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Abstract

Objective: Cardiovascular diseases are the number one cause of deaths globally. An
increased cardiovascular risk can be detected by a regular monitoring of the vital signs
including the heart rate, the heart rate variability (HRV) and the blood pressure. For
a user to undergo continuous vital sign monitoring, wearable systems prove to be very
useful as the device can be integrated into the user’s lifestyle without affecting the daily
activities. However, the main challenge associated with the monitoring of these car-
diovascular parameters is the requirement of different sensing mechanisms at different
measurement sites. There is not a single wearable device that can provide sufficient
physiological information to track the vital signs from a single site on the body. This
thesis proposes a novel concept of using acoustic sensing over the radial artery to extract
cardiac parameters for vital sign monitoring. A wearable system consisting of a micro-
phone is designed to allow the detection of the heart sounds together with the pulse wave,

an attribute not possible with existing wrist-based sensing methods.

Methods: The acoustic signals recorded from the radial artery are a continuous reflec-
tion of the instantaneous cardiac activity. These signals are studied and characterised
using different algorithms to extract cardiovascular parameters. The validity of the pro-
posed principle is firstly demonstrated using a novel algorithm to extract the heart rate
from these signals. The algorithm utilises the power spectral analysis of the acoustic
pulse signal to detect the S1 sounds and additionally, the K-means method to remove
motion artifacts for an accurate heartbeat detection. The HRV in the short-term acoustic
recordings is found by extracting the S1 events using the relative information between
the short- and long-term energies of the signal. The S1 events are localised using three
different characteristic points and the best representation is found by comparing the in-

stantaneous heart rate profiles. The possibility of measuring the blood pressure using the



wearable device is shown by recording the acoustic signal under the influence of external
pressure applied on the arterial branch. The temporal and spectral characteristics of the
acoustic signal are utilised to extract the feature signals and obtain a relationship with

the systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively.

Results: This thesis proposes three different algorithms to find the heart rate, the HRV
and the SBP/ DBP readings from the acoustic signals recorded at the wrist. The results

obtained by each algorithm are as follows:

e The heart rate algorithm is validated on a dataset consisting of 12 subjects with
a data length of 6 hours. The results demonstrate an accuracy of 98.78%, mean
absolute error of 0.28 bpm, limits of agreement between -1.68 and 1.69 bpm, and
a correlation coefficient of 0.998 with reference to a state-of-the-art PPG-based
commercial device. A high statistical agreement between the heart rate obtained

from the acoustic signal and the photoplethysmography (PPG) signal is observed.

e The HRV algorithm is validated on the short-term acoustic signals of 5-minutes du-
ration recorded from each of the 12 subjects. A comparison is established with the
simultaneously recorded electrocardiography (ECG) and PPG signals respectively.
The instantaneous heart rate for all the subjects combined together achieves an
accuracy of 98.50% and 98.96% with respect to the ECG and PPG signals respec-
tively. The results for the time-domain and frequency-domain HRV parameters also

demonstrate high statistical agreement with the ECG and PPG signals respectively.

e The algorithm proposed for the SBP/ DBP determination is validated on 104 acous-
tic signals recorded from 40 adult subjects. The experimental outputs when com-
pared with the reference arm- and wrist-based monitors produce a mean error of

less than 2 mmHg and a standard deviation of error around 6 mmHg.

Based on these results, this thesis shows the potential of this new sensing modality to be
used as an alternative, or to complement existing methods, for the continuous monitoring

of heart rate and HRV, and spot measurement of the blood pressure at the wrist.
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MAE
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ME
SD
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SE
PPV
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Meaning

Light-emitting diode

Heart rate variability

Pulse rate variability
Instantaneous heart rate
Inter-beat interval

Radio frequency
Micro-electro-mechanical systems
Electret condenser microphone
Application specific integrated circuit
Analogue to digital converter
System-on-chip

Successive approximation register
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Short-time Fourier transform
Power spectral density

Acoustic pulse signal

Mean absolute error

Mean absolute error percentage
Pearson correlation coefficient
Mean error

Standard deviation
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Standard error
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Detection error rate

Signal-to-noise ratio
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Full form

millimetres of mercury

seconds

hours
milliseconds
beats per minute
volts
milliamperes
milliampere hour
grams
millimetres
centimetres
ohms

decibels
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Thesis Structure

This thesis is organised into five main chapters and the details of each chapter are sum-

marised below.

Chapter 1: An introduction to non-invasive cardiovascular monitoring tech-

niques and systems

An introduction to the cardiovascular diseases and their important types is presented.
Their impact on the world and specifically on the U.K. population is discussed to under-
stand the importance of creating novel solutions in reducing the cardiovascular mortalities
and morbidities. It is found that a regular monitoring of the heart rate, the heart rate
variability and the blood pressure can provide critical information about these diseases
and contribute in their early diagnosis. These physiological markers are subsequently
discussed in detail with an emphasis on existing monitoring techniques. The advantages
and disadvantages of every technique are also explained to understand the feasibility of a
technique in different applications. Further, a comparison of the features and functions
of the commercial monitors currently available in the market is done. The validation
of these monitors in the literature is also discussed to grade their respective accuracies.
Finally, the limitations of the existing systems are summarised and a novel approach for

the cardiovascular monitoring at the wrist is proposed.

Chapter 2: Wearable sensing of the pulse sounds at the wrist

In this chapter, the formation of the pulse is discussed in relation to the propagation of
blood through the circulatory system. The pulse components, namely the pressure wave
and the flow wave are explained to justify the choice of radial artery as an ideal site
for pulse assessment. Further, a comprehensive literature review of different techniques
and applications of measuring the radial pulse is provided. The conclusions drawn from
the literature review are used to explain the need of wearable acoustic sensing as an
alternative new physiological signal to extract cardiac information from the radial artery.
For sensing the pulse sounds using a wearable device, different types of acoustic sensors,
batteries and data acquisition hardware are explored. A detailed comparison of these
choices is provided to find the electronic components matching the required specifications

of the device. Finally, the blueprint of the proposed wearable device is discussed.
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Chapter 3: Characterising the pulse sounds for continuous heart rate moni-

toring

The proposed wearable device is used to record the acoustic pulse signal from the radial
artery. To establish a correlation of these signals with the cardiac activity, the temporal
and spectral characteristics of the pulse sounds are studied. Since the signal quality
depends highly on the measurement site, the optimal sensor location on the wrist is
found. Just like other devices, the proposed sensor is also prone to some motion artefacts.
This chapter identifies the common noise sources and characterises them to incorporate
their removal from the acoustic signal. These characteristics of the recorded signals are
used to present a novel algorithm for average heart rate estimation. The heart rate
profiles obtained from the proposed algorithm are compared with the synchronously
recorded photoplethysmography signals. The results demonstrate the feasibility of heart
rate monitoring at the wrist using the acoustic sensing of the radial pulse. Finally, the
performance of the proposed algorithm over various parameters is compared with some

of the monitors available commercially.

Chapter 4: An algorithm to determine heart rate variability in short-term

acoustic recordings

In this chapter, a novel algorithm to extract the heart rate variability from the short-
term acoustic recordings at the wrist is proposed. Firstly, a comprehensive literature
review of the existing algorithms based on different monitoring techniques (including the
contact and non-contact approaches) is provided. Further, the data acquisition involving
the synchronous recordings of the acoustic signal, electrocardiography signal and photo-
plethysmography signal is explained. The relative energy concept to detect the S1 sounds
in the acoustic signal along with the other stages of the proposed algorithm are also dis-
cussed. The S1 sounds represented by three different characteristic points are localised
and the instantaneous heart rate is calculated to find the most suitable characteristic
point. The peak detection at a beat-to-beat resolution is then utilised to extract the
time-domain and frequency-domain heart rate variability parameters. The comparison
with the reference signals proves the performance of the proposed algorithm in accurately

extracting the heart rate variability from the acoustic signals recorded at the wrist.

Chapter 5: Blood pressure measurement by sensing Korotkoff sounds at the

wrist

This chapter explores the possibility of recording the Korotkoff sounds from the radial
artery to measure the systolic and diastolic blood pressure at the wrist. The hardware
required to inflate the air cuff and apply varying levels of external pressure on the upper
arm is described. The roles and specifications of different components in the hardware

development are also provided for reference. Further, the hypothesis of measuring the
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blood pressure at the wrist is tested by recording the acoustic signal in synchronisation
with inflating pressure levels. The temporal and spectral characteristics of the acoustic
signal under the influence of external pressure on the arterial branch are studied and anal-
ysed. These characteristics are utilised to propose separate algorithms for the diastolic
and systolic blood pressure determination. The interference from the artefacts and their
removal is also considered to extract reliable feature signals from the acoustic signal, and
use them in different stages of the algorithm. The adopted experimental procedure in
accordance with the international guidelines is described. Finally, the blood pressure es-
timations from the proposed algorithms are compared with two reference monitors (wrist
and arm) and the conclusions about the feasibility of measuring the blood pressure at

the wrist using the acoustic sensing of the pulse are drawn.
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1 An introduction to non-invasive
cardiovascular monitoring techniques

and systems

1.1 Introduction

The human cardiovascular system is a closed tubular system in which the heart takes
the central position and propels the blood to every part of the body through a network
of blood vessels. The network consists of arteries, capillaries and veins as its main
components [1]. The arteries carry blood away from the heart and branches further
into smaller arterioles. These arterioles branches into a wide distribution network of
microscopically small capillaries. While the arteries carry the blood from one location
to another, it is the capillaries that interact with every cell in the body to carry out an
exchange of oxygen, nutrients and metabolic waste. The capillaries rejoin to form their
counterparts called venules, which further unite to form the veins. The veins take the
blood burdened with the metabolic waste back to the heart. Since the cardiovascular
system is essentially a network of the heart and the blood vessels, any condition that
affects a normal functioning of this network is known as a cardiovascular disease (CVD).

While there are different types of CVDs [2], four of the main diseases are described below:

1. Coronary heart disease: It is a disease that causes a blockage or interruption in
the transportation of the oxygen-rich blood to the heart muscle due to a build-up
of fatty substances in the coronary arteries. These fatty deposits, also known as

atheroma, can clog the arterial walls to cause atherosclerosis.

2. Stroke: Any disruption of the blood supply (rich with oxygen and nutrients) to
the brain can cause its cells to die possibly leading to a brain injury, disability and
death. The interruption can be caused either from the blockage (ischaemic stroke)

or the rupture of a blood vessel (haemorrhagic stroke).

3. Peripheral arterial disease: Tt is a disease related to the build-up of fatty deposits
in the arteries responsible for supplying blood to the arms and legs. These fatty
deposits are generally made up of cholestrol and other wastes, and causes the
arterial walls to constrict. The narrowing of the arteries restricts the blood flow to

the limbs causing moderate to severe pain.
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4. Aortic disease: Aorta is the largest blood vessel in the body and is responsible
for carrying blood away from the heart to the rest of the body. Any bulging or
swelling in the aorta, also known as aortic aneurysm, can create a possibility of

aortic rupture which can lead to life-threatening bleeding conditions.

Some of the risk factors associated with these different types of CVDs include high blood
pressure, physical inactivity, high cholestrol, use of tobacco, excessive alcohol consump-
tion, unhealthy diet, diabetes, ageing and high body mass index [3].

CVDs are the number one cause of deaths globally [4]. In 2016, an estimated 17.9 mil-
lion people died from CVDs, amounting for 31% of all the global deaths. This number
is expected to rise to 22.2 million in 2030 owing to the ageing and increasing popu-
lation. According to a report from World Health Organisation in 2014 [5], the CVDs
are responsible for 37% of all the non-communicable deaths in premature (< 70 years)
population. While majority of the CVD deaths occur in developing countries, in the UK
alone, around 170,000 deaths including 45,000 premature deaths happen due to the heart
and circulatory diseases each year [6]. These deaths amount to 28% of all the UK deaths
and accounts for an average of 460 deaths each day or one death every three minutes.
Currently in the UK, around 7.4 million people are suffering from the heart and circula-
tory diseases. The healthcare costs related to the CVDs raises another alarm as a large
proportion of the UK economy as high as £9 billion are spent on the treatment of these
diseases each year. This cost is estimated to £19 billion each year if the informal costs
and costs related to the premature deaths and disability are also included. Although the
number of CVD deaths in the UK have significantly reduced from around 320,000 deaths
in 1961, the CVD statistics still project an alarming and distressing picture. While the
quality of the medical care has significantly improved over the last few decades, it is
important to understand the causes of the CVDs so that preventive measures can be
taken at early stages.

The Global Status Report on Noncommunicable Diseases in 2014 by World Health
Organization recognised nine main targets for the countries to act upon to reduce the
mortality and morbidity rates [5]. Some of these targets relate to the risk factors associ-
ated with the CVDs and demand a reduction in the harmful use of alcohol, insufficient
physical activity, use of tobacco, obesity and diabetes. While these factors recommend
a pathway to a healthy lifestyle, it is their interplay with the physiological behaviour
of the body that yield the insights into the prevention, etiology, course, and treatment
of the CVDs. The most important physiological signs related to the CVDs include the
heart rate, the heart rate variability and the blood pressure. The Framingham study [7]
followed a cohort of 5209 subjects for 30 years and recorded the resting heart rate using
ECG in the supine position. A total of 5070 subjects were free from any type of CVDs
when they entered into the study. The study found that in both the sexes and at all the

ages, the cardiovascular and coronary mortality rates increased progressively in relation
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to the antecedent heart rates. Woodword et al. also studied the association between
the resting heart rate, cardiovascular disease and mortality in 112,680 men and women
from the Asia-Pacific region [8]. A continuous and increasing association between the
resting heart rate above 65 beats/min and the cardiovascular mortality was found with
no evidence of associations below this threshold. The study suggested similar changes in
the lifestyle as stated above to reduce the resting heart rate. Several other studies have
also emphasised the importance and simplicity of recording the resting heart rate as a
prognostic factor and potential therapeutic target in reducing the mortality rates related
to the CVDs [9]-[13].

Heart rate variability (HRV) is another important risk factor associated with the CVDs.
HRYV mainly occurs because of the adaptive changes in the heart rate caused by the sym-
pathetic and parasympathetic nervous system [14]. Therefore, any autonomic imbalance
can be assessed using HRV that have been associated with a wide range of conditions
including CVD [15]. A substantial amount of evidence in the literature proves that a
decreased HRV is associated with high cardiovascular risk [16]-[19]. The autonomic im-
balance have been associated with increased morbidity and mortality, and it has been
found that the lowering of the cardiovascular risk profiles require an elevation in the
HRV [15]. While the association of HRV in individuals with a known CVD has been
already established, the study in [20] analysed the association between HRV and cardio-
vascular events in populations without known CVD. The study found that a low HRV
is associated with a 32-45% increased risk of a first cardiovascular event in populations
without known CVD. Therefore, a regular HRV monitoring can prove to be very useful
in diagnosing the risk of developing a first cardiovascular event.

Blood pressure has been repeatedly shown to be an independent and a significant risk
factor associated with CVDs including CHD and stroke [21]-][23]. Several studies suggest
that a higher blood pressure (hypertension) is a stronger predictor than a lower blood
pressure in middle-aged and older populations [24]-[26]. The Global Burden of Disease
Study organised by the World Health Organization has also pointed towards hypertension
as the most important global risk factor for morbidity and mortality [27]. Even in the
UK, high blood pressure is the leading medical risk factor for heart and circulatory
diseases. In the UK alone, an estimated 27% (14 million) of the adult population suffer
from high blood pressure and possibly 6-8 million people are living with an undiagnosed
or uncontrolled high blood pressure [6]. Around 50% of the heart attacks and strokes
in the UK are associated with high blood pressure. Therefore, the awareness about the
early detection, prevention and control of high blood pressure must be spread across the
population starting from the age of young adulthood.

The association of heart rate, heart rate variability and blood pressure with an in-
creased cardiovascular risk demand a regular monitoring of these vital signs as a preven-

tive and diagnostic measure. The following sections provide a more detailed discussion
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on monitoring these physiological signals using different techniques and also lists the

commercially available monitors to record and monitor these parameters.

1.2 Heart rate and its variability: definitions and

monitoring techniques

Heart rate is one of the most basic physiological markers and is defined as the the number
of times a person’s heart beats per minute. A normal range of the heart rate at rest is
between 60 and 100 beats per minute (bpm), however, it varies from person to person, and
depends on the time of measurement and the activities performed before the measurement
[28]. A heart rate lower than 60 bpm is medically known as bradycardia whereas a
heart rate higher than 100 bpm is classified as tachycardia. Even when the resting
heart rate is stable, the time difference between the consecutive heartbeats can vary
substantially [29]. These variations in the inter-beat intervals, known as HRV, represent
one of the most promising markers and have various applications in studying the cardiac
events. Primarily, the HRV is used to understand the status of the autonomic nervous
system (ANS). The ANS consists of the sympathetic and parasympathetic components.
While the sympathetic branch responds to an external stimuli (e.g., stress, exercise) by
increasing the heart rate (cardio-acceleration), the parasympathetic activity decreases the
heart rate (cardio-deceleration) depending on the internal stimulus generated from the
functionality of the organs, allergic reactions, irritants, etc. [30]. This way the interplay
between both the ANS components regulate the physiological autonomic function of the
body. These components introduce separate rhythmic contributions in modulating the
heart rate at different frequencies. The sympathetic activity is associated with the low
frequency range (0.04-0.15 Hz) and the parasympathetic activity is associated with the
high frequency range (0.15-0.4 Hz). Therefore, the spectral analysis of the HRV can
allow to study these components separately and intervene at an early stage in case of
any autonomic imbalance.

HRV records the amount of heart rate fluctuations around the mean heart rate by
examining the beat-to-beat variations in a time-series profile. These inter-beat intervals
(IBIs), also known as normal-to-normal (NN) intervals, can be plotted against time
to generate an IBI tachogram as shown in Fig. 1.1. The simplest HRV analysis is
performed by extracting the time-domain measures from the IBI tachogram. While the
HRV parameters are conventionally obtained from 24-hour long-term recordings, the
short-term 5-minute recordings have also been accepted as an appropriate option for the
HRV analysis [31]. The time-domain HRV measures are mainly divided into two types:
ones that are directly obtained from the NN intervals and others that are obtained from
the differences between the NN intervals. These parameters carry different statistical

meanings [29], [31], [32] as discussed below:
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The standard deviation of the NN intervals (SDNN) reflects the short- and long-

term NN variations in the recording.

The standard deviation of the average NN interval (SDANN) is usually calculated
over short periods of 5 minutes, and therefore it provides an estimate of the changes

in the heart rate over cycles longer than 5 minutes.

The SDNN index calculates the mean of standard deviation of NN intervals in short
windows (usually 5 minutes) for the whole recording to measure the variability

across the short windows.

The square root of the mean squared differences (RMSSD) reflects the beat-to-beat
variance in the heart rate and is used to estimate the cardiac vagal control in
mediating the HRV changes.

The NN50 parameter counts the number of adjacent NN intervals that differ from
each other by more than 50 milliseconds. The percentage of such NN intervals is
known as pNN50. The pNN50 is closely correlated with the high frequency power
or the parasympathetic activity of the HRV.

The HRV can also be studied in the frequency-domain by calculating the power spectral

density (PSD) using non-parametric or parametric methods [31], [32]. Although both the

methods provide comparable results, the non-parametric method is simple to implement

(using Fast Fourier Transform) and provides high processing speed. On the contrary,

the parametric method generates smoother spectral components using the autoregressive

(AR) modelling allowing an easy post-processing of the frequency bands. The HRV in

the frequency domain is analysed in four different bands: ultra low frequency (ULF)
band (<0.003 Hz), very low frequency (VLF) band (0.003-0.04 Hz), low frequency (LF)
band (0.04-0.15 Hz) and high frequency (HF) band (0.15-0.40 Hz). Since the ULF band
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Figure 1.1: An example of IBI tachogram representing the time-interval between each subsequent

beat (~1600 beats).
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correlates with the biological processes that act very slow, it is generally calculated from
24-hour recordings. It is believed that the circadian rhythms are the primary driver of
the ULF band [33]. A low power in the VLF band is associated strongly with all-cause
mortality and is considered as more fundamental to health [34]. While the power in LF
and HF bands may be produced by both the sympathetic and parasympathetic nervous
system, it has been shown that the sympathetic activity is a major contributor to the LF
band [35]. Similarly, the HF band reflects more of the parasympathetic activity [32]. The
power measurements in VLF, LF and HF bands are generally made in absolute values
of power (ms?), however, LF and HF bands can also be measured in normalised units
(n.u.). Apart from the absolute and normalised power in different spectral bands, the
frequency-domain HRV parameters also include LF norm, HF norm and LF /HF ratio as

other measures. These parameters are defined as follows:

LF
LF ) = 100
morm (n.1) = o G VIF
HF
HF ) = 100
norm (n u.) Total Power-VLF x (1'1)
LF [ms?
LF/HF — L 05
HF [ms

The extraction of the time-domain and frequency-domain HRV parameters require a con-
tinuous measurement of the heart rate (or IBIs) on a beat-to-beat resolution. While a
spot measurement of the heart rate can simply be obtained by checking the pulse, its
continuous measurement requires the usage of automatic heart rate monitors. These mon-
itors operate using different measurement principles with the sensing mechanisms either
requiring a contact with the site under test or recording the signals without any body
contact. Some of the commonly used measurement techniques that employ portable/

wearable sensing systems are discussed in detail below.

1.2.1 Contact-based HR/ HRV monitoring techniques
1.2.1.1 Sensing the electrical activity

The cardiac output of the heart, also described as the volume of blood being pumped by
the heart, is vital to sustain blood flow throughout the body. In addition to regulating
the blood volume, the heart must sustain continuous cycles of contraction and relaxation
to fulfil the needs of the body. These cycles take place within four chambers of the heart:
left and right atrium, left and right ventricle, in an orderly sequence. During the systolic
period, the contraction of the atria is followed by the contraction of the ventricles after
which all the four chambers relax during the diastolic phase of the cardiac cycle. The

regularity of the cardiac cycles is established by a series of complex electrophysiological
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events within the cardiac tissues. The triggering of these events originate in a specialised
cardiac conduction system and subsequently spreads to all the parts of the myocardium.
The main components of this conduction system in the heart are the sinoatrial node
(SA node), the inter nodal atrial pathways, the atrioventricular node (AV node), the
bundle of His and its branches, and the Purkinje system [36]. In a normal cardiac cycle,
the SA node discharges rapidly with the electrical depolarisation spreading through the
right atrium and across the interatrial septum into the left atrium. It is the rate of
discharge of the SA node that determines the heart rate in normal conditions. The further
transmission of electrical depolarisation from atria to the ventricles happens through the
atrial pathways to the AV node. The AV node allows the depolarisation to spread into the
left and right ventricles via the route of interventricular septum branching into the left
and right bundle branches respectively. The two ventricles in normal conditions contract
simultaneously to achieve maximum cardiac efficiency. The complete depolarisation of
the heart is immediately followed by the repolarisation of the myocardium to begin a new
cardiac cycle with next cycle of depolarisation. The discharge pattern in every cell of
the heart during the depolarisation cycle is quite unique, and the sum of these discharge
patterns is what generates an electrocardiograph [37]. The electrocardiography (ECG),
therefore, is the process of measuring the electrical activity of the heart by placing several
electrodes on the patient’s skin. An illustration of a normal ECG signal consisting of
several heartbeats is shown in Fig. 1.2. An ECG waveform constitutes of a P wave, a
QRS complex and a T wave. These components correlate with the depolarisation of the

atria, depolarisation of the ventricles and repolarisation of the myocardium respectively.
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Figure 1.2: An example of a ECG signal consisting of P wave, QRS complex and T wave. All
the R-peaks are marked.

ECG is the gold standard approach to measure the heart rate and the HRV. It is
traditionally recorded using a Holter monitor, a battery-operated portable device that
consists of a central unit connected with several wires and extending to small-sized elec-
trodes that attach to the patient’s skin on the chest. The Holter monitor is generally

used for ambulatory recordings of the ECG over continuous periods of 24 hours or longer.
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While the monitor provides an accurate and reliable representation of the heart’s elec-
trical activity to diagnose any cardiac disorders, the cumbersome setup involving the
wires and the skin preparation required to attach the electrode patches makes it quite
uncomfortable for the subject to undergo a long-term cardiac monitoring. The cardiac
monitoring generally require the detection of R-peaks in the ECG signal to derive the
inter-beat intervals, however, several algorithms based on identifying the instantaneous
heart rate frequency in the spectral domain have also been proposed in the literature.

These algorithms will be reviewed in the later chapters of this thesis.

1.2.1.2 Sensing the optical activity

The contraction and relaxation of the heart during the systolic and diastolic phases of
the cardiac cycle produces a corresponding effect in the circulatory system. During the
systolic period, the heart pumps blood through aorta to reach the peripheral sites of the
body. A reverse phenomenon occurs during the diastolic period where blood is carried
back to the heart. These periodic blood volume changes in the microvascular bed of tis-
sue can be detected using an optical technique called photoplethysmography (PPG). A
PPG waveform is essentially a pulsatile (‘AC’) physiological waveform superimposed on
a slowly varying (‘DC’) baseline. While the AC waveform is formed by periodic changes
in the blood volume with each cardiac cycle, the DC baseline is mainly attributed to
respiration, sympathetic nervous system activity and thermoregulation [38]. The PPG
components provide valuable information about the cardiovascular system, and can be
recorded using a few optoelectronic components including an active light source to illu-
minate the tissue and a photodetector to measure the small variations in light intensity
corresponding to the varying absorption by the blood volume [39]. PPG conventionally
uses an infra-red light of wavelength around 940nm for the light source to measure the
peripheral pulse at one of the different sites (including finger, wrist, neck, ear, forehead,

etc.) in a non-invasive manner. An illustration of a PPG signal recorded from the index
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Time(s)

Figure 1.3: An example of a PPG signal. All the systolic peaks are marked.
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finger is shown in Fig. 1.3 where the maximum (systolic) peaks are also marked. The
inter-beat intervals are generally extracted by determining the systolic peaks, however,
the onset of pulse and the maximum slope point in the PPG waveform are also consid-
ered as other fiducial points for the heart rate measurement. While the PPG technology
provides a simple, low-cost and easy to set up sensing mechanism, some of the key chal-
lenges associated with the PPG sensors include the requirement of a stable contact force
between the sensor and the measurement site, cancelling the effects of ambient light, ac-
commodating different skin conditions and colors, and dealing with motion artifacts [40].
In addition, the requirements of an active input signal limit either the size of the system

and/or the battery lifetime.

1.2.1.3 Sensing the acoustic activity

Cardiac auscultation using a stethoscope provides an easy, quick and an inexpensive way
of diagnosing the cardiac disorders by listening to the heart sounds. The genesis of the
heart sounds relate to the blood flow within the four chambers of the heart which are
separated by the AV and the semilunar (SL) valves. These valves act as the only passage
of blood from one chamber to the other in normal conditions. A complete cardiac cycle
consists of filling the blood inside the atria, transferring the blood from atria to ventricles
through the AV valves, and subsequently ejecting the blood away from the ventricles
through the SL valves. Depending on the blood volume in respective chambers of the
heart, a pressure difference between the atria and ventricles is created. The pressure
difference controls the opening and closure of the heart valves to allow the passage of
blood in a particular direction in different phases of the cardiac cycle. It is the opening
and closing of the heart valves along with the acceleration and deceleration of the blood
flow that produces the heart sounds [41], [42]. While the heart sounds are commonly
heard using a basic stethoscope, they can also be captured automatically by placing an
acoustic sensor on the chest wall [43]. The process of recording and representing the
heart sounds graphically is known as phonocardiography (PCG). A major advantage
of recording the cardiac activity acoustically is its passive sensing mechanism using a
miniaturised, low power microphone. Unlike the PPG signal, the cardiac auscultation
does not require a power consuming input signal, therefore, allowing a longer battery life.

The fundamental heart sounds, also known as the S1 and S2 sounds are primary to the
cardiac auscultation. The S1 sound is heard at the onset of the systolic phase and results
from the sequential closure of the AV valves. On the contrary, the S2 sound is heard
at the onset of the diastolic phase and results from the closure of the SL valves. Other
sounds such as S3 and S4 sounds, and murmurs can also be heard during the cardiac
auscultation to reflect different pathological conditions related to the heart [44]. A PCG
signal consisting of the fundamental heart sounds is illustrated in Fig. 1.4. Traditionally,

the PCG signal is recorded from the chest, however, recent studies in the literature have

36



T T T T T T T T T
1 & s2 s1 s2 s1 s2 s1 s2 s1 s2 s1
05 i
=1
i 0
-05 =
-1 ] ] ] ] ] ] ] ] ] ]
0 0.5 1 1.5 2 25 3 35 4 4.5 5

Time(s)

Figure 1.4: An example of a PCG signal consisting of S1 and S2 sounds.

also shown the possibility of recording the heart sounds from the suprasternal notch at
the neck [45]. While the systolic phase corresponds to the S1-S2 interval, the diastolic
phase is formed by the time interval between the adjacent S2 and S1 sounds. Therefore, a
complete cardiac cycle is represented by the S1-S2-S1 cycle. The detection of such cardiac
cycles in the PCG signal to determine the heart rate generally requires the segmentation

and classification of the heart sounds using different methods.

1.2.2 Non contact-based HR/ HRV monitoring techniques

The contact-based methods of heart rate monitoring required a sensor contact with the
patient’s skin. A continuous and intensive monitoring using such sensors is only feasible
in the clinical settings, for example, a touch-based wiring of the patient using the gold
standard approach of ECG. However, to improve the early detection and prevention
of cardiac disorders, more comfortable ways to enable vital sign monitoring in home
settings is required. Some of the methods that enable such convenience by sensing cardiac
parameters through fully clothed persons or through blankets and mattresses for patients

lying in beds, and feasible in every day conditions are discussed below.

1.2.2.1 Sensing the mechanical activity

The body movements occurring in relation to the heartbeat is an old concept, and the
effort of recording such movements have been made for past several decades [46]. The re-
cent advancements in the development of electromechanical sensors have made it possible
to record the mechanical activity of the heart by using mechanocardiography techniques.
One such technique is known as ballistocardiography (BCG) which measures the recoil
forces of the body in reaction to the ejection of blood at each cardiac cycle. The recoil
forces are primarily generated to maintain the overall body momentum in response to
the change in center of mass caused by the blood travelling along the vascular tree [47].

These micro-motions can be sensed as a displacement, velocity, or acceleration signal by
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integrating different types of sensors (pressure sensor, multiple strain gauges, electrome-
chanical film sensor, etc.) in bed, table, chair, pillow, mattress, or weighing scale- based
BCG systems.

Another approach to measure the local mechanical vibrations of the chest wall in
response to the heartbeat is known as seismocardiography (SCG). These vibrations are
produced by the ventricular contraction of the heart and ejection of the blood into the
vascular tree [47]. While the BCG systems employ a non-contact sensing approach, SCG
is usually detected by placing a low-noise accelerometer on the chest. Both the BCG and
the SCG waveforms are characterised by several fiducial points corresponding to different
events of the heartbeat. The heart rate from the BCG signal is generally extracted
by identifying the J-peak (the point of highest amplitude in the BCG waveform) and
measuring the J-J inter-beat intervals between the consecutive peaks. Although the
BCG systems provide an unobtrusive manner of monitoring the cardiac activity and
does not require the sensor attachment with the patient’s skin, their applicability for long-
term cardiac monitoring is restricted to bed-ridden subjects and standardised conditions.
The sensitivity of these systems towards the body movements is also very high causing
the signal-to-noise ratio of the recorded signals to be significantly lower than the ECG
and PPG signals [48]. Therefore, the detection of heart rate from these signals require

advanced signal processing methods which put further constraints on the system design.

1.2.2.2 Radar-based heartbeat detection

A better way of monitoring the micro-motions of the human body than the BCG is
based on the radar technology. The radar-based sensing mechanism allows a touch-
free measurement of the cardiac vibrations by sensing the changes in the distance or
displacement caused by the contraction of the heart muscles. These systems offer a
convenient and comfortable approach for the heartbeat detection since the transmitted
electromagnetic waves can easily penetrate the clothing and bedding in an experimental
setup [49]. The fundamental mechanism of a continuous-wave Doppler radar is based on
transmitting an unmodulated signal with a specific carrier frequency and phase towards
a human body at a distance up to a few tens of metres. The transmitted electromagnetic
wave is reflected by the physiological movements of the chest wall as a phase modulated
signal which can be detected using a radar receiver. The received signal is digitised using
an analogue-to-digital converter (ADC) to process and extract the cardiac information
from the reflected waves. Several front-end architectures for the Doppler radar including
the homodyne, heterodyne, double-sideband architecture, direct IF sampling and self-
injection locking have been recently proposed in the literature [50]. These architectures
address some of the key issues concerning the radar-based systems. Since the strength
of the reflected waves are quite low, an efficient and reliable detection requires multiple

building blocks such as a low-noise amplifier, down-conversion mixer, baseband amplifier,
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and filters in the system design. In addition to a proper choice of the carrier frequency,
these systems must also avoid the mixing of the phase noise of the oscillator with the
received echo signal [50]. In conclusion, the radar-based sensors can be easily integrated
within the environment of the patient undergoing cardiac monitoring, however, they are
still in very early development stages and their deployment in commercial systems require

addressing some critical issues inherent to the sensing mechanism.

1.2.2.3 Resonator-based heartbeat detection

The continuous-wave Doppler radar generally operates at high frequencies (GHz) to main-
tain a narrow transmitted beam over larger distances. It allows to monitor the heart rate
at a distance of few metres away from the chest. However, the reflected waves in such
scenario are significantly affected by the motion artefacts and the noise introduced by the
random body movements [51]. A very similar approach to radar-based sensing resolves
this issue by measuring the cardiac activity at very short distances (few centimetres) away
from the chest. The near-field detection using the radio frequency (RF) resonators allow
the integration of these sensors into clothing, watch straps or blankets. The fundamental
theory behind the RF resonators is similar to the radar-based sensing in terms of detect-
ing the physiological movements of a subject by measuring the electromagnetic near-field
variation for vital sign monitoring. Several resonator-based systems have been proposed
in the literature to measure the pulse at the wrist [51], [52]. These systems, similar to

the radar sensors, are also in the research stages and have not been commercialised yet.

1.2.3 Commercially available HR/ HRV monitors

The cardiac monitoring techniques discussed above measure different types of cardiac
signals using semi- or fully-automated sensing systems to monitor the heart rate (HR).
However, the heart rate monitoring for several centuries, before the development of the
electronics industry, was performed by placing an ear on the patient’s chest and listening
to the heart sounds. An accurate cardiac auscultation was only made possible with
the invention of the stethoscope by René Laennec in 1816. While the heart sounds
provided vital information about the functionality of the heart, the electrocardiograph
invented by Willem Einthoven in 1895 created an accurate picture of the heart’s electrical
activity and allowed a better diagnosis of the cardiac disorders. The development of the
Holter monitor made it possible to record the ambulatory ECG continuously for 24 hours,
however, the cumbersome setup involving a central unit connected with several wires
made it uncomfortable for the patients to undergo a long-term cardiac monitoring. Only
when the wireless functionality, consisting of a transmitter at the chest and a receiver at
the wrist, was added to the ECG recording setup in 1977 by Polar Electro, the concept
of heart rate monitoring became feasible for a larger population [53]. Over the last few

decades, the advancements in the electronics industry have led to a miniaturisation of
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the sensors allowing the development of battery-operated, small-sized systems that can
be worn by the subjects for vital sign monitoring. Several companies in the industry
have commercialised such wearable monitors to track HR/ HRV in non-clinical settings.
While these monitors aim to perform the same task of monitoring the heart rate using
different measurement principles, there are factors and functions that set one apart from
the other. Some of the important features that are helpful in differentiating the wearable

heart rate monitors are discussed below.

1. Measurement technique: The previous section discussed different contact and non-
contact sensing principles to record the heartbeats on a continuous basis. However,
the wearable monitors available in the market are mainly based on sensing either
the optical (PPG) or the electrical (ECG) activity of the heart.

2. Sensing location: The monitors track the cardiac activity from different locations
including the chest, wrist, finger, ear, neck, etc. However, an abundance of mon-
itors based on the wrist-sensing are available in the market mainly because of an
easy and comfortable integration of such sensors into the patient’s lifestyle without
requiring any significant change. The wrist-based monitors also have a higher social

acceptance in comparison to other sensing locations.

3. Power source and operating lifetime: The ECG recording machines in the clinical
wards are generally powered by the mains, however, the wearable monitors utilise
a small-sized battery as the power source. An important constraint of the wearable
heart rate monitors is the battery lifetime as a frequent charging of the device from
the user’s perspective is highly undesirable. Depending on the size/ capacity of the
battery, the number of in-built sensors, and the sampling frequency for the wireless

transmission, a single battery charge can last from a few hours to a few days.

4. Size and weight: The heart rate monitors must be small and light-weighed to be
used in either the clinical or home settings. Since these monitors are designed
to be worn for longer durations, their size and weight are important factors in
determining their usage period. The size and shape of the device should also take

into account the varying morphology of the site under test in different subjects.

5. Tracking functions: While the primary function of these monitors is to track the
heart rate, the integration of different sensors in the same device allows the mon-
itoring of different features such as sleep monitoring, number of steps, distance
travelled, calories burned, speed, and modes of walking, running, cycling, swim-
ming, training, etc. The embedded functionality of tracking such features is what
attracts a large user base. Therefore, one of the competitive features for the heart

rate monitors is the availability of multiple tracking functions.
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6. Sensors: The heart rate monitoring in the commercially available monitors is per-
formed using an optical sensor or the ECG electrodes connected with a chest strap.
However, the tracking of other activities require the integration of other sensors.
Some of these sensors include an accelerometer, gyroscope, barometer, compass,
GPS, etc. Although a higher number of sensors provide more functionality to the

end user, the battery life in such cases is generally compromised.

7. Water resistance: Some of these commercial monitors also put up water resistance
as an attractive feature to allow the usage of such devices during shower, swimming,
rain, etc. While majority of the devices can sustain a pressure of up to 5 atmosphere
(atm) under water, they are not designed for heart rate monitoring during the deep

diving.

8. Validation in literature: There is an abundance of heart rate monitors in the market.
The validation of these monitors to assess their accuracy in monitoring the heart
rate and other activities is a very important criteria for choosing a specific device.
The validation is generally performed by comparing the heart rate profiles obtained
from the concerned monitor and the synchronously recorded ECG signals (gold
standard) from the chest. An agreement between both the methods is observed by
running different types of comparative analysis to conclude about the reliability of

a particular device.

The factors discussed above serve as an important criteria in differentiating the usability
of different wearable heart rate monitors available commercially. Table 1.1 compares the
features and functions of some commonly available heart rate monitors from different
companies and also provide references to the associated validation literature. The listed

devices are chosen on the following basis:
e Only the monitors that provide heart rate as an output are shortlisted.

e Only the monitors that have been validated in the last 5 years (2014 - 2019) are
shortlisted.

e Since the basic sensing technology behind different models from the same company
remain the same, only the latest model available to buy on the company’s website
is shortlisted.

e If the same company manufactures heart rate monitors based on different sensing

locations, then the latest devices from each of those categories are included.

Only details that are available from the manufacturer are listed in the table. These
devices generally use lithium-ion (Li-Ton) or lithium-polymer (Li-Po) batteries, however,

the battery type for several devices are unknown.
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1.2.4 Summary

It can be observed that majority of the heart rate monitors (HRMSs) listed in Table
1.1 are based on optical sensing of the cardiac activity at the wrist. Several studies
have validated the PPG-based HRMs specifically designed by Apple, Fitbit, Garmin,
Samsung and Mio Labs respectively. While all these monitors demonstrated a strong
agreement with the ECG-based heart rate measurement at rest, many studies found a
decline in the accuracy corresponding to the PPG signals recorded during a medium to
high intensity exercise [61], [99]. Other PPG-based HRMs also showed similar results
when compared with the ECG. However, the ECG-based monitors such as Polar H10,
Zephyr HxM BT, BioStamp RC sensors exhibited a high level of agreement with the
reference ECG signal during rest as well as high intensity exercises [66], [91]. These
monitors are commonly used by the athletes to measure a number of physiological and
biomechanical measurements including the HRV. They have a central unit integrated
with the ECG electrodes and are connected to the chest using a strap. The integration
of optical sensors in the earphones/ headphones have also been adopted to allow the
monitoring of heart rate while listening to the music during athletic activities. Although
these monitors showed promising results, the validation studies found a deviation from
the ground truth heart rate values under the influence of motion artefacts [96].

As a summary, the commercially available ECG-based wearable HRMs are the most
accurate and reliable way of monitoring the heart rate on a continuous basis. These de-
vices also provide an added functionality of HRV monitoring along with the other activity
tracking features. However, the signal acquisition using ECG-based HRMs generally re-
quire the use of electrode gel to establish an electrode contact with the patient’s skin.
This process can sometimes be uncomfortable specially for men with a hairy chest in
which case a small amount of hair may be shaved to make sure the electrodes stick to the
skin [100]. From a usability point of view, a better way of monitoring the heart rate is
made possible with the PPG-based HRMs. These monitors are generally designed to be
worn on the wrist and tracks multiple activities by integrating different sensors within the
same wearable system. The accuracy and reliability of these devices, however, is vulner-
able to a number of factors including the motion artifacts, brightness of the environment,
or having a stable contact force between the sensor and the measurement site. These
monitors also suffer from a short battery life of 1-2 days because of high power demands
from the infrared LEDs. Therefore, there is a strict need of alternative sensing mecha-
nisms that can simultaneously provide the user-friendliness of the PPG-based HRMs as
well as a longer operational lifetime without compromising on the accuracy of the heart
rate monitoring. As with the sounds on the chest, this thesis explores the possibility
of recording the cardiac rhythms from the radial artery at the wrist using a very small,
low power microphone, without requiring any additional power consuming input signal.

This could potentially be used either as an alternative new physiological signal to extract
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cardiac information from a wearable device, or as an additional physiological channel to
complement existing systems, without posing an overhead in terms of size.

The next section discusses the blood pressure measurement (BPM) using different mon-
itoring techniques as another important parameter to CVDs. Some commonly available
blood pressure monitors in the market are also compared and the factors affecting the

BPM using these monitors are discussed in detail.

1.3 Blood pressure: What is it? How is it measured?

During a cardiac cycle, the heart pumps blood with a certain force throughout the body.
Blood pressure is a measure of this force and reflects the variable pressure exerted by
the blood flow on the arterial walls. Systolic blood pressure (SBP) and diastolic blood
pressure (DBP) are the two main components that are reported during the clinical BPM
because of their direct association with increased CVD risk factors. The SBP is the max-
imum pressure of the blood ejected by the heart during the ventricular contraction in the
systolic phase of the cardiac cycle. On the contrary, the DBP is the minimum arterial
pressure obtained while the heart is relaxing in the diastolic phase of the cardiac cycle.
Both the higher SBP and the higher DBP are linked to increased CVD mortalities [22],
[24], [101]. Several other measures can also be determined from SBP/ DBP measure-
ments. The pulse pressure (PP), defined as the difference of SBP and DBP, serves as an
important marker for arterial stiffness and provides a measure of pulsatile hemodynamic
stress. The mean arterial pressure (MAP) defined in Eq. 1.2 provides an estimate of the
overall arterial pressure during a complete cardiac cycle. It represents the area under

one cycle of the arterial pressure waveform.

PP = SBP — DBP

(1.2)
MAP = DBP + a (SBP — DBP), a € [0.2,0.4]

The arterial pressure waveform as shown in Fig. 1.5 is measured continuously through
the insertion of a catheter into a suitable artery. It is generally classified into three

distinct components [102] as follows:

e The systolic phase is characterised by a rapid increase of the pressure due to the
opening of the aortic valve by the ventricular contractions. The systolic peak
corresponds to the maximum pressure in the central arteries, also known as the
SBP. The rising slope during this phase is followed by a rapid decline because of

an end to the ventricular contractions.

e The dicrotic notch is the point at which the aortic valves are closed. The sharpness
of this notch depends on the arterial measurement site. It is most sharp at the

aortic valve and almost disappears at the peripheral sites.

49



1154 cmmccccmemccace e e == n— - o SYE0lC Pressure
Left A
ventricular
g contraction
g Pulse
oy pressure
]
wn
2
(=¥
{1 YRR 4 ¥ SR SRSy [, -
h h , Diastolic Pressure
0 1 2
Time ()

Figure 1.5: An ezample of a typical arterial blood pressure waveform [103].

e The pressure drops gradually during the diastolic run-off to attain a minimum
arterial pressure, also known as the DBP. This end-diastolic pressure is the pressure

exerted by the vascular tree back upon the aortic valve.

Further details about the arterial pressure waveform from the perspective of waves prop-
agating from the heart to the circulatory system are discussed in the next chapter. Al-
though the invasive monitoring of the arterial pressure using catheterization can provide
a detailed representation of the blood pressure waveform, the non-invasive techniques
can mostly determine the SBP/ DBP readings by sensing different physiological signals.

Some of the commonly used non-invasive methods are discussed in the next section.

1.3.1 Non-invasive blood pressure monitoring techniques
1.3.1.1 The auscultatory method

The gold standard approach to measure the blood pressure is based on the auscultation
of the brachial artery at the upper arm using a stethoscope. The auscultatory method
employs a mercury sphygmomanometer to display the pressure variations in a mercury
column corresponding to the inflation/ deflation of an air cuff. In 1905, Korotkoff found
that when an external pressure applied on an arterial branch through a Riva-Rocci cuff
is gradually reduced from above the systolic pressure to the zero pressure, a series of dif-
ferent sounds can be heard using a stethoscope [104]. He concluded that the appearance
of the first sound during the deflation indicated the SBP whereas the point of disappear-
ance of the last sound identified the DBP. These sounds are now commonly known as
the Korotkoff sounds. Goodman and Howell [105] recognised five different phases of the

Korotkoff sounds and explained them using the following characteristics:
1. Phase I: “a loud clear-cut snapping tone.”

2. Phase II: “a succession of murmurs.”
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3. Phase III: “the disappearance of the murmurs and the appearance of a tone resem-

bling to a degree the first phase but less well marked.”
4. Phase IV: [the tone] “becomes less clear in quality or dull.”
5. Phase V: “the disappearance of all sounds.”

The spectral energy of the Korotkoff sounds recorded from the brachial artery are gener-
ally above the threshold of hearing allowing their auscultation using a stethoscope [106].
However, the environmental noise must be kept to a minimum as it can often cause
difficulties in listening to these sounds.

Although the auscultatory method is regarded as the gold standard approach for the
BPM, the widespread ban on the use of mercury sphygmomanometers continues to dimin-
ish its usage [107]. The replacement of mercury sphygmomanometers with the aneroid
manometers did not provide satisfying results because of less accuracy and frequent need
of calibration. However, the introduction of electronic pressure monitors resolved the
issue to an extent by combining electronic features with the traditional auscultation
method [108]. Another concern related to the auscultatory method is the unresolved
consensus about choosing either the fourth (Ky) or the fifth (K5) Korotkoff sound as the
actual location of the DBP. Several studies on large cohorts of population have been per-
formed to address this ambiguity. While in some subjects, a minimal difference between
K4 and K5 have been observed, the other group of subjects showed a significant differ-
ence of around 10 mmHg between these sounds [102]. The studies suggested to log the
pressure at both these phases to improve the communication about the blood pressure

readings.

1.3.1.2 The oscillometric method

The auscultation of the Korotkoff sounds is usually performed by a trained clinician using
a stethoscope. Due to the human involvement in manually recording the blood pressure
readings, the observer error and the observer bias are common sources of error in the aus-
cultation method. The differences in the auditory acuity among different observers may
also lead to significant errors in identifying the appearance and disappearance of the Ko-
rotkoff sounds. The digit preference by the observers is another common instance where
majority of the readings are rounded off to end in 0 or 5 [109]. The oscillometric method
removes these sources of error by providing an automated way of measuring the blood
pressure. The method works on the principle that when the pressure inside a sphygmo-
manometer cuff is gradually reduced from the full occlusion of the brachial artery, a series
of small pressure oscillations are superimposed on the deflating pressure curve as shown
in Fig. 1.6(a). These oscillations start to appear before the SBP and continue after the
DBP, and can be isolated by removing the baseline pressure. Unlike the auscultatory

method, the SBP/ DBP readings cannot be estimated directly and requires empirically
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derived algorithms to obtain the BPM. However, it has been proved that the maximum
amplitude of the oscillation envelope, also known as the oscillometric waveform enve-
lope (OMWE), corresponds to the MAP [110]. Since there is no universal oscillometric
algorithm, different brands use their own proprietary algorithms to estimate the SBP/
DBP from the oscillometric waveforms, the details of which are not available publicly.
These monitors are generally validated with the manual auscultatory measurements to
find an agreement between both the techniques. In the literature, different algorithms
have been proposed to utilise the amplitude and slope characteristics of the OMWE and
find a correlation with the SBP/ DBP readings. Some of the commonly used methods
include the heuristically derived ratios based on the maximum OMWE amplitude [112],
[113] (e.g., fixed-ratio method employed in Fig. 1.6(b) to find SBP/ DBP location us-
ing the MAP location), ratios based on the slope of OMWE envelope [114], [115], neural
networks [116], [117], and deep learning [118]. Although the ratio based methods are sim-

ple to implement, the assumption of a fixed ratio or a range of ratios does not account

(a)
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Figure 1.6: Oscillometric method for blood pressure measurement. (a) Pressure oscillations
superimposed on the deflating pressure curve. (b) Oscillometric waveform envelope
corresponding to the detrended pressure oscillations. The fized ratios are used to
estimate the SBP, DBP from the maximum oscillation peak [111]
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for the variation of different physiological factors over time. These ratios are generally
determined by minimising the error relative to the manual auscultatory measurements,
therefore, fitting the ratios only to the database under consideration [118]. The neural
network and deep learning based algorithms are more robust in determining the blood
pressure, however, they are computationally expensive and may need larger database to
train the network.

From the hardware perspective, the oscillometry-based monitors only need the pressure
sensor as a transducer to be placed over the brachial artery. Therefore, these monitors
have a better resistance to the external noise and interference than the stethoscope in
the auscultatory method. A major disadvantage of the oscillometric technique is its high
susceptibility to the motion artefacts and mechanical vibrations [108]. These artefacts
can interfere with the OMWE envelope and produce significant errors in the blood pres-
sure estimation. However, the ease of monitoring and the automation provided by the
oscillometry-based monitors have allowed their wide deployment for self BPMs in the
home and clinical settings. Although the monitors based on the wrist and the upper-arm
are available in the market, the wrist monitors have been found to overestimate the blood

pressure at the upper arm [119], [120].

1.3.1.3 Ultrasound method

The ultrasound technique consists of a transmitter and a receiver to be placed on the
brachial artery under a sphygmomanometer cuff. The fundamental principle is the ob-
servation of the changes in the Doppler echo signal when a high frequency sound wave
(higher than the upper threshold of human hearing) is projected on the site under test.
During the cuff deflation from above the systolic pressure, the ultrasound receiver ob-
serves a Doppler phase shift just below the SBP due to a sudden rush of the blood flow.
The Doppler phase shift varies with different levels of arterial occlusion and attains a
minimum value at the DBP where a laminar or non-turbulent flow of blood takes place.
The ultrasound method is of a particular value in subjects with very faint Korotkoff
sounds and oscillometric pulsations [108]. This method is also useful for determining the
blood pressure in infants and children [121]. While the ultrasound technique can provide
an accurate measurement of the SBP/ DBP readings, the recording setup is generally

bulky, expensive and power-hungry.

1.3.1.4 The finger-cuff method

The methods discussed above only provide a snapshot of the BPM. Therefore, the patients
requiring a regular monitoring usually take multiple readings over the day to generate
a blood pressure profile either manually or using a smartphone/ web application. For
the critically ill patients, this approach of understanding the blood pressure variations

is not feasible because the hemodynamics of the body changes on a regular basis [122].
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The continuous monitoring of blood pressure in such patients becomes quite important.
The finger cuff method is a non-invasive approach to measure the arterial blood pressure
continuously, and is based on the measurement of arterial pulsations using a PPG sensor
placed under an inflatable cuff. The goal is to keep the pulsating finger artery in a
constant partially opened state by using the PPG output as a feedback to drive the
servo-motor system in order to apply a suitable counter pressure through the finger cuff.
The constant blood volume in the artery causes the intra-arterial pressure to become
equal to the cuff pressure which can be measured through an external pressure gauge.
Due to this reason, the finger-cuff method is also known as the “vascular unloading”
technique. The resulting arterial pressure waveform obtained from the finger is used to
estimate the brachial waveform, and therefore obtain the beat-to-beat BPMs [122]. This
method was first introduced by Penaz and later improved by Wesseling who developed an
instrument named Finapres (finger arterial pressure) that allowed the ambulatory blood
pressure monitoring of a subject [123]. Successors of the Finapres included the Finometer,
the Portapres and the Nexfin, however, all the commercially available monitors based on
the finger-cuff method are generally bulky, cumbersome, and are recommended to be

used in the clinical settings.

1.3.1.5 Pulse transit time method

Although the oscillometric and finger-cuff methods provide automated BPMs, these tech-
niques incorporate the use of an air cuff in the recording setup. The size of the cuff, as
discussed in the next section, plays an important role in an accurate measurement since
a small-sized cuff can significantly overestimate the blood pressure [124]. The pulse tran-
sit time (PTT) method provides a cuff-less technique to estimate the blood pressure by
utilising the time taken by a cardiac pulse to travel from the heart to a peripheral site
or between the two peripheral sites [125], [126]. While there are different variations to
this method including the correlation of PTT with the blood pressure and cuff pressure
respectively, the fundamental theory behind the technique remains the same. The pulse
wave velocity (PWV) can be expressed in terms of the blood density, the arterial di-
mensions and the elastic modulus of the vessel wall. The parameter PWV is inversely
proportional to PTT in cases where the effect of arterial elongation can be ignored. Since
the velocity of the blood flow is governed by the aortic pressure, the time interval between
the pulse onset times at two different sites can be correlated indirectly with the blood
pressure [127]. The correlation is generally found using a mathematical model which in-
volves the computation of several parameters to reduce the inter-patient variability. Due
to an unavailability of a universal model, different studies use different parameters (e.g.
heart rate, patient’s height, etc.) to estimate the blood pressure from the PTT . These
parameters usually require frequent calibration for every user by taking a reference blood

pressure with one of the standard approaches [128]. The use of two different sensors at
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distant arterial sites probably using a wired connection also makes it uncomfortable for

a subject undergoing ambulatory blood pressure monitoring.

1.3.2 Factors affecting the blood pressure measurement

Several factors external to the measurement principle of both the cuff-based and cuff-less
techniques can affect the BPM significantly. Some of the important factors discussed
below must be addressed during the data acquisition protocol to reduce the potential

sources of error in the BPM.

e Body posture: Although the blood pressure is commonly recorded while the
subject is seated, it can also be measured in the supine or standing body postures.
The seated position is also accepted as the recommended posture by some of the
international guidelines [107]. Generally, there is no significant difference between
the readings taken from any of these positions, however, high discrepancies can be
observed in some subjects [129]. In such cases, the body posture must be reported

along with the blood pressure readings.

e Body position: The BPMs are influenced by the relative position of the arm/
wrist with respect to the heart [130]. Any difference in the vertical height of the
two sites can introduce hydrostatic pressure in the blood pressure readings. To
minimise the effect of hydrostatic pressure, the arm/ wrist must be kept at the
level of heart, with the whole forearm supported on a plane surface. It should
also be ensured that the subject is seated comfortably, with the arm slightly flexed
and the back supported during the measurements. Otherwise, the DBP may be
overestimated significantly if a subject sits in the bolt upright position [108].

e Cuff size and placement: An inappropriate size of cuff is another source of
error in the BPM. A common mistake of using a small-sized cuff can significantly
overestimate the blood pressure [124]. This error can be minimised by using a large-
sized cuff on subjects with medium to large arm/ wrist circumferences. Generally,
the bladder length and the width of the cuff should be around 80% and 40% of
the arm circumference respectively. The American Heart Association recommends
different cuff sizes for a newborn (<6 cm), infant (6-15 cm), child (16-21 cm), small
adult (22-26 cm), adult (27-34 cm), large adult (35-44 cm) and adult thigh (45-52
cm) [108]. The placement of cuff is also critical to the BPM. Ideally, the mid-line
of the cuff bladder should be positioned over the brachial site at which the arterial
pulsations can be easily palpated. For the auscultatory method, a gap of 2-3 cm
between the lower end of the cuff and the antecubital fossa should be kept to allow
a proper placement of the stethoscope. The cuff placement is not critical for the

oscillometric measurements.
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e Cuff inflation/deflation rate: The new monitors available in the market are ca-
pable of measuring the blood pressure during the inflation of the air cuff. However,
the cuff-based techniques were originally based on sensing the signals during the
deflation cycles. The inflation/ deflation rate has an important effect on the SBP/
DBP readings [102]. For different subjects, the heart rate and inflation/ deflation
rate decides the count of the events of interest recorded over the whole length of
the pressure variation. Since the performance of the algorithm depends on these
events, a suitable inflation/ deflation rate must be chosen for the BPM. As per the
recommendations from the international guidelines, the cuff should be inflated to
at least 20-30 mmHg above the full occlusion of the radial artery. Depending on the
operating mode of a particular monitor, an inflation/ deflation rate of 2-3 mmHg
per second can be chosen [131]. Any higher rates can cause the SBP to appear

lower and the DBP to appear higher.

e Culff inflation hypertension: In majority of the subjects, the cuff inflation itself
does not change the actual blood pressure. However, a significant increment in the
blood pressure readings coinciding with the process of cuff inflation has been ob-
served in some subjects [132]. The cuff inflation hypertension is different from the
white coat hypertension, which refers to the cohort of subjects with higher blood
pressure readings observed only during the clinical visits. The blood pressure for
these subjects fall within the normal range when they are outside the clinical set-
tings. This condition is generally treated as low-risk in comparison to the sustained
hypertensive state and can be diagnosed reliably by measuring the blood pressure

in the home settings [108].

1.3.3 Commercially available BP monitors

The monitoring techniques revealed the association of different types of signals including
the Korotkoff sounds, pressure oscillations, pulse arrival time, etc. with the blood pres-
sure. These signals are recorded using semi- or fully-automated blood pressure monitors.
Among the different sensing mechanisms, the automatic blood pressure monitors avail-
able in the market are mainly based on the oscillometric technique. This is because the
auscultation of the Korotkoff sounds using a stethoscope require intensive training and
is usually operated in the clinical settings. The cumbersome setup involved in the ultra-
sound and PTT-based methods also limit their usage in the clinical environment. How-
ever, the user-friendliness of the oscillometry-based monitors offers the self measurement
of blood pressure at home using small portable devices. Both the wrist- and arm-based
monitors are available in the market and different features and functions set one apart
from the other. Some of the important features that are helpful in differentiating these

monitors are discussed below.
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. Measurement technique: Although the market is dominated by the oscillometry-
based monitors, few of the monitors also use automated auscultation of the Ko-

rotkoff sounds on the upper-arm to measure the blood pressure.

. Sensing location: Apart from the upper arm and wrist as commonly used locations,
the research has also explored the possibility of measuring the blood pressure at
other locations including the calf, ankle, ear, etc. [133]. However, the commercial
monitors are mainly based on sensing the pressure oscillations either at the upper

arm or the wrist.

. Power source: The power source in the monitors is critical to the number of blood
pressure readings a user can take without changing the batteries. Since these
monitors are mainly based on inflation/ deflation of the air cuff through a motor, a
high current drive is demanded from the batteries. Due to a trade-off between the
operational lifetime and the size/ weight of the monitor, usually two to four AA/
AAA alkaline batteries are required for the operation. Majority of the monitors

can also operate by connecting an AC adapter to the mains.

. Size and weight: The spot measurement of the blood pressure does not require
a subject to wear the monitor at all times. Also, majority of the blood pressure
monitors have a control unit connected to the air cuff through the tubing. Although
the size and weight of the control unit does not affect the BPMs, the portability of
these monitors is compromised if the dimensions and weight are significantly larger.
This is specially true for the monitors which integrate the control unit with the cuff

and are placed on the upper arm/ wrist.

. Additional tracking functions: While the primary function of these monitors is
to measure the SBP/ DBP, the integration of different sensors within the same
monitor also allows to track other parameters such as body movement, irregular
heart beat detection, etc. The inbuilt position sensor in the wrist-based monitors
significantly increases the accuracy of BPM by minimising the effect of hydrostatic
pressure. The errors raised in case of an incorrectly wrapped cuff also avoids the

under- or over-estimation of the blood pressure.

. Validation in literature: All the international guidelines recommend taking the
BPMs at home using automated blood pressure monitors. Due to the abundance
of such monitors in the market, their validation in the literature to assess the ac-
curacy of BPM prove to be an important criteria in choosing a specific monitor.
The validation for non-invasive automatic blood pressure monitors is generally per-
formed using one of the three international guidelines, the details of which are

summarised below.
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i.

il.

British Hypertension Society (BHS) Protocol [184]: The BHS protocol requires
85 participants such that 8 subjects have a SBP: < 90 mmHg and DBP: <60
mmHg; 20 subjects have a SBP: 90-129 mmHg and DBP: 60-79 mmHg; 20
subjects have a SBP: 130-160 mmHg and DBP: 80-100 mmHg; 20 subjects
have a SBP: 161-180 mmHg and DBP: 101-110 mmHg; 8 subjects have a SBP:
> 180 mmHg and DBP: > 110 mmHg respectively. Sequential same arm mea-
surements are carried out for three times in the following order: two different
observers measure the blood pressure using the mercury sphygmomanometer
followed by a measurement using the test instrument. Depending on the per-
centage of differences between the test device and the reference measurements

falling within the certain limits, a BHS grade is awarded as follows:

Table 1.2: BHS grading criteria [184].

Absolute difference between standard
Grade and test device

< 5mmHg < 10 mmHg < 15 mmHg

Cumulative percentage of readings

A 60 85 95
B 50 75 90
C 40 65 85
D Worse than C

European Society of Hypertension International Protocol (ESH-IP) revision
2010 [135]: The ESH-IP requires 33 participants all above 25 years of age
with at least 10 males and 10 females. A minimum of 10-12 subjects in each
of the low, medium and high blood pressure ranges are required during the
recruitment process. The low range is divided into two subgroups of < 90
mmHg and 90-129 mmHg for the SBP, and < 40 mmHg and 40-79 mmHg for
the DBP. The medium range for the SBP and DBP are 130-160 mmHg and
80-100 mmHg respectively. The high range is also divided into two subgroups
of 161-180 mmHg and > 180 mmHg for the SBP, and 101-130 mmHg and >
130 mmHg for the DBP. Similar to the BHS protocol, the sequential same
arm measurements are carried out for three times in the following order: two
different observers in presence of a supervisor measure the blood pressure us-
ing the mercury sphygmomanometer followed by a measurement using the test
instrument. The absolute blood pressure differences between the experimen-
tal readings and the reference measurements for 33 subjects are determined.
These differences are graded according to the ESH-IP criteria shown in Table

1.3. The criteria consists of two parts where the first part checks the cumula-
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Table 1.3: ESH-IP 2010 grading criteria [135].

Part 1 < 5 mmHg < 10 mmHg < 15 mmHg
) Two of 73% 87% 96%
Pass requirement
All of 65% 81% 93%
Part 2 2/3 < 5 mmHg 0/3 <5 mmHg
Pass requirement > 24 <3

tive percentage of differences falling within 5 mmHg, 10 mmHg and 15 mmHg
respectively. The second part checks the number of subjects with difference of
at least two readings less than 5 mmHg, and the number of subjects with zero
readings below 5 mmHg. A test instrument is passed only when both the parts

of the grading criteria are satisfied.

iii. American National Standards Institute/ Association for the Advancement of
Medical Instrumentation/ International Organization for Standardization (AN-
SI/AAMI/ISO) Protocol [136]: This protocol requires 85 participants with at
least 30% males and 30% females respectively. The age of every subject must be
greater than 12 years. The reference blood pressure should meet the following
distribution: at least 5% SBP < 100 mmHg, at least 5% SBP > 160 mmHg, at
least 20% SBP > 140 mmHg, at least 5% DBP < 60 mmHg, at least 5% DBP
> 100 mmHg, at least 20% DBP > 85 mmHg. Three measurements including
the two reference readings and one experimental reading are recorded from the
same arm of every subject. For the validation, the mean and standard devia-
tion of the blood pressure differences corresponding to 255 blood pressure pairs
(85 x 3) are calculated. A test instrument is passed if it obtains a mean of less
than 5 mmHg and a standard deviation of less than 8 mmHg respectively. The
second criterion of the protocol compares the standard deviation of the SBP/
DBP with a predefined table of maximum permissible standard deviations as

a function of the mean value of the blood pressure differences [136].

The factors discussed above serve as an important criteria in differentiating the usability
of different blood pressure monitors available commercially. Table 1.4 compares the
features and functions of some commonly available blood pressure monitors from different
companies and also provide references to the associated validation literature. The listed
devices are chosen using the same criteria as described for the heart rate monitors in
Section 1.2.3.
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1.3.4 Summary

All the monitors listed in Table 1.4 are based on the oscillometric technique except the
“Tango M2 stress test monitor” from SunTech Medical which also provide an added
functionality of recording the Korotkoff sounds by placing a wired microphone under a
specially designed cuff. However, this monitor has not been validated in the literature
for the BPM using the auscultation method. Although both the auscultatory and the os-
cillometric methods are cuff-based techniques, the oscillometry-based monitors are more
prevalent because of their user-friendliness and automatic measurement of the blood pres-
sure. The automation allows the self BPM at home, a feature that also minimises the
effect of white coat hypertension. While all the companies manufacturing these monitors
claim an accuracy of +3 mmHg to +5 mmHg with respect to the gold standard, the
accuracy of oscillometry-based monitors suffer from several challenges. This technique
is solely based on analysing the pressure oscillations during the cuff inflation/ deflation.
These oscillations can be irregular and weak in strength for the obese subjects and the
subjects suffering from atrial fibrillation and atherosclerosis [163]. A major drawback
of this technique when compared with the auscultatory method is an absence of direct
correlation of the pressure oscillations with the SBP/ DBP readings. The blood pressure
estimation is usually based on deriving empirical coefficients from a specific cohort of
subjects. While these coefficients can provide accurate BPMs for the study undertaken,
it may be unreliable in diverse patient populations and measurement scenarios [164].

The gold standard approach of measuring the blood pressure is based on sensing the
Korotkoff sounds at the upper-arm. Although the auscultation of these sounds using
a stethoscope requires intensive training and adequate auditory acuity, the direct rela-
tionship between the appearance/ disappearance of the Korotkoff sounds with the SBP/
DBP still makes this method as the most accurate and reliable for the BPM. As with
the Korotkoff sounds on the upper-arm, this thesis explores the possibility of recording
these sounds from the radial artery at the wrist for the first time in the literature. The
requirement of any training or human involvement is completely avoided by automating
the process of listening to the Korotkoff sounds using a small, battery-powered wearable
device. The measurement at the wrist using the auscultatory method also proves to be
beneficial for the obese subjects as the wrist circumference does not vary as much as the
arm circumference.

In conclusion, this thesis proposes a wearable device to be worn on the wrist that can
continuously measure the heart rate and the heart rate variability, and can also record
the Korotkoff sounds for the spot measurement of the blood pressure. The measurement
of all three important physiological markers associated with the CVDs using the same
wearable device are based on the acoustic sensing of the cardiac activity at the wrist.
The relevant algorithms to extract the heart rate, heart rate variability, SBP/ DBP from

the acoustic signals recorded at the wrist are also proposed in this thesis.
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2 Wearable sensing of the pulse sounds

at the wrist

2.1 Introduction

2.1.1 The circulatory system

The circulatory system plays a vital role in healthy metabolism of tissue cells and or-
gans in the human body. It acts as a transportation mechanism and is responsible for
the exchange of nutrients, hormones and substances with the metabolic waste from the
cells. This is carried out through a distribution network of blood, blood vessels and the
heart. Simply put, the circulatory system is a network of tubes carrying fluid from the
pumping source [1]. The circulatory system also plays an important role in regulating
the body temperature, blood flow volume by communicating continuously between dif-
ferent regions of the body. This dynamic regulation as well as the supply mechanism is
mainly performed by controlling the width of the blood vessels and the pumping force of
the heart. A reduction in the blood vessel diameter, a state known as vasoconstriction,
reduces the exposed surface area thereby reducing the rate of heat loss from the body [2].
The constriction of the blood vessels also reduces the blood flow to the peripheral regions
of the body. A reverse phenomenon is observed for an increase in the blood vessel diam-
eter, a state known as vasodilatation. The vasoconstriction and vasodilatation phases of
blood flow in the arteries are primarily governed by the pumping action of the heart.
The human heart serves as a four-chambered pump and propels the blood through the
circulatory system in periodic heart cycles. A heart cycle mainly consists of two phases:
systole and diastole. Systole indicates the period of ventricular contraction to eject blood
from the heart whereas diastole involves the refilling of blood by ventricular expansion
to attain the relaxed position of the heart. In the systolic phase, the heart forces the
blood to flow with high pressure throughout the arterial system. The blood flow in the
arteries is preceded by a travelling pressure wave generated corresponding to periodic
contraction and relaxation of the heart [2]. This association of the heart cycle with the
pressure wave can be utilised to study the pulse phenomenon that provides a valuable

indicator of the cardiac function at various locations of the body.
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2.1.2 The pulse

Pulse reflects the state of health of an individual as it directly relates with the functioning
of the heart and the arteries. In clinical medicine, pulse is treated as the fundamental sign
of life and is studied as a physiological signal that propagates through the arterial system
corresponding to systolic and diastolic phases of the cardiac cycle [3]. The contraction of
heart in the systolic phase generates a pressure wave that exerts maximal pressure inside
the arteries. The refilling of blood back into the heart during the diastolic phase restores
the baseline pressure in the artery. These rhythmic pressure variations causes pulsations
in the arterial system. The pulse in addition to the pressure wave also consist of flow wave
which governs the actual flow of blood in the arteries [4]. Therefore, the propagation
of pulse wave involves two stages: the contraction of heart causing the outward force
(pressure wave) and the actual movement of blood in response to this force (flow wave).

The following sections establish the significance of each wave in forming the pulse.

2.1.2.1 Pressure wave

The human heart is divided into left and right parts. These parts are further divided into
two sections each to form a total of four chambers. The upper chambers of the heart,
known as the left and the right atrium, collects the blood from the circulatory system and
forwards it to the lower chambers. The lower chambers, also known as the left and the
right ventricle, ejects blood away from the heart by performing rhythmic contractions.
Each chamber is also associated with “one-way” valve to regulate the blood flow in a
particular direction and prevent the back flow of blood. The atrioventricular (AV) valves
function as the gates between atria and ventricles whereas the semilunar (SL) valves
interact with the aorta and pulmonary artery to complete the loop of blood flow. A
complete cardiac cycle runs in a sequential cycle of ventricular systole and atrial systole;
ventricular diastole and atrial diastole [5]. During the ventricular systole, a large amount
of blood is dumped into the left and right atrium. Due to the closure of the AV valves,
the accumulation of blood inside the atrium builds up a pressure to a certain level at
which the pressure on atrium side becomes higher than the ventricle side. At this point,
the cardiac cycle enters the phase of ventricular diastole where the differential pressure
forces the AV valves to open and allow the blood flow into the ventricles. The rising
levels of blood in the ventricles after the closure of the AV valves initiates the process of
ventricular contraction to cause an abrupt rise in the pressure profile as shown in Fig. 2.1.
This rise in the pressure level is also known as the period of isovolumic contraction, and is
caused by an increment in the muscle tension [6]. When the pressure inside the ventricle
becomes higher in comparison to the baseline pressure of aorta (around 80 mmHg), the
SL (or aortic) valves are opened to allow a rapid ejection of blood through the aorta. The
ejection of blood is preceded by the actual force generated by the ventricular contractions,

also referred to as the pressure wave. The pressure wave propagates through the arterial
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system and creates a differential pressure to allow the flow of blood from higher pressure
in the heart to the lower pressure in the arteries. During the ventricular systole, the
arterial walls sustain maximal pressure (around 120 mmHg) from the travelling pressure
wave. These continuous cycles of rise and fall in ventricular pressure as shown in Fig. 2.1
produces volumetric cycles of blood flow causing constriction and dilation (or pulsation)

of the arteries.
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Figure 2.1: Cardiac cycle events with variation in atrial, ventricular and aortic pressure [6].

The pressure wave generated from the heart movements propagate as a forward travel-
ling wave. Since an incoming wave is partly transmitted and partly reflected because of
the material properties, the pressure wave also undergo a wave reflection phenomenon [4].
The reflected wave can be understood as an echo of the incoming pressure wave travel-
ling from heart to the peripheral arteries. The narrowing of the arteries in the peripheral
regions increases the arterial resistance causing the reflection of the pressure wave [2]
back to the heart. Therefore, the pressure wave propagating through the circulatory
system is a superposition of a forward and a backward travelling wave. A sudden rise in
the pressure after dicrotic (or diastolic) notch in Fig. 2.2 indicates the superposition of
incoming and rebound pressure waves. An increased arterial stiffness or inflexibility can
push the dicrotic notch towards the peak with maximum arterial pressure (systolic peak)
causing irregular blood flow in the heart. Since the reflective component of the pressure
wave changes with the arterial parameters such as width and elasticity, the arteries in
different regions of the body have different diagrammatic representations of the pressure
waveform (sphygmograms). The strength of pressure wave also depends on the amount

of blood ejected from the heart (stroke volume). A higher stroke volume leads to a higher
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volume of blood flowing through the arteries, therefore, further increasing the maximum
pressure applied on the arterial walls. A majority number of arteries in the body are wide
and elastic allowing a smooth flow of blood [7]. In such cases, the systolic pressure in
the arteries resemble with the systolic pressure in the aorta. However, the narrowing of
the peripheral arteries such as brachial and radial artery can lead to significantly higher
systolic pressures in comparison to the aortic pressure [2]. These enhanced pressure levels

makes it easy to palpate the brachial and radial artery for pulse waveform analysis.

Systolic peak

Dicrotic notch

Arterial pressure (mmHg)

Systole Diastole

Ejected wave Reflected wave

Figure 2.2: Normal arterial pressure waveform corresponding to systolic and diastolic phase of
the cardiac cycle [8].

2.1.2.2 Flow wave

Flow wave is the longitudinal movement of blood in response to the differential pressure
created by the pressure wave throughout the arterial system in the body. The pressure
and flow wave, therefore, indicate a periodic relationship of cause and effect in pulse
formation. The strength and characteristics of the flow wave depends on the stroke
volume, fluid properties and the momentum imparted by the ventricular contractions.
The viscosity of the blood among other fluid properties plays a vital role in the formation
of the flow wave. Since blood is a combination of red blood cells, white blood cells and
plasma, any change in the percentage ratio of these components can affect the viscosity
of the blood [9]. The blood with higher viscosity requires higher force to move through
the blood vessels and vice-versa. These factors in combination with arterial stiffness
and elasticity affects the movement of the flow wave. The strength of heart contractions
determine the momentum imparted to the blood to flow through the blood vessels. This
is evident in Fig. 2.1 where majority of the ventricular volume is emptied during the first
third period of ejection cycle. The remaining blood volume is emptied in the last two
thirds of the ejection period [6]. Therefore, the contraction force also plays an important

role in the formation of the flow wave.
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2.1.3 Arteries

Pulse in the human body can be sensed at several arterial locations including the temporal
artery, carotid artery, brachial artery, radial artery, femoral artery, etc. The arterial
system is mainly divided into central and peripheral subdivisions. The central subdivision
encircles all the arteries present in the torso whereas the peripheral subdivision includes
all the arteries in the upper and lower limbs. The arterial divisions are based on the
muscular and elastic properties of the blood vessels. The arteries in the central part of
the body are wider and more elastic to sustain high volumes of blood flow and larger
pressure exerted from within the arterial walls. The elasticity of these arteries also help
in propagating the pressure and flow wave to the peripheral regions of the body without
much resistance. A typical example of artery in the central region include carotid artery
which can be palpated easily by locating it lateral to the larynx. The peripheral arteries
such as brachial and radial artery on the other hand have better muscular properties due
to a greater proportion of smooth muscles in comparison to elastic fibres in the blood
vessels [2]. The presence of these smooth muscles in the peripheral arteries allow them
to demonstrate a higher functionality of vasoconstriction and vasodilatation as compared
to arteries in the central region of the body [10]. This feature makes it easier to monitor
the pulse at the peripheral locations such as brachial and radial artery.

The radial artery is a clinically important site to measure the human pulse. Its size,
ease of access and proximity to the surface of the skin makes it a suitable location to
study the pulse, also referred to as the radial pulse. It has also been found that the
vascular properties of the radial artery are less affected by ageing, blood pressure and
various movements as compared to other arteries, thus making it an ideal site for pulse

assessment [13]. However, a number of factors such as arterial elasticity, arterial width,
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arterial tension, blood viscosity, blood volume, etc. affects the characteristics of the
radial pulse [2]. Anatomically, the radial artery originate as a smaller terminal branch
of the brachial artery and arises from its bifurcation at the cubital fossa of the forearm
as shown in Fig. 2.3(a). In the proximal part of the forearm as shown in Fig. 2.3(b),
the radial artery is overlapped anteriorly by the brachioradialis muscle which descends
lateral throughout its length. Thereafter, the artery runs from the medial side of the
radial shaft to its anterior, where it can be palpated between flexor carpi radialis and the
anterior border of the radius. An examination of the pulse is most accessible at the lower
end of the radius since the radial artery here is only covered by the skin, and superficial
and deep fasciae [14]. The radial artery during its course in the forearm is supported by
pronator teres in the proximal part, superficial radial nerve in the middle part and flexor
carpi radialis in the distal part. The course of the radial artery extends further to divide
into dorsal carpal and dorsal metacarpal branches to cater the blood flow to thumb and
fingers in the hand [14], [15].

Traditionally, the pulse is studied at the radial artery in an approximate length of 3-5
cm on the wrist as shown in Fig. 2.4. The pulse here can be sensed at three distinct
locations: distal, middle and proximal. The middle position can be located by palpating
the pulse in front of the radial styloid process (protruded bone near the wrist crease). The
palpation can be performed by sensing an outward force from within the radial artery
when gently pressed by the fingers. The proximal and distal positions are generally 1-2

cm on either sides of the middle position, towards upper arm and fingers respectively.
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Figure 2.4: Distal, middle and prozimal locations on the radial artery to sense the pulse.
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2.2 Literature review of sensing the radial pulse

The arterial pulse has been a subject of great interest from the ancient times. Early
physicians like Galen [16], Harvey [17], Marey [18], Mohamed [19], etc. recognised the
clinical importance of pulse and paid great attention to its characteristics in normal
health and disease [20]. Although the pulse is driven by the heart, it is transmitted by
a channel of blood flow throughout the arterial system and suffers a continuous state of
change. It is not only affected by the condition of the heart, but also by the functional
state of the organs, nerves, muscles, skin, blood vessel walls, blood related parameters
(volume, viscosity, pressure, velocity), etc. Since the bodily functions are regulated by
the autonomic nervous system (ANS), the pulse also manifests the actions of ANS in
its characteristics [21]. Therefore, the state of health of an individual can cumulatively
effect the shape, amplitude and other characteristics of the pulse wave. A long-term
continuous monitoring of the pulse can thus assist in diagnosis of certain health related
parameters. However, for such an analysis over long periods of time, a monitoring system
with very small and light sensors that can be easily worn on the body is required [22].
The power requirements also play an important role in governing the recording duration,
processing complexity, and therefore, the battery size of the wearable system. A number
of techniques have been proposed in the literature to record the pulse waveform from the
wrist using different wearable sensing methods to extract features that can be used to

monitor certain biomarkers of an individual.

2.2.1 Monitoring techniques and their applications

Physicians usually perform a routine checkup by examining the radial pulse to measure
the cardiac activity of an individual before applying an advanced analysis. Such an exam-
ination is performed by sensing the rhythmic changes in the radial artery using contact
and non-contact based methods. The contact-based methods typically include ECG and
PPG, and are regarded as the gold standard approaches to monitor cardiac activity at
the wrist. With the advancement in technology, some contactless methods based on res-
onators and radars have also been proposed recently. While a detailed review on contact
and non-contact based systems to monitor cardiac activity at different locations of the
body have been discussed in Section 1.2, the application of these techniques at the wrist
along with the algorithmic methods are presented here.

Heart rate monitoring is one of the most common applications of studying the pulse
at the wrist. The technological advancements have enabled researchers to record the
electrical activity of the heart at the wrist. Zhang et al. [23] proposed a semi customised
biopotential acquisition platform consisting of an evaluation board and a launchpad to
record wrist-ECG signals from healthy people in a Lead I configuration. The proposed

prototype used a serial peripheral interface (SPI) and a universal serial bus (USB) to
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communicate with the graphical user interface (GUI) on the computer. The data was
recorded by placing the signal electrode on the left wrist and the reference electrode
on the right wrist. Therefore, in principle, the platform used both the wrists for data
acquisition in a non-wearable fashion. The work focused on a continuous monitoring
of the instantaneous heart rate (IHR) from wrist-ECG signals corrupted heavily by the
motion artifacts. The proposed support vector machine (SVM) based framework was
implemented on 22 thirty-minutes recordings to achieve a mean absolute error (MAE)
of 1.4 bpm (beats per minute) and root mean square error (RMSE) of 6.5 bpm respec-
tively. Zhang et al. introduced a new algorithm for the IHR determination in [24] and
extended the implementation over the dataset consisting of a public database in addition
to the two-wrist ECG signals. The proposed methodology projected the ECG signals to
a high-dimensional phase space to differentiate the heartbeat features from the motion
artifacts using the multiview dynamic time warping approach. The IHR comparisons for
signals with SNR as low as -9 dB achieved an MAE of 2.5 bpm and RMSE of 7.0 bpm
respectively. Salehizadeh et al. [25] also designed and developed a two-wrist acquisition
system named, NohChon, to record a single channel ECG signal in Lead I configura-
tion. The modules on both the wrists included 3-axis accelerometers and were connected
through a wire threaded through a compression shirt to minimise the motion artifacts.
The study implemented spectral filter algorithm for an accurate estimation of heart rate
from ECG signals corrupted during intense physical activities. The method applied on
a dataset of 17 minutes recordings from 4 subjects resulted in an MAE of 1.18 bpm and
MAE percentage of 1.26% respectively!.

Zhang et al. extended the use of the hardware platform developed in [23] to the other
studies [26], [27] and recorded ECG signals from non-standard positions. The electrodes
in [26] were placed on the left arm and the signal-to-reference electrode distance was
maximised to achieve a better SNR. The study used an SVM-based framework to find
the duration of the QRS complex and detect any cardiac-related diseases. The work
in [27] integrated the PPG sensor with ECG electrodes into a one-arm band to measure
both the signals simultaneously at the left arm. The ECG and PPG-based heartbeats
were extracted to find the pulse transmit time (PTT) and model it further to determine
the systolic blood pressure (SBP).

While the above integration of ECG and PPG sensors was designed for the left arm,
similar systems have been designed for the wrist as well. Thomas et al. [28] developed a
wearable wristwatch based system to measure ECG and PPG simultaneously. The device
named, BioWatch, consists of three ECG electrodes, two on the bottom and one on the
top. The watch, when worn on the left hand, provides contact with the two electrodes
on the bottom whereas a manual touch of the finger from the right arm completes the

connection with the top electrode. The simultaneous measurement of ECG and PPG

'The real-time implementation of the algorithm can be watched on the following link: https://www.
youtube.com/watch?v=hEumm_0Pwls.
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signals have been used to measure the PTT for blood pressure determination. The
implementation of the proposed PTT model achieved an average RMSE between 7.83 and
9.37 mmHg (millimetres of mercury) for systolic, and 5.77 and 6.90 mmHg for diastolic
blood pressure (DBP) respectively. The integration of a nine-axis MEMS inertial sensor
in the device allowed an automatic detection of the sensor height to accurately locate the
arm position. A similar device was also designed by Krachunov et al. [29] with two ECG
electrodes, one on the bottom and one on the top. The electrodes were made from a
flexible ink which can be painted on the casing to make it adaptable for different shapes
and users. The design also focused on energy efficiency with front end consuming 8 W
(microwatts) power at 1.8 V (volts) supply. ECG signals were recorded from 8 subjects
for 12 five-minutes recordings. The heart rate comparisons resulted in an MAE of 4.56
bpm and standard deviation (SD) of 3.23 bpm respectively. Although both these devices
can be easily worn on the wrist, the use of another hand to complete the connection
for signal acquisition makes them unsuitable for long-term monitoring. Other wearable
devices such as the Apple Watch (Apple Inc., California, United States), KardiaBand
(AliveCor Inc., California, United States) and Salutron (Salutron Inc., California, United
States) also, provide spot measurements of ECG at the wrist, but they are not suitable
for long-term cardiac monitoring. KardiaBand from AliveCor, for example, required the
placement of thumb on the band to record the ECG signal. Systems such as Zephyr
Biomodule (Medtronic Inc., Maryland, United States) and Kenzen patch (Kenzen Inc.,
California, United States) record the ECG data continuously, however, they are worn
on the chest and not on the wrist. While Zephyr is widely used in the sports context
to measure several physiological and biomechanical measurements, Kenzen is currently
field-testing its technology to monitor heart rate continuously.

To overcome the challenges faced by ECG sensing at the wrist, PPG-based devices have
been widely used for continuous monitoring of cardiac activity. PPG records the optical
activity of the radial artery by sensing beat-to-beat volumetric changes in the arterial
blood flow. An extensive amount of commercial PPG-based wearable monitors, mainly
smartwatches produced by Fitbit (Fitbit Inc., California, United States), Apple (Apple
Inc., California, United States), TomTom (TomTom N.V., Amsterdam, Netherlands),
Scosche (Scosche Industries Inc., California, United States), etc., allow for continuous
heart rate measurement at the wrist. The accuracy and reliability of such devices have
been validated in several studies during rest and exercise [30]-[33]. Stahl et al. [30]
validated the Scosche Rhythm, Mio Alpha, Fitbit Charge HR, Basis Peak, Microsoft
Band, and TomTom Runner Cardio wireless monitors by comparing their heart rate
outputs with the ECG-based reference monitor. The experiment involving 50 subjects
required 30 minutes of continuous walking and running at different speeds with the heart
rate recorded every 1 minute. The comparisons with the reference ECG indicated that the

wireless monitors provide accurate measurements of the heart rate during walking and
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running activities. These results, however, are contradictory to the validation results
obtained in [31], [32]. Cadmus et al. [31] performed an experiment with 4 wrist-worn
devices, recording the heart rate at 1-minute intervals from 10 minutes of data recorded
each at rest and 65% of maximum heart rate. The heart rate comparisons for 40 subjects
delivered significantly broader limits of agreement (LOA) with the ECG reference for
both the states, specially during the state of moderate exercise. The best LOA of [-5.1,
4.5] bpm at rest, and [-22.5, 26.0] bpm for the state of 65% of maximum heart rate were
obtained for Fitbit Surge and Mio Fuse monitor respectively. Only 2 trackers (Basis
Peak and Fitbit Charge) were studied in [32] for a 77-minute protocol over 24 subjects.
Although the LOA for both the monitors exceeded 20 bpm, it was concluded that the
Basis Peak satisfied the validation criteria whereas the Fitbit Charge failed to satisfy the
criteria. Both the monitors demonstrated a substantial decrease in accuracy with the
reference ECG heart rate exceeding 116 bpm.

Since the performance of the commercial PPG-based heart rate monitors significantly
degrade with the intensity of the exercise, several research papers have worked on the
removal of motion artefacts (MAs) using different algorithmic methods for an accurate
heart rate estimation at the wrist. A review about different signal processing tech-
niques to remove or attenuate MAs from the wrist-PPG signal is provided in [34]. Al-
though these techniques adopt multiple processing stages, the heart rate estimation is
performed using one of the several methods including adaptive filtering [35]-[38], Weiner
filtering [39], Kalman filtering [40], independent component analysis [41], [42], frequency-
domain ICA [43], empirical mode decomposition [44], [45] and machine-learning [46]
approaches. Many of these methods transform the signal into time-frequency domain to
identify the spectral peak corresponding to the heart rate among different peaks gener-
ated by MAs. However, the accuracy of such methods rely prominently on data from
multiple sensors attached to the wrist. The publicly available IEEE Signal Processing
Competition (SPC) database includes 2-channel PPG and 3-axis accelerometer record-
ings from 12 male subjects of 18-35 years age. The reference heart rate was recorded
simultaneously from the chest-ECG while the subjects walked and ran at different speeds.
Zhang et al. [47] proposed a general framework, termed as TROIKA, to estimate the HR
from the PPG signals in the SPC database. The framework consisted of signal decompo-
sition for denoising, sparse signal reconstruction for high-resolution spectrum estimation,
and spectral peak tracking with verification to find the spectral peak corresponding to
the heart rate. The algorithm obtained a Pearson correlation of 0.992 and MAE + SD
of 2.34 + 0.82 bpm. This work was extended in [48] and a new framework, named JOSS
(joint sparse spectrum reconstruction), was proposed. The framework calculated a joint
spectrum of the PPG and acceleration signal and utilised a common sparsity constraint
on spectral coefficients to remove spectral peaks of MAs from the PPG spectra. A better
performance with MAE + SD of 1.28 £+ 2.61 bpm was obtained. Mashhadi et al. [35] also

85



used a high resolution spectrum estimation technique using iterative method with adap-
tive thresholding (IMAT) for peak selection. The PPG signals were cleaned by successive
application of adaptive filters using the reference generated from the 3-axis acceleration
data. The MAE of 1.25 bpm was obtained for the SPC database. The use of adaptive
filtering to remove MAs from the PPG signals have also been utilised in other studies.
Khan et al. [44] decomposed the corrupted PPG signals into intrinsic mode functions us-
ing the empirical mode decomposition method for signal denoising. In the second stage of
the algorithm, a recursive least squares adaptive filter is used to deal with close proximity
of MA and PPG peaks and spectral shadowing. The technique obtained better results
than TROIKA and JOSS framework with MAE + SD of 1.02 + 1.79 bpm. While these
studies generate a reference from the acceleration data to feed into the adaptive filters,
several algorithms utilise the reference extracted from the PPG signal itself for the noise
cancellation [36]-[38]. The algorithms described above rely on different filtering methods
to clean the PPG signal and estimate the heart rate based on tracking the spectral peaks.
Grisan et al. [46] proposed a supervised learning approach for the PPG signals in the
SPC database. The training set included 282 features extracted from the labelled PPG
segments. However, only the best 25 features having maximum variance were used with
the random forest classifier to obtain MAE of 6.4 + 0.28 bpm.

Majority of the studies concerning the removal of MAs uses multiple signal channels
by integrating the accelerometer and gyroscope sensors with the PPG sensing at the
wrist [47], [49]-[53]. These additional signal channels, as discussed before, serve as a
reference to separate MAs from the corrupted PPG signals. However, some research
studies avoid the use of an accelerometer sensor to reduce the computational complexity
of the algorithm. Yang et al. [54] used a dual-wavelength technique and observed the
difference in the two PPG detection modules (blue and infra-red filter) to reduce the
effect of MAs. The proposed device reported an error of less than 3 bpm for the heart
rate estimation. Zhou et al. [55] did a similar study and used a differential channel with
green and red light PPG channels. The heart rate monitoring system was assembled in
a wristwatch and four types of motions were studied. It was concluded that the average
artifact ratio corresponding to these motions using the proposed detection technique was
reduced as compared to the other studies.

Other wearable systems have also been proposed in academic papers to measure PPG
from the radial artery. The ease of integrating PPG sensing with other miniaturised
sensors at the wrist have allowed researchers to develop wearable devices and address
other clinical applications as well. Kos et al. [56] integrated a temperature sensor, tri-
axis accelerometer and gyroscope with infra-red (IR) light-emitting diodes (LEDs) to
monitor the body temperature, arm movement and the heart rate of the subject. Malhi
et al. [57] designed and developed a similar device to determine any medical distress in

elderly people by measuring the oxygen content in the blood. The design also included an
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impact sensor and a panic button to detect falls and raise the alarm in an emergency. The
PPG sensors have also been integrated with accelerometer and gyroscope for application
in driver alertness system [58]. Such systems focus on measuring the physiological state
of the driver by measuring the heart and respiratory rate, and the steering movement.

PPG sensing has also been used to detect cardiac disorders by monitoring cardiac
parameters. Bonomi et al. [59] used the integration of PPG sensing and accelerometer
sensor to detect atrial fibrillation and determine periods of corrupted signal. Tarniceriu
et al. [60] recorded PPG signals to monitor heart rate variability (HRV) from elderly
people who were suffering from sinus rhythm and atrial fibrillation, and underwent a
recent surgery. Baek et al. [61] did a similar study and investigated the measurement of
HRV in regions where inter-beat intervals (IBI) could not be found due to the presence
of corrupted PPG signals. The analysis found that the errors in the HRV measurement
were proportional to the missing IBI data.

The slowly varying baseline of the PPG waveform has been found to contain frequencies
corresponding to the respiratory cycle [62]. Wang et al. [63] developed a constant power
circuit to obtain stable PPG waveforms from the radial artery to monitor the heart rate
and the respiratory rate simultaneously. The respiration frequency was also found by
Chang et al. [64] where the wrist-PPG signals were recorded by mounting a green-light
LED and a photodiode on a wrist band. Adib et al. [65] studied the effect of respiration
rate on the correlation between the wrist and finger-PPG signals and found that the AC
and DC components become highly correlated in fast breathing conditions.

A high correlation between the aortic and radial pressure wave, measured invasively,
have been proven before [66]. The integration of PPG sensing with the applanation
tonometer in [67], [68] has made it possible to predict the aortic pressure waveform by
fitting different autoregressive models to the radial PPG waveform. Therefore, the aortic
pressure can be accurately determined from the non-invasive radial pulse waveform.

Blood pressure determination using cuffless techniques has been made possible by
modelling the pulse onset time between two different sites. The acquisition of PPG
signal at the wrist has allowed monitoring the pulse transmit time (PTT) by placing
two different sensors on the forearm to determine the blood pressure [69], [70]. Rajala et
al. [71], for example, estimated pulse arrival time (PAT) using wrist-PPG signal and arm-
ECG signal to correlate it with blood pressure. A similar cuffless technique was presented
by Priyanka et al. [72] to estimate blood pressure, but solely using the PPG signal. Four
features from the PPG waveform were extracted to train an artificial neural network for
blood pressure estimation. Song et al. proposed a cuff-based method to determine blood
pressure from wrist-PPG signals analysed over a deflation cycle of the wrist cuff. The
prototype included an array of PPG sensors with 4 IR-LEDs and a phototransistor.

While the devices discussed above have mainly been developed using off-the-shelf com-

ponents, some studies have designed chip-based prototypes. Xiang et al. [73] developed
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a low-power wavelet denoising chip for PPG detection and heart rate monitoring. The
chip was designed and fabricated in 0.18 pm N-well CMOS technology. The power con-
sumption of the chip was reported to be 8.12 yW at an operating voltage of 1 volt (V).
Mechanical compatibility of the sensing device to multiple locations on the body requires
the sensor to be deformable and attachable on the non-flat positions. Kim et al. [74] pro-
posed such an attachable and flexible pulse sensor, integrated with micro-sized inorganic
photodetectors and red LED to monitor vital parameters such as heart rate and blood
flow. The pulse waveform using the small-factor sensor can also be recorded from finger,
fingertip, nail, forearm and finger ring. The functionality of the sensor was validated by
testing the change in the heart rate from relaxed to running position.

Apart from ECG and PPG-based methods, other contact methods include the devel-
opment of flexible sensors using different material properties. Li et al. [75] proposed a
flexible and wearable optical fiber strain sensor using side-polished fibre Bragg grating
to produce an optomechanical response corresponding to the pulse waves. The sensor
also detected the forward and backward bending of the wrist but showed large sensitivity
towards motion artifacts. Zang et al. [76] designed a graphene-based sensor to record the
radial pulse wave. They developed the sensor on a core of highly elastic polyurethane
fiber wrapped in two helically-wound polyester fibers. The wrapped core was processed
through multiple chemical procedures to enable a better conduction for the pulse moni-
toring. Such wearable sensors have also been proposed in other studies [77], [78]. While
these sensors provide good wearability, they are highly sensitive to motion artifacts re-
sulting in very low SNR.

The pulse at the radial artery can also be sensed using non-contact methods, however,
they are still in their early development stages and are not available commercially. The
studies in [79]-[81] used radio frequency (RF) array resonators to detect very weak pulse
signals to generate a heartbeat pulse. An et al. [79], [80] utilised the reflection coefficient
from a non-contact resonator to monitor the changes in the diameter of the radial artery.
Kim et al. [81] proposed a sleep monitoring system by measuring the heart rate using three
different types of RF sensors. The heart rates were detected at 0.2 to 1 mm of distance
from the surface of the skin. The studies claimed that the proposed system can be
implemented in wearable technology, however, the prototype and the power requirements
(45 mA at 5 V supply) limited their usage for short-term cardiac monitoring. High
sensitivity towards motion artifacts is another concern as a small artifact can easily
interfere with the signal of interest. He et al. [82] proposed a method to detect the
impedance pulse wave at the wrist using a self-balancing bridge, flexible electrode and
a high-speed digital lock-in algorithm. The impedance variation corresponding to the
heartbeat pulse was compensated by the self-balancing bridge and a corresponding pulse
wave was extracted. On the other hand, Wang et al. [83] explored the radar technology

in wearable devices to detect the heart and respiratory rates using two different radars.
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The heart rate of a subject was calculated by modulating an oscillator using a patch
antenna corresponding to the associated Doppler signal.

The detection of the pulse from the radial artery using microphones have also been
explored by a limited number of works [84]-[90]. However, these studies focused on the
pulse diagnosis and did not address the pulse auscultation from the wearable aspect.
Mandal et al. [84], [85] developed a wearable, battery-free tag to monitor the heart
sounds on the chest. The tag consisted of an integrated circuit, an antenna and up to
four microphones to generate digital flags whenever the output from the microphones
exceeded a programmable threshold. It was shown that two such tags when attached to
the carotid and the radial artery simultaneously can provide time-delay between the onset
of two pulses which can be utilised to determine the blood pressure. The study, however,
discussed the wearability of only the chip and the antenna, and not the complete system.
Chen et al. [86] palpated the radial artery using a specialised pulse wave measuring
system which could apply varying amounts of pressure on the artery using a non-wearable
setup. Chen et al. [87] analysed the variations in the pulse sounds recorded using a
condenser microphone with three different weights applied on the radial artery using
a spring pressure gauge. Khaire et al. [88] did a similar pulse diagnosis to investigate
whether a subject has taken a meal or not. Nomura et al. [89] extracted the pulse
waveform using an electret condenser microphone to explore the characteristic points of
the pulse acceleration signal and relate its changes with cardiovascular diseases. Shi et
al. [90] developed a wearable wrist sensor and a chest sensor to reproduce heart sounds
at the wrist. The study modelled the sound attenuation and travel process of the pulse

from the heart to different arterial locations using a neural network with two layers.

2.2.2 Summary

ECG is the gold standard approach for monitoring cardiac activity and obtaining cardiac
parameters such as heart rate and its variability. While the current systems do not
provide continuous measurements of ECG signal at the wrist, a better way of long-term
cardiac monitoring is based on PPG sensing. However, the accuracy and reliability of
PPG-based wearable devices are vulnerable to several factors, including motion artifacts,
the brightness of the environment, or having a stable contact force between the sensor
and the measurement site [91]. Also, PPG uses an infra-red light as an active input
signal. This imposes constraints on the size of the device, and consequently the length
of monitoring, as a result of the power demands of infrared LEDs. Academic papers
have shown how cardiac activity could also be measured using non-contact techniques
such as radars and resonators, but these systems are still in very early development
stages. The cardiac activity could, in principle, also be measured by using piezoelectric
probes [92], however, these sensors require a stable and continuous pressure through

externally applied forces, and are highly sensitive to movements; all of this resulting in

89



a very low SNR [93].

While all these techniques provide useful information to extract the cardiac activ-
ity, they suffer from several issues, particularly with the constraints in terms of device
size and shape, power budget for long-term continuous monitoring, reliability and accu-
racy concerns posed by wearable technologies. Acoustic sensing of chest sounds, using
a stethoscope, is the most widely used technique to detect cardiac output and diagnose
heart problems. As with the sounds on the chest, pulse sounds can also provide im-
portant clinical information to monitor the cardiac activity. The use of a microphone
as a passive sensor in comparison to active sensing by PPG reduces the constraints on
the power consumption of the system by significant magnitudes. Therefore, acoustic
sensing of the pulse appear to be an attractive option for wearable applications. The
cardiac rhythms within the radial artery can possibly be sensed using a microphone with
small-factor, without requiring any additional power consuming input signal. Such an
approach could potentially be used either as an alternative new physiological signal to
extract cardiac information from a wearable device, or as an additional physiological

channel to complement existing systems, without posing an overhead in terms of size.

2.3 Wearable sensing of the pulse sounds

With the rise in population and limited resources available in the hospitals, the health-
care costs have been rising at a rapid pace over the last few years. The waiting time for
a patient to see a physician have also become longer. The recent developments in health-
care technology, however, has allowed advancing physiological monitoring from clinical
settings to a patient’s home. Such an advancement would not only reduce the burden
on the hospitals allowing a reduction in the healthcare costs but also provide medical
attention to a larger cohort of the population. The implementation of medical care in
home settings, however, imposes a lot of constraints on the technological forefront. The
development of biomedical devices should incorporate the user-friendliness and opera-
tional simplicity to be handled by patients and not trained clinicians. The device should
be designed in a manner that it can be easily integrated into the user’s lifestyle and does
not require a significant change in their daily activities. These factors require a device
to be smaller in size, operate over a long period, be safe and easy to use, and integrate
comfortably with the desired body location. While these devices are not intended to
replace the medical care provided by the hospitals, they can provide useful diagnostic
information to aid the physicians and reduce the monitoring times.

The advancements in the electronics sector to produce electronic parts with smaller
sizes has allowed the development of wearable devices for biomedical applications. These
devices have the potential to revolutionise the healthcare services both in the hospital as
well as home settings. The devices have been designed in a manner that they can be easily

operated by the patients in the absence of the clinicians. A typical blueprint of such a
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device includes a miniaturised non-invasive sensor that transmits the sensed physiological
signal to a nearby base station. The size and shape of the device are designed to integrate
comfortably into the patient’s lifestyle without requiring any significant change. The base
station carries enough processing capability to analyse the signal and extract meaningful
parameters that can be of interest to the physician. The availability and wide usage
of the smartphones have made it easier to reduce the cost of the wearable system by
eliminating the need for a separate base station. Smartphones not only provide the
wireless connectivity but they also carry multi-core processors to allow the signal analysis
using sophisticated algorithms.

The design and development of wearable devices impose several constraints on the
electrical and mechanical specifications of the system. The development of an acoustic
wearable device to sense the pulse sounds at the wrist require the sensor to be light-weight
and integrate easily with the contour of the patient’s wrist. The strict limitations of size
and shape along with the need for a long-term continuous cardiac monitoring impose strict
regulations on the power-budget of the system. While there is an option to analyse the
signal on the device itself, a limited power-budget require the signal processing algorithms
to be of low-complexity and demand less computational cycles while still maintaining the
accuracy and reliability of the sensing approach. These tradeoffs make it challenging to
design the sensor using such an approach. The availability of a higher computational
power on the smartphones can be used to receive the raw data wirelessly and process
high-complexity algorithms on the platform. The design of the acoustic sensor, therefore,
adopts the architecture shown in Fig. 2.5. In this architecture, the microphone senses
the pulse sounds from the radial artery at a specific sampling frequency. The analogue
front end contains the electronic circuitry to filter and amplify the information relevant
to the pulse sounds. The raw information is bundled into data packets that can be
transmitted wirelessly to a patient’s smartphone. The received data is analysed using the
computational resources available on the smartphone to extract meaningful parameters

for the diagnostic purposes.
Microphone Antenna
Analogue Data Data Signal
D’ Front End Transmission Y Reception Processing

Figure 2.5: Design approach for a wireless wearable device to sense pulse sounds at the wrist.

The constraints imposed on the design of the acoustic wearable device requires a thor-
ough understanding of different components to be used at different architectural stages.
The small size of the overall device limits the size and shape of the battery. The operation

of microphone and its related circuitry under specific voltage and current requirements
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also restrict the choice of the battery. Since the data transmission consumes more power
to transmit the data at a higher rate, the optimal choice of the hardware platform for
wireless transmission is also required. The following sections discuss different types of
acoustic sensors, batteries and data acquisition platforms to design and develop an acous-
tic wearable device to operate over longer durations and sense the pulse sounds effectively

and reliably from the radial artery at the wrist.

2.3.1 Types of acoustic sensors

Alexander Graham Bell in the 1870s discovered that the acoustic pressure variations can
be manifested as the time-varying electrical signals. He utilised such a variation to trans-
mit speech on electrical wires [94]. While Bell became the inventor of the telephone, it
was Edison who designed a carbon microphone that could record speech levels adequately
to be sent over reasonable distances [95]. The microphone design, since then, has gone
further developments in parallel to the manufacturing processes to refine the acoustic be-
haviour. The advancements in silicon micromachining and micro-electro-mechanical sys-
tems (MEMS) technology has allowed developing high-performance, miniaturised acous-
tic sensors with low cost and better reproducibility. The microphones based on several
transduction principles such as the piezoelectric, the piezoresistive, the capacitive, etc.
have been developed. For the design and development of a low-power, miniaturised
wearable system to sense the pulse sounds at the wrist, it is important to understand the

different types of acoustic sensors available in the market.
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Figure 2.6: Frequency response of a contact microphone when facing its rubber sensing pad to
piston-like displacement of a structure [96].
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2.3.1.1 Contact microphone

Contact microphone, also known as the piezo microphone uses piezoelectric effect as the
transduction principle to convert the sound waves into electrical energy. Piezoelectricity
is a phenomenon observed in several materials which generates an electrical charge in
response to an applied mechanical stress. The piezoelectric effect is reversible i.e., the
piezo materials can also change mechanical dimensions in presence of an electric field. In
case of a contact microphone, the sound waves apply stress on the diaphragm to create
an electric charge on the plate which can be converted into an output voltage. These
microphones are designed to sense vibrations through physical contact with the solid
objects and are insensitive to the airborne sounds. Therefore, the diaphragm deforma-
tion only occurs because of the structure-borne sound. While a typical design of the
contact microphone includes a diaphragm of piezo film affixed to a thin alloy metal disc
with opposite charges, different mechanical structures have been proposed to improve
the acoustic efficiency and sensitivity of the microphone [97]. The contact microphones
operate by attaching the rubber sensing pad to a body part, for example, the neck or
the chest and detects the sound propagating through a combination of the tissue, bone,
muscle, and ligament. Although these microphones are highly sensitive to the mechanical
vibrations, they are immune to any interference from the external noise. They are also
immune to the moisture and can operate in conditions where the environmental stability
is critical. Some of the applications in high noise environments include the electronic
stethoscope and bone-conducted sound pickup in hospitals, impact sensing in factories,
and waterproof microphones for divers. Typically, the sensitivity of the contact micro-
phones as shown in Fig. 2.6 has a flat frequency response up to a few kHz and thereafter,
a sharp rise in the sensitivity within the audible range is observed.

While the contact microphones provide certain advantages, their high sensitivity to
mechanical vibrations makes them vulnerable to motion artifacts. A wearable sensor
attached to the wrist can incorporate significant mechanical noise in the microphone with
different hand gestures. These artifacts can interfere much strongly with the pulse sounds
of weaker strength and can lead to a failure of the whole system. The larger diameter
of such microphones and an absence of the flat frequency response in the audible range

also imposes further constraints on the design of the wearable device.

2.3.1.2 Capacitor microphone

A capacitor is essentially formed when two charged metal plates are kept in close proxim-
ity. A capacitor microphone uses the capacitive phenomenon and consists of a moveable
membrane and a fixed backplate with a thin air gap separating both the plates. When
sound waves hit the moveable diaphragm, its back and forth motion change the relative
distance between the membrane and the backplate. Therefore, the sound wave rhythm

manifests as capacitive oscillations between both the plates. Any change in distance, d,
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between the two plates result in a corresponding change in the capacitance as follows:

A A
C=e= —>AC=¢e— 2.1
“d “Ad 21)
where € is the permittivity of the air between the two plates and A is the overlapping
area of the two plates. If the charge, Q, on the plates is kept constant, any change in

capacitance produces a corresponding change in the voltage, V, as given by:

Q

AV=Re

(2.2)

Therefore, any change in the air gap caused by the force of the sound waves produces a

proportional change in the voltage.
AV x Ad (2.3)

The overall sensitivity of a capacitor microphone is governed by its mechanical and
electrical sensitivity [98]. The mechanical sensitivity, Sy,, is defined as the ratio of change
in deflection of the microphone diaphragm, Aw, corresponding to a change in the applied
pressure on the diaphragm, AP. The electrical sensitivity, Se, on similar grounds, is
defined as the ratio of change in the voltage following a change in the distance between

the two plates.
Aw AV

AP T Ad

Since the charge on the plates remains constant and the change in voltage is proportional

S = (2.4)

to the change in air gap thickness, the electrical sensitivity of the microphone is essentially

equal to the electric field strength, E, between the two plates given by:

o %ias

Se=F
do

(2.5)
where V.5 is the bias voltage and dg is the initial air gap thickness. The electric field is
generated by polarising one of the plates, mostly the backplate, with a built-in charge.
The polarisation is practically achieved by affixing the backplate to a charged dielectric
layer, also known as an electret. Due to the involvement of an electret in the design
of a capacitor microphone, they are famously known as electret condenser microphone
(ECM). The earlier ECMs required high bias voltages, in order of hundreds of volts, to
polarise the plate and create sufficient electric field to sense small deflections in the mi-
crophone diaphragm. With the advent of thin electric films capable of permanent electric
polarisation, the microphones without the need of power supply were made possible [99].
The electret layer, in principle, can be affixed either to the moveable microphone di-
aphragm or the perforated fixed backplate while maintaining a thin air gap between

both the plates as shown in Fig. 2.7(a) to form a variable capacitor.
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Figure 2.7: (a) Cross-sectional view of a condenser microphone with an air gap between the
moveable diaphragm and the backplate [98]. (b) Condenser microphone connected
to an external bias voltage source, parasitic capacitance and a preamplifier [98].

Unlike the contact microphone, the ECM senses the airborne sounds and reject the
interference from mechanical vibrations. These microphones are low in cost and can
operate without the need of a power supply. However, the electret material can lose charge
over time causing a degradation in the sensitivity and resulting in poor performance of
the microphone. The damping caused by the streaming of air in the thin air gap also
results in a loss of sensitivity at higher frequencies [100].

The output capacitance of the condenser microphone is usually very small (in order of
pF) because of the low charge deposited on the electret layer. The small capacitance of
the microphone results in a high output impedance. Therefore, a buffer (or preamplifier)
is required to convert the impedance from a higher to a lower value. This is necessary for
an effective conversion of sound waves into an electrical signal without loading the micro-
phone. Since the buffer is usually a source-follower, the capacitance of the microphone
in combination with input resistance of the buffer forms a high-pass filter. Depending on
the cut-off frequency of the high-pass filter, the buffer can possibly filter out the desired
signal of interest. Another resistor, Ry, as shown in Fig. 2.7(b) is added to bias the
circuit and improve the input impedance of the buffer. Since the cut-off frequency of the
high-pass filter is inversely proportional to the resistance value, Ry in order of several M)
is generally used. A typical frequency response of an ECM demonstrates high pass cut-off
frequency of more than 100 2 as shown in Fig. 2.8. While the ECMs provide certain
advantages, their usable bandwidth imposes challenge on recording all the characteristics
of the pulse sounds using the wearable sensor. The larger diameter and the height of the

microphones also places certain constraints on the form factor of the wearable device.

2.3.1.3 MEMS microphone

The consumer demand for miniaturisation of portable devices such as smartphones, tape
recorders, radio, tablets, and IoT devices required the microphones to be smaller in
size, cost-effective while maintaining the low noise levels and high performance for a

wide range of temperature and humidity conditions. With the advent of high precision
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Figure 2.8: Frequency response curve of an ECM (CMC-5044PF, CUI Inc.) with sensitivity at
a baseline of -44 dB [101].

silicon photolithography and etching process technologies, the MEMS structures with
dimensions in order of microns were made possible. While the MEMS structures gained
their initial popularity through automotive accelerometers for airbag deployment, they
were later commercialised for acoustic applications [95]. Silicon micromachining has been
used to fabricate MEMS microphones with different transduction principles including
the piezoelectric, the piezoresistive and the capacitive phenomenon. The design and
fabrication of MEMS microphones using the capacitive approach is most popular because
of its advantages in terms of low cost, high sensitivity, high SNR and stable performance.

The capacitive MEMS technology offers excellent acoustic characteristics with very
small form factors. This is achieved through a fabrication process which involves creat-
ing a moveable membrane and a fixed backplate over a cavity in the base silicon wafer.
While the perforations in the fixed backplate allows air to flow easily through it, the
moveable membrane flexes in response to the change in surrounding air pressure caused
by the sound waves. These movements change the capacitance between the backplate
and the membrane, which can be sensed by an application specific integrated circuit
(ASIC) to convert the vibro-acoustic effects in an electrical signal. While the MEMS
microphones are manufactured in different packages and output format depending on
the particular application, the port location (or sound hole) are kept either on the top or
the bottom as shown in Fig. 2.9(a). The top-port microphones have the sound hole in
the lid and are used in applications where the traditional placement of the microphone

is required. The bottom-port microphones receive the sound waves through a hole in the
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Figure 2.9: (a) MEMS microphone with transducer, ASIC' and wire bonding. Top package has
sound port on top (in lid) and bottom package has sound port on bottom (in PCB
substrate) [103]. (b) Cross-sectional schematic view of a MEMS microphone with
the sound port in the PCB substrate [104].

PCB substrate and are generally used in products with small-factors and components
placed on opposite side of the acoustic port [102]. A 3-D model of a bottom-port MEMS
microphone wire-bonded with the ASIC in a metal package is shown in Fig. 2.9(b).

Although the ECMs are still widely used in different applications, the MEMS micro-

phones offer several advantages over them. They are as follows:

1. The silicon photolithography in the fabrication of the MEMS microphone provide
excellent reproducibility as compared to ECM [95].

2. The integration of ASIC with the transducer in the MEMS package allows to read
very small changes in the capacitance precisely. Since the ASIC realises complex
circuits such as an analogue-to-digital converter (ADC), filter, buffer, etc. at the
chip-level, its inclusion reduces the PCB area and cost of the overall system and
provides better immunity from noise, power supply variation and electromagnetic

interference.

3. The implementation of very low-noise electronic circuitry in the MEMS microphone
generates a relatively lower output impedance as compared to ECM. This results

in a better frequency response of the microphone as shown in Fig. 2.10.

4. MEMS microphones are surface mounted devices and can be easily integrated with

other components on the PCB using an automatic pick and place process.

5. MEMS microphones are designed to provide very stable performance in extreme
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conditions of humidity, mechanical shock and vibration, power supply noise, etc.

These microphones can also operate over a wide temperature range [102].

6. While the polarisation of the electret layer in ECMs can demand high voltages, the
silicon-based diaphragms in MEMS microphones operate at lower voltages. In fact,
the majority of the MEMS microphones can operate at a voltage supply provided
by a small battery.

7. Unlike ECM, the sensitivity of the MEMS microphone does not degrade with the
reflow solder temperatures. The sensitivity curve also maintains a stable profile

over time.

8. The grounded metal packaging of the MEMS microphone (Faraday cage) provide
better electrical shielding and mechanical protection to the transducer from external

shock and vibrations.

15

10

NORMALIZED FREQUENCY RESPONSE (dBV)
)
(4
|

10 100 1k 10k
FREQUENCY (Hz)

Figure 2.10: Frequency response of a capacitive MEMS microphone (INMP411, Invensense
Inc.) [105].

2.3.1.4 Summary

Following the detailed discussion on the types of acoustic sensors, it can be concluded
that MEMS microphones offer certain advantages over contact microphone and ECM.
For the design and development of the wearable device to sense the pulse sounds at

the wrist, MEMS technology provides microphones with very small-factors resulting in
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a smaller size of the device. The lower operating voltage allow the use of a small-sized
battery, therefore, reducing the burden on the size of the overall system. A better and
stable frequency response also ensure an accurate characterisation of the acoustic signal.
Finally, a better performance in rejecting the interference from mechanical vibrations and
external electrical noise further strengthens the choice of using the MEMS microphone
in the design to sense the acoustic signal at the wrist. Therefore, the MEMS microphone

has been used in the wearable device proposed for this work.

2.3.2 Power supply

The design approach for a wearable device as illustrated in Fig. 2.5 includes a minia-
turised sensor which records the desired signal of interest from a body location and
transmits the data to a nearby base station (such as a smartphone) to extract meaning-
ful diagnostic parameters by employing sophisticated signal processing methods. While
the biomedical monitoring devices are gaining huge attention in the market, factors such
as reducing the size and weight of the device as well as operation over a long time are
being continuously in demand from the consumers. One of the key considerations in the
wearable design is the battery size which directly affects the size, weight and portability
of the device. Efficient and reliable functioning of different components such as sensors,
microcontrollers and other electronic components in the wearable design also depends on
the power supply of the system. The current drawn by these components and the in-
tended usage time plays a major role in governing the physical size of the battery. While
a higher number of sensors are being integrated into a single device to monitor multiple
physiological parameters, the power levels are falling short to sustain the higher power
demand. This causes frustration among the users as a frequent recharge of batteries is
often needed. Therefore, a wearable design should not only consider the physical size and
capacity of the battery but it should also incorporate a maximum operation time of the
device for widespread usage. Since the power is consumed at different nodes of the de-
sign, a proper choice of sensors, electronic components, wireless transmission, etc. plays
a vital role in deciding the power draw and the operation time of the battery. Hence, the
power requirements at every node of the design should be considered to maximise the
operational lifetime of the wearable device.

There are different types of batteries available in the market for various applications.
For smaller devices, the batteries mainly fall in one of the three categories: cylindrical
cell, pouch cell and coin (or button) cell. While every type of battery cell may involve
different chemical compositions, the chemistry of cylindrical cell is usually based on al-
kaline, nickel-metal-hydride or nickel-cadmium. Although these cells provide large power
outputs, they are usually ideal for applications where size and space is not a constraint.
The pouch cell batteries adopt lithium-polymer as the chemical composition and come in

pouch shape with compact designs and smaller weights. They are widely used in mobile
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devices where tight constraints on the height of the battery are placed. These batteries
offer generous design flexibility as they can be manufactured in several form-factors and
customised sizes. A major risk associated with the pouch cells is that they can overheat
and puncture, if not handled carefully. Therefore, they can be dangerous to use and re-
quire great care during the operation. The pouch cell batteries are not user-replaceable
and need a charging mechanism built into the device itself. This imposes additional con-
straints on the size of the device as more electronic circuitry for charging the battery is
required. While the lithium-polymer batteries offer greatest design flexibility for wear-
able devices, the coin cell batteries are ideal for low power wearables as they are compact,
user-replaceable and does not require any additional charging port in the design. The
chemistry of these cells includes lithium, alkaline, silver oxide and zinc-air. Unlike pouch
cells, the devices powered with coin cell batteries are safe to use and can be made wa-
terproof. These batteries are relatively inexpensive, but require a holder to hold them in
the device. A major drawback with the coin cell batteries is their low charge capacity
restricting their use in applications where a low power draw is required.

Generally, the larger the size of the battery, the higher the power drive it can provide
and vice-versa. For the wearable device to sense the pulse sounds at the wrist, it is
important to consider this tradeoff between the size and the charge capacity of the battery
to monitor the cardiac activity over a longer period of time. While the cylindrical cells
provide higher power output, their larger size makes them unsuitable for the wearable
design. Since the wearable device would be worn by the patient at the wrist, it might
involve exposure to the moisture and require replacement of the battery. The safety issues
and the charging circuit associated with the pouch cells does not make them feasible for
the wearable design. Also, a customised pouch cell would require separate certification
which might introduce higher costs in the design. Due to these reasons, the coin cell
batteries prove to be the best choice for the power supply. The coin cells are available in
many variants based on size, weight, charge capacity, supply voltage and supply current.
The following sections discuss some important specifications of the coin-cell batteries to
understand the design tradeoffs and achieve a longer operational lifetime by choosing the

correct power supply in the wearable design.

2.3.2.1 Battery size

The device size forms the most important factor in allowing the users to integrate such
devices in their daily lives for vital sign monitoring. While a device typically consists of
several electronic components including the sensors and signal conditioning and trans-
mission circuitry, the invention of silicon fabrication technologies has allowed significant
miniaturisation of these components. These electronic parts are readily available in
surface-mount packages and consume very less PCB area in comparison to the battery

size. Therefore, the size of the battery dominates the PCB area and will eventually
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decide the form-factor of the wearable device. The coin-cell batteries are packaged in
circular shape with different dimensions of diameter and height. The sizes of some com-
monly used non-rechargeable (primary) and rechargeable (secondary) coin-cell batteries
in wearable designs are provided in Table 2.1. These batteries were primarily chosen as
they cover a different spectrum of available sizes. Although the batteries with larger sizes
are also available, they are not listed here as they would not be feasible for a device to be
placed at the wrist. Only a few rechargeable Lithium batteries are listed here, mainly for
comparison purposes, as similar size variants are available in lithium-manganese-dioxide
chemistry with much higher energy densities. The rechargeable batteries with higher
densities are generally bigger and not suitable for the wearable application here. The

table also lists other parameters that are critical to the wireless design.

Table 2.1: Specifications for commonly used non-rechargeable (primary) and rechargeable (sec-
ondary) batteries with varying physical sizes that can be used in different wearable
applications [106], [107].

Operating
Battery Chemical Nominal Nominal
" . current (max) Size ‘Weight
name composition voltage capacity
Cont. Pulse Dia. Height

CR1220 LiMnO» 3.0V 35 mAH 2 mA 5mA 125 mm 2.0 mm 08¢g
CR1620 LiMnO» 3.0V 70 mAH 3 mA 8mA 16.0 mm 2.0 mm 15¢g
CR2032 LiMnO» 30V 210 mAH 5 mA 20 mA  20.0 mm 3.2 mm 30g
CR2430 LiMnOs 30V 270 mAH 6 mA 2lmA  245mm 30mm 40¢g
CR2477 LiMnO» 3.0V 1000 mAH 3 mA 15 mA 245 mm 7.7 mm 83¢g
LiR1620 LiCoOgq 3.7V 16 mAH 20 mA  32mA 160 mm 2.0 mm 11g
LiR2032 LiCoO2 3.7V 40 mAH 40 mA 80 mA 20.0 mm 3.2 mm 2.7 g
LiR2450 LiCoO2 3TV 120 mAH 120 mA 240 mA 245 mm 5.0 mm 56 ¢

2.3.2.2 Supply voltage

Batteries, like other electronic components, are not ideal and carry small internal (leak-
age) resistance. Therefore, the full electric potential of the battery is not available to the
connected load. A higher current draw from the battery will incur more loss across the
internal resistance thereby causing a reduction in the supply voltage. Since all the other
components in the electronic circuit function at a specific voltage, the supply voltage
must meet such a requirement. Although electronic parts with different operating volt-
ages can be used in the design, the use of boost-up or boost-down circuits to level up or
level down the supply voltage levels can significantly increase the hardware overhead in
the design. Such circuits also draw current for their operation, therefore, adding further
constraints on the power budget of the system. Hence, it is advisable to use components
with same operating voltages without trading off the quality of signal acquisition. Since

a majority of the MEMS microphones and microcontrollers (with Bluetooth low-energy
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functionality) available in the market operate in a voltage range of 1.5 - 3.6 V and 1.7 -
3.6 V respectively, the primary coin-cell battery proves to be an excellent choice for the

power supply of the wearable design.

2.3.2.3 Supply current

The battery manufacturers provide two current specifications: maximum continuous cur-
rent (Ieon¢) and maximum pulse current (Ipysc). While I, defines the maximum average
current that can be drawn from the battery for continual usage, L,,se is the maximum
current that the battery can provide for very short bursts of time. It is intuitive to as-
sume that a battery with a capacity of 210 mAH can supply a current of 210 mA for one
hour of operation, or it can drive 1 mA of current for 210 hours. Due to the limitation
of I.ont, this assumption is not true in practice. The battery capacity reduces rapidly
with an increase in the discharge current. Therefore, the average current drawn from the
battery for a particular application must be smaller than I ,,; for the battery to function
at its effective capacity.

Since most of the wearable devices incorporate wireless functionality, the transmission
of data packets over the wireless channel requires a higher current draw over short periods.
The choice of battery, therefore, must ensure that the maximum current demanded by
the wearable device at any point of time does not exceed the I,,,;5c value. The variation of
current in such applications can cause a significant ripple in the supply voltage because
of variable drop across the internal resistance of the battery. Such voltage variations
must not hinder the functionality of the electronic components and a constant supply
voltage must be ensured by the battery. In cases where a single battery cannot cope up
with such demands, multiple batteries can be connected to guarantee a regulated power
supply. However, this would require few diodes to prevent any undesired charging of the
battery and impose more constraints on the device size.

The current I, defines the maximum pulse current and its value decreases expo-
nentially with the pulse hold time [108]. The higher the pulse hold time, the lower the
value of the maximum pulse current that is available to the circuit. Therefore, the bat-
tery choice should be compatible with the choice of the transceiver block to ensure the
capability of the battery to provide maximum pulse current for the desired pulse hold
time. In Table 2.1, we can observe that the secondary batteries offer higher values of
Leont and Ipy e than the primary batteries, but they often discharge too quickly limiting
the operational lifetime of the battery. Hence, a tradeoff between the discharge current

and the operational lifetime of the battery also exists.

2.3.2.4 Battery capacity and life

The capacity of the battery is another critical parameter to predict the operational life-

time for its usage. This is particularly important in applications where long term phys-
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iological monitoring is desired as an intermediate power failure can miss signal events
important for diagnosis. The nominal capacity of the battery is defined as the total
ampere-hours available when the battery is discharged at a certain discharge current
(also known as C-rate) from a fully charged state to its cut-off voltage. It is calculated
by multiplying the discharge current (in Amps) with the discharge time (in hours). The
nominal capacity does not remain constant and varies with respect to the discharge cur-
rent. This varying capacity as a function of the discharge current is also known as the
effective capacity of the battery. Since the current consumption of the device is generally
higher than the maximum average current supplied by the battery, for at least short
periods, the effective capacity is smaller than the nominal capacity of the battery.

The effective capacity of the battery plays an important role in determining the opera-
tional lifetime of the battery. The selection of a battery for the wearable design not only
depends on its size and supply voltage, but it must also meet the average and maximum
current requirements of the device so that the effective capacity of the battery does not
deviate much from its nominal capacity. A close resemblance would allow the battery
to function for a longer time as its lifetime varies inversely with the average current

consumption of the device [108].

2.3.2.5 Battery choice

The wearable device proposed in this thesis is designed to record pulse sounds from the
adult population. A proper attachment of the device requires the battery to fit on one
side of the wrist. Another requirement is that the entire battery can be contained in the
middle part of the wrist as a placement on the curved contour can result in discomfort
for the user. The wrist circumference in the adult population varies between 120 and 220
mm [109], [110]. Hence, a battery with a diameter of less than 25 mm can easily fit an
individual with minimum wrist circumference. For end-users, it is also important that
the weight of the overall device remains less than 10 g to allow a prolonged usage. While
the surface mount components and PCB substrate add up to the weight, the battery
contributes maximum to the overall weight of the device. A battery with less than 5 g
of weight should be ideal for such a wearable design.

Since the battery life depends on the current consumption of the device, a battery with
higher capacity provides a higher current drive and better operation time. Although the
supply voltage and operating current depend on the electronic circuitry of the wearable
design, the tradeoff between different battery parameters discussed above can be analysed
to finalise the choice of the battery. As an illustration, the CR2032 and CR2430 coin-cell
batteries in Table 2.1 seem to be better choices for the design of acoustic wearable device
because of their low size and weight, and better nominal capacity. The secondary coin-
cell batteries such as LiR2032 and LiR2450 can also be used in applications requiring

higher operating currents. These batteries are cost-effective as they allow recharging for
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a few hundreds of cycles. However, they are quite limited in their nominal capacity and

would run out quickly.

2.3.3 Data acquisition hardware

Referring to Fig. 2.5, the data acquisition hardware is responsible to collect the physiolog-
ical signal from the sensor node and apply signal conditioning for better data packaging
and transmission to the nearby base station. The MEMS microphones provide different
output formats from the perspective of electronic interfacing. The ASIC in the micro-
phone package can contain the required circuitry to produce analogue or digital outputs.
The digital (or pulse density modulated) microphones already incorporate an ADC into
the package to accept an external clock and return the sampled data at the supplied
clock frequency. While these microphones provide better noise immunity than their ana-
logue counterparts, they are usually power-inefficient and consume power in the order of
500 pA to 2 mA. Hence, they mostly find their applications in smartphones, cameras,
laptops, etc. where a higher power budget is available. Since the power budget of the
system directly affects the size of the battery, the analogue MEMS microphones prove
to be a better choice. These microphones only consume power in the order of 15 uA
to 500 pA. The availability of sophisticated microcontrollers with high power-efficiency,
and integrated ADC and BLE blocks provide a high degree of freedom when using the
analogue microphones in the wearable design.

The ASIC circuitry in the analogue microphones produces an AC (alternating current)
signal superimposed on a DC (direct current) bias voltage corresponding to the sound
waves. Since the vibrations produced by the pulse sounds are generally weak in strength,
these AC ripples are smaller in amplitude. The microphone output can also contain fre-
quencies in larger bandwidth as compared to the frequency content of the pulse sounds.
Therefore, it is important to design an analogue front end which can filter out the un-
desired frequencies, and amplify the acoustic signal to match the amplitude range of the
microphone output with the dynamic range of the ADC for maximum resolution. As an
illustration, the circuit in Fig. 2.11(a) presents a simple analogue front end to filter and
amplify the microphone output. Since the microphone output is usually biased at 0.7-0.8
V, the high pass filter formed by the capacitor C; and resistor R; completely blocks the
DC signal. The high pass filter is followed by an inverting amplifier which amplifies the
weak pulse sounds to match the ADC range. Since the microphone bandwidth is much
larger than the desired frequency content (heart sounds < 150 Hz), the analogue front
end also incorporate a simple first-order passive RC low pass filter to restrict the signal
bandwidth. The use of a low pass filter also avoids any anti-aliasing introduced due to the
sampling at the ADC stage. The aliasing caused by the sampling reflects all the frequen-
cies that are higher than the Nyquist frequency (i.e. half of the sampling frequency) back

into the signal. This must be avoided for an accurate characterisation of the signal. The
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Figure 2.11: Analogue front end designs for data acquisition from the microphone. (a) The first
design includes a high pass filter followed by an inverting amplifier and first-order
passive RC low pass filter. (b) The second design includes a high pass filter followed
by a non-inverting amplifier and a second-order active low pass filter.

(b)

second design of the analogue front end in Fig. 2.11(b) uses a non-inverting configuration
for the amplification of the signal. A second-order active low pass filter is used instead
of a simple RC filter to attenuate the higher frequencies with a steeper roll-off. This
design also provides a relatively lower output impedance to the ADC allowing a better
signal conversion, however, an extra operational amplifier might cause some hardware
overhead. The values of the electronic components including the resistors and capacitors
are chosen depending on the specifications of the wearable design.

In summary, the analogue front end in the wearable design conditions the acoustic
signal for its effective conversion from the analogue to the digital domain at the ADC
stage. Since it is crucial to avoid the anti-aliasing of the signal during conversion, a
tradeoff between the filter order and the sampling frequency must be studied. For a simple
first-order passive RC low pass filter, the frequency response after the cut-off frequency
decreases at a slope of -20 dB/decade. This means that the gain corresponding to the
higher frequencies attenuates at a slower rate. While the RC filter can be implemented
in a very small PCB area, a higher ADC sampling frequency is required to avoid any
aliasing caused by the frequencies beyond the cut-off frequency of the low pass filter. A

higher sampling frequency would produce more data samples that need to be bundled
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in data packets to be sent at the data transmission stage. An increased amount of
data transmission would consume more power and reduce the battery lifetime. Instead,
higher-order filters can be used in the wearable design at the cost of increased PCB area
to realise a steeper roll-off in the frequency response of the filter. This would enable
a reduction in the sampling frequency and the number of data packet transmissions.
Therefore, the sampling frequency of the signal in combination with the filter order must
be decided to understand the ADC requirements.

In relation to the PCB area, the advancements in the chip fabrication technologies have
made it possible to integrate multiple signal channels with ADC and transceiver blocks
in a single surface mount package. While standalone ADCs and transceivers are also
available in the market, the integration of these blocks in SoCs (system-on-chip) reduces
the overall size of the device. The SoCs typically implement the successive approximation
register (SAR) or Sigma-Delta architecture of the ADCs. A successive approximation
converter uses an iterative comparison of the signal levels with different proportions of
the reference voltage to convert the signal into output bits. The sigma-delta converter, on
the other hand, makes use of oversampling the signal and applying digital filters to achieve
high conversion accuracy. Since the oversampling of data is undesirable, SAR ADCs are
usually preferred over Sigma-Delta ADCs in wearable applications. In comparison to
Sigma-Delta ADCs, the SAR ADCs also operate at a higher speed and require lower
conversion current [111]. After the acquisition and conversion of the data in the digital
domain, the data can be stored in SoC buffers to eventually bundle them in specific frame

structures to be sent to the wireless transmitter.

2.4 Designing the wearable acoustic sensor

The last few sections discussed different constraints and tradeoffs involved in every stage
of the wearable design presented in Fig. 2.5. Such an understanding can be utilised to
design a wearable hardware platform for sensing the pulse sounds at the wrist. Since
the wearable architecture involves sending the data to a nearby base station for signal
processing, the hardware platform consists of the microphone sensor, an analogue front
end, ADC and the transmitter block as shown in Fig. 2.12. The wearable device uses
a single-channel, ultra-low noise, omnidirectional MEMS microphone sensor (INMP411,
InvenSense Inc.) to sense the skin surface vibrations at the wrist. This microphone was
chosen because of its low size of 4.72 x 3.76 x 1.0 mm, high SNR of 62 dBA, a uniform
sensitivity of -46 dBV between 28 Hz and 20 kHz, and low power consumption of 210
uA at 3.3 V supply [105]. However, any microphone of similar size and specifications can
be used to design the acoustic sensor. The chosen microphone has a DC offset of 0.8 V,
however, all the proposed algorithms in the subsequent chapters of this thesis ensure the
offset removal by following the normalisation procedure. The sensor node is followed by

an analogue front end which blocks the DC bias of the microphone, amplifies the acoustic
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Figure 2.12: Hardware design flow (consisting of the microphone, an analogue front end and
nRF52 platform) for the acoustic wearable device to sense pulse sounds at the
wrist.

signal, and removes the undesirable frequency content from the signal to prevent anti-
aliasing at the ADC stage. Since any electronic noise entering the microphone is amplified
by the analogue front end, only electronic components with noise levels less than 10 dB
or more in comparison to the noise floor of the microphone are chosen for the wearable
design. The availability of multiple operational amplifiers in a single surface mount
package is utilised in the design to implement an amplifier and second-order low pass filter
without burdening the PCB area. The realisation of higher-order low pass filter allows the
use of a low sampling frequency in the ADC block, therefore, reducing the overall power
consumption of the device. The hardware platform uses the MCP6002 chip (Microchip
Technology Inc.) to implement the analogue front end of the wearable design. It operates
over a wide voltage range and consumes low supply current of 100 puA per amplifier.
The amplifier chip also provides a high power supply rejection ratio and common-mode
rejection ratio. The conditioned analogue signal is subsequently connected to a 12-bit
SAR ADC for its conversion to the digital domain. As discussed before, it is advisable to
use a single microcontroller chip which incorporates both the ADC and the transceiver
block in a single package to reduce the size constraints on the hardware. The wearable
design uses the nRF52 series SoC platform for signal conversion and transmission. The
data transmission is performed by utilising the Bluetooth low energy protocol available
on the SoC platform and using a 2.4 GHz chip antenna (Johanson Technology Inc.).
While the analogue front end consumes more PCB space in comparison to the nRF52
SoC package, it consumes less overall power as demonstrated in Table 2.2. The PCB space
can be further optimised by implementing the analogue front end in an ASIC, however,
it will involve high fabrication costs and is not suitable for hardware prototyping. Since
the sensor and the analogue front end operate at a duty cycle of 100%, a continuous
current of less than 0.5 mA is demanded from the battery. Depending on the sampling
frequency of the ADC and the clock of the wireless transmission, the battery has to
supply a maximum current of approximately 6.5 mA at any instance. Based on these
requirements, both the non-rechargeable (CR2032) and rechargeable (LiR2032) versions

of the 2032 battery size are suitable as the power source of the proposed wearable device.
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Table 2.2: Current consumption of different components of the hardware platform.

Block Name Component Name Peak Current
Sensor Microphone 0.210 mA
Voltage regulator 0.006 mA
Analogue front end Amplifier 0100 mA
Filter 0.100 mA
Reference voltage 0.027 mA
ADC 12-bit SAR ADC 0.700 mA
Wireless transmission  nRF52 transmitter 5.300 mA
Total — 6.443 mA

From the design perspective, the selection of the surface mount components for ev-
ery node of the wearable architecture allows them to be soldered on a PCB. Since the
hardware contains a mixed-signal design, the analogue and digital blocks are layout in
different regions of the PCB to minimise the noise interference. Also, middle layers of
the 4-layer PCB are completely grounded to ensure proper grounding of the circuit. The
hardware platform is implemented in two different PCBs that are connected through a
thin and flexible insulated cable. The first PCB only contains the battery and is placed
on the wrist side opposite to the radial artery. The microphone along with the analogue
front end and the nRF52 platform are soldered on the second PCB. This PCB is attached
to the radial artery to record the pulse sounds. The PCB is enclosed in a rectangular
enclosure as shown in Fig. 2.13. The overall weight of the final wireless prototype is 8
g, although note that this can be further optimised by using more sophisticated manu-
facturing processes. In addition, its size (27 x 20 mm) and shape are designed so that
it can be easily attached to the wrist using a 3M double-sided medical adhesive tape to

keep the sensor affix to the measuring site, for long-term usage.

s

.vv— (‘I')

Tech Lab

Figure 2.13: Wearable device used to acquire acoustic signals. The device consists of a MEMS
microphone sensor integrated with Bluetooth low energy transmission.
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3 Characterising the pulse sounds for

continuous heart rate monitoring

The work presented within this chapter is an edited version of research previously pub-
lished in:
P. Sharma, S. A. Imtiaz and E. Rodriguez-Villegas, “Acoustic Sensing as a
Novel Wearable Approach for Cardiac Monitoring at the Wrist,” Scientific Re-
ports, vol. 9, no. 1, pp. 1-13, 2019.

3.1 Introduction

The sensing method proposed in this thesis works on the principle that the periodic blood
flow in the radial artery causes rhythmic variations in the arterial diameter which pro-
duces corresponding vibrations at the skin surface. These vibrations introduce changes
in the surrounding air pressure which can be transferred to the diaphragm of the MEMS
microphone sensor embedded into the proposed wearable device. The conversion of pulse
vibrations into the acoustic signal can provide vital information about the cardiac activ-
ity and can be used to monitor cardiac parameters such as heart rate on a continuous
basis. Therefore, it is important to characterise the acoustic signal to establish its corre-
lation with the cardiac activity. The following sections discuss the temporal and spectral
characteristics of the acoustic signal to find the signal bandwidth and the optimal sensor
site for better signal-to-noise ratio (SNR). The effect of internal and external noise on
the signal characteristics have also been explored. Finally, a novel algorithm to monitor

the heart rate based on acoustic sensing of the radial artery is presented.

3.2 Characteristics of pulse sounds

The acoustic signal is recorded by attaching the proposed wearable device to the radial
artery using a double-sided medical adhesive tape. Since the characteristics of the pulse
sounds have not been reported before in the literature, the device incorporates a wider
bandwidth initially to avoid losing any information about the pulse sounds. The high-
pass filter and the low-pass filter in Fig. 2.12 are designed to have cut-off frequencies of
6 Hz and 500 Hz respectively. A higher bandwidth is chosen to include the frequencies

corresponding to the heart sounds. To avoid any aliasing in the signal, a sampling
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frequency of 2100 Hz (around 4 times of the bandwidth) is adopted at the ADC stage
to convert the data into digital domain with 12-bit resolution. The acoustic signal is

bundled into several data packets and is wirelessly transmitted to a smartphone.

3.2.1 Temporal characteristics

To study the temporal characteristics of the acoustic signal, the PPG signals from the
index finger are simultaneously recorded using a commercially available SOMNQOscreen
pulse oximeter [1]. As an illustration, the acoustic signal and the PPG signal recorded
from a subject are plotted together in Fig. 3.1 by removing any time delay between
the onset of pulse at wrist and finger to synchronise the corresponding peaks. It can
be observed that the morphology of the PPG signal looks quite similar to the arterial
pressure waveform in Fig. 2.2. The discussion on the arterial pressure waveform in Sec-
tion 2.1.2.1 explained that the pressure wave propagating through the circulatory system
is essentially a superposition of a forward and a backward travelling wave. While the
systolic peak represents the maximum pressure exerted by the ejected wave on the ar-
terial walls, the diastolic peak is formed by the superposition of incoming and reflected
pressure waves. Therefore, the systolic and diastolic peak in the arterial pressure wave-
form formed the two essential components of the pressure (or pulse) wave. Since the
strength of these components from within the radial artery are directly correlated with
the amplitude of the skin surface vibrations, the pulse wave components are indirectly
sensed by the microphone to produce corresponding peaks in the acoustic signal. The
comparison of the acoustic signal with the PPG signal in Fig. 3.1 suggests that the first

and second acoustic peak matches the systolic and diastolic component of the pulse wave
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Figure 3.1: Temporal characteristics of the acoustic signal with respect to the PPG signal.
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respectively. The higher pressure corresponding to the systolic peak in the pulse wave
produces a peak of higher amplitude as compared to the diastolic peak. The presence
of intermediate ripples in the acoustic signal are caused, amongst others, by noise of the
measuring electronics, electromagnetic interference, and environmental noise.

The dominant peaks in the acoustic signal are termed as S1 and S2 sounds, for the
reasons explained in the next section. The temporal correlation with the PPG signal
indicates that the heartbeats can be continuously monitored by measuring the S1-S1
or S2-S2 inter-beat intervals as shown in Fig. 3.1. The amplitude of the S1 sounds
for healthy subjects are always found to be greater than the S2 sounds. It can also be
observed that the amplitude of the S1 and S2 sounds does not remain constant over the
recording duration and are possibly modulated by the strength of the pressure wave.
In other words, the amplitude of the acoustic signal for an individual varies with the
blood pressure. However, the arterial elasticity, blood parameters, and the depth and
surrounding anatomy of the radial artery also affects the characteristics of the acoustic
signal. Since the temporal behaviour does not explain all the inherent features of the

acoustic signal, it is important to find its spectral characteristics as well.

3.2.2 Spectral characteristics

The acoustic signals recorded from different subjects does not necessarily have the same
polarity of signal oscillations. In Fig. 3.1, the S1 and S2 sounds transitioned from a
positive lobe to a negative lobe around the zero-crossing of the signal. On the contrary,
the acoustic signal in Fig. 3.2(I) transitions in an opposite direction from a negative lobe
to a positive lobe. In order to characterise the spectral features of the acoustic signal, the
PPG waveform is simultaneously plotted. As anticipated, a slight time delay between the
onset of the pulse at the radial artery and the index finger can be observed. This time
delay is a function of the pulse wave velocity and the arterial length, and is empirically
found to be nearly constant over the length of the recording. The synchronisation of the
acoustic and PPG pulse waveforms is achieved by overlapping the nearest systolic peaks
by removing the time delay, as shown in Fig. 3.2(11).

As discussed before, the pulse wave originating from the heart- as a result of the
opening and closing of the heart valves, propagate as a mechanical wave along the arterial
branches of the circulatory system. Although negligible, the heart sounds also transmit
an acoustic wave through the body [2]. Since these acoustic features are superimposed
on the vessel vibrations caused by the mechanical constriction and dilation of the radial
artery, a similar type of skin surface modulation is obtained. The PPG bandwidth of
less than 10 Hz [3] suggests that the PPG signal only measures the pressure waveform
and remain silent to the acoustic features of the pulse wave. The spectral analysis of the
acoustic signal, on the other hand, demonstrates that the pulse sounds also contain the

acoustic component of the pulse wave.
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Figure 3.2: Characterisation of the acoustic signal: (I) Pulse waveform recorded by placing
the miniaturised device on the middle position of the radial artery at wrist. (II)
Comparison of acoustic and PPG waveforms to synchronise both the signals by
matching the nearest systolic peaks. PPG data was recorded using SOMNOscreen
pulse oximeter [1]. (III) Joint time-frequency analysis of the acoustic signal obtained
using STFT. The colour intensity of the grids demonstrates their relative power.
(IV) Frequency response (FFT) of the acoustic signal.
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The frequency response of the acoustic signal, sampled at 2100 Hz, is obtained using
the Fast-Fourier transform (FFT). It can be observed that the frequency content of the
acoustic signal in Fig. 3.2(IV) mainly lies below 25 Hz and also consists of the audible
frequencies. The spectral content of the acoustic signal is significantly smaller than the
bandwidth of the heart sounds which usually lie between 20 and 150 Hz for a normal
subject [4]. The reduction in the bandwidth is mainly attributed to the fact that the
travel of the pulse wave from the source of the sounds (i.e. the heart) to the measurement
site (i.e. the radial artery) causes an attenuation of the high frequency components. The
attenuation results from a series of non-linear transformations as the pulse wave travels
through multiple locations of the body [5].

A better spectral analysis in the joint time-frequency domain can be obtained by the
short-time Fourier transform (STFT). The STEFT analysis allows to understand the power
distribution among different components of the signal by dividing the time-frequency
space into several rectangular grids. Since the maximum time-frequency resolution of a
rectangular grid is restricted by the Heisenberg’s uncertainty principle, a suitable time
and frequency width is chosen for a better time-frequency localisation of the signal. The
STFT of the acoustic signal is obtained using a Blackman window of 256 samples and 50%
overlap between consecutive frames. The resultant grids in Fig. 3.2(IIT) demonstrates
the power distribution of the signal in the joint time-frequency space. The intensity of the
power grids is represented by the colour bar where the yellow and blue colour denote the
maximum and minimum power density respectively. The STFT analysis of the acoustic
signal, therefore, suggests that the signal power is mainly concentrated in the S1 and S2
sounds, with S2 sounds carrying a relatively lower energy. While the dominant energies
of the S1 and S2 sounds in STFT are mainly concentrated in the lower frequencies, a
portion of the energy content also lie in the audible range as determined by the FFT
analysis. Therefore, the spectral analysis reveals that the acoustic signal recorded from
the radial artery also contain audible sounds. Since the heart sounds are primarily formed
of the S1 and S2 sounds (also known as the fundamental heart sounds), the two dominant
peaks of the acoustic signal are also termed as S1 and S2 sounds in this thesis.

The observation about the spectral characteristics of the pulse sounds are tested over
a database of 20 adult subjects for generalisation purposes. As an illustration, four dif-
ferent morphology of the pulse sounds are plotted in Fig. 3.3. Since the heart rate
and inter-beat intervals are inversely correlated, the number of S1 and S2 sounds in a
5-seconds window changes with the corresponding heart rate of the subject. The FFT
and STFT analysis reveals similar observations about the signal bandwidth and contain
frequencies in the audible range. Therefore, it can be concluded that the acoustic signal
recorded from the radial artery at the wrist is essentially a combination of the acoustic
features superimposed on the pulse wave component propagated from the heart. While

the different pulse shapes and features in the subjects can be attributed to different ar-
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Figure 3.3: Spectral characteristics of the acoustic signals with different morphology and recorded
from different subjects.

terial parameters and functioning of the cardiovascular system, the signal characteristics

and its SNR are also dependent on the sensor location at the wrist.

3.3 Optimal sensor site

The pulse on the radial artery can be sensed at three locations: distal, middle and
proximal. The middle position as shown in Fig. 2.4 can be easily located in front of the
radial styloid process (protruded bone near the wrist crease). The proximal and distal
positions are 1-2 cm on either sides of the middle position, towards the elbow and the wrist
crease respectively. To determine the optimal auscultation site, a total of nine acoustic

recordings, three from each location for every subject, are recorded from a total of 10
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subjects to analyse the power spectrum at the different auscultation sites. Note that,
although these recordings would be affected by the characteristics of the recording setup,
in the experiment the environmental noise and motion artefacts are kept to a minimum.
The power spectral density (PSD) of the acoustic signal is calculated by segmenting the
signal into window frames of 1024 samples with a 50 % overlap and applying Fast Fourier
Transform (FFT) to every frame. The FFT coefficients thus obtained are averaged to
estimate the PSD of an acoustic recording in the range of 0 to 250 Hz. The PSDs of
the three recordings for every location, and for every subject are averaged to compare
the SNR on the different auscultation sites. For illustration, the PSD of the signal
obtained by completely blocking the microphone port is also plotted in Fig. 3.4. The
latter is an indication of the noise inherent to the sensing system itself in absence of
any other sounds. A close correlation between the power spectrum of the signals at
different locations can be observed. The anatomy of the radial artery suggests that the
vessel depth at the middle position is relatively lower than in the other two sites [6].
Therefore, the operations of vasoconstriction and vasodilatation produces skin surface
vibrations with higher amplitudes in the middle location due to a lower attenuation by
the surrounding tissues and muscles. This, in turn, results in a higher SNR. The same
reasoning can be followed to compare the PSDs of the distal and proximal positions. Due
to the ease of locating the middle position, and the insignificant difference between the
PSDs, all the experiments in this thesis records the acoustic signal with the microphone
port placed on the middle position of the radial artery. While the middle position proves
to be a better choice for the sensor attachment, the signal characteristics are also affected

by the noisy artefacts both internal and external to the body.

3.4 Noise artefacts

The acoustic sensing of the heart sounds using a stethoscope is characterised in a con-
trolled environment and involve human processing to identify the events of interest. Such
constraints cannot be imposed on a wearable technology that is designed to integrate
easily in a user’s lifestyle. Therefore, the tolerance to noise artefacts is essential for a re-
liable operation of the device. Since the primary signal can be affected by different noise
sources, the characteristics of the signal originating from such sources must be studied to
remove them automatically without any human intervention. The removal of such arte-
facts ensures a better representation of the true signal. The microphone sensor in the
proposed wearable device can pickup airborne sounds from internal or external locations
of the body. While the noise originating from the internal location of the body is intrinsic
to the region under observation, the external noise mainly arise from the surrounding
environment. The following sections discuss the interference from these noise sources by
recording the acoustic signal in the presence and absence of the noise. The comparison

is established by calculating the PSD of the acoustic signal in both the scenarios. All
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Figure 3.4: PSDs of the acoustic signal obtained with the microphone placed on distal, middle
and proximal site. For illustration, the PSD of the noise obtained from the signal
recorded by completely blocking the microphone port is also plotted.

the recordings are digitised at a sampling frequency of 2100 Hz and an ADC resolution
of 12-bits.

3.4.1 Noise internal to the wrist

Over the chest, the heart sounds suffer a heavy interference from the lung sounds. How-
ever, the anatomy of the wrist does not suggest the presence of a different sound source
in the distal, middle or proximal region of the radial artery. To characterise the noise
source internal to the wrist, the sensor is placed on the opposite side of the wrist to
avoid sensing an acoustic wave or pulse wave from the blood flow in the radial or ulnar
artery. The PSD of the acoustic signals recorded from 5 subjects for 1 minute duration
are averaged to plot the frequency response of the internal noise in Fig. 3.5. In the
experiment, the noise from motion artefacts and the surrounding environment are kept
at a minimum for an accurate noise characterisation.

To establish a comparison, the noise PSD for the acoustic signal recorded by sealing the
bottom port of the microphone is also calculated. Since the microphone in such scenario
does not sense any external pressure variations, the noise PSD indicates the noise intrinsic
to the sensing system itself. This noise primarily generated by the electronic circuitry
is a combination of the amplifier noise, ADC noise and the wireless transmission. To
minimise the system noise, the proposed wearable device only included the electronic

components with noise levels less than 10 dB or more in comparison to the noise floor
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of the microphone. It can be observed that the frequency response of the internal noise
in Fig. 3.5 resembles closely with the reference. The 50 Hz noise and its harmonics are
possibly picked up from the environment. The close similarity between the PSDs indicate
that the noise internal to the wrist is negligible. Therefore, the acoustic signals recorded
from the radial artery only contain the physiological information about the pulse sounds

in addition to the noise intrinsic to the sensing system.

Power Spectral Density (dB)

0 50 100 150 200 250
Frequency (Hz)

Figure 3.5: PSD of the acoustic signal obtained with the microphone placed on the opposite side
of the wrist. The noise PSD corresponds to the sealed microphone port.

3.4.2 Noise due to the motion artefacts

A major challenge with the wearable technology is their tolerance to the motion artefacts.
Myo-acoustic noise generated by the movement of the muscles can introduce significant
amplitudes in the signal of interest and can possibly lead to a failure of the system. In
case of the proposed wearable device, the acoustic signal can be reliably obtained when
the wrist with attached sensor is relaxed on a table top without any interference from
the hand movements. However, such movements cannot be restricted for a long-term
monitoring of the subject and their interference must be addressed either in the sensing
system itself or at the post-processing stage. The hand movements that can affect the
characteristics of the acoustic signal at the wrist are shown in Fig. 3.6. These movements
as described below are studied in isolation by recording the pulse sounds in presence of

only one type of artefact at a time.

1. Finger movement - The fingers are moved in three ways: swinging in the left-right
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direction, bending in the up-down direction, and moving in an arbitrary way while

keeping the wrist, elbow and shoulder stationary.

2. Wrist movement - The wrist is rotated in either a clockwise or an anticlockwise

direction while keeping the fingers, elbow and shoulder stationary.

3. Elbow Movement - The elbow is stretched and bent while keeping the fingers, wrist

and shoulder stationary.

4. Shoulder movement - The shoulder joint is rotated in a circular manner while

keeping the fingers, wrist and elbow stationary.

5. Arbitrary movement - The arbitrary motion involves all the hand movements listed

above in a random way.

Figure 3.6: Different types of hand movements that can introduce significant noise in the record-
ing setup.

To characterise the noise introduced due to the motion artefacts, seven recordings
(three for fingers and one for every other movement), each of 1 minute duration, are
recorded from 5 subjects. During the whole experiment, the acoustic sensor is placed
on the middle position of the radial artery and records the acoustic signal in presence of
one movement at a time. The subjects are asked to perform a specific type of movement

(from the list above) for the complete recording while keeping the other parts of the hand
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stationary. The frequency response for a particular movement is determined by averaging
its PSDs across all the subjects.

The power spectrum corresponding to different types of finger movements is compared
against the clean acoustic signal in Fig. 3.7. The representation of PSD over an absolute
scale is made for a better comparison. It can be observed that the finger movements
generate artefacts in the same spectrum and interferes heavily with the pulse sounds. This
mainly happens because the finger movements create tension in the muscles surrounding
the radial artery. The stretch and release of such muscular tension causes significant
variation in the surrounding air pressure at the skin surface. These airborne vibrations
are picked up by the microphone sensor to introduce large amplitudes in the acoustic
signal. Since the bandwidth of these artefacts is similar to that of the pulse sounds, the
hardware design cannot include a band-pass filter to reduce the effect of finger movements
on the acoustic signal. Instead, these artefacts are dealt in the signal processing stage by

identifying features to separate the artefacts from the signal of interest.
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Figure 3.7: Frequency response of artefacts introduced due to different finger movements.

The artefacts generated by the wrist, elbow and shoulder movements are studied sim-
ilarly. The frequency response plotted in Fig. 3.8 shows that the effect of elbow and
shoulder movements on the pulse sounds is minimal. The reasoning behind such charac-
teristics is that the bending of the elbow or the rotation of the shoulder does not affect the
region of sensor attachment either internally or externally in a significant manner. This
is not true for the wrist or the arbitrary motion which directly correlates with the muscle
movement and therefore interferes heavily with the pulse sounds. The use of high-pass

filtering with a low cut-off frequency in the signal processing can possibly attenuate the
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effect of wrist movements. However, the inclusion of feature recognition to identify the

corrupted sections of the acoustic signal is necessary to extract the cardiac parameters

accurately.
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Figure 3.8: Frequency response of artefacts introduced due to wrist, elbow, shoulder and arbi-
trary movements.

3.4.3 Environmental noise

The surrounding environment is another source of noise in the recording setup. To
characterise the environmental noise, the pulse sounds are recorded in the presence of
vocal speech and background music. Following data acquisition protocol is adopted to
study the effect of speech and music on the pulse recordings. The subjects are asked to

minimise the motion artefacts during the whole experiment.

1. Record the pulse sounds for 1 minute duration with minimal environment noise.

This is used as a reference signal.

2. Record the pulse sounds for 1 minute duration in the presence of normal vocal
speech. During the recording, the subject read a piece of text towards the micro-

phone at a distance of 10 cm from the wearable device.
3. Repeat the experiment in (2) at loud vocal speech reading the same piece of text.

4. Record the pulse sounds for 1 minute duration in the presence of loud music. The

music is played at a distance of 10 cm from the wearable device.
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The power spectrum determined for these recordings are plotted in Fig. 3.9. While
the PSDs match closely within the bandwidth of the pulse sounds (< 25 Hz), the speech
and music signals also contain power in higher frequencies. As expected, the signal with
loud speech carry higher PSD amplitudes than the signal with normal speech volume.
The envelopes for the speech spectrum resemble in shape because the subject read the
same piece of text. Since these amplitudes mainly lie in frequencies above 100 Hz, the
interference from the environmental noise can be attenuated significantly by using a low

pass filter in the post-processing of the signal.
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Figure 3.9: PSDs of the acoustic signal recorded in the presence of vocal speech (normal and
loud volume) and loud music.

3.4.4 Summary

Different noise sources that can interfere with the pulse sounds have been considered.
The noise internal to the body is mainly introduced by the motion artefacts including
the finger, wrist, elbow and shoulder movements. The finger and wrist movements signifi-
cantly corrupts the acoustic signal and require post-processing of the signal to identify the
corrupted regions. The interference from the elbow and shoulder movements, however,
are found to be negligible. The environmental noise from the external sources mainly
arises from the vocal speech and can be attenuated by simply adopting a low pass filter.
Therefore, the inclusion of filtering and feature recognition blocks in the signal process-
ing are essential in minimising the effect of the artefacts and using the pulse sounds as a
novel physiological signal to extract biomarkers (such as heart rate) indicative of cardiac

performance.
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3.5 An algorithm to extract heart rate from pulse sounds

In addition to proving the feasibility of obtaining the cardiac signal from the wrist, this
thesis also investigates the possibility of automatically extracting the most fundamental
biomarker, namely heart rate, from the acoustic signal. Heart rate monitoring, among
other vital signs, is an important application of recording the pulse at the wrist. While
the techniques discussed in Section 2.2 provide useful physiological information to extract
the heartbeat, they suffer from several issues, particularly with the constraints in terms
of device size and shape, power budget for long-term monitoring, reliability and accuracy
concerns posed by the wearable technology. The sensing of cardiac rhythms from the
radial artery using a miniaturised, low power microphone sensor does not require an
active input and can allow continuous heart rate monitoring over long periods. Since this
is the first time such a signal has been sensed via means of wearable acoustic sensing, a
novel algorithm to extract heart rate from the pulse sounds need to be developed. The
following sections discuss different stages of the proposed algorithm and establishes a

comparison with the PPG-based heart rate monitoring.

3.5.1 Algorithmic blocks

An overview of the proposed algorithm to automatically determine the heart rate by
extracting the S1 sounds from the acoustic pulse signal is shown in Fig. 3.10. The
algorithm mainly consists of 3 stages: 1- The pre-processing blocks reduce contamination
of the signal caused by noisy artefacts, in order to improve the SNR for further analysis;
2- The PSD of the signal is calculated in the following stage using STFT to extract the
S1 sounds; 3- Finally, the peaks corresponding to these sounds are detected to provide a
time index by constructing a squared energy envelope for HR determination. A pseudo-
code for the proposed algorithm is also provided in Table 3.1. The following sections
explain the details of the different blocks.

Pre-Processing S1 Sound Extraction Peak Detection

a. Low Pass Filter a. Squared Energy

a. PSD Estimation

using STFT
Acoustic Analysis b. Moving
Pulse > b. Downsampling > Average Filter - I.ll{eatrt
Signal ate

b. $1 Sound c. Thresholding

c. K-Means Extraction using
Method to Remove Grid Selection Rzl‘;?lrlf;:;ﬂv:;:;s
Artifacts

Figure 3.10: Block diagram of the proposed algorithm to determine HR from the acoustic signal
by extracting S1 sounds using the STFT analysis.
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3.5.2 Acoustic data pre-processing

The acoustic signal sensed at the wrist contains not just the signal of interest but also
other signals that are picked up by the electronic system, such as motion artefacts and
sounds from the surrounding environment. In order to achieve a better SNR by reduc-
ing the effects of the latter, the acoustic signal, denoted by time-series y is processed
into rectangular windows of 5 seconds duration with 1 second of overlap between suc-
cessive segments. The window length is chosen to include enough number of heart beats
corresponding to an HR in a range of 40 to 200 beats per minute (bpm).

Most of the frequency content of the acoustic signal is contained below 25 Hz. Because
of this, undesired higher frequency interference/noise is reduced by using a fifth-order
Butterworth low-pass filter with a cut-off frequency of 25 Hz. The acoustic signal origi-
nally sampled at 2100 Hz (f5) possesses frequencies well below the corresponding Nyquist
frequency after the filtering process. This redundant information is therefore removed
by downsampling the signal by a factor of 10 reducing the sampling frequency to 210 Hz
(fa), without introducing any aliasing in the signal.

Since the acoustic signals for the HR determination are continuously recorded in a
single session of 30 minutes duration, the subjects could move their wrist/ fingers during
the data acquisition. As discussed before, such movements introduce acoustic vibrations
at the skin surface that are sensed by the microphone to introduce large amplitudes in
the signal. The frequencies corresponding to these artefacts can lie within the bandwidth
of the acoustic pulse signal and a simple band-pass filtering cannot eliminate their in-
terference with the pulse sounds. However, the effect of such movements usually lies in
smaller time frames. Because of this, K-means clustering method [7] with two classes,
C1 and C2, is used in the algorithm to identify the parts of the signal which are sig-
nificantly corrupted by them. The method initially divides the signal blocks, y, of 5

Table 3.1: Pseudo-code algorithm for estimating HR from acoustic pulse signal. The symbol notations are referenced in the main text.

1. Initial pre-processing of the signal. 2. S1 sound extraction from acoustic pulse signal.
e Acoustic pulse signal: y, sampled at fs = 2100 Hz. e Joint time-frequency analysis: PSD = STFT(y).
e Low-pass filtering: LPF(y), with w, = 25 Hz. e Maximum power, Pmax = max(PSD).
e Downsampling operation: [10(y), fg = 210 Hz. o Extract grids with P > Ppax - P, where

. P€[5,10]dB such that me[4,17].
e K-means method: Form two clusters by scoring the

signal parts y,, using S, = {0,1} for ne[1,5]. o Identify S1 regions: (tsa-0.15,tea-+0.15), ac[1,m].
3. Peak detection from extracted S1 sounds. 4. Find the continuous average HR.
e Squared energy: y2. e Find the time indexes for maximum of energy peaks:
Tm = Ep).
e Averaging filter: 132 y2. m = max(Em)
Estimate the HR: HR = %
e Artefact elimination using thresholds: W, and A,. ¢ Estimate the HR (e ATm) /4
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seconds duration, into five equal parts, each of 1 second duration, and denoted by y,,, n
€ [1,5]. For every part, the maximum amplitude (A,q4,) and the standard deviation (o)
are determined to reflect the signal characteristics as  and y-coordinates respectively.
These feature coordinates are fed to the K-means method to cluster the five signal parts
into two different classes based on the similarity of the features. The method proceeds
by choosing two cluster centroids, O1 and 02, and groups the features into two classes
by iteratively updating the centroid coordinates, (zo1,y01) and (zo2, yo2), to minimise
the feature points-to-cluster-centroid distances. Once the iterative process converges,
the horizontal change, Ax, between the centroids is determined, and the class C' with
a lower standard deviation is found. A change of less than 50% in Ax reflects a close
correspondence between the maximum amplitudes of different signal parts, and indicates
no significant corruption by the motion artefacts. Since the artefacts exhibit a higher
standard deviation than the acoustic pulse signal, the class with a lower y-coordinate is
chosen in cases where the change in Az is more than 50%. Depending on the comparison
between these parameters, in equation (3.1), the signal parts y,, are scored by assigning
Sp, n € [1,5] a value of either 1 or 0. The signal parts with a score of 1 are ignored from

the further processing.
Ap — |§701 — 202
min(zo1,x02)
C1, if yo1 <yoo
C2, if yo1 > yo2

1VneC2 . (3.1)
if Az>05& C=C1
0VneCl
Sn = 1VneCl
ne€ll,2,3,4,5] if Ax>05& C=0C2
0OV ne(C2
{o if Az <05

Fig. 3.11 shows different pre-processing stages for a 5 seconds block of signal, a part
of which is significantly corrupted by the motion artefacts. It can be seen how the pre-
processing identifies the corrupted region and successfully ignores the first part of the

signal from the further processing.

3.5.3 S1 sound extraction

An HR in a range of 40 to 200 bpm corresponds to a beat-to-beat interval of 1500 to
300 milliseconds respectively. The number of S1 sounds in a 5 seconds window therefore
can vary from 4 to 17. The measured PSD of the acoustic pulse signal in Section 3.2.2
showed that the frequencies corresponding to the S1 sounds, in the joint time-frequency

analysis, carried higher power than other parts of the signal. This property of the signal
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Figure 3.11: Pre-processing of the acoustic signal sensed by the system: (a) Original signal.
(b) Low-pass filtered and downsampled signal to remove higher frequency compo-
nents and redundant information respectively. (c) Clustering using the K-means
method to identify signal segments corrupted with motion artefacts. Symbol + and
O represents the features and cluster centroids respectively. (d) Signal segment
corrupted with motion artefact (due to wrist/ finger movement) removed from the
downsampled signal.

is utilised to extract these sounds in the time-domain and process them further to find
the HR. But it is also important to select a proper window length for calculating the
PSD of the signal, as a better time resolution allows the extraction of the S1 waveform
without interfering much with the nearby signal transitions.

The power spectrum of the acoustic signal with a downsampled frequency of 210 Hz
is calculated in the algorithm using a Blackman window of 32 samples (approximately

150 milliseconds) with an overlap of 50% between successive frames. The chosen time
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window, as shown in Fig. 3.12(b), provides the required time resolution to extract the
S1 waveform by segmenting the time axis into a relatively higher number of grids. The
colour intensity of these grids in the time-frequency space indicates their corresponding
contribution to the overall power of the signal. The grid with the maximum power, Py,
is found and all the grids with power not differing more than 5 dB with respect to Ppa.
are also selected. It is understood that the beat-to-beat interval cannot be lower than
300 milliseconds [4] therefore, all the grids with a mutual separation within this time

period supposedly belong to a single S1 sound, and hence they are all grouped together,

(d)
20 . \/\

-1
0 0.5 1 1.5 2 25 3 35 4 4.5 5
Time(s)

Figure 3.12: S1 sounds extraction from a different pre-processed signal with no corrupted seg-
ment: (a) Acoustic signal after initial low-pass filtering, downsampling and K-
means application. (b) PSD of the signal obtained using STFT to extract S1
sounds. (c) Rectangular windows representing the regions of interest. (d) S1
sounds extracted by adding a tolerance of 150 milliseconds on both sides of the
rectangular windows.

133



as shown by rectangular windows in Fig. 3.12(c). For m of such groupings, the starting
and end time points, tg, and teq, where a € [1,m], are noted. The threshold difference
of 5 dB (P,) is increased in steps of 1 dB, up to a maximum of 10 dB, to limit these m
number of groupings for a 5 seconds window between 4 and 17. A tolerance window of
150 milliseconds, observed empirically, is added to ts, and t., to enlarge the region of
interest in the time-domain, and ensure that the S1 waveform is completely extracted.
Only the signal corresponding to the group timings of (¢s, — 0.15,teq + 0.15) seconds is
retained, whereas the other parts of the signal are zeroed for the further processing as
shown in Fig. 3.12(d).

3.5.4 Peak detection
3.5.4.1 Constructing energy envelope of the extracted S1 sounds

Although a number of peak detection methods using the joint time-frequency analysis
exist [8], [9], the power spectrum of the acoustic signal obtained using STFT provides an
easy way to detect the S1 sounds as the peaks. However, it is important to determine a
single time-index for every S1 sound in the signal, so that their mutual time differences
can be utilised to calculate the HR. To obtain the peak-indexes, every sample of the signal
is first squared so that the positive and the negative waveform of the S1 sounds can be
transformed to only positive amplitudes above the baseline as shown in Fig. 3.13(a).
The squaring process provides a nonlinear amplification of the signal by emphasising
the higher frequencies corresponding to the S1 sounds, whilst attenuating the nearby
transitions with lower energies.

A moving average filter is subsequently used to integrate the squared energy waveform.
The width of the integration window is an important parameter to consider and should
ideally be equal to the maximum time duration of the S1 sound in the signal. A window
with a larger width can combine the energy of the S1 sound with the energy of nearby
signal transitions, whereas a narrower window can produce multiple energy envelopes for
the same sound [10]. For a signal with a sampling frequency of 210 samples/second, the
filter averages the squared energy waveform over a window of 32 samples. The squared
energy followed by an averaging process therefore produces an energy peak corresponding
to the S1 sound, as shown in Fig. 3.13(b) which can be easily processed to find the

corresponding time index.

3.5.4.2 Artefact identification and elimination

In the pre-processing stage of the proposed algorithm, there are some instances when
the artefacts introduced by the wrist or finger movements significantly corrupt some sec-
tions of the acoustic signal and are not detected by the K-means method. This usually

happens when the maximum amplitude and standard deviation of the signal corrupted
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Figure 3.13: Peak detection in a clean signal: (a) Squared energy of the S1 sound waveform
in Fig. 3.12(d). (b) Energy peaks obtained using the moving average filter. x
represent the time indexes corresponding to the S1 sounds.

with artefacts are close to the features of cleaner sections in a 5 seconds window. Since
these artefacts may have significant power, in comparison to the S1 sounds, the STFT
analysis allows such signal transitions to appear as well in the further analysis. The
energy envelopes of such sections corrupted with artefacts can introduce misleading en-
ergy peaks, therefore, affecting the accurate determination of time indexes. To avoid the
misclassification of an artefact as the S1 sound, features such as time width and ampli-
tude of every energy peak, are determined in the algorithm. For the acoustic signal, the
total number of 5 seconds blocks is defined as L, where y,[n], z € [1, L] represents each
signal block. Assuming that the parameter [, provides the total count of energy peaks in
y,[n], the width and amplitude features of every energy peak E,, are denoted by w,, and
Qm, respectively, where 1 < m < [,. The thresholds W, and A, to process the segment
under consideration are determined using equation (3.2) and equation (3.3) respectively,
by computing the average of the time widths and amplitudes of all the energy peaks
present in the last three signal blocks. The initial value of these thresholds are deter-
mined by processing the first six data blocks (30 seconds of the signal) and analysing the

corresponding features of the energy peaks.

loe lam
S Win + S Won + o Wi
lz—l + lz—2 + lZ—S

W, = (3.2)

I,
A me 1 m+Zm 1a’m Zm:gla
. =

3.3
lzfl + lz72 + lzf?) ( )

Since the characteristics of the energy peaks corresponding to the S1 waveforms are
continuously computed, the thresholds automatically adapt to the changing behaviour
of the data, i.e. are not static in value. With the thresholds W, and A, calculated for
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the segment under consideration, the following criteria filter out the energy peaks from

the further processing;:

1. The energy peaks F,, in Fig. 3.14(c) are clipped using an amplitude threshold
equal to (0.25 x A,). All the data points above this threshold are retained, while

rest of the envelope is zeroed.

2. The thresholding procedure produces redundant peaks as shown in Fig. 3.14(d)

which should be filtered out to avoid an incorrect determination of time indexes.

The width W, evaluated for the current segment is utilised in equation (3.4) to re-

T T (a)
=
= 0
1 1 1 1 1 1 1 1 1
0 05 1 1.5 2 25 3 4 4.5 5
1 T T T T T T T T T
. (b)
il il N\ I
0 A Af\l M. 1 1 A
0 0.5 1 15 2 25 3 35 4 4.5 5
1 T T T T T T T
P (c)
do.s- /L‘\/\\A /\ -
0 1 1 1 1
0 0.5 1 1.5 2 2.5 3 4 4.5 5
1 T T T T T T T T
P (d)
I A AN AL |
0 1 N 1 1 1 m 1 1
0 0.5 1 15 2 2.5 3 3. 4 4.5 5
1 T T T T T T T T (e)
= n E
A AL
0 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 3. 4 4.5 5

Time(s)

Figure 3.14: Peak detection in a corrupted signal: (a) Input acoustic signal corrupted with
motion artefacts (introduced by wrist/ finger movements). (b) Squared energy
of the signal obtained after PSD analysis. The redundant peaks due to the motion
artefacts in systolic and diastolic phases of the cardiac cycle can be observed. (c)

Energy envelope obtained using the moving average filter.

(d) Thresholding of

energy peaks to remove envelopes corresponding to the motion artefacts. (e) Time
indexes of energy peaks corresponding to S1 sound waveforms in the signal. This
shows how the algorithm successfully distinguishes between motion artefacts and

S1 waveforms.
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move the unnecessary peaks. The resultant energy peaks thus obtained correspond

to the S1 sounds in the signal.

VvV me[1,1,]

B Accept, if 0.75 x W, < wp, <1.25 x W, (3.4)
" Reject, otherwise

3. Finally, all the time indexes (also referred as HR indexes) corresponding to the
maximum of the energy peaks, as indicated by * in Fig. 3.14(e), are noted. These
time locations and the number of energy peaks after the artefact removal procedure

are defined as T), (in seconds) and ¢, respectively, where 1 < m <t,.

The time indexes obtained after processing the signal block under consideration can
be utilised to determine the beat-to-beat interval, AT in equation (3.5). The HR is cal-
culated every (1/4)™ second by averaging the beat-to-beat time intervals corresponding

to the last 4 heart beats and multiplying it by 60 as follows:

vV me[l,t, —1]

A71m = dm+1 — Tm (35)
60

HR = —f—
(X m=1 ATn)/4

3.5.5 Subjects and experimental protocol

Acoustic signals to test the proposed algorithm are recorded from 12 healthy subjects
aged 19-48 by placing the new miniature, battery-operated wearable device over the
radial artery. The sensor attachment, over an area equal to the size of the sensor (27 x
20 millimetres), does not require any cleaning process. The data is recorded only through
contact sensing without applying any external pressure on the device. The signals are
sampled at a frequency of 2100 Hz and wirelessly transmitted to a nearby base station
(a smartphone). The PPG signals from the index finger are simultaneously recorded
using a commercially available SOMNOscreen pulse oximeter [1]. The SOMNOscreen
monitor also provides an estimate of the HR every (1/4)" second. The monitor uses a
methodology to determine the HR for which the details are not publicly available. A
total of 6 recordings, each of 5 minutes duration are recorded from every subject. All
the recordings are collected in an uncontrolled environment, but the subjects are asked
to sit and relax on a chair. Since the recordings are performed for a long duration, the
subjects could move their wrist and fingers, as and when required. The synchronisation
of the data from both the sensors, which is critical to evaluate the performance of the

proposed system, is carried out by matching the nearest systolic peaks.
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3.5.6 Results

In order to assess the performance of the proposed method, the algorithm results are
compared with other state-of-the-art PPG-based devices, for a total of 12 subjects. The
ground truth HR values (HR-PPG) are obtained using the FDA approved, and clinically
used SOMNOscreen system [1]. The output from the processing of the acoustic pulse
signal (APS) are regarded as the estimated HR values (HR-APS). As an illustration,
the estimated and ground truth HR wvalues corresponding to 6 recordings, each of 5
minutes duration for one of the subjects, are plotted simultaneously with upper and lower
bounds of 5% respectively with respect to HR-PPG, in Fig. 3.15(a). The first computed
performance metric, shown in Fig. 3.15(b), is the Bland-Altman plot [11]. This plot
compares the difference between the estimated and ground truth HR values with respect
to their corresponding mean. The circled data points in Fig. 3.15(b) indicate the HR
differences at different HR averages and their diameter corresponds to the number of
points coinciding on the same location. The bias p is calculated by averaging all the HR
differences, whereas the limits of agreement (LOA) are obtained by computing (442 x o)
respectively, where o is the standard deviation of the HR differences. While the bias for
this comparison is found to be nearly zero, LOA indicated a variation of less than 1 bpm
for more than 95% of the data points. As a second performance metric, the line of best
fit between the estimated and ground truth HR values is also determined, to understand
the degree of similarity using Pearson correlation. The R? and root-mean-square-error
(RMSE) values depict the corresponding measures of fitness of line to the data. A higher
value of R? and a lower value of RMSE represents a better fit. For the scatter plot in
Fig. 3.15(c), the fitted line with equation: y = 0.9958 z + 0.2512 is obtained, where
x indicates the ground truth HR value, and y indicates the associated estimate. The
Pearson correlation is found to be 0.996 with corresponding R? and RMSE values of
0.992 and 0.397 respectively.

A similar analysis is repeated for the complete dataset of 12 subjects, where a total
of 6 recordings, each of 5 minutes duration are recorded from every subject. The Bland-
Altman comparison and the line of best fit thus obtained are plotted in Fig. 3.16. A
near zero bias and LOA of [-1.68,1.69] bpm suggests a narrow difference between the
estimated and ground truth HR values over the whole database. The Pearson correlation
is approximated to 0.998 with an equation for the line of best fit as: y = 1.0004x - 0.0266.
The corresponding R? and RMSE values are 0.997 and 0.861 respectively.

A further evaluation of the proposed method is obtained by computing the mean abso-
lute error (MAE) and the mean absolute error percentage (MAEP) as defined in equation
(3.6) and equation (3.7) respectively, where HR4(7) is the estimated HR from the acous-
tic pulse signal and HRyye(7) is the ground truth HR from the SOMNOscreen monitor at
the 7" index in a total of N values. MAE as an evaluation index provides an estimate of

the deviation across the whole dataset whereas MAEP indicates the percentage of error
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Figure 3.15: Results obtained for one of the subjects: (a) HR comparison between the esti-
mated output (HR-APS) and reference output (HR-PPG) with upper and lower
HR bounds of £ 5% respectively. (b) Bland-Altman analysis with more than 95%
of HR differences lying within LOAs, defined by (u £+ 2 x o). (c) Line of best fit
between the estimated and ground truth HR wvalues. The R? and RMSE wvalue,
a measure of fitness of line to the data, were 0.992 and 0.397 respectively. The
Pearson correlation was 0.996.

in the HR estimation. Along with these performance metrics, the standard deviation (o)

and Pearson correlation (PC) are also determined to understand the degree of agreement

between the corresponding HR outputs. The accuracy of the method is evaluated by cal-
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Results obtained for the complete dataset: (a) Bland-Altman analysis of the HR
comparisons for all the subjects. (b) Line of best fit between the estimated and
ground truth HR values for all the subjects. The R?> and RMSE value are 0.997
and 0.861 respectively. The Pearson correlation is 0.998.

culating the percentage of HR values obtained from the acoustic pulse signal and lying
within £5% of the SOMNOscreen output.
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Figure 3.17: Variation of HR in individual subjects. HR-STD: standard deviation of the range;
HR-MIN: minimum value of the range; HR-MEAN: mean value of the range;
HR-MAX: mazimum value of the range; HR-RMS: root-mean-square value of the
range.

N . .
MAEP = %2 |HRE“§%{”§;”“(Z)| x 100 (3.7)

Table 3.2 lists the performance metrics of the proposed method for all of the 12 subjects.
An overall accuracy of 98.78% with a mean absolute error and a standard deviation of 0.28
and 0.86 bpm respectively, are obtained. Fig. 3.17 plots the HR variations in individual
subjects including the standard deviation (HR-STD), minimum (HR-MIN), mean (HR-
MEAN), maximum (HR-MAX) and root-mean-square (HR-RMS) of the corresponding
HR range. The HR in the complete dataset varies from 42 to 121 bpm.

Table 3.2: Performance metrics of the proposed method obtained by comparing the estimated
and ground truth HR.

POl P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 PI2  Total
MAE (bpm) 010 034 019 024 036 014 018 015 040 034 038 061 028
MAEP (%) 0.7 044 042 031 044 013 024 026 062 036 053 103 039

p(bpm) 001 -018 003 003 -0.01 001 -001 -0.02 001 009 007 -0.06 0.0l

o(bpm) 039 119 047 066 084 038 049 085 096 090 117 149 086
[0.78, [-2.48, [-0.88, [-1.26, [1.65, [-0.73, [-0.98, [-1.68, [-1.87, [1.67, [-2.23, [-2.97, [-1.68,
077 212]  0.94] 132 164 075 096] 163 1.90] 1.85] 238 2.86] 1.69]

PC 0.996 0.948 0991 0956 0991 0997 0994 0953 0979 0983 0.980 0971  0.998
Acc (%) 99.91 9692 99.74 99.01 98.75 99.87 97.20 9841 97.73 99.19 98.14 9405 98.78

LOA (bpm)

To test the robustness of the algorithm, the proposed method is also tested using
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acoustic signals recorded in a noisy environment. The signals of 5 minutes duration are
collected from 5 subjects. During the experiment, the subjects are asked to read a page
of text and loud music is played in background at the same time. The results in Table
3.3 indicate that the effect of environmental noise on the acoustic pulse recordings for
the HR determination are insignificant.

Table 3.4 compares the results of the proposed method with other studies which anal-
ysed the accuracy and reliability of different state-of-the-art PPG-based wrist devices
used in the commercial market by comparing them with the synchronous ECG signal.
Although the testing of these devices involved different experimental conditions such as
sitting in rest position, walking, and running at different speeds and slopes, Table 3.4 only
includes the results corresponding to the data recorded at the rest position to provide
an indicative comparison with the proposed method. Since there is neither a publicly
available database nor a study that has published results on HR monitoring using an
acoustic pulse signal, a direct comparison could not be established. Also, the devices in
these studies were tested on different number of subjects, but the total data length were
quite similar to this study. The table follows the same abbreviations for the comparison
parameters as used in the literature. The mean error (ME) and standard deviation (SD)
of the HR differences have the same definitions as p and o respectively. These parameters
obtain a value of 0.01 bpm and 0.86 bpm for the proposed method and are significantly
lower than other devices. The MAE and MAEP in this work are found to be 0.28 bpm
and 0.39%, and demonstrates better performance in comparison to the devices analysed
by Stahl et al. [12] and Parak et al. [13]. A higher PC of 0.99 as compared to 0.96 for
Basis Peak and 0.83 for Fitbit Charge HR, as studied by Jo et al. [14], also indicates a
higher agreement between the estimated and ground truth HR for the proposed method.
The standard error (SE) of the mean measures the deviation in the mean HR of all the
subjects and attains a higher value of 4.55 bpm in this study. This is mainly because the

SE is inversely proportional to the square root of the sample size [15]. Since the other

Table 3.3: Performance metrics of the proposed method for acoustic signals recorded in a noisy

environment.

P01 P02 Po3 P04 P05

MAE (bpm) 0.26 0.20 0.36 0.63 0.09

MAEP (%) 0.41 0.28 0.47 0.89 0.14

u (bpm) -0.08 -0.07 -0.11 0.06 0.03

o (bpm) 0.69 0.48 0.89 1.99 0.35
LOA (bpm) [-1.45,1.28] [-1.02,0.88] [-1.87,1.64] [-3.83,3.96] [-0.65,0.72]

PC 0.970 0.988 0.936 0.861 0.986

Acc (%) 99.29 98.12 98.81 95.00 99.05
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Table 3.4: Performance comparison of the proposed method with results obtained from different PPG-based wrist devices used in
the commercial market. The table only compares the results of the data collected at the rest position and provides an
illustrative comparison because the experimental conditions varied between different works. = The data length is for all
the subjects combined together. ™ SD was calculated from the results of 95% equivalence testing given in this paper-.
The results provided in the paper were obtained by averaging the data to 5 seconds epochs.

Datat® ME SD MAE MAEP PO SE

Literature Wearable Device Subjects
Length (bpm) (bpm) (bpm) (%) (bpm)
Scosche Rhythm - 1.64" - 2.22 - 1.60
Mio Alpha 1.52" 2.72 1.50
Fitbit Charge HR - 1.45" - 7.73 - 1.40
Stahl et al. [12] 50 5.0 hr .
Basis Peak - 1.58 - 3.15 - 1.50
Microsoft Band - 152" - 381~ 140
TomTom Runner Cardio 2.06" 2.54 2.00
Mio Alpha -0.20 - 3.92 5.37 - -
Parak et al. [13] 21 4.2 hr
Scosche Rhythm 0.07 - 4.83 5.96 - -
Basis Peak -0.20 - - - 0.96 6.04
Jo et al. [14] 24 6.0 hr
Fitbit Charge HR -3.73 - - - 0.83  10.66
Basis Peak 2.75 9.93 - - - -
Fitbit Charge -0.65 4.92
Cadmus et al. [16] 40 6.7 hr
Fitbit Surge -0.30 2.40 - - - -
Mio Fuse 1.05 4.42 - - - -
Omron HR500U 222" - - - - 367
Spierer et al. [17] 47 4.7 hr ¢ :
Mio Alpha 2.39 - - - - 6.28
This Work Proposed Acoustic Device 12 6.0 hr 0.01 0.86 0.28 0.39 099 455

studies were tested on a higher number of subjects, the inverse proportionality results in
a lower estimate of the SE. The comparison over these parameters show that, considering
PPG is a widely accepted technique, the proposed method utilising the acoustic sensing

can provide accurate results for HR monitoring at wrist under equivalent conditions.

3.6 Discussion

The feasibility of acoustic sensing of the radial pulse using a wearable device has been in-
vestigated in this chapter. While ECG has always been used as the gold standard method
to record cardiac signals from the chest, measuring it continuously with a wearable de-
vice presents lots of limitations, varying from reliability to usability. An alternative to
ECG, which improves on the usability aspects, is to use PPG-based devices instead. This
approach is very popular due to the fact that it allows monitoring with the sensor at-
tached on the wrist. But methods based on wrist PPG are not limitations free either.
The requirements of an active input signal limit either the size of the system and/or the
battery lifetime. In addition the systems are very sensitive to motion and other artefacts.
Hence, having an alternative lower power sensing approach would be desirable to either
complement the PPG to increase the sensing accuracy, or replace it altogether, depending
on the clinical target. The passive sensing mechanism of state-of-the-art acoustic sen-

sors (MEMS microphones) imposes significantly less constraints in terms of power, hence
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being more suitable from the size and maintenance perspective for a wearable device.

The characteristics of the pulse wave originating from the heart- as a result of the
opening and closing of the heart valves, and propagating as a mechanical wave along the
arterial branches have also been investigated, by comparing the acoustic and PPG pulse
waveforms. Although negligible, the heart sounds also transmit an acoustic wave through
the body. Since these acoustic features are superimposed on the vessel vibrations caused
by the mechanical constriction and dilation of the radial artery, a similar type of skin
surface modulation is obtained. While PPG only measures the pulse wave component, the
acoustic-based sensing allowed the detection of both cardiophysiological characteristics
of the radial pulse. The bandwidth of the acoustic pulse waveform, which contained
energies in the audible range as compared to the bandwidth of less than 10 Hz for the
PPG waveform proved this observation. Consequently, the proposed approach showed
that it is possible to monitor both, the heart sounds as well as the pulse wave using just
one wearable system.

The characterisation of the pulse sounds also allowed to determine the optimal aus-
cultation site on the radial artery, since this is a factor to consider when comparing the
ease of sensor attachment with respect to ECG- and PPG-based approaches. The PSD
comparisons showed that the acoustic sensing allows for a relatively wide region of sensor
placement with an insignificant difference between the SNR of the signals recorded from
different locations over the radial artery.

Studying the characteristics of the noise artefacts both internal and external to the
body made it possible to remove them automatically for a better representation of the
acoustic signal. Among different types of hand movements, only the wrist and finger
motions introduced large amplitudes in the signal making it difficult to extract meaningful
cardiac information. The proposed algorithm incorporated their removal by identifying
the signal regions corrupted with these artefacts using selected features. The effect of
wrist and finger movements on the SNR of the acoustic signal can be minimised by adding
additional signal channels using an accelerometer and/or gyroscope. These sensors can
provide critical information about the motion artefacts and act as a reference input,
for example, to an adaptive filter in extracting a cleaner signal. However, the usage
of these sensors imposes extra burden on size and shape of the PCB, power budget
and computational resources of the wearable system. Although these sensors were not
included in the current prototype proposed in this thesis, they can possibly be added
to the future prototypes of the wearable device by studying the trade-off between the
accuracy of cardiac monitoring and the power budget of the system. Regarding the
environmental noise that also interfered with the pulse sounds, simply using a low-pass
filter attenuated their effect significantly.

Furthermore, by comparing the HR obtained from acoustic sensing with other state-

of-the-art PPG based devices, it has been shown that the presence of fundamental heart
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sounds in the acoustic pulse waveform improved the heartbeat detection, an important
variable in continuous vital sign monitoring. Heartbeat detection based on extraction
of S1 sounds using the new proposed method further reduced the error between the
estimated and ground truth HR and achieved a high accuracy of 98.78% with a PC
of 0.99 and narrower LOAs of [-1.68,1.69] bpm. These results prove that the proposed
method could be used as an alternative, or to complement PPG for continuous monitoring
of HR at wrist.

As a summary, with this work, it can be concluded that the acoustic signal sensed
from the radial artery in the wrist can be used as a novel physiological signal to extract
biomarkers indicative of cardiac performance. Furthermore, this signal provides advan-
tages with respect to other conventionally used ones, which make it specially suitable
for wearable devices. The concept and feasibility has been proven with the automatic

extraction of HR.
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4 An algorithm to determine heart rate
variability in short-term acoustic

recordings

4.1 Introduction

Cardiac monitoring in healthcare applications provide critical information to study the
normal functioning of the heart. The heartbeat rhythm is usually studied by calculating
the heart rate of an individual using different techniques. While some of these tech-
niques locate the biomedical events in the signal of interest, other methods utilise the
spectral estimation of the time-varying frequencies in the cardiac signal. In the majority
of applications, the average frequency estimation over several heartbeats is acceptable
to reflect the variation in the heartbeat rhythm. However, studying the heart rate vari-
ability (HRV) by measuring the instantaneous changes in beat-to-beat cycles provide a
reliable reflection of several physiological factors responsible for the modulation of the
normal rhythm of the heart. Since heart rate is a non-stationary signal, tracking the in-
stantaneous changes can allow studying the balance between sympathetic and parasym-
pathetic branches of the autonomic nervous system (ANS) [1]. The analysis of the ANS
using HRV, therefore, reflects the ability of the heart in detecting and responding to an
unpredictable stimuli by regulating the cardiac activity. HRV analysis has been utilised
in several studies to recognise and evaluate the driving stress [2], obstructive sleep apnea
syndrome [3], chronic heart failure [4], diabetes mellitus [5], epileptic seizures [6], emotion
recognition [7] and other disorders.

The initial step of the HRV analysis requires the computation of either the inter-
beat interval (IBI) or the instantaneous heart rate (IHR) from the biomedical signal for
subsequent determination of HRV parameters. The IBI (in seconds) and the IHR (in
beats-per-minute) time-series are inversely proportional to each other and one can be
derived from another by simply multiplying the reciprocal with a factor of 60. Although
both the IBI and the IHR are exchangeable, the HRV is generally referred in terms of the
IBI time-series. A typical approach for calculating the IBIs requires a precise localisation
of the events of interest in the biomedical signal. Some of the examples of such events
include the QRS complex in the ECG signal, systolic peak in the PPG waveform, and
S1 and S2 sounds in the PCG signal. The signal processing techniques in Section 2.2.1
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discussed different algorithms to determine heart rate from these signals. The heart
rate algorithms mainly fall into 2 categories of spectral-based and peak-based methods.
The spectral techniques transform a time-windowed signal into the frequency-domain to
identify the fundamental frequency corresponding to the heart rate [8]-[11]. Since the
signal spectrum contains other peaks including the peaks from the motion artifacts, the
spectral estimation is carried out for a larger signal segment (few seconds to tens of
seconds) to localise the heart rate frequency accurately [11], [12]. The determination of
single frequency for such windowed signal segments provide only an average estimation
of the heart rate and loses critical information about the beat-to-beat variation in the
signal. The peak-based methods, on the other hand, identify the events of interest to
extract the time-indices for IBI calculation. These events in the biomedical signal can be
identified using several techniques, for example, by constructing the energy envelope to
separate the desirable energy peaks from other signal transitions [13]-[15]; by identifying
unique features corresponding to the events of interest and isolate them using learning-
based approaches [16], [17]. The heart rate determined using the peak-based methods
generally average the IBIs over a last few beats to filter out the instantaneous variations
in the time-series output. While the algorithmic details implemented by the commercial
devices are generally not available publicly, they measure heart rate over several beats,
typically 4 to 8 heartbeats, and displays the output at different sampling frequencies [18],
[19].

An accurate HRV analysis requires a beat-to-beat resolution [20]. Therefore, it is im-
portant to locate the characteristic points in the events of interest precisely, for example,
the time location of R-peak in the QRS complex of the ECG waveform. Since the S1
sounds in the acoustic signal does not resemble with the QRS morphology, it would be
ideal to preserve all its characteristic points to establish a comparison and find the best
representation of the S1 sounds for the HRV analysis. The algorithm proposed in Section
3.5 utilised a peak-based method to extract S1 sounds from the acoustic signal. Although
a strong correlation and statistical agreement for the average heart rate estimation be-
tween the acoustic signal and the PPG signal were obtained, the previous method poses
some constraints on extracting an accurate IBI time-series. The method transformed the
acoustic signal into joint time-frequency domain and identified the events of interest (S1
sounds) by only selecting the time grids with maximum power spectral density. Since
the time-frequency resolution in STFT analysis is constrained by the Heisenberg’s un-
certainty principle, there may be a few instances when the selected time grids does not
contain the full S1 waveform. These instances can originate when the interference from
noisy sources changes the power distribution among the signal components. Since the
heart rate in the previous algorithm was obtained by averaging the last 4 IBIs, such a
loss would not affect the average heart rate. However, it can possibly lead to a loss of few

characteristic points for the HRV analysis. Another drawback of the previous algorithm
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is that it only focused on detecting the zero-crossing of the S1 sounds as the characteris-
tic point by constructing the energy envelope using the moving average filter. Since the
adopted filtering is essentially a smoothing technique, a change in the shape of the S1
sound due to the noise interference can cause the maximum of the energy peak to deviate
from the original location. This can potentially result in an inaccurate detection of the
time-index corresponding to the zero-crossing. While a slight variation in the time local-
isation of the characteristic point does not affect the average heart rate, it can introduce
significant variations in the HRV analysis. To overcome the issues faced by the previous
method, a novel algorithm is proposed to extract the HRV from the short-term acoustic
signals recorded at the wrist. Instead of zeroing the intermediate signal transitions as in
STFT analysis, the proposed algorithm improves the localisation of the S1 sounds and
preserves all the characteristic points by utilising the relative energies of the time-domain
signal. The algorithm design also considers the computational complexity as an impor-
tant constraint to allow the extraction of HRV parameters from larger data lengths. The
following section discusses the existing methods for the HRV extraction from different
biomedical signals. A subsequent discussion on different stages of the proposed algorithm
is provided to establish a comparison of the HRV derived from the acoustic signal at the
wrist with the PPG and ECG signals respectively.

4.2 Existing methods

The sympathetic and parasympathetic branches of the ANS modulate the heart rate at
different frequencies [1]. The spectral analysis of the IBI time-series can therefore allow
the separation of the rhythmic contributions from the sympathetic and parasympathetic
activities. Such analysis can lead to an early intervention in taking preventive diagnostic
measures. However, this requires an accurate extraction of the IBI time-series from the
biomedical signal as little inaccuracies in the IBIs can introduce substantial variance into
the frequency bands associated with the arrhythmia [21]. A gold standard approach to
measure the IBI time-series is by detecting the QRS complex in the ECG signal. Several
algorithms have been proposed in the literature to extract the R-peak from the ECG
signal. However, a universal approach for the QRS detection has not been found due to

the diversity of the QRS waveforms in different subjects, low SNR, and the presence of
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Figure 4.1: Generic block diagram for R-peak extraction from the ECG signal.
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motion artifacts in ECG signals. Detailed reviews about the QRS detection methods for
different applications are available in [22]-[26]. The R-peak detection typically involves
2 stages: QRS enhancement and QRS detection as shown in Fig. 4.1. The QRS en-
hancement stage, also known as the pre-processing block, enhances QRS complex with
respect to other ECG signal transitions (such as P- or T- wave) by extracting different
features using linear or non-linear filtering techniques. The QRS detection stage employs
a relevant peak-detection method based on the pre-processing results followed by deci-
sion logic to identify the onset and offset of the QRS complex and extract the temporal
location of the R-peak. The review in [22] discriminated the algorithms based on the
QRS enhancement stage and focused on their operating principles. Elgendi et al. [26] also
summarised such algorithms by evaluating their performance over the three assessment
criteria: robustness to noise, parameter choice and numerical efficiency to find a suitable
algorithm for implementation in battery-operated wearable ECG systems. Some of the
commonly used R-peak extraction algorithms along with their operating principles and
feature signals are briefly described in Table 4.1. Since the statistical parameters related
to the HRV are traditionally obtained from the 24-hour ECG recordings, the numerical
efficiency of the algorithm is highly desirable. In Table 4.1, not all the methods listed are
suitable for the HRV analysis because of their varying computational complexities. The
comparison of these methods in [26] showed that a simple and numerically efficient way of
locating the R-peaks after the QRS enhancement stage is only possible with the thresh-
olding technique. All the other QRS detection algorithms were found to have medium

or high computational complexities.

Table 4.1: R-peak extraction algorithms with different operating principles and feature signals.

Technique Operating Principle Feature Signal

Differentiated signal
itself.

A linear combination of

The high-pass filter implemented as a
differentiator indicates the characteristic steep
Derivative slope of the QRS complex. The QRS detection is

. . ) different orders of
[27]-[30] accomplished by comparing the feature signal Lo .
. . derivatives being
against a fixed or adaptive threshold followed by

. squared, averaged,
several decision rules.

modulus, etc.
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Table 4.1: R-peak extraction algorithms with different operating principles and feature signals.

Technique Operating Principle Feature Signal
The signal filtered using
a combination of
multiple digital filters
QRS complex consist of frequencies between 10 th gff gt
wi ifferen
Hz and 25 Hz. The bandpass filtering removes .
. . : . bandwidths.
. baseline wandering, P- and T-wave, incoupling . .
Digital . . . . The filtered signal is
. noise, etc. The non-linear operations using .
Filters L . . sometimes followed by
sophisticated digital filtering enhances the QRS L
[31]-[34] first order derivative to
complex and suppresses other parts of the ECG
. . . . extract the feature
signal to make QRS detection easier using the . .
. . signal by computing the
adaptive thresholding.
square and average of
the differentiated
output.
The singularity in the ECG signal is detected
using Mallat’s and Hwang’s approach [22]. The
Wavelet L .
QRS detection is performed by matching the .
transform/ . . . . . Coefficients of the
. . singularities with the local maxima in the wavelet
Singularity . wavelet transform at
. transform of the signal. R-peaks are located .
detection different scales.
(35][38] where the relevant scales of the wavelet transform

exceed a threshold and demonstrate a

simultaneous modulus maxima.

Filter banks

QRS complex is characterised by simultaneously
occurring frequency components in different
subbands [22]. The ECG signal filtered through

A linear combination of
different subband

39]-[41
[39]-141] different subbands is followed by thresholding or signals.
decision logic for QRS detection.
Neural networks are used as adaptive nonlinear
predictors to estimate the current signal value L
. ] Prediction error
Neural from its past samples. Since the non-QRS .
) ) obtained from the
networks segments are present in a larger portion of the .
] neural network with
[17], [42], ECG signal, the neural networks converge when . i
L ) time-delayed ECG signal
[43] the prediction about non QRS samples is correct.

Different statistics of the QRS complex produces

a larger prediction error allowing its detection.

samples fed as an input.
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Table 4.1: R-peak extraction algorithms with different operating principles and feature signals.

Technique Operating Principle Feature Signal

Similar to neural networks, adaptive filters
predict the current signal value as a weighted The difference between

superposition of the signal values in the past. The the weight vectors at

Adaptive weights adapt to the changing signal statistics by  two different times.
filters minimising the prediction error using algorithms The difference of the
[44]-[46] such as least mean square method. The short term energy of the
instantaneous prediction error becomes large residual error in
when the QRS event is detected by an adaptive adjacent windows.
model.
The instantaneous characteristics of the ECG Energy envelope
Hilbert signal obtained from the Hilbert transform is obtained from the real
transformy utilised to construct an energy envelope. The and imaginary part of
(47][49) QRS complex produces higher energy peaks in the analytic signal
comparison to other ECG transitions and are computed using the
detected by using a threshold. Hilbert transform.
The EMD decomposes the ECG signal into
Empirical several intrinsic mode functions. The first few Lo .
mode de- IMFs filter out the noise components and Intrinsic mf)de functions
. . . . corresponding to the
composition  preserve the information corresponding to the ECG signal.
[50]-[53] QRS complex. Rejecting the other IMFs improve
the SNR for QRS detection using thresholding.
The running average of the zero-crossings in the
Tero. modulus of the bandpass filtered ECG signal is
. higher during the non-QRS segments in Average count of the
F;Zf S8 comparison to the QRS complex. The average is Z€ro-crossings.

compared against an adaptive threshold to detect
the QRS complex.

In addition to the gold standard approach of HRV measurement from the ECG signal,
the HRV parameters can also be measured using pulse wave analysis. Commonly, the
pulse waveform is recorded using the PPG-based wearable sensing. Since the signal
acquisition using pulse oximetry is highly prone to motion artifacts, the heart cycle
measurements with a beat-to-beat resolution becomes quite challenging. This is the main
reason why the majority of studies mainly focus on estimating the average heart rate and
not the instantaneous heart rate using the PPG signal. However, in principle, the HRV
parameters can also be obtained from the PPG signal. The variability of the pulse cycles

in the literature is usually known as the pulse rate variability (PRV). Unlike the R-peaks
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in the ECG signal, the PPG signal does not have a fixed characteristic point and the
accuracy of beat-to-beat interval depends not only on the choice of the characteristic
point but also the algorithmic method to locate it [55]. For the HRV analysis, the
PPG waveform is typically indexed temporally with one of the following characteristic
points: systolic peak, point of maximum slope or first order derivative, diastolic minima
or foot points denoting the onset of systole. Although majority of the studies concerning
PPG processing focus on the average heart rate estimation (including motion artifacts),
some of the research, as listed in Table 4.2, also test the feasibility of using different
PPG characteristic points to extract the PRV and compare it with the ECG-derived
HRV. Schéfer et al. [55] presented a detailed review of such studies and investigated the
accuracy of PRV as an estimate of the HRV. Georgiou et al. [56] also investigated the
accuracy of HRV and PRV in ECG and PPG signals respectively. The review focused on
understanding whether wearable devices provide a reliable and accurate measurement of
variability by studying sixteen ECG-based HRV technologies and two PPG-based PRV
technologies. In majority of the studies, the temporal locations of the characteristic points
are identified using traditional peak detection algorithms involving peak enhancement in
the pre-processing stage. The pre-processing typically involves the use of band-pass
filters and the first and second order derivatives [57]-[60]. The spectral techniques for
extracting the IBIs have also been explored where the frequency corresponding to the
average heart rate is used as the center point to find the instantaneous frequency using
the Hilbert transform [61]. The conclusions drawn from Table 4.2 suggests that the PRV
derived from the PPG signal recorded at different sensing locations demonstrate a high
correlation with the ECG-based HRV and shows a good agreement mostly for the signals
recorded at rest. The review in [56] also found a high correlation between PRV and HRV
during rest, however, it decreased progressively with the intensity of the exercise. The
difference in the agreement mainly arises because of the difference in the physiology of
both the signals. While ECG records the electrical activity of the heart, PPG measures
the volumetric change in the blood flow due to the propagation of the peripheral pulse
wave. Therefore, a finite propagation time exists between the R-peak in the ECG signal
and the onset of the pulse wave at a particular PPG site. This delay is usually known as
the pulse transit time (PTT) and it correlates with the blood pressure, arterial stiffness
and age of the subject [62]. Since the PTT depends on other parameters, its physiological
variability can introduce a significant difference in the IBIs estimated from PPG and ECG
signals respectively, despite the accurate determination of the characteristic points using
the proposed algorithm. In such cases, a wide disagreement between the PRV and HRV
can be observed.

While PPG provides a reliable way of recording the pulse waveform, the pulse wave
analysis can also be performed using the blood pressure (BP) waveform and the impedance

plethysmography. The beat-to-beat BP waveform is usually recorded using Finapres sys-
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tem that employs photoplethysmographic finger cuff to assess BP continuously by using
the vascular unloading principle [63]. Impedance plethysmography, on the contrary, uses
multiple metallic electrodes to produce an electric signal in proportion to the instanta-
neous impedance of the tissue under the electrodes [64]. Therefore, the change in the
average impedance corresponding to the periodic phases of the arterial blood flow can be
detected by the metallic electrodes. Although advancements in the wearable technology
have made the use of these systems obsolete, few studies listed in Table 4.2 utilised these
systems to record the pulse waveform and extract the HRV. It can be observed that some
studies indicate a strong agreement with the ECG-derived HRV whereas the other studies
suggest the usage of pulse-based HRV only as an alternative to ECG. In conclusion, the
pulse-to-pulse variability can be considered as a surrogate choice to HRV in cases where

the data is recorded at rest.

Table 4.2: HRV extraction from pulse waveforms recorded at different sensing locations. Studies
are grouped according to the pulse sensing method.

Sensing Characteristic )
Ref. . . Algorithm Remarks
Location Point
Photoplethysmography studies
. Peak detection using a High correlation at
First sample
. threshold of 70% of rest between PPG-
[57]  Finger after 70% slope ) .
maximum slope applied on  and ECG-based LF
threshold o
first order derivative. and HF bands.
Peak detection based on
. Least mean square
Finger, first and second order .
. . L error for IBIs obtained
wrist, Systolic and derivative. IBIs compared
[58] : ) ] ) ] at rest. Ideal wearable
arm, ear, diastolic point against PSD peaks in .
locations were arm
ankle 0.6-2.9 Hz for better
and finger.
accuracy.
Pre-processing (band-pass
filtering, automatic gain Average IBI difference
Systolic peak, control and smoothing around 12 ms showed
[59]  Wrist onset of pulse, filter) followed by strong HRV
dicrotic notch beat-to-beat extraction correlation between
using interpolation and PPG and ECG.

delineation.

Average HR is determined

as the center point for
. IHR accuracy of 1.75
spectral masking of

[61]  Wrist — ) bpm obtained for
instantaneous frequency .
PPG signals.

obtained from Hilbert

transform.
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Table 4.2: HRV extraction from pulse waveforms recorded at different sensing locations. Studies
are grouped according to the pulse sensing method.

Sensing Characteristic .
Ref. . . Algorithm Remarks
Location Point
Small differences
Hearbeat pulses are between IBIs from
Risi d ; detected using a PPG and ECG
ising edge o
arlobe comparator circuit in the suggested that the
65 Barlob thglg ircuit in th d that th
e pulse
P analogue front end of the wearable earlobe PPG
design. may be suitable for
HRV measurements.
PPG-based PRV
Pre-processing including Lo ase
- indices had small
Fi low-pass filtering, deviation i
inger eviation in
[60] © & ) Systolic peak high-pass filtering, peak om ¢
amera, comparison to
detection and removal of ECG? based HRV
-base
motion artifacts. oo
indices.
PPG denoising and PPG abilit
variabili
detrending using the . yh' Hl
arameters are
Mini K empirical mode bat Tt dr "lc“h t}llg Y
inimum pea correlated wi e
66 Fi ¢ (I;ﬁ X decomposition method HRV . d
inger of averaged firs arameters an
& g' . followed by selection of P
order derivative . could be used as an
largest negative value of It tive to HRV
the first derivative of the atternative :
easurement.
down-slope phase. feasuremen
PRV features from
PPG and HRV
feat f ECG
Diastolic peak eattires from
Earlobe, were found to be
[67] (trough of the — .
finger similar. The finger
pulse)
PRV and earlobe PRV
can be used as
surrogates for HRV.
Pulse frequency PFDM of th 1
of the pulse
D 1 demodulation (PFDM) < onal P ded
orsa wave signal provided a
i extracted the . & . P .
[68]  side of the — . reliable estimation of
. instantaneous heart rate
wrist PRV and showed good

frequency directly from the

pulse wave.

agreement with HRV.
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Table 4.2: HRV extraction from pulse waveforms recorded at different sensing locations. Studies
are grouped according to the pulse sensing method.

Sensing Characteristic .
Ref. . . Algorithm Remarks
Location Point
PRV and HRV
parameters showed a
Analysis software using the good agreement but
[69] Earlobe — first order derivative of PRV should only be
PPG as the feature signal.  used for the screening
purposes and not
medical decisions.
Blood pressure waveform studies
Spectral HRV
parameters were
. . . statistically different
Finger Pressure wave Peak detection using . .
[70] ] ) ] o during standing and
(Finapres) maxima in-built Finapres software . .
exercise, but not in
supine and controlled
breathing conditions.
BP waveform does not
. . reflect HRV precisely
Finger IBIs extracted using slope, .
; . . but can be considered
[71]  (Colin Systolic peak peak and correlation )
. as an alternative to
system) detection. .
ECG with the slope
detection method.
. High HRV reliability
Systolic peaks extracted
. Peaks and . . . between the two
Finger using the in-built software
[63] . troughs of BP methods, however, HF
(Finapres) were used to find the IBI .
waveform . . indexes were found to
time series. .
be less precise.
Heart instantaneous Statistically similar
i frequency algorithm to time-frequency HRV
inger
[72] .g — track HRV frequency measurements
(Finapres) .
around a PSD estimated between BP and ECG
fundamental frequency. waveforms.
PRV does not reflect
. . . the HRV accurately,
Finger Peak detection using .
[73] . — . o but it can be accepted
(Finapres) in-built Finapres software.

as an alternative to

ECG.

Impedance plethysmography studies
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Table 4.2: HRV extraction from pulse waveforms recorded at different sensing locations. Studies
are grouped according to the pulse sensing method.

Sensing Characteristic .
Ref. Locati Point Algorithm Remarks
ocation oin
Diastolic point identified . L
. L High sensitivity and
using product of digitised Lo
onals £ first and accuracy indicated
signals from first an
[74]  Forearm Onset of pulse 8 .. close agreement for
second order derivative abilit lvsi
variability analysis
followed by weighted and . Y Y
with two operators.
frequency filter.
HRV analysis
. . performed using root
. Heartbeats are identified
Radial . mean square of
using the the ‘ . . ‘
[64]  artery successive differences

. cross-correlation and .
(Wrist) ) in the heart beat
template matching. .

interval showed strong

agreement with ECG.

Both ECG and PPG allow recording of the electrical and optical characteristics of
the cardiac activity. However, the recent advances in the development of electrome-
chanical sensors have made it possible to monitor the mechanical activity of the heart
by using mechanocardiography techniques. These techniques capture the micro-motions
of the site under test by measuring the recoil forces [75]. Seismocardiography (SCG)
is one such method which measures accelerations caused by respiration and myocardial
motions in the chest wall using miniaturized high-resolution and low-noise accelerome-
ters [76]. While the SCG in relation to the cardiac activity has mainly been explored
to monitor the heart rate, some studies have also extended its usage in extracting the
HRV in an unobtrusive manner using the beat-to-beat resolution. Wahlstrom et al. [77]
proposed a hidden Markov model approach to process the SCGs recorded using an ac-
celerometer along the dorsoventral axis from 66 subjects. The algorithm described the
heartbeat vibrations with a hidden Markov model and learned the related parameters
using the Baum-Welch method. The most likely sequence of states was then found using
the Viterbi algorithm to estimate the time point of each individual heartbeat. The algo-
rithm achieved a mean absolute error of 5 ms for the IBI estimation in comparison to the
ECG-based IBIs. Tadi et al. [78] used a tri-axial MEMS accelerometer to record SCGs
in supine, left and right recumbent positions from 30 subjects. The heartbeat timings
were identified using the Hilbert adaptive beat identification technique and a high cor-

relation and agreement between the IBIs extracted from SCG and ECG were observed.
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The accelerometer in the smartphone has also been utilised to record the SCGs. Lan-
dreani et al. [79] recorded the SCG signal from 9 subjects by positioning the 3-orthogonal
axis accelerometer (available in the smartphone mobile device) on the subject’s thorax in
supine and standing postures. The characteristic points corresponding to the isovolumet-
ric contraction in the SCG signal were identified using a fully automated algorithm based
on amplitude thresholding and rectification. A strong correlation and narrow limits of
agreement were obtained when compared to the RR interval series. The cardiac beats
in the SCG signal were identified with 98% accuracy. The same dataset recorded during
the supine posture was used in [80] to extract the beat-to-beat systolic complex from
the SCG signal. The proposed algorithm utilised Newtonian equations of kinematics
to calculate the linear power followed by its decomposition as a set of functions using
the quadratic spline wavelet. Further, the continuous wavelet transform was applied to
extract the peaks corresponding to the systolic complexes. A high sensitivity of 0.995,
positive predictive value of 0.974 and narrow confidence interval of £35 ms were obtained
when identifying a total of 2816 beats in comparison to the RR intervals. The integration
of an accelerometer and a gyroscope in an inertial measurement unit (IMU) to utilise
their functionality with higher degrees-of-freedom have also been used to record the SCG
signal [77], [81]. Kaisti et al. [81] used such an embedded sensor array to measure the
cardiogenic motions of the upper chest from 29 healthy subjects and 12 subjects with
coronary artery disease. The beat-to-beat detection was performed using the wavelet
enhancement and clustering techniques by utilising the features inherent to the signal
envelope and the signal morphology. While a small average root mean square error of 5.6
ms between the mechanical- and ECG-based IBIs was obtained for the healthy patients,
a 10-fold increment was observed for the heart disease patients.

Another approach to measure the body recoil forces is known as ballistocardiography
(BCG). BCG, as one of the most promising unobtrusive techniques, has recently gained
wide attention in the research community. A ballistocardiograph records the mechanical
activity of the heart by measuring the body recoil forces resulting from the blood ejection
in each cardiac cycle [82]. While the BCG technique has been known for a number of
years, modern BCG systems integrated in beds, chairs, pillows, mattresses, scales etc.
provide an unobtrusive and comfortable way of monitoring the cardiopulmonary activity
for subjects requiring a prolonged monitoring [83]. The research concerning BCG signal
mainly focuses on the coarse estimation of the heart rate because of the presence of mul-
tiple fiducial points. However, some of the algorithms detect individual heart beats from
the BCG signal for advanced applications such as HRV analysis or sleep staging. Jiao et
al. [84] utilised a hydraulic bed sensor consisting of a transducer and a pressure sensor to
record the BCG signal from 40 subjects. The transducer was placed under the subject’s
torso to measure the heartbeat vibrations along with an interference from the respira-
tory activity. Although the individual heart beats in the BCG signal were identified
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using a multiple instance dictionary learning approach, the results were only compared
for an average heart rate computed over a one-minute window. The IBI comparison with
the PPG signal resulted in 4.07% mean relative error over 40 subjects. BCG signals
from bed-based systems have also been recorded by installing multiple strain gauges in
a Wheatstone bridge configuration to the slatted frame of the bed [82], [83], [85]. The
algorithms based on adaptive training were proposed in [83], [85] to estimate the beat-
to-beat intervals from the BCG signals. The method employed an unsupervised learning
approach to extract features from the first 30 s of the BCG data. Further, K-means
clustering was used to identify the cluster of feature vectors. The results in both the
studies showed a coverage of more than 95% with respect to the ECG signal. The algo-
rithm in [82] also used an unsupervised learning approach to extract feature vector from
the local maximum of the first derivative of the BCG signal. An overall detection rate
of 83.9% was obtained for 7 subjects in four different lying positions. Briiser et al. [86]
extended the previous work by acquiring the BCG signal from 33 subjects using a sin-
gle electromechanical film sensor placed on the top of a mattress. Instead of employing
a common peak-detection technique to estimate the IBIs, an approach based on pitch
tracking to estimate the varying fundamental heart rate frequency by means of continu-
ous local interval estimation was proposed. Unlike the previous algorithm, this method
neither required a training phase nor any prior knowledge about the morphology of the
heart beats in the analysed waveforms. However, the assumption that the consecutive
heart beats in the BCG signal have similar morphology limits the use of the proposed
algorithm in cases where an interference from the motion artifacts is present. The com-
parison with ECG-based IBIs yielded a mean error of 0.78%. The beat-to-beat intervals
from the BCG signal have also been extracted using different types of template matching
algorithms [87]-[89]. These methods are based on the reasoning that while the fiducial
points in the BCG signal are sensitive to any external interference, the signal patterns
repeat themselves with each heart beat. Wang et al. [87] based the BCG processing on
this assumption and used a segmented dynamic time warping approach to estimate the
beat-to-beat heart rate. The signals were recorded from 20 subjects using a modified
electronic weighing scale. The IBI comparisons between JJ intervals (BCG) and RR
intervals (ECG) produced an error of +19 ms for the 95% confidence interval. Krej et
al. [90] installed a Fiber Bragg grating sensor in magnetic resonance imaging system to
record the BCG signals from 8 subjects. The heartbeat positions were found using the
local maximum of a detection function incorporating enhanced characteristics in com-
parison to the original signal. The detection function was determined by implementing a
cascade of digital filters. A mean error of -0.62 bpm and the limits of agreement between
-12.28 bpm and 11.04 bpm were obtained with respect to the IBIs estimated from the
ECG signal. Optical-based BCG sensing using three IR-LEDs and one photodiode setup

in a bed have also been performed for unobtrusive cardiac monitoring [91]. The optical
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sensing works on the principle that any mechanical movements of the body deforms the
air enclosures of the mattress, therefore, altering the path of the light. The photodiode
detects such changes and produces a corresponding signal. An algorithm quite similar
to [86] was implemented to achieve a relative error of 1.46% and 25.7% for the intervals
estimation in the best and the worst channel respectively. Apart from bed- and mattress-
based sensing systems, the BCG signals have also been collected by installing sensors on
the chair top [92]. The ballistic force from 7 subjects was measured with a piezoelectric
sensor fixed with an adhesive tape to the bottom side of the seat of a common office
chair. The proposed algorithm utilised the continuous wavelet transform with splines
to reduce the effect of noise and interference. It involved a learning stage to define the
initial thresholds for the identification of BCG peaks using adaptive thresholding. In
comparison to the ECG, a mean error of -0.03 bpm and 95% confidence intervals of £2.7
bpm were obtained.

An emerging approach for unobtrusive monitoring of the cardiac activity is based on
radar sensing technology. Radar-based systems are designed to work without interfer-
ing with the daily activities of a user making the cardiac monitoring very user-friendly.
These systems typically use Doppler radar to observe the phase shift in the transmit-
ted microwave signal that is scattered back depending on the modulation caused by the
subject’s torso movements. The reflections from the body surface of the subject are
dominated by cardiopulmonary activities in the radar measurements [93]. Different algo-
rithms have been proposed in the literature to utilise the radar echo signal and extract
the cardiac information at a beat-to-beat resolution. This is generally difficult even in a
clean radar signal since it is not as sharp as the ECG or PPG signal [94]. The approach
in [94] utilised a 2.4 GHz Doppler radar at a distance of 1.5 m and modelled the heart
beat signal using a Gaussian pulse train. A combined autocorrelation and frequency-
time phase regression technique was further used for high accuracy detection of the heart
rate. The extracted IBIs showed an error of less than 2% in comparison to the PPG
measurements and a high agreement was observed. The Doppler radar sensors have also
been used in [95], [96] for the HRV analysis. While the IBIs in [95] were extracted using
the time-frequency analysis utilising filter banks, the study in [96] used the approach of
continuous wavelet transform and ensemble empirical mode decomposition to separate
the cardiopulmonary activity. Both the studies showed a high level of agreement between
the radar-extracted and the ECG-extracted HRV features. Bakhtiari et al. [97] recorded
the cardiac information using a custom designed remote millimeter wave (mmW) I-Q
sensor. The sensor allowed a remote and contactless measurement of the cardiac activity
at relatively long standoff distances. The beat-to-beat heart rate was determined from
only one subject using a parameter optimisation method based on the nonlinear Leven-
berg Marquardt algorithm. Although the reliability of the system was compared against

a commercially available laser vibrometer, the study did not present the comparison of
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HRYV parameters.

As a summary, HRV monitoring techniques can be broadly divided into three groups.
The first group includes ECG as the gold standard approach to extract HRV by sensing
the electrical activity of the heart and continuously measuring the R-R peak intervals.
The second group records the pulse wave using methods such as PPG, blood pressure
waveform and impedance plethysmography to measure the HRV. These approaches typ-
ically use optical sensors at different locations of the body and measures volumetric
changes in the blood flow. While both the first and the second groups are based on
contact sensing, the third group records the mechanical movements of the heart using
contactless techniques such as BCG, SCG and radar-based sensing. The Task Force of the
European Society of Cardiology and the North American Society of Pacing and Electro-
physiology [20] recommends HRV extraction from either the long-term 24-hour recordings
or short-term 5-minute recordings. Although mechanocardiography techniques provide
an unobtrusive manner of monitoring the cardiac activity, they constrain the subject to
be present in clinical settings and are not feasible for long-term 24-hour HRV monitoring.
The signals recorded using these techniques require advanced signal processing methods
since the SNR is much lower than ECG and PPG signals [94]. A high sensitivity to-
wards body movements put further limitations on the use of these techniques for HRV
measurements [81]. It is because of these constraints that the long-term HRV is typically
monitored using ECG and PPG-based sensing methods. Although the long-term HRV
monitoring is usually recommended, the rise in battery-driven wearable systems (mainly
PPG-based) have allowed researchers to extract HRV parameters from short-term phys-
iological recordings. However, the limited processing capability of these systems imposes
constraints on the algorithm design. Therefore, in principle, even when the processing
capabilities of the processors have enormously increased, it is still desirable to develop
simple algorithms with high numerical efficiency without trading off significantly on the
detection results [26]. In combination to the low processing complexity, a feasible peak
detection algorithm should also be robust to the noise sources and function properly
without requiring any manual or patient-specific adjustment of the parameters . The
subsequent sections discuss the data acquisition protocol followed in this study and pro-
poses a low complexity algorithm to measure the short-term HRV by extracting S1-S1

inter-beat intervals from the acoustic signal recorded at the wrist.

4.3 Data acquisition protocol

The previous chapters proved the feasibility of recording the acoustic pulse signal from
the radial artery using a miniaturised, battery-operated wearable data acquisition system.
The pulse sounds were recorded using a MEMS microphone placed on the radial artery
and the data was transmitted over a Bluetooth channel to a nearby base station. In

addition to the average heart rate estimation from these acoustic signals, this thesis
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also explores the possibility of extracting the HRV profile of a subject by acoustically
recording the pulse from the radial artery at the wrist. For the HRV database, the
acoustic data was digitised at a sampling frequency of 2100 Hz with 12-bits of ADC
resolution. Since the HRV measurements are generally obtained using the gold standard
approach of ECG with a recent emphasis on the PPG, the synchronous recordings of Lead
I ECG signal from the chest and PPG signal from the index finger were also acquired
using the state-of-the-art SOMNOscreen monitor [18]. The ECG and PPG signals were
sampled at 256 Hz and 128 Hz respectively among different options available in the device.
The SOMNOscreen monitor also provided the RR-intervals and heart rate profile as a
reference by processing the ECG data using an inbuilt algorithm, the details of which are
not available publicly. Since these references were only obtained from the ECG signal,
the inter-beat intervals and the beat-to-beat heart rate corresponding to the PPG signal
were extracted by simply locating the systolic peaks using the peak detection method
in MATLAB software. A total of 12 healthy subjects with an age between 19 and 42
were asked to relax for 5 minutes on a chair with a comfortable back and arm support.
It was also ensured that for normal functioning of the cardiac activity, the subjects did
not exercise and consume any food or beverage in the last hour prior to the recording.
Although the data was collected in an uncontrolled environment, the subjects were asked
to remain silent and minimise the wrist movement to avoid the introduction of any
external motion artifacts in the recording. A synchronous recording of the acoustic pulse
signal, ECG and PPG signals were made for a total of 5 minutes duration for every
subject. The subsequent section discusses the S1 extraction algorithm to derive the IBI

time-series from the acoustic signal.

4.4 S1 waveform extraction method

The algorithm proposed in this work is based on using the relative energy method to
extract the short-term events of the S1 sound waveforms from the acoustic pulse signal by
utilising the relative information between short- and long-term energies of the signal [13].
It is based on the principle that the power contained in the S1 waveform even in the
presence of motion artifacts is significantly higher than the power in the baseline of
the acoustic signal. Similar to the QRS enhancement stage in Fig. 4.1, the method
computes a coefficient vector which, when multiplied with the original signal, amplifies
the S1 event and attenuates the energy of the surrounding transitions. The calculation of
the coefficient vector involves an optimal choice of short- and long-term window lengths to
extract the waveform of interest from the signal. For every sample n of the acoustic signal
y, the coefficient vector c¢(n) is defined as the ratio of the short- and long-term squared

energies of the signal computed within two sliding windows, s,, and [,, respectively.
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The squared energy in Eq. 4.1 is calculated around the sample centred at n where the

(4.1)

parameters s,, and [, represent the half-lengths of the short and long sliding windows,
respectively. For boundary points, only samples which can fit on either sides of the sliding
windows are used. The parameter h denotes the Hamming window function with twice
the length of I,,. The output signal y,.. is determined by the element-wise multiplication
(sample-by-sample basis) of the coefficient vector and the original acoustic signal for a

total of N samples as follows:
yre(n) = c(n) x y(n), V nell,N] (4.2)

The multiplication modulates the original signal based on the behaviour of the coef-
ficient signal. Since the coeflicient vector generates a higher weight for the waveforms
containing higher energies, the modulation heightens the impulse-like events and attenu-
ates the regions carrying lower energies. However, such a behaviour can only be obtained
with an optimal choice of the sliding windows. As a rule, the length of the window s,,
should ideally be equal to the maximum duration of the waveform of interest present
in the signal. The duration of the longer window [, should be chosen to reflect the
long-term behaviour of the signal, however, care should be taken as a significantly longer
length can make the variations in s,, insignificant.

As an illustration, the successive steps of the relative energy algorithm implemented
on a 5-seconds block of the input acoustic pulse signal are plotted in Fig. 4.2. The goal
of the algorithm is to extract all the S1 waveforms and attenuate the surrounding noisy
transitions. This is achieved by using a short- and a long-term sliding window of time
duration equal to 0.2 and 1 second, respectively. The normalised short-and long-term
energies of the signal are plotted in Fig. 4.2(b). It can be observed that the short-term
energy reflects the sudden changes in the signal whereas the long-term energy represents
a slowly changing behaviour of the signal. The coefficient vector thus obtained amplifies
the S1 regions of interest by attenuating the nearby transitions resulting in a cleaner
output signal as shown in Fig. 4.2(d).

It is understood that the relative energy algorithm works efficiently in cases where the
short-term events of the S1 waveforms in the acoustic signal are characterised by a local
change in the amplitude. The STFT analysis in the previous chapter showed that the S1
waveforms contain higher power as compared to the nearby signal oscillations. There-
fore, the proposed S1 waveform extraction method can robustly identify these regions of

interest by discarding the baseline activity.
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Figure 4.2: Relative energy algorithm implemented on the acoustic pulse signal. (a) Original
input acoustic signal consisting of different S1 waveforms. (b) Normalised short-
and long-term energies of the input signal depicting numerator and denominator in
Eq. 4.1. (c) The coefficient signal, c(n). (d) The output signal, yr.(n).

4.5 Peak detection algorithm

The S1 waveform in the output signal demonstrates two different morphological variations
for different subjects as shown in Fig. 4.3. This variation is characterised in terms of
the waveform transitioning from a positive peak (APS,) to the zero crossing (APS;) to
a negative peak (APS,,) and vice-versa. For the same subject, it is empirically observed
that these characteristics of the S1 waveform does not change over the length of the
acoustic recording.

An accurate estimation of the HRV requires precise localisation of the S1 waveform in
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Figure 4.3: Morphological variations in the pulse waveform. (a) Acoustic pulse transitioning
from a positive peak to zero crossing to a negative peak. (b) Acoustic pulse transi-
tioning from a negative peak to zero crossing to a positive peak. Symbol X, o and ¢
denotes the positive peak (APS,), zero crossing (APS,) and negative peak (APS,)
respectively. Symbol x represents the nearest zero crossings on either sides of APS,.

the time-domain. Since the S1 waveform can be localised using 3 different characteristic
points, it is important to identify all of them and compare their corresponding accura-
cies in the HRV analysis. This comparison will allow to understand the reliability of a
particular characteristic point in representing the S1 waveform as a single time-index.
The algorithm identifies these characteristic points by computing the squared energies
of the positive (yre[n]) and the negative amplitudes (y” [n]) of the output signal y,..(n)
as shown in Fig. 4.4(b). The squaring process in Eq. 4.3 amplifies the higher frequen-
cies possessed by the S1 waveforms and further attenuates the nearby signal transitions.
The maximum of the energy peaks are utilised to localise the time-index corresponding
to the positive and the negative waveforms. Since the S1 waveform possesses a single
zero-crossing between the two energy peaks, the time-instance of the zero crossing can

be easily found by tracing back the original signal as shown in Fig. 4.4(c).

yEyln] = (yFIn])®

(4.3)
Yeqln] = (yre[n])?

Since the relative energy algorithm utilises a local change in the amplitude (or signal
energy) to detect a short-term event, there can be instances when an input signal block
is significantly corrupted by the artifacts with amplitudes higher than the S1 waveform.
The squared energy of such an output signal can lead to an incorrect localisation of the
characteristic points. To distinguish the artifacts from the S1 waveforms, the algorithm
could incorporate the frequency-domain features computed using STFT as explained
in the previous chapter. However, the computational complexity of O(nlogn) for the

STFT analysis will affect the run time of the algorithm and require more computational
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Figure 4.4: Localisation of characteristic points in the signal. (a) Clipped positive and negative
waveforms of the original input signal. (b) Squared energy of the relative energy
signal with its corresponding mazimum. (c) Symbol x, o and o denote the time-
localisation of the positive peak (APS,), the zero crossing (APS,) and the negative
peak (APS,) respectively in the relative energy signal. Symbol % represents the
nearest zero crossings on either sides of APS,.

resources. Therefore, a trade-off between an accurate S1 detection and the computational
complexity of the algorithm does exist. Instead of processing the corrupted signal in the
frequency-domain, this study only uses the time-domain features to remove the artifacts
and constrain the complexity of the algorithm to O(n). Unlike ECG, the acoustic signal
does not suffer from the baseline wandering. Since the baseline of the acoustic signal does
not vary over the length of the recording, it is empirically observed that the following

features for the S1 waveform remains nearly constant for a subject.

1. Time width - The time difference between the nearest zero-crossings indicated by

‘x” on either sides of the zero-crossing denoted by symbol ‘o’.

2. Amplitude - Peak-to-peak amplitude of the S1 waveform calculated using the differ-

ence of the amplitudes at time locations denoted by symbol ‘X’ and ‘¢’ respectively.

In cases where the acoustic signal is significantly corrupted with the artifacts, the
morphology of the S1 waveforms can possibly get affected as shown in Fig. 4.5(a). This
can not only lead to an improper detection of the characteristic points but can also
include some erroneous peaks in the peak extraction process. Such peaks can be rejected
by plotting the feature space using peak-to-peak amplitude (a) and time width (w) of all
the detected peaks and calculating their corresponding standard deviations o, and oy

respectively. The feature space for the clean signal in Fig. 4.4(c) and the corrupted signal
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in Fig. 4.5(c) are plotted in Fig. 4.5(d) and Fig. 4.5(e) respectively. It can be observed
that both the features a and w corresponding to the S1 waveforms in the clean signal
yield a lower standard deviation, therefore, indicating a narrow variation as compared to
the features of the corrupted signal. This property of the feature space can be utilised
to reject the incorrect peaks present in the corrupted signal.

For an acoustic signal of 5 minutes duration, the standard deviation of the time width
for a 5 second block is defined as oy, where z € [1, 60] represents each signal block. The
time intervals between the successive peaks are also found by using the time differences
between the zero-crossings (denoted by symbol ‘o’) of the current and the next adjacent
S1 waveform. For a heart rate between 40 and 200 bpm, the inter-beat intervals must
lie between 300 and 1500 milliseconds respectively. Therefore, in cases where multiple
peaks are extracted within a mutual time distance of 300 milliseconds, only peak with
the highest peak-to-peak amplitude «a is selected and other redundant peaks are ignored
for the further processing. Since a cleaner signal after the removal of redundant peaks

have less disparity in the feature space, the initial value of threshold og is determined by
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Figure 4.5: Localisation of the characteristic points in the acoustic signal corrupted with ar-
tifacts. (a) Clipped positive and negative waveforms of the original input signal.
(b) Squared energy of the relative energy signal with its corresponding mazimum.
(¢) Symbol z, o and ¢ denoting the time-localisation of positive peak (APS,), zero
crossing (APS, ) and negative peak (APS,,) respectively on the relative energy signal.
Symbol x represents the nearest zero crossings on either sides of APS,. (d) Time-
domain features plotted for waveforms extracted in Fig. 4.4(c). (e) Time-domain
features plotted for waveforms extracted in Fig. 4.5(c).
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choosing the minimum value of oy, for the first three signal blocks. This is mainly done
because the time width of the S1 waveform demonstrates less variation over the length
of the acoustic recording. For every successive block, the relative change in standard
deviation Ao is found by comparing og and o, using the Eq. 4.4. A variation of less
than 0.25 in Ao classifies the signal block as clean and updates the threshold o¢ in Eq.
4.5 by averaging itself with the standard deviation of the current block. In cases where
the variation of more than 0.25 in A is observed, some of the peaks in the block are
incorrectly extracted due to the presence of artifacts. Such peaks are identified and

rejected as follows:

1. Firstly, the mean pu,, of all the time widths in the signal block is determined.

2. Secondly, the standard deviation oy, is reevaluated by ignoring the peak with the
largest distance of its time width w from p,. As an illustration, the peak with
feature coordinates (0.067,0.732) in Fig. 4.5(e) is rejected.

3. The new oy, is subsequently used to find the variation Ao.

4. These steps are reiterated by rejecting the peaks with farthest time widths from

1 until the variation Ao of less than 0.25 is observed.

5. The threshold og is continuously updated in Eq. 4.5 by averaging itself with the

new standard deviation oy, of the current block.

_ |Uwz - UO‘

Ao (4.4)
a0
. oo +20'WZ (45)

For the corrupted signal in Fig. 4.5(c), only the fourth peak is rejected as its removal
produces a Ao of value less than 0.25.

After the removal of erroneous peaks from the acoustic signal, the S1 waveforms can
be easily localised using the time-indices of all the characteristic points to derive three
different IBI and IHR profiles per subject. The number of S1 waveforms extracted in the
2" signal block of 5 seconds duration is N,. The time-index of the positive characteristic
point defined as th,, for the beat number m € [1, N, — 1] can be utilised to calculate the
IBIP and THRP profile as follows:

vV mel[l,N, —1]

IBI}, = tn,y — th, (4.6)
60
p =
IHRY, = {55

The IBI and THR determination in Eq. 4.6 are repeated corresponding to the time-indices

of the zero crossing (t7,) and the negative characteristic points (¢]}) respectively.
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4.6 Results and discussion

4.6.1 Optimal choice of parameters

The performance of the proposed algorithm is dependent on the optimal choice of the
short- and long-term sliding window lengths in the relative energy method to extract the
S1 waveform. These optimal values are determined by evaluating the sensitivity (S.),
positive predictive value (PPV) and detection error rate (DER), which are defined as

follows:

TP

S = TP+ FN (4.7)
TP
PPV = TP + FP (48)
FP + FN
DER = TP + FP + FN (4.9)

where true positives (TP) denote the correctly detected S1 waveforms, false positives (FP)
specify the number of events incorrectly classified as S1 waveforms, and false negatives
(FN) refer to the count of S1 waveforms that remain undetected. Therefore, S, essentially
reflects the ability of the method to correctly extract the S1 waveforms from the acoustic
signal whereas PPV signifies the probability of the classified S1 events being truly the
S1 waveforms of interest. On the contrary, DER indicates the error in the accurate
classification of the S1 waveforms.

The optimal choice of s, and I, is determined by studying the variation of these
performance metrics, evaluated over the complete dataset for a combination of different
window lengths. The short-term window length s,, is varied in the range of [0.1, 0.4] s in
steps of 0.05 s whereas the long-term window length [, is varied in the range of [1, 2.5] s
and is incremented in steps of 0.25 s. The effect of s,, and [, on the performance metrics
of the proposed algorithm are illustrated by plotting the contours of S., PPV and DER
in Fig. 4.6. It can be observed that the sensitivity in Fig. 4.6(a) remains almost constant
with the variation in s,,, but decreases with an increase in [,,. On the other hand, PPV
does not vary much with the choice of window lengths as shown by a narrow variation
in the values of the colour bar in Fig. 4.6(b), and has a higher dependency on s,,. The
minimum values on the DER contour plot in Fig. 4.6(c) indicates a dependency similar
to the S, plot. Although the analysis demonstrates that the performance of the algorithm
is almost constant over a wide variation of s,, and [,, parameters, this study uses 200 ms

and 1 s as the durations of the short and the long sliding windows respectively.
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Figure 4.6: Effect of short- and long-term sliding windows on performance metrics of the pro-
posed algorithm. (a) Contour plot for depicting variation in sensitivity (S.). (b)
Contour plot for depicting variation in positive predictive value (PPV). (c¢) Contour
plot for depicting variation in detection error rate (DER).

4.6.2 Time-domain HRV analysis

To assess the performance of the proposed algorithm in determining the IHR and IBIs

across 12 subjects, the following time-domain comparisons have been established:

1. Correlation analysis: In order to assess the measure of association between the
estimated output and the gold standard, the Pearson correlation coefficient (PCC)
is computed. The line of best fit for such an association is represented by y = mxz
+ ¢, where y and x corresponds to the estimated output and the ground truth
respectively, and m indicates the slope of the line of best fit. A slope of 1 indicates
a strong positive relationship between both the outputs whereas the values nearer
to -1 signify a strong negative correlation. The R? and root-mean-square-error

(RMSE) values indicate the measure of goodness of fit.

2. Bland-Altman analysis: In clinical applications, the Bland-Altman analysis pro-
vides a measure of statistical agreement between the estimated and the true output.
This analysis is generally performed to assess the potential of the new method in
replacing the existing one. The agreement is governed by comparing the difference
with the mean of outputs derived from both the methods. The mean (i) and the
standard deviation (o) of differences between both the measures are utilised to
define the limits of agreement (LOA) as (u £ 2 x o). For differences which follow
a Gaussian distribution, 95% of the output differences should lie between the two
LOAs [98]. A lower LOA suggests a higher degree of agreement between both the
methods.

3. MAFE parameter: The parameters 1 and o in the Bland-Altman analysis provides

the relative bias and an estimate of error between the two outputs. The mean
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absolute error (MAE) as defined in Eq. 4.10 computes the average of absolute
differences between the estimated and true outputs, and therefore indicates the

overall error in the time-series analysis.
1N
MAE = — Zl THR st (i) — THR e (1) (4.10)
i

where IHR.s; and THR4. are the estimated and true instantaneous heart rates

respectively, for a total of N heartbeats.

4. Time-domain HRV measures: To quantify the variation of IBI time-series in a
subject, the selected time-domain HRV measures as defined in [20] are also found.
The term NN interval is widely understood in the context of successive inter-beat
intervals for a chosen characteristic point. Therefore, the NN interval in this study
refers to the R-R interval in the ECG, systolic-systolic interval in the PPG and
S1-S1 interval in the acoustic signal respectively. A total of five HRV parameters

defined below are calculated to measure the time-domain variability.
e SDNN: the standard deviation of all NN intervals,
e MeanNN: the mean of all NN intervals,

e RMSSD: the root mean square of all the differences between adjacent NN

intervals,

e SDSD: the standard deviation of all the differences between adjacent NN in-

tervals, and

e pNNb50: the percentage of the number of adjacent NN interval pairs differing
by more than 50 ms (NN50) divided by the total number of NN intervals.

As discussed before, the morphology of the S1 waveform in the acoustic signal is
mainly defined by three different characteristic points. It is empirically observed that
the relative location of these points changes continuously in a subtle manner for different
S1 waveforms in the signal. Table 4.3 lists some of the performance metrics for the ITHR
comparisons with respect to the synchronous ECG and PPG signals to understand the
reliability of choosing a particular characteristic point in localising the S1 waveform and
finding the heart rate accurately. The measures pu and o obtained from the Bland-Altman
comparison plot along with the MAE and accuracy of IHR determination for a total of
12 subjects demonstrate a high degree of agreement between the estimated output and
the ground truth values (ECG and PPG) for zero-crossing (APS;) as compared to the
other characteristic points. The accuracy of the algorithm is determined by calculating
the percentage of heart rate differences lying within a +5% variation with respect to the
ground truth. Although the sensitivity S, of extracting the S1 waveforms accurately are

comparable, a higher PPV and a lower DER indicates zero-crossing as a better choice
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to localise the S1 waveform. This can be justified using the fact that the presence of
artifacts in the signal can introduce certain spikes which can alter the location of APS,
and APS,, by few milliseconds without affecting the position of the APS, as shown in
Fig. 4.5. Since even a small variation in the time-index of the characteristic points can
introduce wide discrepancies in the heart rate, the results in Table 4.3 suggested the
usage of zero-crossing as the characteristic point for the S1 waveform in determining the
IHR profile of a subject.

Table 4.3: Performance metrics of the IHR determination for different characteristic points of
APS with respect to PPG and ECG signals for a total of 12 subjects.

Characteristic MAE (bpm) u (bpm) o (bpm) Acc (%)
Se PPV DER
APS points PPG ECG PPG ECG PPG ECG PPG ECG
APS, 1.038  1.052 0.091 -0.019 2409 2.731 96.28 95.55 0.976 0.965 0.057
APS, 0.646  0.602 0.051 -0.061 1.069 1.353 98.96 98.50 0.971 0.989 0.039
APS, 0.816  0.623 0.048 -0.058 1.601 1.626 97.35 98.79 0.980 0.975 0.043

The S1 waveform being localised with the time-index of the zero-crossing is used to
establish the time-domain comparisons for ITHR and IBI by comparing the estimated
output of the proposed algorithm with the ground truth values of ECG and PPG signals
respectively. Fig. 4.7 and Fig. 4.8 illustrates such a comparison for one of the subjects
by plotting the IHR and IBI time-series, correlation using the line of best fit and Bland-
Altman analysis for an acoustic signal of 5 minutes duration. The correlation and Bland-
Altman comparison plot (abbreviated together as BAcorr) for the complete dataset are
also presented in Fig. 4.9 by combining the IHR and IBI time-series of all the 12 subjects.
Since the heart rate has an inverse proportionality with the inter-beat intervals, it can
be observed that their corresponding time-series variations and the BAcorr comparisons
are a mirror images of each other in the horizontal and vertical axes respectively, with
amplitudes varying by a factor of 60.

The THR and IBI time-series obtained from the proposed algorithm indicate a close
overlap with the heart rate and RR-intervals of the ECG signal acquired using the
SOMNOscreen monitor as shown in Fig. 4.7(b) and Fig. 4.8(b) respectively. It can
be observed that the majority of these values lie within the upper and lower bounds of
+5% variation. This observation is also evident in the correlation plot which depicts a
narrow variation of the data points with respect to the line of best fit. The correlation
analysis for the complete dataset in Fig. 4.9(c) and Fig. 4.9(d) with the values of PCC
and slope of the fitted line close to 1 indicate a high degree of correlation and linear
relationship between the estimated output and the ECG ground truth. The further as-
sessment of the algorithm is performed using the Bland-Altman plot which compares
the variation of HR differences (AHR) and IBI differences (AIBI) with the HR averages
(uHR) and IBI averages (uIBI) respectively. The diameter of the circled data points in

the BAcorr plots increases corresponding to the number of points coinciding on the same
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Figure 4.7: IHR comparisons for subject 8. (a) Full IHR time series, correlation analysis and
Bland-Altman plot between APS- and PPG-derived HR. (b) Full IHR time series,
correlation analysis and Bland-Altman plot between APS- and ECG-derived HR.

location. A near zero bias and LOAs of around 2.2 bpm and 0.02 seconds for the ITHR and

IBI comparisons in the complete dataset indicate a high degree of statistical agreement

between the outputs obtained from the proposed algorithm and the ECG signal.

The results of the proposed algorithm are also compared with the heart rate and beat-

to-beat intervals of the PPG signal recorded synchronously using the SOMNOscreen

monitor in Fig. 4.7(a) and Fig. 4.8(a) respectively. It can be observed that a strong

correlation between the IHR and IBI outputs in these plots exist, with PCC and slope of

the fitted line obtaining values close to 1. The Bland-Altman plot also establishes a high

degree of statistical agreement between the estimated and the PPG output with a near
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Figure 4.8: IBI comparisons for subject 8. (a) Full IBI time series, correlation analysis and
Bland-Altman plot between APS- and PPG-derived IBI. (b) Full IBI time series,
correlation analysis and Bland-Altman plot between APS- and ECG-derived IBI.

zero bias and LOAs of around 1.1 bpm and 0.02 seconds for THR and IBI comparisons
respectively. For the whole dataset, the BAcorr comparisons for the PPG signal are
plotted in Fig. 4.9(a) and Fig. 4.9(b), where a near zero bias and LOAs of around
2.6 bpm and 0.03 seconds for the IHR and IBI comparisons are obtained respectively.
A high degree of correlation and statistical agreement with more than 95% of the data
points lying within the narrow LOAs suggests that the proposed algorithm is capable
of extracting the instantaneous heart rate profile from the acoustic signal accurately.
Although the performance metrics for the PPG and ECG comparisons are quite similar,

few of the data points in the PPG analysis demonstrates wide variation. This is mainly
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Figure 4.9: IHR and IBI comparisons for the complete dataset. (a) Correlation analysis and

Bland-Altman plot between APS- and PPG-derived HR. (b) Correlation analysis and
Bland-Altman plot between APS- and PPG-derived IBI. (c) Correlation analysis and
Bland-Altman plot between APS- and ECG-derived HR. (d) Correlation analysis
and Bland-Altman plot between APS- and ECG-derived IBI.
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because of the high sensitivity of the PPG signal towards the motion artifacts which may
introduce erroneous peaks and possibly lead to an incorrect systolic peak detection.

The NN intervals determined by localising the zero-crossing of the S1 waveform in
the acoustic signal, R-peak in the ECG signal and systolic peak detection in the PPG
signal can be utilised to measure the corresponding HRV. Table 4.4 lists the time-domain
HRYV parameters for every subject in the database to compare the variation of inter-beat
intervals in APS, ECG and PPG signals respectively. SDNN is computed by taking the
square root of the variance of the NN intervals. Since the variance reflects the total
power of the spectral analysis, SDNN estimates the cycle lengths of the components
responsible for the variability in the signal over the length of the recording [20]. The
standard deviation of successive NN interval differences (SDSD) represents the short-
term variability in the inter-beat intervals whereas MeanNN indicates the bias of this
short-term variation [99]. The other metrics obtained from interval differences include
RMSSD and pNN50 which estimates the high frequency variations in the instantaneous
heart rate of the subject. For pNN50, the NN50 count in this study includes all the
adjacent NN intervals for which the difference is more than 50 ms irrespective of whether
the first or second interval is longer.

For all the time-domain HRV parameters in Table 4.4, a very close agreement between
the APS and PPG measures can be observed with low values of the median of percentage
differences. A relatively larger variation in the measures of APS and ECG comparisons
are obtained. This difference is attributed to the fact that the APS and the PPG signals
record the pulse wave at the wrist and finger respectively, whereas the ECG records the
heart activity at the chest. Therefore, a finite propagation time exists between the onset
of the R-peak and the onset of the pulse wave at a peripheral site. Although the HRV

Table 4.4: Time-domain HRV parameters for IBI estimated from APS, PPG and ECG signals.

SDNN (ms) SDSD (ms) MeanNN (ms) RMSSD (ms) pNN50 (%)

Subject APS PPG ECG APS PPG ECG APS PPG ECG APS PPG ECG APS PPG ECG
1 58.02 57.72  59.09 29.11  28.52  38.15 835.51  835.45  834.89 29.06 28.52  38.09 5.73 5.44 6.88
2 45.46  45.73  44.84 40.61 41.69 38.92 873.67  873.72  872.66 40.54 41.62 38.86 20.59 21.19  20.89
3 77.81 T7.86 74.87 7276 73.59  68.69 922.18  922.23  921.74 72.64 73.47 68.57 34.28 36.79 31.45
4 44.34  44.65  43.88 4271 43.59  42.50 900.49  900.52  900.08 42.64  43.52  42.44 25.00 25.31 26.87
5 49.16 48.84  48.06 50.71  49.99  49.08 864.11  864.14  863.79 50.64 49.91 49.01 3158 30.99  34.50
6 58.00 57.12  56.28 43.13  40.82  39.98 850.48  850.53  850.08 43.07  40.76  39.92 2292 20.92 21.20
7 44.24 4447 4416 31.94 32.00 31.64 948.16  948.22  947.59 31.89 3195 31.59 11.55 11.22  12.04
8 60.88  60.85  60.87 46.68 4542 47.04 1059.72  1059.67 1059.44 46.59 45.33  46.95 27.98 2575  27.61
9 65.81 64.39 63.74 62.51 58.54 58.43 853.17  853.15  852.94 62.41 58.44 58.34 3591  32.05 33.83
10 40.11  39.44  38.33 34.73 3226 29.65 809.29  809.33  809.02 34.67 3222 29.61 1339 9.97 8.83
11 69.39  67.69 55.79 88.41 83.16 68.24 738.65  738.22  736.52 88.26 83.02 68.12 28.09 29.01  25.00
12 92.69  92.00  90.06 84.94 84.12  82.30 857.35  857.46  855.52 84.79 8398 82.16 37.57 37.87 37.28
my 58.01 57.42  56.03 4491 4451 4477 860.73  860.80  859.65 44.83 4442 44.69 26.49 2553 2593
ma 0.31 1.41 0.77 2.16 -0.04 0.43 0.77 2.15 0.31 0.33
ms - 0.58%  2.54% - 1.72%  3.69% - -0.01%  0.05% - 1.65% 3.68% - 2.36% 1.05%
P >0.05  >0.05 >0.05  >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

mi: median across all the subjects. mq: median of the difference between APS and reference output. ms: median of the percentage difference
compared to APS output. p: probability value computed using the Wilcoxon rank sum test.
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at the chest and the peripheral sites are generally in close agreement for the subjects at
rest [66], they do possess minor differences depending on the pulse wave velocity and the
pulse transit time through the arterial system. These parameters can vary significantly
with the blood pressure, arterial stiffness and age of the subject [62]. Since the APS
and PPG signals are recorded from the locations which are very close to each other in
comparison to the ECG recording site, the variance between the synchronised APS and
PPG data is significantly lower. As a result, the APS and ECG measures for the HRV
comparisons are not expected to be identical, but they are indeed in close agreement.

The Wilcoxon rank sum test [100] is also used to estimate the p-value and test the null
hypothesis that the HRV measures from the acoustic signal are not significantly different
from the PPG- and ECG-based HRV measures. Thus, two p-values are generated for
every HRV parameter in Table 4.4. For all the time-domain measures, the obtained p-
values at the 5% significance level indicate that there is not enough evidence to reject
the null hypothesis, and thus conclude that the HRV estimations using the proposed
algorithm yields a high degree of statistical agreement with the HRV estimations obtained
from PPG and ECG signals respectively.

4.6.3 Frequency-domain HRV analysis

For the short-term recordings of 5 minutes duration, the frequency-domain HRV mea-
sures provide a better physiological interpretation as compared to the time-domain HRV
analysis. The spectral analysis of the IBI tachogram provides vital information about the
distribution of power in different frequency bands which are mainly divided into three
components: very low frequency (VLF) for frequencies lower than 0.04 Hz, low frequency
(LF) for frequencies between 0.04 and 0.15 Hz, and high frequency (HF) for frequencies
between 0.15 and 0.4 Hz respectively. The total power (TP) in the bandwidth of 0.4
Hz is determined by adding the power from all the individual components. While the
VLF component does not provide an interpretation during the spectral analysis of the
short-term recordings, the power distribution and the central frequency of the LF and
HF bands reflect the variations in the autonomic modulations of the heart activity [20].

The spectral analysis of the acoustic signal is performed by plotting the IBI tachogram
with the difference of the time-indices of the adjacent peaks (N;-N;_1) on the y-axis
and the time occurrence of the second peak (N;) on the x-axis. This produces an ir-
regularly sampled time-domain signal as shown in Fig. 4.10(a). In case of a continuous
IBI tachogram, some of the IBI values can correspond to the corrupted regions of the
signal leading to an inaccurate HRV analysis. The HRV spectra of such a tachogram
can simply be obtained by calculating the power spectral density (PSD) of the corrupted
sections of the data beforehand and removing these already known PSD contributions
from the overall PSD of the IBI tachogram. However, identifying the PSDs of the arte-

facts in isolation is a challenging task and would require multiple features to separate

177



p=12387ms 0% =3950 ms? -

| | | | |
0 50 100 150 200 250

(N (5)

(a)

T T T T T
o 14 -
El.zMW\'\l WW v
Z
> 1

T T r T 0.03 T T T T
014} Frequency | Power | J Frequency | Power | Power
(Hz) (ms?) VLF (Hz) (ms?) | (n.u.)
012 VLF 0.00 822 i 0.025F VLF 0.00 806
LF 0.10 1859 LE LF 0.08 707 64.24
01 HF 0.30 1098 HF 0.24 394 35.75
<" VLF 1 =R 0.02f
= s LF/HF = 1.79
~: 0.08 ~:
0.015]
: ur =
7 0.06 7
A A 00bk
0.04 HE
ooz 0.005} .
o N N
0 0.1 02 03 04 05 0 0.1 02 03 04 05
Frequency (Hz) Frequency (Hz)

(b) (©)

Figure 4.10: HRV spectra for acoustic signal recorded from subject 10. (a) NN interval
tachogram with its corresponding mean and variance. (b) VLEF, LF and HF central
frequency and power in absolute value, calculated by a FFT based non-parametric
algorithm. The LF component is indicated by dark shaded areas and the HF com-
ponent by light shaded areas. (c) VLF, LF and HF central frequency, power in
absolute value and power in normalised units (n.u.), calculated by parametric au-
toregressive modelling. In (a) and (b), the peak frequency and the power were
calculated by integrating the PSD in the defined frequency bands.

the spectral content of the artefacts from the pulse sounds. Due to this reason, the IBIs
which produce heart rate outside the range of 40 to 200 bpm due to an incorrect detec-
tion or missed detection of the S1 waveform are ignored leading to some missing data
points in the tachogram. The HRV spectra can be obtained using the PSD analysis of
the NN interval tachogram by employing either the non-parametric or the parametric
methods. Although both the methods provide comparable results for the PSD analysis,
one has certain advantages over the other [20]. While the non-parametric methods are
simple to implement and faster to execute, the parametric methods provide smoother
spectral components to easily distinguish between different frequency bands, therefore,
allowing an easy post-processing of the HRV spectrum [101]. However, the complexity
of the parametric methods can vary based on the requirement of a proper selection of
the autoregressive model. In this study, the non-parametric method is used to estimate
the absolute measure of the Lomb-Scargle PSD [102] by processing the signal that is un-
evenly sampled. On the contrary, the autoregressive PSD estimates using the parametric

method are computed by employing the covariance method to produce smoother spectral
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components. The spectral components are measured in absolute units of power (ms?) by
integrating the PSD in the defined frequency bands. The normalised LF and HF compo-
nents denoted by LF and HF respectively, and defined in Eq. 4.11 are also determined.
The normalisation minimises the effect of total power variation on these components, and
therefore reflect the balanced behaviour of sympathetic and parasympathetic branches
of the autonomic nervous system [20]. The LF/HF ratio is also computed to indicate the

sympathetic modulations.

_ LF
Fe——  «1
TP _vir <10
o (4.11)
e 1
TP _virF <1V

As an illustration, Fig. 4.10(b) plots the non-parametric Lomb-Scargle PSD estimate
of HRV and indicates the peak frequency and power of VLF, LF and HF components in
absolute units respectively. The parametric PSD estimate is plotted in Fig. 4.10(c) where
the LF and HF components in normalised units along with LF/HF ratio are also listed.
It can be observed that the parametric HRV estimation produces smoother spectral com-
ponents when compared to the non-parametric plot, but the central frequencies of the
bands remain almost similar in both the estimates. Table 4.5 lists the frequency-domain
HRV parameters for the acoustic signal in absolute (ms?) and normalised units (nu) com-

puted using the FFT-based non-parametric estimation for every subject in the database.

Table 4.5: Frequency-domain HRV parameters for IBI estimated from APS using FFT based
non-parametric algorithm.

Subject TP VLF LF LF HF HF LF/HF Correlation
(ms?)  (ms?)  (ms?) (nu) (ms?) (nu) LF HF

1 9077.85 3653.10 4001.31 73.76 1423.44 26.23 2.81 1.00 0.96
2 3676.59 1313.97 893.24 37.80 1469.38 62.19 0.61 0.99 0.98
3 10957.99 985.53 5375.04 53.89 4597.41 46.10 1.16 1.00 0.99
4 2935.34  695.19 1389.44 62.02 850.70 37.97 1.63 1.00 0.99
5 4135.63  980.16 1505.36 47.70 1650.10 52.29 0.91 0.99 0.97
6 4643.18 1868.12 1238.60 44.63 1536.45 55.36 0.80 1.00 0.97
7 2261.99 1306.09 513.34 53.70 442.55 46.29 1.15 0.99 0.94
8 2815.81 1263.34 818.19 52.70 734.26 47.29 1.11 0.99 0.94
9 8384.40 2204.04 3370.89 54.54 2809.45 45.45 1.19 1.00 0.97
10 3778.55  821.61 1859.28 62.87 1097.65 37.12 1.69 0.99 0.93
11 9668.28  2160.00 2241.61 29.85 5266.66 70.14 0.42 0.99 0.98

12 14515.31 3803.90 5941.03 55.46 4770.37 44.53 1.24 0.99 0.99

LF: LF norm. HF: HF norm. nu: normalised units.
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The Pearson correlation values for the LF and HF components are also determined to
compare the HRV obtained from the proposed algorithm with the reference HRV from
the PPG signal. The results in Table 4.5 suggests a high correlation between both the
HRYV estimates for the LF and HF components. Therefore, similar to the time-domain
HRV measures, the frequency-domain HRV measures also demonstrate a high similarity

between the HRV derived from the acoustic signal and the PPG signal respectively.

4.7 Conclusion

In order to demonstrate the possibility of extracting the HRV from the acoustic signals
recorded at the wrist, an algorithm based on the relative energies of the short- and the
long-term signal content was proposed. The algorithm identified three different charac-
teristic points to find the temporal location of the S1 waveforms on a beat-by-beat basis
in the acoustic signal. The IHR and IBI profiles obtained from the proposed algorithm
for 12 subjects were compared with the gold standard ECG and PPG signals respectively
and a high degree of statistical agreement and correlation for the time-domain HRV was
obtained. The comparison of the frequency-domain HRV measures obtained from the
acoustic signal with the reference PPG signal also proved that the proposed algorithm
can reliably detect the instantaneous changes in the IBI time-series.

Finally, the computational complexity of the proposed algorithm is determined by
analysing the complexities of its individual blocks. Although the HRV in this study was
derived from the short-term acoustic recordings, the algorithm incorporated low complex-
ity in its design to be operated over 24-hour acoustic signals with limited computational
resources. The computational complexity of calculating the coefficient vector and the
output signal are found to be O(n), where n represents the size of the input acoustic sig-
nal. The algorithm was implemented in MATLAB version R2018a on a 64-bit Windows
7 operating system with an i7-6700, 3.40 GHz processor. The run time of the algorithm
to derive the IHR and IBI time-series for a 5 minute acoustic signal varied between 2
and 3 seconds depending on the number of corrupted segments ignored for the further

processing.
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5 Blood pressure measurement by

sensing Korotkoff sounds at the wrist

5.1 Introduction

The previous chapters showed how the heart rate and heart rate variability can be con-
tinuously monitored from the acoustic sensing of the pulse sounds at the wrist. Another
important physiological marker associated with the diagnosis of cardiovascular diseases is
the blood pressure. The gold standard approach of measuring the blood pressure utilises
the auscultation of the Korotkoff sounds at the upper-arm by placing a stethoscope under
the air cuff. However, the auscultation of Korotkoff sounds by a human observer requires
intensive training and adequate hearing. Due to the human involvement, several sources
of error can affect the blood pressure readings significantly [1]. Other blood pressure
monitoring techniques as discussed in Section 1.3.1 also exist. Among these techniques,
the oscillometric method addresses the drawbacks of the auscultation method by remov-
ing the human involvement and introducing the automation and user-friendliness in the
blood pressure measurement. The method is based on sensing the pressure oscillations
during the deflation of the air cuff, and establish a correlation of the oscillation envelope
with the blood pressure. Unlike the auscultation method, there is no direct correlation
between the oscillometric waveform envelope and the systolic blood pressure (SBP) and
diastolic blood pressure (DBP) readings. The blood pressure is generally estimated us-
ing empirically-derived coefficients which might not be reliable for a diverse population
in different measurement scenarios [2]. It would be ideal to combine the accuracy and
reliability of the auscultation method with the automation and user-friendliness of the
oscillometric technique. For the first time in the literature, the acoustic sensing of the
pulse sounds at the wrist is studied during the inflation of the air cuff to correlate the
appearance and disappearance of the Korotkoff sounds with the DBP and SBP respec-
tively. While the acoustic signals are recorded automatically using the proposed wearable
device, a separate pressure control system designed to inflate the cuff also operates au-
tomatically. Studying the Korotkoff sounds during the cuff inflation reduces the time
period during which an external pressure is applied on the arterial branch. This makes
it less uncomfortable for the subject requiring multiple readings throughout the day and
also reduces the chances of any internal arterial damage.

In the following section, the hardware design and its components for the step-wise
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inflation of the air cuff is discussed. A subsequent discussion on the temporal and spectral
characteristics of the acoustic signal recorded during the cuff inflation is provided. This
is followed by a detailed explanation of the different algorithmic stages for the DBP and
SBP determination. Finally, the performance of the proposed DBP and SBP algorithms
are assessed by establishing a comparison of the experimental blood pressure readings

with the reference upper-arm and wrist blood pressure monitors respectively.

5.2 Hardware development for step-wise pressure inflation

The characterisation of the acoustic signal recorded at the wrist with varying pressure
levels can be studied only when different pressure steps can be applied externally in
a non-invasive and an automatic manner. This has been made possible by designing
and developing a fully-automated pressure control system to generate varying levels of
pressure by pumping air inside the air cuff. The hardware shown in Fig. 5.1 consists of

the following off-the-shelf components with their associated functionalities.

1. Air pump: An air pump from Koge Micro Tech Co. Ltd was used to pump the air
inside an inflatable air cuff. The pump operates at 6 V and provides a maximum

flow of 1.9 litres/min up to a maximum pressure of 600 mmHg.

2. Air valve: A solenoid air valve from Koge Micro Tech Co. Ltd was used to control
the passage of air in an out of the air cuff. The valve can sustain a maximum
pressure of 350 mmHg and operates at 6 V with an exhaust speed of less than 6
seconds from 300 mmHg to 10mmHg in a 500 cc tank. The valve of normally closed

state was chosen to reduce the power consumption while inflating the air cuff.

3. Pressure sensor: An amplified analogue gage pressure sensor from Honeywell In-
ternational Inc. was used to sense the pressure variations inside the air cuff. The

pressure sensor operates at 3.3 V and produces readings between 0 and 260 mmHg.

4. Nordic nrf52 series microcontroller: The nrf52 chip operating at 3.3 V acts as the
central block of the system and controls the operation of the air pump and the
air valve depending on the pressure readings fed by the pressure sensor. The chip,
therefore, regulates the volume of the air inside the air cuff. The inbuilt ADC of
the chip converts the analogue readings of the pressure sensor and stores them into

an SD card at a sampling frequency of 100 Hz.

5. Battery: An alkaline battery of 9 V was used to supply the power to the pressure
control system. Since the components operated at two different voltage levels, a
voltage regulation at 3.3 V and 6 V was performed by using appropriate voltage
regulators on the PCB.
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6. Inflatable air cuff: Different sizes of the inflatable air cuffs from Welch Allyn Inc.
were used depending on the arm circumferences of the subjects. The cuff sizes for

the adults were chosen in compliance to the international protocols as follows:
e Small Adult: 20-26 cm
o Adult: 25-34 cm
e Large Adult: 32-43 cm
e Thigh: 40-55 cm

7. Tubing: The installation of appropriate silicone tubing along with the connectors

was done to ensure no leakage of air to sense the correct pressure inside the air cuff.

Based on the assumption that the DBP for a subject will not fall below 40 mmHg, the
system is programmed to inflate the air cuff at a higher rate up to 40 mmHg pressure
level. Thereafter, a step-wise inflation is performed at a rate of around 2-3 mmHg/s up to
a maximum pressure of 20-30 mmHg higher than the entry SBP of the subject. Once the
maximum pressure inside the air cuff is reached, the air valve is opened and the pressure
is released. The design also incorporated a mechanism of releasing the air immediately

at any time in case the subject feels uncomfortable with the pressure inflation.

|

il

Inflatable Air Cuff

\\\\\B\\\\".x

Figure 5.1: Pressure control system to apply varying pressure levels on the site under test.
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5.3 Studying the variation of the acoustic signal with the

inflating pressure levels

The traditional auscultation method measures the blood pressure of a subject by listening
to the different phases of the Korotkoff sounds generated within the brachial artery at
the upper arm using a stethoscope/ microphone. These phases of the Korotkoff sounds
generated at different pressure levels tend to have energy contained within 600 Hz [3]-[6].
The spectral analysis of the acoustic signal in Section 3.2 demonstrated the presence of
acoustic features superimposed on the pulse wave component propagated from the heart.
These acoustic features in absence of any external pressure on the arterial branch have
frequency content mainly below 25 Hz, a range in the lower human threshold of hearing.
Although it is difficult for a physician to listen to these sounds at the wrist using a
stethoscope, the presence of acoustic features in the pulse sounds reveal a possibility of
recording the Korotkoff sounds from the radial artery using a microphone. To test such
a hypothesis, the acoustic signal at the wrist is recorded continuously in synchronisation
with varying pressure levels applied on the arterial branch. Since the wearable device to
record the pulse sounds at the wrist was designed as a standalone system, the air cuff is
placed on the upper arm to avoid the damage of device under the application of pressure
on the PCB. The placement of air cuff on the upper arm also avoids the interference from
cuff movements during inflation and allows a better characterisation of the acoustic signal
at varying pressure levels. As an illustration, Fig. 5.2 plots the variation of the acoustic
signal over an inflation period of approximately 45 seconds. For the first 10 seconds of the
recording, the acoustic signal is recorded in the absence of an externally applied pressure.
Thereafter, the pressure signal quickly jumps to a level around 40 mmHg and a gradual
step wise inflation of the air cuff at a rate of 2-3 mmHg/s is subsequently performed.
The pressure is incremented up to a level of 20-30 mmHg higher than the entry SBP of
the subject. Since the pressure is incremented with short bursts of air flow inside the air
cuff, small oscillations in the pressure signal can be observed. The post-processing of the
pressure signal removes these oscillations and estimates a monotonic pressure profile from
40 mmHg to the maximum pressure. As soon as the maximum pressure level inside the
air cuff is reached, the air is allowed to flow outside and a zero pressure level is reached
within a span of few seconds as shown in Fig. 5.2(a).

The time-domain visualisation of the acoustic signal in Fig. 5.2(b) reveals a significant
variation in the amplitude of the S1 and the S2 sounds with varying pressure levels.
In the regions of zero external pressure, it can be observed that the S1 and S2 sounds
possess similar amplitude and shape characteristics. However, the characteristics of these
sounds tend to change significantly during the inflation period. The positive normalised
amplitudes of the S1 sounds increases up to a maximum level and decreases with further

increments in the pressure levels. On the contrary, the negative normalised amplitudes
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Figure 5.2: Variation in the acoustic signal with respect to the inflating pressure inside the air
cuff. (a) Pressure applied on the arm increases between zero and a value above
the systolic blood pressure. (b) Acoustic signal recorded from the radial artery in
synchronisation with the pressure signal. n.u. denote the normalised units. (c)
STFT analysis of the varying time-frequency characteristics of the acoustic signal.

of the S1 sounds only increase by a smaller magnitude and tend to decrease continuously
with the rising levels of the pressure. While the S2 sounds seem to disappear earlier,
the S1 sounds disappear only after the full occlusion of the brachial artery in the upper
arm. It can also be observed that the pulse sounds appear as soon the pressure decreases

below the SBP during the air release from the air cuff. This happens due to the rush
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of blood flow inside the radial artery transferring vibrations to the skin surface that are
picked up by the microphone.

The spectral characteristics of the acoustic signal plotted in Fig. 5.2(b) are obtained
using a joint time-frequency domain STFT analysis similar to the one performed in
Section 3.2. The STFT of the acoustic signal sampled at 2100 Hz is obtained using a
Blackman window of 256 samples and 50% overlap between the consecutive frames. The
resultant grids in Fig. 5.2(c) demonstrates the power distribution of the signal in the
joint time-frequency space. The intensity of the power grids is represented by the colour
bar where the yellow and the blue colour denote the maximum and the minimum power
densities respectively. While the S1 sounds in the regions with zero pressure carry power
mainly below 25 Hz, the spectral energy starts to spread across higher frequencies above
a certain pressure level. The S1 sounds falling in the middle part of the pressure inflation
profile carry significant power above 25 Hz as shown in Fig. 5.2(c). Therefore, the STFT
analysis suggests that the acoustic signal produces S1 sounds in the audible range with
varying levels of pressure applied on the arterial branch. Although the disappearance of
the S1 sounds above the SBP causes a significant drop in the spectral energy, the motor
noise transferred via the air flow also contributes some power in the STFT analysis. The
motor noise, however, is minimised by using the wavelet denoising of the acoustic signal
as discussed in later sections of this chapter.

The STFT analysis of the acoustic signal provided a broader view of the power dis-
tribution in the joint time-frequency space. A better spectral analysis of the acoustic
signal can be obtained by finding the spectral content of the S1 sounds in isolation. The
pressure profile in Fig. 5.3(a) is obtained after removing the small oscillations caused by
the step wise inflation of the air cuff. The acoustic signal displayed in Fig. 5.3(b) behaves
in an opposite manner to the acoustic signal plotted in Fig. 5.2(b). In this case, the
negative normalised amplitudes of the S1 sounds increases up to a maximum level and
decreases with further increments in the pressure levels, whereas the positive normalised
amplitudes tend to decrease continuously with the rising levels of the pressure. There-
fore, the amplitude envelopes of the acoustic signal can behave differently for different
subjects. The zero-crossings of the S1 sounds falling within the pressure inflation region
are found using the relative energy algorithm proposed in Section 4.5. A total of sixteen
S1 sounds are extracted from the acoustic signal by taking a time-window of 0.15 seconds
on either sides of the zero-crossings. The frequency response of these sounds, sampled
at 2100 Hz, is obtained using the FFT and plotted in Fig. 5.3(c)-(r). It can be observed
that the frequency content of the first few S1 sounds mainly fall below 25 Hz suggesting
that the application of lower pressure levels does not affect the spectral characteristics of
the acoustic signal significantly. However, further increments in the pressure levels tend
to decrease the spectral content in the lower frequencies and start pushing the energy

towards the higher frequencies as observed before in the STFT analysis. The spectral
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Figure 5.3: Frequency spectrum of the S1 sounds in the acoustic signal. (a) Pressure inside
the air cuff increases between zero and a value above the systolic blood pressure.
(b) Time-domain acoustic signal with numbered S1 sounds of interest. (c)-(r) FFT
of the sixteen S1 sounds marked in the acoustic signal. The FFT coefficients are
plotted in absolute units.

content of several S1 sounds in this case reaches around 100 Hz, therefore, introducing
significant energy in the audible range. The spectral energy reduces to a minimum for
the peaks detected after the SBP level as shown in Fig. 5.3(r). In conclusion, both
the STFT and the FFT analysis suggests the presence of Korotkoff sounds with spectral

energies in the audible range when the pressure on the upper arm is varied below the
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DBP to above the SBP to cause a full occlusion of the artery.

5.4 Algorithm for determining the diastolic blood pressure

The blood pressure measurement using the auscultation method requires a trained clin-
ician to listen to the appearance and disappearance of the Korotkoff sounds during the
cuff deflation. While the appearance of the first Korotkoff sound correspond to the rush
of blood flow as soon as the full occlusion of the arterial branch is removed, the Ko-
rotkoff sounds disappear only when the blood flow through the artery returns to the
normal state. Since the blood flow is essentially preceded by a pressure wave, the Ko-
rotkoff sounds produces vessel vibrations which manifest themselves as S1 sounds in the
acoustic pulse signal. Therefore, the algorithm for blood pressure determination in this
study identifies the S1 peaks corresponding to the appearance and disappearance of the
Korotkoff sounds, and correlate it with the blood pressure by matching the time-stamps
with the pressure profile. The order of different phases of the Korotkoff sounds during
the cuff inflation is exactly opposite to the one observed during the cuff deflation. While
the appearance of the first Korotkoff sound during the cuff inflation corresponds to the
DBP, the disappearance of the Korotkoff sound relates to the SBP (or full occlusion of
the artery). Due to the importance of identifying all the S1 peaks (during the cuff infla-
tion) for determining the SBP/ DBP accurately, it is desirable to minimise the noise by

pre-processing the acoustic signal.

5.4.1 Pre-processing the acoustic signal

Studying the characteristics of the acoustic signal over the full occlusion of the artery
required a precise localisation of the S1 peaks during the cuff inflation. The S1 peaks
are identified using the relative energy algorithm proposed in Section 4.5. Since the
relative energy algorithm works efficiently in cases where the short-term events of the
S1 waveforms are characterised by a local change in the amplitude, it is important to
minimise the noise in the baseline of the signal. Further constraints are imposed by
the peaks lying in the high pressure regions where the peak-to-peak amplitudes of the
S1 sounds become really low as shown in Fig. 5.2(b). The baseline noise in the signal
is mainly introduced by the motor noise that is sensed by the microphone through the
surrounding environment and the skin surface vibrations caused by the air flow.

The FFT of the S1 peaks in Fig. 5.3 demonstrated the spectral content of the isolated
S1 sounds to lie below 150 Hz. Thus, a fifth-order Butterworth low pass filter with
cut-off frequency of 150 Hz is used to remove the high frequency components from the
acoustic signal. Since the acoustic signal is originally sampled at 2100 Hz (fs), the filtered
signal is downsampled by a factor of 6, reducing the sampling frequency down to 350

Hz (fd). The downsampling, without introducing any aliasing in the signal, reduces the
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number of computational cycles required for the further processing. While the low pass
filtering removes the high frequency noise and interference from the signal, it is unable
to eliminate the motor noise since its spectral energy falls below 100 Hz. The effect
of motor noise is reduced by using the wavelet denoising with ‘db6’ as the orthogonal
wavelet. The denoising is accomplished by using a fifth-level wavelet decomposition of
the low pass filtered signal y followed by a soft thresholding of the detail coefficients using
a universal threshold of \/m . A third-order median filtering is subsequently
used to remove the impulsive spikes from the signal. As an illustration, the motor noise
clearly visible in the baseline of the original signal in Fig. 5.4(a) makes it difficult for an
accurate identification of the S1 sounds in later stages of the algorithm. The motor noise
is significantly reduced in the pre-processed signal as shown in Fig. 5.4(b) and a better
SNR is obtained.
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Figure 5.4: Pre-processing the acoustic signal to reduce the noise content. (a) Original acous-
tic signal with significant interference from the motor noise. (b) Reduction of the
external interference using low pass filtering, downsampling, wavelet denoising and
median filtering.

5.4.2 Artifact removal and missed peaks detection

The hand movements during the blood pressure measurement can introduce artifacts in
the signal that might not be removed by the pre-processing stage of the algorithm. These
artifacts can interfere with the S1 peaks as shown by the blue circles in Fig. 5.5(a) and
possibly lead to an inaccurate localisation of the S1 sounds. Therefore, the S1 sounds
must be differentiated from the artifacts in the signal. The time-stamps of the S1 sounds

in the pre-processed signal are marked as the negative characteristic points for the reasons
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explained later. For an accurate determination of the blood pressure, it is also important
to detect the missed S1 peaks marked by the magenta circles in Fig. 5.5(a). These
peaks remain undetected because of significant variation in the amplitude envelope of
the acoustic signal. This was not the case with the acoustic signal recorded in absence of
any external pressure as both the positive and the negative amplitudes of the S1 sounds
remained approximately constant throughout the recording. Since the acoustic signal in
such scenario had a bandwidth of 25 Hz, the peak detection using the relative energy
algorithm is repeated by low pass filtering the original signal with 25 Hz as the cut-off
frequency. A relatively less amplitude variation in the acoustic signal filtered with 25
Hz as shown in Fig. 5.5(b) can be observed. For a better visualisation, the positive
characteristic points of the detected S1 peaks are marked. The peaks detected in this
signal are more reliable as erroneous peaks from the original signal are already removed.

The missed S1 peaks in the original signal are also detected in the 25 Hz signal. The
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Figure 5.5: Identification of the erroneous peaks and missed S1 peaks in the acoustic signal. (a)
S1 peaks detected by the relative energy algorithm. The peaks in the blue and ma-
genta circles are the erroneous and missed peaks respectively. (b) S1 peaks detected
by the relative energy algorithm in acoustic signal low-pass filtered with 25 Hz. (c)
The peaks in (b) are utilised to remove the erroneous peaks and trace back the missed
S1 peaks in the acoustic signal.
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time-stamps of the S1 peaks in the 25 Hz signal are utilised to remove the erroneous peaks
and trace back the missed S1 peaks in the pre-processed acoustic signal as shown in Fig.
5.5(c). Any extra peaks detected in the 25 Hz signal are also matched with the original
signal as they are dealt in further stages of the algorithm. Since the heart rate in a range
of 40 to 200 bpm is considered, it is ensured that the inter-beat intervals corresponding to
the consecutive S1 peaks produce a heart rate within these limits. Otherwise, an analysis

similar to the one in Section 3.5.4.2 is performed to remove the redundant peaks.

5.4.3 Feature signals to find the diastolic blood pressure
5.4.3.1 Amplitude envelope

The relative energy algorithm provided a functionality of detecting the positive peaks, the
zero-crossings and the negative peaks as three different characteristic points of S1 sounds
in the acoustic signal. The amplitude envelopes of the acoustic signal are simply obtained
by finding the positive and negative characteristic points of the S1 sounds shortlisted
after identifying the artifacts. It can be observed that while the positive amplitudes
of the acoustic signal in Fig. 5.6(b) only increase by a small margin before decreasing
continuously with the rising levels of pressure, the negative amplitudes demonstrate a
significantly larger variation in the envelope. This is evident in the upper and lower
envelopes plotted in Fig. 5.6(d)-(e) respectively, where the amplitudes of all the S1
sounds before 40 mmHg have been zeroed as they are ignored for the further processing.
The envelopes have been processed by adopting a fifth-order median filtering to obtain
a smoother profile. Among these two envelopes, the envelope with larger amplitude
variation is used as one of the feature signals to determine the experimental location of
the DBP. Since the lower envelope in Fig. 5.6 is chosen as the feature signal, the negative

characteristic points are marked in the original acoustic signal to represent this choice.

5.4.3.2 Energy envelope

The spectral characteristics of the S1 sounds in the acoustic signal vary significantly in
relation to the pressure applied on the arterial branch as demonstrated in Section 5.3.
Such a variation can be utilised to find a correlation with the blood pressure. For N
number of S1 sounds detected in the acoustic signal, the corresponding zero-crossings
are found using the relative energy algorithm. These zero-crossings, denoted by z, for
n € [1, N], are used to extract all the S1 waveforms by choosing a rectangular window of

0.3 seconds duration centred at the characteristic point as follows:

V nell,N]

(5.1)
Sl, =y [zn — 0.15: 2, + 0.15]
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Figure 5.6: Energy and amplitude envelopes of the Korotkoff sounds with peaks marked in the
negative side of the acoustic signal. (a) Pressure applied on the arm increases
between zero and a value above the SBP. (b) Pre-processed acoustic signal with all
the S1 peaks identified. (c) Energy envelope of the Korotkoff sounds falling after the
40 mmHg pressure level. The experimentally determined Korotkoff sound location
for DBP determination is also plotted along with the reference wrist and reference
arm DBP location. An error of 5 and 1 mmHg was obtained with respect to the
wrist and arm DBP references respectively. (d) Amplitude envelope of the negative
amplitudes (lower envelope) of the S1 peaks falling after the 40 mmHg pressure level.
The bounds used in the proposed algorithm are also plotted. (e) Amplitude envelope
of the positive amplitudes (upper envelope) of the S1 peaks falling after the 40 mmHyg
pressure level.
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The frequency spectrum of these isolated S1 waveforms are obtained using the FFT
as shown in Fig. 5.3. Depending on the frequency band, the absolute spectral energy
corresponding to a S1 waveform can be obtained by summing up all the FFT coefficients
falling within the defined frequency range. While the absolute energy envelope can be
used as a feature signal to establish a correlation with the blood pressure, the normalised
energy proves to be a better choice for determining the experimental location of the
DBP. The normalisation is performed by dividing the spectral energy of the S1 sound
with its peak-to-peak amplitude. This way the effect of amplitude modulation on the
energy envelope is minimised allowing the algorithm to be more robust for the DBP
determination. Since the DBP of an adult subject is assumed to be greater than 40
mmHg, all the S1 sounds lying before reaching this pressure level are ignored for the
further processing and the corresponding energies are zeroed. As an illustration, the
normalised energy envelope of 33 S1 sounds in a spectral band of 50-110 Hz is plotted
in Fig. 5.6(c), where the energy of first 16 S1 sounds are zeroed. The envelope has been
processed by adopting a fifth-order median filtering to obtain a smoother profile. The
energy profile reveals that while the acoustic signal maintains a baseline energy for the
first few S1 sounds as shown by the dashed line in Fig. 5.6(c), the energy jumps up with
further increments in the pressure levels to reach a maximum value. Any further occlusion

of the arterial branch causes the energy of the S1 sounds to decrease significantly.

5.4.3.3 Diastolic band analysis of the S1 sounds

To use the normalised energy envelope as one of the feature signals, it is important to
identify a suitable spectral band that correlates with the experimental location of the
DBP [7]. Since the bandwidth of the acoustic signal is around 150 Hz, a wide-band
analysis of the S1 sounds is performed using five different frequency bands as follows:
10-30 Hz, 30-50 Hz, 50-80 Hz, 80-110 Hz and 110-150 Hz. A total of 35 acoustic signals
are randomly selected from the database recorded for this study. The normalised energy
envelopes corresponding to these signals are computed in all the spectral bands. The
correlation of the spectral bands with the reference DBP (obtained from the commercial
monitor) can be established by observing the behaviour of the energy envelopes in its
immediate surrounding. Therefore, only seven S1 sounds centred at the reference DBP
are chosen for the wide-band analysis. As an illustration, the energy amplitudes in
different spectral bands centred at the reference DBP (215 S1 sound in the acoustic
signal) for a subject are plotted in Fig. 5.7. Similar plots from all the 35 acoustic
signals are obtained for the wide-band analysis. The normalised energy amplitudes of
these seven S1 sounds are examined to identify the spectral bands that demonstrate a
significant increase in the energy when transitioning from before to after the reference
DBP. In Fig. 5.7, it can be observed that while the normalised energy in the spectral
bands of 30-50 Hz and 50-80 Hz remains almost constant before the reference DBP, the
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energy increments to higher amplitudes for S1 sounds lying after the reference DBP.
This observation supports the hypothesis that the generation of Korotkoff sounds after a
certain pressure level produces a sudden jump in the energy as compared to the baseline
energy of the S1 sounds. However, this behaviour is not apparent in all the spectral
bands.
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Figure 5.7: Wide-band analysis of the normalised energy envelope in different frequency bands
for the DBP determination. Normalised energy of seven S1 sounds centred at the
reference DBP are plotted.

The energy increments (R;) in a specific spectral band are calculated as the ratio of

consecutive energy amplitudes (E,) as follows:

vV n € [1,6] in [f1,2] Hz

Enia (5.2)

R, {f1,2} =

n

Among every plot corresponding to the 33 acoustic signals, the frequency bands are rank
ordered to find the most suitable band for establishing a correlation with the reference
DBP. For every spectral band, the S1 location corresponding to the maximum energy
ratio is determined and the bands are rank ordered depending on the closeness of the
S1 location with the reference DBP. In cases where multiple bands produces maximum
energy ratio corresponding to the same S1 location, the band with a higher value of energy
ratio is placed at the higher preference. Since the introduction of the first Korotkoff sound
in the acoustic signal is characterised by a higher energy amplitude than the previous
S1 sound, only ratios greater than 1 are included in this analysis. The first three ranks

awarded to different frequency bands with respect to reference arm and wrist DBP are
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listed in Table 5.1. The feature band is determined by considering the sum of only the
first and second ranks. Based on the rank ordering, it can be observed that for both the
arm and the wrist references, the spectral bands of 50-80 Hz and 80-110 Hz arise as the
best choices. Therefore, the spectral band of 50-110 Hz in combination demonstrates the
highest amplitude increase in the energy envelope when transitioning from before to after
the reference DBP. Hence, the algorithm uses the normalised energy envelope computed
in the spectral band of 50-110 Hz as another feature signal to find the experimental
location of the DBP.

Table 5.1: Rank ordering the frequency bands as the best spectral feature band for determining
the DBP. The bands are compared for a total of 35 files and ranked according to
the closeness of the mazimum energy ratio with the DBP location obtained from the
commercial arm and wrist monitor.

Reference | Frequency Band Rank Order Total
First Second Third

10-30 Hz 1 1 1 2

30-50 Hz 3 7 6 10

Arm 50-80 Hz 12 12 10 24
80-110 Hz 12 11 8 23

110-150 Hz 7 4 10 11

10-30 Hz 0 2 3 2

30-50 Hz 4 5 7 9

Wrist 50-80 Hz 10 14 8 24
80-110 Hz 11 12 7 23

110-150 Hz 10 2 10 12

5.4.4 Utilising the feature signals to identify the S1 sound
corresponding to the diastolic blood pressure

The feature signals extracted from the acoustic signal provide substantial information to
find the DBP experimentally. The goal is to find the temporal location of a suitable S1
sound which when correlated with the pressure signal provides an accurate DBP. Since
this is the first time in the literature that an acoustic signal recorded at the wrist has
been used to determine the blood pressure, the algorithm design is mainly based on
empirical observations. In the traditional auscultation method, a laminar flow of blood
is achieved when the cuff is deflated to a level just below the DBP [8], [9]. The acoustic
signal in this study is recorded during the cuff inflation, therefore, any disturbance to
the laminar blood flow is caused only after the DBP. While no consensus on the origin

of Korotkoff sounds has been reached in the literature, the cuff inflation beyond the
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DBP affects the fully expanded state of the artery causing changes in the amplitude and
frequency of the vessel wall vibrations [10]. An obstruction to the normal blood flow
causes the pressure wave to exhibit higher force on the arterial walls. These changes in
the vessel wall vibrations during the cuff inflation are sensed by the microphone producing
different amplitude and energy characteristics of S1 sounds in the acoustic signal. An
empirical observation of the acoustic signal in Fig. 5.6 already suggested an increment
in the amplitude envelope when transitioning from before to after the reference DBP. A
similar conclusion is made for the acoustic signal in Fig. 5.8 where the upper envelope
is chosen as the feature signal for DBP determination. The positive characteristic points
are marked in the original acoustic signal to represent this choice.

Instead of processing all the S1 sounds in the acoustic signal for DBP determination,
the amplitude envelope selected as the feature signal is utilised in the following manner

to shortlist only a few S1 sounds:

1. Firstly, the maximum value (A;,q;) of the amplitude envelope A,, for n € [1, N] is

determined.

2. All the S1 sounds satisfying the following condition are accepted.

V nell,N]

g1 Accepted, if A, > 0.5 X Apaz (5.3)
" Rejected, otherwise

3. Only S1 sounds selected above that lie within +5 beats of the A4, location are

included for the further analysis.

Using the above criteria, the shortlisted S1 sounds corresponding to the lower envelope
in Fig. 5.6(d) are bounded by the blue asterisks. All the S1 sounds at and between these
bounds (18 to 28) are included for the DBP determination. A different set of S1 bounds
(27 to 38) are obtained for the upper envelope in Fig. 5.8(d).

The wide-band analysis of the S1 sounds suggested a sharp increment in the normalised
energy (50-110 Hz) around the reference DBP. While the shortlisting of the S1 sounds
in the amplitude envelope already narrowed the search region, the normalised energies
corresponding to these sounds are further utilised to search for the experimental location
of the DBP. For the S1 bounds defined by b; and b, in the amplitude envelope, the energy

ratios are computed as follows:

VY n € [by,by — 1] in [50,110] Hz

E, (5.4)
R, {50,110} = TH

n

For the energy envelopes in Fig. 5.6(c) and Fig. 5.8(c), the energy ratios are determined
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Figure 5.8: Energy and amplitude envelopes of the Korotkoff sounds with peaks marked in the

positive side of the acoustic signal. (a) Pressure applied on the arm increases be-
tween zero and a value above the SBP. (b) Pre-processed acoustic signal with all the
S1 peaks identified. (c) Energy envelope of the Korotkoff sounds falling after the
40 mmHg pressure level. The experimentally determined Korotkoff sound location
for DBP determination is also plotted along with the reference wrist and reference
arm DBP location. An error of 8 mmHg was obtained with respect to the wrist
and arm reference DBP. (d) Amplitude envelope of the positive amplitudes (upper
envelope) of the S1 peaks falling after the 40 mmHg pressure level. The bounds used
in the proposed algorithm are also plotted. (e) Amplitude envelope of the negative
amplitudes (lower envelope) of the S1 peaks falling after the 40 mmHg pressure level.
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for S1 sounds numbered between [18,27] and [27,37] respectively. Among all these energy
ratios, only the top three values (R;,1, Rm2 and Ry,3) with Ry, being the highest ratio,

are considered for the further processing. The amplitude value pairs ([AL |, A2 ], [AL,,
A2 ] and [ALl 5, A2.]) and the S1 location pairs ([I1,;, (2,1], [IL0, 12) and [IL 5, 12,5])

corresponding to these ratios are also noted. A single ratio R,, corresponding to the

maximum starting amplitude is chosen as follows:

Am = maw{A}nlv A}nza A71n3}
Ry, if A, = A71nl
Ry =1 Ry, if A, = A}nZ

R, if A, = AL,

Depending on the chosen ratio, a single S1 sound location (I,,) corresponding to the

experimental location of the DBP is found as follows:

if AL > A2
12, if AL < A2

AL, > A2
L= QM2 BAm2=m2 e g (5.6)

if Ry, = R

las 1f ALy < AT,

Lo if AL, > A2

m3 m3 = < m3 if Ry, = Ryns
12,5, if AL, < A2,

These comparisons are based on the reasoning that the S1 sound corresponding to the
DBP is characterised with an increase in the amplitude and energy, therefore, the energy
ratio corresponding to the maximum amplitude is chosen. The time-stamp of the chosen
S1 sound is extracted from the acoustic signal and the corresponding pressure value from
the synchronous pressure signal is found. This value of pressure is assumed to be the
experimental DBP of the subject. As an illustration, the S1 numbered 21 in Fig. 5.6(b)
correlates to an experimental DBP of 67 mmHg and produces an error of 5 mmHg and 1
mmHg with respect to the wrist and arm DBP references respectively. The same analysis
for the acoustic signal in Fig. 5.8 produces an error of 3 mmHg with respect to the wrist

and arm reference DBP. The 30" S1 sound is chosen as the experimental location of the
DBP.

5.5 Algorithm for determining the systolic blood pressure

The appearance of the first Korotkoff sound (Phase 1) in the traditional auscultation
method during the cuff deflation is characterised by a tapping sound. The pressure level

corresponding to the first Korotkoff sound is termed as the SBP. A precise measurement of
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the SBP requires a trained physician to deflate the air cuff gradually and read the pressure
levels on a mercury sphygmomanometer at the appearance of the first Korotkoff sound.
Since an automatic or manual cuff deflation only requires the release of air, the external
noise introduced in the stethoscope is minimum allowing an accurate measurement of
the SBP. This is not the case when measuring the SBP during the cuff inflation. The
cuff inflation in this study is carried out using a DC motor which introduces significant
noise into the sensing system either through the surrounding environment or through the
air flow irrespective of the pressure levels. On the contrary, the temporal characteristics
of the acoustic signal indicated a significant drop in the amplitudes of the S1 sounds
with the rising pressure levels. These factors in combination makes it difficult for the
relative energy algorithm to detect all the S1 sounds near the SBP. Unlike the S1 sounds
lying near the DBP, the S1 sounds around SBP suffer from a significant drop in the
SNR and their amplitudes are comparable to the noise levels near the full occlusion of
the arterial branch. Although the wavelet denoising in the pre-processing of the acoustic
signal reduces the motor noise significantly, there is a need of additional feature signals
to find an accurate SBP. The following section discusses different feature signals used to

find the S1 location corresponding to the SBP from the pre-processed acoustic signal.

5.5.1 Feature signals to find the systolic blood pressure
5.5.1.1 Amplitude envelope

The upper and lower amplitude envelopes are found using the positive and negative
characteristics points of the S1 sounds respectively. Among these two envelopes, the
envelope with a larger amplitude variation is used as the feature signal to determine
the experimental location of the SBP. The original envelopes are filtered using a fifth-
order median filter to obtain a smoother profile. For the acoustic signal in Fig. 5.9(b),
the lower envelope is chosen as the feature signal as represented by the markings on the
negative characteristic points. On the contrary, the upper envelope for the acoustic signal
in Fig. 5.12(b) is chosen as the feature signal and is represented by the markings on the
positive characteristic points. The original and filtered envelopes for these signals are
plotted in Fig. 5.9(d) and Fig. 5.12(d) respectively. Since the location of the S1 sound
corresponding to the experimental DBP is already known, only S1 sounds lying after
the DBP are processed further. It can be observed that the filtered amplitude of the S1
sounds decreases continuously with the rising levels of pressure and reaches a constant

minimum for the erroneous peaks detected in the noisy region above the SBP.

5.5.1.2 Systolic band analysis of the S1 sounds

The spectral characteristics of the acoustic signal in Fig. 5.3 demonstrated a significant
reduction in the magnitude of the FFT coefficients over a bandwidth of 150 Hz for S1
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Figure 5.9: Energy and amplitude envelopes of the Korotkoff sounds with peaks marked in the
negative side of the acoustic signal. (a) Pressure applied on the arm increases
between zero and a value above the SBP. (b) Pre-processed acoustic signal with all
the S1 peaks identified. (c) Energy envelope of the Korotkoff sounds falling after the
40 mmHg pressure level. The experimentally determined Korotkoff sound location
for SBP determination is also plotted along with the reference wrist and reference
arm SBP location. An error of 2 and 4 mmHg was obtained with respect to the
wrist and arm SBP references respectively. (d) Amplitude envelope of the negative
amplitudes (lower envelope) of the S1 peaks falling after the 40 mmHg pressure level.
The bounds used in the proposed algorithm are also plotted. (e) Template matching
coefficients envelope of the S1 peaks falling after the 40 mmHg pressure level. The
bounds used in the proposed algorithm are also plotted.
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sounds near the SBP. These coefficients after the full occlusion of the arterial branch
acquired much lower values due to the absence of S1 sounds as shown in Fig. 5.3(r).
The energy envelope, therefore, can be used as another feature signal to correlate the
disappearance of the S1 sounds with the reference SBP. However, a suitable spectral
band is required to extract the spectral energy from the FFT of the isolated S1 sounds.
Similar to the diastolic wide-band analysis, five different frequency bands as follows: 10-
30 Hz, 30-50 Hz, 50-80 Hz, 80-110 Hz and 110-150 Hz are chosen to compare the spectral
energies in a total of 35 acoustic signals selected randomly from the database. The energy
envelopes corresponding to these signals are computed in all the spectral bands and are
normalised with the peak-to-peak amplitudes of the S1 sounds. Since the correlation of
the spectral bands with the reference SBP can be established by observing the behaviour
of the energy envelopes in its immediate surrounding, only seven S1 sounds centred at
the reference SBP are chosen for the wide-band analysis. As an illustration, the energy
amplitudes centred at the reference SBP (28th S1 sound in the acoustic signal) are plotted
for different spectral bands in Fig. 5.10. Similar plots from all the 35 acoustic signals are
obtained for the wide-band analysis. The normalised energy amplitudes of these seven S1
sounds are examined to identify the spectral bands that demonstrate a significant energy
reduction at the reference SBP and attain a minimum energy level after the reference
SBP. Such a behaviour in Fig. 5.10 is only observed for 30-50 Hz and 50-80 Hz frequency
bands.

0.25 T T

10-30 Hz
30-50 Hz
50-80 Hz
80-110 Hz
02 110-150 Hz
— — —SI1-SBP

0.15

IEnergyl

e
4

0.05

0 1 1 1 1 1
25 26 27 28 29 30 31

#S1

Figure 5.10: Wide-band analysis of the normalised energy envelope in different frequency bands
for the SBP determination. Normalised energy of seven S1 sounds centred at the
reference SBP are plotted.

The energy decrements in a specific spectral band are calculated as the ratio of con-
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secutive energies given by Eq. 5.2. The spectral analysis of the acoustic signal showed
that the appearance of the last S1 sound at the SBP yields a slightly higher energy than
the noisy region lying above the SBP. The peaks in the noisy region as shown in Fig.
5.9(b) are intentionally extrapolated using the heart rate information to extract the en-
ergy envelope over the full pressure range. The extrapolation is explained with further
details in the next section. Since the normalised energies corresponding to the peaks
detected in the noisy region are quite similar, an energy ratio of around 1 is usually
obtained after the disappearance of the last S1 sound. However, the energies before the
SBP demonstrate a continuous reduction producing the ratios significantly lower than 1.
This observation about the energy ratios is utilised to find the most suitable band for
establishing a correlation with the reference SBP. For every spectral band, the last S1
location corresponding to an energy ratio of less than 0.9 (meaning significant reduction
in the normalised energy) before transitioning to a nearly constant energy ratio of around
1 is noted. The bands are rank ordered depending on the closeness of the detected S1 lo-
cation with the reference SBP. The first three ranks awarded to different frequency bands
with respect to the reference arm and wrist SBP are listed in Table 5.2. The feature band
is determined by considering the sum of only the first and the second ranks. Based on
the rank ordering, it can be observed that for both the arm and the wrist references,
the spectral bands of 50-80 Hz and 80-110 Hz arise as the best choices. Therefore, the
normalised energy of the S1 sounds in the spectral band of 50-110 Hz reduces from a

higher value to a constant value when transitioning from before to after the reference

Table 5.2: Rank ordering the frequency bands as the best spectral feature band for determining
the SBP. The bands are compared for a total of 35 files and ranked according to
the closeness of the maximum energy ratio with the SBP location obtained from the
commercial arm and wrist monitor.

Reference | Frequency Band Rank Order Total
First Second Third
10-30 Hz 1 3 2
30-50 Hz 2 2 8
Arm 50-80 Hz 8 17 7 25
80-110 Hz 17 6 6 23
110-150 Hz 7 7 12 14
10-30 Hz 2 3 2
30-50 Hz 2 2 8 4
‘Wrist 50-80 Hz 7 17 6 24
80-110 Hz 18 6 6 24
110-150 Hz 6 7 13 13
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SBP. Hence, the algorithm uses the normalised energy envelope computed in the spectral

band of 50-110 Hz as another feature signal to find the experimental location of the SBP.

5.5.1.3 Template matching coefficient envelope

The motor noise transferred during the cuff inflation introduces significant baseline noise
in the acoustic signal. While the S1 sounds around the DBP carry higher amplitudes and
energies, they suffer a significant loss of SNR when reaching the pressure levels near the
SBP. Some of these peaks around the SBP might get hidden in the baseline noise and
remain undetected by the relative energy algorithm. The loss of peaks when correlated
with the pressure signal can introduce significant error in determining the experimental
SBP. Therefore, all the S1 sounds occurring before the full occlusion of the arterial branch
must be determined. Since the relative energy algorithm works efficiently in cases where
the S1 sounds are characterised by a local change in the amplitude, the method fails to
detect the peaks near the SBP because of very low amplitudes. A new approach utilising
the morphology of the S1 sounds, instead of the amplitude, is proposed to detect the
peaks near the SBP.

In Section 4.5, the morphological variations of the S1 sounds were discussed and it
was established that the shape characteristics of the S1 waveforms for a subject does
not change over the length of the recording. However, the morphology of the S1 sounds
during the cuff inflation vary continuously as shown in Fig. 5.11. It can be observed that
while the S1 sounds maintain an approximately constant shape before the cuff inflation,

the morphology of these waveforms change significantly around the DBP. Further changes
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Figure 5.11: SI waveforms in the acoustic signal recorded from a subject (a) before cuff inflation,
(b) around the DBP, (c) before reaching the SBP. The zero crossings of these peaks
are also marked.
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to these waveforms occur before reaching the SBP. It is these changes that also reflect
in the frequency domain to introduce energies in the higher frequencies. The template
matching algorithm is used to detect the peaks near the SBP by utilising the shape of
the S1 sounds. The template matching algorithm uses an already available waveform,
also known as a template, to search and find the location of other similar waveforms in
the signal [11]-[13]. The algorithm slides the template over the signal in specific windows
to compare the cross-correlation between the template and the windowed segment of the
signal. The cross-correlation measures the similarity between a time-series x and the
shifted (lagged) copies of another time-series y as a function of the lag [14]. The polarity
of the cross-correlation coefficients define a correlation to be positive or negative.

The relative energy algorithm performs quite well in detecting the S1 sounds around
the DBP. Therefore, the S1 sound detected corresponding to the experimental location
of the DBP is used as the initial template in the template matching algorithm. For
the zero-crossing z; of such S1 sound in the acoustic signal y, the initial template Ty is
defined as follows:

To=1y [z4a —0.1: 24+ 0.1] (5.7)

A narrower window is chosen to ensure that no noisy transitions around the S1 sound are
included in the template. Since the morphology of the S1 sounds changes continuously
during the cuff inflation, the same template cannot be used to find the correlation with
the subsequent peaks. Hence, an adaptive template matching involving a continuous
adaptation of the template is used for a reliable peak detection. Another input required
for the cross-correlation is a suitable windowed segment containing the peak of interest. It
is empirically observed that the inter-beat intervals does not change significantly during
the short acoustic recordings of less than one minute for the blood pressure determination.
Therefore, the inter-beat intervals corresponding to the detected S1 sounds from the
relative energy algorithm are utilised to find the windowed segments. The peaks of

interest in the acoustic signal using the template matching algorithm are found as follows:

1. The initial inter-beat interval IBIj is calculated by taking the mean of the last three
beats lying just before the DBP.

Z?L:O (den - denfl)

IBI, =
0 3

(5.8)

2. A windowed segment W is extracted from the original signal using the initial IBI.

A relaxed tolerance is kept for an irregular heartbeat detection.

Wo=1y [Zd +0.9 xIBIp —0.1: 25+ 1.1 x IBIy + 01] (59)

3. The cross-correlation coefficient between the initial template Ty and the windowed

segment W is found. The lag corresponding to the maximum correlation coefficient
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is noted to find the best overlap between the template and the windowed segment.
The zero-crossing of the peak detected from this overlap is identified to determine

the next template.

4. The following template and the windowed segment are used in the next iteration.

T1 =Y [Zd+1 —0.1: Zd+1 + O].]
IBIL, = 0.75 x IBIy + 0.25 x (2431 — 2a) (5.10)
Wi=y [Zd+1 +09xIBI; —0.1: 2441 + 1.1 x IBI; + 0.1]

The zero-crossing corresponding to the best overlap between the template T7 and

the windowed segment W is found and the next template is determined.

5. The steps in (3) and (4) are reiterated until all the peaks falling between the DBP
and the maximum pressure level are reached. The maximum pressure is generally
20-30 mmHg higher than the entry SBP of the subject. However, the templates are
only changed when the maximum correlation coefficient obtained from the current
overlap exceeds half the value obtained in the previous overlap. This ensures that
the unreliable S1 sounds hidden in the baseline noise of the acoustic signal are not

chosen as the templates for peak detection.

6. For every iteration, the maximum correlation coefficient C, is stored and used as

another feature signal to find the experimental location of the SBP.

For the acoustic signals in Fig. 5.9(b) and Fig. 5.12(b), the peaks detected using the
relative energy algorithm and the template matching algorithm are marked by ‘x’” and ‘o’
respectively. While the relative energy algorithm is able to detect majority of the peaks
possessing higher SNR, it fails to detect the S1 sounds with lower amplitudes. On the
contrary, the template matching algorithm successfully identifies all the S1 sounds during
the cuff inflation. The peaks extrapolated using the IBIs in the noisy region provide a

critical information about the energy in the baseline of the acoustic signal.

5.5.2 Utilising the feature signals to identify the S1 sound

corresponding to the systolic blood pressure

In addition to the amplitude and the energy envelope, the SBP algorithm also uses the
correlation coefficient envelope as a feature signal. These envelopes are computed for all
the peaks detected using the template matching algorithm and lying after the DBP (in-
cluding the noisy region). The goal of the SBP algorithm is to find the temporal location
of a suitable S1 sound which when correlated with the pressure signal provides an accu-
rate SBP. The feature signals for two different types of acoustic signals are plotted in Fig.
5.9(c)-(e) and Fig. 5.12(c)-(e) respectively. Both the original and the filtered envelopes

are plotted, however, only the filtered envelopes are used for the further processing.
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Energy and amplitude envelopes of the Korotkoff sounds with peaks marked in the
positive side of the acoustic signal. (a) Pressure applied on the arm increases be-
tween zero and a value above the systolic blood pressure. (b) Pre-processed acoustic
signal with all the S1 peaks identified. (c) Energy envelope of the Korotkoff sounds
falling after the 40 mmHg pressure level. The experimentally determined Korotkoff
sound location for SBP determination is also plotted along with the reference wrist
and reference arm SBP location. An error of 0 and 6 mmHg was obtained with re-
spect to the wrist and arm SBP references respectively. (d) Amplitude envelope of
the positive amplitudes (upper envelope) of the S1 peaks falling after the 40 mmHg
pressure level. The bounds used in the proposed algorithm are also plotted. (e)
Template matching coefficients envelope of the S1 peaks falling after the 40 mmHg
pressure level. The bounds used in the proposed algorithm are also plotted.
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During the cuff inflation, the SBP is characterised as the disappearance of the pulse or
the S1 sound. The S1 sounds disappear due to the complete blockage of the blood flow
when an external pressure applied on the arterial branch exceeds the maximum arterial
pressure. Therefore, if the noise inherent to the system and the surrounding environment
is zero, then the amplitude and the energy of the S1 sounds transition from a finite value
to a zero value when moving from before the SBP to after the SBP. Due to the presence
of motor noise and noise inherent to the wearable device, the acoustic signal has a finite
amplitude and energy even after the full occlusion of the artery. It can be observed that
all the feature signals in Fig. 5.9 and Fig. 5.12 obtain a minimum value corresponding
to the peaks detected in the noisy region. Similar to the DBP algorithm, firstly a narrow
region of interest among N number of detected peaks, is searched using the amplitude
(A;) and the correlation coefficient (CC),) envelope. These features for the peaks in the
noisy region (i.e. above the SBP) take similar values and produces a ratio quite close
to 1. However, the amplitude and the correlation coefficient for the last S1 sound near
the SBP are large enough than the noisy peaks such that a ratio significantly less than
1 is obtained. The minimum amplitude A,,;, and the minimum correlation coefficient

CChyin are calculated as follows:

Amin = mean{Ayn, AN_1, AN_2}

(5.11)
Ccmm = mecm{CCN, CCN_l, CCN_Q}

For both the feature signals, the last peak that has an amplitude greater than 1.1X A,
and 1.1xCC),;, respectively, and has a ratio less than 0.9 is chosen as the centre point
of the envelope bounds. All the peaks that lie within +3 beats of both the centre points
are included for the further analysis of determining the SBP. For example, the bounds
for the amplitude and the correlation coefficient envelopes in Fig. 5.9 are between [30,36]
and [29,35] respectively. These bounds for the acoustic signal in Fig. 5.12 are between
[52,58] and [50,56] respectively.

The bounds calculated using the amplitude and correlation coefficient envelopes nar-
rowed the region to search for the S1 sound location corresponding to the SBP. For the
acoustic signals in Fig. 5.9 and Fig. 5.12 respectively, only peaks that are numbered
between [30,35] and [52,56] are processed further. Among the shortlisted peaks, the last
peak that has an energy ratio less than 0.9 is chosen as the S1 sound corresponding to
the SBP. The time-stamp of the chosen S1 sound is extracted from the acoustic signal
and the corresponding pressure value from the synchronous pressure signal is found. This
value of pressure is assumed to be the experimental SBP of the subject. As an illustra-
tion, the S1 numbered 32 in Fig. 5.9(b) correlates to an experimental SBP of 114 mmHg
and produces an error of 2 mmHg and 4 mmHg with respect to the wrist and arm SBP
references respectively. The same analysis for the acoustic signal in Fig. 5.12 produces

an error of 0 mmHg and 6 mmHg with respect to the wrist and arm SBP references
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respectively. The 55" S1 sound is chosen as the experimental location of the SBP.

5.6 Experimental procedure

To assess the performance of the proposed algorithm over a diverse cohort, a total of
40 subjects were recruited at Imperial College London. The study was approved by
the local ethics committee of Imperial College London and all research was performed
in accordance with the relevant guidelines and regulations. The informed consent was
obtained from all the subjects before starting the data acquisition for the blood pressure
measurement. The subjects were also asked to provide details regarding their age, gender,
weight, height, BMI, any pre-existing diseases, arm and wrist circumferences, entry SBP
and DBP at arm and wrist respectively. The subjects characteristics in this experiment

are provided in Table 5.3.

Table 5.3: Statistical information about the participants in the data acquisition.

Parameters Mean + SD Range
Men:Women 34:6

Age (years) 23.27 +£ 4.04 20 - 41
Weight (Kg) 71.48 £ 9.83 52 - 92
Height (cm) 176.08 £ 7.90 159 - 193
BMI 23.04 £2.73 16.6 - 29.3

Arm circumference (cm) 28.32 +£2.95 22.0-33.5
Wrist circumference (cm) 16.18 £ 1.11  14.0- 18.5
Entry wrist SBP (mmHg) 114.90 + 10.57 98 - 137
Entry wrist DBP (mmHg)  74.37 £ 8.82 56 - 107
Entry arm SBP (mmHg)  115.30 £ 12.36 85 - 148
Entry arm DBP (mmHg) 70.25 £ 6.35 59 - 86
Entry heart rate (bpm) 64.63 £ 11.12 44 - 103

Data is expressed as mean = SD (standard deviation) and
range (except the gender ratio). Entry SBP/ DBP denote the

first readings obtained from the commercial monitors.

The reference blood pressure measurements were recorded using a wrist-based and an
arm-based automated oscillometric blood pressure monitor. While the reference SBP/
DBP at the upper arm were recorded using the Omron M7 Intelli IT (HEM-7322T-E)
monitor (Omron Healthcare Co., Ltd., Kyoto, Japan), the reference SBP/ DBP at the
wrist were measured using the Omron RS6 monitor (Omron Healthcare Co., Ltd., Kyoto,

Japan). The Omron M7 monitor uses an intelligent cuff wrap technology by providing
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360° accuracy from any position around the upper arm [15], [16]. The monitor also
detects any body movement and indicates if the cuff is wrapped too loose or too tight.
The monitor has been validated clinically for healthy, diabetic and pregnant subjects and
the company claims an accuracy of =3 bpm with respect to the gold standard mercury
sphygmomanometer approach. The accuracy of the monitor has also been validated
in the literature [17] where it passed the validation criteria for both the BHS and the
AAMI protocols and was recommended for professional and home-use. The Omron RS6
monitor, on the contrary, uses an inbuilt positioning sensor to locate the wrist at the
level of the heart while measuring the blood pressure [18]. The automatic detection of
the wrist position removes any error arising from the hydrostatic pressure developed due
to a vertical difference between the wrist and the heart levels. The monitor has been
validated clinically and the company claims an accuracy of +3 bpm with respect to the
gold standard mercury sphygmomanometer approach. The accuracy of the monitor has
also been validated in the literature [19] where it passed the validation criteria for the
ESH-IP 2010 protocol and was found to be suitable for home-use.

The following experimental protocol was followed during the data acquisition for all

the subjects:

1. Before the actual appointment, the subjects were asked to avoid drinking any bev-
erage or eating anything in the last 2 hours. The subjects on any medication related
to the blood pressure were also asked to avoid the intake of such medication in the

last 24 hours prior to the study.

2. The subjects at the start of the appointment were asked to sit on a chair with the
feet flat on the floor (i.e. no crossed legs) and back straight with a support. This

body state was maintained throughout the experimental procedure.

3. After recording the participant information, the subjects were asked to relax and

be silent for 5 minutes duration before taking the first blood pressure measurement.

4. The first reference reading from the left wrist using Omron RS6 monitor was
recorded by bending the elbow and raising the wrist at the level of the heart.
The inbuilt position sensor only allows the measurement when the wrist lies at the
level of the heart. Since the monitor works on the inflationary oscillometric prin-
ciple, the rising pressure levels can cause wrist movements possibly leading to the
wrong reference readings. This is avoided by providing a support to the subject’s
forearm using a small pillow. Further, the subjects were also asked to open the fist

and avoid bending the wrist or clenching the fist during the recording.

5. After 1 minute of the relaxation period, the reference reading from the upper arm

of the left hand was recorded using the Omron M7 monitor by placing the cuff at
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the level of the heart with the lower end of the cuff 2-3 ¢cm above the antecubital

fossa.

6. After 1 minute of the relaxation period, the acoustic signal from the radial artery
of the left wrist was recorded in synchronisation with the pressure signal applied
on the left arm. The wrist was positioned at the level of the heart during the
measurement. The sampling frequencies of the acoustic signal and the pressure
signal were 2100 Hz and 100 Hz respectively. Depending on the arm circumference
of the subject, a suitable cuff size as discussed in Section 5.2 was wrapped around

the upper arm.

7. Two more sets of blood pressure measurements (wrist/ arm reference readings
+ acoustic/ pressure experimental recordings) were performed for a total of 40
subjects. A relaxation period of 3 minutes was kept between two consecutive sets

of the readings.

8. The reference measurements were repeated if a difference of more than 10 mmHg

was observed between either the SBP or the DBP from the wrist and arm readings.

A total of 104 acoustic recordings along with the reference wrist/ arm blood pres-
sure readings from 40 subjects were included in the database because some subjects felt

uncomfortable after the first or second set of blood pressure measurement.

5.7 Results and discussion

The performance of the proposed algorithm to determine the DBP and the SBP from
the acoustic recordings is assessed using the Bland-Altman and the correlation analysis.
The experimental DBP and SBP are compared separately with the reference readings
from the wrist and arm blood pressure monitors. Therefore, a total of four different
plots for the DBP and the SBP comparisons are individually presented in Fig. 5.13 and
Fig. 5.14 respectively. While the Bland-Altman analysis indicate the extent of statistical
agreement between the experimental and the reference outputs, the correlation analysis
provides the degree of similarity between them. The details about these analysis methods
have been discussed in earlier chapters of this thesis.

Table 5.4 lists the performance parameters obtained from the Bland-Altman analysis
of 104 acoustic recordings from 40 subjects. A standard deviation of around 6 bpm is
obtained for the DBP estimation using the proposed algorithm with respect to both the
reference monitors. The SBP algorithm also achieves a standard deviation of approxi-
mately 6 bpm in comparison to the arm monitor. However, the SBP error with respect
to the wrist monitor is significantly higher and a standard deviation of around 9 bpm
is obtained. The percentage of samples with absolute differences less than 5 mmHg, 10
mmHg and 15 mmHg are also listed in Table 5.5. It can be observed that both the

217



15f (@ 1 20 | (c)
~_~ 10 I ) 4 - . . 1 ~ 15 .
= . 2 10}
g 5t ’ =] .
é R g 5 I rl . -.
g of : g
g 57 ' i £ 5t .
a ’ a
g -10 + g -10 E
n+2xo| | gzt : n+2xo| |
15} — ] 15 . —
I I I I’l - Xo -20 I I I "- IXU 1
60 70 80 90 50 60 70 80 90
BP Average (mmHg) BP Average (mmHg)
100 F
. - (d)
Pearson Correlation = 0.68 (b) 9() | Pearson Correlation =0.69 «
() | Fitted Line: Y =076 X + 16.9 . Fitted Line: Y = 0.88 X + 9.85
) R? = 0.47 RMSE = 6.09 ) R2 = 0.48 RMSE = 6.05
s} =
£ E80r
£ sof H
I S
= <
£ 7l £
& &
=™
% 60 | 2 60
® Data Points . ® Data Points
50} Linear Fit 1 50 } Linear Fit | |
50 60 70 80 90 100 50 60 70 80 90
BP Ground Truth (mmHg) BP Ground Truth (mmHg)

Figure 5.13: Results obtained for the DBP determination from the acoustic signal. (a) Bland-
Altman analysis for the DBP comparisons with the wrist DBP reference. (b) Cor-
relation analysis for the DBP comparisons with the wrist DBP reference. (c)
Bland-Altman analysis for the DBP comparisons with the arm DBP reference. (d)
Correlation analysis for the DBP comparisons with the arm DBP reference.

DBP and the SBP algorithms demonstrate a higher statistical agreement with the arm
monitor than the wrist monitor. A possible reasoning behind such an observation is that
the commercial wrist-based blood pressure monitors have been found to overestimate
the upper arm blood pressure [20]. While the discrepancy of the hydrostatic pressure
developed due to the wrist position in relation to the heart is minimised using the inbuilt
position sensor, the error in these monitors mainly arises because of insufficient occlusion
of the forearm arteries [21]. This was not the case with the experiment in this study

since an external pressure of 20-30 mmHg higher than the entry SBP was applied on the
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Figure 5.14: Results obtained for the SBP determination from the acoustic signal. (a) Bland-

Altman analysis for the SBP comparisons with the wrist SBP reference. (b) Corre-
lation analysis for the SBP comparisons with the wrist SBP reference. (c¢) Bland-
Altman analysis for the SBP comparisons with the arm SBP reference. (d) Cor-
relation analysis for the SBP comparisons with the arm SBP reference.

brachial artery to ensure a full occlusion.

From the algorithmic point of view, a few sources of error exist. The pressure inside

the air cuff is incremented in a staircase manner by controlling the operation of the motor

and the valve. Since the staircase pressure is approximated by a linear pressure profile

using the average values of the adjacent levels, a small pressure error can manifest when

matching the time-stamp of the S1 sound with the pressure signal. The interference

from the motor noise in a spectral band similar to the acoustic signal also affects the

performance

of the algorithm. Although the piezoelectric air pumps operating at high
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Table 5.4: Comparison results from the Bland-Altman analysis.

SBP DBP
p o LOA p o LOA
Arm 113 6.04 [-10.71,12.98] | 1.57 6.13 [-10.45, 13.59]
Wrist 250 8.90 [-14.95,19.94] | -0.43 6.37 [-12.92, 12.06]

Reference

frequencies (e.g. 25 KHz) are available in the market [22]-[25], their specifications about
the air flow and the back pressure limit their usage in the blood pressure monitoring
system. The piezoelectric pump designed and developed by Omron Healthcare Co., Ltd.,
is an exception [26], however, the pump is not available for commercial purchase. It
would be ideal to integrate a piezoelectric pump with suitable specifications in the blood
pressure monitoring system as the motor noise can simply be filtered using a low-pass
filter with a cut-off frequency of 150 Hz. Another source of error is possibly because of
the hydrostatic pressure. While the wrist is positioned at the level of the heart during
the data acquisition, the absence of an inbuilt position sensor in the hardware designed
for this study can possibly introduce errors due to the hydrostatic pressure. Since the
acoustic signal is recorded from the wrist and the pressure is applied on the upper arm,
the pulse arrival time (PAT) between the onset of pulse at the upper arm and the wrist
can also introduce small differences in synchronising the signals. However, the PAT
was experimentally calculated by placing the wearable device on the brachial artery
and a PPG sensor on the index finger to record the pulse simultaneously from both
the locations. The PAT was found to vary in the range of 100-200 ms producing an
insignificant pressure error between 0.4 to 0.8 mmHg for an inflation rate of 4 mmHg/s.
Apart from these error sources, the performance of the pressure sensor in generating
a proportional output voltage corresponding to the differential input pressure can also
introduce significant error in the blood pressure estimation. Although the accuracy of
the pressure sensor in the proposed system was validated by comparing the programmed
maximum pressure level with the obtained maximum cuff pressure, the future work will
incorporate the frequent calibration of the pressure sensor to eliminate any variation in

the sensitivity of the sensor.

Table 5.5: Percentage SBP/ DBP samples below the absolute differences of 5mmHg, 10 mmHg
and 15 mmHg respectively.

SBP DBP
Reference Absolute difference (%) Absolute difference (%)
<5 mmHg <10 mmHg <15 mmHg | <5 mmHg <10 mmHg <15 mmHg
Arm 66 93 99 70 92 98
Wrist 46 T 91 60 94 100
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5.8 Conclusion

The gold standard approach of measuring the blood pressure requires a trained clinician
to listen to the Korotkoff sounds at the brachial artery. In this chapter, the duplication
of the auscultation method has been studied on the wrist to investigate the feasibility of
recording the Korotkoff sounds from the radial artery. A total of 104 acoustic recordings
from 40 subjects were recorded in synchronisation with the pressure signal applied on
the arterial branch in a non-invasive manner. The temporal and spectral characteristics
of the acoustic signal demonstrated the presence of Korotkoff sounds during the cuff
inflation. These sounds had a bandwidth of less than 150 Hz, however, only the feature
signal obtained from the spectral band of 50-110 Hz was used to correlate with the
experimental DBP and SBP. The proposed algorithms achieved a low standard deviation
of around 6 bpm with respect to the reference blood pressure monitors. Although all the
recommendations of the BHS protocol [27] were not followed during the data acquisition
as it demands a recruitment of 85 subjects with blood pressure falling in different ranges,
an interpolation guarantees a grade of A/A for the DBP determination and a grade
of A/C for the SBP determination using the proposed algorithms with respect to the
arm and the wrist monitors respectively. Since a mean error of less than 5 mmHg and
a standard deviation of error less than 8 mmHg are obtained, the proposed algorithm
achieves a pass grade following a similar interpolation for the ANSI/AAMI/ISO protocol
[28].

In conclusion, this study showed for the first time, that the acoustic signal recorded
from the radial artery at the wrist can be used as a novel physiological signal to measure
the blood pressure of a subject. Since the acoustic signal is already recorded from a
wearable device, further improvements in the hardware design for cuff inflation using
a piezoelectric pump can allow the complete system to be integrated in a watch-like
wearable system. However, an availability of a suitable piezoelectric pump in the market

is a must for such a design to become a reality.
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6 Conclusions

6.1 Contributions

This thesis has presented the novel concept of using acoustic sensing over the radial
artery to extract cardiac parameters for continuous vital sign monitoring. To test the
validity of this principle, a miniaturised, battery-operated wireless device consisting of
a MEMS microphone has been designed. The system has a small form-factor and low
weight so that it could be easily attached to the wrist, comfortable to wear, non-intrusive,
and provide automatic and accurate representation of the instantaneous cardiac activity.
The wearable device allowed to record the heart sounds together with the pulse wave, an
attribute not possible with existing wrist-based sensing methods.

Chapter 1 introduced the impact of cardiovascular diseases on the global population
and healthcare costs. It was found that the regular monitoring of three important phys-
iological signals including the heart rate (HR), the heart rate variability (HRV) and the
blood pressure (BP) can allow an early detection, prevention and diagnosis of increased
cardiovascular risks. Based on these findings, the definitions, importance and common
techniques of monitoring these physiological markers were reviewed. This was followed
by a comparison of commercially available monitors that have been validated in the liter-
ature and were based on different measurement principles. For the HR/ HRV monitoring,
it was concluded that there is a strict need of alternative sensing mechanisms that can
simultaneously provide the user-friendliness of the photoplethysmography (PPG)-based
monitors, the accuracy of the electrocardiography (ECG)-based monitors, and a longer
operational lifetime. For the BP monitoring, similar conclusions were drawn in propos-
ing the integration of the automatic features of the oscillometry-based monitors with the
accuracy of the auscultation method by automatically listening to the Korotkoff sounds
at the wrist using the proposed wearable device.

Chapter 2 provided a brief review about the origin and components of the pulse for-
mation in the circulatory system. Among the different arterial pulse locations, the radial
artery was found to be an ideal site for pulse assessment. A comprehensive literature
review of different techniques and applications to monitor the radial pulse was presented.
The discussion on existing technologies having one or more disadvantages pointed the
acoustic sensing of the radial pulse as an attractive option for wearable applications.
Since the design and development of a wearable device imposes tight constraints on the

electrical and mechanical specifications of the system, different types of acoustic sen-
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sors, batteries, data acquisition hardware have been reviewed. Finally, the electronic
components and their specifications used in designing the wearable acoustic device were
presented.

Chapter 3 studied the temporal and spectral characteristics of the acoustic signal
recorded from the radial artery. The power spectral analysis revealed that the signal
power is mainly concentrated in the S1 and S2 sounds, with S2 sounds carrying a relatively
lower energy. The optimal sensing location on the wrist to record a signal with higher
signal-to-noise ratio was found by comparing the power spectrum of signals recorded from
the distal, middle and proximal locations of the radial artery. The noise sources were also
characterised to incorporate their removal either in the sensing system itself or the signal
processing software. Finally, a novel algorithm based on the power spectral density of
the S1 sounds was proposed to determine the average HR from the acoustic signals. A
comparison with the PPG-based reference HR and commercial monitors demonstrated
the potential of the new sensing modality to be used as an alternative, or to complement
existing methods, for continuous monitoring of HR at the wrist.

Chapter 4 provided a comprehensive literature review of the algorithms to extract the
HRYV from different types of signals and sensing locations. The importance of character-
istic points to represent a waveform of interest in the biomedical signal and determine
the HRV accurately was established. An algorithm based on short- and long-term en-
ergies of the acoustic signal was proposed to identify the time-indices of three different
characteristic points corresponding to the S1 events. The time-domain and frequency-
domain HRV parameters showed a strong correlation and high statistical agreement with
the parameters derived from PPG and ECG signals respectively. The results proved the
reliability and high accuracy of extracting the HRV parameters from the acoustic signal
recorded at the wrist.

Chapter 5 proposed to extend the novel concept of acoustic sensing at the wrist by
studying its relationship with the BP. An automatic pressure control system was designed
for the step-wise inflation of the air cuff to apply varying levels of external pressure on the
arterial branch. The temporal and spectral characteristics of the acoustic signal recorded
under the influence of external pressure were utilised to identify the relevant features for
the systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimation. The
wide-band analysis of the acoustic signals revealed the presence of maximum spectral
content of the Korotkoff sounds in the frequency band of 50-110 Hz. While the DBP
algorithm utilised the amplitude and energy envelopes as the corresponding feature sig-
nals, the SBP algorithm also included the template matching coefficient envelope to find
an association with the disappearance of the Korotkoff sounds. The experimental BP
readings were compared with the reference arm- and wrist-based monitors and a low
mean error and standard deviation of error were obtained. The results proved that the

acoustic signal recorded from the radial artery can also be used as a novel physiological
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signal to measure the BP of a subject.

6.2 Further Work

The work presented in this thesis has some advantages and disadvantages over the gold
standard approaches of monitoring the cardiovascular parameters. ECG monitoring in
the clinical settings provide a detailed cardiac information to help diagnose and monitor
conditions affecting the heart. Acoustic sensing at the wrist is obviously no substitute for
the ECG, however, the proposed wearable technology can be used for home assessment
of the cardiac activity by integrating it easily within the daily lifestyle. In relation to
PPG-based sensing, the proposed method is clearly superior in terms of the low power
consumption, low cost and high resilience to the external artefacts. Unlike PPG-based
devices, the attachment of the acoustic sensor to the wrist using a double-sided medical
adhesive tape also ensures a proper contact and durability for signal acquisition. However,
the installation of the tape can be uncomfortable for some subjects. It is worth noting
that although the proposed sensing mechanism has been tested experimentally, this thesis
presented just the proof of concept. To be used as part of a medical device, full clinical
validation would require testing on a larger cohort wearing a device based on this principle
in an ambulatory setting. This would allow not only to investigate a wider range of
cardiac signals, but also to test with real life artifacts.

Additionally, the signal processing algorithms proposed in this thesis were implemented
on a software with floating point data representation. Such an implementation does not
provide the optimal characteristics of speed and power consumption when run on a
portable device. The future work would require the conversion of floating point data to
the fixed point data while maintaining a similar accuracy for the cardiovascular monitor-
ing at the wrist.

From the hardware point of view, the wearable prototype used in the current study used
a Bluetooth channel to transmit the acoustic data. The next iteration of the wearable
design would require testing the Bluetooth transmission in different scenarios and across
different operating systems of the receiver. For the BP estimation, separate hardware
systems were used to record the acoustic signal and the pressure signal. In the future,
the availability of the suitable piezoelectric motors in the market could be utilised to
design an integrated watch-like wearable system for the BP monitoring. Therefore, a
single wearable device could be used to regularly monitor the HR, the HRV and the BP

for an early detection of the increased cardiovascular risk.
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A Permission for the third party
copyrighted works used in this thesis

Table A.1 lists the summary of the permissions taken for the third party copyrighted
works used in this thesis. Following the summary, all the permission documents are also

attached in the order of figure numbers as follows:
1. Fig 1.5: Page 231-232
2. Fig 1.6: Page 233-234
3. Fig 2.1: Page 235
4. Fig 2.3(b): Page 236-237
5. Fig 2.6: Page 238-239
6. Fig 2.7: Page 240
7. Fig 2.8: Page 241
8. Fig 2.9(a): Page 242

9. Fig 2.10: Page 243-244
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30 September 2019
Dear Official,

| am completing my PhD thesis at Imperial College London entitled ‘Acoustic sensing
as a novel approach for cardiovascular monitoring at the wrist’.

| seek your permission to reprint, in my thesis a figure from the book: “Textbook of
Medical Physiology — Volume 9” by authors Arthur C. Guyton, John E. Hall. The
extract to be reproduced is the plot of the events of the cardiac cycle for left
ventricular function (Figure 9-5) from Page 107 of the book.

| would like to include the extract in my thesis which will be added to Spiral,
Imperial's institutional repository http:/spiral.imperial.ac.uk/ and made available to
the public under a Creative Commons Attribution-Non Commercial-No Derivatives
4.0 International Licence (CC BY-NC-ND).

If you are happy to grant me all the permissions requested, please return a signed
copy of this letter. If you wish to grant only some of the permissions requested,
please list these and then sign.

Yours sincerely,

Piyush Sharma

PhD Student

Imperial College London

Permission granted for the use requested above:

| confirm that | am the copyright holder of the extract above and hereby give
permission to include it in your thesis which will be made available, via the internet,
for non-commercial purposes under the terms of the user licence.

[please edit the text above if you wish to grant more specific permission]
Signed:

Name:

Organisation:

Job title:
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05/01/2020 Gmail - Request to reproduce a figure from TE microphone's datasheet

M Gma” Piyush Sharma <sp.sharmapiyush@gmail.com>

Request to reproduce a figure from TE microphone's datasheet
1 message

Piyush Sharma <sp.sharmapiyush@gmail.com> Mon, Sep 30, 2019 at 10:19 PM

To: Brand@te.com
Hello Sir/ Mam,
| am a PhD student at Imperial College London and | used one of the TE microphones in my project. Since | am
completing my PhD thesis soon, | wanted to include the plot of the frequency response of the CONTACT
MICROPHONE CM-01B from its datasheet in my thesis. | kindly request you to grant me permission to use the plot in
my thesis by signing the attached request form as soon as possible.
Thanks!
Best Regards,
Piyush Sharma

Electrical & Electronic Engineering Department
Imperial College London

@ Request form.docx
20K

https://mail.google.com/mail/u/0?ik=7756d0311e&view=pt&search=all&permthid=thread-a%3Ar-5117034665715882588 &simpl=msg-a%3Ar-4821174224114...
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30 September 2019
Dear Official,

| am completing my PhD thesis at Imperial College London entitled ‘Acoustic sensing
as a novel approach for cardiovascular monitoring at the wrist’.

| seek your permission to reprint, in my thesis an extract from: TE contact
microphone CM-01B datasheet. The extract to be reproduced is the plot of the
typical frequency response on Page-2 of the datasheet.

| would like to include the extract in my thesis which will be added to Spiral,
Imperial's institutional repository http://spiral.imperial.ac.uk/ and made available to
the public under a Creative Commons Attribution-Non Commercial-No Derivatives
4.0 International Licence (CC BY-NC-ND).

If you are happy to grant me all the permissions requested, please return a signed
copy of this letter. If you wish to grant only some of the permissions requested,
please list these and then sign.

Yours sincerely,

Piyush Sharma

PhD Student

Imperial College London

Permission granted for the use requested above:

| confirm that | am the copyright holder of the extract above and hereby give
permission to include it in your thesis which will be made available, via the internet,
for non-commercial purposes under the terms of the user licence.

[please edit the text above if you wish to grant more specific permission]
Signed:

Name:

Organisation:

Job title:
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RightsLink Printable License

ELSEVIER LICENSE
TERMS AND CONDITIONS

Sep 30, 2019

This Agreement between Piyush Sharma ("You") and Elsevier ("Elsevier") consists of your
license details and the terms and conditions provided by Elsevier and Copyright Clearance

Center.

License Number

License date

Licensed Content Publisher
Licensed Content Publication
Licensed Content Title
Licensed Content Author
Licensed Content Date
Licensed Content Volume
Licensed Content Issue
Licensed Content Pages
Start Page

End Page

Type of Use

Intended publisher of new
work
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Number of
figures/tables/illustrations

Format

Are you the author of this
Elsevier article?

Will you be translating?

Original figure numbers

Title of your
thesis/dissertation

Publisher of new work
Expected completion date

Estimated size (number of
pages)

Requestor Location

Publisher Tax ID
Total

4678880801399

Sep 30, 2019

Elsevier

Sensors and Actuators A: Physical
A review of silicon microphones
P.R. Scheeper,A.G.H. van der Donk,W. Olthuis,P. Bergveld
Jul 1, 1994

44

1

11

1

11

reuse in a thesis/dissertation

other

figures/tables/illustrations
1

both print and electronic

No

No

Fig. 3. (a) Schematic cross-sectional view of a condenser
microphone. (b) The condenser microphone, connected to an
external d.c. bias voltage source, loaded by a parasitic capacitance
Cp, a bias resistor Rb and a preamplifier with an input capacitance
Ci

A novel approach for cardiovascular monitoring

Imperial College London
Jan 2020
1

Piyush Sharma
Flat 24, Nansen Village
21 Woodside Avenue

London, other
United Kingdom
Attn:

GB 494 6272 12
0.00 GBP

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=9272ac1b-2577-47de-89e3-5316ddb15d6f
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30 September 2019
Dear Official,

| am completing my PhD thesis at Imperial College London entitled ‘Acoustic sensing
as a novel approach for cardiovascular monitoring at the wrist'.

| seek your permission to reprint, in my thesis an extract from the CMC-5044PF-A
datasheet. The extract to be reproduced is the plot of the typical frequency response
on Page-2 of the datasheet.

| would like to include the extract in my thesis which will be added to Spiral,
Imperial's institutional repository http- /spiral.impenial ac.uk/ and made available to
the public under a Creative Commons Attribution-Non Commercial-No Derivatives
4 0 International Licence (CC BY-NC-ND).

If you are happy to grant me all the permissions requested, please return a signed
copy of this letter. If you wish to grant only some of the permissions requested,
please list these and then sign.

Yours sincerely,

Piyush Sharma

PhD Student
Imperial College London

Permission granted for the use requested above:
| confirm that CUI Devices is the copyright holder of the extract above and hereby

gives permission to include it in your thesis which will be made available, via the
internet, for non-commercial purposes under the terms of the user licence.

Signed:
Name: Adam Hamill (approved by JSchnabel)
Organisation: CUI Devices

Job title: Account Manager
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RightsLink Printable License

SPRINGER NATURE LICENSE
TERMS AND CONDITIONS

Sep 30, 2019

This Agreement between Piyush Sharma ("You") and Springer Nature ("Springer Nature")
consists of your license details and the terms and conditions provided by Springer Nature
and Copyright Clearance Center.

License Number

License date

Licensed Content Publisher
Licensed Content Publication
Licensed Content Title
Licensed Content Author
Licensed Content Date
Licensed Content Volume
Licensed Content Issue
Type of Use

Requestor type

Format

Portion

Number of
figures/tables/illustrations

Will you be translating?
Circulation/distribution

Author of this Springer
Nature content

Title
Institution name
Expected presentation date

Portions

Requestor Location

Total

Terms and Conditions

4678931072297

Sep 30, 2019

Springer Nature

Microsystem Technologies

Flip chip packaging for MEMS microphones
Gregor Feiertag, Matthias Winter, Anton Leidl
Jan 1, 2010

16

5

Thesis/Dissertation

academic/university or research institute
print and electronic
figures/tables/illustrations

1

no
1-29

no

A novel approach for cardiovascular monitoring
Imperial College London
Jan 2020

Fig. 1 MEMS Microphone package with chip and wire bonding; Top
sound port in lid, Bottom Sound port in PCB substrate

Piyush Sharma
Flat 24, Nansen Village
21 Woodside Avenue

London, other
United Kingdom
Attn:

0.00 GBP

Springer Nature Customer Service Centre GmbH

Terms and Conditions

This agreement sets out the terms and conditions of the licence (the Licence) between you
and Springer Nature Customer Service Centre GmbH (the Licensor). By clicking
'accept’ and completing the transaction for the material (Licensed Material), you also
confirm your acceptance of these terms and conditions.

1. Grant of License

https://s100.copyright.com/CustomerAdmin/PLF.jsp?ref=60f82ba3-d661-41de-a571-2b9e6df85c46

1/4
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05/01/2020 Mail - Sharma, Piyush - Outlook

Request to reproduce a figure from Invensense microphone's datasheet

Sharma, Piyush <piyush.sharmal4@imperial.ac.uk>
Sun 22/12/2019 00:43

To: sales.eu@invensense.com <sales.eu@invensense.com>; techsupport_Europe@invensense.com
<techsupport_Europe@invensense.com>

I 1 attachments (20 KB)
Figure 3.11 permission.docx;

Hello Sir/ Mam,

| am a PhD student at Imperial College London and | used one of the Invensense microphones in my project.
Since | am completing my PhD thesis soon, | wanted to include the plot of the frequency response of

the INMP411 microphone from its datasheet in my thesis. | kindly request you to grant me permission to use the
plot in my thesis by signing the attached request form as soon as possible.

Thanks!
Best Regards,

Piyush Sharma

PhD Student

Circuits & Systems Research Group

Department of Electrical & Electronic Engineering

Imperial College London, South Kensington, London SW7 2AZ
Tel: +44 (0) 20 759 46297

https://outlook .office.com/mail/search/id/AAQkAGEyODIXODKyLTZIM2QINGMzZS05ZDY3LTg4YzY4YjhmYWY3ZgAQABScg4flIx9AgRTIbb%2BI3SQ. .. 1/1
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30 September 2019
Dear Official,

| am completing my PhD thesis at Imperial College London entitled ‘Acoustic sensing
as a novel approach for cardiovascular monitoring at the wrist’.

| seek your permission to reprint, in my thesis an extract from the INMP411
datasheet. The extract to be reproduced is the plot of the typical frequency response
on Page-7 of the datasheet.

| would like to include the extract in my thesis which will be added to Spiral,
Imperial's institutional repository http://spiral.imperial.ac.uk/ and made available to
the public under a Creative Commons Attribution-Non Commercial-No Derivatives
4.0 International Licence (CC BY-NC-ND).

If you are happy to grant me all the permissions requested, please return a signed
copy of this letter. If you wish to grant only some of the permissions requested,
please list these and then sign.

Yours sincerely,

Piyush Sharma

PhD Student

Imperial College London

Permission granted for the use requested above:

| confirm that | am the copyright holder of the extract above and hereby give
permission to include it in your thesis which will be made available, via the internet,
for non-commercial purposes under the terms of the user licence.

[please edit the text above if you wish to grant more specific permission]
Signed:

Name:

Organisation:

Job title:

244



