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Abstract

Objective: Cardiovascular diseases are the number one cause of deaths globally. An

increased cardiovascular risk can be detected by a regular monitoring of the vital signs

including the heart rate, the heart rate variability (HRV) and the blood pressure. For

a user to undergo continuous vital sign monitoring, wearable systems prove to be very

useful as the device can be integrated into the user’s lifestyle without a↵ecting the daily

activities. However, the main challenge associated with the monitoring of these car-

diovascular parameters is the requirement of di↵erent sensing mechanisms at di↵erent

measurement sites. There is not a single wearable device that can provide su�cient

physiological information to track the vital signs from a single site on the body. This

thesis proposes a novel concept of using acoustic sensing over the radial artery to extract

cardiac parameters for vital sign monitoring. A wearable system consisting of a micro-

phone is designed to allow the detection of the heart sounds together with the pulse wave,

an attribute not possible with existing wrist-based sensing methods.

Methods: The acoustic signals recorded from the radial artery are a continuous reflec-

tion of the instantaneous cardiac activity. These signals are studied and characterised

using di↵erent algorithms to extract cardiovascular parameters. The validity of the pro-

posed principle is firstly demonstrated using a novel algorithm to extract the heart rate

from these signals. The algorithm utilises the power spectral analysis of the acoustic

pulse signal to detect the S1 sounds and additionally, the K-means method to remove

motion artifacts for an accurate heartbeat detection. The HRV in the short-term acoustic

recordings is found by extracting the S1 events using the relative information between

the short- and long-term energies of the signal. The S1 events are localised using three

di↵erent characteristic points and the best representation is found by comparing the in-

stantaneous heart rate profiles. The possibility of measuring the blood pressure using the
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wearable device is shown by recording the acoustic signal under the influence of external

pressure applied on the arterial branch. The temporal and spectral characteristics of the

acoustic signal are utilised to extract the feature signals and obtain a relationship with

the systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively.

Results: This thesis proposes three di↵erent algorithms to find the heart rate, the HRV

and the SBP/ DBP readings from the acoustic signals recorded at the wrist. The results

obtained by each algorithm are as follows:

• The heart rate algorithm is validated on a dataset consisting of 12 subjects with

a data length of 6 hours. The results demonstrate an accuracy of 98.78%, mean

absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and

a correlation coe�cient of 0.998 with reference to a state-of-the-art PPG-based

commercial device. A high statistical agreement between the heart rate obtained

from the acoustic signal and the photoplethysmography (PPG) signal is observed.

• The HRV algorithm is validated on the short-term acoustic signals of 5-minutes du-

ration recorded from each of the 12 subjects. A comparison is established with the

simultaneously recorded electrocardiography (ECG) and PPG signals respectively.

The instantaneous heart rate for all the subjects combined together achieves an

accuracy of 98.50% and 98.96% with respect to the ECG and PPG signals respec-

tively. The results for the time-domain and frequency-domain HRV parameters also

demonstrate high statistical agreement with the ECG and PPG signals respectively.

• The algorithm proposed for the SBP/ DBP determination is validated on 104 acous-

tic signals recorded from 40 adult subjects. The experimental outputs when com-

pared with the reference arm- and wrist-based monitors produce a mean error of

less than 2 mmHg and a standard deviation of error around 6 mmHg.

Based on these results, this thesis shows the potential of this new sensing modality to be

used as an alternative, or to complement existing methods, for the continuous monitoring

of heart rate and HRV, and spot measurement of the blood pressure at the wrist.
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Thesis Structure

This thesis is organised into five main chapters and the details of each chapter are sum-

marised below.

Chapter 1: An introduction to non-invasive cardiovascular monitoring tech-

niques and systems

An introduction to the cardiovascular diseases and their important types is presented.

Their impact on the world and specifically on the U.K. population is discussed to under-

stand the importance of creating novel solutions in reducing the cardiovascular mortalities

and morbidities. It is found that a regular monitoring of the heart rate, the heart rate

variability and the blood pressure can provide critical information about these diseases

and contribute in their early diagnosis. These physiological markers are subsequently

discussed in detail with an emphasis on existing monitoring techniques. The advantages

and disadvantages of every technique are also explained to understand the feasibility of a

technique in di↵erent applications. Further, a comparison of the features and functions

of the commercial monitors currently available in the market is done. The validation

of these monitors in the literature is also discussed to grade their respective accuracies.

Finally, the limitations of the existing systems are summarised and a novel approach for

the cardiovascular monitoring at the wrist is proposed.

Chapter 2: Wearable sensing of the pulse sounds at the wrist

In this chapter, the formation of the pulse is discussed in relation to the propagation of

blood through the circulatory system. The pulse components, namely the pressure wave

and the flow wave are explained to justify the choice of radial artery as an ideal site

for pulse assessment. Further, a comprehensive literature review of di↵erent techniques

and applications of measuring the radial pulse is provided. The conclusions drawn from

the literature review are used to explain the need of wearable acoustic sensing as an

alternative new physiological signal to extract cardiac information from the radial artery.

For sensing the pulse sounds using a wearable device, di↵erent types of acoustic sensors,

batteries and data acquisition hardware are explored. A detailed comparison of these

choices is provided to find the electronic components matching the required specifications

of the device. Finally, the blueprint of the proposed wearable device is discussed.
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Chapter 3: Characterising the pulse sounds for continuous heart rate moni-

toring

The proposed wearable device is used to record the acoustic pulse signal from the radial

artery. To establish a correlation of these signals with the cardiac activity, the temporal

and spectral characteristics of the pulse sounds are studied. Since the signal quality

depends highly on the measurement site, the optimal sensor location on the wrist is

found. Just like other devices, the proposed sensor is also prone to some motion artefacts.

This chapter identifies the common noise sources and characterises them to incorporate

their removal from the acoustic signal. These characteristics of the recorded signals are

used to present a novel algorithm for average heart rate estimation. The heart rate

profiles obtained from the proposed algorithm are compared with the synchronously

recorded photoplethysmography signals. The results demonstrate the feasibility of heart

rate monitoring at the wrist using the acoustic sensing of the radial pulse. Finally, the

performance of the proposed algorithm over various parameters is compared with some

of the monitors available commercially.

Chapter 4: An algorithm to determine heart rate variability in short-term

acoustic recordings

In this chapter, a novel algorithm to extract the heart rate variability from the short-

term acoustic recordings at the wrist is proposed. Firstly, a comprehensive literature

review of the existing algorithms based on di↵erent monitoring techniques (including the

contact and non-contact approaches) is provided. Further, the data acquisition involving

the synchronous recordings of the acoustic signal, electrocardiography signal and photo-

plethysmography signal is explained. The relative energy concept to detect the S1 sounds

in the acoustic signal along with the other stages of the proposed algorithm are also dis-

cussed. The S1 sounds represented by three di↵erent characteristic points are localised

and the instantaneous heart rate is calculated to find the most suitable characteristic

point. The peak detection at a beat-to-beat resolution is then utilised to extract the

time-domain and frequency-domain heart rate variability parameters. The comparison

with the reference signals proves the performance of the proposed algorithm in accurately

extracting the heart rate variability from the acoustic signals recorded at the wrist.

Chapter 5: Blood pressure measurement by sensing Korotko↵ sounds at the

wrist

This chapter explores the possibility of recording the Korotko↵ sounds from the radial

artery to measure the systolic and diastolic blood pressure at the wrist. The hardware

required to inflate the air cu↵ and apply varying levels of external pressure on the upper

arm is described. The roles and specifications of di↵erent components in the hardware

development are also provided for reference. Further, the hypothesis of measuring the
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blood pressure at the wrist is tested by recording the acoustic signal in synchronisation

with inflating pressure levels. The temporal and spectral characteristics of the acoustic

signal under the influence of external pressure on the arterial branch are studied and anal-

ysed. These characteristics are utilised to propose separate algorithms for the diastolic

and systolic blood pressure determination. The interference from the artefacts and their

removal is also considered to extract reliable feature signals from the acoustic signal, and

use them in di↵erent stages of the algorithm. The adopted experimental procedure in

accordance with the international guidelines is described. Finally, the blood pressure es-

timations from the proposed algorithms are compared with two reference monitors (wrist

and arm) and the conclusions about the feasibility of measuring the blood pressure at

the wrist using the acoustic sensing of the pulse are drawn.
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1 An introduction to non-invasive

cardiovascular monitoring techniques

and systems

1.1 Introduction

The human cardiovascular system is a closed tubular system in which the heart takes

the central position and propels the blood to every part of the body through a network

of blood vessels. The network consists of arteries, capillaries and veins as its main

components [1]. The arteries carry blood away from the heart and branches further

into smaller arterioles. These arterioles branches into a wide distribution network of

microscopically small capillaries. While the arteries carry the blood from one location

to another, it is the capillaries that interact with every cell in the body to carry out an

exchange of oxygen, nutrients and metabolic waste. The capillaries rejoin to form their

counterparts called venules, which further unite to form the veins. The veins take the

blood burdened with the metabolic waste back to the heart. Since the cardiovascular

system is essentially a network of the heart and the blood vessels, any condition that

a↵ects a normal functioning of this network is known as a cardiovascular disease (CVD).

While there are di↵erent types of CVDs [2], four of the main diseases are described below:

1. Coronary heart disease: It is a disease that causes a blockage or interruption in

the transportation of the oxygen-rich blood to the heart muscle due to a build-up

of fatty substances in the coronary arteries. These fatty deposits, also known as

atheroma, can clog the arterial walls to cause atherosclerosis.

2. Stroke: Any disruption of the blood supply (rich with oxygen and nutrients) to

the brain can cause its cells to die possibly leading to a brain injury, disability and

death. The interruption can be caused either from the blockage (ischaemic stroke)

or the rupture of a blood vessel (haemorrhagic stroke).

3. Peripheral arterial disease: It is a disease related to the build-up of fatty deposits

in the arteries responsible for supplying blood to the arms and legs. These fatty

deposits are generally made up of cholestrol and other wastes, and causes the

arterial walls to constrict. The narrowing of the arteries restricts the blood flow to

the limbs causing moderate to severe pain.
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4. Aortic disease: Aorta is the largest blood vessel in the body and is responsible

for carrying blood away from the heart to the rest of the body. Any bulging or

swelling in the aorta, also known as aortic aneurysm, can create a possibility of

aortic rupture which can lead to life-threatening bleeding conditions.

Some of the risk factors associated with these di↵erent types of CVDs include high blood

pressure, physical inactivity, high cholestrol, use of tobacco, excessive alcohol consump-

tion, unhealthy diet, diabetes, ageing and high body mass index [3].

CVDs are the number one cause of deaths globally [4]. In 2016, an estimated 17.9 mil-

lion people died from CVDs, amounting for 31% of all the global deaths. This number

is expected to rise to 22.2 million in 2030 owing to the ageing and increasing popu-

lation. According to a report from World Health Organisation in 2014 [5], the CVDs

are responsible for 37% of all the non-communicable deaths in premature (< 70 years)

population. While majority of the CVD deaths occur in developing countries, in the UK

alone, around 170,000 deaths including 45,000 premature deaths happen due to the heart

and circulatory diseases each year [6]. These deaths amount to 28% of all the UK deaths

and accounts for an average of 460 deaths each day or one death every three minutes.

Currently in the UK, around 7.4 million people are su↵ering from the heart and circula-

tory diseases. The healthcare costs related to the CVDs raises another alarm as a large

proportion of the UK economy as high as £9 billion are spent on the treatment of these

diseases each year. This cost is estimated to £19 billion each year if the informal costs

and costs related to the premature deaths and disability are also included. Although the

number of CVD deaths in the UK have significantly reduced from around 320,000 deaths

in 1961, the CVD statistics still project an alarming and distressing picture. While the

quality of the medical care has significantly improved over the last few decades, it is

important to understand the causes of the CVDs so that preventive measures can be

taken at early stages.

The Global Status Report on Noncommunicable Diseases in 2014 by World Health

Organization recognised nine main targets for the countries to act upon to reduce the

mortality and morbidity rates [5]. Some of these targets relate to the risk factors associ-

ated with the CVDs and demand a reduction in the harmful use of alcohol, insu�cient

physical activity, use of tobacco, obesity and diabetes. While these factors recommend

a pathway to a healthy lifestyle, it is their interplay with the physiological behaviour

of the body that yield the insights into the prevention, etiology, course, and treatment

of the CVDs. The most important physiological signs related to the CVDs include the

heart rate, the heart rate variability and the blood pressure. The Framingham study [7]

followed a cohort of 5209 subjects for 30 years and recorded the resting heart rate using

ECG in the supine position. A total of 5070 subjects were free from any type of CVDs

when they entered into the study. The study found that in both the sexes and at all the

ages, the cardiovascular and coronary mortality rates increased progressively in relation
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to the antecedent heart rates. Woodword et al. also studied the association between

the resting heart rate, cardiovascular disease and mortality in 112,680 men and women

from the Asia-Pacific region [8]. A continuous and increasing association between the

resting heart rate above 65 beats/min and the cardiovascular mortality was found with

no evidence of associations below this threshold. The study suggested similar changes in

the lifestyle as stated above to reduce the resting heart rate. Several other studies have

also emphasised the importance and simplicity of recording the resting heart rate as a

prognostic factor and potential therapeutic target in reducing the mortality rates related

to the CVDs [9]–[13].

Heart rate variability (HRV) is another important risk factor associated with the CVDs.

HRV mainly occurs because of the adaptive changes in the heart rate caused by the sym-

pathetic and parasympathetic nervous system [14]. Therefore, any autonomic imbalance

can be assessed using HRV that have been associated with a wide range of conditions

including CVD [15]. A substantial amount of evidence in the literature proves that a

decreased HRV is associated with high cardiovascular risk [16]–[19]. The autonomic im-

balance have been associated with increased morbidity and mortality, and it has been

found that the lowering of the cardiovascular risk profiles require an elevation in the

HRV [15]. While the association of HRV in individuals with a known CVD has been

already established, the study in [20] analysed the association between HRV and cardio-

vascular events in populations without known CVD. The study found that a low HRV

is associated with a 32-45% increased risk of a first cardiovascular event in populations

without known CVD. Therefore, a regular HRV monitoring can prove to be very useful

in diagnosing the risk of developing a first cardiovascular event.

Blood pressure has been repeatedly shown to be an independent and a significant risk

factor associated with CVDs including CHD and stroke [21]–[23]. Several studies suggest

that a higher blood pressure (hypertension) is a stronger predictor than a lower blood

pressure in middle-aged and older populations [24]–[26]. The Global Burden of Disease

Study organised by the World Health Organization has also pointed towards hypertension

as the most important global risk factor for morbidity and mortality [27]. Even in the

UK, high blood pressure is the leading medical risk factor for heart and circulatory

diseases. In the UK alone, an estimated 27% (14 million) of the adult population su↵er

from high blood pressure and possibly 6-8 million people are living with an undiagnosed

or uncontrolled high blood pressure [6]. Around 50% of the heart attacks and strokes

in the UK are associated with high blood pressure. Therefore, the awareness about the

early detection, prevention and control of high blood pressure must be spread across the

population starting from the age of young adulthood.

The association of heart rate, heart rate variability and blood pressure with an in-

creased cardiovascular risk demand a regular monitoring of these vital signs as a preven-

tive and diagnostic measure. The following sections provide a more detailed discussion
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on monitoring these physiological signals using di↵erent techniques and also lists the

commercially available monitors to record and monitor these parameters.

1.2 Heart rate and its variability: definitions and

monitoring techniques

Heart rate is one of the most basic physiological markers and is defined as the the number

of times a person’s heart beats per minute. A normal range of the heart rate at rest is

between 60 and 100 beats per minute (bpm), however, it varies from person to person, and

depends on the time of measurement and the activities performed before the measurement

[28]. A heart rate lower than 60 bpm is medically known as bradycardia whereas a

heart rate higher than 100 bpm is classified as tachycardia. Even when the resting

heart rate is stable, the time di↵erence between the consecutive heartbeats can vary

substantially [29]. These variations in the inter-beat intervals, known as HRV, represent

one of the most promising markers and have various applications in studying the cardiac

events. Primarily, the HRV is used to understand the status of the autonomic nervous

system (ANS). The ANS consists of the sympathetic and parasympathetic components.

While the sympathetic branch responds to an external stimuli (e.g., stress, exercise) by

increasing the heart rate (cardio-acceleration), the parasympathetic activity decreases the

heart rate (cardio-deceleration) depending on the internal stimulus generated from the

functionality of the organs, allergic reactions, irritants, etc. [30]. This way the interplay

between both the ANS components regulate the physiological autonomic function of the

body. These components introduce separate rhythmic contributions in modulating the

heart rate at di↵erent frequencies. The sympathetic activity is associated with the low

frequency range (0.04-0.15 Hz) and the parasympathetic activity is associated with the

high frequency range (0.15-0.4 Hz). Therefore, the spectral analysis of the HRV can

allow to study these components separately and intervene at an early stage in case of

any autonomic imbalance.

HRV records the amount of heart rate fluctuations around the mean heart rate by

examining the beat-to-beat variations in a time-series profile. These inter-beat intervals

(IBIs), also known as normal-to-normal (NN) intervals, can be plotted against time

to generate an IBI tachogram as shown in Fig. 1.1. The simplest HRV analysis is

performed by extracting the time-domain measures from the IBI tachogram. While the

HRV parameters are conventionally obtained from 24-hour long-term recordings, the

short-term 5-minute recordings have also been accepted as an appropriate option for the

HRV analysis [31]. The time-domain HRV measures are mainly divided into two types:

ones that are directly obtained from the NN intervals and others that are obtained from

the di↵erences between the NN intervals. These parameters carry di↵erent statistical

meanings [29], [31], [32] as discussed below:
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• The standard deviation of the NN intervals (SDNN) reflects the short- and long-

term NN variations in the recording.

• The standard deviation of the average NN interval (SDANN) is usually calculated

over short periods of 5 minutes, and therefore it provides an estimate of the changes

in the heart rate over cycles longer than 5 minutes.

• The SDNN index calculates the mean of standard deviation of NN intervals in short

windows (usually 5 minutes) for the whole recording to measure the variability

across the short windows.

• The square root of the mean squared di↵erences (RMSSD) reflects the beat-to-beat

variance in the heart rate and is used to estimate the cardiac vagal control in

mediating the HRV changes.

• The NN50 parameter counts the number of adjacent NN intervals that di↵er from

each other by more than 50 milliseconds. The percentage of such NN intervals is

known as pNN50. The pNN50 is closely correlated with the high frequency power

or the parasympathetic activity of the HRV.

The HRV can also be studied in the frequency-domain by calculating the power spectral

density (PSD) using non-parametric or parametric methods [31], [32]. Although both the

methods provide comparable results, the non-parametric method is simple to implement

(using Fast Fourier Transform) and provides high processing speed. On the contrary,

the parametric method generates smoother spectral components using the autoregressive

(AR) modelling allowing an easy post-processing of the frequency bands. The HRV in

the frequency domain is analysed in four di↵erent bands: ultra low frequency (ULF)

band (0.003 Hz), very low frequency (VLF) band (0.003-0.04 Hz), low frequency (LF)

band (0.04-0.15 Hz) and high frequency (HF) band (0.15-0.40 Hz). Since the ULF band
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Figure 1.1: An example of IBI tachogram representing the time-interval between each subsequent
beat (⇠1600 beats).
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correlates with the biological processes that act very slow, it is generally calculated from

24-hour recordings. It is believed that the circadian rhythms are the primary driver of

the ULF band [33]. A low power in the VLF band is associated strongly with all-cause

mortality and is considered as more fundamental to health [34]. While the power in LF

and HF bands may be produced by both the sympathetic and parasympathetic nervous

system, it has been shown that the sympathetic activity is a major contributor to the LF

band [35]. Similarly, the HF band reflects more of the parasympathetic activity [32]. The

power measurements in VLF, LF and HF bands are generally made in absolute values

of power (ms2), however, LF and HF bands can also be measured in normalised units

(n.u.). Apart from the absolute and normalised power in di↵erent spectral bands, the

frequency-domain HRV parameters also include LF norm, HF norm and LF/HF ratio as

other measures. These parameters are defined as follows:

LF norm (n.u.) =
LF

Total Power-VLF
⇥ 100

HF norm (n.u.) =
HF

Total Power-VLF
⇥ 100

LF/HF =
LF [ms2]

HF [ms2]

(1.1)

The extraction of the time-domain and frequency-domain HRV parameters require a con-

tinuous measurement of the heart rate (or IBIs) on a beat-to-beat resolution. While a

spot measurement of the heart rate can simply be obtained by checking the pulse, its

continuous measurement requires the usage of automatic heart rate monitors. These mon-

itors operate using di↵erent measurement principles with the sensing mechanisms either

requiring a contact with the site under test or recording the signals without any body

contact. Some of the commonly used measurement techniques that employ portable/

wearable sensing systems are discussed in detail below.

1.2.1 Contact-based HR/ HRV monitoring techniques

1.2.1.1 Sensing the electrical activity

The cardiac output of the heart, also described as the volume of blood being pumped by

the heart, is vital to sustain blood flow throughout the body. In addition to regulating

the blood volume, the heart must sustain continuous cycles of contraction and relaxation

to fulfil the needs of the body. These cycles take place within four chambers of the heart:

left and right atrium, left and right ventricle, in an orderly sequence. During the systolic

period, the contraction of the atria is followed by the contraction of the ventricles after

which all the four chambers relax during the diastolic phase of the cardiac cycle. The

regularity of the cardiac cycles is established by a series of complex electrophysiological

33



events within the cardiac tissues. The triggering of these events originate in a specialised

cardiac conduction system and subsequently spreads to all the parts of the myocardium.

The main components of this conduction system in the heart are the sinoatrial node

(SA node), the inter nodal atrial pathways, the atrioventricular node (AV node), the

bundle of His and its branches, and the Purkinje system [36]. In a normal cardiac cycle,

the SA node discharges rapidly with the electrical depolarisation spreading through the

right atrium and across the interatrial septum into the left atrium. It is the rate of

discharge of the SA node that determines the heart rate in normal conditions. The further

transmission of electrical depolarisation from atria to the ventricles happens through the

atrial pathways to the AV node. The AV node allows the depolarisation to spread into the

left and right ventricles via the route of interventricular septum branching into the left

and right bundle branches respectively. The two ventricles in normal conditions contract

simultaneously to achieve maximum cardiac e�ciency. The complete depolarisation of

the heart is immediately followed by the repolarisation of the myocardium to begin a new

cardiac cycle with next cycle of depolarisation. The discharge pattern in every cell of

the heart during the depolarisation cycle is quite unique, and the sum of these discharge

patterns is what generates an electrocardiograph [37]. The electrocardiography (ECG),

therefore, is the process of measuring the electrical activity of the heart by placing several

electrodes on the patient’s skin. An illustration of a normal ECG signal consisting of

several heartbeats is shown in Fig. 1.2. An ECG waveform constitutes of a P wave, a

QRS complex and a T wave. These components correlate with the depolarisation of the

atria, depolarisation of the ventricles and repolarisation of the myocardium respectively.
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Figure 1.2: An example of a ECG signal consisting of P wave, QRS complex and T wave. All
the R-peaks are marked.

ECG is the gold standard approach to measure the heart rate and the HRV. It is

traditionally recorded using a Holter monitor, a battery-operated portable device that

consists of a central unit connected with several wires and extending to small-sized elec-

trodes that attach to the patient’s skin on the chest. The Holter monitor is generally

used for ambulatory recordings of the ECG over continuous periods of 24 hours or longer.
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While the monitor provides an accurate and reliable representation of the heart’s elec-

trical activity to diagnose any cardiac disorders, the cumbersome setup involving the

wires and the skin preparation required to attach the electrode patches makes it quite

uncomfortable for the subject to undergo a long-term cardiac monitoring. The cardiac

monitoring generally require the detection of R-peaks in the ECG signal to derive the

inter-beat intervals, however, several algorithms based on identifying the instantaneous

heart rate frequency in the spectral domain have also been proposed in the literature.

These algorithms will be reviewed in the later chapters of this thesis.

1.2.1.2 Sensing the optical activity

The contraction and relaxation of the heart during the systolic and diastolic phases of

the cardiac cycle produces a corresponding e↵ect in the circulatory system. During the

systolic period, the heart pumps blood through aorta to reach the peripheral sites of the

body. A reverse phenomenon occurs during the diastolic period where blood is carried

back to the heart. These periodic blood volume changes in the microvascular bed of tis-

sue can be detected using an optical technique called photoplethysmography (PPG). A

PPG waveform is essentially a pulsatile (‘AC’) physiological waveform superimposed on

a slowly varying (‘DC’) baseline. While the AC waveform is formed by periodic changes

in the blood volume with each cardiac cycle, the DC baseline is mainly attributed to

respiration, sympathetic nervous system activity and thermoregulation [38]. The PPG

components provide valuable information about the cardiovascular system, and can be

recorded using a few optoelectronic components including an active light source to illu-

minate the tissue and a photodetector to measure the small variations in light intensity

corresponding to the varying absorption by the blood volume [39]. PPG conventionally

uses an infra-red light of wavelength around 940nm for the light source to measure the

peripheral pulse at one of the di↵erent sites (including finger, wrist, neck, ear, forehead,

etc.) in a non-invasive manner. An illustration of a PPG signal recorded from the index
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Figure 1.3: An example of a PPG signal. All the systolic peaks are marked.
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finger is shown in Fig. 1.3 where the maximum (systolic) peaks are also marked. The

inter-beat intervals are generally extracted by determining the systolic peaks, however,

the onset of pulse and the maximum slope point in the PPG waveform are also consid-

ered as other fiducial points for the heart rate measurement. While the PPG technology

provides a simple, low-cost and easy to set up sensing mechanism, some of the key chal-

lenges associated with the PPG sensors include the requirement of a stable contact force

between the sensor and the measurement site, cancelling the e↵ects of ambient light, ac-

commodating di↵erent skin conditions and colors, and dealing with motion artifacts [40].

In addition, the requirements of an active input signal limit either the size of the system

and/or the battery lifetime.

1.2.1.3 Sensing the acoustic activity

Cardiac auscultation using a stethoscope provides an easy, quick and an inexpensive way

of diagnosing the cardiac disorders by listening to the heart sounds. The genesis of the

heart sounds relate to the blood flow within the four chambers of the heart which are

separated by the AV and the semilunar (SL) valves. These valves act as the only passage

of blood from one chamber to the other in normal conditions. A complete cardiac cycle

consists of filling the blood inside the atria, transferring the blood from atria to ventricles

through the AV valves, and subsequently ejecting the blood away from the ventricles

through the SL valves. Depending on the blood volume in respective chambers of the

heart, a pressure di↵erence between the atria and ventricles is created. The pressure

di↵erence controls the opening and closure of the heart valves to allow the passage of

blood in a particular direction in di↵erent phases of the cardiac cycle. It is the opening

and closing of the heart valves along with the acceleration and deceleration of the blood

flow that produces the heart sounds [41], [42]. While the heart sounds are commonly

heard using a basic stethoscope, they can also be captured automatically by placing an

acoustic sensor on the chest wall [43]. The process of recording and representing the

heart sounds graphically is known as phonocardiography (PCG). A major advantage

of recording the cardiac activity acoustically is its passive sensing mechanism using a

miniaturised, low power microphone. Unlike the PPG signal, the cardiac auscultation

does not require a power consuming input signal, therefore, allowing a longer battery life.

The fundamental heart sounds, also known as the S1 and S2 sounds are primary to the

cardiac auscultation. The S1 sound is heard at the onset of the systolic phase and results

from the sequential closure of the AV valves. On the contrary, the S2 sound is heard

at the onset of the diastolic phase and results from the closure of the SL valves. Other

sounds such as S3 and S4 sounds, and murmurs can also be heard during the cardiac

auscultation to reflect di↵erent pathological conditions related to the heart [44]. A PCG

signal consisting of the fundamental heart sounds is illustrated in Fig. 1.4. Traditionally,

the PCG signal is recorded from the chest, however, recent studies in the literature have
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Figure 1.4: An example of a PCG signal consisting of S1 and S2 sounds.

also shown the possibility of recording the heart sounds from the suprasternal notch at

the neck [45]. While the systolic phase corresponds to the S1-S2 interval, the diastolic

phase is formed by the time interval between the adjacent S2 and S1 sounds. Therefore, a

complete cardiac cycle is represented by the S1-S2-S1 cycle. The detection of such cardiac

cycles in the PCG signal to determine the heart rate generally requires the segmentation

and classification of the heart sounds using di↵erent methods.

1.2.2 Non contact-based HR/ HRV monitoring techniques

The contact-based methods of heart rate monitoring required a sensor contact with the

patient’s skin. A continuous and intensive monitoring using such sensors is only feasible

in the clinical settings, for example, a touch-based wiring of the patient using the gold

standard approach of ECG. However, to improve the early detection and prevention

of cardiac disorders, more comfortable ways to enable vital sign monitoring in home

settings is required. Some of the methods that enable such convenience by sensing cardiac

parameters through fully clothed persons or through blankets and mattresses for patients

lying in beds, and feasible in every day conditions are discussed below.

1.2.2.1 Sensing the mechanical activity

The body movements occurring in relation to the heartbeat is an old concept, and the

e↵ort of recording such movements have been made for past several decades [46]. The re-

cent advancements in the development of electromechanical sensors have made it possible

to record the mechanical activity of the heart by using mechanocardiography techniques.

One such technique is known as ballistocardiography (BCG) which measures the recoil

forces of the body in reaction to the ejection of blood at each cardiac cycle. The recoil

forces are primarily generated to maintain the overall body momentum in response to

the change in center of mass caused by the blood travelling along the vascular tree [47].

These micro-motions can be sensed as a displacement, velocity, or acceleration signal by
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integrating di↵erent types of sensors (pressure sensor, multiple strain gauges, electrome-

chanical film sensor, etc.) in bed, table, chair, pillow, mattress, or weighing scale- based

BCG systems.

Another approach to measure the local mechanical vibrations of the chest wall in

response to the heartbeat is known as seismocardiography (SCG). These vibrations are

produced by the ventricular contraction of the heart and ejection of the blood into the

vascular tree [47]. While the BCG systems employ a non-contact sensing approach, SCG

is usually detected by placing a low-noise accelerometer on the chest. Both the BCG and

the SCG waveforms are characterised by several fiducial points corresponding to di↵erent

events of the heartbeat. The heart rate from the BCG signal is generally extracted

by identifying the J-peak (the point of highest amplitude in the BCG waveform) and

measuring the J-J inter-beat intervals between the consecutive peaks. Although the

BCG systems provide an unobtrusive manner of monitoring the cardiac activity and

does not require the sensor attachment with the patient’s skin, their applicability for long-

term cardiac monitoring is restricted to bed-ridden subjects and standardised conditions.

The sensitivity of these systems towards the body movements is also very high causing

the signal-to-noise ratio of the recorded signals to be significantly lower than the ECG

and PPG signals [48]. Therefore, the detection of heart rate from these signals require

advanced signal processing methods which put further constraints on the system design.

1.2.2.2 Radar-based heartbeat detection

A better way of monitoring the micro-motions of the human body than the BCG is

based on the radar technology. The radar-based sensing mechanism allows a touch-

free measurement of the cardiac vibrations by sensing the changes in the distance or

displacement caused by the contraction of the heart muscles. These systems o↵er a

convenient and comfortable approach for the heartbeat detection since the transmitted

electromagnetic waves can easily penetrate the clothing and bedding in an experimental

setup [49]. The fundamental mechanism of a continuous-wave Doppler radar is based on

transmitting an unmodulated signal with a specific carrier frequency and phase towards

a human body at a distance up to a few tens of metres. The transmitted electromagnetic

wave is reflected by the physiological movements of the chest wall as a phase modulated

signal which can be detected using a radar receiver. The received signal is digitised using

an analogue-to-digital converter (ADC) to process and extract the cardiac information

from the reflected waves. Several front-end architectures for the Doppler radar including

the homodyne, heterodyne, double-sideband architecture, direct IF sampling and self-

injection locking have been recently proposed in the literature [50]. These architectures

address some of the key issues concerning the radar-based systems. Since the strength

of the reflected waves are quite low, an e�cient and reliable detection requires multiple

building blocks such as a low-noise amplifier, down-conversion mixer, baseband amplifier,
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and filters in the system design. In addition to a proper choice of the carrier frequency,

these systems must also avoid the mixing of the phase noise of the oscillator with the

received echo signal [50]. In conclusion, the radar-based sensors can be easily integrated

within the environment of the patient undergoing cardiac monitoring, however, they are

still in very early development stages and their deployment in commercial systems require

addressing some critical issues inherent to the sensing mechanism.

1.2.2.3 Resonator-based heartbeat detection

The continuous-wave Doppler radar generally operates at high frequencies (GHz) to main-

tain a narrow transmitted beam over larger distances. It allows to monitor the heart rate

at a distance of few metres away from the chest. However, the reflected waves in such

scenario are significantly a↵ected by the motion artefacts and the noise introduced by the

random body movements [51]. A very similar approach to radar-based sensing resolves

this issue by measuring the cardiac activity at very short distances (few centimetres) away

from the chest. The near-field detection using the radio frequency (RF) resonators allow

the integration of these sensors into clothing, watch straps or blankets. The fundamental

theory behind the RF resonators is similar to the radar-based sensing in terms of detect-

ing the physiological movements of a subject by measuring the electromagnetic near-field

variation for vital sign monitoring. Several resonator-based systems have been proposed

in the literature to measure the pulse at the wrist [51], [52]. These systems, similar to

the radar sensors, are also in the research stages and have not been commercialised yet.

1.2.3 Commercially available HR/ HRV monitors

The cardiac monitoring techniques discussed above measure di↵erent types of cardiac

signals using semi- or fully-automated sensing systems to monitor the heart rate (HR).

However, the heart rate monitoring for several centuries, before the development of the

electronics industry, was performed by placing an ear on the patient’s chest and listening

to the heart sounds. An accurate cardiac auscultation was only made possible with

the invention of the stethoscope by René Laennec in 1816. While the heart sounds

provided vital information about the functionality of the heart, the electrocardiograph

invented by Willem Einthoven in 1895 created an accurate picture of the heart’s electrical

activity and allowed a better diagnosis of the cardiac disorders. The development of the

Holter monitor made it possible to record the ambulatory ECG continuously for 24 hours,

however, the cumbersome setup involving a central unit connected with several wires

made it uncomfortable for the patients to undergo a long-term cardiac monitoring. Only

when the wireless functionality, consisting of a transmitter at the chest and a receiver at

the wrist, was added to the ECG recording setup in 1977 by Polar Electro, the concept

of heart rate monitoring became feasible for a larger population [53]. Over the last few

decades, the advancements in the electronics industry have led to a miniaturisation of
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the sensors allowing the development of battery-operated, small-sized systems that can

be worn by the subjects for vital sign monitoring. Several companies in the industry

have commercialised such wearable monitors to track HR/ HRV in non-clinical settings.

While these monitors aim to perform the same task of monitoring the heart rate using

di↵erent measurement principles, there are factors and functions that set one apart from

the other. Some of the important features that are helpful in di↵erentiating the wearable

heart rate monitors are discussed below.

1. Measurement technique: The previous section discussed di↵erent contact and non-

contact sensing principles to record the heartbeats on a continuous basis. However,

the wearable monitors available in the market are mainly based on sensing either

the optical (PPG) or the electrical (ECG) activity of the heart.

2. Sensing location: The monitors track the cardiac activity from di↵erent locations

including the chest, wrist, finger, ear, neck, etc. However, an abundance of mon-

itors based on the wrist-sensing are available in the market mainly because of an

easy and comfortable integration of such sensors into the patient’s lifestyle without

requiring any significant change. The wrist-based monitors also have a higher social

acceptance in comparison to other sensing locations.

3. Power source and operating lifetime: The ECG recording machines in the clinical

wards are generally powered by the mains, however, the wearable monitors utilise

a small-sized battery as the power source. An important constraint of the wearable

heart rate monitors is the battery lifetime as a frequent charging of the device from

the user’s perspective is highly undesirable. Depending on the size/ capacity of the

battery, the number of in-built sensors, and the sampling frequency for the wireless

transmission, a single battery charge can last from a few hours to a few days.

4. Size and weight : The heart rate monitors must be small and light-weighed to be

used in either the clinical or home settings. Since these monitors are designed

to be worn for longer durations, their size and weight are important factors in

determining their usage period. The size and shape of the device should also take

into account the varying morphology of the site under test in di↵erent subjects.

5. Tracking functions : While the primary function of these monitors is to track the

heart rate, the integration of di↵erent sensors in the same device allows the mon-

itoring of di↵erent features such as sleep monitoring, number of steps, distance

travelled, calories burned, speed, and modes of walking, running, cycling, swim-

ming, training, etc. The embedded functionality of tracking such features is what

attracts a large user base. Therefore, one of the competitive features for the heart

rate monitors is the availability of multiple tracking functions.
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6. Sensors : The heart rate monitoring in the commercially available monitors is per-

formed using an optical sensor or the ECG electrodes connected with a chest strap.

However, the tracking of other activities require the integration of other sensors.

Some of these sensors include an accelerometer, gyroscope, barometer, compass,

GPS, etc. Although a higher number of sensors provide more functionality to the

end user, the battery life in such cases is generally compromised.

7. Water resistance: Some of these commercial monitors also put up water resistance

as an attractive feature to allow the usage of such devices during shower, swimming,

rain, etc. While majority of the devices can sustain a pressure of up to 5 atmosphere

(atm) under water, they are not designed for heart rate monitoring during the deep

diving.

8. Validation in literature: There is an abundance of heart rate monitors in the market.

The validation of these monitors to assess their accuracy in monitoring the heart

rate and other activities is a very important criteria for choosing a specific device.

The validation is generally performed by comparing the heart rate profiles obtained

from the concerned monitor and the synchronously recorded ECG signals (gold

standard) from the chest. An agreement between both the methods is observed by

running di↵erent types of comparative analysis to conclude about the reliability of

a particular device.

The factors discussed above serve as an important criteria in di↵erentiating the usability

of di↵erent wearable heart rate monitors available commercially. Table 1.1 compares the

features and functions of some commonly available heart rate monitors from di↵erent

companies and also provide references to the associated validation literature. The listed

devices are chosen on the following basis:

• Only the monitors that provide heart rate as an output are shortlisted.

• Only the monitors that have been validated in the last 5 years (2014 - 2019) are

shortlisted.

• Since the basic sensing technology behind di↵erent models from the same company

remain the same, only the latest model available to buy on the company’s website

is shortlisted.

• If the same company manufactures heart rate monitors based on di↵erent sensing

locations, then the latest devices from each of those categories are included.

Only details that are available from the manufacturer are listed in the table. These

devices generally use lithium-ion (Li-Ion) or lithium-polymer (Li-Po) batteries, however,

the battery type for several devices are unknown.
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1.2.4 Summary

It can be observed that majority of the heart rate monitors (HRMs) listed in Table

1.1 are based on optical sensing of the cardiac activity at the wrist. Several studies

have validated the PPG-based HRMs specifically designed by Apple, Fitbit, Garmin,

Samsung and Mio Labs respectively. While all these monitors demonstrated a strong

agreement with the ECG-based heart rate measurement at rest, many studies found a

decline in the accuracy corresponding to the PPG signals recorded during a medium to

high intensity exercise [61], [99]. Other PPG-based HRMs also showed similar results

when compared with the ECG. However, the ECG-based monitors such as Polar H10,

Zephyr HxM BT, BioStamp RC sensors exhibited a high level of agreement with the

reference ECG signal during rest as well as high intensity exercises [66], [91]. These

monitors are commonly used by the athletes to measure a number of physiological and

biomechanical measurements including the HRV. They have a central unit integrated

with the ECG electrodes and are connected to the chest using a strap. The integration

of optical sensors in the earphones/ headphones have also been adopted to allow the

monitoring of heart rate while listening to the music during athletic activities. Although

these monitors showed promising results, the validation studies found a deviation from

the ground truth heart rate values under the influence of motion artefacts [96].

As a summary, the commercially available ECG-based wearable HRMs are the most

accurate and reliable way of monitoring the heart rate on a continuous basis. These de-

vices also provide an added functionality of HRV monitoring along with the other activity

tracking features. However, the signal acquisition using ECG-based HRMs generally re-

quire the use of electrode gel to establish an electrode contact with the patient’s skin.

This process can sometimes be uncomfortable specially for men with a hairy chest in

which case a small amount of hair may be shaved to make sure the electrodes stick to the

skin [100]. From a usability point of view, a better way of monitoring the heart rate is

made possible with the PPG-based HRMs. These monitors are generally designed to be

worn on the wrist and tracks multiple activities by integrating di↵erent sensors within the

same wearable system. The accuracy and reliability of these devices, however, is vulner-

able to a number of factors including the motion artifacts, brightness of the environment,

or having a stable contact force between the sensor and the measurement site. These

monitors also su↵er from a short battery life of 1-2 days because of high power demands

from the infrared LEDs. Therefore, there is a strict need of alternative sensing mecha-

nisms that can simultaneously provide the user-friendliness of the PPG-based HRMs as

well as a longer operational lifetime without compromising on the accuracy of the heart

rate monitoring. As with the sounds on the chest, this thesis explores the possibility

of recording the cardiac rhythms from the radial artery at the wrist using a very small,

low power microphone, without requiring any additional power consuming input signal.

This could potentially be used either as an alternative new physiological signal to extract
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cardiac information from a wearable device, or as an additional physiological channel to

complement existing systems, without posing an overhead in terms of size.

The next section discusses the blood pressure measurement (BPM) using di↵erent mon-

itoring techniques as another important parameter to CVDs. Some commonly available

blood pressure monitors in the market are also compared and the factors a↵ecting the

BPM using these monitors are discussed in detail.

1.3 Blood pressure: What is it? How is it measured?

During a cardiac cycle, the heart pumps blood with a certain force throughout the body.

Blood pressure is a measure of this force and reflects the variable pressure exerted by

the blood flow on the arterial walls. Systolic blood pressure (SBP) and diastolic blood

pressure (DBP) are the two main components that are reported during the clinical BPM

because of their direct association with increased CVD risk factors. The SBP is the max-

imum pressure of the blood ejected by the heart during the ventricular contraction in the

systolic phase of the cardiac cycle. On the contrary, the DBP is the minimum arterial

pressure obtained while the heart is relaxing in the diastolic phase of the cardiac cycle.

Both the higher SBP and the higher DBP are linked to increased CVD mortalities [22],

[24], [101]. Several other measures can also be determined from SBP/ DBP measure-

ments. The pulse pressure (PP), defined as the di↵erence of SBP and DBP, serves as an

important marker for arterial sti↵ness and provides a measure of pulsatile hemodynamic

stress. The mean arterial pressure (MAP) defined in Eq. 1.2 provides an estimate of the

overall arterial pressure during a complete cardiac cycle. It represents the area under

one cycle of the arterial pressure waveform.

PP = SBP�DBP

MAP = DBP + ↵ (SBP�DBP), ↵ 2 [0.2, 0.4]
(1.2)

The arterial pressure waveform as shown in Fig. 1.5 is measured continuously through

the insertion of a catheter into a suitable artery. It is generally classified into three

distinct components [102] as follows:

• The systolic phase is characterised by a rapid increase of the pressure due to the

opening of the aortic valve by the ventricular contractions. The systolic peak

corresponds to the maximum pressure in the central arteries, also known as the

SBP. The rising slope during this phase is followed by a rapid decline because of

an end to the ventricular contractions.

• The dicrotic notch is the point at which the aortic valves are closed. The sharpness

of this notch depends on the arterial measurement site. It is most sharp at the

aortic valve and almost disappears at the peripheral sites.
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Figure 1.5: An example of a typical arterial blood pressure waveform [103].

• The pressure drops gradually during the diastolic run-o↵ to attain a minimum

arterial pressure, also known as the DBP. This end-diastolic pressure is the pressure

exerted by the vascular tree back upon the aortic valve.

Further details about the arterial pressure waveform from the perspective of waves prop-

agating from the heart to the circulatory system are discussed in the next chapter. Al-

though the invasive monitoring of the arterial pressure using catheterization can provide

a detailed representation of the blood pressure waveform, the non-invasive techniques

can mostly determine the SBP/ DBP readings by sensing di↵erent physiological signals.

Some of the commonly used non-invasive methods are discussed in the next section.

1.3.1 Non-invasive blood pressure monitoring techniques

1.3.1.1 The auscultatory method

The gold standard approach to measure the blood pressure is based on the auscultation

of the brachial artery at the upper arm using a stethoscope. The auscultatory method

employs a mercury sphygmomanometer to display the pressure variations in a mercury

column corresponding to the inflation/ deflation of an air cu↵. In 1905, Korotko↵ found

that when an external pressure applied on an arterial branch through a Riva-Rocci cu↵

is gradually reduced from above the systolic pressure to the zero pressure, a series of dif-

ferent sounds can be heard using a stethoscope [104]. He concluded that the appearance

of the first sound during the deflation indicated the SBP whereas the point of disappear-

ance of the last sound identified the DBP. These sounds are now commonly known as

the Korotko↵ sounds. Goodman and Howell [105] recognised five di↵erent phases of the

Korotko↵ sounds and explained them using the following characteristics:

1. Phase I: “a loud clear-cut snapping tone.”

2. Phase II: “a succession of murmurs.”
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3. Phase III: “the disappearance of the murmurs and the appearance of a tone resem-

bling to a degree the first phase but less well marked.”

4. Phase IV: [the tone] “becomes less clear in quality or dull.”

5. Phase V: “the disappearance of all sounds.”

The spectral energy of the Korotko↵ sounds recorded from the brachial artery are gener-

ally above the threshold of hearing allowing their auscultation using a stethoscope [106].

However, the environmental noise must be kept to a minimum as it can often cause

di�culties in listening to these sounds.

Although the auscultatory method is regarded as the gold standard approach for the

BPM, the widespread ban on the use of mercury sphygmomanometers continues to dimin-

ish its usage [107]. The replacement of mercury sphygmomanometers with the aneroid

manometers did not provide satisfying results because of less accuracy and frequent need

of calibration. However, the introduction of electronic pressure monitors resolved the

issue to an extent by combining electronic features with the traditional auscultation

method [108]. Another concern related to the auscultatory method is the unresolved

consensus about choosing either the fourth (K4) or the fifth (K5) Korotko↵ sound as the

actual location of the DBP. Several studies on large cohorts of population have been per-

formed to address this ambiguity. While in some subjects, a minimal di↵erence between

K4 and K5 have been observed, the other group of subjects showed a significant di↵er-

ence of around 10 mmHg between these sounds [102]. The studies suggested to log the

pressure at both these phases to improve the communication about the blood pressure

readings.

1.3.1.2 The oscillometric method

The auscultation of the Korotko↵ sounds is usually performed by a trained clinician using

a stethoscope. Due to the human involvement in manually recording the blood pressure

readings, the observer error and the observer bias are common sources of error in the aus-

cultation method. The di↵erences in the auditory acuity among di↵erent observers may

also lead to significant errors in identifying the appearance and disappearance of the Ko-

rotko↵ sounds. The digit preference by the observers is another common instance where

majority of the readings are rounded o↵ to end in 0 or 5 [109]. The oscillometric method

removes these sources of error by providing an automated way of measuring the blood

pressure. The method works on the principle that when the pressure inside a sphygmo-

manometer cu↵ is gradually reduced from the full occlusion of the brachial artery, a series

of small pressure oscillations are superimposed on the deflating pressure curve as shown

in Fig. 1.6(a). These oscillations start to appear before the SBP and continue after the

DBP, and can be isolated by removing the baseline pressure. Unlike the auscultatory

method, the SBP/ DBP readings cannot be estimated directly and requires empirically
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derived algorithms to obtain the BPM. However, it has been proved that the maximum

amplitude of the oscillation envelope, also known as the oscillometric waveform enve-

lope (OMWE), corresponds to the MAP [110]. Since there is no universal oscillometric

algorithm, di↵erent brands use their own proprietary algorithms to estimate the SBP/

DBP from the oscillometric waveforms, the details of which are not available publicly.

These monitors are generally validated with the manual auscultatory measurements to

find an agreement between both the techniques. In the literature, di↵erent algorithms

have been proposed to utilise the amplitude and slope characteristics of the OMWE and

find a correlation with the SBP/ DBP readings. Some of the commonly used methods

include the heuristically derived ratios based on the maximum OMWE amplitude [112],

[113] (e.g., fixed-ratio method employed in Fig. 1.6(b) to find SBP/ DBP location us-

ing the MAP location), ratios based on the slope of OMWE envelope [114], [115], neural

networks [116], [117], and deep learning [118]. Although the ratio based methods are sim-

ple to implement, the assumption of a fixed ratio or a range of ratios does not account

Figure 1.6: Oscillometric method for blood pressure measurement. (a) Pressure oscillations
superimposed on the deflating pressure curve. (b) Oscillometric waveform envelope
corresponding to the detrended pressure oscillations. The fixed ratios are used to
estimate the SBP, DBP from the maximum oscillation peak [111]

.
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for the variation of di↵erent physiological factors over time. These ratios are generally

determined by minimising the error relative to the manual auscultatory measurements,

therefore, fitting the ratios only to the database under consideration [118]. The neural

network and deep learning based algorithms are more robust in determining the blood

pressure, however, they are computationally expensive and may need larger database to

train the network.

From the hardware perspective, the oscillometry-based monitors only need the pressure

sensor as a transducer to be placed over the brachial artery. Therefore, these monitors

have a better resistance to the external noise and interference than the stethoscope in

the auscultatory method. A major disadvantage of the oscillometric technique is its high

susceptibility to the motion artefacts and mechanical vibrations [108]. These artefacts

can interfere with the OMWE envelope and produce significant errors in the blood pres-

sure estimation. However, the ease of monitoring and the automation provided by the

oscillometry-based monitors have allowed their wide deployment for self BPMs in the

home and clinical settings. Although the monitors based on the wrist and the upper-arm

are available in the market, the wrist monitors have been found to overestimate the blood

pressure at the upper arm [119], [120].

1.3.1.3 Ultrasound method

The ultrasound technique consists of a transmitter and a receiver to be placed on the

brachial artery under a sphygmomanometer cu↵. The fundamental principle is the ob-

servation of the changes in the Doppler echo signal when a high frequency sound wave

(higher than the upper threshold of human hearing) is projected on the site under test.

During the cu↵ deflation from above the systolic pressure, the ultrasound receiver ob-

serves a Doppler phase shift just below the SBP due to a sudden rush of the blood flow.

The Doppler phase shift varies with di↵erent levels of arterial occlusion and attains a

minimum value at the DBP where a laminar or non-turbulent flow of blood takes place.

The ultrasound method is of a particular value in subjects with very faint Korotko↵

sounds and oscillometric pulsations [108]. This method is also useful for determining the

blood pressure in infants and children [121]. While the ultrasound technique can provide

an accurate measurement of the SBP/ DBP readings, the recording setup is generally

bulky, expensive and power-hungry.

1.3.1.4 The finger-cu↵ method

The methods discussed above only provide a snapshot of the BPM. Therefore, the patients

requiring a regular monitoring usually take multiple readings over the day to generate

a blood pressure profile either manually or using a smartphone/ web application. For

the critically ill patients, this approach of understanding the blood pressure variations

is not feasible because the hemodynamics of the body changes on a regular basis [122].
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The continuous monitoring of blood pressure in such patients becomes quite important.

The finger cu↵ method is a non-invasive approach to measure the arterial blood pressure

continuously, and is based on the measurement of arterial pulsations using a PPG sensor

placed under an inflatable cu↵. The goal is to keep the pulsating finger artery in a

constant partially opened state by using the PPG output as a feedback to drive the

servo-motor system in order to apply a suitable counter pressure through the finger cu↵.

The constant blood volume in the artery causes the intra-arterial pressure to become

equal to the cu↵ pressure which can be measured through an external pressure gauge.

Due to this reason, the finger-cu↵ method is also known as the “vascular unloading”

technique. The resulting arterial pressure waveform obtained from the finger is used to

estimate the brachial waveform, and therefore obtain the beat-to-beat BPMs [122]. This

method was first introduced by Penaz and later improved by Wesseling who developed an

instrument named Finapres (finger arterial pressure) that allowed the ambulatory blood

pressure monitoring of a subject [123]. Successors of the Finapres included the Finometer,

the Portapres and the Nexfin, however, all the commercially available monitors based on

the finger-cu↵ method are generally bulky, cumbersome, and are recommended to be

used in the clinical settings.

1.3.1.5 Pulse transit time method

Although the oscillometric and finger-cu↵ methods provide automated BPMs, these tech-

niques incorporate the use of an air cu↵ in the recording setup. The size of the cu↵, as

discussed in the next section, plays an important role in an accurate measurement since

a small-sized cu↵ can significantly overestimate the blood pressure [124]. The pulse tran-

sit time (PTT) method provides a cu↵-less technique to estimate the blood pressure by

utilising the time taken by a cardiac pulse to travel from the heart to a peripheral site

or between the two peripheral sites [125], [126]. While there are di↵erent variations to

this method including the correlation of PTT with the blood pressure and cu↵ pressure

respectively, the fundamental theory behind the technique remains the same. The pulse

wave velocity (PWV) can be expressed in terms of the blood density, the arterial di-

mensions and the elastic modulus of the vessel wall. The parameter PWV is inversely

proportional to PTT in cases where the e↵ect of arterial elongation can be ignored. Since

the velocity of the blood flow is governed by the aortic pressure, the time interval between

the pulse onset times at two di↵erent sites can be correlated indirectly with the blood

pressure [127]. The correlation is generally found using a mathematical model which in-

volves the computation of several parameters to reduce the inter-patient variability. Due

to an unavailability of a universal model, di↵erent studies use di↵erent parameters (e.g.

heart rate, patient’s height, etc.) to estimate the blood pressure from the PTT . These

parameters usually require frequent calibration for every user by taking a reference blood

pressure with one of the standard approaches [128]. The use of two di↵erent sensors at
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distant arterial sites probably using a wired connection also makes it uncomfortable for

a subject undergoing ambulatory blood pressure monitoring.

1.3.2 Factors a↵ecting the blood pressure measurement

Several factors external to the measurement principle of both the cu↵-based and cu↵-less

techniques can a↵ect the BPM significantly. Some of the important factors discussed

below must be addressed during the data acquisition protocol to reduce the potential

sources of error in the BPM.

• Body posture: Although the blood pressure is commonly recorded while the

subject is seated, it can also be measured in the supine or standing body postures.

The seated position is also accepted as the recommended posture by some of the

international guidelines [107]. Generally, there is no significant di↵erence between

the readings taken from any of these positions, however, high discrepancies can be

observed in some subjects [129]. In such cases, the body posture must be reported

along with the blood pressure readings.

• Body position: The BPMs are influenced by the relative position of the arm/

wrist with respect to the heart [130]. Any di↵erence in the vertical height of the

two sites can introduce hydrostatic pressure in the blood pressure readings. To

minimise the e↵ect of hydrostatic pressure, the arm/ wrist must be kept at the

level of heart, with the whole forearm supported on a plane surface. It should

also be ensured that the subject is seated comfortably, with the arm slightly flexed

and the back supported during the measurements. Otherwise, the DBP may be

overestimated significantly if a subject sits in the bolt upright position [108].

• Cu↵ size and placement: An inappropriate size of cu↵ is another source of

error in the BPM. A common mistake of using a small-sized cu↵ can significantly

overestimate the blood pressure [124]. This error can be minimised by using a large-

sized cu↵ on subjects with medium to large arm/ wrist circumferences. Generally,

the bladder length and the width of the cu↵ should be around 80% and 40% of

the arm circumference respectively. The American Heart Association recommends

di↵erent cu↵ sizes for a newborn (<6 cm), infant (6-15 cm), child (16-21 cm), small

adult (22-26 cm), adult (27-34 cm), large adult (35-44 cm) and adult thigh (45-52

cm) [108]. The placement of cu↵ is also critical to the BPM. Ideally, the mid-line

of the cu↵ bladder should be positioned over the brachial site at which the arterial

pulsations can be easily palpated. For the auscultatory method, a gap of 2-3 cm

between the lower end of the cu↵ and the antecubital fossa should be kept to allow

a proper placement of the stethoscope. The cu↵ placement is not critical for the

oscillometric measurements.
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• Cu↵ inflation/deflation rate: The new monitors available in the market are ca-

pable of measuring the blood pressure during the inflation of the air cu↵. However,

the cu↵-based techniques were originally based on sensing the signals during the

deflation cycles. The inflation/ deflation rate has an important e↵ect on the SBP/

DBP readings [102]. For di↵erent subjects, the heart rate and inflation/ deflation

rate decides the count of the events of interest recorded over the whole length of

the pressure variation. Since the performance of the algorithm depends on these

events, a suitable inflation/ deflation rate must be chosen for the BPM. As per the

recommendations from the international guidelines, the cu↵ should be inflated to

at least 20-30 mmHg above the full occlusion of the radial artery. Depending on the

operating mode of a particular monitor, an inflation/ deflation rate of 2-3 mmHg

per second can be chosen [131]. Any higher rates can cause the SBP to appear

lower and the DBP to appear higher.

• Cu↵ inflation hypertension: In majority of the subjects, the cu↵ inflation itself

does not change the actual blood pressure. However, a significant increment in the

blood pressure readings coinciding with the process of cu↵ inflation has been ob-

served in some subjects [132]. The cu↵ inflation hypertension is di↵erent from the

white coat hypertension, which refers to the cohort of subjects with higher blood

pressure readings observed only during the clinical visits. The blood pressure for

these subjects fall within the normal range when they are outside the clinical set-

tings. This condition is generally treated as low-risk in comparison to the sustained

hypertensive state and can be diagnosed reliably by measuring the blood pressure

in the home settings [108].

1.3.3 Commercially available BP monitors

The monitoring techniques revealed the association of di↵erent types of signals including

the Korotko↵ sounds, pressure oscillations, pulse arrival time, etc. with the blood pres-

sure. These signals are recorded using semi- or fully-automated blood pressure monitors.

Among the di↵erent sensing mechanisms, the automatic blood pressure monitors avail-

able in the market are mainly based on the oscillometric technique. This is because the

auscultation of the Korotko↵ sounds using a stethoscope require intensive training and

is usually operated in the clinical settings. The cumbersome setup involved in the ultra-

sound and PTT-based methods also limit their usage in the clinical environment. How-

ever, the user-friendliness of the oscillometry-based monitors o↵ers the self measurement

of blood pressure at home using small portable devices. Both the wrist- and arm-based

monitors are available in the market and di↵erent features and functions set one apart

from the other. Some of the important features that are helpful in di↵erentiating these

monitors are discussed below.
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1. Measurement technique: Although the market is dominated by the oscillometry-

based monitors, few of the monitors also use automated auscultation of the Ko-

rotko↵ sounds on the upper-arm to measure the blood pressure.

2. Sensing location: Apart from the upper arm and wrist as commonly used locations,

the research has also explored the possibility of measuring the blood pressure at

other locations including the calf, ankle, ear, etc. [133]. However, the commercial

monitors are mainly based on sensing the pressure oscillations either at the upper

arm or the wrist.

3. Power source: The power source in the monitors is critical to the number of blood

pressure readings a user can take without changing the batteries. Since these

monitors are mainly based on inflation/ deflation of the air cu↵ through a motor, a

high current drive is demanded from the batteries. Due to a trade-o↵ between the

operational lifetime and the size/ weight of the monitor, usually two to four AA/

AAA alkaline batteries are required for the operation. Majority of the monitors

can also operate by connecting an AC adapter to the mains.

4. Size and weight: The spot measurement of the blood pressure does not require

a subject to wear the monitor at all times. Also, majority of the blood pressure

monitors have a control unit connected to the air cu↵ through the tubing. Although

the size and weight of the control unit does not a↵ect the BPMs, the portability of

these monitors is compromised if the dimensions and weight are significantly larger.

This is specially true for the monitors which integrate the control unit with the cu↵

and are placed on the upper arm/ wrist.

5. Additional tracking functions: While the primary function of these monitors is

to measure the SBP/ DBP, the integration of di↵erent sensors within the same

monitor also allows to track other parameters such as body movement, irregular

heart beat detection, etc. The inbuilt position sensor in the wrist-based monitors

significantly increases the accuracy of BPM by minimising the e↵ect of hydrostatic

pressure. The errors raised in case of an incorrectly wrapped cu↵ also avoids the

under- or over-estimation of the blood pressure.

6. Validation in literature: All the international guidelines recommend taking the

BPMs at home using automated blood pressure monitors. Due to the abundance

of such monitors in the market, their validation in the literature to assess the ac-

curacy of BPM prove to be an important criteria in choosing a specific monitor.

The validation for non-invasive automatic blood pressure monitors is generally per-

formed using one of the three international guidelines, the details of which are

summarised below.
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i. British Hypertension Society (BHS) Protocol [134]: The BHS protocol requires

85 participants such that 8 subjects have a SBP: < 90 mmHg and DBP: <60

mmHg; 20 subjects have a SBP: 90-129 mmHg and DBP: 60-79 mmHg; 20

subjects have a SBP: 130-160 mmHg and DBP: 80-100 mmHg; 20 subjects

have a SBP: 161-180 mmHg and DBP: 101-110 mmHg; 8 subjects have a SBP:

> 180 mmHg and DBP: > 110 mmHg respectively. Sequential same arm mea-

surements are carried out for three times in the following order: two di↵erent

observers measure the blood pressure using the mercury sphygmomanometer

followed by a measurement using the test instrument. Depending on the per-

centage of di↵erences between the test device and the reference measurements

falling within the certain limits, a BHS grade is awarded as follows:

Table 1.2: BHS grading criteria [134].

Grade

Absolute di↵erence between standard

and test device

 5 mmHg  10 mmHg  15 mmHg

Cumulative percentage of readings

A 60 85 95

B 50 75 90

C 40 65 85

D Worse than C

ii. European Society of Hypertension International Protocol (ESH-IP) revision

2010 [135]: The ESH-IP requires 33 participants all above 25 years of age

with at least 10 males and 10 females. A minimum of 10-12 subjects in each

of the low, medium and high blood pressure ranges are required during the

recruitment process. The low range is divided into two subgroups of < 90

mmHg and 90-129 mmHg for the SBP, and < 40 mmHg and 40-79 mmHg for

the DBP. The medium range for the SBP and DBP are 130-160 mmHg and

80-100 mmHg respectively. The high range is also divided into two subgroups

of 161-180 mmHg and > 180 mmHg for the SBP, and 101-130 mmHg and >

130 mmHg for the DBP. Similar to the BHS protocol, the sequential same

arm measurements are carried out for three times in the following order: two

di↵erent observers in presence of a supervisor measure the blood pressure us-

ing the mercury sphygmomanometer followed by a measurement using the test

instrument. The absolute blood pressure di↵erences between the experimen-

tal readings and the reference measurements for 33 subjects are determined.

These di↵erences are graded according to the ESH-IP criteria shown in Table

1.3. The criteria consists of two parts where the first part checks the cumula-
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Table 1.3: ESH-IP 2010 grading criteria [135].

Part 1  5 mmHg  10 mmHg  15 mmHg

Pass requirement
Two of 73% 87% 96%

All of 65% 81% 93%

Part 2 2/3  5 mmHg 0/3  5 mmHg

Pass requirement � 24  3

tive percentage of di↵erences falling within 5 mmHg, 10 mmHg and 15 mmHg

respectively. The second part checks the number of subjects with di↵erence of

at least two readings less than 5 mmHg, and the number of subjects with zero

readings below 5 mmHg. A test instrument is passed only when both the parts

of the grading criteria are satisfied.

iii. American National Standards Institute/ Association for the Advancement of

Medical Instrumentation/ International Organization for Standardization (AN-

SI/AAMI/ISO) Protocol [136]: This protocol requires 85 participants with at

least 30% males and 30% females respectively. The age of every subject must be

greater than 12 years. The reference blood pressure should meet the following

distribution: at least 5% SBP  100 mmHg, at least 5% SBP � 160 mmHg, at

least 20% SBP � 140 mmHg, at least 5% DBP  60 mmHg, at least 5% DBP

� 100 mmHg, at least 20% DBP � 85 mmHg. Three measurements including

the two reference readings and one experimental reading are recorded from the

same arm of every subject. For the validation, the mean and standard devia-

tion of the blood pressure di↵erences corresponding to 255 blood pressure pairs

(85 ⇥ 3) are calculated. A test instrument is passed if it obtains a mean of less

than 5 mmHg and a standard deviation of less than 8 mmHg respectively. The

second criterion of the protocol compares the standard deviation of the SBP/

DBP with a predefined table of maximum permissible standard deviations as

a function of the mean value of the blood pressure di↵erences [136].

The factors discussed above serve as an important criteria in di↵erentiating the usability

of di↵erent blood pressure monitors available commercially. Table 1.4 compares the

features and functions of some commonly available blood pressure monitors from di↵erent

companies and also provide references to the associated validation literature. The listed

devices are chosen using the same criteria as described for the heart rate monitors in

Section 1.2.3.
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1.3.4 Summary

All the monitors listed in Table 1.4 are based on the oscillometric technique except the

“Tango M2 stress test monitor” from SunTech Medical which also provide an added

functionality of recording the Korotko↵ sounds by placing a wired microphone under a

specially designed cu↵. However, this monitor has not been validated in the literature

for the BPM using the auscultation method. Although both the auscultatory and the os-

cillometric methods are cu↵-based techniques, the oscillometry-based monitors are more

prevalent because of their user-friendliness and automatic measurement of the blood pres-

sure. The automation allows the self BPM at home, a feature that also minimises the

e↵ect of white coat hypertension. While all the companies manufacturing these monitors

claim an accuracy of ±3 mmHg to ±5 mmHg with respect to the gold standard, the

accuracy of oscillometry-based monitors su↵er from several challenges. This technique

is solely based on analysing the pressure oscillations during the cu↵ inflation/ deflation.

These oscillations can be irregular and weak in strength for the obese subjects and the

subjects su↵ering from atrial fibrillation and atherosclerosis [163]. A major drawback

of this technique when compared with the auscultatory method is an absence of direct

correlation of the pressure oscillations with the SBP/ DBP readings. The blood pressure

estimation is usually based on deriving empirical coe�cients from a specific cohort of

subjects. While these coe�cients can provide accurate BPMs for the study undertaken,

it may be unreliable in diverse patient populations and measurement scenarios [164].

The gold standard approach of measuring the blood pressure is based on sensing the

Korotko↵ sounds at the upper-arm. Although the auscultation of these sounds using

a stethoscope requires intensive training and adequate auditory acuity, the direct rela-

tionship between the appearance/ disappearance of the Korotko↵ sounds with the SBP/

DBP still makes this method as the most accurate and reliable for the BPM. As with

the Korotko↵ sounds on the upper-arm, this thesis explores the possibility of recording

these sounds from the radial artery at the wrist for the first time in the literature. The

requirement of any training or human involvement is completely avoided by automating

the process of listening to the Korotko↵ sounds using a small, battery-powered wearable

device. The measurement at the wrist using the auscultatory method also proves to be

beneficial for the obese subjects as the wrist circumference does not vary as much as the

arm circumference.

In conclusion, this thesis proposes a wearable device to be worn on the wrist that can

continuously measure the heart rate and the heart rate variability, and can also record

the Korotko↵ sounds for the spot measurement of the blood pressure. The measurement

of all three important physiological markers associated with the CVDs using the same

wearable device are based on the acoustic sensing of the cardiac activity at the wrist.

The relevant algorithms to extract the heart rate, heart rate variability, SBP/ DBP from

the acoustic signals recorded at the wrist are also proposed in this thesis.
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2 Wearable sensing of the pulse sounds

at the wrist

2.1 Introduction

2.1.1 The circulatory system

The circulatory system plays a vital role in healthy metabolism of tissue cells and or-

gans in the human body. It acts as a transportation mechanism and is responsible for

the exchange of nutrients, hormones and substances with the metabolic waste from the

cells. This is carried out through a distribution network of blood, blood vessels and the

heart. Simply put, the circulatory system is a network of tubes carrying fluid from the

pumping source [1]. The circulatory system also plays an important role in regulating

the body temperature, blood flow volume by communicating continuously between dif-

ferent regions of the body. This dynamic regulation as well as the supply mechanism is

mainly performed by controlling the width of the blood vessels and the pumping force of

the heart. A reduction in the blood vessel diameter, a state known as vasoconstriction,

reduces the exposed surface area thereby reducing the rate of heat loss from the body [2].

The constriction of the blood vessels also reduces the blood flow to the peripheral regions

of the body. A reverse phenomenon is observed for an increase in the blood vessel diam-

eter, a state known as vasodilatation. The vasoconstriction and vasodilatation phases of

blood flow in the arteries are primarily governed by the pumping action of the heart.

The human heart serves as a four-chambered pump and propels the blood through the

circulatory system in periodic heart cycles. A heart cycle mainly consists of two phases:

systole and diastole. Systole indicates the period of ventricular contraction to eject blood

from the heart whereas diastole involves the refilling of blood by ventricular expansion

to attain the relaxed position of the heart. In the systolic phase, the heart forces the

blood to flow with high pressure throughout the arterial system. The blood flow in the

arteries is preceded by a travelling pressure wave generated corresponding to periodic

contraction and relaxation of the heart [2]. This association of the heart cycle with the

pressure wave can be utilised to study the pulse phenomenon that provides a valuable

indicator of the cardiac function at various locations of the body.
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2.1.2 The pulse

Pulse reflects the state of health of an individual as it directly relates with the functioning

of the heart and the arteries. In clinical medicine, pulse is treated as the fundamental sign

of life and is studied as a physiological signal that propagates through the arterial system

corresponding to systolic and diastolic phases of the cardiac cycle [3]. The contraction of

heart in the systolic phase generates a pressure wave that exerts maximal pressure inside

the arteries. The refilling of blood back into the heart during the diastolic phase restores

the baseline pressure in the artery. These rhythmic pressure variations causes pulsations

in the arterial system. The pulse in addition to the pressure wave also consist of flow wave

which governs the actual flow of blood in the arteries [4]. Therefore, the propagation

of pulse wave involves two stages: the contraction of heart causing the outward force

(pressure wave) and the actual movement of blood in response to this force (flow wave).

The following sections establish the significance of each wave in forming the pulse.

2.1.2.1 Pressure wave

The human heart is divided into left and right parts. These parts are further divided into

two sections each to form a total of four chambers. The upper chambers of the heart,

known as the left and the right atrium, collects the blood from the circulatory system and

forwards it to the lower chambers. The lower chambers, also known as the left and the

right ventricle, ejects blood away from the heart by performing rhythmic contractions.

Each chamber is also associated with “one-way” valve to regulate the blood flow in a

particular direction and prevent the back flow of blood. The atrioventricular (AV) valves

function as the gates between atria and ventricles whereas the semilunar (SL) valves

interact with the aorta and pulmonary artery to complete the loop of blood flow. A

complete cardiac cycle runs in a sequential cycle of ventricular systole and atrial systole;

ventricular diastole and atrial diastole [5]. During the ventricular systole, a large amount

of blood is dumped into the left and right atrium. Due to the closure of the AV valves,

the accumulation of blood inside the atrium builds up a pressure to a certain level at

which the pressure on atrium side becomes higher than the ventricle side. At this point,

the cardiac cycle enters the phase of ventricular diastole where the di↵erential pressure

forces the AV valves to open and allow the blood flow into the ventricles. The rising

levels of blood in the ventricles after the closure of the AV valves initiates the process of

ventricular contraction to cause an abrupt rise in the pressure profile as shown in Fig. 2.1.

This rise in the pressure level is also known as the period of isovolumic contraction, and is

caused by an increment in the muscle tension [6]. When the pressure inside the ventricle

becomes higher in comparison to the baseline pressure of aorta (around 80 mmHg), the

SL (or aortic) valves are opened to allow a rapid ejection of blood through the aorta. The

ejection of blood is preceded by the actual force generated by the ventricular contractions,

also referred to as the pressure wave. The pressure wave propagates through the arterial
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system and creates a di↵erential pressure to allow the flow of blood from higher pressure

in the heart to the lower pressure in the arteries. During the ventricular systole, the

arterial walls sustain maximal pressure (around 120 mmHg) from the travelling pressure

wave. These continuous cycles of rise and fall in ventricular pressure as shown in Fig. 2.1

produces volumetric cycles of blood flow causing constriction and dilation (or pulsation)

of the arteries.

Figure 2.1: Cardiac cycle events with variation in atrial, ventricular and aortic pressure [6].

The pressure wave generated from the heart movements propagate as a forward travel-

ling wave. Since an incoming wave is partly transmitted and partly reflected because of

the material properties, the pressure wave also undergo a wave reflection phenomenon [4].

The reflected wave can be understood as an echo of the incoming pressure wave travel-

ling from heart to the peripheral arteries. The narrowing of the arteries in the peripheral

regions increases the arterial resistance causing the reflection of the pressure wave [2]

back to the heart. Therefore, the pressure wave propagating through the circulatory

system is a superposition of a forward and a backward travelling wave. A sudden rise in

the pressure after dicrotic (or diastolic) notch in Fig. 2.2 indicates the superposition of

incoming and rebound pressure waves. An increased arterial sti↵ness or inflexibility can

push the dicrotic notch towards the peak with maximum arterial pressure (systolic peak)

causing irregular blood flow in the heart. Since the reflective component of the pressure

wave changes with the arterial parameters such as width and elasticity, the arteries in

di↵erent regions of the body have di↵erent diagrammatic representations of the pressure

waveform (sphygmograms). The strength of pressure wave also depends on the amount

of blood ejected from the heart (stroke volume). A higher stroke volume leads to a higher
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volume of blood flowing through the arteries, therefore, further increasing the maximum

pressure applied on the arterial walls. A majority number of arteries in the body are wide

and elastic allowing a smooth flow of blood [7]. In such cases, the systolic pressure in

the arteries resemble with the systolic pressure in the aorta. However, the narrowing of

the peripheral arteries such as brachial and radial artery can lead to significantly higher

systolic pressures in comparison to the aortic pressure [2]. These enhanced pressure levels

makes it easy to palpate the brachial and radial artery for pulse waveform analysis.

Figure 2.2: Normal arterial pressure waveform corresponding to systolic and diastolic phase of
the cardiac cycle [8].

2.1.2.2 Flow wave

Flow wave is the longitudinal movement of blood in response to the differential pressure

created by the pressure wave throughout the arterial system in the body. The pressure

and flow wave, therefore, indicate a periodic relationship of cause and effect in pulse

formation. The strength and characteristics of the flow wave depends on the stroke

volume, fluid properties and the momentum imparted by the ventricular contractions.

The viscosity of the blood among other fluid properties plays a vital role in the formation

of the flow wave. Since blood is a combination of red blood cells, white blood cells and

plasma, any change in the percentage ratio of these components can affect the viscosity

of the blood [9]. The blood with higher viscosity requires higher force to move through

the blood vessels and vice-versa. These factors in combination with arterial stiffness

and elasticity affects the movement of the flow wave. The strength of heart contractions

determine the momentum imparted to the blood to flow through the blood vessels. This

is evident in Fig. 2.1 where majority of the ventricular volume is emptied during the first

third period of ejection cycle. The remaining blood volume is emptied in the last two

thirds of the ejection period [6]. Therefore, the contraction force also plays an important

role in the formation of the flow wave.

79



2.1.3 Arteries

Pulse in the human body can be sensed at several arterial locations including the temporal

artery, carotid artery, brachial artery, radial artery, femoral artery, etc. The arterial

system is mainly divided into central and peripheral subdivisions. The central subdivision

encircles all the arteries present in the torso whereas the peripheral subdivision includes

all the arteries in the upper and lower limbs. The arterial divisions are based on the

muscular and elastic properties of the blood vessels. The arteries in the central part of

the body are wider and more elastic to sustain high volumes of blood flow and larger

pressure exerted from within the arterial walls. The elasticity of these arteries also help

in propagating the pressure and flow wave to the peripheral regions of the body without

much resistance. A typical example of artery in the central region include carotid artery

which can be palpated easily by locating it lateral to the larynx. The peripheral arteries

such as brachial and radial artery on the other hand have better muscular properties due

to a greater proportion of smooth muscles in comparison to elastic fibres in the blood

vessels [2]. The presence of these smooth muscles in the peripheral arteries allow them

to demonstrate a higher functionality of vasoconstriction and vasodilatation as compared

to arteries in the central region of the body [10]. This feature makes it easier to monitor

the pulse at the peripheral locations such as brachial and radial artery.

The radial artery is a clinically important site to measure the human pulse. Its size,

ease of access and proximity to the surface of the skin makes it a suitable location to

study the pulse, also referred to as the radial pulse. It has also been found that the

vascular properties of the radial artery are less a↵ected by ageing, blood pressure and

various movements as compared to other arteries, thus making it an ideal site for pulse

assessment [13]. However, a number of factors such as arterial elasticity, arterial width,

(a) (b)

Figure 2.3: (a) Origin of the radial artery from bifurcation of the brachial artery at the cubital
fossa of the forearm [11]. (b) Anatomy of the radial artery and the deep flexor
muscles of the left forearm [12].
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arterial tension, blood viscosity, blood volume, etc. a↵ects the characteristics of the

radial pulse [2]. Anatomically, the radial artery originate as a smaller terminal branch

of the brachial artery and arises from its bifurcation at the cubital fossa of the forearm

as shown in Fig. 2.3(a). In the proximal part of the forearm as shown in Fig. 2.3(b),

the radial artery is overlapped anteriorly by the brachioradialis muscle which descends

lateral throughout its length. Thereafter, the artery runs from the medial side of the

radial shaft to its anterior, where it can be palpated between flexor carpi radialis and the

anterior border of the radius. An examination of the pulse is most accessible at the lower

end of the radius since the radial artery here is only covered by the skin, and superficial

and deep fasciae [14]. The radial artery during its course in the forearm is supported by

pronator teres in the proximal part, superficial radial nerve in the middle part and flexor

carpi radialis in the distal part. The course of the radial artery extends further to divide

into dorsal carpal and dorsal metacarpal branches to cater the blood flow to thumb and

fingers in the hand [14], [15].

Traditionally, the pulse is studied at the radial artery in an approximate length of 3-5

cm on the wrist as shown in Fig. 2.4. The pulse here can be sensed at three distinct

locations: distal, middle and proximal. The middle position can be located by palpating

the pulse in front of the radial styloid process (protruded bone near the wrist crease). The

palpation can be performed by sensing an outward force from within the radial artery

when gently pressed by the fingers. The proximal and distal positions are generally 1-2

cm on either sides of the middle position, towards upper arm and fingers respectively.

Figure 2.4: Distal, middle and proximal locations on the radial artery to sense the pulse.
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2.2 Literature review of sensing the radial pulse

The arterial pulse has been a subject of great interest from the ancient times. Early

physicians like Galen [16], Harvey [17], Marey [18], Mohamed [19], etc. recognised the

clinical importance of pulse and paid great attention to its characteristics in normal

health and disease [20]. Although the pulse is driven by the heart, it is transmitted by

a channel of blood flow throughout the arterial system and su↵ers a continuous state of

change. It is not only a↵ected by the condition of the heart, but also by the functional

state of the organs, nerves, muscles, skin, blood vessel walls, blood related parameters

(volume, viscosity, pressure, velocity), etc. Since the bodily functions are regulated by

the autonomic nervous system (ANS), the pulse also manifests the actions of ANS in

its characteristics [21]. Therefore, the state of health of an individual can cumulatively

e↵ect the shape, amplitude and other characteristics of the pulse wave. A long-term

continuous monitoring of the pulse can thus assist in diagnosis of certain health related

parameters. However, for such an analysis over long periods of time, a monitoring system

with very small and light sensors that can be easily worn on the body is required [22].

The power requirements also play an important role in governing the recording duration,

processing complexity, and therefore, the battery size of the wearable system. A number

of techniques have been proposed in the literature to record the pulse waveform from the

wrist using di↵erent wearable sensing methods to extract features that can be used to

monitor certain biomarkers of an individual.

2.2.1 Monitoring techniques and their applications

Physicians usually perform a routine checkup by examining the radial pulse to measure

the cardiac activity of an individual before applying an advanced analysis. Such an exam-

ination is performed by sensing the rhythmic changes in the radial artery using contact

and non-contact based methods. The contact-based methods typically include ECG and

PPG, and are regarded as the gold standard approaches to monitor cardiac activity at

the wrist. With the advancement in technology, some contactless methods based on res-

onators and radars have also been proposed recently. While a detailed review on contact

and non-contact based systems to monitor cardiac activity at di↵erent locations of the

body have been discussed in Section 1.2, the application of these techniques at the wrist

along with the algorithmic methods are presented here.

Heart rate monitoring is one of the most common applications of studying the pulse

at the wrist. The technological advancements have enabled researchers to record the

electrical activity of the heart at the wrist. Zhang et al. [23] proposed a semi customised

biopotential acquisition platform consisting of an evaluation board and a launchpad to

record wrist-ECG signals from healthy people in a Lead I configuration. The proposed

prototype used a serial peripheral interface (SPI) and a universal serial bus (USB) to
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communicate with the graphical user interface (GUI) on the computer. The data was

recorded by placing the signal electrode on the left wrist and the reference electrode

on the right wrist. Therefore, in principle, the platform used both the wrists for data

acquisition in a non-wearable fashion. The work focused on a continuous monitoring

of the instantaneous heart rate (IHR) from wrist-ECG signals corrupted heavily by the

motion artifacts. The proposed support vector machine (SVM) based framework was

implemented on 22 thirty-minutes recordings to achieve a mean absolute error (MAE)

of 1.4 bpm (beats per minute) and root mean square error (RMSE) of 6.5 bpm respec-

tively. Zhang et al. introduced a new algorithm for the IHR determination in [24] and

extended the implementation over the dataset consisting of a public database in addition

to the two-wrist ECG signals. The proposed methodology projected the ECG signals to

a high-dimensional phase space to di↵erentiate the heartbeat features from the motion

artifacts using the multiview dynamic time warping approach. The IHR comparisons for

signals with SNR as low as -9 dB achieved an MAE of 2.5 bpm and RMSE of 7.0 bpm

respectively. Salehizadeh et al. [25] also designed and developed a two-wrist acquisition

system named, NohChon, to record a single channel ECG signal in Lead I configura-

tion. The modules on both the wrists included 3-axis accelerometers and were connected

through a wire threaded through a compression shirt to minimise the motion artifacts.

The study implemented spectral filter algorithm for an accurate estimation of heart rate

from ECG signals corrupted during intense physical activities. The method applied on

a dataset of 17 minutes recordings from 4 subjects resulted in an MAE of 1.18 bpm and

MAE percentage of 1.26% respectively1.

Zhang et al. extended the use of the hardware platform developed in [23] to the other

studies [26], [27] and recorded ECG signals from non-standard positions. The electrodes

in [26] were placed on the left arm and the signal-to-reference electrode distance was

maximised to achieve a better SNR. The study used an SVM-based framework to find

the duration of the QRS complex and detect any cardiac-related diseases. The work

in [27] integrated the PPG sensor with ECG electrodes into a one-arm band to measure

both the signals simultaneously at the left arm. The ECG and PPG-based heartbeats

were extracted to find the pulse transmit time (PTT) and model it further to determine

the systolic blood pressure (SBP).

While the above integration of ECG and PPG sensors was designed for the left arm,

similar systems have been designed for the wrist as well. Thomas et al. [28] developed a

wearable wristwatch based system to measure ECG and PPG simultaneously. The device

named, BioWatch, consists of three ECG electrodes, two on the bottom and one on the

top. The watch, when worn on the left hand, provides contact with the two electrodes

on the bottom whereas a manual touch of the finger from the right arm completes the

connection with the top electrode. The simultaneous measurement of ECG and PPG

1The real-time implementation of the algorithm can be watched on the following link: https://www.

youtube.com/watch?v=hEumm_OPwls.
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signals have been used to measure the PTT for blood pressure determination. The

implementation of the proposed PTT model achieved an average RMSE between 7.83 and

9.37 mmHg (millimetres of mercury) for systolic, and 5.77 and 6.90 mmHg for diastolic

blood pressure (DBP) respectively. The integration of a nine-axis MEMS inertial sensor

in the device allowed an automatic detection of the sensor height to accurately locate the

arm position. A similar device was also designed by Krachunov et al. [29] with two ECG

electrodes, one on the bottom and one on the top. The electrodes were made from a

flexible ink which can be painted on the casing to make it adaptable for di↵erent shapes

and users. The design also focused on energy e�ciency with front end consuming 8 µW

(microwatts) power at 1.8 V (volts) supply. ECG signals were recorded from 8 subjects

for 12 five-minutes recordings. The heart rate comparisons resulted in an MAE of 4.56

bpm and standard deviation (SD) of 3.23 bpm respectively. Although both these devices

can be easily worn on the wrist, the use of another hand to complete the connection

for signal acquisition makes them unsuitable for long-term monitoring. Other wearable

devices such as the Apple Watch (Apple Inc., California, United States), KardiaBand

(AliveCor Inc., California, United States) and Salutron (Salutron Inc., California, United

States) also, provide spot measurements of ECG at the wrist, but they are not suitable

for long-term cardiac monitoring. KardiaBand from AliveCor, for example, required the

placement of thumb on the band to record the ECG signal. Systems such as Zephyr

Biomodule (Medtronic Inc., Maryland, United States) and Kenzen patch (Kenzen Inc.,

California, United States) record the ECG data continuously, however, they are worn

on the chest and not on the wrist. While Zephyr is widely used in the sports context

to measure several physiological and biomechanical measurements, Kenzen is currently

field-testing its technology to monitor heart rate continuously.

To overcome the challenges faced by ECG sensing at the wrist, PPG-based devices have

been widely used for continuous monitoring of cardiac activity. PPG records the optical

activity of the radial artery by sensing beat-to-beat volumetric changes in the arterial

blood flow. An extensive amount of commercial PPG-based wearable monitors, mainly

smartwatches produced by Fitbit (Fitbit Inc., California, United States), Apple (Apple

Inc., California, United States), TomTom (TomTom N.V., Amsterdam, Netherlands),

Scosche (Scosche Industries Inc., California, United States), etc., allow for continuous

heart rate measurement at the wrist. The accuracy and reliability of such devices have

been validated in several studies during rest and exercise [30]–[33]. Stahl et al. [30]

validated the Scosche Rhythm, Mio Alpha, Fitbit Charge HR, Basis Peak, Microsoft

Band, and TomTom Runner Cardio wireless monitors by comparing their heart rate

outputs with the ECG-based reference monitor. The experiment involving 50 subjects

required 30 minutes of continuous walking and running at di↵erent speeds with the heart

rate recorded every 1 minute. The comparisons with the reference ECG indicated that the

wireless monitors provide accurate measurements of the heart rate during walking and
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running activities. These results, however, are contradictory to the validation results

obtained in [31], [32]. Cadmus et al. [31] performed an experiment with 4 wrist-worn

devices, recording the heart rate at 1-minute intervals from 10 minutes of data recorded

each at rest and 65% of maximum heart rate. The heart rate comparisons for 40 subjects

delivered significantly broader limits of agreement (LOA) with the ECG reference for

both the states, specially during the state of moderate exercise. The best LOA of [-5.1,

4.5] bpm at rest, and [-22.5, 26.0] bpm for the state of 65% of maximum heart rate were

obtained for Fitbit Surge and Mio Fuse monitor respectively. Only 2 trackers (Basis

Peak and Fitbit Charge) were studied in [32] for a 77-minute protocol over 24 subjects.

Although the LOA for both the monitors exceeded 20 bpm, it was concluded that the

Basis Peak satisfied the validation criteria whereas the Fitbit Charge failed to satisfy the

criteria. Both the monitors demonstrated a substantial decrease in accuracy with the

reference ECG heart rate exceeding 116 bpm.

Since the performance of the commercial PPG-based heart rate monitors significantly

degrade with the intensity of the exercise, several research papers have worked on the

removal of motion artefacts (MAs) using di↵erent algorithmic methods for an accurate

heart rate estimation at the wrist. A review about di↵erent signal processing tech-

niques to remove or attenuate MAs from the wrist-PPG signal is provided in [34]. Al-

though these techniques adopt multiple processing stages, the heart rate estimation is

performed using one of the several methods including adaptive filtering [35]–[38], Weiner

filtering [39], Kalman filtering [40], independent component analysis [41], [42], frequency-

domain ICA [43], empirical mode decomposition [44], [45] and machine-learning [46]

approaches. Many of these methods transform the signal into time-frequency domain to

identify the spectral peak corresponding to the heart rate among di↵erent peaks gener-

ated by MAs. However, the accuracy of such methods rely prominently on data from

multiple sensors attached to the wrist. The publicly available IEEE Signal Processing

Competition (SPC) database includes 2-channel PPG and 3-axis accelerometer record-

ings from 12 male subjects of 18-35 years age. The reference heart rate was recorded

simultaneously from the chest-ECG while the subjects walked and ran at di↵erent speeds.

Zhang et al. [47] proposed a general framework, termed as TROIKA, to estimate the HR

from the PPG signals in the SPC database. The framework consisted of signal decompo-

sition for denoising, sparse signal reconstruction for high-resolution spectrum estimation,

and spectral peak tracking with verification to find the spectral peak corresponding to

the heart rate. The algorithm obtained a Pearson correlation of 0.992 and MAE ± SD

of 2.34 ± 0.82 bpm. This work was extended in [48] and a new framework, named JOSS

(joint sparse spectrum reconstruction), was proposed. The framework calculated a joint

spectrum of the PPG and acceleration signal and utilised a common sparsity constraint

on spectral coe�cients to remove spectral peaks of MAs from the PPG spectra. A better

performance with MAE ± SD of 1.28 ± 2.61 bpm was obtained. Mashhadi et al. [35] also
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used a high resolution spectrum estimation technique using iterative method with adap-

tive thresholding (IMAT) for peak selection. The PPG signals were cleaned by successive

application of adaptive filters using the reference generated from the 3-axis acceleration

data. The MAE of 1.25 bpm was obtained for the SPC database. The use of adaptive

filtering to remove MAs from the PPG signals have also been utilised in other studies.

Khan et al. [44] decomposed the corrupted PPG signals into intrinsic mode functions us-

ing the empirical mode decomposition method for signal denoising. In the second stage of

the algorithm, a recursive least squares adaptive filter is used to deal with close proximity

of MA and PPG peaks and spectral shadowing. The technique obtained better results

than TROIKA and JOSS framework with MAE ± SD of 1.02 ± 1.79 bpm. While these

studies generate a reference from the acceleration data to feed into the adaptive filters,

several algorithms utilise the reference extracted from the PPG signal itself for the noise

cancellation [36]–[38]. The algorithms described above rely on di↵erent filtering methods

to clean the PPG signal and estimate the heart rate based on tracking the spectral peaks.

Grisan et al. [46] proposed a supervised learning approach for the PPG signals in the

SPC database. The training set included 282 features extracted from the labelled PPG

segments. However, only the best 25 features having maximum variance were used with

the random forest classifier to obtain MAE of 6.4 ± 0.28 bpm.

Majority of the studies concerning the removal of MAs uses multiple signal channels

by integrating the accelerometer and gyroscope sensors with the PPG sensing at the

wrist [47], [49]–[53]. These additional signal channels, as discussed before, serve as a

reference to separate MAs from the corrupted PPG signals. However, some research

studies avoid the use of an accelerometer sensor to reduce the computational complexity

of the algorithm. Yang et al. [54] used a dual-wavelength technique and observed the

di↵erence in the two PPG detection modules (blue and infra-red filter) to reduce the

e↵ect of MAs. The proposed device reported an error of less than 3 bpm for the heart

rate estimation. Zhou et al. [55] did a similar study and used a di↵erential channel with

green and red light PPG channels. The heart rate monitoring system was assembled in

a wristwatch and four types of motions were studied. It was concluded that the average

artifact ratio corresponding to these motions using the proposed detection technique was

reduced as compared to the other studies.

Other wearable systems have also been proposed in academic papers to measure PPG

from the radial artery. The ease of integrating PPG sensing with other miniaturised

sensors at the wrist have allowed researchers to develop wearable devices and address

other clinical applications as well. Kos et al. [56] integrated a temperature sensor, tri-

axis accelerometer and gyroscope with infra-red (IR) light-emitting diodes (LEDs) to

monitor the body temperature, arm movement and the heart rate of the subject. Malhi

et al. [57] designed and developed a similar device to determine any medical distress in

elderly people by measuring the oxygen content in the blood. The design also included an
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impact sensor and a panic button to detect falls and raise the alarm in an emergency. The

PPG sensors have also been integrated with accelerometer and gyroscope for application

in driver alertness system [58]. Such systems focus on measuring the physiological state

of the driver by measuring the heart and respiratory rate, and the steering movement.

PPG sensing has also been used to detect cardiac disorders by monitoring cardiac

parameters. Bonomi et al. [59] used the integration of PPG sensing and accelerometer

sensor to detect atrial fibrillation and determine periods of corrupted signal. Tarniceriu

et al. [60] recorded PPG signals to monitor heart rate variability (HRV) from elderly

people who were su↵ering from sinus rhythm and atrial fibrillation, and underwent a

recent surgery. Baek et al. [61] did a similar study and investigated the measurement of

HRV in regions where inter-beat intervals (IBI) could not be found due to the presence

of corrupted PPG signals. The analysis found that the errors in the HRV measurement

were proportional to the missing IBI data.

The slowly varying baseline of the PPG waveform has been found to contain frequencies

corresponding to the respiratory cycle [62]. Wang et al. [63] developed a constant power

circuit to obtain stable PPG waveforms from the radial artery to monitor the heart rate

and the respiratory rate simultaneously. The respiration frequency was also found by

Chang et al. [64] where the wrist-PPG signals were recorded by mounting a green-light

LED and a photodiode on a wrist band. Adib et al. [65] studied the e↵ect of respiration

rate on the correlation between the wrist and finger-PPG signals and found that the AC

and DC components become highly correlated in fast breathing conditions.

A high correlation between the aortic and radial pressure wave, measured invasively,

have been proven before [66]. The integration of PPG sensing with the applanation

tonometer in [67], [68] has made it possible to predict the aortic pressure waveform by

fitting di↵erent autoregressive models to the radial PPG waveform. Therefore, the aortic

pressure can be accurately determined from the non-invasive radial pulse waveform.

Blood pressure determination using cu✏ess techniques has been made possible by

modelling the pulse onset time between two di↵erent sites. The acquisition of PPG

signal at the wrist has allowed monitoring the pulse transmit time (PTT) by placing

two di↵erent sensors on the forearm to determine the blood pressure [69], [70]. Rajala et

al. [71], for example, estimated pulse arrival time (PAT) using wrist-PPG signal and arm-

ECG signal to correlate it with blood pressure. A similar cu✏ess technique was presented

by Priyanka et al. [72] to estimate blood pressure, but solely using the PPG signal. Four

features from the PPG waveform were extracted to train an artificial neural network for

blood pressure estimation. Song et al. proposed a cu↵-based method to determine blood

pressure from wrist-PPG signals analysed over a deflation cycle of the wrist cu↵. The

prototype included an array of PPG sensors with 4 IR-LEDs and a phototransistor.

While the devices discussed above have mainly been developed using o↵-the-shelf com-

ponents, some studies have designed chip-based prototypes. Xiang et al. [73] developed
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a low-power wavelet denoising chip for PPG detection and heart rate monitoring. The

chip was designed and fabricated in 0.18 µm N-well CMOS technology. The power con-

sumption of the chip was reported to be 8.12 µW at an operating voltage of 1 volt (V).

Mechanical compatibility of the sensing device to multiple locations on the body requires

the sensor to be deformable and attachable on the non-flat positions. Kim et al. [74] pro-

posed such an attachable and flexible pulse sensor, integrated with micro-sized inorganic

photodetectors and red LED to monitor vital parameters such as heart rate and blood

flow. The pulse waveform using the small-factor sensor can also be recorded from finger,

fingertip, nail, forearm and finger ring. The functionality of the sensor was validated by

testing the change in the heart rate from relaxed to running position.

Apart from ECG and PPG-based methods, other contact methods include the devel-

opment of flexible sensors using di↵erent material properties. Li et al. [75] proposed a

flexible and wearable optical fiber strain sensor using side-polished fibre Bragg grating

to produce an optomechanical response corresponding to the pulse waves. The sensor

also detected the forward and backward bending of the wrist but showed large sensitivity

towards motion artifacts. Zang et al. [76] designed a graphene-based sensor to record the

radial pulse wave. They developed the sensor on a core of highly elastic polyurethane

fiber wrapped in two helically-wound polyester fibers. The wrapped core was processed

through multiple chemical procedures to enable a better conduction for the pulse moni-

toring. Such wearable sensors have also been proposed in other studies [77], [78]. While

these sensors provide good wearability, they are highly sensitive to motion artifacts re-

sulting in very low SNR.

The pulse at the radial artery can also be sensed using non-contact methods, however,

they are still in their early development stages and are not available commercially. The

studies in [79]–[81] used radio frequency (RF) array resonators to detect very weak pulse

signals to generate a heartbeat pulse. An et al. [79], [80] utilised the reflection coe�cient

from a non-contact resonator to monitor the changes in the diameter of the radial artery.

Kim et al. [81] proposed a sleep monitoring system by measuring the heart rate using three

di↵erent types of RF sensors. The heart rates were detected at 0.2 to 1 mm of distance

from the surface of the skin. The studies claimed that the proposed system can be

implemented in wearable technology, however, the prototype and the power requirements

(45 mA at 5 V supply) limited their usage for short-term cardiac monitoring. High

sensitivity towards motion artifacts is another concern as a small artifact can easily

interfere with the signal of interest. He et al. [82] proposed a method to detect the

impedance pulse wave at the wrist using a self-balancing bridge, flexible electrode and

a high-speed digital lock-in algorithm. The impedance variation corresponding to the

heartbeat pulse was compensated by the self-balancing bridge and a corresponding pulse

wave was extracted. On the other hand, Wang et al. [83] explored the radar technology

in wearable devices to detect the heart and respiratory rates using two di↵erent radars.
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The heart rate of a subject was calculated by modulating an oscillator using a patch

antenna corresponding to the associated Doppler signal.

The detection of the pulse from the radial artery using microphones have also been

explored by a limited number of works [84]–[90]. However, these studies focused on the

pulse diagnosis and did not address the pulse auscultation from the wearable aspect.

Mandal et al. [84], [85] developed a wearable, battery-free tag to monitor the heart

sounds on the chest. The tag consisted of an integrated circuit, an antenna and up to

four microphones to generate digital flags whenever the output from the microphones

exceeded a programmable threshold. It was shown that two such tags when attached to

the carotid and the radial artery simultaneously can provide time-delay between the onset

of two pulses which can be utilised to determine the blood pressure. The study, however,

discussed the wearability of only the chip and the antenna, and not the complete system.

Chen et al. [86] palpated the radial artery using a specialised pulse wave measuring

system which could apply varying amounts of pressure on the artery using a non-wearable

setup. Chen et al. [87] analysed the variations in the pulse sounds recorded using a

condenser microphone with three di↵erent weights applied on the radial artery using

a spring pressure gauge. Khaire et al. [88] did a similar pulse diagnosis to investigate

whether a subject has taken a meal or not. Nomura et al. [89] extracted the pulse

waveform using an electret condenser microphone to explore the characteristic points of

the pulse acceleration signal and relate its changes with cardiovascular diseases. Shi et

al. [90] developed a wearable wrist sensor and a chest sensor to reproduce heart sounds

at the wrist. The study modelled the sound attenuation and travel process of the pulse

from the heart to di↵erent arterial locations using a neural network with two layers.

2.2.2 Summary

ECG is the gold standard approach for monitoring cardiac activity and obtaining cardiac

parameters such as heart rate and its variability. While the current systems do not

provide continuous measurements of ECG signal at the wrist, a better way of long-term

cardiac monitoring is based on PPG sensing. However, the accuracy and reliability of

PPG-based wearable devices are vulnerable to several factors, including motion artifacts,

the brightness of the environment, or having a stable contact force between the sensor

and the measurement site [91]. Also, PPG uses an infra-red light as an active input

signal. This imposes constraints on the size of the device, and consequently the length

of monitoring, as a result of the power demands of infrared LEDs. Academic papers

have shown how cardiac activity could also be measured using non-contact techniques

such as radars and resonators, but these systems are still in very early development

stages. The cardiac activity could, in principle, also be measured by using piezoelectric

probes [92], however, these sensors require a stable and continuous pressure through

externally applied forces, and are highly sensitive to movements; all of this resulting in
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a very low SNR [93].

While all these techniques provide useful information to extract the cardiac activ-

ity, they su↵er from several issues, particularly with the constraints in terms of device

size and shape, power budget for long-term continuous monitoring, reliability and accu-

racy concerns posed by wearable technologies. Acoustic sensing of chest sounds, using

a stethoscope, is the most widely used technique to detect cardiac output and diagnose

heart problems. As with the sounds on the chest, pulse sounds can also provide im-

portant clinical information to monitor the cardiac activity. The use of a microphone

as a passive sensor in comparison to active sensing by PPG reduces the constraints on

the power consumption of the system by significant magnitudes. Therefore, acoustic

sensing of the pulse appear to be an attractive option for wearable applications. The

cardiac rhythms within the radial artery can possibly be sensed using a microphone with

small-factor, without requiring any additional power consuming input signal. Such an

approach could potentially be used either as an alternative new physiological signal to

extract cardiac information from a wearable device, or as an additional physiological

channel to complement existing systems, without posing an overhead in terms of size.

2.3 Wearable sensing of the pulse sounds

With the rise in population and limited resources available in the hospitals, the health-

care costs have been rising at a rapid pace over the last few years. The waiting time for

a patient to see a physician have also become longer. The recent developments in health-

care technology, however, has allowed advancing physiological monitoring from clinical

settings to a patient’s home. Such an advancement would not only reduce the burden

on the hospitals allowing a reduction in the healthcare costs but also provide medical

attention to a larger cohort of the population. The implementation of medical care in

home settings, however, imposes a lot of constraints on the technological forefront. The

development of biomedical devices should incorporate the user-friendliness and opera-

tional simplicity to be handled by patients and not trained clinicians. The device should

be designed in a manner that it can be easily integrated into the user’s lifestyle and does

not require a significant change in their daily activities. These factors require a device

to be smaller in size, operate over a long period, be safe and easy to use, and integrate

comfortably with the desired body location. While these devices are not intended to

replace the medical care provided by the hospitals, they can provide useful diagnostic

information to aid the physicians and reduce the monitoring times.

The advancements in the electronics sector to produce electronic parts with smaller

sizes has allowed the development of wearable devices for biomedical applications. These

devices have the potential to revolutionise the healthcare services both in the hospital as

well as home settings. The devices have been designed in a manner that they can be easily

operated by the patients in the absence of the clinicians. A typical blueprint of such a
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device includes a miniaturised non-invasive sensor that transmits the sensed physiological

signal to a nearby base station. The size and shape of the device are designed to integrate

comfortably into the patient’s lifestyle without requiring any significant change. The base

station carries enough processing capability to analyse the signal and extract meaningful

parameters that can be of interest to the physician. The availability and wide usage

of the smartphones have made it easier to reduce the cost of the wearable system by

eliminating the need for a separate base station. Smartphones not only provide the

wireless connectivity but they also carry multi-core processors to allow the signal analysis

using sophisticated algorithms.

The design and development of wearable devices impose several constraints on the

electrical and mechanical specifications of the system. The development of an acoustic

wearable device to sense the pulse sounds at the wrist require the sensor to be light-weight

and integrate easily with the contour of the patient’s wrist. The strict limitations of size

and shape along with the need for a long-term continuous cardiac monitoring impose strict

regulations on the power-budget of the system. While there is an option to analyse the

signal on the device itself, a limited power-budget require the signal processing algorithms

to be of low-complexity and demand less computational cycles while still maintaining the

accuracy and reliability of the sensing approach. These tradeoffs make it challenging to

design the sensor using such an approach. The availability of a higher computational

power on the smartphones can be used to receive the raw data wirelessly and process

high-complexity algorithms on the platform. The design of the acoustic sensor, therefore,

adopts the architecture shown in Fig. 2.5. In this architecture, the microphone senses

the pulse sounds from the radial artery at a specific sampling frequency. The analogue

front end contains the electronic circuitry to filter and amplify the information relevant

to the pulse sounds. The raw information is bundled into data packets that can be

transmitted wirelessly to a patient’s smartphone. The received data is analysed using the

computational resources available on the smartphone to extract meaningful parameters

for the diagnostic purposes.

Figure 2.5: Design approach for a wireless wearable device to sense pulse sounds at the wrist.

The constraints imposed on the design of the acoustic wearable device requires a thor-

ough understanding of different components to be used at different architectural stages.

The small size of the overall device limits the size and shape of the battery. The operation

of microphone and its related circuitry under specific voltage and current requirements
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also restrict the choice of the battery. Since the data transmission consumes more power

to transmit the data at a higher rate, the optimal choice of the hardware platform for

wireless transmission is also required. The following sections discuss di↵erent types of

acoustic sensors, batteries and data acquisition platforms to design and develop an acous-

tic wearable device to operate over longer durations and sense the pulse sounds e↵ectively

and reliably from the radial artery at the wrist.

2.3.1 Types of acoustic sensors

Alexander Graham Bell in the 1870s discovered that the acoustic pressure variations can

be manifested as the time-varying electrical signals. He utilised such a variation to trans-

mit speech on electrical wires [94]. While Bell became the inventor of the telephone, it

was Edison who designed a carbon microphone that could record speech levels adequately

to be sent over reasonable distances [95]. The microphone design, since then, has gone

further developments in parallel to the manufacturing processes to refine the acoustic be-

haviour. The advancements in silicon micromachining and micro-electro-mechanical sys-

tems (MEMS) technology has allowed developing high-performance, miniaturised acous-

tic sensors with low cost and better reproducibility. The microphones based on several

transduction principles such as the piezoelectric, the piezoresistive, the capacitive, etc.

have been developed. For the design and development of a low-power, miniaturised

wearable system to sense the pulse sounds at the wrist, it is important to understand the

di↵erent types of acoustic sensors available in the market.
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Figure 2.6: Frequency response of a contact microphone when facing its rubber sensing pad to
piston-like displacement of a structure [96].
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2.3.1.1 Contact microphone

Contact microphone, also known as the piezo microphone uses piezoelectric e↵ect as the

transduction principle to convert the sound waves into electrical energy. Piezoelectricity

is a phenomenon observed in several materials which generates an electrical charge in

response to an applied mechanical stress. The piezoelectric e↵ect is reversible i.e., the

piezo materials can also change mechanical dimensions in presence of an electric field. In

case of a contact microphone, the sound waves apply stress on the diaphragm to create

an electric charge on the plate which can be converted into an output voltage. These

microphones are designed to sense vibrations through physical contact with the solid

objects and are insensitive to the airborne sounds. Therefore, the diaphragm deforma-

tion only occurs because of the structure-borne sound. While a typical design of the

contact microphone includes a diaphragm of piezo film a�xed to a thin alloy metal disc

with opposite charges, di↵erent mechanical structures have been proposed to improve

the acoustic e�ciency and sensitivity of the microphone [97]. The contact microphones

operate by attaching the rubber sensing pad to a body part, for example, the neck or

the chest and detects the sound propagating through a combination of the tissue, bone,

muscle, and ligament. Although these microphones are highly sensitive to the mechanical

vibrations, they are immune to any interference from the external noise. They are also

immune to the moisture and can operate in conditions where the environmental stability

is critical. Some of the applications in high noise environments include the electronic

stethoscope and bone-conducted sound pickup in hospitals, impact sensing in factories,

and waterproof microphones for divers. Typically, the sensitivity of the contact micro-

phones as shown in Fig. 2.6 has a flat frequency response up to a few kHz and thereafter,

a sharp rise in the sensitivity within the audible range is observed.

While the contact microphones provide certain advantages, their high sensitivity to

mechanical vibrations makes them vulnerable to motion artifacts. A wearable sensor

attached to the wrist can incorporate significant mechanical noise in the microphone with

di↵erent hand gestures. These artifacts can interfere much strongly with the pulse sounds

of weaker strength and can lead to a failure of the whole system. The larger diameter

of such microphones and an absence of the flat frequency response in the audible range

also imposes further constraints on the design of the wearable device.

2.3.1.2 Capacitor microphone

A capacitor is essentially formed when two charged metal plates are kept in close proxim-

ity. A capacitor microphone uses the capacitive phenomenon and consists of a moveable

membrane and a fixed backplate with a thin air gap separating both the plates. When

sound waves hit the moveable diaphragm, its back and forth motion change the relative

distance between the membrane and the backplate. Therefore, the sound wave rhythm

manifests as capacitive oscillations between both the plates. Any change in distance, d,
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between the two plates result in a corresponding change in the capacitance as follows:

C = ✏
A

d
�! �C = ✏

A

�d
(2.1)

where ✏ is the permittivity of the air between the two plates and A is the overlapping

area of the two plates. If the charge, Q, on the plates is kept constant, any change in

capacitance produces a corresponding change in the voltage, V, as given by:

�V =
Q

�C
(2.2)

Therefore, any change in the air gap caused by the force of the sound waves produces a

proportional change in the voltage.

�V / �d (2.3)

The overall sensitivity of a capacitor microphone is governed by its mechanical and

electrical sensitivity [98]. The mechanical sensitivity, Sm, is defined as the ratio of change

in deflection of the microphone diaphragm, �w, corresponding to a change in the applied

pressure on the diaphragm, �P. The electrical sensitivity, Se, on similar grounds, is

defined as the ratio of change in the voltage following a change in the distance between

the two plates.

Sm =
�w

�P
, Se =

�V

�d
(2.4)

Since the charge on the plates remains constant and the change in voltage is proportional

to the change in air gap thickness, the electrical sensitivity of the microphone is essentially

equal to the electric field strength, E, between the two plates given by:

Se = E =
Vbias

d0
(2.5)

where Vbias is the bias voltage and d0 is the initial air gap thickness. The electric field is

generated by polarising one of the plates, mostly the backplate, with a built-in charge.

The polarisation is practically achieved by a�xing the backplate to a charged dielectric

layer, also known as an electret. Due to the involvement of an electret in the design

of a capacitor microphone, they are famously known as electret condenser microphone

(ECM). The earlier ECMs required high bias voltages, in order of hundreds of volts, to

polarise the plate and create su�cient electric field to sense small deflections in the mi-

crophone diaphragm. With the advent of thin electric films capable of permanent electric

polarisation, the microphones without the need of power supply were made possible [99].

The electret layer, in principle, can be a�xed either to the moveable microphone di-

aphragm or the perforated fixed backplate while maintaining a thin air gap between

both the plates as shown in Fig. 2.7(a) to form a variable capacitor.
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(a) (b)

Figure 2.7: (a) Cross-sectional view of a condenser microphone with an air gap between the
moveable diaphragm and the backplate [98]. (b) Condenser microphone connected
to an external bias voltage source, parasitic capacitance and a preamplifier [98].

Unlike the contact microphone, the ECM senses the airborne sounds and reject the

interference from mechanical vibrations. These microphones are low in cost and can

operate without the need of a power supply. However, the electret material can lose charge

over time causing a degradation in the sensitivity and resulting in poor performance of

the microphone. The damping caused by the streaming of air in the thin air gap also

results in a loss of sensitivity at higher frequencies [100].

The output capacitance of the condenser microphone is usually very small (in order of

pF) because of the low charge deposited on the electret layer. The small capacitance of

the microphone results in a high output impedance. Therefore, a bu↵er (or preamplifier)

is required to convert the impedance from a higher to a lower value. This is necessary for

an e↵ective conversion of sound waves into an electrical signal without loading the micro-

phone. Since the bu↵er is usually a source-follower, the capacitance of the microphone

in combination with input resistance of the bu↵er forms a high-pass filter. Depending on

the cut-o↵ frequency of the high-pass filter, the bu↵er can possibly filter out the desired

signal of interest. Another resistor, Rb, as shown in Fig. 2.7(b) is added to bias the

circuit and improve the input impedance of the bu↵er. Since the cut-o↵ frequency of the

high-pass filter is inversely proportional to the resistance value, Rb in order of several M⌦

is generally used. A typical frequency response of an ECM demonstrates high pass cut-o↵

frequency of more than 100 ⌦ as shown in Fig. 2.8. While the ECMs provide certain

advantages, their usable bandwidth imposes challenge on recording all the characteristics

of the pulse sounds using the wearable sensor. The larger diameter and the height of the

microphones also places certain constraints on the form factor of the wearable device.

2.3.1.3 MEMS microphone

The consumer demand for miniaturisation of portable devices such as smartphones, tape

recorders, radio, tablets, and IoT devices required the microphones to be smaller in

size, cost-e↵ective while maintaining the low noise levels and high performance for a

wide range of temperature and humidity conditions. With the advent of high precision
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Figure 2.8: Frequency response curve of an ECM (CMC-5044PF, CUI Inc.) with sensitivity at
a baseline of -44 dB [101].

silicon photolithography and etching process technologies, the MEMS structures with

dimensions in order of microns were made possible. While the MEMS structures gained

their initial popularity through automotive accelerometers for airbag deployment, they

were later commercialised for acoustic applications [95]. Silicon micromachining has been

used to fabricate MEMS microphones with di↵erent transduction principles including

the piezoelectric, the piezoresistive and the capacitive phenomenon. The design and

fabrication of MEMS microphones using the capacitive approach is most popular because

of its advantages in terms of low cost, high sensitivity, high SNR and stable performance.

The capacitive MEMS technology o↵ers excellent acoustic characteristics with very

small form factors. This is achieved through a fabrication process which involves creat-

ing a moveable membrane and a fixed backplate over a cavity in the base silicon wafer.

While the perforations in the fixed backplate allows air to flow easily through it, the

moveable membrane flexes in response to the change in surrounding air pressure caused

by the sound waves. These movements change the capacitance between the backplate

and the membrane, which can be sensed by an application specific integrated circuit

(ASIC) to convert the vibro-acoustic e↵ects in an electrical signal. While the MEMS

microphones are manufactured in di↵erent packages and output format depending on

the particular application, the port location (or sound hole) are kept either on the top or

the bottom as shown in Fig. 2.9(a). The top-port microphones have the sound hole in

the lid and are used in applications where the traditional placement of the microphone

is required. The bottom-port microphones receive the sound waves through a hole in the
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(a) (b)

Figure 2.9: (a) MEMS microphone with transducer, ASIC and wire bonding. Top package has
sound port on top (in lid) and bottom package has sound port on bottom (in PCB
substrate) [103]. (b) Cross-sectional schematic view of a MEMS microphone with
the sound port in the PCB substrate [104].

PCB substrate and are generally used in products with small-factors and components

placed on opposite side of the acoustic port [102]. A 3-D model of a bottom-port MEMS

microphone wire-bonded with the ASIC in a metal package is shown in Fig. 2.9(b).

Although the ECMs are still widely used in different applications, the MEMS micro-

phones offer several advantages over them. They are as follows:

1. The silicon photolithography in the fabrication of the MEMS microphone provide

excellent reproducibility as compared to ECM [95].

2. The integration of ASIC with the transducer in the MEMS package allows to read

very small changes in the capacitance precisely. Since the ASIC realises complex

circuits such as an analogue-to-digital converter (ADC), filter, buffer, etc. at the

chip-level, its inclusion reduces the PCB area and cost of the overall system and

provides better immunity from noise, power supply variation and electromagnetic

interference.

3. The implementation of very low-noise electronic circuitry in the MEMS microphone

generates a relatively lower output impedance as compared to ECM. This results

in a better frequency response of the microphone as shown in Fig. 2.10.

4. MEMS microphones are surface mounted devices and can be easily integrated with

other components on the PCB using an automatic pick and place process.

5. MEMS microphones are designed to provide very stable performance in extreme
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conditions of humidity, mechanical shock and vibration, power supply noise, etc.

These microphones can also operate over a wide temperature range [102].

6. While the polarisation of the electret layer in ECMs can demand high voltages, the

silicon-based diaphragms in MEMS microphones operate at lower voltages. In fact,

the majority of the MEMS microphones can operate at a voltage supply provided

by a small battery.

7. Unlike ECM, the sensitivity of the MEMS microphone does not degrade with the

reflow solder temperatures. The sensitivity curve also maintains a stable profile

over time.

8. The grounded metal packaging of the MEMS microphone (Faraday cage) provide

better electrical shielding and mechanical protection to the transducer from external

shock and vibrations.
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Figure 2.10: Frequency response of a capacitive MEMS microphone (INMP411, Invensense
Inc.) [105].

2.3.1.4 Summary

Following the detailed discussion on the types of acoustic sensors, it can be concluded

that MEMS microphones o↵er certain advantages over contact microphone and ECM.

For the design and development of the wearable device to sense the pulse sounds at

the wrist, MEMS technology provides microphones with very small-factors resulting in
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a smaller size of the device. The lower operating voltage allow the use of a small-sized

battery, therefore, reducing the burden on the size of the overall system. A better and

stable frequency response also ensure an accurate characterisation of the acoustic signal.

Finally, a better performance in rejecting the interference from mechanical vibrations and

external electrical noise further strengthens the choice of using the MEMS microphone

in the design to sense the acoustic signal at the wrist. Therefore, the MEMS microphone

has been used in the wearable device proposed for this work.

2.3.2 Power supply

The design approach for a wearable device as illustrated in Fig. 2.5 includes a minia-

turised sensor which records the desired signal of interest from a body location and

transmits the data to a nearby base station (such as a smartphone) to extract meaning-

ful diagnostic parameters by employing sophisticated signal processing methods. While

the biomedical monitoring devices are gaining huge attention in the market, factors such

as reducing the size and weight of the device as well as operation over a long time are

being continuously in demand from the consumers. One of the key considerations in the

wearable design is the battery size which directly a↵ects the size, weight and portability

of the device. E�cient and reliable functioning of di↵erent components such as sensors,

microcontrollers and other electronic components in the wearable design also depends on

the power supply of the system. The current drawn by these components and the in-

tended usage time plays a major role in governing the physical size of the battery. While

a higher number of sensors are being integrated into a single device to monitor multiple

physiological parameters, the power levels are falling short to sustain the higher power

demand. This causes frustration among the users as a frequent recharge of batteries is

often needed. Therefore, a wearable design should not only consider the physical size and

capacity of the battery but it should also incorporate a maximum operation time of the

device for widespread usage. Since the power is consumed at di↵erent nodes of the de-

sign, a proper choice of sensors, electronic components, wireless transmission, etc. plays

a vital role in deciding the power draw and the operation time of the battery. Hence, the

power requirements at every node of the design should be considered to maximise the

operational lifetime of the wearable device.

There are di↵erent types of batteries available in the market for various applications.

For smaller devices, the batteries mainly fall in one of the three categories: cylindrical

cell, pouch cell and coin (or button) cell. While every type of battery cell may involve

di↵erent chemical compositions, the chemistry of cylindrical cell is usually based on al-

kaline, nickel-metal-hydride or nickel-cadmium. Although these cells provide large power

outputs, they are usually ideal for applications where size and space is not a constraint.

The pouch cell batteries adopt lithium-polymer as the chemical composition and come in

pouch shape with compact designs and smaller weights. They are widely used in mobile
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devices where tight constraints on the height of the battery are placed. These batteries

o↵er generous design flexibility as they can be manufactured in several form-factors and

customised sizes. A major risk associated with the pouch cells is that they can overheat

and puncture, if not handled carefully. Therefore, they can be dangerous to use and re-

quire great care during the operation. The pouch cell batteries are not user-replaceable

and need a charging mechanism built into the device itself. This imposes additional con-

straints on the size of the device as more electronic circuitry for charging the battery is

required. While the lithium-polymer batteries o↵er greatest design flexibility for wear-

able devices, the coin cell batteries are ideal for low power wearables as they are compact,

user-replaceable and does not require any additional charging port in the design. The

chemistry of these cells includes lithium, alkaline, silver oxide and zinc-air. Unlike pouch

cells, the devices powered with coin cell batteries are safe to use and can be made wa-

terproof. These batteries are relatively inexpensive, but require a holder to hold them in

the device. A major drawback with the coin cell batteries is their low charge capacity

restricting their use in applications where a low power draw is required.

Generally, the larger the size of the battery, the higher the power drive it can provide

and vice-versa. For the wearable device to sense the pulse sounds at the wrist, it is

important to consider this tradeo↵ between the size and the charge capacity of the battery

to monitor the cardiac activity over a longer period of time. While the cylindrical cells

provide higher power output, their larger size makes them unsuitable for the wearable

design. Since the wearable device would be worn by the patient at the wrist, it might

involve exposure to the moisture and require replacement of the battery. The safety issues

and the charging circuit associated with the pouch cells does not make them feasible for

the wearable design. Also, a customised pouch cell would require separate certification

which might introduce higher costs in the design. Due to these reasons, the coin cell

batteries prove to be the best choice for the power supply. The coin cells are available in

many variants based on size, weight, charge capacity, supply voltage and supply current.

The following sections discuss some important specifications of the coin-cell batteries to

understand the design tradeo↵s and achieve a longer operational lifetime by choosing the

correct power supply in the wearable design.

2.3.2.1 Battery size

The device size forms the most important factor in allowing the users to integrate such

devices in their daily lives for vital sign monitoring. While a device typically consists of

several electronic components including the sensors and signal conditioning and trans-

mission circuitry, the invention of silicon fabrication technologies has allowed significant

miniaturisation of these components. These electronic parts are readily available in

surface-mount packages and consume very less PCB area in comparison to the battery

size. Therefore, the size of the battery dominates the PCB area and will eventually
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decide the form-factor of the wearable device. The coin-cell batteries are packaged in

circular shape with di↵erent dimensions of diameter and height. The sizes of some com-

monly used non-rechargeable (primary) and rechargeable (secondary) coin-cell batteries

in wearable designs are provided in Table 2.1. These batteries were primarily chosen as

they cover a di↵erent spectrum of available sizes. Although the batteries with larger sizes

are also available, they are not listed here as they would not be feasible for a device to be

placed at the wrist. Only a few rechargeable Lithium batteries are listed here, mainly for

comparison purposes, as similar size variants are available in lithium-manganese-dioxide

chemistry with much higher energy densities. The rechargeable batteries with higher

densities are generally bigger and not suitable for the wearable application here. The

table also lists other parameters that are critical to the wireless design.

Table 2.1: Specifications for commonly used non-rechargeable (primary) and rechargeable (sec-
ondary) batteries with varying physical sizes that can be used in di↵erent wearable
applications [106], [107].

Battery Chemical Nominal Nominal
Operating

Weight
name composition voltage capacity

current (max) Size

Cont. Pulse Dia. Height

CR1220 LiMnO2 3.0 V 35 mAH 2 mA 5 mA 12.5 mm 2.0 mm 0.8 g

CR1620 LiMnO2 3.0 V 70 mAH 3 mA 8 mA 16.0 mm 2.0 mm 1.5 g

CR2032 LiMnO2 3.0 V 210 mAH 5 mA 20 mA 20.0 mm 3.2 mm 3.0 g

CR2430 LiMnO2 3.0 V 270 mAH 6 mA 21 mA 24.5 mm 3.0 mm 4.0 g

CR2477 LiMnO2 3.0 V 1000 mAH 3 mA 15 mA 24.5 mm 7.7 mm 8.3 g

LiR1620 LiCoO2 3.7 V 16 mAH 20 mA 32 mA 16.0 mm 2.0 mm 1.1 g

LiR2032 LiCoO2 3.7 V 40 mAH 40 mA 80 mA 20.0 mm 3.2 mm 2.7 g

LiR2450 LiCoO2 3.7 V 120 mAH 120 mA 240 mA 24.5 mm 5.0 mm 5.6 g

2.3.2.2 Supply voltage

Batteries, like other electronic components, are not ideal and carry small internal (leak-

age) resistance. Therefore, the full electric potential of the battery is not available to the

connected load. A higher current draw from the battery will incur more loss across the

internal resistance thereby causing a reduction in the supply voltage. Since all the other

components in the electronic circuit function at a specific voltage, the supply voltage

must meet such a requirement. Although electronic parts with di↵erent operating volt-

ages can be used in the design, the use of boost-up or boost-down circuits to level up or

level down the supply voltage levels can significantly increase the hardware overhead in

the design. Such circuits also draw current for their operation, therefore, adding further

constraints on the power budget of the system. Hence, it is advisable to use components

with same operating voltages without trading o↵ the quality of signal acquisition. Since

a majority of the MEMS microphones and microcontrollers (with Bluetooth low-energy
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functionality) available in the market operate in a voltage range of 1.5 - 3.6 V and 1.7 -

3.6 V respectively, the primary coin-cell battery proves to be an excellent choice for the

power supply of the wearable design.

2.3.2.3 Supply current

The battery manufacturers provide two current specifications: maximum continuous cur-

rent (Icont) and maximum pulse current (Ipulse). While Icont defines the maximum average

current that can be drawn from the battery for continual usage, Ipulse is the maximum

current that the battery can provide for very short bursts of time. It is intuitive to as-

sume that a battery with a capacity of 210 mAH can supply a current of 210 mA for one

hour of operation, or it can drive 1 mA of current for 210 hours. Due to the limitation

of Icont, this assumption is not true in practice. The battery capacity reduces rapidly

with an increase in the discharge current. Therefore, the average current drawn from the

battery for a particular application must be smaller than Icont for the battery to function

at its e↵ective capacity.

Since most of the wearable devices incorporate wireless functionality, the transmission

of data packets over the wireless channel requires a higher current draw over short periods.

The choice of battery, therefore, must ensure that the maximum current demanded by

the wearable device at any point of time does not exceed the Ipulse value. The variation of

current in such applications can cause a significant ripple in the supply voltage because

of variable drop across the internal resistance of the battery. Such voltage variations

must not hinder the functionality of the electronic components and a constant supply

voltage must be ensured by the battery. In cases where a single battery cannot cope up

with such demands, multiple batteries can be connected to guarantee a regulated power

supply. However, this would require few diodes to prevent any undesired charging of the

battery and impose more constraints on the device size.

The current Ipulse defines the maximum pulse current and its value decreases expo-

nentially with the pulse hold time [108]. The higher the pulse hold time, the lower the

value of the maximum pulse current that is available to the circuit. Therefore, the bat-

tery choice should be compatible with the choice of the transceiver block to ensure the

capability of the battery to provide maximum pulse current for the desired pulse hold

time. In Table 2.1, we can observe that the secondary batteries o↵er higher values of

Icont and Ipulse than the primary batteries, but they often discharge too quickly limiting

the operational lifetime of the battery. Hence, a tradeo↵ between the discharge current

and the operational lifetime of the battery also exists.

2.3.2.4 Battery capacity and life

The capacity of the battery is another critical parameter to predict the operational life-

time for its usage. This is particularly important in applications where long term phys-
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iological monitoring is desired as an intermediate power failure can miss signal events

important for diagnosis. The nominal capacity of the battery is defined as the total

ampere-hours available when the battery is discharged at a certain discharge current

(also known as C-rate) from a fully charged state to its cut-o↵ voltage. It is calculated

by multiplying the discharge current (in Amps) with the discharge time (in hours). The

nominal capacity does not remain constant and varies with respect to the discharge cur-

rent. This varying capacity as a function of the discharge current is also known as the

e↵ective capacity of the battery. Since the current consumption of the device is generally

higher than the maximum average current supplied by the battery, for at least short

periods, the e↵ective capacity is smaller than the nominal capacity of the battery.

The e↵ective capacity of the battery plays an important role in determining the opera-

tional lifetime of the battery. The selection of a battery for the wearable design not only

depends on its size and supply voltage, but it must also meet the average and maximum

current requirements of the device so that the e↵ective capacity of the battery does not

deviate much from its nominal capacity. A close resemblance would allow the battery

to function for a longer time as its lifetime varies inversely with the average current

consumption of the device [108].

2.3.2.5 Battery choice

The wearable device proposed in this thesis is designed to record pulse sounds from the

adult population. A proper attachment of the device requires the battery to fit on one

side of the wrist. Another requirement is that the entire battery can be contained in the

middle part of the wrist as a placement on the curved contour can result in discomfort

for the user. The wrist circumference in the adult population varies between 120 and 220

mm [109], [110]. Hence, a battery with a diameter of less than 25 mm can easily fit an

individual with minimum wrist circumference. For end-users, it is also important that

the weight of the overall device remains less than 10 g to allow a prolonged usage. While

the surface mount components and PCB substrate add up to the weight, the battery

contributes maximum to the overall weight of the device. A battery with less than 5 g

of weight should be ideal for such a wearable design.

Since the battery life depends on the current consumption of the device, a battery with

higher capacity provides a higher current drive and better operation time. Although the

supply voltage and operating current depend on the electronic circuitry of the wearable

design, the tradeo↵ between di↵erent battery parameters discussed above can be analysed

to finalise the choice of the battery. As an illustration, the CR2032 and CR2430 coin-cell

batteries in Table 2.1 seem to be better choices for the design of acoustic wearable device

because of their low size and weight, and better nominal capacity. The secondary coin-

cell batteries such as LiR2032 and LiR2450 can also be used in applications requiring

higher operating currents. These batteries are cost-e↵ective as they allow recharging for
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a few hundreds of cycles. However, they are quite limited in their nominal capacity and

would run out quickly.

2.3.3 Data acquisition hardware

Referring to Fig. 2.5, the data acquisition hardware is responsible to collect the physiolog-

ical signal from the sensor node and apply signal conditioning for better data packaging

and transmission to the nearby base station. The MEMS microphones provide di↵erent

output formats from the perspective of electronic interfacing. The ASIC in the micro-

phone package can contain the required circuitry to produce analogue or digital outputs.

The digital (or pulse density modulated) microphones already incorporate an ADC into

the package to accept an external clock and return the sampled data at the supplied

clock frequency. While these microphones provide better noise immunity than their ana-

logue counterparts, they are usually power-ine�cient and consume power in the order of

500 µA to 2 mA. Hence, they mostly find their applications in smartphones, cameras,

laptops, etc. where a higher power budget is available. Since the power budget of the

system directly a↵ects the size of the battery, the analogue MEMS microphones prove

to be a better choice. These microphones only consume power in the order of 15 µA

to 500 µA. The availability of sophisticated microcontrollers with high power-e�ciency,

and integrated ADC and BLE blocks provide a high degree of freedom when using the

analogue microphones in the wearable design.

The ASIC circuitry in the analogue microphones produces an AC (alternating current)

signal superimposed on a DC (direct current) bias voltage corresponding to the sound

waves. Since the vibrations produced by the pulse sounds are generally weak in strength,

these AC ripples are smaller in amplitude. The microphone output can also contain fre-

quencies in larger bandwidth as compared to the frequency content of the pulse sounds.

Therefore, it is important to design an analogue front end which can filter out the un-

desired frequencies, and amplify the acoustic signal to match the amplitude range of the

microphone output with the dynamic range of the ADC for maximum resolution. As an

illustration, the circuit in Fig. 2.11(a) presents a simple analogue front end to filter and

amplify the microphone output. Since the microphone output is usually biased at 0.7-0.8

V, the high pass filter formed by the capacitor C1 and resistor R1 completely blocks the

DC signal. The high pass filter is followed by an inverting amplifier which amplifies the

weak pulse sounds to match the ADC range. Since the microphone bandwidth is much

larger than the desired frequency content (heart sounds < 150 Hz), the analogue front

end also incorporate a simple first-order passive RC low pass filter to restrict the signal

bandwidth. The use of a low pass filter also avoids any anti-aliasing introduced due to the

sampling at the ADC stage. The aliasing caused by the sampling reflects all the frequen-

cies that are higher than the Nyquist frequency (i.e. half of the sampling frequency) back

into the signal. This must be avoided for an accurate characterisation of the signal. The
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Figure 2.11: Analogue front end designs for data acquisition from the microphone. (a) The first
design includes a high pass filter followed by an inverting amplifier and first-order
passive RC low pass filter. (b) The second design includes a high pass filter followed
by a non-inverting amplifier and a second-order active low pass filter.

second design of the analogue front end in Fig. 2.11(b) uses a non-inverting configuration

for the amplification of the signal. A second-order active low pass filter is used instead

of a simple RC filter to attenuate the higher frequencies with a steeper roll-o↵. This

design also provides a relatively lower output impedance to the ADC allowing a better

signal conversion, however, an extra operational amplifier might cause some hardware

overhead. The values of the electronic components including the resistors and capacitors

are chosen depending on the specifications of the wearable design.

In summary, the analogue front end in the wearable design conditions the acoustic

signal for its e↵ective conversion from the analogue to the digital domain at the ADC

stage. Since it is crucial to avoid the anti-aliasing of the signal during conversion, a

tradeo↵ between the filter order and the sampling frequency must be studied. For a simple

first-order passive RC low pass filter, the frequency response after the cut-o↵ frequency

decreases at a slope of -20 dB/decade. This means that the gain corresponding to the

higher frequencies attenuates at a slower rate. While the RC filter can be implemented

in a very small PCB area, a higher ADC sampling frequency is required to avoid any

aliasing caused by the frequencies beyond the cut-o↵ frequency of the low pass filter. A

higher sampling frequency would produce more data samples that need to be bundled
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in data packets to be sent at the data transmission stage. An increased amount of

data transmission would consume more power and reduce the battery lifetime. Instead,

higher-order filters can be used in the wearable design at the cost of increased PCB area

to realise a steeper roll-o↵ in the frequency response of the filter. This would enable

a reduction in the sampling frequency and the number of data packet transmissions.

Therefore, the sampling frequency of the signal in combination with the filter order must

be decided to understand the ADC requirements.

In relation to the PCB area, the advancements in the chip fabrication technologies have

made it possible to integrate multiple signal channels with ADC and transceiver blocks

in a single surface mount package. While standalone ADCs and transceivers are also

available in the market, the integration of these blocks in SoCs (system-on-chip) reduces

the overall size of the device. The SoCs typically implement the successive approximation

register (SAR) or Sigma-Delta architecture of the ADCs. A successive approximation

converter uses an iterative comparison of the signal levels with di↵erent proportions of

the reference voltage to convert the signal into output bits. The sigma-delta converter, on

the other hand, makes use of oversampling the signal and applying digital filters to achieve

high conversion accuracy. Since the oversampling of data is undesirable, SAR ADCs are

usually preferred over Sigma-Delta ADCs in wearable applications. In comparison to

Sigma-Delta ADCs, the SAR ADCs also operate at a higher speed and require lower

conversion current [111]. After the acquisition and conversion of the data in the digital

domain, the data can be stored in SoC bu↵ers to eventually bundle them in specific frame

structures to be sent to the wireless transmitter.

2.4 Designing the wearable acoustic sensor

The last few sections discussed di↵erent constraints and tradeo↵s involved in every stage

of the wearable design presented in Fig. 2.5. Such an understanding can be utilised to

design a wearable hardware platform for sensing the pulse sounds at the wrist. Since

the wearable architecture involves sending the data to a nearby base station for signal

processing, the hardware platform consists of the microphone sensor, an analogue front

end, ADC and the transmitter block as shown in Fig. 2.12. The wearable device uses

a single-channel, ultra-low noise, omnidirectional MEMS microphone sensor (INMP411,

InvenSense Inc.) to sense the skin surface vibrations at the wrist. This microphone was

chosen because of its low size of 4.72 ⇥ 3.76 ⇥ 1.0 mm, high SNR of 62 dBA, a uniform

sensitivity of -46 dBV between 28 Hz and 20 kHz, and low power consumption of 210

uA at 3.3 V supply [105]. However, any microphone of similar size and specifications can

be used to design the acoustic sensor. The chosen microphone has a DC o↵set of 0.8 V,

however, all the proposed algorithms in the subsequent chapters of this thesis ensure the

o↵set removal by following the normalisation procedure. The sensor node is followed by

an analogue front end which blocks the DC bias of the microphone, amplifies the acoustic
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Figure 2.12: Hardware design flow (consisting of the microphone, an analogue front end and
nRF52 platform) for the acoustic wearable device to sense pulse sounds at the
wrist.

signal, and removes the undesirable frequency content from the signal to prevent anti-

aliasing at the ADC stage. Since any electronic noise entering the microphone is amplified

by the analogue front end, only electronic components with noise levels less than 10 dB

or more in comparison to the noise floor of the microphone are chosen for the wearable

design. The availability of multiple operational amplifiers in a single surface mount

package is utilised in the design to implement an amplifier and second-order low pass filter

without burdening the PCB area. The realisation of higher-order low pass filter allows the

use of a low sampling frequency in the ADC block, therefore, reducing the overall power

consumption of the device. The hardware platform uses the MCP6002 chip (Microchip

Technology Inc.) to implement the analogue front end of the wearable design. It operates

over a wide voltage range and consumes low supply current of 100 µA per amplifier.

The amplifier chip also provides a high power supply rejection ratio and common-mode

rejection ratio. The conditioned analogue signal is subsequently connected to a 12-bit

SAR ADC for its conversion to the digital domain. As discussed before, it is advisable to

use a single microcontroller chip which incorporates both the ADC and the transceiver

block in a single package to reduce the size constraints on the hardware. The wearable

design uses the nRF52 series SoC platform for signal conversion and transmission. The

data transmission is performed by utilising the Bluetooth low energy protocol available

on the SoC platform and using a 2.4 GHz chip antenna (Johanson Technology Inc.).

While the analogue front end consumes more PCB space in comparison to the nRF52

SoC package, it consumes less overall power as demonstrated in Table 2.2. The PCB space

can be further optimised by implementing the analogue front end in an ASIC, however,

it will involve high fabrication costs and is not suitable for hardware prototyping. Since

the sensor and the analogue front end operate at a duty cycle of 100%, a continuous

current of less than 0.5 mA is demanded from the battery. Depending on the sampling

frequency of the ADC and the clock of the wireless transmission, the battery has to

supply a maximum current of approximately 6.5 mA at any instance. Based on these

requirements, both the non-rechargeable (CR2032) and rechargeable (LiR2032) versions

of the 2032 battery size are suitable as the power source of the proposed wearable device.
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Table 2.2: Current consumption of different components of the hardware platform.

Block Name Component Name Peak Current

Sensor Microphone 0.210 mA

Analogue front end

Voltage regulator 0.006 mA

Amplifier 0.100 mA

Filter 0.100 mA

Reference voltage 0.027 mA

ADC 12-bit SAR ADC 0.700 mA

Wireless transmission nRF52 transmitter 5.300 mA

Total — 6.443 mA

From the design perspective, the selection of the surface mount components for ev-

ery node of the wearable architecture allows them to be soldered on a PCB. Since the

hardware contains a mixed-signal design, the analogue and digital blocks are layout in

different regions of the PCB to minimise the noise interference. Also, middle layers of

the 4-layer PCB are completely grounded to ensure proper grounding of the circuit. The

hardware platform is implemented in two different PCBs that are connected through a

thin and flexible insulated cable. The first PCB only contains the battery and is placed

on the wrist side opposite to the radial artery. The microphone along with the analogue

front end and the nRF52 platform are soldered on the second PCB. This PCB is attached

to the radial artery to record the pulse sounds. The PCB is enclosed in a rectangular

enclosure as shown in Fig. 2.13. The overall weight of the final wireless prototype is 8

g, although note that this can be further optimised by using more sophisticated manu-

facturing processes. In addition, its size (27 × 20 mm) and shape are designed so that

it can be easily attached to the wrist using a 3M double-sided medical adhesive tape to

keep the sensor affix to the measuring site, for long-term usage.

Figure 2.13: Wearable device used to acquire acoustic signals. The device consists of a MEMS
microphone sensor integrated with Bluetooth low energy transmission.

108



References

[1] R. Berne and M. Levy, “Cardiovascular Physiology 4th Edn, Mosby,” St. Louis, 1981.

[2] S. Walsh and E. King, Pulse Diagnosis E-Book: A Clinical Guide. Elsevier Health Sciences, 2007.

[3] M. F. O’Rourke, “The arterial pulse in health and disease,” American Heart Journal, vol. 82,

no. 5, pp. 687 – 702, 1971. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

0002870371903401

[4] F. N. Van de Vosse and N. Stergiopulos, “Pulse wave propagation in the arterial tree,” Annual

Review of Fluid Mechanics, vol. 43, pp. 467–499, 2011.

[5] B. B. Hamrell, Cardiovascular Physiology. Boca Raton: CRC Press, 2018.

[6] A. C. Guyton and J. E. Hall, “Textbook of medical physiology 11th ed,” Elsiever Saunders, pp.

788–817, 2006.

[7] J. Stettler, P. Niederer, and M. Anliker, “Nonlinear mathematical models of the arterial system:

e↵ects of bifurcations, wall viscoelasticity, stenoses, and counterpulsation on pressure and flow

pulses,” Handbook of Bioengineering eds. R. Skalak and S. Chien, pp. 17–1, 1987.

[8] Features of the Pulse Waveform. [Online]. Available: http://www.uhsmed.com/bp-management/

features-of-the-pulse-waveform.php

[9] G. Lowe, A. Lee, A. Rumley, J. Price, and F. Fowkes, “Blood viscosity and risk of cardiovascular

events: the Edinburgh Artery Study,” British journal of haematology, vol. 96, no. 1, pp. 168–173,

1997.

[10] S. R. Grabowski and G. J. Tortora, Principles of anatomy and physiology. Wiley, 2000.

[11] Case courtesy of Dr Craig Hacking, rID: 70474. [Online]. Available: https://radiopaedia.org/

[12] A. Blitz, R. M. Osterday, and R. F. Brodman, “Harvesting the radial artery,” Annals of

Cardiothoracic Surgery, vol. 2, no. 4, 2013. [Online]. Available: http://www.annalscts.com/article/

view/2418

[13] C.-H. Chen, E. Nevo, B. Fetics, P. H. Pak, F. C. Yin, W. L. Maughan, and D. A. Kass, “Estimation

of central aortic pressure waveform by mathematical transformation of radial tonometry pressure:

validation of generalized transfer function,” Circulation, vol. 95, no. 7, pp. 1827–1836, 1997.

[14] S. Standring, Gray’s anatomy e-book: the anatomical basis of clinical practice. Elsevier Health

Sciences, 2015.

[15] K. L. Moore, A. F. Dalley, and A. M. Agur, Clinically oriented anatomy. Lippincott Williams &

Wilkins, 2013.

[16] R. J. Hankinson, The Cambridge Companion to Galen. Cambridge University Press, 2008.

[17] W. Harvey et al., “Exercitatio anatomica de motu cordis et sanguinis in animalibus,” Frankfurt am

Main, vol. 1628, 1928.

[18] E.-J. Marey, Recherches sur le pouls au moyen d’un nouvel appareil enregistreur le sphygmographie...

E. Thunot et cie, 1860.

[19] F. Mohamed, “The physiology and clinical use of the sphygmograph,” Med Times Gazette, vol. 1,

p. 62, 1872.

[20] K. H. Parker, “A brief history of arterial wave mechanics,” Medical & biological engineering &

computing, vol. 47, no. 2, pp. 111–118, 2009.

[21] C. T. Lee and L. Y. Wei, “Spectrum analysis of human pulse,” IEEE Transactions on Biomedical

Engineering, no. 6, pp. 348–352, 1983.

109



[22] S. C. Mukhopadhyay, “Wearable sensors for human activity monitoring: A review,” IEEE Sensors

Journal, vol. 15, no. 3, pp. 1321–1330, 2015.

[23] Q. Zhang, D. Zhou, and X. Zeng, “A novel machine learning-enabled framework for instanta-

neous heart rate monitoring from motion-artifact-corrupted electrocardiogram signals,” Physiolog-

ical measurement, vol. 37, no. 11, p. 1945, 2016.

[24] Q. Zhang, D. Zhou, and X. Zeng, “A novel framework for motion-tolerant instantaneous heart rate

estimation by phase-domain multiview dynamic time warping,” IEEE Transactions on Biomedical

Engineering, vol. 64, no. 11, pp. 2562–2574, 2016.

[25] S. M. Salehizadeh, Y. Noh, and K. H. Chon, “Heart rate monitoring during intense physical activi-

ties using a motion artifact corrupted signal reconstruction algorithm in wearable electrocardiogram

sensor,” in 2016 IEEE First International Conference on Connected Health: Applications, Systems

and Engineering Technologies (CHASE). IEEE, 2016, pp. 157–162.

[26] Q. Zhang, D. Zhou, and X. Zeng, “A novel single-arm-worn 24 h heart disease monitor empowered

by machine intelligence,” Biomedical Signal Processing and Control, vol. 42, pp. 129–133, 2018.

[27] Q. Zhang, D. Zhou, and X. Zeng, “Highly wearable cu↵-less blood pressure and heart rate monitor-

ing with single-arm electrocardiogram and photoplethysmogram signals,” Biomedical engineering

online, vol. 16, no. 1, p. 23, 2017.

[28] S. S. Thomas, V. Nathan, C. Zong, K. Soundarapandian, X. Shi, and R. Jafari, “Biowatch: A

noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture

and subject variability,” IEEE journal of biomedical and health informatics, vol. 20, no. 5, pp.

1291–1300, 2015.

[29] S. Krachunov, C. Beach, A. J. Casson, J. Pope, X. Fafoutis, R. J. Piechocki, and I. Craddock,

“Energy e�cient heart rate sensing using a painted electrode ECG wearable,” in 2017 Global

Internet of Things Summit (GIoTS). IEEE, 2017, pp. 1–6.

[30] S. E. Stahl, H.-S. An, D. M. Dinkel, J. M. Noble, and J.-M. Lee, “How accurate are the wrist-based

heart rate monitors during walking and running activities? Are they accurate enough?” BMJ open

sport & exercise medicine, vol. 2, no. 1, p. e000106, 2016.

[31] L. Cadmus-Bertram, R. Gangnon, E. J. Wirkus, K. M. Thraen-Borowski, and J. Gorzelitz-

Liebhauser, “The accuracy of heart rate monitoring by some wrist-worn activity trackers,” Annals

of internal medicine, vol. 166, no. 8, pp. 610–612, 2017.

[32] E. Jo, K. Lewis, D. Directo, M. J. Kim, and B. A. Dolezal, “Validation of biofeedback wearables for

photoplethysmographic heart rate tracking,” Journal of sports science & medicine, vol. 15, no. 3,

p. 540, 2016.

[33] R. Metz, “The struggle for accurate measurements on your wrist,” 2015.

[34] D. Biswas, N. Simues-Capela, C. Van Hoof, and N. Van Helleputte, “Heart Rate Estimation From

Wrist-Worn Photoplethysmography: A Review,” IEEE Sensors Journal, 2019.

[35] M. B. Mashhadi, E. Asadi, M. Eskandari, S. Kiani, and F. Marvasti, “Heart rate tracking us-

ing wrist-type photoplethysmographic (PPG) signals during physical exercise with simultaneous

accelerometry,” IEEE Signal Processing Letters, vol. 23, no. 2, pp. 227–231, 2015.

[36] M. R. Ram, K. V. Madhav, E. H. Krishna, N. R. Komalla, and K. A. Reddy, “A novel approach

for motion artifact reduction in PPG signals based on AS-LMS adaptive filter,” IEEE Transactions

on Instrumentation and Measurement, vol. 61, no. 5, pp. 1445–1457, 2011.

[37] H. Han and J. Kim, “Artifacts in wearable photoplethysmographs during daily life motions and

their reduction with least mean square based active noise cancellation method,” Computers in

biology and medicine, vol. 42, no. 4, pp. 387–393, 2012.

110



[38] K. Chan and Y. Zhang, “Adaptive reduction of motion artifact from photoplethysmographic record-

ings using a variable step-size LMS filter,” in SENSORS, 2002 IEEE, vol. 2. IEEE, 2002, pp.

1343–1346.

[39] A. Temko, “Accurate heart rate monitoring during physical exercises using PPG,” IEEE Transac-

tions on Biomedical Engineering, vol. 64, no. 9, pp. 2016–2024, 2017.

[40] B. Lee, J. Han, H. J. Baek, J. H. Shin, K. S. Park, and W. J. Yi, “Improved elimination of

motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous

accelerometry,” Physiological measurement, vol. 31, no. 12, p. 1585, 2010.

[41] B. S. Kim and S. K. Yoo, “Motion artifact reduction in photoplethysmography using independent

component analysis,” IEEE transactions on biomedical engineering, vol. 53, no. 3, pp. 566–568,

2006.

[42] J. Yao and S. Warren, “A short study to assess the potential of independent component analysis

for motion artifact separation in wearable pulse oximeter signals,” in 2005 IEEE Engineering in

Medicine and Biology 27th Annual Conference. IEEE, 2006, pp. 3585–3588.

[43] R. Krishnan, B. Natarajan, and S. Warren, “Two-stage approach for detection and reduction of

motion artifacts in photoplethysmographic data,” IEEE transactions on biomedical engineering,

vol. 57, no. 8, pp. 1867–1876, 2010.

[44] E. Khan, F. Al Hossain, S. Z. Uddin, S. K. Alam, and M. K. Hasan, “A robust heart rate moni-

toring scheme using photoplethysmographic signals corrupted by intense motion artifacts,” IEEE

Transactions on Biomedical engineering, vol. 63, no. 3, pp. 550–562, 2015.

[45] X. Sun, P. Yang, Y. Li, Z. Gao, and Y.-T. Zhang, “Robust heart beat detection from photoplethys-

mography interlaced with motion artifacts based on empirical mode decomposition,” in Proceedings

of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics. IEEE, 2012,

pp. 775–778.

[46] E. Grisan, G. Cantisani, G. Tarroni, S. K. Yoon, and M. Rossi, “A supervised learning approach for

the robust detection of heart beat in plethysmographic data,” in 2015 37th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015, pp.

5825–5828.

[47] Z. Zhang, Z. Pi, and B. Liu, “Troika: A general framework for heart rate monitoring using wrist-

type photoplethysmographic signals during intensive physical exercise,” IEEE Transactions on

Biomedical Engineering, vol. 62, no. 2, pp. 522–531, 2015.

[48] Z. Zhang, “Photoplethysmography-based heart rate monitoring in physical activities via joint sparse

spectrum reconstruction,” IEEE transactions on biomedical engineering, vol. 62, no. 8, pp. 1902–

1910, 2015.

[49] M. T. Islam, I. Zabir, S. T. Ahamed, M. T. Yasar, C. Shahnaz, and S. A. Fattah, “A time-frequency

domain approach of heart rate estimation from photoplethysmographic (PPG) signal,” Biomedical

Signal Processing and Control, vol. 36, pp. 146–154, 2017.

[50] Y. Zhang, B. Liu, and Z. Zhang, “Combining ensemble empirical mode decomposition with spec-

trum subtraction technique for heart rate monitoring using wrist-type photoplethysmography,”

Biomedical Signal Processing and Control, vol. 21, pp. 119–125, 2015.

[51] S. Chowdhury, R. Hyder, M. S. Hafiz, and M. A. Haque, “Real time robust heart rate estimation

from wrist-type PPG signals using multiple reference adaptive noise cancellation,” IEEE journal

of biomedical and health informatics, 2016.

[52] J. Xiong, L. Cai, F. Wang, and X. He, “Svm-based spectral analysis for heart rate from multi-

channel WPPG sensor signals,” Sensors, vol. 17, no. 3, p. 506, 2017.

111



[53] D. Jarchi and A. J. Casson, “Towards photoplethysmography-based estimation of instantaneous

heart rate during physical activity,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 9,

pp. 2042–2053, 2017.

[54] L. Yang, M. Liu, L. Dong, Y. Zhao, and X. Liu, “Motion-compensated non-contact detection of

heart rate,” Optics Communications, vol. 357, pp. 161–168, 2015.

[55] C. Zhou, J. Feng, J. Hu, and X. Ye, “Study of artifact-resistive technology based on a novel

dual photoplethysmography method for wearable pulse rate monitors,” Journal of medical systems,

vol. 40, no. 3, p. 56, 2016.

[56] M. Kos and I. Kramberger, “A wearable device and system for movement and biometric data

acquisition for sports applications,” IEEE Access, vol. 5, pp. 6411–6420, 2017.

[57] K. Malhi, S. C. Mukhopadhyay, J. Schnepper, M. Haefke, and H. Ewald, “A zigbee-based wearable

physiological parameters monitoring system,” IEEE sensors journal, vol. 12, no. 3, pp. 423–430,

2012.

[58] B.-G. Lee, B.-L. Lee, and W.-Y. Chung, “Smartwatch-based driver alertness monitoring with wear-

able motion and physiological sensor,” in 2015 37th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC). IEEE, 2015, pp. 6126–6129.
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3 Characterising the pulse sounds for

continuous heart rate monitoring

The work presented within this chapter is an edited version of research previously pub-

lished in:

P. Sharma, S. A. Imtiaz and E. Rodriguez-Villegas, “Acoustic Sensing as a

Novel Wearable Approach for Cardiac Monitoring at the Wrist,” Scientific Re-

ports, vol. 9, no. 1, pp. 1–13, 2019.

3.1 Introduction

The sensing method proposed in this thesis works on the principle that the periodic blood

flow in the radial artery causes rhythmic variations in the arterial diameter which pro-

duces corresponding vibrations at the skin surface. These vibrations introduce changes

in the surrounding air pressure which can be transferred to the diaphragm of the MEMS

microphone sensor embedded into the proposed wearable device. The conversion of pulse

vibrations into the acoustic signal can provide vital information about the cardiac activ-

ity and can be used to monitor cardiac parameters such as heart rate on a continuous

basis. Therefore, it is important to characterise the acoustic signal to establish its corre-

lation with the cardiac activity. The following sections discuss the temporal and spectral

characteristics of the acoustic signal to find the signal bandwidth and the optimal sensor

site for better signal-to-noise ratio (SNR). The e↵ect of internal and external noise on

the signal characteristics have also been explored. Finally, a novel algorithm to monitor

the heart rate based on acoustic sensing of the radial artery is presented.

3.2 Characteristics of pulse sounds

The acoustic signal is recorded by attaching the proposed wearable device to the radial

artery using a double-sided medical adhesive tape. Since the characteristics of the pulse

sounds have not been reported before in the literature, the device incorporates a wider

bandwidth initially to avoid losing any information about the pulse sounds. The high-

pass filter and the low-pass filter in Fig. 2.12 are designed to have cut-o↵ frequencies of

6 Hz and 500 Hz respectively. A higher bandwidth is chosen to include the frequencies

corresponding to the heart sounds. To avoid any aliasing in the signal, a sampling

116



frequency of 2100 Hz (around 4 times of the bandwidth) is adopted at the ADC stage

to convert the data into digital domain with 12-bit resolution. The acoustic signal is

bundled into several data packets and is wirelessly transmitted to a smartphone.

3.2.1 Temporal characteristics

To study the temporal characteristics of the acoustic signal, the PPG signals from the

index finger are simultaneously recorded using a commercially available SOMNOscreen

pulse oximeter [1]. As an illustration, the acoustic signal and the PPG signal recorded

from a subject are plotted together in Fig. 3.1 by removing any time delay between

the onset of pulse at wrist and finger to synchronise the corresponding peaks. It can

be observed that the morphology of the PPG signal looks quite similar to the arterial

pressure waveform in Fig. 2.2. The discussion on the arterial pressure waveform in Sec-

tion 2.1.2.1 explained that the pressure wave propagating through the circulatory system

is essentially a superposition of a forward and a backward travelling wave. While the

systolic peak represents the maximum pressure exerted by the ejected wave on the ar-

terial walls, the diastolic peak is formed by the superposition of incoming and reflected

pressure waves. Therefore, the systolic and diastolic peak in the arterial pressure wave-

form formed the two essential components of the pressure (or pulse) wave. Since the

strength of these components from within the radial artery are directly correlated with

the amplitude of the skin surface vibrations, the pulse wave components are indirectly

sensed by the microphone to produce corresponding peaks in the acoustic signal. The

comparison of the acoustic signal with the PPG signal in Fig. 3.1 suggests that the first

and second acoustic peak matches the systolic and diastolic component of the pulse wave
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Figure 3.1: Temporal characteristics of the acoustic signal with respect to the PPG signal.
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respectively. The higher pressure corresponding to the systolic peak in the pulse wave

produces a peak of higher amplitude as compared to the diastolic peak. The presence

of intermediate ripples in the acoustic signal are caused, amongst others, by noise of the

measuring electronics, electromagnetic interference, and environmental noise.

The dominant peaks in the acoustic signal are termed as S1 and S2 sounds, for the

reasons explained in the next section. The temporal correlation with the PPG signal

indicates that the heartbeats can be continuously monitored by measuring the S1-S1

or S2-S2 inter-beat intervals as shown in Fig. 3.1. The amplitude of the S1 sounds

for healthy subjects are always found to be greater than the S2 sounds. It can also be

observed that the amplitude of the S1 and S2 sounds does not remain constant over the

recording duration and are possibly modulated by the strength of the pressure wave.

In other words, the amplitude of the acoustic signal for an individual varies with the

blood pressure. However, the arterial elasticity, blood parameters, and the depth and

surrounding anatomy of the radial artery also a↵ects the characteristics of the acoustic

signal. Since the temporal behaviour does not explain all the inherent features of the

acoustic signal, it is important to find its spectral characteristics as well.

3.2.2 Spectral characteristics

The acoustic signals recorded from di↵erent subjects does not necessarily have the same

polarity of signal oscillations. In Fig. 3.1, the S1 and S2 sounds transitioned from a

positive lobe to a negative lobe around the zero-crossing of the signal. On the contrary,

the acoustic signal in Fig. 3.2(I) transitions in an opposite direction from a negative lobe

to a positive lobe. In order to characterise the spectral features of the acoustic signal, the

PPG waveform is simultaneously plotted. As anticipated, a slight time delay between the

onset of the pulse at the radial artery and the index finger can be observed. This time

delay is a function of the pulse wave velocity and the arterial length, and is empirically

found to be nearly constant over the length of the recording. The synchronisation of the

acoustic and PPG pulse waveforms is achieved by overlapping the nearest systolic peaks

by removing the time delay, as shown in Fig. 3.2(II).

As discussed before, the pulse wave originating from the heart- as a result of the

opening and closing of the heart valves, propagate as a mechanical wave along the arterial

branches of the circulatory system. Although negligible, the heart sounds also transmit

an acoustic wave through the body [2]. Since these acoustic features are superimposed

on the vessel vibrations caused by the mechanical constriction and dilation of the radial

artery, a similar type of skin surface modulation is obtained. The PPG bandwidth of

less than 10 Hz [3] suggests that the PPG signal only measures the pressure waveform

and remain silent to the acoustic features of the pulse wave. The spectral analysis of the

acoustic signal, on the other hand, demonstrates that the pulse sounds also contain the

acoustic component of the pulse wave.
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Figure 3.2: Characterisation of the acoustic signal: (I) Pulse waveform recorded by placing
the miniaturised device on the middle position of the radial artery at wrist. (II)
Comparison of acoustic and PPG waveforms to synchronise both the signals by
matching the nearest systolic peaks. PPG data was recorded using SOMNOscreen
pulse oximeter [1]. (III) Joint time-frequency analysis of the acoustic signal obtained
using STFT. The colour intensity of the grids demonstrates their relative power.
(IV) Frequency response (FFT) of the acoustic signal.
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The frequency response of the acoustic signal, sampled at 2100 Hz, is obtained using

the Fast-Fourier transform (FFT). It can be observed that the frequency content of the

acoustic signal in Fig. 3.2(IV) mainly lies below 25 Hz and also consists of the audible

frequencies. The spectral content of the acoustic signal is significantly smaller than the

bandwidth of the heart sounds which usually lie between 20 and 150 Hz for a normal

subject [4]. The reduction in the bandwidth is mainly attributed to the fact that the

travel of the pulse wave from the source of the sounds (i.e. the heart) to the measurement

site (i.e. the radial artery) causes an attenuation of the high frequency components. The

attenuation results from a series of non-linear transformations as the pulse wave travels

through multiple locations of the body [5].

A better spectral analysis in the joint time-frequency domain can be obtained by the

short-time Fourier transform (STFT). The STFT analysis allows to understand the power

distribution among di↵erent components of the signal by dividing the time-frequency

space into several rectangular grids. Since the maximum time-frequency resolution of a

rectangular grid is restricted by the Heisenberg’s uncertainty principle, a suitable time

and frequency width is chosen for a better time-frequency localisation of the signal. The

STFT of the acoustic signal is obtained using a Blackman window of 256 samples and 50%

overlap between consecutive frames. The resultant grids in Fig. 3.2(III) demonstrates

the power distribution of the signal in the joint time-frequency space. The intensity of the

power grids is represented by the colour bar where the yellow and blue colour denote the

maximum and minimum power density respectively. The STFT analysis of the acoustic

signal, therefore, suggests that the signal power is mainly concentrated in the S1 and S2

sounds, with S2 sounds carrying a relatively lower energy. While the dominant energies

of the S1 and S2 sounds in STFT are mainly concentrated in the lower frequencies, a

portion of the energy content also lie in the audible range as determined by the FFT

analysis. Therefore, the spectral analysis reveals that the acoustic signal recorded from

the radial artery also contain audible sounds. Since the heart sounds are primarily formed

of the S1 and S2 sounds (also known as the fundamental heart sounds), the two dominant

peaks of the acoustic signal are also termed as S1 and S2 sounds in this thesis.

The observation about the spectral characteristics of the pulse sounds are tested over

a database of 20 adult subjects for generalisation purposes. As an illustration, four dif-

ferent morphology of the pulse sounds are plotted in Fig. 3.3. Since the heart rate

and inter-beat intervals are inversely correlated, the number of S1 and S2 sounds in a

5-seconds window changes with the corresponding heart rate of the subject. The FFT

and STFT analysis reveals similar observations about the signal bandwidth and contain

frequencies in the audible range. Therefore, it can be concluded that the acoustic signal

recorded from the radial artery at the wrist is essentially a combination of the acoustic

features superimposed on the pulse wave component propagated from the heart. While

the di↵erent pulse shapes and features in the subjects can be attributed to di↵erent ar-
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Figure 3.3: Spectral characteristics of the acoustic signals with di↵erent morphology and recorded
from di↵erent subjects.

terial parameters and functioning of the cardiovascular system, the signal characteristics

and its SNR are also dependent on the sensor location at the wrist.

3.3 Optimal sensor site

The pulse on the radial artery can be sensed at three locations: distal, middle and

proximal. The middle position as shown in Fig. 2.4 can be easily located in front of the

radial styloid process (protruded bone near the wrist crease). The proximal and distal

positions are 1-2 cm on either sides of the middle position, towards the elbow and the wrist

crease respectively. To determine the optimal auscultation site, a total of nine acoustic

recordings, three from each location for every subject, are recorded from a total of 10
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subjects to analyse the power spectrum at the di↵erent auscultation sites. Note that,

although these recordings would be a↵ected by the characteristics of the recording setup,

in the experiment the environmental noise and motion artefacts are kept to a minimum.

The power spectral density (PSD) of the acoustic signal is calculated by segmenting the

signal into window frames of 1024 samples with a 50 % overlap and applying Fast Fourier

Transform (FFT) to every frame. The FFT coe�cients thus obtained are averaged to

estimate the PSD of an acoustic recording in the range of 0 to 250 Hz. The PSDs of

the three recordings for every location, and for every subject are averaged to compare

the SNR on the di↵erent auscultation sites. For illustration, the PSD of the signal

obtained by completely blocking the microphone port is also plotted in Fig. 3.4. The

latter is an indication of the noise inherent to the sensing system itself in absence of

any other sounds. A close correlation between the power spectrum of the signals at

di↵erent locations can be observed. The anatomy of the radial artery suggests that the

vessel depth at the middle position is relatively lower than in the other two sites [6].

Therefore, the operations of vasoconstriction and vasodilatation produces skin surface

vibrations with higher amplitudes in the middle location due to a lower attenuation by

the surrounding tissues and muscles. This, in turn, results in a higher SNR. The same

reasoning can be followed to compare the PSDs of the distal and proximal positions. Due

to the ease of locating the middle position, and the insignificant di↵erence between the

PSDs, all the experiments in this thesis records the acoustic signal with the microphone

port placed on the middle position of the radial artery. While the middle position proves

to be a better choice for the sensor attachment, the signal characteristics are also a↵ected

by the noisy artefacts both internal and external to the body.

3.4 Noise artefacts

The acoustic sensing of the heart sounds using a stethoscope is characterised in a con-

trolled environment and involve human processing to identify the events of interest. Such

constraints cannot be imposed on a wearable technology that is designed to integrate

easily in a user’s lifestyle. Therefore, the tolerance to noise artefacts is essential for a re-

liable operation of the device. Since the primary signal can be a↵ected by di↵erent noise

sources, the characteristics of the signal originating from such sources must be studied to

remove them automatically without any human intervention. The removal of such arte-

facts ensures a better representation of the true signal. The microphone sensor in the

proposed wearable device can pickup airborne sounds from internal or external locations

of the body. While the noise originating from the internal location of the body is intrinsic

to the region under observation, the external noise mainly arise from the surrounding

environment. The following sections discuss the interference from these noise sources by

recording the acoustic signal in the presence and absence of the noise. The comparison

is established by calculating the PSD of the acoustic signal in both the scenarios. All
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Figure 3.4: PSDs of the acoustic signal obtained with the microphone placed on distal, middle
and proximal site. For illustration, the PSD of the noise obtained from the signal
recorded by completely blocking the microphone port is also plotted.

the recordings are digitised at a sampling frequency of 2100 Hz and an ADC resolution

of 12-bits.

3.4.1 Noise internal to the wrist

Over the chest, the heart sounds su↵er a heavy interference from the lung sounds. How-

ever, the anatomy of the wrist does not suggest the presence of a di↵erent sound source

in the distal, middle or proximal region of the radial artery. To characterise the noise

source internal to the wrist, the sensor is placed on the opposite side of the wrist to

avoid sensing an acoustic wave or pulse wave from the blood flow in the radial or ulnar

artery. The PSD of the acoustic signals recorded from 5 subjects for 1 minute duration

are averaged to plot the frequency response of the internal noise in Fig. 3.5. In the

experiment, the noise from motion artefacts and the surrounding environment are kept

at a minimum for an accurate noise characterisation.

To establish a comparison, the noise PSD for the acoustic signal recorded by sealing the

bottom port of the microphone is also calculated. Since the microphone in such scenario

does not sense any external pressure variations, the noise PSD indicates the noise intrinsic

to the sensing system itself. This noise primarily generated by the electronic circuitry

is a combination of the amplifier noise, ADC noise and the wireless transmission. To

minimise the system noise, the proposed wearable device only included the electronic

components with noise levels less than 10 dB or more in comparison to the noise floor
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of the microphone. It can be observed that the frequency response of the internal noise

in Fig. 3.5 resembles closely with the reference. The 50 Hz noise and its harmonics are

possibly picked up from the environment. The close similarity between the PSDs indicate

that the noise internal to the wrist is negligible. Therefore, the acoustic signals recorded

from the radial artery only contain the physiological information about the pulse sounds

in addition to the noise intrinsic to the sensing system.
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Figure 3.5: PSD of the acoustic signal obtained with the microphone placed on the opposite side
of the wrist. The noise PSD corresponds to the sealed microphone port.

3.4.2 Noise due to the motion artefacts

A major challenge with the wearable technology is their tolerance to the motion artefacts.

Myo-acoustic noise generated by the movement of the muscles can introduce significant

amplitudes in the signal of interest and can possibly lead to a failure of the system. In

case of the proposed wearable device, the acoustic signal can be reliably obtained when

the wrist with attached sensor is relaxed on a table top without any interference from

the hand movements. However, such movements cannot be restricted for a long-term

monitoring of the subject and their interference must be addressed either in the sensing

system itself or at the post-processing stage. The hand movements that can a↵ect the

characteristics of the acoustic signal at the wrist are shown in Fig. 3.6. These movements

as described below are studied in isolation by recording the pulse sounds in presence of

only one type of artefact at a time.

1. Finger movement - The fingers are moved in three ways: swinging in the left-right
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direction, bending in the up-down direction, and moving in an arbitrary way while

keeping the wrist, elbow and shoulder stationary.

2. Wrist movement - The wrist is rotated in either a clockwise or an anticlockwise

direction while keeping the fingers, elbow and shoulder stationary.

3. Elbow Movement - The elbow is stretched and bent while keeping the fingers, wrist

and shoulder stationary.

4. Shoulder movement - The shoulder joint is rotated in a circular manner while

keeping the fingers, wrist and elbow stationary.

5. Arbitrary movement - The arbitrary motion involves all the hand movements listed

above in a random way.

1

2
3

4

Figure 3.6: Di↵erent types of hand movements that can introduce significant noise in the record-
ing setup.

To characterise the noise introduced due to the motion artefacts, seven recordings

(three for fingers and one for every other movement), each of 1 minute duration, are

recorded from 5 subjects. During the whole experiment, the acoustic sensor is placed

on the middle position of the radial artery and records the acoustic signal in presence of

one movement at a time. The subjects are asked to perform a specific type of movement

(from the list above) for the complete recording while keeping the other parts of the hand
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stationary. The frequency response for a particular movement is determined by averaging

its PSDs across all the subjects.

The power spectrum corresponding to di↵erent types of finger movements is compared

against the clean acoustic signal in Fig. 3.7. The representation of PSD over an absolute

scale is made for a better comparison. It can be observed that the finger movements

generate artefacts in the same spectrum and interferes heavily with the pulse sounds. This

mainly happens because the finger movements create tension in the muscles surrounding

the radial artery. The stretch and release of such muscular tension causes significant

variation in the surrounding air pressure at the skin surface. These airborne vibrations

are picked up by the microphone sensor to introduce large amplitudes in the acoustic

signal. Since the bandwidth of these artefacts is similar to that of the pulse sounds, the

hardware design cannot include a band-pass filter to reduce the e↵ect of finger movements

on the acoustic signal. Instead, these artefacts are dealt in the signal processing stage by

identifying features to separate the artefacts from the signal of interest.
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Figure 3.7: Frequency response of artefacts introduced due to di↵erent finger movements.

The artefacts generated by the wrist, elbow and shoulder movements are studied sim-

ilarly. The frequency response plotted in Fig. 3.8 shows that the e↵ect of elbow and

shoulder movements on the pulse sounds is minimal. The reasoning behind such charac-

teristics is that the bending of the elbow or the rotation of the shoulder does not a↵ect the

region of sensor attachment either internally or externally in a significant manner. This

is not true for the wrist or the arbitrary motion which directly correlates with the muscle

movement and therefore interferes heavily with the pulse sounds. The use of high-pass

filtering with a low cut-o↵ frequency in the signal processing can possibly attenuate the
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e↵ect of wrist movements. However, the inclusion of feature recognition to identify the

corrupted sections of the acoustic signal is necessary to extract the cardiac parameters

accurately.
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Figure 3.8: Frequency response of artefacts introduced due to wrist, elbow, shoulder and arbi-
trary movements.

3.4.3 Environmental noise

The surrounding environment is another source of noise in the recording setup. To

characterise the environmental noise, the pulse sounds are recorded in the presence of

vocal speech and background music. Following data acquisition protocol is adopted to

study the e↵ect of speech and music on the pulse recordings. The subjects are asked to

minimise the motion artefacts during the whole experiment.

1. Record the pulse sounds for 1 minute duration with minimal environment noise.

This is used as a reference signal.

2. Record the pulse sounds for 1 minute duration in the presence of normal vocal

speech. During the recording, the subject read a piece of text towards the micro-

phone at a distance of 10 cm from the wearable device.

3. Repeat the experiment in (2) at loud vocal speech reading the same piece of text.

4. Record the pulse sounds for 1 minute duration in the presence of loud music. The

music is played at a distance of 10 cm from the wearable device.
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The power spectrum determined for these recordings are plotted in Fig. 3.9. While

the PSDs match closely within the bandwidth of the pulse sounds (< 25 Hz), the speech

and music signals also contain power in higher frequencies. As expected, the signal with

loud speech carry higher PSD amplitudes than the signal with normal speech volume.

The envelopes for the speech spectrum resemble in shape because the subject read the

same piece of text. Since these amplitudes mainly lie in frequencies above 100 Hz, the

interference from the environmental noise can be attenuated significantly by using a low

pass filter in the post-processing of the signal.
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Figure 3.9: PSDs of the acoustic signal recorded in the presence of vocal speech (normal and
loud volume) and loud music.

3.4.4 Summary

Di↵erent noise sources that can interfere with the pulse sounds have been considered.

The noise internal to the body is mainly introduced by the motion artefacts including

the finger, wrist, elbow and shoulder movements. The finger and wrist movements signifi-

cantly corrupts the acoustic signal and require post-processing of the signal to identify the

corrupted regions. The interference from the elbow and shoulder movements, however,

are found to be negligible. The environmental noise from the external sources mainly

arises from the vocal speech and can be attenuated by simply adopting a low pass filter.

Therefore, the inclusion of filtering and feature recognition blocks in the signal process-

ing are essential in minimising the e↵ect of the artefacts and using the pulse sounds as a

novel physiological signal to extract biomarkers (such as heart rate) indicative of cardiac

performance.
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3.5 An algorithm to extract heart rate from pulse sounds

In addition to proving the feasibility of obtaining the cardiac signal from the wrist, this

thesis also investigates the possibility of automatically extracting the most fundamental

biomarker, namely heart rate, from the acoustic signal. Heart rate monitoring, among

other vital signs, is an important application of recording the pulse at the wrist. While

the techniques discussed in Section 2.2 provide useful physiological information to extract

the heartbeat, they su↵er from several issues, particularly with the constraints in terms

of device size and shape, power budget for long-term monitoring, reliability and accuracy

concerns posed by the wearable technology. The sensing of cardiac rhythms from the

radial artery using a miniaturised, low power microphone sensor does not require an

active input and can allow continuous heart rate monitoring over long periods. Since this

is the first time such a signal has been sensed via means of wearable acoustic sensing, a

novel algorithm to extract heart rate from the pulse sounds need to be developed. The

following sections discuss di↵erent stages of the proposed algorithm and establishes a

comparison with the PPG-based heart rate monitoring.

3.5.1 Algorithmic blocks

An overview of the proposed algorithm to automatically determine the heart rate by

extracting the S1 sounds from the acoustic pulse signal is shown in Fig. 3.10. The

algorithm mainly consists of 3 stages: 1- The pre-processing blocks reduce contamination

of the signal caused by noisy artefacts, in order to improve the SNR for further analysis;

2- The PSD of the signal is calculated in the following stage using STFT to extract the

S1 sounds; 3- Finally, the peaks corresponding to these sounds are detected to provide a

time index by constructing a squared energy envelope for HR determination. A pseudo-

code for the proposed algorithm is also provided in Table 3.1. The following sections

explain the details of the di↵erent blocks.

Pr e-Pr ocessing

Acoust i c 
Pulse 
Signal

a. Low  Pass Fi l ter

c. K-Means 
Method to Rem ove 

Ar t i f acts

S1 Sound Ex t r act i on

b. Downsam pl ing

a. PSD Est im at ion 
using STFT 

Analysi s

b. S1 Sound 
Ex t r act i on using 
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Hear t  
Rate

Peak  Detect i on

b. Moving 
Aver age Fi l ter
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and Rem oval  of  

Redundant  Peaks
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Figure 3.10: Block diagram of the proposed algorithm to determine HR from the acoustic signal
by extracting S1 sounds using the STFT analysis.
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3.5.2 Acoustic data pre-processing

The acoustic signal sensed at the wrist contains not just the signal of interest but also

other signals that are picked up by the electronic system, such as motion artefacts and

sounds from the surrounding environment. In order to achieve a better SNR by reduc-

ing the e↵ects of the latter, the acoustic signal, denoted by time-series y is processed

into rectangular windows of 5 seconds duration with 1 second of overlap between suc-

cessive segments. The window length is chosen to include enough number of heart beats

corresponding to an HR in a range of 40 to 200 beats per minute (bpm).

Most of the frequency content of the acoustic signal is contained below 25 Hz. Because

of this, undesired higher frequency interference/noise is reduced by using a fifth-order

Butterworth low-pass filter with a cut-o↵ frequency of 25 Hz. The acoustic signal origi-

nally sampled at 2100 Hz (fs) possesses frequencies well below the corresponding Nyquist

frequency after the filtering process. This redundant information is therefore removed

by downsampling the signal by a factor of 10 reducing the sampling frequency to 210 Hz

(fd), without introducing any aliasing in the signal.

Since the acoustic signals for the HR determination are continuously recorded in a

single session of 30 minutes duration, the subjects could move their wrist/ fingers during

the data acquisition. As discussed before, such movements introduce acoustic vibrations

at the skin surface that are sensed by the microphone to introduce large amplitudes in

the signal. The frequencies corresponding to these artefacts can lie within the bandwidth

of the acoustic pulse signal and a simple band-pass filtering cannot eliminate their in-

terference with the pulse sounds. However, the e↵ect of such movements usually lies in

smaller time frames. Because of this, K-means clustering method [7] with two classes,

C1 and C2, is used in the algorithm to identify the parts of the signal which are sig-

nificantly corrupted by them. The method initially divides the signal blocks, y, of 5

Table 3.1: Pseudo-code algorithm for estimating HR from acoustic pulse signal. The symbol notations are referenced in the main text.

1. Initial pre-processing of the signal.

• Acoustic pulse signal: y, sampled at fs = 2100 Hz.

• Low-pass filtering: LPF(y), with wc = 25 Hz.

• Downsampling operation: #10(y), fd = 210 Hz.

• K-means method: Form two clusters by scoring the

signal parts yn using Sn = {0,1} for n2[1,5].

2. S1 sound extraction from acoustic pulse signal.

• Joint time-frequency analysis: PSD = STFT(y).

• Maximum power, Pmax = max(PSD).

• Extract grids with P � Pmax - Pt, where

Pt2[5,10]dB such that m2[4,17].

• Identify S1 regions: (tsa-0.15,tea+0.15), a2[1,m].

3. Peak detection from extracted S1 sounds.

• Squared energy: y2.

• Averaging filter:
R 32
1 y2.

• Artefact elimination using thresholds: Wz and Az.

4. Find the continuous average HR.

• Find the time indexes for maximum of energy peaks:

Tm = max(Em).

• Estimate the HR: HR = 60
(
P4

m=1 �Tm)/4
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seconds duration, into five equal parts, each of 1 second duration, and denoted by yn, n

2 [1,5]. For every part, the maximum amplitude (Amax) and the standard deviation (�)

are determined to reflect the signal characteristics as x and y-coordinates respectively.

These feature coordinates are fed to the K-means method to cluster the five signal parts

into two di↵erent classes based on the similarity of the features. The method proceeds

by choosing two cluster centroids, O1 and O2, and groups the features into two classes

by iteratively updating the centroid coordinates, (xO1, yO1) and (xO2, yO2), to minimise

the feature points-to-cluster-centroid distances. Once the iterative process converges,

the horizontal change, �x, between the centroids is determined, and the class C with

a lower standard deviation is found. A change of less than 50% in �x reflects a close

correspondence between the maximum amplitudes of di↵erent signal parts, and indicates

no significant corruption by the motion artefacts. Since the artefacts exhibit a higher

standard deviation than the acoustic pulse signal, the class with a lower y-coordinate is

chosen in cases where the change in �x is more than 50%. Depending on the comparison

between these parameters, in equation (3.1), the signal parts yn are scored by assigning

Sn, n 2 [1,5] a value of either 1 or 0. The signal parts with a score of 1 are ignored from

the further processing.

�x =
|xO1 � xO2|

min(xO1, xO2)

C =

8
<

:
C1, if yO1  yO2

C2, if yO1 > yO2

Sn

n2[1,2,3,4,5]
=

8
>>>>>>>>><

>>>>>>>>>:

8
<

:
1 8 n 2 C2

0 8 n 2 C1
if �x � 0.5 & C = C1

8
<

:
1 8 n 2 C1

0 8 n 2 C2
if �x � 0.5 & C = C2

n
0 if �x < 0.5

(3.1)

Fig. 3.11 shows di↵erent pre-processing stages for a 5 seconds block of signal, a part

of which is significantly corrupted by the motion artefacts. It can be seen how the pre-

processing identifies the corrupted region and successfully ignores the first part of the

signal from the further processing.

3.5.3 S1 sound extraction

An HR in a range of 40 to 200 bpm corresponds to a beat-to-beat interval of 1500 to

300 milliseconds respectively. The number of S1 sounds in a 5 seconds window therefore

can vary from 4 to 17. The measured PSD of the acoustic pulse signal in Section 3.2.2

showed that the frequencies corresponding to the S1 sounds, in the joint time-frequency

analysis, carried higher power than other parts of the signal. This property of the signal
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Figure 3.11: Pre-processing of the acoustic signal sensed by the system: (a) Original signal.
(b) Low-pass filtered and downsampled signal to remove higher frequency compo-
nents and redundant information respectively. (c) Clustering using the K-means
method to identify signal segments corrupted with motion artefacts. Symbol + and
⇤ represents the features and cluster centroids respectively. (d) Signal segment
corrupted with motion artefact (due to wrist/ finger movement) removed from the
downsampled signal.

is utilised to extract these sounds in the time-domain and process them further to find

the HR. But it is also important to select a proper window length for calculating the

PSD of the signal, as a better time resolution allows the extraction of the S1 waveform

without interfering much with the nearby signal transitions.

The power spectrum of the acoustic signal with a downsampled frequency of 210 Hz

is calculated in the algorithm using a Blackman window of 32 samples (approximately

150 milliseconds) with an overlap of 50% between successive frames. The chosen time
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window, as shown in Fig. 3.12(b), provides the required time resolution to extract the

S1 waveform by segmenting the time axis into a relatively higher number of grids. The

colour intensity of these grids in the time-frequency space indicates their corresponding

contribution to the overall power of the signal. The grid with the maximum power, Pmax

is found and all the grids with power not differing more than 5 dB with respect to Pmax

are also selected. It is understood that the beat-to-beat interval cannot be lower than

300 milliseconds [4] therefore, all the grids with a mutual separation within this time

period supposedly belong to a single S1 sound, and hence they are all grouped together,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

0

1

n.
u.

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

f 
(H

z)

(b)

-160 -140 -120 -100 -80 -60 -40 -20
Power/frequency (dB/Hz)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

f 
(H

z)

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time(s)

-1

0

1

n.
u.

(d)

(b)

(c)

Figure 3.12: S1 sounds extraction from a different pre-processed signal with no corrupted seg-
ment: (a) Acoustic signal after initial low-pass filtering, downsampling and K-
means application. (b) PSD of the signal obtained using STFT to extract S1
sounds. (c) Rectangular windows representing the regions of interest. (d) S1
sounds extracted by adding a tolerance of 150 milliseconds on both sides of the
rectangular windows.
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as shown by rectangular windows in Fig. 3.12(c). For m of such groupings, the starting

and end time points, tsa and tea, where a 2 [1,m], are noted. The threshold di↵erence

of 5 dB (Pt) is increased in steps of 1 dB, up to a maximum of 10 dB, to limit these m

number of groupings for a 5 seconds window between 4 and 17. A tolerance window of

150 milliseconds, observed empirically, is added to tsa and tea to enlarge the region of

interest in the time-domain, and ensure that the S1 waveform is completely extracted.

Only the signal corresponding to the group timings of (tsa � 0.15, tea + 0.15) seconds is

retained, whereas the other parts of the signal are zeroed for the further processing as

shown in Fig. 3.12(d).

3.5.4 Peak detection

3.5.4.1 Constructing energy envelope of the extracted S1 sounds

Although a number of peak detection methods using the joint time-frequency analysis

exist [8], [9], the power spectrum of the acoustic signal obtained using STFT provides an

easy way to detect the S1 sounds as the peaks. However, it is important to determine a

single time-index for every S1 sound in the signal, so that their mutual time di↵erences

can be utilised to calculate the HR. To obtain the peak-indexes, every sample of the signal

is first squared so that the positive and the negative waveform of the S1 sounds can be

transformed to only positive amplitudes above the baseline as shown in Fig. 3.13(a).

The squaring process provides a nonlinear amplification of the signal by emphasising

the higher frequencies corresponding to the S1 sounds, whilst attenuating the nearby

transitions with lower energies.

A moving average filter is subsequently used to integrate the squared energy waveform.

The width of the integration window is an important parameter to consider and should

ideally be equal to the maximum time duration of the S1 sound in the signal. A window

with a larger width can combine the energy of the S1 sound with the energy of nearby

signal transitions, whereas a narrower window can produce multiple energy envelopes for

the same sound [10]. For a signal with a sampling frequency of 210 samples/second, the

filter averages the squared energy waveform over a window of 32 samples. The squared

energy followed by an averaging process therefore produces an energy peak corresponding

to the S1 sound, as shown in Fig. 3.13(b) which can be easily processed to find the

corresponding time index.

3.5.4.2 Artefact identification and elimination

In the pre-processing stage of the proposed algorithm, there are some instances when

the artefacts introduced by the wrist or finger movements significantly corrupt some sec-

tions of the acoustic signal and are not detected by the K-means method. This usually

happens when the maximum amplitude and standard deviation of the signal corrupted
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Figure 3.13: Peak detection in a clean signal: (a) Squared energy of the S1 sound waveform
in Fig. 3.12(d). (b) Energy peaks obtained using the moving average filter. ⇤
represent the time indexes corresponding to the S1 sounds.

with artefacts are close to the features of cleaner sections in a 5 seconds window. Since

these artefacts may have significant power, in comparison to the S1 sounds, the STFT

analysis allows such signal transitions to appear as well in the further analysis. The

energy envelopes of such sections corrupted with artefacts can introduce misleading en-

ergy peaks, therefore, a↵ecting the accurate determination of time indexes. To avoid the

misclassification of an artefact as the S1 sound, features such as time width and ampli-

tude of every energy peak, are determined in the algorithm. For the acoustic signal, the

total number of 5 seconds blocks is defined as L, where yz[n], z 2 [1, L] represents each

signal block. Assuming that the parameter lz provides the total count of energy peaks in

yz[n], the width and amplitude features of every energy peak Em are denoted by wm and

am, respectively, where 1  m  lz. The thresholds Wz and Az to process the segment

under consideration are determined using equation (3.2) and equation (3.3) respectively,

by computing the average of the time widths and amplitudes of all the energy peaks

present in the last three signal blocks. The initial value of these thresholds are deter-

mined by processing the first six data blocks (30 seconds of the signal) and analysing the

corresponding features of the energy peaks.

Wz =

Plz�1
m=1wm +

Plz�2
m=1wm +

Plz�3
m=1wm

lz�1 + lz�2 + lz�3
(3.2)

Az =

Plz�1
m=1 am +

Plz�2
m=1 am +

Plz�3
m=1 am

lz�1 + lz�2 + lz�3
(3.3)

Since the characteristics of the energy peaks corresponding to the S1 waveforms are

continuously computed, the thresholds automatically adapt to the changing behaviour

of the data, i.e. are not static in value. With the thresholds Wz and Az calculated for
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the segment under consideration, the following criteria filter out the energy peaks from

the further processing:

1. The energy peaks Em in Fig. 3.14(c) are clipped using an amplitude threshold

equal to (0.25 ⇥ Az). All the data points above this threshold are retained, while

rest of the envelope is zeroed.

2. The thresholding procedure produces redundant peaks as shown in Fig. 3.14(d)

which should be filtered out to avoid an incorrect determination of time indexes.

The width Wz evaluated for the current segment is utilised in equation (3.4) to re-
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Figure 3.14: Peak detection in a corrupted signal: (a) Input acoustic signal corrupted with
motion artefacts (introduced by wrist/ finger movements). (b) Squared energy
of the signal obtained after PSD analysis. The redundant peaks due to the motion
artefacts in systolic and diastolic phases of the cardiac cycle can be observed. (c)
Energy envelope obtained using the moving average filter. (d) Thresholding of
energy peaks to remove envelopes corresponding to the motion artefacts. (e) Time
indexes of energy peaks corresponding to S1 sound waveforms in the signal. This
shows how the algorithm successfully distinguishes between motion artefacts and
S1 waveforms.
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move the unnecessary peaks. The resultant energy peaks thus obtained correspond

to the S1 sounds in the signal.

8 m 2 [1, lz]

Em =

8
<

:
Accept, if 0.75⇥Wz  wm  1.25⇥Wz

Reject, otherwise

(3.4)

3. Finally, all the time indexes (also referred as HR indexes) corresponding to the

maximum of the energy peaks, as indicated by ⇤ in Fig. 3.14(e), are noted. These

time locations and the number of energy peaks after the artefact removal procedure

are defined as Tm (in seconds) and tz respectively, where 1  m  tz.

The time indexes obtained after processing the signal block under consideration can

be utilised to determine the beat-to-beat interval, �T in equation (3.5). The HR is cal-

culated every (1/4)th second by averaging the beat-to-beat time intervals corresponding

to the last 4 heart beats and multiplying it by 60 as follows:

8 m 2 [1, tz � 1]

�Tm = Tm+1 � Tm

HR =
60

(
P4

m=1�Tm)/4

(3.5)

3.5.5 Subjects and experimental protocol

Acoustic signals to test the proposed algorithm are recorded from 12 healthy subjects

aged 19-48 by placing the new miniature, battery-operated wearable device over the

radial artery. The sensor attachment, over an area equal to the size of the sensor (27 x

20 millimetres), does not require any cleaning process. The data is recorded only through

contact sensing without applying any external pressure on the device. The signals are

sampled at a frequency of 2100 Hz and wirelessly transmitted to a nearby base station

(a smartphone). The PPG signals from the index finger are simultaneously recorded

using a commercially available SOMNOscreen pulse oximeter [1]. The SOMNOscreen

monitor also provides an estimate of the HR every (1/4)th second. The monitor uses a

methodology to determine the HR for which the details are not publicly available. A

total of 6 recordings, each of 5 minutes duration are recorded from every subject. All

the recordings are collected in an uncontrolled environment, but the subjects are asked

to sit and relax on a chair. Since the recordings are performed for a long duration, the

subjects could move their wrist and fingers, as and when required. The synchronisation

of the data from both the sensors, which is critical to evaluate the performance of the

proposed system, is carried out by matching the nearest systolic peaks.
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3.5.6 Results

In order to assess the performance of the proposed method, the algorithm results are

compared with other state-of-the-art PPG-based devices, for a total of 12 subjects. The

ground truth HR values (HR-PPG) are obtained using the FDA approved, and clinically

used SOMNOscreen system [1]. The output from the processing of the acoustic pulse

signal (APS) are regarded as the estimated HR values (HR-APS). As an illustration,

the estimated and ground truth HR values corresponding to 6 recordings, each of 5

minutes duration for one of the subjects, are plotted simultaneously with upper and lower

bounds of 5% respectively with respect to HR-PPG, in Fig. 3.15(a). The first computed

performance metric, shown in Fig. 3.15(b), is the Bland-Altman plot [11]. This plot

compares the di↵erence between the estimated and ground truth HR values with respect

to their corresponding mean. The circled data points in Fig. 3.15(b) indicate the HR

di↵erences at di↵erent HR averages and their diameter corresponds to the number of

points coinciding on the same location. The bias µ is calculated by averaging all the HR

di↵erences, whereas the limits of agreement (LOA) are obtained by computing (µ±2⇥�)

respectively, where � is the standard deviation of the HR di↵erences. While the bias for

this comparison is found to be nearly zero, LOA indicated a variation of less than 1 bpm

for more than 95% of the data points. As a second performance metric, the line of best

fit between the estimated and ground truth HR values is also determined, to understand

the degree of similarity using Pearson correlation. The R2 and root-mean-square-error

(RMSE) values depict the corresponding measures of fitness of line to the data. A higher

value of R2 and a lower value of RMSE represents a better fit. For the scatter plot in

Fig. 3.15(c), the fitted line with equation: y = 0.9958 x + 0.2512 is obtained, where

x indicates the ground truth HR value, and y indicates the associated estimate. The

Pearson correlation is found to be 0.996 with corresponding R2 and RMSE values of

0.992 and 0.397 respectively.

A similar analysis is repeated for the complete dataset of 12 subjects, where a total

of 6 recordings, each of 5 minutes duration are recorded from every subject. The Bland-

Altman comparison and the line of best fit thus obtained are plotted in Fig. 3.16. A

near zero bias and LOA of [-1.68,1.69] bpm suggests a narrow di↵erence between the

estimated and ground truth HR values over the whole database. The Pearson correlation

is approximated to 0.998 with an equation for the line of best fit as: y = 1.0004x - 0.0266.

The corresponding R2 and RMSE values are 0.997 and 0.861 respectively.

A further evaluation of the proposed method is obtained by computing the mean abso-

lute error (MAE) and the mean absolute error percentage (MAEP) as defined in equation

(3.6) and equation (3.7) respectively, where HRest(i) is the estimated HR from the acous-

tic pulse signal and HRtrue(i) is the ground truth HR from the SOMNOscreen monitor at

the ith index in a total of N values. MAE as an evaluation index provides an estimate of

the deviation across the whole dataset whereas MAEP indicates the percentage of error
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Figure 3.15: Results obtained for one of the subjects: (a) HR comparison between the esti-
mated output (HR-APS) and reference output (HR-PPG) with upper and lower
HR bounds of ± 5% respectively. (b) Bland-Altman analysis with more than 95%
of HR di↵erences lying within LOAs, defined by (µ ± 2 ⇥ �). (c) Line of best fit
between the estimated and ground truth HR values. The R2 and RMSE value,
a measure of fitness of line to the data, were 0.992 and 0.397 respectively. The
Pearson correlation was 0.996.

in the HR estimation. Along with these performance metrics, the standard deviation (�)

and Pearson correlation (PC) are also determined to understand the degree of agreement

between the corresponding HR outputs. The accuracy of the method is evaluated by cal-
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Figure 3.16: Results obtained for the complete dataset: (a) Bland-Altman analysis of the HR
comparisons for all the subjects. (b) Line of best fit between the estimated and
ground truth HR values for all the subjects. The R2 and RMSE value are 0.997
and 0.861 respectively. The Pearson correlation is 0.998.

culating the percentage of HR values obtained from the acoustic pulse signal and lying

within ±5% of the SOMNOscreen output.

MAE =
1

N

NX

i=1

|HRest(i)�HRtrue(i)| (3.6)
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Figure 3.17: Variation of HR in individual subjects. HR-STD: standard deviation of the range;
HR-MIN: minimum value of the range; HR-MEAN: mean value of the range;
HR-MAX: maximum value of the range; HR-RMS: root-mean-square value of the
range.

MAEP =
1

N

NX

i=1

|HRest(i)�HRtrue(i)|

HRtrue(i)
⇥ 100 (3.7)

Table 3.2 lists the performance metrics of the proposed method for all of the 12 subjects.

An overall accuracy of 98.78% with a mean absolute error and a standard deviation of 0.28

and 0.86 bpm respectively, are obtained. Fig. 3.17 plots the HR variations in individual

subjects including the standard deviation (HR-STD), minimum (HR-MIN), mean (HR-

MEAN), maximum (HR-MAX) and root-mean-square (HR-RMS) of the corresponding

HR range. The HR in the complete dataset varies from 42 to 121 bpm.

Table 3.2: Performance metrics of the proposed method obtained by comparing the estimated
and ground truth HR.

P01 P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12 Total

MAE (bpm) 0.10 0.34 0.19 0.24 0.36 0.14 0.18 0.15 0.40 0.34 0.38 0.61 0.28

MAEP (%) 0.17 0.44 0.42 0.31 0.44 0.13 0.24 0.26 0.62 0.36 0.53 1.03 0.39

µ (bpm) -0.01 -0.18 0.03 0.03 -0.01 0.01 -0.01 -0.02 0.01 0.09 0.07 -0.06 0.01

� (bpm) 0.39 1.19 0.47 0.66 0.84 0.38 0.49 0.85 0.96 0.90 1.17 1.49 0.86

LOA (bpm)
[-0.78, [-2.48, [-0.88, [-1.26, [-1.65, [-0.73, [-0.98, [-1.68, [-1.87, [-1.67, [-2.23, [-2.97, [-1.68,

0.77] 2.12] 0.94] 1.32] 1.64] 0.75] 0.96] 1.63] 1.90] 1.85] 2.38] 2.86] 1.69]

PC 0.996 0.948 0.991 0.956 0.991 0.997 0.994 0.953 0.979 0.983 0.980 0.971 0.998

Acc (%) 99.91 96.92 99.74 99.01 98.75 99.87 97.29 98.41 97.73 99.19 98.14 94.05 98.78

To test the robustness of the algorithm, the proposed method is also tested using
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acoustic signals recorded in a noisy environment. The signals of 5 minutes duration are

collected from 5 subjects. During the experiment, the subjects are asked to read a page

of text and loud music is played in background at the same time. The results in Table

3.3 indicate that the e↵ect of environmental noise on the acoustic pulse recordings for

the HR determination are insignificant.

Table 3.4 compares the results of the proposed method with other studies which anal-

ysed the accuracy and reliability of di↵erent state-of-the-art PPG-based wrist devices

used in the commercial market by comparing them with the synchronous ECG signal.

Although the testing of these devices involved di↵erent experimental conditions such as

sitting in rest position, walking, and running at di↵erent speeds and slopes, Table 3.4 only

includes the results corresponding to the data recorded at the rest position to provide

an indicative comparison with the proposed method. Since there is neither a publicly

available database nor a study that has published results on HR monitoring using an

acoustic pulse signal, a direct comparison could not be established. Also, the devices in

these studies were tested on di↵erent number of subjects, but the total data length were

quite similar to this study. The table follows the same abbreviations for the comparison

parameters as used in the literature. The mean error (ME) and standard deviation (SD)

of the HR di↵erences have the same definitions as µ and � respectively. These parameters

obtain a value of 0.01 bpm and 0.86 bpm for the proposed method and are significantly

lower than other devices. The MAE and MAEP in this work are found to be 0.28 bpm

and 0.39%, and demonstrates better performance in comparison to the devices analysed

by Stahl et al. [12] and Parak et al. [13]. A higher PC of 0.99 as compared to 0.96 for

Basis Peak and 0.83 for Fitbit Charge HR, as studied by Jo et al. [14], also indicates a

higher agreement between the estimated and ground truth HR for the proposed method.

The standard error (SE) of the mean measures the deviation in the mean HR of all the

subjects and attains a higher value of 4.55 bpm in this study. This is mainly because the

SE is inversely proportional to the square root of the sample size [15]. Since the other

Table 3.3: Performance metrics of the proposed method for acoustic signals recorded in a noisy
environment.

P01 P02 P03 P04 P05

MAE (bpm) 0.26 0.20 0.36 0.63 0.09

MAEP (%) 0.41 0.28 0.47 0.89 0.14

µ (bpm) -0.08 -0.07 -0.11 0.06 0.03

� (bpm) 0.69 0.48 0.89 1.99 0.35

LOA (bpm) [-1.45,1.28] [-1.02,0.88] [-1.87,1.64] [-3.83,3.96] [-0.65,0.72]

PC 0.970 0.988 0.936 0.861 0.986

Acc (%) 99.29 98.12 98.81 95.00 99.05

142



Table 3.4: Performance comparison of the proposed method with results obtained from di↵erent PPG-based wrist devices used in
the commercial market. The table only compares the results of the data collected at the rest position and provides an
illustrative comparison because the experimental conditions varied between di↵erent works. + The data length is for all
the subjects combined together. * SD was calculated from the results of 95% equivalence testing given in this paper.

†

The results provided in the paper were obtained by averaging the data to 5 seconds epochs.

Literature Wearable Device Subjects
Data+ ME SD MAE MAEP

PC
SE

Length (bpm) (bpm) (bpm) (%) (bpm)

Stahl et al. [12]

Scosche Rhythm

50 5.0 hr

– 1.64* – 2.22 – 1.60

Mio Alpha – 1.52* – 2.72 – 1.50

Fitbit Charge HR – 1.45* – 7.73 – 1.40

Basis Peak – 1.58* – 3.15 – 1.50

Microsoft Band – 1.52* – 3.81 – 1.40

TomTom Runner Cardio – 2.06* – 2.54 – 2.00

Parak et al. [13]
Mio Alpha

21 4.2 hr
-0.20 – 3.92 5.37 – –

Scosche Rhythm 0.07 – 4.83 5.96 – –

Jo et al. [14]
Basis Peak

24 6.0 hr
-0.20 – – – 0.96 6.04

Fitbit Charge HR -3.73 – – – 0.83 10.66

Cadmus et al. [16]

Basis Peak

40 6.7 hr

2.75 9.93 – – – –

Fitbit Charge -0.65 4.92 – – – –

Fitbit Surge -0.30 2.40 – – – –

Mio Fuse 1.05 4.42 – – – –

Spierer et al. [17]
Omron HR500U

47 4.7 hr
2.22

†
– – – – 3.67

†

Mio Alpha 2.39
†

– – – – 6.28
†

This Work Proposed Acoustic Device 12 6.0 hr 0.01 0.86 0.28 0.39 0.99 4.55

studies were tested on a higher number of subjects, the inverse proportionality results in

a lower estimate of the SE. The comparison over these parameters show that, considering

PPG is a widely accepted technique, the proposed method utilising the acoustic sensing

can provide accurate results for HR monitoring at wrist under equivalent conditions.

3.6 Discussion

The feasibility of acoustic sensing of the radial pulse using a wearable device has been in-

vestigated in this chapter. While ECG has always been used as the gold standard method

to record cardiac signals from the chest, measuring it continuously with a wearable de-

vice presents lots of limitations, varying from reliability to usability. An alternative to

ECG, which improves on the usability aspects, is to use PPG-based devices instead. This

approach is very popular due to the fact that it allows monitoring with the sensor at-

tached on the wrist. But methods based on wrist PPG are not limitations free either.

The requirements of an active input signal limit either the size of the system and/or the

battery lifetime. In addition the systems are very sensitive to motion and other artefacts.

Hence, having an alternative lower power sensing approach would be desirable to either

complement the PPG to increase the sensing accuracy, or replace it altogether, depending

on the clinical target. The passive sensing mechanism of state-of-the-art acoustic sen-

sors (MEMS microphones) imposes significantly less constraints in terms of power, hence

143



being more suitable from the size and maintenance perspective for a wearable device.

The characteristics of the pulse wave originating from the heart- as a result of the

opening and closing of the heart valves, and propagating as a mechanical wave along the

arterial branches have also been investigated, by comparing the acoustic and PPG pulse

waveforms. Although negligible, the heart sounds also transmit an acoustic wave through

the body. Since these acoustic features are superimposed on the vessel vibrations caused

by the mechanical constriction and dilation of the radial artery, a similar type of skin

surface modulation is obtained. While PPG only measures the pulse wave component, the

acoustic-based sensing allowed the detection of both cardiophysiological characteristics

of the radial pulse. The bandwidth of the acoustic pulse waveform, which contained

energies in the audible range as compared to the bandwidth of less than 10 Hz for the

PPG waveform proved this observation. Consequently, the proposed approach showed

that it is possible to monitor both, the heart sounds as well as the pulse wave using just

one wearable system.

The characterisation of the pulse sounds also allowed to determine the optimal aus-

cultation site on the radial artery, since this is a factor to consider when comparing the

ease of sensor attachment with respect to ECG- and PPG-based approaches. The PSD

comparisons showed that the acoustic sensing allows for a relatively wide region of sensor

placement with an insignificant di↵erence between the SNR of the signals recorded from

di↵erent locations over the radial artery.

Studying the characteristics of the noise artefacts both internal and external to the

body made it possible to remove them automatically for a better representation of the

acoustic signal. Among di↵erent types of hand movements, only the wrist and finger

motions introduced large amplitudes in the signal making it di�cult to extract meaningful

cardiac information. The proposed algorithm incorporated their removal by identifying

the signal regions corrupted with these artefacts using selected features. The e↵ect of

wrist and finger movements on the SNR of the acoustic signal can be minimised by adding

additional signal channels using an accelerometer and/or gyroscope. These sensors can

provide critical information about the motion artefacts and act as a reference input,

for example, to an adaptive filter in extracting a cleaner signal. However, the usage

of these sensors imposes extra burden on size and shape of the PCB, power budget

and computational resources of the wearable system. Although these sensors were not

included in the current prototype proposed in this thesis, they can possibly be added

to the future prototypes of the wearable device by studying the trade-o↵ between the

accuracy of cardiac monitoring and the power budget of the system. Regarding the

environmental noise that also interfered with the pulse sounds, simply using a low-pass

filter attenuated their e↵ect significantly.

Furthermore, by comparing the HR obtained from acoustic sensing with other state-

of-the-art PPG based devices, it has been shown that the presence of fundamental heart
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sounds in the acoustic pulse waveform improved the heartbeat detection, an important

variable in continuous vital sign monitoring. Heartbeat detection based on extraction

of S1 sounds using the new proposed method further reduced the error between the

estimated and ground truth HR and achieved a high accuracy of 98.78% with a PC

of 0.99 and narrower LOAs of [-1.68,1.69] bpm. These results prove that the proposed

method could be used as an alternative, or to complement PPG for continuous monitoring

of HR at wrist.

As a summary, with this work, it can be concluded that the acoustic signal sensed

from the radial artery in the wrist can be used as a novel physiological signal to extract

biomarkers indicative of cardiac performance. Furthermore, this signal provides advan-

tages with respect to other conventionally used ones, which make it specially suitable

for wearable devices. The concept and feasibility has been proven with the automatic

extraction of HR.
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4 An algorithm to determine heart rate

variability in short-term acoustic

recordings

4.1 Introduction

Cardiac monitoring in healthcare applications provide critical information to study the

normal functioning of the heart. The heartbeat rhythm is usually studied by calculating

the heart rate of an individual using di↵erent techniques. While some of these tech-

niques locate the biomedical events in the signal of interest, other methods utilise the

spectral estimation of the time-varying frequencies in the cardiac signal. In the majority

of applications, the average frequency estimation over several heartbeats is acceptable

to reflect the variation in the heartbeat rhythm. However, studying the heart rate vari-

ability (HRV) by measuring the instantaneous changes in beat-to-beat cycles provide a

reliable reflection of several physiological factors responsible for the modulation of the

normal rhythm of the heart. Since heart rate is a non-stationary signal, tracking the in-

stantaneous changes can allow studying the balance between sympathetic and parasym-

pathetic branches of the autonomic nervous system (ANS) [1]. The analysis of the ANS

using HRV, therefore, reflects the ability of the heart in detecting and responding to an

unpredictable stimuli by regulating the cardiac activity. HRV analysis has been utilised

in several studies to recognise and evaluate the driving stress [2], obstructive sleep apnea

syndrome [3], chronic heart failure [4], diabetes mellitus [5], epileptic seizures [6], emotion

recognition [7] and other disorders.

The initial step of the HRV analysis requires the computation of either the inter-

beat interval (IBI) or the instantaneous heart rate (IHR) from the biomedical signal for

subsequent determination of HRV parameters. The IBI (in seconds) and the IHR (in

beats-per-minute) time-series are inversely proportional to each other and one can be

derived from another by simply multiplying the reciprocal with a factor of 60. Although

both the IBI and the IHR are exchangeable, the HRV is generally referred in terms of the

IBI time-series. A typical approach for calculating the IBIs requires a precise localisation

of the events of interest in the biomedical signal. Some of the examples of such events

include the QRS complex in the ECG signal, systolic peak in the PPG waveform, and

S1 and S2 sounds in the PCG signal. The signal processing techniques in Section 2.2.1
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discussed di↵erent algorithms to determine heart rate from these signals. The heart

rate algorithms mainly fall into 2 categories of spectral-based and peak-based methods.

The spectral techniques transform a time-windowed signal into the frequency-domain to

identify the fundamental frequency corresponding to the heart rate [8]–[11]. Since the

signal spectrum contains other peaks including the peaks from the motion artifacts, the

spectral estimation is carried out for a larger signal segment (few seconds to tens of

seconds) to localise the heart rate frequency accurately [11], [12]. The determination of

single frequency for such windowed signal segments provide only an average estimation

of the heart rate and loses critical information about the beat-to-beat variation in the

signal. The peak-based methods, on the other hand, identify the events of interest to

extract the time-indices for IBI calculation. These events in the biomedical signal can be

identified using several techniques, for example, by constructing the energy envelope to

separate the desirable energy peaks from other signal transitions [13]–[15]; by identifying

unique features corresponding to the events of interest and isolate them using learning-

based approaches [16], [17]. The heart rate determined using the peak-based methods

generally average the IBIs over a last few beats to filter out the instantaneous variations

in the time-series output. While the algorithmic details implemented by the commercial

devices are generally not available publicly, they measure heart rate over several beats,

typically 4 to 8 heartbeats, and displays the output at di↵erent sampling frequencies [18],

[19].

An accurate HRV analysis requires a beat-to-beat resolution [20]. Therefore, it is im-

portant to locate the characteristic points in the events of interest precisely, for example,

the time location of R-peak in the QRS complex of the ECG waveform. Since the S1

sounds in the acoustic signal does not resemble with the QRS morphology, it would be

ideal to preserve all its characteristic points to establish a comparison and find the best

representation of the S1 sounds for the HRV analysis. The algorithm proposed in Section

3.5 utilised a peak-based method to extract S1 sounds from the acoustic signal. Although

a strong correlation and statistical agreement for the average heart rate estimation be-

tween the acoustic signal and the PPG signal were obtained, the previous method poses

some constraints on extracting an accurate IBI time-series. The method transformed the

acoustic signal into joint time-frequency domain and identified the events of interest (S1

sounds) by only selecting the time grids with maximum power spectral density. Since

the time-frequency resolution in STFT analysis is constrained by the Heisenberg’s un-

certainty principle, there may be a few instances when the selected time grids does not

contain the full S1 waveform. These instances can originate when the interference from

noisy sources changes the power distribution among the signal components. Since the

heart rate in the previous algorithm was obtained by averaging the last 4 IBIs, such a

loss would not a↵ect the average heart rate. However, it can possibly lead to a loss of few

characteristic points for the HRV analysis. Another drawback of the previous algorithm
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is that it only focused on detecting the zero-crossing of the S1 sounds as the characteris-

tic point by constructing the energy envelope using the moving average filter. Since the

adopted filtering is essentially a smoothing technique, a change in the shape of the S1

sound due to the noise interference can cause the maximum of the energy peak to deviate

from the original location. This can potentially result in an inaccurate detection of the

time-index corresponding to the zero-crossing. While a slight variation in the time local-

isation of the characteristic point does not affect the average heart rate, it can introduce

significant variations in the HRV analysis. To overcome the issues faced by the previous

method, a novel algorithm is proposed to extract the HRV from the short-term acoustic

signals recorded at the wrist. Instead of zeroing the intermediate signal transitions as in

STFT analysis, the proposed algorithm improves the localisation of the S1 sounds and

preserves all the characteristic points by utilising the relative energies of the time-domain

signal. The algorithm design also considers the computational complexity as an impor-

tant constraint to allow the extraction of HRV parameters from larger data lengths. The

following section discusses the existing methods for the HRV extraction from different

biomedical signals. A subsequent discussion on different stages of the proposed algorithm

is provided to establish a comparison of the HRV derived from the acoustic signal at the

wrist with the PPG and ECG signals respectively.

4.2 Existing methods

The sympathetic and parasympathetic branches of the ANS modulate the heart rate at

different frequencies [1]. The spectral analysis of the IBI time-series can therefore allow

the separation of the rhythmic contributions from the sympathetic and parasympathetic

activities. Such analysis can lead to an early intervention in taking preventive diagnostic

measures. However, this requires an accurate extraction of the IBI time-series from the

biomedical signal as little inaccuracies in the IBIs can introduce substantial variance into

the frequency bands associated with the arrhythmia [21]. A gold standard approach to

measure the IBI time-series is by detecting the QRS complex in the ECG signal. Several

algorithms have been proposed in the literature to extract the R-peak from the ECG

signal. However, a universal approach for the QRS detection has not been found due to

the diversity of the QRS waveforms in different subjects, low SNR and the presence of

Figure 4.1: Generic block diagram for R-peak extraction from the ECG signal.
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motion artifacts in ECG signals. Detailed reviews about the QRS detection methods for

di↵erent applications are available in [22]–[26]. The R-peak detection typically involves

2 stages: QRS enhancement and QRS detection as shown in Fig. 4.1. The QRS en-

hancement stage, also known as the pre-processing block, enhances QRS complex with

respect to other ECG signal transitions (such as P- or T- wave) by extracting di↵erent

features using linear or non-linear filtering techniques. The QRS detection stage employs

a relevant peak-detection method based on the pre-processing results followed by deci-

sion logic to identify the onset and o↵set of the QRS complex and extract the temporal

location of the R-peak. The review in [22] discriminated the algorithms based on the

QRS enhancement stage and focused on their operating principles. Elgendi et al. [26] also

summarised such algorithms by evaluating their performance over the three assessment

criteria: robustness to noise, parameter choice and numerical e�ciency to find a suitable

algorithm for implementation in battery-operated wearable ECG systems. Some of the

commonly used R-peak extraction algorithms along with their operating principles and

feature signals are briefly described in Table 4.1. Since the statistical parameters related

to the HRV are traditionally obtained from the 24-hour ECG recordings, the numerical

e�ciency of the algorithm is highly desirable. In Table 4.1, not all the methods listed are

suitable for the HRV analysis because of their varying computational complexities. The

comparison of these methods in [26] showed that a simple and numerically e�cient way of

locating the R-peaks after the QRS enhancement stage is only possible with the thresh-

olding technique. All the other QRS detection algorithms were found to have medium

or high computational complexities.

Table 4.1: R-peak extraction algorithms with di↵erent operating principles and feature signals.

Technique Operating Principle Feature Signal

Derivative

[27]–[30]

The high-pass filter implemented as a

di↵erentiator indicates the characteristic steep

slope of the QRS complex. The QRS detection is

accomplished by comparing the feature signal

against a fixed or adaptive threshold followed by

several decision rules.

Di↵erentiated signal

itself.

A linear combination of

di↵erent orders of

derivatives being

squared, averaged,

modulus, etc.
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Table 4.1: R-peak extraction algorithms with di↵erent operating principles and feature signals.

Technique Operating Principle Feature Signal

Digital

Filters

[31]–[34]

QRS complex consist of frequencies between 10

Hz and 25 Hz. The bandpass filtering removes

baseline wandering, P- and T-wave, incoupling

noise, etc. The non-linear operations using

sophisticated digital filtering enhances the QRS

complex and suppresses other parts of the ECG

signal to make QRS detection easier using the

adaptive thresholding.

The signal filtered using

a combination of

multiple digital filters

with di↵erent

bandwidths.

The filtered signal is

sometimes followed by

first order derivative to

extract the feature

signal by computing the

square and average of

the di↵erentiated

output.

Wavelet

transform/

Singularity

detection

[35]–[38]

The singularity in the ECG signal is detected

using Mallat’s and Hwang’s approach [22]. The

QRS detection is performed by matching the

singularities with the local maxima in the wavelet

transform of the signal. R-peaks are located

where the relevant scales of the wavelet transform

exceed a threshold and demonstrate a

simultaneous modulus maxima.

Coe�cients of the

wavelet transform at

di↵erent scales.

Filter banks

[39]–[41]

QRS complex is characterised by simultaneously

occurring frequency components in di↵erent

subbands [22]. The ECG signal filtered through

di↵erent subbands is followed by thresholding or

decision logic for QRS detection.

A linear combination of

di↵erent subband

signals.

Neural

networks

[17], [42],

[43]

Neural networks are used as adaptive nonlinear

predictors to estimate the current signal value

from its past samples. Since the non-QRS

segments are present in a larger portion of the

ECG signal, the neural networks converge when

the prediction about non QRS samples is correct.

Di↵erent statistics of the QRS complex produces

a larger prediction error allowing its detection.

Prediction error

obtained from the

neural network with

time-delayed ECG signal

samples fed as an input.
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Table 4.1: R-peak extraction algorithms with di↵erent operating principles and feature signals.

Technique Operating Principle Feature Signal

Adaptive

filters

[44]–[46]

Similar to neural networks, adaptive filters

predict the current signal value as a weighted

superposition of the signal values in the past. The

weights adapt to the changing signal statistics by

minimising the prediction error using algorithms

such as least mean square method. The

instantaneous prediction error becomes large

when the QRS event is detected by an adaptive

model.

The di↵erence between

the weight vectors at

two di↵erent times.

The di↵erence of the

short term energy of the

residual error in

adjacent windows.

Hilbert

transform

[47]–[49]

The instantaneous characteristics of the ECG

signal obtained from the Hilbert transform is

utilised to construct an energy envelope. The

QRS complex produces higher energy peaks in

comparison to other ECG transitions and are

detected by using a threshold.

Energy envelope

obtained from the real

and imaginary part of

the analytic signal

computed using the

Hilbert transform.

Empirical

mode de-

composition

[50]–[53]

The EMD decomposes the ECG signal into

several intrinsic mode functions. The first few

IMFs filter out the noise components and

preserve the information corresponding to the

QRS complex. Rejecting the other IMFs improve

the SNR for QRS detection using thresholding.

Intrinsic mode functions

corresponding to the

ECG signal.

Zero-

crossing

[54]

The running average of the zero-crossings in the

modulus of the bandpass filtered ECG signal is

higher during the non-QRS segments in

comparison to the QRS complex. The average is

compared against an adaptive threshold to detect

the QRS complex.

Average count of the

zero-crossings.

In addition to the gold standard approach of HRV measurement from the ECG signal,

the HRV parameters can also be measured using pulse wave analysis. Commonly, the

pulse waveform is recorded using the PPG-based wearable sensing. Since the signal

acquisition using pulse oximetry is highly prone to motion artifacts, the heart cycle

measurements with a beat-to-beat resolution becomes quite challenging. This is the main

reason why the majority of studies mainly focus on estimating the average heart rate and

not the instantaneous heart rate using the PPG signal. However, in principle, the HRV

parameters can also be obtained from the PPG signal. The variability of the pulse cycles

in the literature is usually known as the pulse rate variability (PRV). Unlike the R-peaks
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in the ECG signal, the PPG signal does not have a fixed characteristic point and the

accuracy of beat-to-beat interval depends not only on the choice of the characteristic

point but also the algorithmic method to locate it [55]. For the HRV analysis, the

PPG waveform is typically indexed temporally with one of the following characteristic

points: systolic peak, point of maximum slope or first order derivative, diastolic minima

or foot points denoting the onset of systole. Although majority of the studies concerning

PPG processing focus on the average heart rate estimation (including motion artifacts),

some of the research, as listed in Table 4.2, also test the feasibility of using di↵erent

PPG characteristic points to extract the PRV and compare it with the ECG-derived

HRV. Schäfer et al. [55] presented a detailed review of such studies and investigated the

accuracy of PRV as an estimate of the HRV. Georgiou et al. [56] also investigated the

accuracy of HRV and PRV in ECG and PPG signals respectively. The review focused on

understanding whether wearable devices provide a reliable and accurate measurement of

variability by studying sixteen ECG-based HRV technologies and two PPG-based PRV

technologies. In majority of the studies, the temporal locations of the characteristic points

are identified using traditional peak detection algorithms involving peak enhancement in

the pre-processing stage. The pre-processing typically involves the use of band-pass

filters and the first and second order derivatives [57]–[60]. The spectral techniques for

extracting the IBIs have also been explored where the frequency corresponding to the

average heart rate is used as the center point to find the instantaneous frequency using

the Hilbert transform [61]. The conclusions drawn from Table 4.2 suggests that the PRV

derived from the PPG signal recorded at di↵erent sensing locations demonstrate a high

correlation with the ECG-based HRV and shows a good agreement mostly for the signals

recorded at rest. The review in [56] also found a high correlation between PRV and HRV

during rest, however, it decreased progressively with the intensity of the exercise. The

di↵erence in the agreement mainly arises because of the di↵erence in the physiology of

both the signals. While ECG records the electrical activity of the heart, PPG measures

the volumetric change in the blood flow due to the propagation of the peripheral pulse

wave. Therefore, a finite propagation time exists between the R-peak in the ECG signal

and the onset of the pulse wave at a particular PPG site. This delay is usually known as

the pulse transit time (PTT) and it correlates with the blood pressure, arterial sti↵ness

and age of the subject [62]. Since the PTT depends on other parameters, its physiological

variability can introduce a significant di↵erence in the IBIs estimated from PPG and ECG

signals respectively, despite the accurate determination of the characteristic points using

the proposed algorithm. In such cases, a wide disagreement between the PRV and HRV

can be observed.

While PPG provides a reliable way of recording the pulse waveform, the pulse wave

analysis can also be performed using the blood pressure (BP) waveform and the impedance

plethysmography. The beat-to-beat BP waveform is usually recorded using Finapres sys-
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tem that employs photoplethysmographic finger cu↵ to assess BP continuously by using

the vascular unloading principle [63]. Impedance plethysmography, on the contrary, uses

multiple metallic electrodes to produce an electric signal in proportion to the instanta-

neous impedance of the tissue under the electrodes [64]. Therefore, the change in the

average impedance corresponding to the periodic phases of the arterial blood flow can be

detected by the metallic electrodes. Although advancements in the wearable technology

have made the use of these systems obsolete, few studies listed in Table 4.2 utilised these

systems to record the pulse waveform and extract the HRV. It can be observed that some

studies indicate a strong agreement with the ECG-derived HRV whereas the other studies

suggest the usage of pulse-based HRV only as an alternative to ECG. In conclusion, the

pulse-to-pulse variability can be considered as a surrogate choice to HRV in cases where

the data is recorded at rest.

Table 4.2: HRV extraction from pulse waveforms recorded at di↵erent sensing locations. Studies
are grouped according to the pulse sensing method.

Ref.
Sensing

Location

Characteristic

Point
Algorithm Remarks

Photoplethysmography studies

[57] Finger

First sample

after 70% slope

threshold

Peak detection using a

threshold of 70% of

maximum slope applied on

first order derivative.

High correlation at

rest between PPG-

and ECG-based LF

and HF bands.

[58]

Finger,

wrist,

arm, ear,

ankle

Systolic and

diastolic point

Peak detection based on

first and second order

derivative. IBIs compared

against PSD peaks in

0.6-2.9 Hz for better

accuracy.

Least mean square

error for IBIs obtained

at rest. Ideal wearable

locations were arm

and finger.

[59] Wrist

Systolic peak,

onset of pulse,

dicrotic notch

Pre-processing (band-pass

filtering, automatic gain

control and smoothing

filter) followed by

beat-to-beat extraction

using interpolation and

delineation.

Average IBI di↵erence

around 12 ms showed

strong HRV

correlation between

PPG and ECG.

[61] Wrist —

Average HR is determined

as the center point for

spectral masking of

instantaneous frequency

obtained from Hilbert

transform.

IHR accuracy of 1.75

bpm obtained for

PPG signals.
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Table 4.2: HRV extraction from pulse waveforms recorded at di↵erent sensing locations. Studies
are grouped according to the pulse sensing method.

Ref.
Sensing

Location

Characteristic

Point
Algorithm Remarks

[65] Earlobe
Rising edge of

the pulse

Hearbeat pulses are

detected using a

comparator circuit in the

analogue front end of the

design.

Small di↵erences

between IBIs from

PPG and ECG

suggested that the

wearable earlobe PPG

may be suitable for

HRV measurements.

[60]
Finger

(Camera)
Systolic peak

Pre-processing including

low-pass filtering,

high-pass filtering, peak

detection and removal of

motion artifacts.

PPG-based PRV

indices had small

deviation in

comparison to

ECG-based HRV

indices.

[66] Finger

Minimum peak

of averaged first

order derivative

PPG denoising and

detrending using the

empirical mode

decomposition method

followed by selection of

largest negative value of

the first derivative of the

down-slope phase.

PPG variability

parameters are highly

correlated with the

HRV parameters and

could be used as an

alternative to HRV

measurement.

[67]
Earlobe,

finger

Diastolic peak

(trough of the

pulse)

—

PRV features from

PPG and HRV

features from ECG

were found to be

similar. The finger

PRV and earlobe PRV

can be used as

surrogates for HRV.

[68]

Dorsal

side of the

wrist

—

Pulse frequency

demodulation (PFDM)

extracted the

instantaneous heart rate

frequency directly from the

pulse wave.

PFDM of the pulse

wave signal provided a

reliable estimation of

PRV and showed good

agreement with HRV.
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Table 4.2: HRV extraction from pulse waveforms recorded at di↵erent sensing locations. Studies
are grouped according to the pulse sensing method.

Ref.
Sensing

Location

Characteristic

Point
Algorithm Remarks

[69] Earlobe —

Analysis software using the

first order derivative of

PPG as the feature signal.

PRV and HRV

parameters showed a

good agreement but

PRV should only be

used for the screening

purposes and not

medical decisions.

Blood pressure waveform studies

[70]
Finger

(Finapres)

Pressure wave

maxima

Peak detection using

in-built Finapres software

Spectral HRV

parameters were

statistically di↵erent

during standing and

exercise, but not in

supine and controlled

breathing conditions.

[71]

Finger

(Colin

system)

Systolic peak

IBIs extracted using slope,

peak and correlation

detection.

BP waveform does not

reflect HRV precisely

but can be considered

as an alternative to

ECG with the slope

detection method.

[63]
Finger

(Finapres)

Peaks and

troughs of BP

waveform

Systolic peaks extracted

using the in-built software

were used to find the IBI

time series.

High HRV reliability

between the two

methods, however, HF

indexes were found to

be less precise.

[72]
Finger

(Finapres)
—

Heart instantaneous

frequency algorithm to

track HRV frequency

around a PSD estimated

fundamental frequency.

Statistically similar

time-frequency HRV

measurements

between BP and ECG

waveforms.

[73]
Finger

(Finapres)
—

Peak detection using

in-built Finapres software.

PRV does not reflect

the HRV accurately,

but it can be accepted

as an alternative to

ECG.

Impedance plethysmography studies
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Table 4.2: HRV extraction from pulse waveforms recorded at di↵erent sensing locations. Studies
are grouped according to the pulse sensing method.

Ref.
Sensing

Location

Characteristic

Point
Algorithm Remarks

[74] Forearm Onset of pulse

Diastolic point identified

using product of digitised

signals from first and

second order derivative

followed by weighted and

frequency filter.

High sensitivity and

accuracy indicated

close agreement for

variability analysis

with two operators.

[64]

Radial

artery

(Wrist)

—

Heartbeats are identified

using the the

cross-correlation and

template matching.

HRV analysis

performed using root

mean square of

successive di↵erences

in the heart beat

interval showed strong

agreement with ECG.

Both ECG and PPG allow recording of the electrical and optical characteristics of

the cardiac activity. However, the recent advances in the development of electrome-

chanical sensors have made it possible to monitor the mechanical activity of the heart

by using mechanocardiography techniques. These techniques capture the micro-motions

of the site under test by measuring the recoil forces [75]. Seismocardiography (SCG)

is one such method which measures accelerations caused by respiration and myocardial

motions in the chest wall using miniaturized high-resolution and low-noise accelerome-

ters [76]. While the SCG in relation to the cardiac activity has mainly been explored

to monitor the heart rate, some studies have also extended its usage in extracting the

HRV in an unobtrusive manner using the beat-to-beat resolution. Wahlström et al. [77]

proposed a hidden Markov model approach to process the SCGs recorded using an ac-

celerometer along the dorsoventral axis from 66 subjects. The algorithm described the

heartbeat vibrations with a hidden Markov model and learned the related parameters

using the Baum-Welch method. The most likely sequence of states was then found using

the Viterbi algorithm to estimate the time point of each individual heartbeat. The algo-

rithm achieved a mean absolute error of 5 ms for the IBI estimation in comparison to the

ECG-based IBIs. Tadi et al. [78] used a tri-axial MEMS accelerometer to record SCGs

in supine, left and right recumbent positions from 30 subjects. The heartbeat timings

were identified using the Hilbert adaptive beat identification technique and a high cor-

relation and agreement between the IBIs extracted from SCG and ECG were observed.
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The accelerometer in the smartphone has also been utilised to record the SCGs. Lan-

dreani et al. [79] recorded the SCG signal from 9 subjects by positioning the 3-orthogonal

axis accelerometer (available in the smartphone mobile device) on the subject’s thorax in

supine and standing postures. The characteristic points corresponding to the isovolumet-

ric contraction in the SCG signal were identified using a fully automated algorithm based

on amplitude thresholding and rectification. A strong correlation and narrow limits of

agreement were obtained when compared to the RR interval series. The cardiac beats

in the SCG signal were identified with 98% accuracy. The same dataset recorded during

the supine posture was used in [80] to extract the beat-to-beat systolic complex from

the SCG signal. The proposed algorithm utilised Newtonian equations of kinematics

to calculate the linear power followed by its decomposition as a set of functions using

the quadratic spline wavelet. Further, the continuous wavelet transform was applied to

extract the peaks corresponding to the systolic complexes. A high sensitivity of 0.995,

positive predictive value of 0.974 and narrow confidence interval of ±35 ms were obtained

when identifying a total of 2816 beats in comparison to the RR intervals. The integration

of an accelerometer and a gyroscope in an inertial measurement unit (IMU) to utilise

their functionality with higher degrees-of-freedom have also been used to record the SCG

signal [77], [81]. Kaisti et al. [81] used such an embedded sensor array to measure the

cardiogenic motions of the upper chest from 29 healthy subjects and 12 subjects with

coronary artery disease. The beat-to-beat detection was performed using the wavelet

enhancement and clustering techniques by utilising the features inherent to the signal

envelope and the signal morphology. While a small average root mean square error of 5.6

ms between the mechanical- and ECG-based IBIs was obtained for the healthy patients,

a 10-fold increment was observed for the heart disease patients.

Another approach to measure the body recoil forces is known as ballistocardiography

(BCG). BCG, as one of the most promising unobtrusive techniques, has recently gained

wide attention in the research community. A ballistocardiograph records the mechanical

activity of the heart by measuring the body recoil forces resulting from the blood ejection

in each cardiac cycle [82]. While the BCG technique has been known for a number of

years, modern BCG systems integrated in beds, chairs, pillows, mattresses, scales etc.

provide an unobtrusive and comfortable way of monitoring the cardiopulmonary activity

for subjects requiring a prolonged monitoring [83]. The research concerning BCG signal

mainly focuses on the coarse estimation of the heart rate because of the presence of mul-

tiple fiducial points. However, some of the algorithms detect individual heart beats from

the BCG signal for advanced applications such as HRV analysis or sleep staging. Jiao et

al. [84] utilised a hydraulic bed sensor consisting of a transducer and a pressure sensor to

record the BCG signal from 40 subjects. The transducer was placed under the subject’s

torso to measure the heartbeat vibrations along with an interference from the respira-

tory activity. Although the individual heart beats in the BCG signal were identified
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using a multiple instance dictionary learning approach, the results were only compared

for an average heart rate computed over a one-minute window. The IBI comparison with

the PPG signal resulted in 4.07% mean relative error over 40 subjects. BCG signals

from bed-based systems have also been recorded by installing multiple strain gauges in

a Wheatstone bridge configuration to the slatted frame of the bed [82], [83], [85]. The

algorithms based on adaptive training were proposed in [83], [85] to estimate the beat-

to-beat intervals from the BCG signals. The method employed an unsupervised learning

approach to extract features from the first 30 s of the BCG data. Further, K-means

clustering was used to identify the cluster of feature vectors. The results in both the

studies showed a coverage of more than 95% with respect to the ECG signal. The algo-

rithm in [82] also used an unsupervised learning approach to extract feature vector from

the local maximum of the first derivative of the BCG signal. An overall detection rate

of 83.9% was obtained for 7 subjects in four di↵erent lying positions. Brüser et al. [86]

extended the previous work by acquiring the BCG signal from 33 subjects using a sin-

gle electromechanical film sensor placed on the top of a mattress. Instead of employing

a common peak-detection technique to estimate the IBIs, an approach based on pitch

tracking to estimate the varying fundamental heart rate frequency by means of continu-

ous local interval estimation was proposed. Unlike the previous algorithm, this method

neither required a training phase nor any prior knowledge about the morphology of the

heart beats in the analysed waveforms. However, the assumption that the consecutive

heart beats in the BCG signal have similar morphology limits the use of the proposed

algorithm in cases where an interference from the motion artifacts is present. The com-

parison with ECG-based IBIs yielded a mean error of 0.78%. The beat-to-beat intervals

from the BCG signal have also been extracted using di↵erent types of template matching

algorithms [87]–[89]. These methods are based on the reasoning that while the fiducial

points in the BCG signal are sensitive to any external interference, the signal patterns

repeat themselves with each heart beat. Wang et al. [87] based the BCG processing on

this assumption and used a segmented dynamic time warping approach to estimate the

beat-to-beat heart rate. The signals were recorded from 20 subjects using a modified

electronic weighing scale. The IBI comparisons between JJ intervals (BCG) and RR

intervals (ECG) produced an error of ±19 ms for the 95% confidence interval. Krej et

al. [90] installed a Fiber Bragg grating sensor in magnetic resonance imaging system to

record the BCG signals from 8 subjects. The heartbeat positions were found using the

local maximum of a detection function incorporating enhanced characteristics in com-

parison to the original signal. The detection function was determined by implementing a

cascade of digital filters. A mean error of -0.62 bpm and the limits of agreement between

-12.28 bpm and 11.04 bpm were obtained with respect to the IBIs estimated from the

ECG signal. Optical-based BCG sensing using three IR-LEDs and one photodiode setup

in a bed have also been performed for unobtrusive cardiac monitoring [91]. The optical
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sensing works on the principle that any mechanical movements of the body deforms the

air enclosures of the mattress, therefore, altering the path of the light. The photodiode

detects such changes and produces a corresponding signal. An algorithm quite similar

to [86] was implemented to achieve a relative error of 1.46% and 25.7% for the intervals

estimation in the best and the worst channel respectively. Apart from bed- and mattress-

based sensing systems, the BCG signals have also been collected by installing sensors on

the chair top [92]. The ballistic force from 7 subjects was measured with a piezoelectric

sensor fixed with an adhesive tape to the bottom side of the seat of a common o�ce

chair. The proposed algorithm utilised the continuous wavelet transform with splines

to reduce the e↵ect of noise and interference. It involved a learning stage to define the

initial thresholds for the identification of BCG peaks using adaptive thresholding. In

comparison to the ECG, a mean error of -0.03 bpm and 95% confidence intervals of ±2.7

bpm were obtained.

An emerging approach for unobtrusive monitoring of the cardiac activity is based on

radar sensing technology. Radar-based systems are designed to work without interfer-

ing with the daily activities of a user making the cardiac monitoring very user-friendly.

These systems typically use Doppler radar to observe the phase shift in the transmit-

ted microwave signal that is scattered back depending on the modulation caused by the

subject’s torso movements. The reflections from the body surface of the subject are

dominated by cardiopulmonary activities in the radar measurements [93]. Di↵erent algo-

rithms have been proposed in the literature to utilise the radar echo signal and extract

the cardiac information at a beat-to-beat resolution. This is generally di�cult even in a

clean radar signal since it is not as sharp as the ECG or PPG signal [94]. The approach

in [94] utilised a 2.4 GHz Doppler radar at a distance of 1.5 m and modelled the heart

beat signal using a Gaussian pulse train. A combined autocorrelation and frequency-

time phase regression technique was further used for high accuracy detection of the heart

rate. The extracted IBIs showed an error of less than 2% in comparison to the PPG

measurements and a high agreement was observed. The Doppler radar sensors have also

been used in [95], [96] for the HRV analysis. While the IBIs in [95] were extracted using

the time-frequency analysis utilising filter banks, the study in [96] used the approach of

continuous wavelet transform and ensemble empirical mode decomposition to separate

the cardiopulmonary activity. Both the studies showed a high level of agreement between

the radar-extracted and the ECG-extracted HRV features. Bakhtiari et al. [97] recorded

the cardiac information using a custom designed remote millimeter wave (mmW) I-Q

sensor. The sensor allowed a remote and contactless measurement of the cardiac activity

at relatively long stando↵ distances. The beat-to-beat heart rate was determined from

only one subject using a parameter optimisation method based on the nonlinear Leven-

berg Marquardt algorithm. Although the reliability of the system was compared against

a commercially available laser vibrometer, the study did not present the comparison of

160



HRV parameters.

As a summary, HRV monitoring techniques can be broadly divided into three groups.

The first group includes ECG as the gold standard approach to extract HRV by sensing

the electrical activity of the heart and continuously measuring the R-R peak intervals.

The second group records the pulse wave using methods such as PPG, blood pressure

waveform and impedance plethysmography to measure the HRV. These approaches typ-

ically use optical sensors at di↵erent locations of the body and measures volumetric

changes in the blood flow. While both the first and the second groups are based on

contact sensing, the third group records the mechanical movements of the heart using

contactless techniques such as BCG, SCG and radar-based sensing. The Task Force of the

European Society of Cardiology and the North American Society of Pacing and Electro-

physiology [20] recommends HRV extraction from either the long-term 24-hour recordings

or short-term 5-minute recordings. Although mechanocardiography techniques provide

an unobtrusive manner of monitoring the cardiac activity, they constrain the subject to

be present in clinical settings and are not feasible for long-term 24-hour HRV monitoring.

The signals recorded using these techniques require advanced signal processing methods

since the SNR is much lower than ECG and PPG signals [94]. A high sensitivity to-

wards body movements put further limitations on the use of these techniques for HRV

measurements [81]. It is because of these constraints that the long-term HRV is typically

monitored using ECG and PPG-based sensing methods. Although the long-term HRV

monitoring is usually recommended, the rise in battery-driven wearable systems (mainly

PPG-based) have allowed researchers to extract HRV parameters from short-term phys-

iological recordings. However, the limited processing capability of these systems imposes

constraints on the algorithm design. Therefore, in principle, even when the processing

capabilities of the processors have enormously increased, it is still desirable to develop

simple algorithms with high numerical e�ciency without trading o↵ significantly on the

detection results [26]. In combination to the low processing complexity, a feasible peak

detection algorithm should also be robust to the noise sources and function properly

without requiring any manual or patient-specific adjustment of the parameters . The

subsequent sections discuss the data acquisition protocol followed in this study and pro-

poses a low complexity algorithm to measure the short-term HRV by extracting S1-S1

inter-beat intervals from the acoustic signal recorded at the wrist.

4.3 Data acquisition protocol

The previous chapters proved the feasibility of recording the acoustic pulse signal from

the radial artery using a miniaturised, battery-operated wearable data acquisition system.

The pulse sounds were recorded using a MEMS microphone placed on the radial artery

and the data was transmitted over a Bluetooth channel to a nearby base station. In

addition to the average heart rate estimation from these acoustic signals, this thesis
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also explores the possibility of extracting the HRV profile of a subject by acoustically

recording the pulse from the radial artery at the wrist. For the HRV database, the

acoustic data was digitised at a sampling frequency of 2100 Hz with 12-bits of ADC

resolution. Since the HRV measurements are generally obtained using the gold standard

approach of ECG with a recent emphasis on the PPG, the synchronous recordings of Lead

I ECG signal from the chest and PPG signal from the index finger were also acquired

using the state-of-the-art SOMNOscreen monitor [18]. The ECG and PPG signals were

sampled at 256 Hz and 128 Hz respectively among di↵erent options available in the device.

The SOMNOscreen monitor also provided the RR-intervals and heart rate profile as a

reference by processing the ECG data using an inbuilt algorithm, the details of which are

not available publicly. Since these references were only obtained from the ECG signal,

the inter-beat intervals and the beat-to-beat heart rate corresponding to the PPG signal

were extracted by simply locating the systolic peaks using the peak detection method

in MATLAB software. A total of 12 healthy subjects with an age between 19 and 42

were asked to relax for 5 minutes on a chair with a comfortable back and arm support.

It was also ensured that for normal functioning of the cardiac activity, the subjects did

not exercise and consume any food or beverage in the last hour prior to the recording.

Although the data was collected in an uncontrolled environment, the subjects were asked

to remain silent and minimise the wrist movement to avoid the introduction of any

external motion artifacts in the recording. A synchronous recording of the acoustic pulse

signal, ECG and PPG signals were made for a total of 5 minutes duration for every

subject. The subsequent section discusses the S1 extraction algorithm to derive the IBI

time-series from the acoustic signal.

4.4 S1 waveform extraction method

The algorithm proposed in this work is based on using the relative energy method to

extract the short-term events of the S1 sound waveforms from the acoustic pulse signal by

utilising the relative information between short- and long-term energies of the signal [13].

It is based on the principle that the power contained in the S1 waveform even in the

presence of motion artifacts is significantly higher than the power in the baseline of

the acoustic signal. Similar to the QRS enhancement stage in Fig. 4.1, the method

computes a coe�cient vector which, when multiplied with the original signal, amplifies

the S1 event and attenuates the energy of the surrounding transitions. The calculation of

the coe�cient vector involves an optimal choice of short- and long-term window lengths to

extract the waveform of interest from the signal. For every sample n of the acoustic signal

y, the coe�cient vector c(n) is defined as the ratio of the short- and long-term squared

energies of the signal computed within two sliding windows, sw and lw respectively.
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c(n) =

P
n+sw
i=n�sw

|y(i)|2
P

n+lw
j=n�lw

|h(j)⇥ y(j)|2
(4.1)

The squared energy in Eq. 4.1 is calculated around the sample centred at n where the

parameters sw and lw represent the half-lengths of the short and long sliding windows,

respectively. For boundary points, only samples which can fit on either sides of the sliding

windows are used. The parameter h denotes the Hamming window function with twice

the length of lw. The output signal yre is determined by the element-wise multiplication

(sample-by-sample basis) of the coe�cient vector and the original acoustic signal for a

total of N samples as follows:

yre(n) = c(n)⇥ y(n), 8 n 2 [1, N ] (4.2)

The multiplication modulates the original signal based on the behaviour of the coef-

ficient signal. Since the coe�cient vector generates a higher weight for the waveforms

containing higher energies, the modulation heightens the impulse-like events and attenu-

ates the regions carrying lower energies. However, such a behaviour can only be obtained

with an optimal choice of the sliding windows. As a rule, the length of the window sw

should ideally be equal to the maximum duration of the waveform of interest present

in the signal. The duration of the longer window lw should be chosen to reflect the

long-term behaviour of the signal, however, care should be taken as a significantly longer

length can make the variations in sw insignificant.

As an illustration, the successive steps of the relative energy algorithm implemented

on a 5-seconds block of the input acoustic pulse signal are plotted in Fig. 4.2. The goal

of the algorithm is to extract all the S1 waveforms and attenuate the surrounding noisy

transitions. This is achieved by using a short- and a long-term sliding window of time

duration equal to 0.2 and 1 second, respectively. The normalised short-and long-term

energies of the signal are plotted in Fig. 4.2(b). It can be observed that the short-term

energy reflects the sudden changes in the signal whereas the long-term energy represents

a slowly changing behaviour of the signal. The coe�cient vector thus obtained amplifies

the S1 regions of interest by attenuating the nearby transitions resulting in a cleaner

output signal as shown in Fig. 4.2(d).

It is understood that the relative energy algorithm works e�ciently in cases where the

short-term events of the S1 waveforms in the acoustic signal are characterised by a local

change in the amplitude. The STFT analysis in the previous chapter showed that the S1

waveforms contain higher power as compared to the nearby signal oscillations. There-

fore, the proposed S1 waveform extraction method can robustly identify these regions of

interest by discarding the baseline activity.
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Figure 4.2: Relative energy algorithm implemented on the acoustic pulse signal. (a) Original
input acoustic signal consisting of di↵erent S1 waveforms. (b) Normalised short-
and long-term energies of the input signal depicting numerator and denominator in
Eq. 4.1. (c) The coe�cient signal, c(n). (d) The output signal, yre(n).

4.5 Peak detection algorithm

The S1 waveform in the output signal demonstrates two di↵erent morphological variations

for di↵erent subjects as shown in Fig. 4.3. This variation is characterised in terms of

the waveform transitioning from a positive peak (APSp) to the zero crossing (APSz) to

a negative peak (APSn) and vice-versa. For the same subject, it is empirically observed

that these characteristics of the S1 waveform does not change over the length of the

acoustic recording.

An accurate estimation of the HRV requires precise localisation of the S1 waveform in
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Figure 4.3: Morphological variations in the pulse waveform. (a) Acoustic pulse transitioning
from a positive peak to zero crossing to a negative peak. (b) Acoustic pulse transi-
tioning from a negative peak to zero crossing to a positive peak. Symbol ⇥, � and ⇧
denotes the positive peak (APSp), zero crossing (APSz) and negative peak (APSn)
respectively. Symbol ⇤ represents the nearest zero crossings on either sides of APSz.

the time-domain. Since the S1 waveform can be localised using 3 di↵erent characteristic

points, it is important to identify all of them and compare their corresponding accura-

cies in the HRV analysis. This comparison will allow to understand the reliability of a

particular characteristic point in representing the S1 waveform as a single time-index.

The algorithm identifies these characteristic points by computing the squared energies

of the positive (ypre[n]) and the negative amplitudes (ynre[n]) of the output signal yre(n)

as shown in Fig. 4.4(b). The squaring process in Eq. 4.3 amplifies the higher frequen-

cies possessed by the S1 waveforms and further attenuates the nearby signal transitions.

The maximum of the energy peaks are utilised to localise the time-index corresponding

to the positive and the negative waveforms. Since the S1 waveform possesses a single

zero-crossing between the two energy peaks, the time-instance of the zero crossing can

be easily found by tracing back the original signal as shown in Fig. 4.4(c).

ypsq[n] = (ypre[n])
2

ynsq[n] = (ynre[n])
2

(4.3)

Since the relative energy algorithm utilises a local change in the amplitude (or signal

energy) to detect a short-term event, there can be instances when an input signal block

is significantly corrupted by the artifacts with amplitudes higher than the S1 waveform.

The squared energy of such an output signal can lead to an incorrect localisation of the

characteristic points. To distinguish the artifacts from the S1 waveforms, the algorithm

could incorporate the frequency-domain features computed using STFT as explained

in the previous chapter. However, the computational complexity of O(n log n) for the

STFT analysis will a↵ect the run time of the algorithm and require more computational
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Figure 4.4: Localisation of characteristic points in the signal. (a) Clipped positive and negative
waveforms of the original input signal. (b) Squared energy of the relative energy
signal with its corresponding maximum. (c) Symbol ⇥, � and ⇧ denote the time-
localisation of the positive peak (APSp), the zero crossing (APSz) and the negative
peak (APSn) respectively in the relative energy signal. Symbol ⇤ represents the
nearest zero crossings on either sides of APSz.

resources. Therefore, a trade-o↵ between an accurate S1 detection and the computational

complexity of the algorithm does exist. Instead of processing the corrupted signal in the

frequency-domain, this study only uses the time-domain features to remove the artifacts

and constrain the complexity of the algorithm to O(n). Unlike ECG, the acoustic signal

does not su↵er from the baseline wandering. Since the baseline of the acoustic signal does

not vary over the length of the recording, it is empirically observed that the following

features for the S1 waveform remains nearly constant for a subject.

1. Time width - The time di↵erence between the nearest zero-crossings indicated by

‘⇤’ on either sides of the zero-crossing denoted by symbol ‘�’.

2. Amplitude - Peak-to-peak amplitude of the S1 waveform calculated using the di↵er-

ence of the amplitudes at time locations denoted by symbol ‘⇥’ and ‘⇧’ respectively.

In cases where the acoustic signal is significantly corrupted with the artifacts, the

morphology of the S1 waveforms can possibly get a↵ected as shown in Fig. 4.5(a). This

can not only lead to an improper detection of the characteristic points but can also

include some erroneous peaks in the peak extraction process. Such peaks can be rejected

by plotting the feature space using peak-to-peak amplitude (a) and time width (w) of all

the detected peaks and calculating their corresponding standard deviations �a and �w

respectively. The feature space for the clean signal in Fig. 4.4(c) and the corrupted signal
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in Fig. 4.5(c) are plotted in Fig. 4.5(d) and Fig. 4.5(e) respectively. It can be observed

that both the features a and w corresponding to the S1 waveforms in the clean signal

yield a lower standard deviation, therefore, indicating a narrow variation as compared to

the features of the corrupted signal. This property of the feature space can be utilised

to reject the incorrect peaks present in the corrupted signal.

For an acoustic signal of 5 minutes duration, the standard deviation of the time width

for a 5 second block is defined as �wz, where z 2 [1, 60] represents each signal block. The

time intervals between the successive peaks are also found by using the time di↵erences

between the zero-crossings (denoted by symbol ‘�’) of the current and the next adjacent

S1 waveform. For a heart rate between 40 and 200 bpm, the inter-beat intervals must

lie between 300 and 1500 milliseconds respectively. Therefore, in cases where multiple

peaks are extracted within a mutual time distance of 300 milliseconds, only peak with

the highest peak-to-peak amplitude a is selected and other redundant peaks are ignored

for the further processing. Since a cleaner signal after the removal of redundant peaks

have less disparity in the feature space, the initial value of threshold �0 is determined by
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Figure 4.5: Localisation of the characteristic points in the acoustic signal corrupted with ar-
tifacts. (a) Clipped positive and negative waveforms of the original input signal.
(b) Squared energy of the relative energy signal with its corresponding maximum.
(c) Symbol x, o and ⇧ denoting the time-localisation of positive peak (APSp), zero
crossing (APSz) and negative peak (APSn) respectively on the relative energy signal.
Symbol ⇤ represents the nearest zero crossings on either sides of APSz. (d) Time-
domain features plotted for waveforms extracted in Fig. 4.4(c). (e) Time-domain
features plotted for waveforms extracted in Fig. 4.5(c).
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choosing the minimum value of �wz for the first three signal blocks. This is mainly done

because the time width of the S1 waveform demonstrates less variation over the length

of the acoustic recording. For every successive block, the relative change in standard

deviation �� is found by comparing �0 and �wz using the Eq. 4.4. A variation of less

than 0.25 in �� classifies the signal block as clean and updates the threshold �0 in Eq.

4.5 by averaging itself with the standard deviation of the current block. In cases where

the variation of more than 0.25 in �� is observed, some of the peaks in the block are

incorrectly extracted due to the presence of artifacts. Such peaks are identified and

rejected as follows:

1. Firstly, the mean µw of all the time widths in the signal block is determined.

2. Secondly, the standard deviation �wz is reevaluated by ignoring the peak with the

largest distance of its time width w from µw. As an illustration, the peak with

feature coordinates (0.067,0.732) in Fig. 4.5(e) is rejected.

3. The new �wz is subsequently used to find the variation ��.

4. These steps are reiterated by rejecting the peaks with farthest time widths from

µw until the variation �� of less than 0.25 is observed.

5. The threshold �0 is continuously updated in Eq. 4.5 by averaging itself with the

new standard deviation �wz of the current block.

�� =
|�wz � �0|

�0
(4.4)

�0  �
�0 + �wz

2
(4.5)

For the corrupted signal in Fig. 4.5(c), only the fourth peak is rejected as its removal

produces a �� of value less than 0.25.

After the removal of erroneous peaks from the acoustic signal, the S1 waveforms can

be easily localised using the time-indices of all the characteristic points to derive three

di↵erent IBI and IHR profiles per subject. The number of S1 waveforms extracted in the

zth signal block of 5 seconds duration is Nz. The time-index of the positive characteristic

point defined as tpm, for the beat number m 2 [1, Nz � 1] can be utilised to calculate the

IBIp and IHRp profile as follows:

8 m 2 [1, Nz � 1]

IBIpm = tp
m+1 � tpm

IHRp

m =
60

IBIpm

(4.6)

The IBI and IHR determination in Eq. 4.6 are repeated corresponding to the time-indices

of the zero crossing (tzm) and the negative characteristic points (tnm) respectively.
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4.6 Results and discussion

4.6.1 Optimal choice of parameters

The performance of the proposed algorithm is dependent on the optimal choice of the

short- and long-term sliding window lengths in the relative energy method to extract the

S1 waveform. These optimal values are determined by evaluating the sensitivity (Se),

positive predictive value (PPV) and detection error rate (DER), which are defined as

follows:

Se =
TP

TP + FN
(4.7)

PPV =
TP

TP + FP
(4.8)

DER =
FP + FN

TP + FP + FN
(4.9)

where true positives (TP) denote the correctly detected S1 waveforms, false positives (FP)

specify the number of events incorrectly classified as S1 waveforms, and false negatives

(FN) refer to the count of S1 waveforms that remain undetected. Therefore, Se essentially

reflects the ability of the method to correctly extract the S1 waveforms from the acoustic

signal whereas PPV signifies the probability of the classified S1 events being truly the

S1 waveforms of interest. On the contrary, DER indicates the error in the accurate

classification of the S1 waveforms.

The optimal choice of sw and lw is determined by studying the variation of these

performance metrics, evaluated over the complete dataset for a combination of di↵erent

window lengths. The short-term window length sw is varied in the range of [0.1, 0.4] s in

steps of 0.05 s whereas the long-term window length lw is varied in the range of [1, 2.5] s

and is incremented in steps of 0.25 s. The e↵ect of sw and lw on the performance metrics

of the proposed algorithm are illustrated by plotting the contours of Se, PPV and DER

in Fig. 4.6. It can be observed that the sensitivity in Fig. 4.6(a) remains almost constant

with the variation in sw, but decreases with an increase in lw. On the other hand, PPV

does not vary much with the choice of window lengths as shown by a narrow variation

in the values of the colour bar in Fig. 4.6(b), and has a higher dependency on sw. The

minimum values on the DER contour plot in Fig. 4.6(c) indicates a dependency similar

to the Se plot. Although the analysis demonstrates that the performance of the algorithm

is almost constant over a wide variation of sw and lw parameters, this study uses 200 ms

and 1 s as the durations of the short and the long sliding windows respectively.
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Figure 4.6: E↵ect of short- and long-term sliding windows on performance metrics of the pro-
posed algorithm. (a) Contour plot for depicting variation in sensitivity (Se). (b)
Contour plot for depicting variation in positive predictive value (PPV). (c) Contour
plot for depicting variation in detection error rate (DER).

4.6.2 Time-domain HRV analysis

To assess the performance of the proposed algorithm in determining the IHR and IBIs

across 12 subjects, the following time-domain comparisons have been established:

1. Correlation analysis : In order to assess the measure of association between the

estimated output and the gold standard, the Pearson correlation coe�cient (PCC)

is computed. The line of best fit for such an association is represented by y = m⇥x

+ c, where y and x corresponds to the estimated output and the ground truth

respectively, and m indicates the slope of the line of best fit. A slope of 1 indicates

a strong positive relationship between both the outputs whereas the values nearer

to -1 signify a strong negative correlation. The R2 and root-mean-square-error

(RMSE) values indicate the measure of goodness of fit.

2. Bland-Altman analysis : In clinical applications, the Bland-Altman analysis pro-

vides a measure of statistical agreement between the estimated and the true output.

This analysis is generally performed to assess the potential of the new method in

replacing the existing one. The agreement is governed by comparing the di↵erence

with the mean of outputs derived from both the methods. The mean (µ) and the

standard deviation (�) of di↵erences between both the measures are utilised to

define the limits of agreement (LOA) as (µ ± 2 ⇥ �). For di↵erences which follow

a Gaussian distribution, 95% of the output di↵erences should lie between the two

LOAs [98]. A lower LOA suggests a higher degree of agreement between both the

methods.

3. MAE parameter : The parameters µ and � in the Bland-Altman analysis provides

the relative bias and an estimate of error between the two outputs. The mean
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absolute error (MAE) as defined in Eq. 4.10 computes the average of absolute

di↵erences between the estimated and true outputs, and therefore indicates the

overall error in the time-series analysis.

MAE =
1

N

NX

i=1

|IHRest(i)� IHRtrue(i)| (4.10)

where IHRest and IHRtrue are the estimated and true instantaneous heart rates

respectively, for a total of N heartbeats.

4. Time-domain HRV measures : To quantify the variation of IBI time-series in a

subject, the selected time-domain HRV measures as defined in [20] are also found.

The term NN interval is widely understood in the context of successive inter-beat

intervals for a chosen characteristic point. Therefore, the NN interval in this study

refers to the R-R interval in the ECG, systolic-systolic interval in the PPG and

S1-S1 interval in the acoustic signal respectively. A total of five HRV parameters

defined below are calculated to measure the time-domain variability.

• SDNN: the standard deviation of all NN intervals,

• MeanNN: the mean of all NN intervals,

• RMSSD: the root mean square of all the di↵erences between adjacent NN

intervals,

• SDSD: the standard deviation of all the di↵erences between adjacent NN in-

tervals, and

• pNN50: the percentage of the number of adjacent NN interval pairs di↵ering

by more than 50 ms (NN50) divided by the total number of NN intervals.

As discussed before, the morphology of the S1 waveform in the acoustic signal is

mainly defined by three di↵erent characteristic points. It is empirically observed that

the relative location of these points changes continuously in a subtle manner for di↵erent

S1 waveforms in the signal. Table 4.3 lists some of the performance metrics for the IHR

comparisons with respect to the synchronous ECG and PPG signals to understand the

reliability of choosing a particular characteristic point in localising the S1 waveform and

finding the heart rate accurately. The measures µ and � obtained from the Bland-Altman

comparison plot along with the MAE and accuracy of IHR determination for a total of

12 subjects demonstrate a high degree of agreement between the estimated output and

the ground truth values (ECG and PPG) for zero-crossing (APSz) as compared to the

other characteristic points. The accuracy of the algorithm is determined by calculating

the percentage of heart rate di↵erences lying within a ±5% variation with respect to the

ground truth. Although the sensitivity Se of extracting the S1 waveforms accurately are

comparable, a higher PPV and a lower DER indicates zero-crossing as a better choice
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to localise the S1 waveform. This can be justified using the fact that the presence of

artifacts in the signal can introduce certain spikes which can alter the location of APSp

and APSn by few milliseconds without a↵ecting the position of the APSz as shown in

Fig. 4.5. Since even a small variation in the time-index of the characteristic points can

introduce wide discrepancies in the heart rate, the results in Table 4.3 suggested the

usage of zero-crossing as the characteristic point for the S1 waveform in determining the

IHR profile of a subject.

Table 4.3: Performance metrics of the IHR determination for di↵erent characteristic points of
APS with respect to PPG and ECG signals for a total of 12 subjects.

Characteristic MAE (bpm) µ (bpm) � (bpm) Acc (%)
Se PPV DER

APS points PPG ECG PPG ECG PPG ECG PPG ECG

APSp 1.038 1.052 0.091 -0.019 2.409 2.731 96.28 95.55 0.976 0.965 0.057

APSz 0.646 0.602 0.051 -0.061 1.069 1.353 98.96 98.50 0.971 0.989 0.039

APSn 0.816 0.623 0.048 -0.058 1.601 1.626 97.35 98.79 0.980 0.975 0.043

The S1 waveform being localised with the time-index of the zero-crossing is used to

establish the time-domain comparisons for IHR and IBI by comparing the estimated

output of the proposed algorithm with the ground truth values of ECG and PPG signals

respectively. Fig. 4.7 and Fig. 4.8 illustrates such a comparison for one of the subjects

by plotting the IHR and IBI time-series, correlation using the line of best fit and Bland-

Altman analysis for an acoustic signal of 5 minutes duration. The correlation and Bland-

Altman comparison plot (abbreviated together as BAcorr) for the complete dataset are

also presented in Fig. 4.9 by combining the IHR and IBI time-series of all the 12 subjects.

Since the heart rate has an inverse proportionality with the inter-beat intervals, it can

be observed that their corresponding time-series variations and the BAcorr comparisons

are a mirror images of each other in the horizontal and vertical axes respectively, with

amplitudes varying by a factor of 60.

The IHR and IBI time-series obtained from the proposed algorithm indicate a close

overlap with the heart rate and RR-intervals of the ECG signal acquired using the

SOMNOscreen monitor as shown in Fig. 4.7(b) and Fig. 4.8(b) respectively. It can

be observed that the majority of these values lie within the upper and lower bounds of

±5% variation. This observation is also evident in the correlation plot which depicts a

narrow variation of the data points with respect to the line of best fit. The correlation

analysis for the complete dataset in Fig. 4.9(c) and Fig. 4.9(d) with the values of PCC

and slope of the fitted line close to 1 indicate a high degree of correlation and linear

relationship between the estimated output and the ECG ground truth. The further as-

sessment of the algorithm is performed using the Bland-Altman plot which compares

the variation of HR di↵erences (�HR) and IBI di↵erences (�IBI) with the HR averages

(µHR) and IBI averages (µIBI) respectively. The diameter of the circled data points in

the BAcorr plots increases corresponding to the number of points coinciding on the same
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Figure 4.7: IHR comparisons for subject 8. (a) Full IHR time series, correlation analysis and
Bland-Altman plot between APS- and PPG-derived HR. (b) Full IHR time series,
correlation analysis and Bland-Altman plot between APS- and ECG-derived HR.

location. A near zero bias and LOAs of around 2.2 bpm and 0.02 seconds for the IHR and

IBI comparisons in the complete dataset indicate a high degree of statistical agreement

between the outputs obtained from the proposed algorithm and the ECG signal.

The results of the proposed algorithm are also compared with the heart rate and beat-

to-beat intervals of the PPG signal recorded synchronously using the SOMNOscreen

monitor in Fig. 4.7(a) and Fig. 4.8(a) respectively. It can be observed that a strong

correlation between the IHR and IBI outputs in these plots exist, with PCC and slope of

the fitted line obtaining values close to 1. The Bland-Altman plot also establishes a high

degree of statistical agreement between the estimated and the PPG output with a near
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Figure 4.8: IBI comparisons for subject 8. (a) Full IBI time series, correlation analysis and
Bland-Altman plot between APS- and PPG-derived IBI. (b) Full IBI time series,
correlation analysis and Bland-Altman plot between APS- and ECG-derived IBI.

zero bias and LOAs of around 1.1 bpm and 0.02 seconds for IHR and IBI comparisons

respectively. For the whole dataset, the BAcorr comparisons for the PPG signal are

plotted in Fig. 4.9(a) and Fig. 4.9(b), where a near zero bias and LOAs of around

2.6 bpm and 0.03 seconds for the IHR and IBI comparisons are obtained respectively.

A high degree of correlation and statistical agreement with more than 95% of the data

points lying within the narrow LOAs suggests that the proposed algorithm is capable

of extracting the instantaneous heart rate profile from the acoustic signal accurately.

Although the performance metrics for the PPG and ECG comparisons are quite similar,

few of the data points in the PPG analysis demonstrates wide variation. This is mainly
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Figure 4.9: IHR and IBI comparisons for the complete dataset. (a) Correlation analysis and
Bland-Altman plot between APS- and PPG-derived HR. (b) Correlation analysis and
Bland-Altman plot between APS- and PPG-derived IBI. (c) Correlation analysis and
Bland-Altman plot between APS- and ECG-derived HR. (d) Correlation analysis
and Bland-Altman plot between APS- and ECG-derived IBI.
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because of the high sensitivity of the PPG signal towards the motion artifacts which may

introduce erroneous peaks and possibly lead to an incorrect systolic peak detection.

The NN intervals determined by localising the zero-crossing of the S1 waveform in

the acoustic signal, R-peak in the ECG signal and systolic peak detection in the PPG

signal can be utilised to measure the corresponding HRV. Table 4.4 lists the time-domain

HRV parameters for every subject in the database to compare the variation of inter-beat

intervals in APS, ECG and PPG signals respectively. SDNN is computed by taking the

square root of the variance of the NN intervals. Since the variance reflects the total

power of the spectral analysis, SDNN estimates the cycle lengths of the components

responsible for the variability in the signal over the length of the recording [20]. The

standard deviation of successive NN interval di↵erences (SDSD) represents the short-

term variability in the inter-beat intervals whereas MeanNN indicates the bias of this

short-term variation [99]. The other metrics obtained from interval di↵erences include

RMSSD and pNN50 which estimates the high frequency variations in the instantaneous

heart rate of the subject. For pNN50, the NN50 count in this study includes all the

adjacent NN intervals for which the di↵erence is more than 50 ms irrespective of whether

the first or second interval is longer.

For all the time-domain HRV parameters in Table 4.4, a very close agreement between

the APS and PPG measures can be observed with low values of the median of percentage

di↵erences. A relatively larger variation in the measures of APS and ECG comparisons

are obtained. This di↵erence is attributed to the fact that the APS and the PPG signals

record the pulse wave at the wrist and finger respectively, whereas the ECG records the

heart activity at the chest. Therefore, a finite propagation time exists between the onset

of the R-peak and the onset of the pulse wave at a peripheral site. Although the HRV

Table 4.4: Time-domain HRV parameters for IBI estimated from APS, PPG and ECG signals.

Subject
SDNN (ms) SDSD (ms) MeanNN (ms) RMSSD (ms) pNN50 (%)

APS PPG ECG APS PPG ECG APS PPG ECG APS PPG ECG APS PPG ECG

1 58.02 57.72 59.09 29.11 28.52 38.15 835.51 835.45 834.89 29.06 28.52 38.09 5.73 5.44 6.88

2 45.46 45.73 44.84 40.61 41.69 38.92 873.67 873.72 872.66 40.54 41.62 38.86 20.59 21.19 20.89

3 77.81 77.86 74.87 72.76 73.59 68.69 922.18 922.23 921.74 72.64 73.47 68.57 34.28 36.79 31.45

4 44.34 44.65 43.88 42.71 43.59 42.50 900.49 900.52 900.08 42.64 43.52 42.44 25.00 25.31 26.87

5 49.16 48.84 48.06 50.71 49.99 49.08 864.11 864.14 863.79 50.64 49.91 49.01 31.58 30.99 34.50

6 58.00 57.12 56.28 43.13 40.82 39.98 850.48 850.53 850.08 43.07 40.76 39.92 22.92 20.92 21.20

7 44.24 44.47 44.16 31.94 32.00 31.64 948.16 948.22 947.59 31.89 31.95 31.59 11.55 11.22 12.04

8 60.88 60.85 60.87 46.68 45.42 47.04 1059.72 1059.67 1059.44 46.59 45.33 46.95 27.98 25.75 27.61

9 65.81 64.39 63.74 62.51 58.54 58.43 853.17 853.15 852.94 62.41 58.44 58.34 35.91 32.05 33.83

10 40.11 39.44 38.33 34.73 32.26 29.65 809.29 809.33 809.02 34.67 32.22 29.61 13.39 9.97 8.83

11 69.39 67.69 55.79 88.41 83.16 68.24 738.65 738.22 736.52 88.26 83.02 68.12 28.09 29.01 25.00

12 92.69 92.00 90.06 84.94 84.12 82.30 857.35 857.46 855.52 84.79 83.98 82.16 37.57 37.87 37.28

m1 58.01 57.42 56.03 44.91 44.51 44.77 860.73 860.80 859.65 44.83 44.42 44.69 26.49 25.53 25.93

m2 – 0.31 1.41 – 0.77 2.16 – -0.04 0.43 – 0.77 2.15 – 0.31 0.33

m3 – 0.58% 2.54% – 1.72% 3.69% – -0.01% 0.05% – 1.65% 3.68% – 2.36% 1.05%

p – >0.05 >0.05 – >0.05 >0.05 – >0.05 >0.05 – >0.05 >0.05 – >0.05 >0.05

m1: median across all the subjects. m2: median of the di↵erence between APS and reference output. m3: median of the percentage di↵erence

compared to APS output. p: probability value computed using the Wilcoxon rank sum test.
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at the chest and the peripheral sites are generally in close agreement for the subjects at

rest [66], they do possess minor di↵erences depending on the pulse wave velocity and the

pulse transit time through the arterial system. These parameters can vary significantly

with the blood pressure, arterial sti↵ness and age of the subject [62]. Since the APS

and PPG signals are recorded from the locations which are very close to each other in

comparison to the ECG recording site, the variance between the synchronised APS and

PPG data is significantly lower. As a result, the APS and ECG measures for the HRV

comparisons are not expected to be identical, but they are indeed in close agreement.

The Wilcoxon rank sum test [100] is also used to estimate the p-value and test the null

hypothesis that the HRV measures from the acoustic signal are not significantly di↵erent

from the PPG- and ECG-based HRV measures. Thus, two p-values are generated for

every HRV parameter in Table 4.4. For all the time-domain measures, the obtained p-

values at the 5% significance level indicate that there is not enough evidence to reject

the null hypothesis, and thus conclude that the HRV estimations using the proposed

algorithm yields a high degree of statistical agreement with the HRV estimations obtained

from PPG and ECG signals respectively.

4.6.3 Frequency-domain HRV analysis

For the short-term recordings of 5 minutes duration, the frequency-domain HRV mea-

sures provide a better physiological interpretation as compared to the time-domain HRV

analysis. The spectral analysis of the IBI tachogram provides vital information about the

distribution of power in di↵erent frequency bands which are mainly divided into three

components: very low frequency (VLF) for frequencies lower than 0.04 Hz, low frequency

(LF) for frequencies between 0.04 and 0.15 Hz, and high frequency (HF) for frequencies

between 0.15 and 0.4 Hz respectively. The total power (TP) in the bandwidth of 0.4

Hz is determined by adding the power from all the individual components. While the

VLF component does not provide an interpretation during the spectral analysis of the

short-term recordings, the power distribution and the central frequency of the LF and

HF bands reflect the variations in the autonomic modulations of the heart activity [20].

The spectral analysis of the acoustic signal is performed by plotting the IBI tachogram

with the di↵erence of the time-indices of the adjacent peaks (Ni-Ni�1) on the y-axis

and the time occurrence of the second peak (Ni) on the x-axis. This produces an ir-

regularly sampled time-domain signal as shown in Fig. 4.10(a). In case of a continuous

IBI tachogram, some of the IBI values can correspond to the corrupted regions of the

signal leading to an inaccurate HRV analysis. The HRV spectra of such a tachogram

can simply be obtained by calculating the power spectral density (PSD) of the corrupted

sections of the data beforehand and removing these already known PSD contributions

from the overall PSD of the IBI tachogram. However, identifying the PSDs of the arte-

facts in isolation is a challenging task and would require multiple features to separate
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Figure 4.10: HRV spectra for acoustic signal recorded from subject 10. (a) NN interval
tachogram with its corresponding mean and variance. (b) VLF, LF and HF central
frequency and power in absolute value, calculated by a FFT based non-parametric
algorithm. The LF component is indicated by dark shaded areas and the HF com-
ponent by light shaded areas. (c) VLF, LF and HF central frequency, power in
absolute value and power in normalised units (n.u.), calculated by parametric au-
toregressive modelling. In (a) and (b), the peak frequency and the power were
calculated by integrating the PSD in the defined frequency bands.

the spectral content of the artefacts from the pulse sounds. Due to this reason, the IBIs

which produce heart rate outside the range of 40 to 200 bpm due to an incorrect detec-

tion or missed detection of the S1 waveform are ignored leading to some missing data

points in the tachogram. The HRV spectra can be obtained using the PSD analysis of

the NN interval tachogram by employing either the non-parametric or the parametric

methods. Although both the methods provide comparable results for the PSD analysis,

one has certain advantages over the other [20]. While the non-parametric methods are

simple to implement and faster to execute, the parametric methods provide smoother

spectral components to easily distinguish between di↵erent frequency bands, therefore,

allowing an easy post-processing of the HRV spectrum [101]. However, the complexity

of the parametric methods can vary based on the requirement of a proper selection of

the autoregressive model. In this study, the non-parametric method is used to estimate

the absolute measure of the Lomb-Scargle PSD [102] by processing the signal that is un-

evenly sampled. On the contrary, the autoregressive PSD estimates using the parametric

method are computed by employing the covariance method to produce smoother spectral
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components. The spectral components are measured in absolute units of power (ms2) by

integrating the PSD in the defined frequency bands. The normalised LF and HF compo-

nents denoted by LF and HF respectively, and defined in Eq. 4.11 are also determined.

The normalisation minimises the e↵ect of total power variation on these components, and

therefore reflect the balanced behaviour of sympathetic and parasympathetic branches

of the autonomic nervous system [20]. The LF/HF ratio is also computed to indicate the

sympathetic modulations.

LF =
LF

TP�VLF
⇥ 100

HF =
HF

TP�VLF
⇥ 100

(4.11)

As an illustration, Fig. 4.10(b) plots the non-parametric Lomb-Scargle PSD estimate

of HRV and indicates the peak frequency and power of VLF, LF and HF components in

absolute units respectively. The parametric PSD estimate is plotted in Fig. 4.10(c) where

the LF and HF components in normalised units along with LF/HF ratio are also listed.

It can be observed that the parametric HRV estimation produces smoother spectral com-

ponents when compared to the non-parametric plot, but the central frequencies of the

bands remain almost similar in both the estimates. Table 4.5 lists the frequency-domain

HRV parameters for the acoustic signal in absolute (ms2) and normalised units (nu) com-

puted using the FFT-based non-parametric estimation for every subject in the database.

Table 4.5: Frequency-domain HRV parameters for IBI estimated from APS using FFT based
non-parametric algorithm.

Subject
TP VLF LF LF HF HF

LF/HF
Correlation

(ms2) (ms2) (ms2) (nu) (ms2) (nu) LF HF

1 9077.85 3653.10 4001.31 73.76 1423.44 26.23 2.81 1.00 0.96

2 3676.59 1313.97 893.24 37.80 1469.38 62.19 0.61 0.99 0.98

3 10957.99 985.53 5375.04 53.89 4597.41 46.10 1.16 1.00 0.99

4 2935.34 695.19 1389.44 62.02 850.70 37.97 1.63 1.00 0.99

5 4135.63 980.16 1505.36 47.70 1650.10 52.29 0.91 0.99 0.97

6 4643.18 1868.12 1238.60 44.63 1536.45 55.36 0.80 1.00 0.97

7 2261.99 1306.09 513.34 53.70 442.55 46.29 1.15 0.99 0.94

8 2815.81 1263.34 818.19 52.70 734.26 47.29 1.11 0.99 0.94

9 8384.40 2204.04 3370.89 54.54 2809.45 45.45 1.19 1.00 0.97

10 3778.55 821.61 1859.28 62.87 1097.65 37.12 1.69 0.99 0.93

11 9668.28 2160.00 2241.61 29.85 5266.66 70.14 0.42 0.99 0.98

12 14515.31 3803.90 5941.03 55.46 4770.37 44.53 1.24 0.99 0.99

LF: LF norm. HF: HF norm. nu: normalised units.
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The Pearson correlation values for the LF and HF components are also determined to

compare the HRV obtained from the proposed algorithm with the reference HRV from

the PPG signal. The results in Table 4.5 suggests a high correlation between both the

HRV estimates for the LF and HF components. Therefore, similar to the time-domain

HRV measures, the frequency-domain HRV measures also demonstrate a high similarity

between the HRV derived from the acoustic signal and the PPG signal respectively.

4.7 Conclusion

In order to demonstrate the possibility of extracting the HRV from the acoustic signals

recorded at the wrist, an algorithm based on the relative energies of the short- and the

long-term signal content was proposed. The algorithm identified three di↵erent charac-

teristic points to find the temporal location of the S1 waveforms on a beat-by-beat basis

in the acoustic signal. The IHR and IBI profiles obtained from the proposed algorithm

for 12 subjects were compared with the gold standard ECG and PPG signals respectively

and a high degree of statistical agreement and correlation for the time-domain HRV was

obtained. The comparison of the frequency-domain HRV measures obtained from the

acoustic signal with the reference PPG signal also proved that the proposed algorithm

can reliably detect the instantaneous changes in the IBI time-series.

Finally, the computational complexity of the proposed algorithm is determined by

analysing the complexities of its individual blocks. Although the HRV in this study was

derived from the short-term acoustic recordings, the algorithm incorporated low complex-

ity in its design to be operated over 24-hour acoustic signals with limited computational

resources. The computational complexity of calculating the coe�cient vector and the

output signal are found to be O(n), where n represents the size of the input acoustic sig-

nal. The algorithm was implemented in MATLAB version R2018a on a 64-bit Windows

7 operating system with an i7-6700, 3.40 GHz processor. The run time of the algorithm

to derive the IHR and IBI time-series for a 5 minute acoustic signal varied between 2

and 3 seconds depending on the number of corrupted segments ignored for the further

processing.

180



References

[1] U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, “Heart rate variability: a

review,” Medical and biological engineering and computing, vol. 44, no. 12, pp. 1031–1051, 2006.

[2] J.-S. Wang, C.-W. Lin, and Y.-T. C. Yang, “A k-nearest-neighbor classifier with heart rate vari-

ability feature-based transformation algorithm for driving stress recognition,” Neurocomputing, vol.

116, pp. 136–143, 2013.

[3] T. Penzel, J. McNames, P. De Chazal, B. Raymond, A. Murray, and G. Moody, “Systematic

comparison of di↵erent algorithms for apnoea detection based on electrocardiogram recordings,”

Medical and Biological Engineering and Computing, vol. 40, no. 4, pp. 402–407, 2002.

[4] M. Galinier, A. Pathak, J. Fourcade, C. Androdias, D. Curnier, S. Varnous, S. Boveda, P. Mass-

abuau, M. Fauvel, J. Senard et al., “Depressed low frequency power of heart rate variability as an

independent predictor of sudden death in chronic heart failure,” European heart journal, vol. 21,

no. 6, pp. 475–482, 2000.

[5] I. O’brien, J. O’hare, I. Lewin, and R. Corrall, “The prevalence of autonomic neuropathy in insulin-

dependent diabetes mellitus: a controlled study based on heart rate variability,” QJM: An Inter-

national Journal of Medicine, vol. 61, no. 1, pp. 957–967, 1986.

[6] G. Giannakakis, M. Tsiknakis, and P. Vorgia, “Focal epileptic seizures anticipation based on pat-

terns of heart rate variability parameters,” Computer Methods and Programs in Biomedicine, 2019.

[7] D. S. Quintana, A. J. Guastella, T. Outhred, I. B. Hickie, and A. H. Kemp, “Heart rate variability

is associated with emotion recognition: direct evidence for a relationship between the autonomic

nervous system and social cognition,” International Journal of Psychophysiology, vol. 86, no. 2, pp.

168–172, 2012.

[8] F. Foroozan, “MUSIC-Based Algorithm for On-Demand Heart Rate Estimation Using Photo-

plethysmographic (PPG) Signals on Wrist.”

[9] D. Zhao, Y. Sun, S. Wan, and F. Wang, “SFST: A robust framework for heart rate monitoring

from photoplethysmography signals during physical activities,” Biomedical Signal Processing and

Control, vol. 33, pp. 316–324, 2017.

[10] P.-H. Lai and I. Kim, “Lightweight wrist photoplethysmography for heavy exercise: motion robust

heart rate monitoring algorithm,” Healthcare technology letters, vol. 2, no. 1, pp. 6–11, 2015.

[11] Z. Wei, C. Dechang, W. Xueyun, and L. Hongxing, “Heart rate estimation by iterative Fourier

interpolation algorithm,” Electronics Letters, vol. 50, no. 24, pp. 1799–1801, 2014.

[12] A. Reiss, I. Indlekofer, P. Schmidt, and K. Van Laerhoven, “Deep PPG: Large-Scale Heart Rate

Estimation with Convolutional Neural Networks,” Sensors, vol. 19, no. 14, p. 3079, 2019.

[13] S. Yazdani, S. Fallet, and J.-M. Vesin, “A Novel Short-term Event Extraction Algorithm for

Biomedical Signals,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 4, pp. 754–762,

2018.

[14] P. Sharma, S. A. Imtiaz, and E. Rodriguez-Villegas, “An algorithm for heart rate extraction from

acoustic recordings at the neck,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 1, pp.

246–256, 2018.

[15] F. Gritzali, G. Frangakis, and G. Papakonstantinou, “A comparison of the length and energy

transformations for the QRS detection,” in Proc. 9th Annu. Conf. IEEE Engineering in Medicine

and Biology Society, 1987, pp. 549–550.

[16] E. Grisan, G. Cantisani, G. Tarroni, S. K. Yoon, and M. Rossi, “A supervised learning approach for

the robust detection of heart beat in plethysmographic data,” in 2015 37th Annual International

181



Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015, pp.

5825–5828.

[17] Y. H. Hu, W. J. Tompkins, J. L. Urrusti, and V. X. Afonso, “Applications of artificial neural

networks for ECG signal detection and classification.” Journal of electrocardiology, vol. 26, pp.

66–73, 1993.

[18] SOMNOmedics: Polysomnography SOMNOscreen plus. [Online]. Available: http://somnomedics.

eu/products/polysomnography-somnoscreentm-plus/

[19] “Onyx II 9550 | Nonin.” [Online]. Available: https://www.nonin.com/products/9550/

[20] A. J. Camm, M. Malik, J. T. Bigger, G. Breithardt, S. Cerutti, R. J. Cohen, P. Coumel, E. L. Fallen,

H. L. Kennedy, R. Kleiger et al., “Heart rate variability: standards of measurement, physiological

interpretation and clinical use. Task Force of the European Society of Cardiology and the North

American Society of Pacing and Electrophysiology,” 1996.

[21] G. G. Berntson and J. R. Stowell, “ECG artifacts and heart period variability: don’t miss a beat!”

Psychophysiology, vol. 35, no. 1, pp. 127–132, 1998.

[22] B.-U. Kohler, C. Hennig, and R. Orglmeister, “The principles of software QRS detection,” IEEE

Engineering in Medicine and Biology Magazine, vol. 21, no. 1, pp. 42–57, 2002.

[23] G. M. Friesen, T. C. Jannett, M. A. Jadallah, S. L. Yates, S. R. Quint, and H. T. Nagle, “A

comparison of the noise sensitivity of nine QRS detection algorithms,” IEEE Transactions on

biomedical engineering, vol. 37, no. 1, pp. 85–98, 1990.

[24] S. Jalaleddine and C. Hutchens, “Ambulatory ECG wave detection for automated analysis: a

review.” ISA transactions, vol. 26, no. 4, pp. 33–43, 1987.

[25] O. Pahlm and L. Sörnmo, “Software QRS detection in ambulatory monitoringa review,” Medical

and Biological Engineering and Computing, vol. 22, no. 4, pp. 289–297, 1984.

[26] M. Elgendi, B. Eskofier, S. Dokos, and D. Abbott, “Revisiting QRS detection methodologies for

portable, wearable, battery-operated, and wireless ECG systems,” PloS one, vol. 9, no. 1, p. e84018,

2014.

[27] J. Fraden and M. Neuman, “QRS wave detection,” Medical and Biological Engineering and com-

puting, vol. 18, no. 2, pp. 125–132, 1980.

[28] M. L. Ahlstrom and W. J. Tompkins, “Automated high-speed analysis of Holter tapes with micro-

computers,” IEEE Transactions on Biomedical Engineering, no. 10, pp. 651–657, 1983.

[29] P. Morizet-Mahoudeaux, C. Moreau, D. Moreau, and J. Quarante, “Simple microprocessor-based

system for on-line ECG arrhythmia analysis,” Medical and Biological Engineering and Computing,

vol. 19, no. 4, pp. 497–500, 1981.

[30] N. M. Arzeno, Z.-D. Deng, and C.-S. Poon, “Analysis of first-derivative based QRS detection

algorithms,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 2, pp. 478–484, 2008.

[31] P. S. Hamilton and W. J. Tompkins, “Quantitative investigation of QRS detection rules using

the MIT/BIH arrhythmia database,” IEEE transactions on biomedical engineering, no. 12, pp.

1157–1165, 1986.

[32] J. Pan and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans. Biomed. Eng,

vol. 32, no. 3, pp. 230–236, 1985.

[33] W. Engelse and C. Zeelenberg, “A single scan algorithm for QRS-detection and feature extraction,”

Computers in cardiology, vol. 6, no. 1979, pp. 37–42, 1979.

[34] F. Zhang and Y. Lian, “Novel QRS detection by CWT for ECG sensor,” in 2007 IEEE Biomedical

Circuits and Systems Conference. IEEE, 2007, pp. 211–214.

182



[35] H. Inoue, A. Miyazaki, S. Iwasaki, M. Shimazu, T. Katsura, and A. Teranishi, “Detection of QRS

Complex in ECG Using a Wavelet Transform,” in ITC-CSCC: International Technical Conference

on Circuits Systems, Computers and Communications, 1997, pp. 361–364.

[36] S. Kadambe, R. Murray, and G. F. Boudreaux-Bartels, “Wavelet transform-based QRS complex

detector,” IEEE Transactions on biomedical Engineering, vol. 46, no. 7, pp. 838–848, 1999.

[37] C. Li, C. Zheng, and C. Tai, “Detection of ECG characteristic points using wavelet transforms,”

IEEE Transactions on biomedical Engineering, vol. 42, no. 1, pp. 21–28, 1995.

[38] K. D. Rao, “DWT based detection of R-peaks and data compression of ECG signals,” IETE Journal

of Research, vol. 43, no. 5, pp. 345–349, 1997.

[39] V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and S. Luo, “ECG beat detection using filter banks,”

IEEE transactions on biomedical engineering, vol. 46, no. 2, pp. 192–202, 1999.

[40] F. Zhang, Y. Wei, and Y. Lian, “Frequency-response masking based filter bank for QRS dection

in wearable biomedical devices,” in 2009 IEEE International Symposium on Circuits and Systems.

IEEE, 2009, pp. 1473–1476.

[41] M. I. Vai and L.-G. Zhou, “Beat-to-beat ECG ventricular late potentials variance detection by filter

bank and wavelet transform as beat-sequence filter,” IEEE Transactions on Biomedical Engineer-

ing, vol. 51, no. 8, pp. 1407–1413, 2004.

[42] M. Strintzis, G. Stalidis, X. Magnisalis, and N. Maglaveras, “Use of neural networks for electro-

cardiogram (ECG) feature extraction recognition and classification,” Neural Netw. World, vol. 3,

no. 4, pp. 313–327, 1992.

[43] Q. Xue, Y. H. Hu, and W. J. Tompkins, “Neural-network-based adaptive matched filtering for QRS

detection,” IEEE Transactions on Biomedical Engineering, vol. 39, no. 4, pp. 317–329, 1992.

[44] P. Hamilton and W. Tompkins, “Adaptive matched filtering for QRS detection,” in Proceedings

of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

IEEE, 1988, pp. 147–148.

[45] A. Kyrkos, E. Giakoumakis, and G. Carayannis, “Time recursive prediction techniques on QRS

detection problem.” 1987.

[46] K.-P. Lin and W. H. Chang, “QRS feature extraction using linear prediction,” IEEE Transactions

on Biomedical Engineering, vol. 36, no. 10, pp. 1050–1055, 1989.

[47] M.-E. Nyg̊ards and L. Sörnmo, “Delineation of the QRS complex using the envelope of the ECG,”

Medical and Biological Engineering and Computing, vol. 21, no. 5, pp. 538–547, 1983.

[48] D. S. Benitez, P. Gaydecki, A. Zaidi, and A. Fitzpatrick, “A new QRS detection algorithm based

on the Hilbert transform,” in Computers in Cardiology 2000. Vol. 27 (Cat. 00CH37163). IEEE,

2000, pp. 379–382.

[49] U. D. Ulusar, R. Govindan, J. D. Wilson, C. L. Lowery, H. Preissl, and H. Eswaran, “Adaptive

rule based fetal QRS complex detection using Hilbert transform,” in 2009 Annual International

Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009, pp. 4666–4669.

[50] S. Pal and M. Mitra, “Empirical mode decomposition based ECG enhancement and QRS detec-

tion,” Computers in biology and medicine, vol. 42, no. 1, pp. 83–92, 2012.

[51] J.-t. Tang, X.-l. Yang, J.-c. Xu, Y. Tang, Q. Zou, and X.-k. Zhang, “The algorithm of R peak de-

tection in ECG based on empirical mode decomposition,” in 2008 Fourth International Conference

on Natural Computation, vol. 5. IEEE, 2008, pp. 624–627.

[52] M. A. Arafat and M. K. Hasan, “Automatic detection of ECG wave boundaries using empirical

mode decomposition,” in 2009 IEEE International Conference on Acoustics, Speech and Signal

Processing. IEEE, 2009, pp. 461–464.

183
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5 Blood pressure measurement by

sensing Korotko↵ sounds at the wrist

5.1 Introduction

The previous chapters showed how the heart rate and heart rate variability can be con-

tinuously monitored from the acoustic sensing of the pulse sounds at the wrist. Another

important physiological marker associated with the diagnosis of cardiovascular diseases is

the blood pressure. The gold standard approach of measuring the blood pressure utilises

the auscultation of the Korotko↵ sounds at the upper-arm by placing a stethoscope under

the air cu↵. However, the auscultation of Korotko↵ sounds by a human observer requires

intensive training and adequate hearing. Due to the human involvement, several sources

of error can a↵ect the blood pressure readings significantly [1]. Other blood pressure

monitoring techniques as discussed in Section 1.3.1 also exist. Among these techniques,

the oscillometric method addresses the drawbacks of the auscultation method by remov-

ing the human involvement and introducing the automation and user-friendliness in the

blood pressure measurement. The method is based on sensing the pressure oscillations

during the deflation of the air cu↵, and establish a correlation of the oscillation envelope

with the blood pressure. Unlike the auscultation method, there is no direct correlation

between the oscillometric waveform envelope and the systolic blood pressure (SBP) and

diastolic blood pressure (DBP) readings. The blood pressure is generally estimated us-

ing empirically-derived coe�cients which might not be reliable for a diverse population

in di↵erent measurement scenarios [2]. It would be ideal to combine the accuracy and

reliability of the auscultation method with the automation and user-friendliness of the

oscillometric technique. For the first time in the literature, the acoustic sensing of the

pulse sounds at the wrist is studied during the inflation of the air cu↵ to correlate the

appearance and disappearance of the Korotko↵ sounds with the DBP and SBP respec-

tively. While the acoustic signals are recorded automatically using the proposed wearable

device, a separate pressure control system designed to inflate the cu↵ also operates au-

tomatically. Studying the Korotko↵ sounds during the cu↵ inflation reduces the time

period during which an external pressure is applied on the arterial branch. This makes

it less uncomfortable for the subject requiring multiple readings throughout the day and

also reduces the chances of any internal arterial damage.

In the following section, the hardware design and its components for the step-wise
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inflation of the air cu↵ is discussed. A subsequent discussion on the temporal and spectral

characteristics of the acoustic signal recorded during the cu↵ inflation is provided. This

is followed by a detailed explanation of the di↵erent algorithmic stages for the DBP and

SBP determination. Finally, the performance of the proposed DBP and SBP algorithms

are assessed by establishing a comparison of the experimental blood pressure readings

with the reference upper-arm and wrist blood pressure monitors respectively.

5.2 Hardware development for step-wise pressure inflation

The characterisation of the acoustic signal recorded at the wrist with varying pressure

levels can be studied only when di↵erent pressure steps can be applied externally in

a non-invasive and an automatic manner. This has been made possible by designing

and developing a fully-automated pressure control system to generate varying levels of

pressure by pumping air inside the air cu↵. The hardware shown in Fig. 5.1 consists of

the following o↵-the-shelf components with their associated functionalities.

1. Air pump: An air pump from Koge Micro Tech Co. Ltd was used to pump the air

inside an inflatable air cu↵. The pump operates at 6 V and provides a maximum

flow of 1.9 litres/min up to a maximum pressure of 600 mmHg.

2. Air valve: A solenoid air valve from Koge Micro Tech Co. Ltd was used to control

the passage of air in an out of the air cu↵. The valve can sustain a maximum

pressure of 350 mmHg and operates at 6 V with an exhaust speed of less than 6

seconds from 300 mmHg to 10mmHg in a 500 cc tank. The valve of normally closed

state was chosen to reduce the power consumption while inflating the air cu↵.

3. Pressure sensor : An amplified analogue gage pressure sensor from Honeywell In-

ternational Inc. was used to sense the pressure variations inside the air cu↵. The

pressure sensor operates at 3.3 V and produces readings between 0 and 260 mmHg.

4. Nordic nrf52 series microcontroller : The nrf52 chip operating at 3.3 V acts as the

central block of the system and controls the operation of the air pump and the

air valve depending on the pressure readings fed by the pressure sensor. The chip,

therefore, regulates the volume of the air inside the air cu↵. The inbuilt ADC of

the chip converts the analogue readings of the pressure sensor and stores them into

an SD card at a sampling frequency of 100 Hz.

5. Battery : An alkaline battery of 9 V was used to supply the power to the pressure

control system. Since the components operated at two di↵erent voltage levels, a

voltage regulation at 3.3 V and 6 V was performed by using appropriate voltage

regulators on the PCB.
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6. Inflatable air cu↵ : Di↵erent sizes of the inflatable air cu↵s from Welch Allyn Inc.

were used depending on the arm circumferences of the subjects. The cu↵ sizes for

the adults were chosen in compliance to the international protocols as follows:

• Small Adult: 20-26 cm

• Adult: 25-34 cm

• Large Adult: 32-43 cm

• Thigh: 40-55 cm

7. Tubing : The installation of appropriate silicone tubing along with the connectors

was done to ensure no leakage of air to sense the correct pressure inside the air cu↵.

Based on the assumption that the DBP for a subject will not fall below 40 mmHg, the

system is programmed to inflate the air cu↵ at a higher rate up to 40 mmHg pressure

level. Thereafter, a step-wise inflation is performed at a rate of around 2-3 mmHg/s up to

a maximum pressure of 20-30 mmHg higher than the entry SBP of the subject. Once the

maximum pressure inside the air cu↵ is reached, the air valve is opened and the pressure

is released. The design also incorporated a mechanism of releasing the air immediately

at any time in case the subject feels uncomfortable with the pressure inflation.

Figure 5.1: Pressure control system to apply varying pressure levels on the site under test.
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5.3 Studying the variation of the acoustic signal with the

inflating pressure levels

The traditional auscultation method measures the blood pressure of a subject by listening

to the di↵erent phases of the Korotko↵ sounds generated within the brachial artery at

the upper arm using a stethoscope/ microphone. These phases of the Korotko↵ sounds

generated at di↵erent pressure levels tend to have energy contained within 600 Hz [3]–[6].

The spectral analysis of the acoustic signal in Section 3.2 demonstrated the presence of

acoustic features superimposed on the pulse wave component propagated from the heart.

These acoustic features in absence of any external pressure on the arterial branch have

frequency content mainly below 25 Hz, a range in the lower human threshold of hearing.

Although it is di�cult for a physician to listen to these sounds at the wrist using a

stethoscope, the presence of acoustic features in the pulse sounds reveal a possibility of

recording the Korotko↵ sounds from the radial artery using a microphone. To test such

a hypothesis, the acoustic signal at the wrist is recorded continuously in synchronisation

with varying pressure levels applied on the arterial branch. Since the wearable device to

record the pulse sounds at the wrist was designed as a standalone system, the air cu↵ is

placed on the upper arm to avoid the damage of device under the application of pressure

on the PCB. The placement of air cu↵ on the upper arm also avoids the interference from

cu↵ movements during inflation and allows a better characterisation of the acoustic signal

at varying pressure levels. As an illustration, Fig. 5.2 plots the variation of the acoustic

signal over an inflation period of approximately 45 seconds. For the first 10 seconds of the

recording, the acoustic signal is recorded in the absence of an externally applied pressure.

Thereafter, the pressure signal quickly jumps to a level around 40 mmHg and a gradual

step wise inflation of the air cu↵ at a rate of 2-3 mmHg/s is subsequently performed.

The pressure is incremented up to a level of 20-30 mmHg higher than the entry SBP of

the subject. Since the pressure is incremented with short bursts of air flow inside the air

cu↵, small oscillations in the pressure signal can be observed. The post-processing of the

pressure signal removes these oscillations and estimates a monotonic pressure profile from

40 mmHg to the maximum pressure. As soon as the maximum pressure level inside the

air cu↵ is reached, the air is allowed to flow outside and a zero pressure level is reached

within a span of few seconds as shown in Fig. 5.2(a).

The time-domain visualisation of the acoustic signal in Fig. 5.2(b) reveals a significant

variation in the amplitude of the S1 and the S2 sounds with varying pressure levels.

In the regions of zero external pressure, it can be observed that the S1 and S2 sounds

possess similar amplitude and shape characteristics. However, the characteristics of these

sounds tend to change significantly during the inflation period. The positive normalised

amplitudes of the S1 sounds increases up to a maximum level and decreases with further

increments in the pressure levels. On the contrary, the negative normalised amplitudes
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Figure 5.2: Variation in the acoustic signal with respect to the inflating pressure inside the air
cuff. (a) Pressure applied on the arm increases between zero and a value above
the systolic blood pressure. (b) Acoustic signal recorded from the radial artery in
synchronisation with the pressure signal. n.u. denote the normalised units. (c)
STFT analysis of the varying time-frequency characteristics of the acoustic signal.

of the S1 sounds only increase by a smaller magnitude and tend to decrease continuously

with the rising levels of the pressure. While the S2 sounds seem to disappear earlier,

the S1 sounds disappear only after the full occlusion of the brachial artery in the upper

arm. It can also be observed that the pulse sounds appear as soon the pressure decreases

below the SBP during the air release from the air cuff. This happens due to the rush
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of blood flow inside the radial artery transferring vibrations to the skin surface that are

picked up by the microphone.

The spectral characteristics of the acoustic signal plotted in Fig. 5.2(b) are obtained

using a joint time-frequency domain STFT analysis similar to the one performed in

Section 3.2. The STFT of the acoustic signal sampled at 2100 Hz is obtained using a

Blackman window of 256 samples and 50% overlap between the consecutive frames. The

resultant grids in Fig. 5.2(c) demonstrates the power distribution of the signal in the

joint time-frequency space. The intensity of the power grids is represented by the colour

bar where the yellow and the blue colour denote the maximum and the minimum power

densities respectively. While the S1 sounds in the regions with zero pressure carry power

mainly below 25 Hz, the spectral energy starts to spread across higher frequencies above

a certain pressure level. The S1 sounds falling in the middle part of the pressure inflation

profile carry significant power above 25 Hz as shown in Fig. 5.2(c). Therefore, the STFT

analysis suggests that the acoustic signal produces S1 sounds in the audible range with

varying levels of pressure applied on the arterial branch. Although the disappearance of

the S1 sounds above the SBP causes a significant drop in the spectral energy, the motor

noise transferred via the air flow also contributes some power in the STFT analysis. The

motor noise, however, is minimised by using the wavelet denoising of the acoustic signal

as discussed in later sections of this chapter.

The STFT analysis of the acoustic signal provided a broader view of the power dis-

tribution in the joint time-frequency space. A better spectral analysis of the acoustic

signal can be obtained by finding the spectral content of the S1 sounds in isolation. The

pressure profile in Fig. 5.3(a) is obtained after removing the small oscillations caused by

the step wise inflation of the air cu↵. The acoustic signal displayed in Fig. 5.3(b) behaves

in an opposite manner to the acoustic signal plotted in Fig. 5.2(b). In this case, the

negative normalised amplitudes of the S1 sounds increases up to a maximum level and

decreases with further increments in the pressure levels, whereas the positive normalised

amplitudes tend to decrease continuously with the rising levels of the pressure. There-

fore, the amplitude envelopes of the acoustic signal can behave di↵erently for di↵erent

subjects. The zero-crossings of the S1 sounds falling within the pressure inflation region

are found using the relative energy algorithm proposed in Section 4.5. A total of sixteen

S1 sounds are extracted from the acoustic signal by taking a time-window of 0.15 seconds

on either sides of the zero-crossings. The frequency response of these sounds, sampled

at 2100 Hz, is obtained using the FFT and plotted in Fig. 5.3(c)-(r). It can be observed

that the frequency content of the first few S1 sounds mainly fall below 25 Hz suggesting

that the application of lower pressure levels does not a↵ect the spectral characteristics of

the acoustic signal significantly. However, further increments in the pressure levels tend

to decrease the spectral content in the lower frequencies and start pushing the energy

towards the higher frequencies as observed before in the STFT analysis. The spectral
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Figure 5.3: Frequency spectrum of the S1 sounds in the acoustic signal. (a) Pressure inside
the air cu↵ increases between zero and a value above the systolic blood pressure.
(b) Time-domain acoustic signal with numbered S1 sounds of interest. (c)-(r) FFT
of the sixteen S1 sounds marked in the acoustic signal. The FFT coe�cients are
plotted in absolute units.

content of several S1 sounds in this case reaches around 100 Hz, therefore, introducing

significant energy in the audible range. The spectral energy reduces to a minimum for

the peaks detected after the SBP level as shown in Fig. 5.3(r). In conclusion, both

the STFT and the FFT analysis suggests the presence of Korotko↵ sounds with spectral

energies in the audible range when the pressure on the upper arm is varied below the
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DBP to above the SBP to cause a full occlusion of the artery.

5.4 Algorithm for determining the diastolic blood pressure

The blood pressure measurement using the auscultation method requires a trained clin-

ician to listen to the appearance and disappearance of the Korotko↵ sounds during the

cu↵ deflation. While the appearance of the first Korotko↵ sound correspond to the rush

of blood flow as soon as the full occlusion of the arterial branch is removed, the Ko-

rotko↵ sounds disappear only when the blood flow through the artery returns to the

normal state. Since the blood flow is essentially preceded by a pressure wave, the Ko-

rotko↵ sounds produces vessel vibrations which manifest themselves as S1 sounds in the

acoustic pulse signal. Therefore, the algorithm for blood pressure determination in this

study identifies the S1 peaks corresponding to the appearance and disappearance of the

Korotko↵ sounds, and correlate it with the blood pressure by matching the time-stamps

with the pressure profile. The order of di↵erent phases of the Korotko↵ sounds during

the cu↵ inflation is exactly opposite to the one observed during the cu↵ deflation. While

the appearance of the first Korotko↵ sound during the cu↵ inflation corresponds to the

DBP, the disappearance of the Korotko↵ sound relates to the SBP (or full occlusion of

the artery). Due to the importance of identifying all the S1 peaks (during the cu↵ infla-

tion) for determining the SBP/ DBP accurately, it is desirable to minimise the noise by

pre-processing the acoustic signal.

5.4.1 Pre-processing the acoustic signal

Studying the characteristics of the acoustic signal over the full occlusion of the artery

required a precise localisation of the S1 peaks during the cu↵ inflation. The S1 peaks

are identified using the relative energy algorithm proposed in Section 4.5. Since the

relative energy algorithm works e�ciently in cases where the short-term events of the

S1 waveforms are characterised by a local change in the amplitude, it is important to

minimise the noise in the baseline of the signal. Further constraints are imposed by

the peaks lying in the high pressure regions where the peak-to-peak amplitudes of the

S1 sounds become really low as shown in Fig. 5.2(b). The baseline noise in the signal

is mainly introduced by the motor noise that is sensed by the microphone through the

surrounding environment and the skin surface vibrations caused by the air flow.

The FFT of the S1 peaks in Fig. 5.3 demonstrated the spectral content of the isolated

S1 sounds to lie below 150 Hz. Thus, a fifth-order Butterworth low pass filter with

cut-o↵ frequency of 150 Hz is used to remove the high frequency components from the

acoustic signal. Since the acoustic signal is originally sampled at 2100 Hz (fs), the filtered

signal is downsampled by a factor of 6, reducing the sampling frequency down to 350

Hz (fd). The downsampling, without introducing any aliasing in the signal, reduces the
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number of computational cycles required for the further processing. While the low pass

filtering removes the high frequency noise and interference from the signal, it is unable

to eliminate the motor noise since its spectral energy falls below 100 Hz. The e↵ect

of motor noise is reduced by using the wavelet denoising with ‘db6’ as the orthogonal

wavelet. The denoising is accomplished by using a fifth-level wavelet decomposition of

the low pass filtered signal y followed by a soft thresholding of the detail coe�cients using

a universal threshold of
p

2 ln(length(y)). A third-order median filtering is subsequently

used to remove the impulsive spikes from the signal. As an illustration, the motor noise

clearly visible in the baseline of the original signal in Fig. 5.4(a) makes it di�cult for an

accurate identification of the S1 sounds in later stages of the algorithm. The motor noise

is significantly reduced in the pre-processed signal as shown in Fig. 5.4(b) and a better

SNR is obtained.

0 5 10 15 20 25 30 35 40
Time (s)

-1

-0.5

0

0.5

1 (a)

n.
u.

0 5 10 15 20 25 30 35 40
Time (s)

-1

-0.5

0

0.5

1 (b)

n.
u.

Figure 5.4: Pre-processing the acoustic signal to reduce the noise content. (a) Original acous-
tic signal with significant interference from the motor noise. (b) Reduction of the
external interference using low pass filtering, downsampling, wavelet denoising and
median filtering.

5.4.2 Artifact removal and missed peaks detection

The hand movements during the blood pressure measurement can introduce artifacts in

the signal that might not be removed by the pre-processing stage of the algorithm. These

artifacts can interfere with the S1 peaks as shown by the blue circles in Fig. 5.5(a) and

possibly lead to an inaccurate localisation of the S1 sounds. Therefore, the S1 sounds

must be di↵erentiated from the artifacts in the signal. The time-stamps of the S1 sounds

in the pre-processed signal are marked as the negative characteristic points for the reasons
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explained later. For an accurate determination of the blood pressure, it is also important

to detect the missed S1 peaks marked by the magenta circles in Fig. 5.5(a). These

peaks remain undetected because of significant variation in the amplitude envelope of

the acoustic signal. This was not the case with the acoustic signal recorded in absence of

any external pressure as both the positive and the negative amplitudes of the S1 sounds

remained approximately constant throughout the recording. Since the acoustic signal in

such scenario had a bandwidth of 25 Hz, the peak detection using the relative energy

algorithm is repeated by low pass filtering the original signal with 25 Hz as the cut-o↵

frequency. A relatively less amplitude variation in the acoustic signal filtered with 25

Hz as shown in Fig. 5.5(b) can be observed. For a better visualisation, the positive

characteristic points of the detected S1 peaks are marked. The peaks detected in this

signal are more reliable as erroneous peaks from the original signal are already removed.

The missed S1 peaks in the original signal are also detected in the 25 Hz signal. The
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Figure 5.5: Identification of the erroneous peaks and missed S1 peaks in the acoustic signal. (a)
S1 peaks detected by the relative energy algorithm. The peaks in the blue and ma-
genta circles are the erroneous and missed peaks respectively. (b) S1 peaks detected
by the relative energy algorithm in acoustic signal low-pass filtered with 25 Hz. (c)
The peaks in (b) are utilised to remove the erroneous peaks and trace back the missed
S1 peaks in the acoustic signal.
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time-stamps of the S1 peaks in the 25 Hz signal are utilised to remove the erroneous peaks

and trace back the missed S1 peaks in the pre-processed acoustic signal as shown in Fig.

5.5(c). Any extra peaks detected in the 25 Hz signal are also matched with the original

signal as they are dealt in further stages of the algorithm. Since the heart rate in a range

of 40 to 200 bpm is considered, it is ensured that the inter-beat intervals corresponding to

the consecutive S1 peaks produce a heart rate within these limits. Otherwise, an analysis

similar to the one in Section 3.5.4.2 is performed to remove the redundant peaks.

5.4.3 Feature signals to find the diastolic blood pressure

5.4.3.1 Amplitude envelope

The relative energy algorithm provided a functionality of detecting the positive peaks, the

zero-crossings and the negative peaks as three di↵erent characteristic points of S1 sounds

in the acoustic signal. The amplitude envelopes of the acoustic signal are simply obtained

by finding the positive and negative characteristic points of the S1 sounds shortlisted

after identifying the artifacts. It can be observed that while the positive amplitudes

of the acoustic signal in Fig. 5.6(b) only increase by a small margin before decreasing

continuously with the rising levels of pressure, the negative amplitudes demonstrate a

significantly larger variation in the envelope. This is evident in the upper and lower

envelopes plotted in Fig. 5.6(d)-(e) respectively, where the amplitudes of all the S1

sounds before 40 mmHg have been zeroed as they are ignored for the further processing.

The envelopes have been processed by adopting a fifth-order median filtering to obtain

a smoother profile. Among these two envelopes, the envelope with larger amplitude

variation is used as one of the feature signals to determine the experimental location of

the DBP. Since the lower envelope in Fig. 5.6 is chosen as the feature signal, the negative

characteristic points are marked in the original acoustic signal to represent this choice.

5.4.3.2 Energy envelope

The spectral characteristics of the S1 sounds in the acoustic signal vary significantly in

relation to the pressure applied on the arterial branch as demonstrated in Section 5.3.

Such a variation can be utilised to find a correlation with the blood pressure. For N

number of S1 sounds detected in the acoustic signal, the corresponding zero-crossings

are found using the relative energy algorithm. These zero-crossings, denoted by zn for

n 2 [1, N ], are used to extract all the S1 waveforms by choosing a rectangular window of

0.3 seconds duration centred at the characteristic point as follows:

8 n 2 [1, N ]

S1n = y [zn � 0.15 : zn + 0.15]
(5.1)
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Figure 5.6: Energy and amplitude envelopes of the Korotko↵ sounds with peaks marked in the
negative side of the acoustic signal. (a) Pressure applied on the arm increases
between zero and a value above the SBP. (b) Pre-processed acoustic signal with all
the S1 peaks identified. (c) Energy envelope of the Korotko↵ sounds falling after the
40 mmHg pressure level. The experimentally determined Korotko↵ sound location
for DBP determination is also plotted along with the reference wrist and reference
arm DBP location. An error of 5 and 1 mmHg was obtained with respect to the
wrist and arm DBP references respectively. (d) Amplitude envelope of the negative
amplitudes (lower envelope) of the S1 peaks falling after the 40 mmHg pressure level.
The bounds used in the proposed algorithm are also plotted. (e) Amplitude envelope
of the positive amplitudes (upper envelope) of the S1 peaks falling after the 40 mmHg
pressure level.
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The frequency spectrum of these isolated S1 waveforms are obtained using the FFT

as shown in Fig. 5.3. Depending on the frequency band, the absolute spectral energy

corresponding to a S1 waveform can be obtained by summing up all the FFT coe�cients

falling within the defined frequency range. While the absolute energy envelope can be

used as a feature signal to establish a correlation with the blood pressure, the normalised

energy proves to be a better choice for determining the experimental location of the

DBP. The normalisation is performed by dividing the spectral energy of the S1 sound

with its peak-to-peak amplitude. This way the e↵ect of amplitude modulation on the

energy envelope is minimised allowing the algorithm to be more robust for the DBP

determination. Since the DBP of an adult subject is assumed to be greater than 40

mmHg, all the S1 sounds lying before reaching this pressure level are ignored for the

further processing and the corresponding energies are zeroed. As an illustration, the

normalised energy envelope of 33 S1 sounds in a spectral band of 50-110 Hz is plotted

in Fig. 5.6(c), where the energy of first 16 S1 sounds are zeroed. The envelope has been

processed by adopting a fifth-order median filtering to obtain a smoother profile. The

energy profile reveals that while the acoustic signal maintains a baseline energy for the

first few S1 sounds as shown by the dashed line in Fig. 5.6(c), the energy jumps up with

further increments in the pressure levels to reach a maximum value. Any further occlusion

of the arterial branch causes the energy of the S1 sounds to decrease significantly.

5.4.3.3 Diastolic band analysis of the S1 sounds

To use the normalised energy envelope as one of the feature signals, it is important to

identify a suitable spectral band that correlates with the experimental location of the

DBP [7]. Since the bandwidth of the acoustic signal is around 150 Hz, a wide-band

analysis of the S1 sounds is performed using five di↵erent frequency bands as follows:

10-30 Hz, 30-50 Hz, 50-80 Hz, 80-110 Hz and 110-150 Hz. A total of 35 acoustic signals

are randomly selected from the database recorded for this study. The normalised energy

envelopes corresponding to these signals are computed in all the spectral bands. The

correlation of the spectral bands with the reference DBP (obtained from the commercial

monitor) can be established by observing the behaviour of the energy envelopes in its

immediate surrounding. Therefore, only seven S1 sounds centred at the reference DBP

are chosen for the wide-band analysis. As an illustration, the energy amplitudes in

di↵erent spectral bands centred at the reference DBP (21st S1 sound in the acoustic

signal) for a subject are plotted in Fig. 5.7. Similar plots from all the 35 acoustic

signals are obtained for the wide-band analysis. The normalised energy amplitudes of

these seven S1 sounds are examined to identify the spectral bands that demonstrate a

significant increase in the energy when transitioning from before to after the reference

DBP. In Fig. 5.7, it can be observed that while the normalised energy in the spectral

bands of 30-50 Hz and 50-80 Hz remains almost constant before the reference DBP, the
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energy increments to higher amplitudes for S1 sounds lying after the reference DBP.

This observation supports the hypothesis that the generation of Korotko↵ sounds after a

certain pressure level produces a sudden jump in the energy as compared to the baseline

energy of the S1 sounds. However, this behaviour is not apparent in all the spectral

bands.
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Figure 5.7: Wide-band analysis of the normalised energy envelope in di↵erent frequency bands
for the DBP determination. Normalised energy of seven S1 sounds centred at the
reference DBP are plotted.

The energy increments (Rn) in a specific spectral band are calculated as the ratio of

consecutive energy amplitudes (En) as follows:

8 n 2 [1, 6] in [f1,f2] Hz

Rn{f1, f2} =
En+1

En

(5.2)

Among every plot corresponding to the 33 acoustic signals, the frequency bands are rank

ordered to find the most suitable band for establishing a correlation with the reference

DBP. For every spectral band, the S1 location corresponding to the maximum energy

ratio is determined and the bands are rank ordered depending on the closeness of the

S1 location with the reference DBP. In cases where multiple bands produces maximum

energy ratio corresponding to the same S1 location, the band with a higher value of energy

ratio is placed at the higher preference. Since the introduction of the first Korotko↵ sound

in the acoustic signal is characterised by a higher energy amplitude than the previous

S1 sound, only ratios greater than 1 are included in this analysis. The first three ranks

awarded to di↵erent frequency bands with respect to reference arm and wrist DBP are
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listed in Table 5.1. The feature band is determined by considering the sum of only the

first and second ranks. Based on the rank ordering, it can be observed that for both the

arm and the wrist references, the spectral bands of 50-80 Hz and 80-110 Hz arise as the

best choices. Therefore, the spectral band of 50-110 Hz in combination demonstrates the

highest amplitude increase in the energy envelope when transitioning from before to after

the reference DBP. Hence, the algorithm uses the normalised energy envelope computed

in the spectral band of 50-110 Hz as another feature signal to find the experimental

location of the DBP.

Table 5.1: Rank ordering the frequency bands as the best spectral feature band for determining
the DBP. The bands are compared for a total of 35 files and ranked according to
the closeness of the maximum energy ratio with the DBP location obtained from the
commercial arm and wrist monitor.

Reference Frequency Band
Rank Order

Total
First Second Third

Arm

10-30 Hz 1 1 1 2

30-50 Hz 3 7 6 10

50-80 Hz 12 12 10 24

80-110 Hz 12 11 8 23

110-150 Hz 7 4 10 11

Wrist

10-30 Hz 0 2 3 2

30-50 Hz 4 5 7 9

50-80 Hz 10 14 8 24

80-110 Hz 11 12 7 23

110-150 Hz 10 2 10 12

5.4.4 Utilising the feature signals to identify the S1 sound

corresponding to the diastolic blood pressure

The feature signals extracted from the acoustic signal provide substantial information to

find the DBP experimentally. The goal is to find the temporal location of a suitable S1

sound which when correlated with the pressure signal provides an accurate DBP. Since

this is the first time in the literature that an acoustic signal recorded at the wrist has

been used to determine the blood pressure, the algorithm design is mainly based on

empirical observations. In the traditional auscultation method, a laminar flow of blood

is achieved when the cu↵ is deflated to a level just below the DBP [8], [9]. The acoustic

signal in this study is recorded during the cu↵ inflation, therefore, any disturbance to

the laminar blood flow is caused only after the DBP. While no consensus on the origin

of Korotko↵ sounds has been reached in the literature, the cu↵ inflation beyond the
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DBP a↵ects the fully expanded state of the artery causing changes in the amplitude and

frequency of the vessel wall vibrations [10]. An obstruction to the normal blood flow

causes the pressure wave to exhibit higher force on the arterial walls. These changes in

the vessel wall vibrations during the cu↵ inflation are sensed by the microphone producing

di↵erent amplitude and energy characteristics of S1 sounds in the acoustic signal. An

empirical observation of the acoustic signal in Fig. 5.6 already suggested an increment

in the amplitude envelope when transitioning from before to after the reference DBP. A

similar conclusion is made for the acoustic signal in Fig. 5.8 where the upper envelope

is chosen as the feature signal for DBP determination. The positive characteristic points

are marked in the original acoustic signal to represent this choice.

Instead of processing all the S1 sounds in the acoustic signal for DBP determination,

the amplitude envelope selected as the feature signal is utilised in the following manner

to shortlist only a few S1 sounds:

1. Firstly, the maximum value (Amax) of the amplitude envelope An for n 2 [1, N ] is

determined.

2. All the S1 sounds satisfying the following condition are accepted.

8 n 2 [1, N ]

S1n =

8
<

:
Accepted, if An � 0.5⇥Amax

Rejected, otherwise

(5.3)

3. Only S1 sounds selected above that lie within ±5 beats of the Amax location are

included for the further analysis.

Using the above criteria, the shortlisted S1 sounds corresponding to the lower envelope

in Fig. 5.6(d) are bounded by the blue asterisks. All the S1 sounds at and between these

bounds (18 to 28) are included for the DBP determination. A di↵erent set of S1 bounds

(27 to 38) are obtained for the upper envelope in Fig. 5.8(d).

The wide-band analysis of the S1 sounds suggested a sharp increment in the normalised

energy (50-110 Hz) around the reference DBP. While the shortlisting of the S1 sounds

in the amplitude envelope already narrowed the search region, the normalised energies

corresponding to these sounds are further utilised to search for the experimental location

of the DBP. For the S1 bounds defined by b1 and b2 in the amplitude envelope, the energy

ratios are computed as follows:

8 n 2 [b1, b2 � 1] in [50,110] Hz

Rn{50, 110} =
En+1

En

(5.4)

For the energy envelopes in Fig. 5.6(c) and Fig. 5.8(c), the energy ratios are determined
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Figure 5.8: Energy and amplitude envelopes of the Korotko↵ sounds with peaks marked in the
positive side of the acoustic signal. (a) Pressure applied on the arm increases be-
tween zero and a value above the SBP. (b) Pre-processed acoustic signal with all the
S1 peaks identified. (c) Energy envelope of the Korotko↵ sounds falling after the
40 mmHg pressure level. The experimentally determined Korotko↵ sound location
for DBP determination is also plotted along with the reference wrist and reference
arm DBP location. An error of 3 mmHg was obtained with respect to the wrist
and arm reference DBP. (d) Amplitude envelope of the positive amplitudes (upper
envelope) of the S1 peaks falling after the 40 mmHg pressure level. The bounds used
in the proposed algorithm are also plotted. (e) Amplitude envelope of the negative
amplitudes (lower envelope) of the S1 peaks falling after the 40 mmHg pressure level.
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for S1 sounds numbered between [18,27] and [27,37] respectively. Among all these energy

ratios, only the top three values (Rm1, Rm2 and Rm3) with Rm1 being the highest ratio,

are considered for the further processing. The amplitude value pairs ([A1
m1, A

2
m1], [A

1
m2,

A2
m2] and [A1

m3, A
2
m3]) and the S1 location pairs ([l1

m1, l
2
m1], [l

1
m2, l

2
m2] and [l1

m3, l
2
m3])

corresponding to these ratios are also noted. A single ratio Rm corresponding to the

maximum starting amplitude is chosen as follows:

Am = max{A1
m1, A

1
m2, A

1
m3}

Rm =

8
>>><

>>>:

Rm1, if Am = A1
m1

Rm2, if Am = A1
m2

Rm3, if Am = A1
m3

(5.5)

Depending on the chosen ratio, a single S1 sound location (lm) corresponding to the

experimental location of the DBP is found as follows:

lm =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

8
<

:
l1
m1, if A1

m1 � A2
m1

l2
m1, if A1

m1 < A2
m1

if Rm = Rm1

8
<

:
l1
m2, if A1

m2 � A2
m2

l2
m2, if A1

m2 < A2
m2

if Rm = Rm2

8
<

:
l1
m3, if A1

m3 � A2
m3

l2
m3, if A1

m3 < A2
m3

if Rm = Rm3

(5.6)

These comparisons are based on the reasoning that the S1 sound corresponding to the

DBP is characterised with an increase in the amplitude and energy, therefore, the energy

ratio corresponding to the maximum amplitude is chosen. The time-stamp of the chosen

S1 sound is extracted from the acoustic signal and the corresponding pressure value from

the synchronous pressure signal is found. This value of pressure is assumed to be the

experimental DBP of the subject. As an illustration, the S1 numbered 21 in Fig. 5.6(b)

correlates to an experimental DBP of 67 mmHg and produces an error of 5 mmHg and 1

mmHg with respect to the wrist and arm DBP references respectively. The same analysis

for the acoustic signal in Fig. 5.8 produces an error of 3 mmHg with respect to the wrist

and arm reference DBP. The 30th S1 sound is chosen as the experimental location of the

DBP.

5.5 Algorithm for determining the systolic blood pressure

The appearance of the first Korotko↵ sound (Phase 1) in the traditional auscultation

method during the cu↵ deflation is characterised by a tapping sound. The pressure level

corresponding to the first Korotko↵ sound is termed as the SBP. A precise measurement of
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the SBP requires a trained physician to deflate the air cu↵ gradually and read the pressure

levels on a mercury sphygmomanometer at the appearance of the first Korotko↵ sound.

Since an automatic or manual cu↵ deflation only requires the release of air, the external

noise introduced in the stethoscope is minimum allowing an accurate measurement of

the SBP. This is not the case when measuring the SBP during the cu↵ inflation. The

cu↵ inflation in this study is carried out using a DC motor which introduces significant

noise into the sensing system either through the surrounding environment or through the

air flow irrespective of the pressure levels. On the contrary, the temporal characteristics

of the acoustic signal indicated a significant drop in the amplitudes of the S1 sounds

with the rising pressure levels. These factors in combination makes it di�cult for the

relative energy algorithm to detect all the S1 sounds near the SBP. Unlike the S1 sounds

lying near the DBP, the S1 sounds around SBP su↵er from a significant drop in the

SNR and their amplitudes are comparable to the noise levels near the full occlusion of

the arterial branch. Although the wavelet denoising in the pre-processing of the acoustic

signal reduces the motor noise significantly, there is a need of additional feature signals

to find an accurate SBP. The following section discusses di↵erent feature signals used to

find the S1 location corresponding to the SBP from the pre-processed acoustic signal.

5.5.1 Feature signals to find the systolic blood pressure

5.5.1.1 Amplitude envelope

The upper and lower amplitude envelopes are found using the positive and negative

characteristics points of the S1 sounds respectively. Among these two envelopes, the

envelope with a larger amplitude variation is used as the feature signal to determine

the experimental location of the SBP. The original envelopes are filtered using a fifth-

order median filter to obtain a smoother profile. For the acoustic signal in Fig. 5.9(b),

the lower envelope is chosen as the feature signal as represented by the markings on the

negative characteristic points. On the contrary, the upper envelope for the acoustic signal

in Fig. 5.12(b) is chosen as the feature signal and is represented by the markings on the

positive characteristic points. The original and filtered envelopes for these signals are

plotted in Fig. 5.9(d) and Fig. 5.12(d) respectively. Since the location of the S1 sound

corresponding to the experimental DBP is already known, only S1 sounds lying after

the DBP are processed further. It can be observed that the filtered amplitude of the S1

sounds decreases continuously with the rising levels of pressure and reaches a constant

minimum for the erroneous peaks detected in the noisy region above the SBP.

5.5.1.2 Systolic band analysis of the S1 sounds

The spectral characteristics of the acoustic signal in Fig. 5.3 demonstrated a significant

reduction in the magnitude of the FFT coe�cients over a bandwidth of 150 Hz for S1
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Figure 5.9: Energy and amplitude envelopes of the Korotko↵ sounds with peaks marked in the
negative side of the acoustic signal. (a) Pressure applied on the arm increases
between zero and a value above the SBP. (b) Pre-processed acoustic signal with all
the S1 peaks identified. (c) Energy envelope of the Korotko↵ sounds falling after the
40 mmHg pressure level. The experimentally determined Korotko↵ sound location
for SBP determination is also plotted along with the reference wrist and reference
arm SBP location. An error of 2 and 4 mmHg was obtained with respect to the
wrist and arm SBP references respectively. (d) Amplitude envelope of the negative
amplitudes (lower envelope) of the S1 peaks falling after the 40 mmHg pressure level.
The bounds used in the proposed algorithm are also plotted. (e) Template matching
coe�cients envelope of the S1 peaks falling after the 40 mmHg pressure level. The
bounds used in the proposed algorithm are also plotted.

207



sounds near the SBP. These coe�cients after the full occlusion of the arterial branch

acquired much lower values due to the absence of S1 sounds as shown in Fig. 5.3(r).

The energy envelope, therefore, can be used as another feature signal to correlate the

disappearance of the S1 sounds with the reference SBP. However, a suitable spectral

band is required to extract the spectral energy from the FFT of the isolated S1 sounds.

Similar to the diastolic wide-band analysis, five di↵erent frequency bands as follows: 10-

30 Hz, 30-50 Hz, 50-80 Hz, 80-110 Hz and 110-150 Hz are chosen to compare the spectral

energies in a total of 35 acoustic signals selected randomly from the database. The energy

envelopes corresponding to these signals are computed in all the spectral bands and are

normalised with the peak-to-peak amplitudes of the S1 sounds. Since the correlation of

the spectral bands with the reference SBP can be established by observing the behaviour

of the energy envelopes in its immediate surrounding, only seven S1 sounds centred at

the reference SBP are chosen for the wide-band analysis. As an illustration, the energy

amplitudes centred at the reference SBP (28th S1 sound in the acoustic signal) are plotted

for di↵erent spectral bands in Fig. 5.10. Similar plots from all the 35 acoustic signals are

obtained for the wide-band analysis. The normalised energy amplitudes of these seven S1

sounds are examined to identify the spectral bands that demonstrate a significant energy

reduction at the reference SBP and attain a minimum energy level after the reference

SBP. Such a behaviour in Fig. 5.10 is only observed for 30-50 Hz and 50-80 Hz frequency

bands.
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Figure 5.10: Wide-band analysis of the normalised energy envelope in di↵erent frequency bands
for the SBP determination. Normalised energy of seven S1 sounds centred at the
reference SBP are plotted.

The energy decrements in a specific spectral band are calculated as the ratio of con-

208



secutive energies given by Eq. 5.2. The spectral analysis of the acoustic signal showed

that the appearance of the last S1 sound at the SBP yields a slightly higher energy than

the noisy region lying above the SBP. The peaks in the noisy region as shown in Fig.

5.9(b) are intentionally extrapolated using the heart rate information to extract the en-

ergy envelope over the full pressure range. The extrapolation is explained with further

details in the next section. Since the normalised energies corresponding to the peaks

detected in the noisy region are quite similar, an energy ratio of around 1 is usually

obtained after the disappearance of the last S1 sound. However, the energies before the

SBP demonstrate a continuous reduction producing the ratios significantly lower than 1.

This observation about the energy ratios is utilised to find the most suitable band for

establishing a correlation with the reference SBP. For every spectral band, the last S1

location corresponding to an energy ratio of less than 0.9 (meaning significant reduction

in the normalised energy) before transitioning to a nearly constant energy ratio of around

1 is noted. The bands are rank ordered depending on the closeness of the detected S1 lo-

cation with the reference SBP. The first three ranks awarded to di↵erent frequency bands

with respect to the reference arm and wrist SBP are listed in Table 5.2. The feature band

is determined by considering the sum of only the first and the second ranks. Based on

the rank ordering, it can be observed that for both the arm and the wrist references,

the spectral bands of 50-80 Hz and 80-110 Hz arise as the best choices. Therefore, the

normalised energy of the S1 sounds in the spectral band of 50-110 Hz reduces from a

higher value to a constant value when transitioning from before to after the reference

Table 5.2: Rank ordering the frequency bands as the best spectral feature band for determining
the SBP. The bands are compared for a total of 35 files and ranked according to
the closeness of the maximum energy ratio with the SBP location obtained from the
commercial arm and wrist monitor.

Reference Frequency Band
Rank Order

Total
First Second Third

Arm

10-30 Hz 1 3 2 4

30-50 Hz 2 2 8 4

50-80 Hz 8 17 7 25

80-110 Hz 17 6 6 23

110-150 Hz 7 7 12 14

Wrist

10-30 Hz 2 3 2 5

30-50 Hz 2 2 8 4

50-80 Hz 7 17 6 24

80-110 Hz 18 6 6 24

110-150 Hz 6 7 13 13
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SBP. Hence, the algorithm uses the normalised energy envelope computed in the spectral

band of 50-110 Hz as another feature signal to find the experimental location of the SBP.

5.5.1.3 Template matching coe�cient envelope

The motor noise transferred during the cu↵ inflation introduces significant baseline noise

in the acoustic signal. While the S1 sounds around the DBP carry higher amplitudes and

energies, they su↵er a significant loss of SNR when reaching the pressure levels near the

SBP. Some of these peaks around the SBP might get hidden in the baseline noise and

remain undetected by the relative energy algorithm. The loss of peaks when correlated

with the pressure signal can introduce significant error in determining the experimental

SBP. Therefore, all the S1 sounds occurring before the full occlusion of the arterial branch

must be determined. Since the relative energy algorithm works e�ciently in cases where

the S1 sounds are characterised by a local change in the amplitude, the method fails to

detect the peaks near the SBP because of very low amplitudes. A new approach utilising

the morphology of the S1 sounds, instead of the amplitude, is proposed to detect the

peaks near the SBP.

In Section 4.5, the morphological variations of the S1 sounds were discussed and it

was established that the shape characteristics of the S1 waveforms for a subject does

not change over the length of the recording. However, the morphology of the S1 sounds

during the cu↵ inflation vary continuously as shown in Fig. 5.11. It can be observed that

while the S1 sounds maintain an approximately constant shape before the cu↵ inflation,

the morphology of these waveforms change significantly around the DBP. Further changes
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Figure 5.11: S1 waveforms in the acoustic signal recorded from a subject (a) before cu↵ inflation,
(b) around the DBP, (c) before reaching the SBP. The zero crossings of these peaks
are also marked.
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to these waveforms occur before reaching the SBP. It is these changes that also reflect

in the frequency domain to introduce energies in the higher frequencies. The template

matching algorithm is used to detect the peaks near the SBP by utilising the shape of

the S1 sounds. The template matching algorithm uses an already available waveform,

also known as a template, to search and find the location of other similar waveforms in

the signal [11]–[13]. The algorithm slides the template over the signal in specific windows

to compare the cross-correlation between the template and the windowed segment of the

signal. The cross-correlation measures the similarity between a time-series x and the

shifted (lagged) copies of another time-series y as a function of the lag [14]. The polarity

of the cross-correlation coe�cients define a correlation to be positive or negative.

The relative energy algorithm performs quite well in detecting the S1 sounds around

the DBP. Therefore, the S1 sound detected corresponding to the experimental location

of the DBP is used as the initial template in the template matching algorithm. For

the zero-crossing zd of such S1 sound in the acoustic signal y, the initial template T0 is

defined as follows:

T0 = y [zd � 0.1 : zd + 0.1] (5.7)

A narrower window is chosen to ensure that no noisy transitions around the S1 sound are

included in the template. Since the morphology of the S1 sounds changes continuously

during the cu↵ inflation, the same template cannot be used to find the correlation with

the subsequent peaks. Hence, an adaptive template matching involving a continuous

adaptation of the template is used for a reliable peak detection. Another input required

for the cross-correlation is a suitable windowed segment containing the peak of interest. It

is empirically observed that the inter-beat intervals does not change significantly during

the short acoustic recordings of less than one minute for the blood pressure determination.

Therefore, the inter-beat intervals corresponding to the detected S1 sounds from the

relative energy algorithm are utilised to find the windowed segments. The peaks of

interest in the acoustic signal using the template matching algorithm are found as follows:

1. The initial inter-beat interval IBI0 is calculated by taking the mean of the last three

beats lying just before the DBP.

IBI0 =

P2
n=0(zd�n � zd�n�1)

3
(5.8)

2. A windowed segment W1 is extracted from the original signal using the initial IBI.

A relaxed tolerance is kept for an irregular heartbeat detection.

W0 = y [zd + 0.9⇥ IBI0 � 0.1 : zd + 1.1⇥ IBI0 + 0.1] (5.9)

3. The cross-correlation coe�cient between the initial template T0 and the windowed

segment W0 is found. The lag corresponding to the maximum correlation coe�cient
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is noted to find the best overlap between the template and the windowed segment.

The zero-crossing of the peak detected from this overlap is identified to determine

the next template.

4. The following template and the windowed segment are used in the next iteration.

T1 = y [zd+1 � 0.1 : zd+1 + 0.1]

IBI1 = 0.75⇥ IBI0 + 0.25⇥ (zd+1 � zd)

W1 = y [zd+1 + 0.9⇥ IBI1 � 0.1 : zd+1 + 1.1⇥ IBI1 + 0.1]

(5.10)

The zero-crossing corresponding to the best overlap between the template T1 and

the windowed segment W1 is found and the next template is determined.

5. The steps in (3) and (4) are reiterated until all the peaks falling between the DBP

and the maximum pressure level are reached. The maximum pressure is generally

20-30 mmHg higher than the entry SBP of the subject. However, the templates are

only changed when the maximum correlation coe�cient obtained from the current

overlap exceeds half the value obtained in the previous overlap. This ensures that

the unreliable S1 sounds hidden in the baseline noise of the acoustic signal are not

chosen as the templates for peak detection.

6. For every iteration, the maximum correlation coe�cient Cn is stored and used as

another feature signal to find the experimental location of the SBP.

For the acoustic signals in Fig. 5.9(b) and Fig. 5.12(b), the peaks detected using the

relative energy algorithm and the template matching algorithm are marked by ‘⇤’ and ‘�’

respectively. While the relative energy algorithm is able to detect majority of the peaks

possessing higher SNR, it fails to detect the S1 sounds with lower amplitudes. On the

contrary, the template matching algorithm successfully identifies all the S1 sounds during

the cu↵ inflation. The peaks extrapolated using the IBIs in the noisy region provide a

critical information about the energy in the baseline of the acoustic signal.

5.5.2 Utilising the feature signals to identify the S1 sound

corresponding to the systolic blood pressure

In addition to the amplitude and the energy envelope, the SBP algorithm also uses the

correlation coe�cient envelope as a feature signal. These envelopes are computed for all

the peaks detected using the template matching algorithm and lying after the DBP (in-

cluding the noisy region). The goal of the SBP algorithm is to find the temporal location

of a suitable S1 sound which when correlated with the pressure signal provides an accu-

rate SBP. The feature signals for two di↵erent types of acoustic signals are plotted in Fig.

5.9(c)-(e) and Fig. 5.12(c)-(e) respectively. Both the original and the filtered envelopes

are plotted, however, only the filtered envelopes are used for the further processing.
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Figure 5.12: Energy and amplitude envelopes of the Korotko↵ sounds with peaks marked in the
positive side of the acoustic signal. (a) Pressure applied on the arm increases be-
tween zero and a value above the systolic blood pressure. (b) Pre-processed acoustic
signal with all the S1 peaks identified. (c) Energy envelope of the Korotko↵ sounds
falling after the 40 mmHg pressure level. The experimentally determined Korotko↵
sound location for SBP determination is also plotted along with the reference wrist
and reference arm SBP location. An error of 0 and 6 mmHg was obtained with re-
spect to the wrist and arm SBP references respectively. (d) Amplitude envelope of
the positive amplitudes (upper envelope) of the S1 peaks falling after the 40 mmHg
pressure level. The bounds used in the proposed algorithm are also plotted. (e)
Template matching coe�cients envelope of the S1 peaks falling after the 40 mmHg
pressure level. The bounds used in the proposed algorithm are also plotted.
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During the cu↵ inflation, the SBP is characterised as the disappearance of the pulse or

the S1 sound. The S1 sounds disappear due to the complete blockage of the blood flow

when an external pressure applied on the arterial branch exceeds the maximum arterial

pressure. Therefore, if the noise inherent to the system and the surrounding environment

is zero, then the amplitude and the energy of the S1 sounds transition from a finite value

to a zero value when moving from before the SBP to after the SBP. Due to the presence

of motor noise and noise inherent to the wearable device, the acoustic signal has a finite

amplitude and energy even after the full occlusion of the artery. It can be observed that

all the feature signals in Fig. 5.9 and Fig. 5.12 obtain a minimum value corresponding

to the peaks detected in the noisy region. Similar to the DBP algorithm, firstly a narrow

region of interest among N number of detected peaks, is searched using the amplitude

(An) and the correlation coe�cient (CCn) envelope. These features for the peaks in the

noisy region (i.e. above the SBP) take similar values and produces a ratio quite close

to 1. However, the amplitude and the correlation coe�cient for the last S1 sound near

the SBP are large enough than the noisy peaks such that a ratio significantly less than

1 is obtained. The minimum amplitude Amin and the minimum correlation coe�cient

CCmin are calculated as follows:

Amin = mean{AN , AN�1, AN�2}

CCmin = mean{CCN , CCN�1, CCN�2}
(5.11)

For both the feature signals, the last peak that has an amplitude greater than 1.1⇥Amin

and 1.1⇥CCmin respectively, and has a ratio less than 0.9 is chosen as the centre point

of the envelope bounds. All the peaks that lie within ±3 beats of both the centre points

are included for the further analysis of determining the SBP. For example, the bounds

for the amplitude and the correlation coe�cient envelopes in Fig. 5.9 are between [30,36]

and [29,35] respectively. These bounds for the acoustic signal in Fig. 5.12 are between

[52,58] and [50,56] respectively.

The bounds calculated using the amplitude and correlation coe�cient envelopes nar-

rowed the region to search for the S1 sound location corresponding to the SBP. For the

acoustic signals in Fig. 5.9 and Fig. 5.12 respectively, only peaks that are numbered

between [30,35] and [52,56] are processed further. Among the shortlisted peaks, the last

peak that has an energy ratio less than 0.9 is chosen as the S1 sound corresponding to

the SBP. The time-stamp of the chosen S1 sound is extracted from the acoustic signal

and the corresponding pressure value from the synchronous pressure signal is found. This

value of pressure is assumed to be the experimental SBP of the subject. As an illustra-

tion, the S1 numbered 32 in Fig. 5.9(b) correlates to an experimental SBP of 114 mmHg

and produces an error of 2 mmHg and 4 mmHg with respect to the wrist and arm SBP

references respectively. The same analysis for the acoustic signal in Fig. 5.12 produces

an error of 0 mmHg and 6 mmHg with respect to the wrist and arm SBP references
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respectively. The 55th S1 sound is chosen as the experimental location of the SBP.

5.6 Experimental procedure

To assess the performance of the proposed algorithm over a diverse cohort, a total of

40 subjects were recruited at Imperial College London. The study was approved by

the local ethics committee of Imperial College London and all research was performed

in accordance with the relevant guidelines and regulations. The informed consent was

obtained from all the subjects before starting the data acquisition for the blood pressure

measurement. The subjects were also asked to provide details regarding their age, gender,

weight, height, BMI, any pre-existing diseases, arm and wrist circumferences, entry SBP

and DBP at arm and wrist respectively. The subjects characteristics in this experiment

are provided in Table 5.3.

Table 5.3: Statistical information about the participants in the data acquisition.

Parameters Mean ± SD Range

Men:Women 34:6

Age (years) 23.27 ± 4.04 20 - 41

Weight (Kg) 71.48 ± 9.83 52 - 92

Height (cm) 176.08 ± 7.90 159 - 193

BMI 23.04 ± 2.73 16.6 - 29.3

Arm circumference (cm) 28.32 ± 2.95 22.0 - 33.5

Wrist circumference (cm) 16.18 ± 1.11 14.0 - 18.5

Entry wrist SBP (mmHg) 114.90 ± 10.57 98 - 137

Entry wrist DBP (mmHg) 74.37 ± 8.82 56 - 107

Entry arm SBP (mmHg) 115.30 ± 12.36 85 - 148

Entry arm DBP (mmHg) 70.25 ± 6.35 59 - 86

Entry heart rate (bpm) 64.63 ± 11.12 44 - 103

Data is expressed as mean ± SD (standard deviation) and

range (except the gender ratio). Entry SBP/ DBP denote the

first readings obtained from the commercial monitors.

The reference blood pressure measurements were recorded using a wrist-based and an

arm-based automated oscillometric blood pressure monitor. While the reference SBP/

DBP at the upper arm were recorded using the Omron M7 Intelli IT (HEM-7322T-E)

monitor (Omron Healthcare Co., Ltd., Kyoto, Japan), the reference SBP/ DBP at the

wrist were measured using the Omron RS6 monitor (Omron Healthcare Co., Ltd., Kyoto,

Japan). The Omron M7 monitor uses an intelligent cu↵ wrap technology by providing

215



360� accuracy from any position around the upper arm [15], [16]. The monitor also

detects any body movement and indicates if the cu↵ is wrapped too loose or too tight.

The monitor has been validated clinically for healthy, diabetic and pregnant subjects and

the company claims an accuracy of ±3 bpm with respect to the gold standard mercury

sphygmomanometer approach. The accuracy of the monitor has also been validated

in the literature [17] where it passed the validation criteria for both the BHS and the

AAMI protocols and was recommended for professional and home-use. The Omron RS6

monitor, on the contrary, uses an inbuilt positioning sensor to locate the wrist at the

level of the heart while measuring the blood pressure [18]. The automatic detection of

the wrist position removes any error arising from the hydrostatic pressure developed due

to a vertical di↵erence between the wrist and the heart levels. The monitor has been

validated clinically and the company claims an accuracy of ±3 bpm with respect to the

gold standard mercury sphygmomanometer approach. The accuracy of the monitor has

also been validated in the literature [19] where it passed the validation criteria for the

ESH-IP 2010 protocol and was found to be suitable for home-use.

The following experimental protocol was followed during the data acquisition for all

the subjects:

1. Before the actual appointment, the subjects were asked to avoid drinking any bev-

erage or eating anything in the last 2 hours. The subjects on any medication related

to the blood pressure were also asked to avoid the intake of such medication in the

last 24 hours prior to the study.

2. The subjects at the start of the appointment were asked to sit on a chair with the

feet flat on the floor (i.e. no crossed legs) and back straight with a support. This

body state was maintained throughout the experimental procedure.

3. After recording the participant information, the subjects were asked to relax and

be silent for 5 minutes duration before taking the first blood pressure measurement.

4. The first reference reading from the left wrist using Omron RS6 monitor was

recorded by bending the elbow and raising the wrist at the level of the heart.

The inbuilt position sensor only allows the measurement when the wrist lies at the

level of the heart. Since the monitor works on the inflationary oscillometric prin-

ciple, the rising pressure levels can cause wrist movements possibly leading to the

wrong reference readings. This is avoided by providing a support to the subject’s

forearm using a small pillow. Further, the subjects were also asked to open the fist

and avoid bending the wrist or clenching the fist during the recording.

5. After 1 minute of the relaxation period, the reference reading from the upper arm

of the left hand was recorded using the Omron M7 monitor by placing the cu↵ at
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the level of the heart with the lower end of the cu↵ 2-3 cm above the antecubital

fossa.

6. After 1 minute of the relaxation period, the acoustic signal from the radial artery

of the left wrist was recorded in synchronisation with the pressure signal applied

on the left arm. The wrist was positioned at the level of the heart during the

measurement. The sampling frequencies of the acoustic signal and the pressure

signal were 2100 Hz and 100 Hz respectively. Depending on the arm circumference

of the subject, a suitable cu↵ size as discussed in Section 5.2 was wrapped around

the upper arm.

7. Two more sets of blood pressure measurements (wrist/ arm reference readings

+ acoustic/ pressure experimental recordings) were performed for a total of 40

subjects. A relaxation period of 3 minutes was kept between two consecutive sets

of the readings.

8. The reference measurements were repeated if a di↵erence of more than 10 mmHg

was observed between either the SBP or the DBP from the wrist and arm readings.

A total of 104 acoustic recordings along with the reference wrist/ arm blood pres-

sure readings from 40 subjects were included in the database because some subjects felt

uncomfortable after the first or second set of blood pressure measurement.

5.7 Results and discussion

The performance of the proposed algorithm to determine the DBP and the SBP from

the acoustic recordings is assessed using the Bland-Altman and the correlation analysis.

The experimental DBP and SBP are compared separately with the reference readings

from the wrist and arm blood pressure monitors. Therefore, a total of four di↵erent

plots for the DBP and the SBP comparisons are individually presented in Fig. 5.13 and

Fig. 5.14 respectively. While the Bland-Altman analysis indicate the extent of statistical

agreement between the experimental and the reference outputs, the correlation analysis

provides the degree of similarity between them. The details about these analysis methods

have been discussed in earlier chapters of this thesis.

Table 5.4 lists the performance parameters obtained from the Bland-Altman analysis

of 104 acoustic recordings from 40 subjects. A standard deviation of around 6 bpm is

obtained for the DBP estimation using the proposed algorithm with respect to both the

reference monitors. The SBP algorithm also achieves a standard deviation of approxi-

mately 6 bpm in comparison to the arm monitor. However, the SBP error with respect

to the wrist monitor is significantly higher and a standard deviation of around 9 bpm

is obtained. The percentage of samples with absolute di↵erences less than 5 mmHg, 10

mmHg and 15 mmHg are also listed in Table 5.5. It can be observed that both the
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Figure 5.13: Results obtained for the DBP determination from the acoustic signal. (a) Bland-
Altman analysis for the DBP comparisons with the wrist DBP reference. (b) Cor-
relation analysis for the DBP comparisons with the wrist DBP reference. (c)
Bland-Altman analysis for the DBP comparisons with the arm DBP reference. (d)
Correlation analysis for the DBP comparisons with the arm DBP reference.

DBP and the SBP algorithms demonstrate a higher statistical agreement with the arm

monitor than the wrist monitor. A possible reasoning behind such an observation is that

the commercial wrist-based blood pressure monitors have been found to overestimate

the upper arm blood pressure [20]. While the discrepancy of the hydrostatic pressure

developed due to the wrist position in relation to the heart is minimised using the inbuilt

position sensor, the error in these monitors mainly arises because of insu�cient occlusion

of the forearm arteries [21]. This was not the case with the experiment in this study

since an external pressure of 20-30 mmHg higher than the entry SBP was applied on the
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Figure 5.14: Results obtained for the SBP determination from the acoustic signal. (a) Bland-
Altman analysis for the SBP comparisons with the wrist SBP reference. (b) Corre-
lation analysis for the SBP comparisons with the wrist SBP reference. (c) Bland-
Altman analysis for the SBP comparisons with the arm SBP reference. (d) Cor-
relation analysis for the SBP comparisons with the arm SBP reference.

brachial artery to ensure a full occlusion.

From the algorithmic point of view, a few sources of error exist. The pressure inside

the air cu↵ is incremented in a staircase manner by controlling the operation of the motor

and the valve. Since the staircase pressure is approximated by a linear pressure profile

using the average values of the adjacent levels, a small pressure error can manifest when

matching the time-stamp of the S1 sound with the pressure signal. The interference

from the motor noise in a spectral band similar to the acoustic signal also a↵ects the

performance of the algorithm. Although the piezoelectric air pumps operating at high
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Table 5.4: Comparison results from the Bland-Altman analysis.

Reference
SBP DBP

µ � LOA µ � LOA

Arm 1.13 6.04 [-10.71, 12.98] 1.57 6.13 [-10.45, 13.59]

Wrist 2.50 8.90 [-14.95, 19.94] -0.43 6.37 [-12.92, 12.06]

frequencies (e.g. 25 KHz) are available in the market [22]–[25], their specifications about

the air flow and the back pressure limit their usage in the blood pressure monitoring

system. The piezoelectric pump designed and developed by Omron Healthcare Co., Ltd.,

is an exception [26], however, the pump is not available for commercial purchase. It

would be ideal to integrate a piezoelectric pump with suitable specifications in the blood

pressure monitoring system as the motor noise can simply be filtered using a low-pass

filter with a cut-o↵ frequency of 150 Hz. Another source of error is possibly because of

the hydrostatic pressure. While the wrist is positioned at the level of the heart during

the data acquisition, the absence of an inbuilt position sensor in the hardware designed

for this study can possibly introduce errors due to the hydrostatic pressure. Since the

acoustic signal is recorded from the wrist and the pressure is applied on the upper arm,

the pulse arrival time (PAT) between the onset of pulse at the upper arm and the wrist

can also introduce small di↵erences in synchronising the signals. However, the PAT

was experimentally calculated by placing the wearable device on the brachial artery

and a PPG sensor on the index finger to record the pulse simultaneously from both

the locations. The PAT was found to vary in the range of 100-200 ms producing an

insignificant pressure error between 0.4 to 0.8 mmHg for an inflation rate of 4 mmHg/s.

Apart from these error sources, the performance of the pressure sensor in generating

a proportional output voltage corresponding to the di↵erential input pressure can also

introduce significant error in the blood pressure estimation. Although the accuracy of

the pressure sensor in the proposed system was validated by comparing the programmed

maximum pressure level with the obtained maximum cu↵ pressure, the future work will

incorporate the frequent calibration of the pressure sensor to eliminate any variation in

the sensitivity of the sensor.

Table 5.5: Percentage SBP/ DBP samples below the absolute di↵erences of 5mmHg, 10 mmHg
and 15 mmHg respectively.

Reference

SBP DBP

Absolute di↵erence (%) Absolute di↵erence (%)

5 mmHg 10 mmHg 15 mmHg 5 mmHg 10 mmHg 15 mmHg

Arm 66 93 99 70 92 98

Wrist 46 77 91 60 94 100
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5.8 Conclusion

The gold standard approach of measuring the blood pressure requires a trained clinician

to listen to the Korotko↵ sounds at the brachial artery. In this chapter, the duplication

of the auscultation method has been studied on the wrist to investigate the feasibility of

recording the Korotko↵ sounds from the radial artery. A total of 104 acoustic recordings

from 40 subjects were recorded in synchronisation with the pressure signal applied on

the arterial branch in a non-invasive manner. The temporal and spectral characteristics

of the acoustic signal demonstrated the presence of Korotko↵ sounds during the cu↵

inflation. These sounds had a bandwidth of less than 150 Hz, however, only the feature

signal obtained from the spectral band of 50-110 Hz was used to correlate with the

experimental DBP and SBP. The proposed algorithms achieved a low standard deviation

of around 6 bpm with respect to the reference blood pressure monitors. Although all the

recommendations of the BHS protocol [27] were not followed during the data acquisition

as it demands a recruitment of 85 subjects with blood pressure falling in di↵erent ranges,

an interpolation guarantees a grade of A/A for the DBP determination and a grade

of A/C for the SBP determination using the proposed algorithms with respect to the

arm and the wrist monitors respectively. Since a mean error of less than 5 mmHg and

a standard deviation of error less than 8 mmHg are obtained, the proposed algorithm

achieves a pass grade following a similar interpolation for the ANSI/AAMI/ISO protocol

[28].

In conclusion, this study showed for the first time, that the acoustic signal recorded

from the radial artery at the wrist can be used as a novel physiological signal to measure

the blood pressure of a subject. Since the acoustic signal is already recorded from a

wearable device, further improvements in the hardware design for cu↵ inflation using

a piezoelectric pump can allow the complete system to be integrated in a watch-like

wearable system. However, an availability of a suitable piezoelectric pump in the market

is a must for such a design to become a reality.
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6 Conclusions

6.1 Contributions

This thesis has presented the novel concept of using acoustic sensing over the radial

artery to extract cardiac parameters for continuous vital sign monitoring. To test the

validity of this principle, a miniaturised, battery-operated wireless device consisting of

a MEMS microphone has been designed. The system has a small form-factor and low

weight so that it could be easily attached to the wrist, comfortable to wear, non-intrusive,

and provide automatic and accurate representation of the instantaneous cardiac activity.

The wearable device allowed to record the heart sounds together with the pulse wave, an

attribute not possible with existing wrist-based sensing methods.

Chapter 1 introduced the impact of cardiovascular diseases on the global population

and healthcare costs. It was found that the regular monitoring of three important phys-

iological signals including the heart rate (HR), the heart rate variability (HRV) and the

blood pressure (BP) can allow an early detection, prevention and diagnosis of increased

cardiovascular risks. Based on these findings, the definitions, importance and common

techniques of monitoring these physiological markers were reviewed. This was followed

by a comparison of commercially available monitors that have been validated in the liter-

ature and were based on di↵erent measurement principles. For the HR/ HRV monitoring,

it was concluded that there is a strict need of alternative sensing mechanisms that can

simultaneously provide the user-friendliness of the photoplethysmography (PPG)-based

monitors, the accuracy of the electrocardiography (ECG)-based monitors, and a longer

operational lifetime. For the BP monitoring, similar conclusions were drawn in propos-

ing the integration of the automatic features of the oscillometry-based monitors with the

accuracy of the auscultation method by automatically listening to the Korotko↵ sounds

at the wrist using the proposed wearable device.

Chapter 2 provided a brief review about the origin and components of the pulse for-

mation in the circulatory system. Among the di↵erent arterial pulse locations, the radial

artery was found to be an ideal site for pulse assessment. A comprehensive literature

review of di↵erent techniques and applications to monitor the radial pulse was presented.

The discussion on existing technologies having one or more disadvantages pointed the

acoustic sensing of the radial pulse as an attractive option for wearable applications.

Since the design and development of a wearable device imposes tight constraints on the

electrical and mechanical specifications of the system, di↵erent types of acoustic sen-
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sors, batteries, data acquisition hardware have been reviewed. Finally, the electronic

components and their specifications used in designing the wearable acoustic device were

presented.

Chapter 3 studied the temporal and spectral characteristics of the acoustic signal

recorded from the radial artery. The power spectral analysis revealed that the signal

power is mainly concentrated in the S1 and S2 sounds, with S2 sounds carrying a relatively

lower energy. The optimal sensing location on the wrist to record a signal with higher

signal-to-noise ratio was found by comparing the power spectrum of signals recorded from

the distal, middle and proximal locations of the radial artery. The noise sources were also

characterised to incorporate their removal either in the sensing system itself or the signal

processing software. Finally, a novel algorithm based on the power spectral density of

the S1 sounds was proposed to determine the average HR from the acoustic signals. A

comparison with the PPG-based reference HR and commercial monitors demonstrated

the potential of the new sensing modality to be used as an alternative, or to complement

existing methods, for continuous monitoring of HR at the wrist.

Chapter 4 provided a comprehensive literature review of the algorithms to extract the

HRV from di↵erent types of signals and sensing locations. The importance of character-

istic points to represent a waveform of interest in the biomedical signal and determine

the HRV accurately was established. An algorithm based on short- and long-term en-

ergies of the acoustic signal was proposed to identify the time-indices of three di↵erent

characteristic points corresponding to the S1 events. The time-domain and frequency-

domain HRV parameters showed a strong correlation and high statistical agreement with

the parameters derived from PPG and ECG signals respectively. The results proved the

reliability and high accuracy of extracting the HRV parameters from the acoustic signal

recorded at the wrist.

Chapter 5 proposed to extend the novel concept of acoustic sensing at the wrist by

studying its relationship with the BP. An automatic pressure control system was designed

for the step-wise inflation of the air cu↵ to apply varying levels of external pressure on the

arterial branch. The temporal and spectral characteristics of the acoustic signal recorded

under the influence of external pressure were utilised to identify the relevant features for

the systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimation. The

wide-band analysis of the acoustic signals revealed the presence of maximum spectral

content of the Korotko↵ sounds in the frequency band of 50-110 Hz. While the DBP

algorithm utilised the amplitude and energy envelopes as the corresponding feature sig-

nals, the SBP algorithm also included the template matching coe�cient envelope to find

an association with the disappearance of the Korotko↵ sounds. The experimental BP

readings were compared with the reference arm- and wrist-based monitors and a low

mean error and standard deviation of error were obtained. The results proved that the

acoustic signal recorded from the radial artery can also be used as a novel physiological
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signal to measure the BP of a subject.

6.2 Further Work

The work presented in this thesis has some advantages and disadvantages over the gold

standard approaches of monitoring the cardiovascular parameters. ECG monitoring in

the clinical settings provide a detailed cardiac information to help diagnose and monitor

conditions a↵ecting the heart. Acoustic sensing at the wrist is obviously no substitute for

the ECG, however, the proposed wearable technology can be used for home assessment

of the cardiac activity by integrating it easily within the daily lifestyle. In relation to

PPG-based sensing, the proposed method is clearly superior in terms of the low power

consumption, low cost and high resilience to the external artefacts. Unlike PPG-based

devices, the attachment of the acoustic sensor to the wrist using a double-sided medical

adhesive tape also ensures a proper contact and durability for signal acquisition. However,

the installation of the tape can be uncomfortable for some subjects. It is worth noting

that although the proposed sensing mechanism has been tested experimentally, this thesis

presented just the proof of concept. To be used as part of a medical device, full clinical

validation would require testing on a larger cohort wearing a device based on this principle

in an ambulatory setting. This would allow not only to investigate a wider range of

cardiac signals, but also to test with real life artifacts.

Additionally, the signal processing algorithms proposed in this thesis were implemented

on a software with floating point data representation. Such an implementation does not

provide the optimal characteristics of speed and power consumption when run on a

portable device. The future work would require the conversion of floating point data to

the fixed point data while maintaining a similar accuracy for the cardiovascular monitor-

ing at the wrist.

From the hardware point of view, the wearable prototype used in the current study used

a Bluetooth channel to transmit the acoustic data. The next iteration of the wearable

design would require testing the Bluetooth transmission in di↵erent scenarios and across

di↵erent operating systems of the receiver. For the BP estimation, separate hardware

systems were used to record the acoustic signal and the pressure signal. In the future,

the availability of the suitable piezoelectric motors in the market could be utilised to

design an integrated watch-like wearable system for the BP monitoring. Therefore, a

single wearable device could be used to regularly monitor the HR, the HRV and the BP

for an early detection of the increased cardiovascular risk.
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A Permission for the third party

copyrighted works used in this thesis

Table A.1 lists the summary of the permissions taken for the third party copyrighted

works used in this thesis. Following the summary, all the permission documents are also

attached in the order of figure numbers as follows:

1. Fig 1.5: Page 231-232

2. Fig 1.6: Page 233-234

3. Fig 2.1: Page 235

4. Fig 2.3(b): Page 236-237

5. Fig 2.6: Page 238-239

6. Fig 2.7: Page 240

7. Fig 2.8: Page 241

8. Fig 2.9(a): Page 242

9. Fig 2.10: Page 243-244
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I am cRmSleWiQg m\ PhD WheViV aW ImSeUial CRllege LRQdRQ eQWiWled µAcoustic sensing 
as a novel approach for cardiovascular monitoring at the wrist¶. 

I seek your permission to reprint, in my thesis a figure from the book: ³Textbook of 
Medical Physiology ± Volume 9´ by authors Arthur C. Guyton, John E. Hall. The 
extract to be reproduced is the plot of the events of the cardiac cycle for left 
ventricular function (Figure 9-5) from Page 107 of the book. 

I would like to include the extract in my thesis which will be added to Spiral, 
Imperial's institutional repository http://spiral.imperial.ac.uk/ and made available to 
the public under a Creative Commons Attribution-Non Commercial-No Derivatives 
4.0 International Licence (CC BY-NC-ND). 

If you are happy to grant me all the permissions requested, please return a signed 
copy of this letter. If you wish to grant only some of the permissions requested, 
please list these and then sign. 

Yours sincerely, 

Piyush Sharma 
PhD Student  
Imperial College London  

Permission granted for the use requested above: 

I confirm that I am the copyright holder of the extract above and hereby give 
permission to include it in your thesis which will be made available, via the internet, 
for non-commercial purposes under the terms of the user licence. 

[please edit the text above if you wish to grant more specific permission]  
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Job title: 
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hWWSV://PaiO.gRRgOe.cRP/PaiO/X/0?iN=7756d0311e&YieZ=SW&VeaUch=aOO&SeUPWhid=WhUead-a%3AU-5117034665715882588&ViPSO=PVg-a%3AU-4821174224114« 1/1

PL\XVK SKaUPa <VS.VKaUPaSL\XVK@JPaLO.cRP>

ReTXeVW WR UeSURdXce a fLJXUe fURP TE PLcURSKRQe'V daWaVKeeW
1 PHVVDJH

PL\XVK SKaUPa <VS.VKDUPDSL\XVK@JPDLO.FRP> MRQ, SHS 30, 2019 DW 10:19 PM
TR: BUDQG@WH.FRP

HHOOR SLU/ MDP,

I DP D PKD VWXGHQW DW IPSHULDO CROOHJH LRQGRQ DQG I XVHG RQH RI WKH TE PLFURSKRQHV LQ P\ SURMHFW. SLQFH I DP
FRPSOHWLQJ P\ PKD WKHVLV VRRQ, I ZDQWHG WR LQFOXGH WKH SORW RI WKH IUHTXHQF\ UHVSRQVH RI WKH CONTACT
MICROPHONE CM-01B IURP LWV GDWDVKHHW LQ P\ WKHVLV. I NLQGO\ UHTXHVW \RX WR JUDQW PH SHUPLVVLRQ WR XVH WKH SORW LQ
P\ WKHVLV E\ VLJQLQJ WKH DWWDFKHG UHTXHVW IRUP DV VRRQ DV SRVVLEOH.

TKDQNV!

BHVW RHJDUGV,

PL\XVK SKDUPD
EOHFWULFDO & EOHFWURQLF EQJLQHHULQJ DHSDUWPHQW
IPSHULDO CROOHJH LRQGRQ

ReTXeVW fRUP.dRc[
20K
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30 September 2019 

Dear Official, 

I am cRmSleWiQg m\ PhD WheViV aW ImSeUial CRllege LRQdRQ eQWiWled µAcoustic sensing 
as a novel approach for cardiovascular monitoring at the wrist¶. 

I seek your permission to reprint, in my thesis an extract from: TE contact 
microphone CM-01B datasheet. The extract to be reproduced is the plot of the 
typical frequency response on Page-2 of the datasheet. 

I would like to include the extract in my thesis which will be added to Spiral, 
Imperial's institutional repository http://spiral.imperial.ac.uk/ and made available to 
the public under a Creative Commons Attribution-Non Commercial-No Derivatives 
4.0 International Licence (CC BY-NC-ND). 

If you are happy to grant me all the permissions requested, please return a signed 
copy of this letter. If you wish to grant only some of the permissions requested, 
please list these and then sign. 

Yours sincerely, 

Piyush Sharma 
PhD Student  
Imperial College London 

Permission granted for the use requested above: 

I confirm that I am the copyright holder of the extract above and hereby give 
permission to include it in your thesis which will be made available, via the internet, 
for non-commercial purposes under the terms of the user licence. 

[please edit the text above if you wish to grant more specific permission] 

Signed: 

Name: 

Organisation: 

Job title: 
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9/30/2019 RighWVLiQN PUiQWabOe LiceQVe

hWWSV://V100.cRS\UighW.cRP/CXVWRPeUAdPiQ/PLF.MVS?Uef=9272ac1b-2577-47de-89e3-5316ddb15d6f 1/5

ELSEVIER LICENSE
TERMS AND CONDITIONS

Sep 30, 2019

ThiV AgUeemenW beWZeen Pi\XVh ShaUma ("YoX") and ElVeYieU ("ElVeYieU") conViVWV of \oXU
licenVe deWailV and Whe WeUmV and condiWionV pUoYided b\ ElVeYieU and Cop\UighW CleaUance
CenWeU.

License Number 4678880801399

License date Sep 30, 2019

Licensed Content Publisher Elsevier

Licensed Content Publication Sensors and Actuators A: Physical

Licensed Content Title A review of silicon microphones

Licensed Content Author P.R. Scheeper,A.G.H. van der Donk,W. Olthuis,P. Bergveld

Licensed Content Date Jul 1, 1994

Licensed Content Volume 44

Licensed Content Issue 1

Licensed Content Pages 11

Start Page 1

End Page 11

Type of Use reuse in a thesis/dissertation

Intended publisher of new
work

other

Portion figures/tables/illustrations

Number of
figures/tables/illustrations

1

Format both print and electronic

Are you the author of this
Elsevier article?

No

Will you be translating? No

Original figure numbers Fig. 3. (a) Schematic cross-sectional view of a condenser
microphone. (b) The condenser microphone, connected to an
external d.c. bias voltage source, loaded by a parasitic capacitance
Cp, a bias resistor Rb and a preamplifier with an input capacitance
Ci

Title of your
thesis/dissertation

A novel approach for cardiovascular monitoring

Publisher of new work Imperial College London

Expected completion date Jan 2020

Estimated size (number of
pages)

1

Requestor Location Piyush Sharma
Flat 24, Nansen Village
21 Woodside Avenue

London, other 
United Kingdom
Attn:

Publisher Tax ID GB 494 6272 12

Total 0.00 GBP
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9/30/2019 RighWVLiQN PUiQWabOe LiceQVe

hWWSV://V100.cRS\UighW.cRP/CXVWRPeUAdPiQ/PLF.MVS?Uef=60f82ba3-d661-41de-a571-2b9e6df85c46 1/4

6PRINGER NA78RE LICEN6E
7ERM6 AND CONDI7ION6

Sep 30, 2019

7KLV AJUHHPHQW EHWZHHQ PL\XVK 6KDUPD ("<RX") DQG 6SULQJHU NDWXUH ("6SULQJHU NDWXUH")
FRQVLVWV RI \RXU OLFHQVH GHWDLOV DQG WKH WHUPV DQG FRQGLWLRQV SURYLGHG E\ 6SULQJHU NDWXUH
DQG CRS\ULJKW COHDUDQFH CHQWHU.

LicenVe NXmber 4678931072297

LicenVe daWe Sep 30, 2019

LicenVed ConWenW PXbliVher Springer NaWXre

LicenVed ConWenW PXblicaWion MicroV\VWem TechnologieV

LicenVed ConWenW TiWle Flip chip packaging for MEMS microphoneV

LicenVed ConWenW AXWhor Gregor FeierWag, MaWWhiaV WinWer, AnWon Leidl

LicenVed ConWenW DaWe Jan 1, 2010

LicenVed ConWenW VolXme 16

LicenVed ConWenW IVVXe 5

T\pe of UVe TheViV/DiVVerWaWion

ReqXeVWor W\pe academic/XniYerViW\ or reVearch inVWiWXWe

FormaW prinW and elecWronic

PorWion figXreV/WableV/illXVWraWionV

NXmber of
figXreV/WableV/illXVWraWionV

1

Will \oX be WranVlaWing? no

CircXlaWion/diVWribXWion 1 - 29

AXWhor of WhiV Springer
NaWXre conWenW

no

TiWle A noYel approach for cardioYaVcXlar moniWoring

InVWiWXWion name Imperial College London

E[pecWed preVenWaWion daWe Jan 2020

PorWionV Fig. 1 MEMS Microphone package ZiWh chip and Zire bonding; Top 
VoXnd porW in lid, BoWWom SoXnd porW in PCB VXbVWraWe

ReqXeVWor LocaWion Pi\XVh Sharma
FlaW 24, NanVen Village
21 WoodVide AYenXe

London, oWher 
UniWed Kingdom
AWWn:

ToWal 0.00 GBP

TermV and CondiWionV

SSULQJHU NDWXUH CXVWRPHU SHUYLFH CHQWUH GPEH
THUPV DQG CRQGLWLRQV

7KLV DJUHHPHQW VHWV RXW WKH WHUPV DQG FRQGLWLRQV RI WKH OLFHQFH (WKH LLFHQFH) EHWZHHQ \RX
DQG SSULQJHU NDWXUH CXVWRPHU SHUYLFH CHQWUH GPEH (WKH LLFHQVRU). B\ FOLFNLQJ
'DFFHSW' DQG FRPSOHWLQJ WKH WUDQVDFWLRQ IRU WKH PDWHULDO (LLFHQVHG MDWHULDO), \RX DOVR
FRQILUP \RXU DFFHSWDQFH RI WKHVH WHUPV DQG FRQGLWLRQV.

1. GUDQW RI LLFHQVH
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05/01/2020 Mail - Sharma, Piyush - Outlook

https://outlook.office.com/mail/search/id/AAQkAGEyODIxODkyLTZlM2QtNGMzZS05ZDY3LTg4YzY4YjhmYWY3ZgAQAB5cg4fIIx9AgRTIbb%2BJ3SQ… 1/1

Hello Sir/ Mam,

I am a PhD student at Imperial College London and I used one of the Invensense microphones in my project.
Since I am completing my PhD thesis soon, I wanted to include the plot of the frequency response of
the INMP411 microphone from its datasheet in my thesis. I kindly request you to grant me permission to use the
plot in my thesis by signing the attached request form as soon as possible.

Thanks!

Best Regards,

Piyush Sharma
PhD Student
Circuits & Systems Research Group
Department of Electrical & Electronic Engineering
Imperial College London, South Kensington, London SW7 2AZ
Tel: +44 (0) 20 759 46297
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30 September 2019 

Dear Official, 

I am cRmSleWiQg m\ PhD WheViV aW ImSeUial CRllege LRQdRQ eQWiWled µAcoustic sensing 
as a novel approach for cardiovascular monitoring at the wrist¶. 

I seek your permission to reprint, in my thesis an extract from the INMP411 
datasheet. The extract to be reproduced is the plot of the typical frequency response 
on Page-7 of the datasheet. 

I would like to include the extract in my thesis which will be added to Spiral, 
Imperial's institutional repository http://spiral.imperial.ac.uk/ and made available to 
the public under a Creative Commons Attribution-Non Commercial-No Derivatives 
4.0 International Licence (CC BY-NC-ND). 

If you are happy to grant me all the permissions requested, please return a signed 
copy of this letter. If you wish to grant only some of the permissions requested, 
please list these and then sign. 

Yours sincerely, 

Piyush Sharma 
PhD Student  
Imperial College London 

Permission granted for the use requested above: 

I confirm that I am the copyright holder of the extract above and hereby give 
permission to include it in your thesis which will be made available, via the internet, 
for non-commercial purposes under the terms of the user licence. 

[please edit the text above if you wish to grant more specific permission] 

Signed: 

Name: 

Organisation: 

Job title: 
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