14: τ˜︁v = timestamp(˜︁S[k−1])+ xn−1

15: ˜︁v = value(˜︁S[k−1])+ yn−1

16: n = 1

17: yn−1 = value(s)−˜︁v
18: xn−1 = timestamp(s)− τ˜︁v
19: x2

n−1 = xn−1 · xn−1

20: xyn−1 = xn−1 · yn−1

21: y2
n−1 = yn−1 · yn−1

22: ˜︁S[k] = (˜︁v,τ˜︁v)
23: return 1

sample s, respectively. From lines 5 and 6, the new segment slope βn and the new segment error SSRn

are calculated. If the new SSRn is below T H (line 7), the means x2
n, xyn, and y2

n are updated with the
coordinates of the new sample xn and yn (line 8 to 10), but are stored in the global variables x2

n−1,
xyn−1, and y2

n−1 for the next invocation. Afterwards, xn and yn will be stored for the next invocation
as xn−1 and yn−1 in lines 11 and 12, respectively. The routine returns without creating a new segment
point, indicated by a return value of 0. If SSRn exceeds T H instead (line 7), a new segment point (˜︁v,τ˜︁v)
is created at the previous sample timestamp by adding its coordinates xn−1 and yn−1 to the last segment
point timestamp and value in lines 14 and 15. A new segment is started from there, whose size is set to
1 in line 16. The coordinates of s in the new coordinate system of (˜︁v,τ˜︁v) are calculated in line 17 and
18 and the running variables x2

n, xyn, and y2
n are initialized with them in lines 19 to 21. The newly

created segment point is finally stored in the segment array at position k in line 22 and the function
returns 1 to indicate the creation of a new segment point. The segment points created with fastSW in
relation to the SSR are illustrated in Figure 5.13.
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Figure 5.13: Piecewise linear approximation with fastSW including sum of squared residuals segment

error per invocation.

CPLR approximation The CPLR algorithm introduced in the thesis at hand, is based on the Swing
Filter [126]. The Swing Filter does not implement a maximum segment SSR error constraint, but rather
a threshold T He,max on the absolute sample deviation ei from the segment. The maximum deviation is
ensured, by keeping and updating a minimum slope βL and a maximum slope βH with each sample. To
this end, the coordinate system for the approximation is set to the last segmentation point ˜︁S[k−1], as
with fastSW. Each new sample s = (v[m],τv[m]) will then be projected into that coordination system to
their corresponding coordinates xn and yn. Initially, βH and βL will be set to intersect the coordinate
T He,max units above and below the first sensor sample, respectively, with:

βH =
(yn +T He,max)

xn
(28)

and

βL =
(yn −T He,max)

xn
. (29)

In subsequent invocations, each new sample will be checked to be above βL and below βH . In case the
newest sensor sample falls outside of these slopes, a segmentation point at the last samples timestamp
will be created. The segmentation point however, will not necessarily lie on the original samples
coordinate, but will be extrapolated. The slope for extrapolation is acquired by the following steps.
For each sensor sample, two running variables x2

n and xyn will be updated and from them, the best, in
a least-squares sense, fitting slope ˆ︁βn = xyn/x2

n is calculated. However, the slope for extrapolation is
the result of min(max(ˆ︁βn,βL),βH). Thereby, the slope is forced to be within the range of [βL,βH ].
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If the new sensor sample s falls above βL and below βH , the slopes will be updated to intersect the
coordinate T He,max units below and above s, respectively, in case s is more than T He,max units below
and above βH and βL, respectively. As a result, the slopes approach each other with each new sensor
sample, until eventually a new sensor sample falls outside the area between them. As each update
step of running variables x2

n and xyn, as well as βL and βH can be calculated in constant time, the
computational complexity of the Swing Filter is O(1). Furthermore, its memory complexity is O(1) as
no sensor data has to be buffered. Additional to T He,max, a maximum segment length can be specified
for the Swing Filter, to create a new segment point after a maximum number of samples.

However, the Swing Filter does not allow to specify a maximum segment error in terms of SSR.
Furthermore, the segments are not guaranteed to represent the best fit in a least-squares sense, as the
slope is constrained by βL and βH .

As a complement to SSR-based PLA algorithms, CPLR is introduced in the thesis at hand, which
shares the linear regression nature of the Swing Filter by recalculating ˆ︁βn from running variables x2

n

and xyn. However, instead of keeping and updating a lower and upper bound on the slope, the running
variable y2

n is updated additionally, which allows a calculation of SSRn for the current segment in
constant time, with each new sensor sample. In contrast to fastSW, the segment does not necessarily
intersect the newest sensor sample (xn,yn) and thus SSRn is calculated from the running variables
x2

n and xyn, and y2
n, up to the n-th sensor sample. Furthermore, ˆ︁βn is calculated by ˆ︁βn = xy/x2

n,
which allows the application of Equation (23) to calculate SSRn. Similar as the Swing Filter, a new
segmentation point needs to be extrapolated from the regression line at the previous sample timestamp
by ˜︁v[k] = ˜︁v[k−1]+ (ˆ︁βn · xn−1).

The pseudo code of the function processing a new sensor sample with CPLR is shown in Algorithm 2.
The parameters given to CPLR equal those of fastSW and the first signal sample (v[1],τv[1]) will
be used as the initial segment point (˜︁v[1],τ˜︁v[1]) = (v[1],τv[1]). The variables n, x2

n−1, xyn−1, y2
n−1,

xn−1, and ˆ︁βn−1 need to be stored globally and must be initialized with zero before starting the online
approximation of a sensor signal. All other variables can be implemented as local variables. In contrast
to fastSW, CPLR extrapolates ˜︁v[k] from ˆ︁βn−1 and thus needs to store ˆ︁βn−1 instead of yn−1 globally.
The index of the end point of the currently developing segment is k.

At the beginning, the size n of the current segment is incremented by the new sample in line 2. In line
3 and 4, the coordinates yn and xn of s = (v,τv) within the coordinate system originating in the last
segment point (˜︁v[k−1],τ˜︁v[k−1]) are calculated, respectively. The running variables x2

n, xyn, and y2
n

need to be updated with (xn,yn) before the calculation of SSRn, which is performed in lines 5 to 7. The
slope ˆ︁βn and the segment error SSRn are then recalculated in lines 8 and 9. If the new SSRn is below
T H (line 10), the running variables x2

n, xyn, and y2
n, the slope ˆ︁βn, and the xn coordinate of τv are

stored for the next invocation as x2
n−1, xyn−1, and y2

n−1, ˆ︁βn−1, and xn−1 in lines 11 to 15, respectively.
In line 16, the routine returns without creating a new segment point, indicated by a return value of 0.

If SSRn exceeds T H instead (line 10), a new segment point (˜︁v,τ˜︁v) is created at the timestamp of the
previous sample by adding its coordinate xn−1 to the last segment point timestamp τ˜︁v[k−1] in line 17.
In line 18, the segment point value ˜︁v at the last sample timestamp is extrapolated from ˆ︁βn−1.

A new segment is started from this point, whose size is set to 1 in line 19. The coordinates of s
in the new coordinate system of (˜︁v,τ˜︁v) are calculated in lines 20 and 21 and the running variables
x2

n−1, xyn−1, and y2
n−1 are initialized with these in lines 22 to 24. The corresponding slope ˆ︁βn−1 is
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Algorithm 2 Connected Piecewise Linear Regression.

1: procedure PROCESS_SAMPLE(sample value s, segment array ˜︁S[], index k)

2: n = n+1

3: yn = value(s)− value(˜︁S[k−1])

4: xn = timestamp(s)− timestamp(˜︁S[k−1])

5: x2
n = x2

n−1 +((xn · xn)− x2
n−1)/n

6: xyn = xyn−1 +((xn · yn)− xyn−1)/n

7: y2
n = y2

n−1 +((yn · yn)− y2
n−1)/n

8: ˆ︁βn = xyn/x2
n

9: SSRn = (y2
n − ˆ︁βnxyn) ·n

10: if SSRn <= T H then
11: x2

n−1 = x2
n

12: xyn−1 = xyn

13: y2
n−1 = y2

n

14: ˆ︁βn−1 = ˆ︁βn

15: xn−1 = xn

16: return 0

17: τ˜︁v = timestamp(˜︁S[k−1])+ xn−1

18: ˜︁v = value(˜︁S[k−1])+(ˆ︁βn−1 · xn−1)

19: n = 1

20: yn−1 = value(s)−˜︁v
21: xn−1 = timestamp(s)− τ˜︁v
22: x2

n−1 = xn−1 · xn−1

23: xyn−1 = xn−1 · yn−1

24: y2
n−1 = yn−1 · yn−1

25: ˆ︁βn−1 = xyn−1/x2
n−1

26: ˜︁S[k] = (˜︁v,τ˜︁v)
27: return 1

recalculated for the next invocation in line 25 and the newly created segment point is stored in the
segment array at position k in line 26. Finally, in line 27 the function returns 1 to indicate the creation
of a new segment point. The segment points created with CPLR in relation to the SSR are illustrated
in Figure 5.14.

Multi-dimensional signals Sensor-based activity and gesture recognition is mainly performed on
multi-dimensional inertial sensor signals, e.g., sampled from 3D accelerometers, gyroscopes, or
magnetometers. Furthermore, state-of-the-art sensors offer sensor fusion capabilities fusing multiple
sensor modalities in order to compensate noise and drift or to deliver additional modalities, e.g.,
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Figure 5.14: Piecewise linear approximation with CPLR including sum of squared residuals segment

error per invocation.

orientation in a specified coordinate system. Orientation is often described in quaternions, leading to
4D signals.

As a result, state-of-the-art PLA algorithms support the approximation of multi-dimensional signals.
In line with the definition at the beginning of Section 5.2.3, a multi-dimensional sensor signal is
described as a series S of sensor samples s[m] = ( #»v [m],τv[m])∈ SN with S =RD×T, m ∈ [1,2, . . . ,M],
M possibly going to infinity, and D ∈ N denoting the number of dimensions of the sensor signal. Each
sample ( #»v ,τv) consists of the signal value vector #»v ∈ RD and the corresponding timestamp τv ∈ T.

As a result, the piecewise linear approximation of that signal is a series ˜︁S of segment points ˜︁s[k] =
(
#»˜︁v [k],τ˜︁v[k]) ∈ ˜︁SN, with ˜︁S = RD ×T, k ∈ [1,2, . . . ,K], K possibly going to infinity as well. Each

segment point (
#»˜︁v ,τ˜︁v) consists of a signal value vector

#»˜︁v ∈ RD and its corresponding timestamp
τ˜︁v ∈ T.

At the beginning of this section, the PLA algorithms have been described with D = 1. However, both
fastSW and CPLR can be applied to multi-dimensional signals, like most existing state-of-the-art PLA
algorithms. As a brief description of such, the corresponding variables xyn, y2

n, ˆ︁βn, SSRn, and yn are
implemented as D-dimensional arrays and calculated individually for each dimension. This is possible,
as a single residual error ei can be calculated as the euclidean distance:

ei =

√︄
D

∑
d=1

(ed
i )

2. (30)
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Thus, the squared residual errors e2
i are the sums over all squared residuals (ed

i )
2 of each individual

dimension d ∈ [1,2, . . . ,D], and the error SSRn of an entire segment of length n is calculated by:

SSRn =
n

∑
i=1

D

∑
d=1

(yd
i −β

d
n · xi)

2. (31)

The commutative property allows to calculate the segment error SSRn as the sum of all SSRd
n of each

individual dimension d. Thus, the SSR error metric allows an updating and calculation of all running
variables, slopes, and SSR of a segment for each dimension individually. The accumulation of all
SSRs of each dimension represents the total SSR of that segment.

5.2.4 Evaluation

In order to evaluate the computational performance as well as the approximation quality of fastSW
and CPLR, a comparative evaluation with existing state-of-the-art PLA algorithms has been performed.
To this end, SW as described in [125] and the Swing Filter [126] have been chosen, as fastSW and
CPLR are based on or related to them, respectively. Additionally, the emSWAB implementation from
[127] has been selected as it was specifically developed for resource constrained architectures.

The selected datasets for evaluation are a combination of datasets from evaluations of SW from [125]
and [133], mSWAB from [101], and datasets recorded in cooperative projects conducted during the
work for the thesis at hand. The compression ratio and approximation error depends on the actual
dataset. To this end different datasets have been used for evaluation.

The first dataset (Kitchen) was recorded in a project including the recognition of gestures and activities
in a kitchen assessment scenario. In this, a sensor was attached to the wrist of a user, recording
accelerometer and gyroscope data. The 3D sensor signal vector lengths have been recorded while the
user performed kitchen tasks like cutting carrots with a knife, stirring a bowl of ingredients with a
wooden spoon, blending ingredients in a bowl with a hand held blender, and using a hand mixer. An
example of the accelerometer signal is partially shown in Figure 5.15.

The second dataset (Walking) was recorded by using the same setup and sensor modalities as in the
kitchen scenario, recording the data of a walking person. The sensor was attached to the shoe of the
user. The walking dataset includes straight paths, turns, walking upstairs and downstairs, and also
different walking speeds. An example of the accelerometer signal is partially shown in Figure 5.15 as
well.

As in the literature PLA algorithms are not only used for activity recognition applications, the evaluation
also includes available datasets from literature of other application domains. The "timeseries" dataset
(Timeseries) that came with the implementation of mSWAB from [101] as well as the datasets from
[133] including Electrocardiogram signals (ECG), valve time series of a Marotta space shuttle (Shuttle),
and the time series of a patient’s respiration measured by thorax extension (Respiration), which are
freely available at [132]. Representative extracts of these datasets are shown in Figure 5.15 as well.

As the emSWAB implementation from [127] is one-dimensional and was implemented for and evalu-
ated on 8-bit data, all other PLA implementations process 8-bit data as well. However, as experiments
to asses the approximation quality are carried out on a x86_64 architecture, all implementations
benefit from internal floating-point operations likewise. The same holds for experiments assessing
the algorithm execution time on a microcontroller architecture with floating-point unit, which will
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Figure 5.15: Representative excerpts of the datasets for evaluation.

be discussed in the corresponding section in more detail. Although fastSW and CPLR are designed
to allow non-equidistantly sampled sensor signals to be approximated, the selected datasets were all
sampled with equidistant sampling periods. Thus, the sample number of each dataset has been used as
the timestamp for each sample. Furthermore, emSWAB and SW have been set to a maximum buffer
size of 100 in all experiments. The Swing filter, as well as fastSW, and CPLR have been implemented
without a restriction on the segment length for maximum compression ability, as their design allows.
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The two decisive criteria for the approximation quality are the compression ratio and the approximation
error. In the thesis at hand, the approximation error is measured in terms of an average sum of squares
residual error of the PLA signal to the original signal. Note that the approximation error has to be
distinguished from the segment error. The latter is part of the PLA algorithms to limit the absolute
sum of squared residuals of a single segment. The approximation error instead, is the average squared
residual error of an entire PLA signal w.r.t. its original signal. It is calculated for evaluation purposes.
When approximating a dataset with a particular PLA algorithm and a particular threshold T H, the
resulting PLA signal is interpolated at the timestamps of the original signal and its SSR is calculated
and divided by the number of sensor samples.

Changing the threshold T H influences the resulting approximation error. Although monotonicity
cannot be assumed in general, as a trend, the approximation error increases with the threshold. However,
likewise the compression ratio is influenced for different threshold values. For the sake of visualization,
the Inverse Compression Ratio (ICR) is calculated for an approximated dataset by dividing the number
of segmentation points of the resulting PLA signal by the number of original samples. Thus, in the
worst case, the ICR is 1.0 when the PLA signal results in the same number of segmentation points as
samples in the original signal. Although monotonicity cannot be assumed here neither, the general
trend is a decrease in segmentation points, and thus in the ICR, with an increased threshold value.

At a certain threshold, a particular PLA algorithm produces an approximation with a certain approx-
imation error and a certain ICR for a particular dataset. This pair of ICR and approximation error
is referred to as operating point in the thesis at hand. While most PLA algorithms in the evaluation
are limiting the segment error in terms of a maximum absolute SSR (i.e., SW, fastSW, and CPLR),
emSWAB uses a sum of absolute distances and the Swing Filter uses a maximum residual error ei

of each sample to the segment. This causes a different behavior in terms of approximation error and
ICR w.r.t. the threshold T H. However, as the threshold T H is not a quality indicator but a control
parameter, it is not sufficient to compare different PLA algorithms in terms of approximation error
or ICR, respectively, at equal thresholds, as its done in some of the related literature. While SW can
reach a certain approximation error at a particular threshold, emSWAB or the Swing Filter could reach
the same approximation error at different thresholds. The same applies to the ICR analogously.

As a result, in the thesis at hand, the resulting approximation error of different PLA algorithms is
rather compared at similar ICRs. Thus, the resulting operating points of ICR and approximation
error together are compared for different PLA algorithms on each individual dataset. However, the
approximation of a dataset is a discrete problem w.r.t. the segmentation points and it is generally not
always possible to find a threshold, for which different PLA algorithms lead to the very same ICR.
To this end, for the evaluation, each dataset is approximated with all PLA algorithms multiple times
covering a high range of different threshold values and the resulting approximation errors are plotted
over the resulting ICRs. This leads to plots, sketching the dependency between both quality indicators
of the different PLA algorithms. The nearer the plotted curve is to the origin of the plot, the better is
the approximation quality of a PLA algorithm for that particular dataset.

In the conducted experiments, 29 datasets with in total 536,175 samples have been approximated
100,001 times with fastSW, SW, and CPLR with thresholds from 0 to 100,000, 10,001 times with
emSWAB with threshold from 0 to 10,000, and 12,751 times with Swing Filter with threshold from 0
to 12,750. Note that the threshold of the Swing Filter is defined in units of the sensor signal range. For
8-bit data, only 256 threshold values will provide different operating points, which are not enough for
a sufficient coverage of possible operating points in comparison to all other evaluated PLA algorithms.
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To this end, the actual threshold value of Swing Filter is implemented as a floating-point value scaled by
a factor of 1/50 in the conducted experiments, allowing for a higher range of different threshold values.
As a consequence of their different segment error concepts, fastSW, SW, and CPLR have been tested
on a higher range of thresholds as emSWAB and Swing Filter, in order to cover a similar range of
operating points.

As depicted in Figure 5.16, the trend is a higher average residual error for lower IRCs. However, for
the datasets Kitchen, Walking, Timeseries, and ECG, non of the PLA algorithms shows a superior or
inferior approximation quality among all others.

Differences in approximation quality between the first four plots are mainly based on signal character-
istics, i.e., the ECG dataset allows a higher compression ratio as Kitchen, Walking, and Timeseries, at
comparable approximation errors. This results out of a slightly higher amount of linear sections of the
signal. Note however, that non of the datasets contains comparably long linear or static signal sections
as for example a sensor that lies flat on the ground for several seconds or minutes.

The Respiration dataset allows for a higher data compression w.r.t. the aforementioned datasets, as can
be seen in Figure 5.16. This results out of a strong quantization of the signal into an 8-bit format, due
to a high signal range. As a result, the signal is composed of fairly linear signal sections, which in
itself appear as a piecewise linear signal (see Figure 5.17). From the approximation quality plot of
the Respiration dataset in Figure 5.16, it can also be seen that the maximum achievable compression
ratio of SW is 0.01 when implemented with a maximum buffer size of 100. The fastSW algorithm
instead allows higher compression ratios, as the segment length is unconstrained. With ICRs below
approximately 0.025 the approximation quality between SW and fastSW slightly differs, as a result of
the segment length constraint of SW. Above ICRs of approximately 0.025 for the Respiration dataset
the maximum segment length of SW does not appear to influence the approximation quality of SW,
and both algorithms produce nearly identical results.

Furthermore, it can be seen that SF is showing more ambiguity in the approximation quality. This
might be explained by the segment error bound of SF. However, in order to substantiate, further
investigation is necessary, which is out of scope in the thesis at hand.

In summary, a clear superiority or inferiority of a particular PLA algorithm cannot be deduced from the
conducted experiments. In most cases, the approximation quality is comparable among all implemented
PLA algorithms, with obvious but not comparatively clear differences for datasets with specific signal
characteristics, e.g., higher amounts of linear signal sections in the Shuttle and Respiration dataset.
However, the experiments show, that the PLA algorithms introduced by the thesis at hand, i.e., CPLR
and fastSW, can cope with existing state-of-the-art PLA algorithms, in terms of approximation quality.
While fastSW offers superior execution time benefits compared to SW (which will be evaluated in
the next paragraph), it delivers equal results in approximation quality and additionally extends these
by eliminating constraints on the segment lengths and thus compression ratio. Furthermore, for each
evaluated dataset, one of the evaluated PLA algorithms is best in terms of approximation quality, i.e.,
is closest to the coordinate system origin, in specific regions. The entirety of all best candidates in their
specific regions in the plots (in the field of multi-objective optimization referred to as pareto front) is
thus representing the state of the art. For the conducted experiments, it can be seen, that CPLR directly
contributes to the state of the art by producing results which extend it further towards the origin in
individual regions of the plots.
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Figure 5.16: Approximation quality of the evaluated PLA algorithms on representative datasets.

Execution time To compare the execution times of CPLR and SW to state-of-the-art PLA algorithms,
experiments on a x86_64 architecture have been conducted. In order to eliminate non-deterministic
timing effects induced by cache, scheduling, branch miss prediction penalties, and others, an emulative
approach based on the Valgrind framework [134] has been chosen. To this end, the binaries compiled
with GNU Compiler Collection (GCC) C compiler in version 10.1.0 [135], have been applied to a
chosen dataset. The execution time is evaluated in terms of instruction count per invocation of each
PLA algorithm. The instruction count has been evaluated by using the tool Callgrind [136].
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Figure 5.17: Strong quantization of the Respiration signal.

Each PLA algorithm has been used to approximate all 29 datasets and the instruction counts of each
invocation have been recorded. The threshold for all PLA algorithms has been chosen as 100 and the
maximum buffer size for emSWAB and SW have been set to 100 as well. The minimum, maximum,
and average instruction counts, as well as its standard deviation are summarized in Table 5.13.

Although, fastSW, CPLR, and SF have the smallest maximal and average execution times, as well as
the smallest standard deviations compared to emSWAB and SW, the data-dependent nature does not
get obvious from the results in Table 5.13. Therefore, Figure 5.18, 5.19, 5.21, 5.20, and 5.22 show the
instruction count per invocation for an excerpt of the Timeseries signal from Figure 5.15.

For CPLR, fastSW, and SF, the maximum execution time has a constant limit, which can be seen in
Figure 5.18, 5.19, and 5.20. For SW, the linearly growing execution time with increasing segment
sizes can be observed in Figure 5.21. In Figure 5.22, the instruction count of emSWAB can be seen to
be data dependent and unpredictable, as approximation is performed at points in time that are invoked
heuristically, based on the signal trajectory. The maximum instruction count is two to almost four
magnitudes higher compared to all other PLA algorithms evaluated.

Since the execution times of emSWAB and SW depend on the data-dependent segment length, and thus
the ICR, a fair comparison can only be made at similar ICRs. To this end, a threshold has been chosen
for each algorithm, that leads to approximately the same ICR. However, as a result, the execution
time analysis has been only performed on a single dataset, which has been chosen to be ECG from
Figure 5.15. The thresholds have been chosen to produce a PLA that result in a ICR of at most 0.2, i.e.,
a compression ratio of at least 5:1. For each PLA algorithm, the minimum, maximum, and average

Algorithm min IC max IC IC sIC #

CPLR 49 75 51.56 7.75 551,145
fastSW 55 56 55.89 0.31 551,145
SF 57 86 66.35 9.88 551,145
SW 22 1,327 259.30 281.95 551,145
emSWAB 38 319,575 1,472.48 10,501.33 551,175

Table 5.13: Instruction counts of CPLR, fastSW, SF, SW, and emSWAB at T H = 100 and a maximum

buffer size of 100 for SW and emSWAB on an x86-64 architecture.
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Figure 5.18: Execution time of CPLR with T H = 100.

800 820 840 860 880 900 920 940
0

50

100

150

200

250

fastSW PLA Segment Point

800 820 840 860 880 900 920 940
0

50

100

150

200

250

300

Execution Time Segment Point

Time [Samples]

A
m

pl
itu

de
In

st
ru

ct
io

n
C

ou
nt

Figure 5.19: Execution time of fastSW with T H = 100.
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Figure 5.20: Execution time of SF with T H = 100.
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Figure 5.21: Execution time of SW with T H = 100.



138 5 Context Awareness and Dynamic Behavior

800 820 840 860 880 900 920 940
0

50

100

150

200

250

emSWAB PLA Segment Point

800 820 840 860 880 900 920 940
0

5,000

10,000

15,000

20,000

25,000

30,000

Execution Time Segment Point

Time [Samples]

A
m

pl
itu

de
In

st
ru

ct
io

n
C

ou
nt

Figure 5.22: Execution time of emSWAB with T H = 100.

instruction count per algorithm invocation as well as its standard deviation have been recorded, which
are summarized together with the corresponding parameters and resulting ICRs in Table 5.14.

Compared to an invocation with a threshold of 100 (Table 5.13), SW and emSWAB show a smaller
maximum instruction count, due to the reduced compression with a smaller threshold, but especially
the maximum instruction count of emSWAB is still two to three magnitudes higher than those of
CPLR, fastSW, and SF.

Lastly, a WCET analysis based on Control Flow Graphs (CFG) has been conducted for a more
representative architecture, i.e., an Arm Cortex-M4 microcontroller. The WCET analysis is based on a
static code analysis on the corresponding assembler code, which was compiled with the Arm Embedded

Algorithm T H ICR min IC max IC IC sIC #

CPLR 8 0.1943 49 75 54.05 10.29 14,999
fastSW 10 0.1972 55 56 55.80 0.40 14,999
SF 110 0.1997 57 86 66.74 8.77 14,999
SW 10 0.1970 36 318 103.34 45.89 14,999
emSWAB 8 0.1907 38 74,325 2,999.09 7,084.31 15,000

Table 5.14: Instruction counts of CPLR, fastSW, SF, SW, and emSWAB on an x86-64 architecture at

similar ICRs with a maximum buffer size of 100 for SW and emSWAB, evaluated on the ECG dataset

from Figure 5.15.
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Algorithm min IC max IC Computational Complexity

CPLR 46 77 O(1)
fastSW 51 59 O(1)
SF 53 96 O(1)
SW 20 56+n ·12 O(n)

emSWAB 33 / O(n2)

Table 5.15: Instruction counts of CPLR, fastSW, SF, SW, and emSWAB on an ARM Cortex-M4

microcontroller.

GCC in version 10.1.0 of the GNU Arm Embedded Toolchain [135]. The Cortex-M4 has been set up as
the target platform (command line option -mcpu=cortex-m4), the optimization level was set highest
w.r.t. execution time (command line option -O3), and floating-point-specific instructions were used with
Floating-Point Unit (FPU) specific calling conventions (command line option -mfloat-abi=hard).
From the generated assembler code, control flow graphs with corresponding instruction counts of each
basis block have been extracted. For SW, fastSW, SF, and CPLR, the CFGs were simple enough for a
manual analysis of the shortest and longest paths, as well as data dependencies of SW. However, the
control flow of emSWAB includes nested loops with both, inner and outer loops, iterating over the
entire buffer in the worst case. Since previous experiments have substantiated high execution times
resulting out of the O(n2) complexity, an exact WCET analysis from its rather complex CFGs has been
abstained from. The minimum and maximum execution times (dependencies) in terms of instruction
count as well as the time complexities are summarized in Table 5.15. It can be seen that CPLR, fastSW,
and SF, have a data-independent worst-case execution time of 77, 59, and 96 instructions, respectively.
The worst-case execution time of SW is at least 56 instructions and increases depending on the segment
length by 12 instructions with each new sensor sample. This not only means a constraint of the
compression abilities, when the execution time has to be limited for a particular application on a
resource constrained hardware architecture, but also results in a increased energy consumption as the
average execution time and thus processor utilization increases with longer segments and thus higher
data reductions.

5.2.5 Discussion

In this sub-chapter, state-of-the-art PLA algorithms have been optimized towards a constant, determin-
istic worst-case execution time per sensor sample, without compromising functional properties, i.e.,
approximation quality. Both, CPLR and fastSW, are based on a user-specified maximum SSR segment
error, while an existing alternative, i.e., the swing filter [126], is based on a maximum residual error
of each sample. However, an analysis of the effects of different segment error metrics has yet to be
performed, which is out of scope for the thesis at hand.

The contributions of this sub-chapter are two novel SSR-based PLA algorithms with constant memory
and computational complexity w.r.t. the segment lengths. While CPLR extrapolates segment points
from a regression line, segment points of fastSW are a subset of the original signal samples.

From a modeling and analysis perspective, the result show, that for CPLR, fastSW, and SF, a WCET
can be determined at design time without constraining their functional properties. This allows for
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design-time modeling and analysis approaches as presented in the thesis at hand. The data-dependent
changes of scenarios confine themselves to the output of a segment or not. Each scenario of the
proposed PLA algorithms has itself a deterministic WCET and can thus be modeled with the SADF
MoC as presented in Section 5.1.



141

6 Conclusions

This final chapter summarizes the contributions of this thesis and presents a discussion of the acquired
results with respect to the initial research questions and its limitations, as well as recommendations for
future work.

6.1 Summary

The thesis at hand introduced model-based design and analysis approaches of human activity recog-
nition (HAR) systems, based on dataflow models of computations. To this end, suitable MoCs have
been identified. Furthermore, based on existing analysis approaches for selected MoCs, novel methods
have been developed to acquire energy consumption indicators at design time. Energy consumption
models have been introduced to capture the relationship to the aforementioned indicators in separate
models that are annotated to hardware elements. From these, the impact of design decisions on
device energy consumption can be quantified at design time, which extends the state of the art. The
introduced approaches have been applied to case studies, and their analysis results have been compared
to corresponding experimental implementations. System-level parallelization approaches have been
integrated into models and their influence regarding latency, throughput, and processor utilization
has been evaluated on the formal models as well as in experimental implementations for the sake of
comparison. Furthermore, dynamic behavior of HAR systems has been studied and the model-based
design and analysis methods have been extended to SADF models. As a result, dynamic changes of
the HAR system can be modeled and model-based analysis of energy consumption indicators can take
scenario changes and their occurrence distribution into account. The developed methods contribute
to the state of the art. The model accuracy has been evaluated in experimental implementations.
Finally, two novel piecewise linear approximation (PLA) algorithms for sensor signals, i.e., CPLR
and fastSW, have been introduced, that can be applied to reduce the amount of wirelessly transmitted
sensor samples, and thus the energy consumption of wireless transceivers on sensor nodes. Both,
CPLR and fastSW, guarantee a bound on the segment error in terms of the sum of squared residual
errors. Furthermore, they provide a constant computational as well as memory complexity per sensor
sample, without compromising their functional properties, i.e., achievable data reduction. Furthermore,
their execution time and memory utilization is small enough to be executed on processing units with
harsh resource constrains. Both algorithms have been evaluated against, and contribute to, the state of
the art.

6.2 Discussion

In the following, the main results of the thesis at hand are discussed w.r.t. the initial research questions
on page 5:

RQ1 Which dataflow MoC is suitable to capture state-of-the-art human activity recognition
systems?

RQ2 How can important extra-functional properties be accurately analyzed from dataflow
graph models?

RQ3 Can existing conceptual optimizations regarding latency, throughput, and energy con-
sumption of sensor-based human activity recognition systems be represented in dataflow
graph models?
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RQ4 Can dynamic behavior of human activity recognition systems be captured by dataflow
graph models and corresponding analysis methods?

The modeling and analysis based on CSDF graphs has been presented in Chapter 3. The acquired
accuracy in experimental evaluations substantiates the suitability of CSDF graphs and the chosen level
of abstraction for the selected case study without dynamic, data-dependent changes. These results
answer research question RQ1, on how to model human activity recognition systems with dataflow
MoCs. Furthermore, existing optimizations w.r.t. latency, throughput, and energy consumption, that are
based on the reduction of computational effort for sensor signals and features with minor contributions
to the recognition accuracy, i.e., feature-selection, sensor-selection, and reduced sensor sampling
frequency approaches, can be directly represented in the dataflow model, by means of production and
consumption rates as well es execution time annotations. This partially answers research question RQ3
of this thesis.

Furthermore, the introduced analysis methods of processor utilization and communication data rate are
indicators for energy consumption. Introduced energy consumption models have been used to annotated
hardware components, in order to estimate impacts of design decisions on the total device energy
consumption rate of a wireless sensor node. This is a direct contribution to research question RQ2
regarding possible analysis methods for extra-functional properties. The addressed extra-functional
properties concern energy consumption.

The system modeling approach, especially the mapping, is representing a common optimization
approach w.r.t. energy consumption from the literature. Researchers have proposed to calculate feature
extraction on wireless sensor nodes in order to reduce total energy consumption. However, their results
are neither generalizable nor quantified w.r.t. the variability in application-specific ARC configurations.
The introduced modeling approach however, directly represents the conceptual idea in the mapping of
dataflow actors onto a hardware model. The introduced analysis methods, allow to quantify (at least
estimate) the impact of mapping decisions w.r.t. device energy consumption at design time. This is a
partial answer to research question RQ3 on how existing conceptual optimizations can be represented
by dataflow-based design and analysis approaches.

The representation of existing parallelization approaches for the classification stage of HAR systems
on MPSoCs and its analysis w.r.t. throughput, latency, and processor utilization is another conceptual
optimization from the literature that could be successfully represented in the proposed model-based
design and analysis approaches, which partially answers research question RQ3. Furthermore, the
analysis of latency from the dataflow graph models has been shown, which partially answers research
question RQ2 of this thesis. The acquired accuracy of model-based results compared to an experimental
implementation substantiates the chosen MoCs and level of abstraction which the selected case studies
have been modeled with.

The proposed model-based design approach has been extended to SADF graphs, that can capture
dynamic changes of static scenarios in the model-based representation. The analysis of processor
utilization has been extended to SADF graph models. The accuracy of model-based analysis results
with measurements from an experimental evaluation show again a sufficient accuracy. However, with
inconsistent implementations of the modeled behavior, long-run average results can become rather
inaccurate. In the conducted experiments, relative deviations from the estimated average processor
utilization have been up to 14.7%. These deviations are a result of differences between modeled and
implemented behavior regarding the order of the decision processor between scenarios.
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As a result, SADF provides a possible solution to capture dynamic behavior but either accurate
modeling of the desired behavior or consistent implementation of the modeled behavior is crucial in
order to preserve model-based analysis results of extra-functional properties in the final system. These
results are answering research question RQ4 of this thesis. Furthermore, the concept of scenarios can
directly represent existing optimization approaches that are based on dynamic feature-selection or
sensor-selection approaches based on environmental changes or remaining battery levels of wireless
sensor nodes. Their impact can thus be estimated from SADF-based models. This partially answers
research question RQ3 of this thesis.

Finally, the introduction of two novel piecewise linear approximation algorithms contributes to the
optimization of HAR systems with respect to energy efficiency, and to the model-based design and
analysis of such, as their execution time is deterministic without constraining their functional properties.
This contribution goes beyond the initial research questions of the thesis at hand.

6.3 Limitations

The thesis at hand is by no means exhaustive towards the initial research questions it deals with.
Consequently, it underlies certain limitations which will be discussed in the following.

While the thesis at hand offers answers to research question RQ1 regarding suitable MoCs, it does not
offer a comparison to other existing MoCs that could be possibly utilized for a model-based design
and analysis of energy-efficient online human activity recognition systems. Further, the thesis at hand
does not attempt to offer applicable solutions for every possible sensor-based HAR system. Especially,
it constraints its applicability to HAR systems with a small level of control flow and a small number of
dynamically changing scenarios. Furthermore, HAR systems that do not follow the common structure
of an activity recognition chain are not considered in the thesis at hand. This consequently excludes
deep learning, although a possible approach has been suggested in Chapter 1.

Furthermore, the model-based analysis of memory requirements has entirely not been considered
in the thesis at hand. Although respective analysis approaches for signal processing and streaming
applications in general exists in the literature and are implemented in SDF3 [13], these have not been
studied in the thesis at hand and rather been abstracted into WCET annotations and abstract energy
models. As a result, the influence of memory utilization on the energy consumption has not been
directly evaluated as well. Other requirements like safety, security, or robustness of HAR systems are
out of scope for this thesis as well.

The introduced analysis methods regarding processor utilization and communication data rate have yet
not been analyzed w.r.t. their analysis time, e.g., as an implementation in existing dataflow analysis
frameworks like SDF3 [13, 20].

The model-based design and analysis approach claims to be applicable at design time. However,
corresponding execution time annotation to actors, as well as introduced energy consumption models
have been acquired on actual implementations, which contrasts the anticipated design flow. In general,
annotations based on measurements cannot be regarded as worst-case execution times, as the worst
case might not have been observed in the measurements. However, a comparison to analysis results
based on annotations that have been acquired at design time has not been conducted and has yet to be
evaluated.
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In each chapter, certain analysis methods have been evaluated with different parts of the system, e.g.,
latency analysis for parallelized classification algorithms on MPSoCs or energy consumption estimation
of wireless sensor nodes. However, latency has not been analyzed in wireless sensor networks, as well
as energy consumption for MPSoCs. As a result, the general applicability of presented methods has
been shown, but not exhaustively evaluated in this regard.

Finally, two new piecewise linear approximation algorithms for sensor signals have been introduced,
i.e., CPLR and fastSW, which to the best of the author’s knowledge, are the only SSR-based PLA
algorithms for connected segments, that have a constant computational, as well as memory complexity
per sensor sample. However, the swing filter offers constant computational and memory complexity
per sample as well, but is rather based on a maximum absolute residual error metric, than a sum of
squared residuals. Although the latter is commonly used in the literature, differences in their impact on
approximation quality have not extensively been evaluated in the thesis at hand.

6.4 Future Work

The results of the thesis at hand show, that a model-based design and analysis of sensor-based
human activity recognition systems is a promising approach to substantiate design decisions based on
quantified analysis results of important extra-functional properties like throughput, latency, processor
utilization, and energy consumption at design time. A further extension with annotations towards
recognition accuracy based on ARC parameters could be an interesting extension, to trade-off functional
and extra-functional properties at design time. Such annotation could be acquired from offline
evaluations of different HAR software configurations on test datasets, which is common practice for
the optimization of ARC configurations w.r.t. recognition accuracy.

The results of this thesis show furthermore, that a precise knowledge about scenario transition proba-
bilities has to be available in order to acquire long-run average metrics from SADF-based system-level
models. However, due to the introduced real-time criterion w.r.t. system throughput, scenario oc-
currence distributions are sufficient to estimate long-run averages. Furthermore, the derivation and
specification of scenario occurrence distributions is more straight forward than scenario transition prob-
abilities. Additionally, a specific scenario occurrence distribution or the set of transition probabilities
can only model a specific use case of the system. An interesting future work could be the probabilistic
modeling of uses cases in form of a Dirichlet distribution on all possible scenario occurrence distribu-
tions. This could allow to estimate long-run average metrics for the expected use case of the system
but also standard deviation or statistical moments, which could refine design-time estimates on the
extra-functional properties.

Finally, the model-based design and analysis of sensor-based human activity recognition systems allows
to quantify the impact of design decisions on extra-functional properties like real-time performance,
latency, and energy efficiency. However, the huge number of possible design points can easily become
infeasible to analyze by the system designer. As the proposed modeling and analysis approaches are
based on formal methods, a logical consequence is the combination with state-of-the-art design space
exploration approaches. The model-based design and analysis approaches introduced in the thesis at
hand can form the basis of automatic design space exploration and multi objective optimization of
energy-efficient sensor-based human activity recognition systems.
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A Implementation Details on the Hand Gesture Recognition System

In the following, implementation details about the hand gesture recognition system on the
TMS320C6678 8-core DSP architecture are given, that has been implemented for the experiments in
Chapter 4. In order to realize different parallelization approaches of the gesture recognition system,
the initiator-worker-evaluator structure as described in Section 4.4 is applied to the eight DSP cores of
the TMS320C6678 architecture. Thus, one DSP core is acting as initiator, six as worker cores and one
as evaluator.

In order to implement the gesture recognition system, the SYS/BIOS real-time kernel from Texas
Instruments has been used as operating system. The SYS/BIOS is an preemptive multi-threading
real-time kernel offering scheduling, synchronization, and instrumentation methods for embedded
applications. The implementation of the gesture recognition system is described along the ARC in the
following.

Segmentation The sliding window segmentation has been implemented as a single thread on the
initiator core. At initialization, the test gesture sequence is loaded into a shared region of the DDR3
SRAM of the board. The shared region can be accessed by all processor cores, and acts as the
communication channel of sliding window data. Furthermore, in order to coordinate synchronization
between the processor cores during initialization, the initiator core loads the templates into a local
scratchpad memory, which will be distributed to the worker cores upon initialization, depending on the
parallelization configuration.

The sliding window segmentation is performed in a while loop with a blocking semaphore pend
(acquiring a semaphore) operation at the loop entry. This semaphore is released by a second, higher
priority task which is triggered by a clock module every 40ms. By doing so, the online execution of
the segmentation stage is simulated and each 40ms a new window will be released.

As the main synchronization method between different DSP cores messages are used. Messages have
to be allocated to be sent over message queues which are provided by TI’s messageQ module. A
message queue is a communication channel that is established between two particular threads in the
system, as the sender and receiver has to register the queue and keep handles to it in its local memory.
Therefore, six message queues from the initiator to the worker cores are registered as well as six
message queues from the worker cores to the evaluator, respectively. Likewise, a message queue from
the evaluator back to the initiator is deployed. Each thread keeps one or multiple message queues to
messages it sends and receives. Message queue reads are performed blocking, in order to provide
synchronization between cores upon data transfers. After sending a message, the local pointer of
the message is set to null in order to keep track of unavailable worker cores. A message queue read
operation sets the corresponding message pointer after successful return. By defining messages for
particular message queue paths and sending the corresponding information within the message header,
the initiator and evaluator keep track from which worker core a message came and belongs to.

After release of the semaphore, the initiator checks its local message queues by non-blocking reads.
Each successful read evaluates to which worker core ID the received message belongs to and assigns
its address to the corresponding local pointer. A successful read further triggers another non-blocking
read, until no further read function returns successfully, i.e., no new message has arrived. Afterwards,
the local messages will be checked for availability. If the messages from every worker core belonging
to a tile are present at the initiator, the tile is marked as available and represents a possible candidate
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for the current sliding window to be sent to. After checking all the local messages for availability, the
current sliding window will be sent as a corresponding pointer in the payload in the messages to all
worker cores which belong to the selected tile. The actual data transfer of sliding window data will be
performed on the worker core by memory reads from the corresponding location in DDR3 SRAM.
Additional to sending the window pointer, the initiator informs the corresponding worker core if an
EMA calculation shall be performed. As the EMA only needs to be calculated once per window, the
initiator is responsible for informing each worker core through a corresponding entry in the message if
EMA calculation should be performed, depending on the parallelization configuration. In general, the
EMA calculation is assigned to the last core, i.e. the worker core with the highest core ID within a tile.
This information is sent along with the window pointer to each worker core of an available tile.

Depending on a successful sending of messages to the worker cores of a tile, the corresponding
message pointers in the local array will be set to null to indicate unavailability of the tile. However, in
case of no available tiles, due to exceeding execution time of all worker cores or evaluator w.r.t. the
sliding window period, the current window will be skipped and the initiator does not sent a message to
any worker core. Independent of a successful window dispatching, the loop ends by shifting the sliding
window pointer by two samples, i.e., 36bytes and re-loops to the blocking semaphore pend at the loop
entry again. The exit condition of the loop is that the number of remaining test sequence samples is
smaller than the window size, i.e., after (NT S −NWS)/2 sliding windows, with NT S being the number
of test sequence samples, NWS being the window size in samples, i.e., 125, and 2 represents the offset
from two consecutive windows in number of samples.

DTW distance calculation On the worker cores, the actual DTW calculation between the sliding
window sent to a worker core and all its templates is performed. To this end, depending on the executed
parallelization configuration, each worker core receives its assigned templates upon initialization.
These are stored in the L2 scratchpad memories of the worker cores, as they do not fit into L1P SRAM.
The L1P and L1D SRAMs have been fully configured as cache, which however, has been disabled to
avoid unpredictable timing behavior. The L2 SRAMs have been fully utilized as scratchpad memories.
Furthermore, each worker core allocates the memory for the DTW cost matrix, whose pointer will be
handed over to the DTW process as a function parameter. Since the DTW calculation is implemented
in a row wise fashion, and the sliding window has a constant window size, the signal contained in the
window is placed along a row, while each calculated row corresponds to a new sample in the particular
template. Therefore, the DTW cost matrix is fixed to two rows which corresponds to twice as much as
the sliding window size, i.e. 250 samples. This way, the memory consumption of the DTW calculation
is kept equal among all worker cores and independent from the parallelization configuration and only
the execution time of each DTW invocation is directly dependent on the particular template length.

Similar to the segmentation on the initiator core, the DTW distance and EMA calculation is performed
in a loop. Here, a blocking message queue read is performed at the beginning, which a) serves
as synchronization mechanism between initiator and worker cores, and b) acts as communication
channel. After the blocking message read returns due to a dispatched sliding window, the sliding
window pointer as well as the EMA flag are read and stored in local variables. However, the message
is kept at this point, as it is also used for communication of results to the evaluator. The sliding
window content of 125 samples is copied from the window pointer destination in DDR3 SRAM into
an allocated scratchpad memory of the worker core. After copying the sliding window content into
scratchpad memory, the worker core successively calculates the DTW distance of the signal contained
in the window to each of its assigned templates and saves the resulting distance to each template in a
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corresponding location of an array which is also contained in the messages. Moreover, if the EMA flag
was set by the initiator within the message, the worker core calculates the EMA value for the window
and stores the result in a corresponding variable in the message. Finally, the message containing all
DTW distances to the processed templates and the EMA, if calculated, is sent to the evaluator and the
loop starts another iteration with a blocking message queue read at its entry.

DTW distance evaluation The evaluation of DTW distances for each sliding window is performed
on the evaluator core. Again a loop with a blocking message queue read at its entry is used as
synchronization and communication method. When the message queue read returns, the message
pointer will be assigned to the corresponding local message pointer array of the evaluator. As each
message can have its origin on a different tile, the evaluator checks its local message pointer array for
non-null entries of each tile. If one or more entries are set to null, processing on one or more worker
cores of a tile is still ongoing. If that is the case, the evaluator loop re-iterates and waits for the next
message.

In the case that messages from each core of one of the tiles are present at the evaluator, the EMA value
of the last worker core of that tile is compared to the activation and release thresholds as described
in Section 4.5. As the EMA-based gesture detection is a state-based method, the Boolean state is
recorded at the evaluator core and updated according to the calculated EMA values received from the
worker cores for each window. Depending on the updated state, i.e., a gesture is currently performed
or not, each DTW distance is compared to the class-dependent threshold and all other DTW distances
from that tile, in order to find the template with the smallest DTW distance to the signal contained in
the window. If the current gesture state is true and at least one of the template distances is below its
class-dependent threshold, the class label of that template is assigned to the sliding window. Otherwise,
the null class label is assigned to the window.

The actual class labels are not further sent or processed by other instances in the system, but recorded
in a file, which will be saved after processing an entire test sequence of gestures. After evaluating a
window, the evaluator sends all messages belonging to the processing tile back to the initiator core and
assigns null to the corresponding message pointer entries of its local array, before re-iterating the loop
with the next blocking message queue read operation. The sent back messages are synchronization
events for the initiator, to indicate that one of the tiles is now available again for processing another
window.
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B Supplementary Experimental Data

In the following, additional information about the evaluation of model accuracy in Section 5.1 is
provided.

Table B.1 lists average (trsp), standard deviation (strsp), coefficient of variation (CVtrsp), minimum
(min trsp), and maximum (max trsp) response times measured from the implementation of scenario LP
in configurations C1, C2, C3, and C6, as well as their real-time capabilities.

Table B.1: Response time trsp measured from the implementation in scenario LP.

Cfg. # trsp [ns] strsp [ns] CVtrsp min trsp [ns] max trsp [ns] Real Time

C1 6,546 83,086 118 0.14% 82,601 84,221 Yes
C2 7,041 83,103 98 0.12% 82,613 83,795 Yes
C3 6,913 83,078 86 0.10% 82,589 83,597 Yes
C6 6,517 83,167 84 0.10% 82,667 83,665 Yes

Table B.2 lists the processor utilization ˆ︁U of worker cores W1-W6 analyzed from SADF models of
scenario LP in configurations C1, C2, C3, and C6. ˆ︁U denotes the average processor utilization among
the worker cores.

Table B.2: Processor utilization acquired from the SADF analysis models in scenario LP.

Cfg. ˆ︁U(W1) ˆ︁U(W2) ˆ︁U(W3) ˆ︁U(W4) ˆ︁U(W5) ˆ︁U(W6) ˆ︁U
C1 0,0000 % 0,0000 % 0,0000 % 0,0000 % 0,0000 % 0,1181 % 0,0197 %
C2 0,0000 % 0,0000 % 0,0590 % 0,0000 % 0,0000 % 0,0590 % 0,0197 %
C3 0,0000 % 0,0394 % 0,0000 % 0,0394 % 0,0000 % 0,0394 % 0,0197 %
C6 0,0197 % 0,0197 % 0,0197 % 0,0197 % 0,0197 % 0,0197 % 0,0197 %

Table B.3 lists the measured processor utilization U of worker cores W1-W6 from the implementation
of scenario LP in configurations C1, C2, C3, and C6. U denotes the average processor utilization
among the worker cores.

Table B.3: Measured processor utilization from the implementation in scenario LP.

Cfg. U(W1) U(W2) U(W3) U(W4) U(W5) U(W6) U

C1 0.000 % 0.000% 0.000 % 0.000 % 0.000 % 0.133 % 0.022 %
C2 0.000 % 0.000% 0.067 % 0.000 % 0.000 % 0.067 % 0.022 %
C3 0.000 % 0.045% 0.000 % 0.045 % 0.000 % 0.045 % 0.022 %
C6 0.022 % 0.022% 0.022 % 0.022 % 0.022 % 0.022 % 0.022 %
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Table B.4 lists the processor utilization ˆ︁U of worker cores W1-W6 analyzed from SADF models
including transitions between scenarios LP and FP in configurations C1, C2, C3, and C6. ˆ︁U denotes
the average processor utilization among the worker cores.

Table B.4: Processor utilization acquired from the SADF analysis models with scenario transitions.

Cfg. ˆ︁U(W1) ˆ︁U(W2) ˆ︁U(W3) ˆ︁U(W4) ˆ︁U(W5) ˆ︁U(W6) ˆ︁U
C2 22.46 % 22.32 % 20.64 % 22.46 % 22.32 % 20.64 % 21.81 %
C3 22.85 % 20.77 % 22.85 % 20.77 % 22.85 % 20.77 % 21.81 %
C6 21.80 % 21.80 % 21.80 % 21.80 % 21.80 % 21.80 % 21.80 %

Table B.3 lists the measured processor utilization U of worker cores W1-W6 from the implementation
including transitions between scenarios LP and FP in configurations C1, C2, C3, and C6. U denotes
the average processor utilization among the worker cores.

Table B.5: Measured processor utilization from the implementation with scenario transitions.

Cfg. U(W1) U(W2) U(W3) U(W4) U(W5) U(W6) U

C2 23.83 % 23.70 % 19.63 % 23.63 % 23.50 % 19.47 % 22.30 %
C3 24.76 % 20.18 % 24.45 % 19.93 % 25.67 % 20.93 % 22.65 %
C6 24.12 % 23.60 % 24.12 % 22.55 % 22.55 % 24.13 % 23.51 %

Table B.6 lists the relative differences ∆r between model-based results and measured processor
utilization U of worker cores W1-W6 and their average U , based on the a posteriori observed scenario
occurrence distribution in the experiments.

Table B.6: Relative difference of processor utilization between model-based and measured results with

a posteriori observed scenario occurrence probabilities.

Cfg. ∆r U(W1) ∆r U(W2) ∆r U(W3) ∆r U(W4) ∆r U(W5) ∆r U(W6) ∆r U

C2 1.064% 0.987% 0.998% 1.927% 1.851% 1.860% 1.448%
C3 2.325% 2.262% 3.624% 3.556% −1.378% −1.428% 1.493%
C6 −1.172% 1.077% −1.172% 5.883% 5.882% −1.175% 1.554%

In Figure B.1, the total variation distance δtv of the Markov chain of the SADF analysis model in
configuration C1 is plotted over the time (number of graph iterations) t. The Markov chain mixing
time at δtv ≤ 0.1% is reached after 159 iterations.
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Figure B.1: Total variation distance δtv between the Markov chain state occurrence probabilities at

time t and its corresponding equilibrium distribution.
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