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Abstract 

Improvements in wearable sensor devices make it possible to constantly monitor physiological 

parameters such as electrocardiograph (ECG) signals for long periods. Remote patient monitoring 

with wearable sensors has an important role to play in health care, particularly given the prevalence 

of chronic conditions such as cardiovascular disease (CVD)—one of the prominent causes of 

morbidity and mortality worldwide. Approximately 4.2 million Australians suffer from long-term 

CVD with approximately one death every 12 minutes.  

 

The assessment of ECG features, especially heart rate variability (HRV), represents a non-invasive 

technique which provides an indication of the autonomic nervous system (ANS) function. 

Conditions such as sudden cardiac death, hypertension, heart failure, myocardial infarction, 

ischaemia, and coronary heart disease can be detected from HRV analysis. In addition, the analysis 

of ECG features can also be used to diagnose many types of life-threatening arrhythmias, including 

ventricular fibrillation and ventricular tachycardia. Non-cardiac conditions, such as diabetes, 

obesity, metabolic syndrome, insulin resistance, irritable bowel syndrome, dyspepsia, anorexia 

nervosa, anxiety, and major depressive disorder have also been shown to be associated with HRV.  

 

The analysis of ECG features from real time ECG signals generated from wearable sensors 

provides distinctive challenges. The sensors that receive and process the signals have limited 

power, storage and processing capacity. Consequently, algorithms that process ECG signals need 

to be lightweight, use minimal storage resources and accurately detect abnormalities so that alarms 

can be raised. The existing literature details only a few algorithms which operate within the 

constraints of wearable sensor networks. 

 

This research presents four novel techniques that enable ECG signals to be processed within the 

limitations of resource constraints on devices to detect some key abnormalities in heart function.  

- The first technique is a novel real-time ECG data reduction algorithm, which detects and 

transmits only those key points that are critical for the generation of ECG features for 

diagnoses.  

- The second technique accurately predicts the five-minute HRV measure using only three 

minutes of data with an algorithm that executes in real-time using minimal computational 

resources.  
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- The third technique introduces a real-time ECG feature recognition system that can be 

applied to diagnose life threatening conditions such as premature ventricular contractions 

(PVCs).  

- The fourth technique advances a classification algorithm to enhance the performance of 

automated ECG classification to determine arrhythmic heart beats based on noisy ECG 

signals. 

  

The four novel techniques are evaluated in comparison with benchmark algorithms for each task 

on the standard MIT-BIH Arrhythmia Database and with data generated from patients in a major 

hospital using Shimmer3 wearable ECG sensors. The four techniques are integrated to demonstrate 

that remote patient monitoring of ECG using HRV and ECG features is feasible in real time using 

minimal computational resources.  

 

The evaluation show that the  ECG reduction algorithm is significantly better than existing 

algorithms that can be applied within sensor nodes, such as time-domain methods, transformation 

methods and compressed sensing methods. Furthermore, the proposed ECG reduction is found to 

be computationally less complex for resource constrained sensors and achieves higher 

compression ratios than existing algorithms. 

 

The prediction of a common HRV measure, the five-minute  standard deviation of inter-beat 

variations (SDNN) and the accurate detection of PVC beats was achieved using a Count Data 

Model, combined with a Poisson-generated function from three-minute ECG recordings. This was 

achieved with minimal computational resources and was well suited to remote patient monitoring 

with wearable sensors. The PVC beats detection was implemented using the same count data 

model together with knowledge-based rules derived from clinical knowledge. 

 

A real-time cardiac patient monitoring system was implemented using an ECG sensor and 

smartphone to detect PVC beats within a few seconds using artificial neural networks (ANN), and 

it was proven to provide highly accurate results. The automated detection and classification were 

implemented using a new wrapper-based hybrid approach that utilized t-distributed stochastic 

neighbour embedding (t-SNE) in combination with self-organizing maps (SOM) to improve 

classification performance. The t-SNE-SOM hybrid resulted in improved sensitivity, specificity 

and accuracy compared to most common hybrid methods in the presence of noise. It also provided 
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a better, more accurate identification for the presence of many types of arrhythmias from the ECG 

recordings, leading to a more timely diagnosis and treatment outcome. 
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 CHAPTER 1 

1 Introduction 

 

1.1  Background and Motivation 

Chronic diseases are those that may not be directly life threatening in the short-term but must be 

managed and controlled, often for many years, using a great deal of health sector resources. Chronic 

conditions represent common causes of disability and death around the world as disease pathology 

progresses (Australia Institute of Health and Welfare, 2015). Cardiovascular diseases (CVDs) are one 

of the more prominent chronic diseases in many countries. Each year, the American Heart Association 

(AHA) publishes statistics on heart diseases, stroke, and other vascular diseases and their risk factors. 

Recently, the AHA showed that mortality rates reached 40.6% due to cardiovascular diseases 

(Rodríguez-Liñares, Lado, Vila, Méndez, & Cuesta, 2014). Heart diseases represent approximately 

7.2 million deaths around the world (Heart Foundation, 2016). For instance, approximately 4.2 

million Australians have long-term heart diseases and roughly every 12 minutes one of them dies 

from cardiovascular diseases (Heart Foundation, 2016).  

 

Since the cost of treatment has a considerable impact on a country’s economy, the improvement of 

effective techniques for the early detection and prevention of CVD is crucial for minimizing the 

burden of treatment in heart disease (Martis, Prasad, Chakraborty, & Ray, 2014b). Continuous 

monitoring can help patients manage chronic conditions (Hamine, Gerth, Faulx, Green, & Ginsburg, 

2015) more effectively. The improvement of wearable sensor devices in recent years makes it possible 

to constantly monitor physiological parameters such as electrocardiograph (ECG) over long intervals 

(Lou et al., 2013).  

Mobile health care can accomplish the aim of continuously monitoring patients' physiological status 

using indicators such as body temperature, electrocardiograph (ECG) and respiration rate.  

 

Ranck (2014) has estimated that there will be 170 million wearable devices for measuring medical 

indicators such as ECG, HRV and body temperature, in the world, by 2017. Many of these devices 

are likely to be operated by hospitals to monitor the progress of discharged patients at home in order 

to identify disease progression or anomalies in a timely manner and achieve real cost savings in an 

era of increasing healthcare costs with the inability of government capacity to meet the gap. Some 

early examples of field trials and prototypes with the use of wearable devices are emerging for 
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diabetes complications (Habib, Biswas, Akter, Saha, & Ali, 2010), and early detection of heart failure, 

arrhythmias and depression (Huang , Huang, & Liu, 2014; Nguyen, Lou, Caelli, Venkatesh, & Phung, 

2014).  

 

In a body area wireless sensor network (BAWSN) the wearable sensors are found on the top of the 

body that can transmit vital health data using a wireless protocol such as Bluetooth, ZigBee or Wi-Fi 

to a nearby base station, which is often a smartphone or a tablet.  In addition, the vital health data are 

received by healthcare applications (HA) that are required to process the data in order to raise alarms 

or perform other actions if the patient’s health deteriorates.  

 

Figure 1.1 a illustrates a patient wearing an ECG sensor, an electromyographic (EMG) sensor and an 

accelerometer taken from Balasubramanian and Stranieri (2014) at Federation University. 

 

  

(a)                                                                                                                            (b) 

Figure 1.1 a. A patient wearing Shimmer ECG devices on the chest, EMG in the forearm and an accelerometer in the 

wrist (a). Figure 1.1b. Schematic of a patient monitoring architecture. Reproduced with permission from Balasubramanian 

and Stranieri (2014). 

The sensors illustrated in Figure 1.1a are programmable sensors from Shimmer3 (Shimmer, 2015) 

that can stream data in real time to a mobile device that executes a program to analyse the data, port 

it to Cloud repositories and raise alarms if necessary (Figure 1.1b).  

 



3 

 

Real-time monitoring systems require continuous and reliable processing of health data (Laplante & 

Ovaska, 2011). They require algorithms that continuously process the received health data from the 

devices that have limited battery and memory capacity (Islam, Mamun, & Rahman, 2014; Laplante 

& Ovaska, 2011; Mukhopadhyay, Mitra, & Mitra, 2012). For real-time processing in tele-monitoring 

systems, the time required to analyse the biological data should be less than the time required to 

collect that data, during continuous streaming of data from the sensor device (Sufi & Khalil, 2008). 

Furthermore, the transmission of data from sensors to mobile devices with Bluetooth or Zigbee 

protocols, especially in the presence of other transmission protocols, is known to be very noisy and 

consume more demanding of power (Gough, 2011; Islam et al., 2014; Shin, Park, & Kwon, 2007). 

Signals from body area wireless sensors of nearby patients, Wi-Fi access points, mobile phone 

transmissions all contribute to interference so the data is lost or corrupted (Islam et al., 2014; 

Mukhopadhyay et al., 2012). 

 

Table 1.1 represents the standards measurements of wireless communication techniques that are 

commonly used with sensors and mobile phones (Lee, 2016). 

Table 1.1. Wireless communication standards 

Technique Range Data Rate Power consumption 

Zigbee 10-75 m 20-250 kbps 30mW 

Bluetooth 10-100 m 1-3 Mbps 2.5-100mW 

Wi-Fi (802.11g) 200 m 54Mbps 1W 

 

The automated detection and classification of arrhythmias is important for prompt, accurate diagnosis 

and treatment to reduce morbidity and mortality. Irregular heartbeats and presence of noise impede 

cardiologists in detection of arrhythmias. In addition, visual analysis of long term biosignals such as 

ECG consumes time and may cause misdiagnosis or produce inaccurate diagnosis of the heart rhythm 

(Goldberger, Goldberger, & Shvilkin, 2017).  

Noise and data transmission losses are likely to heavily affect wearable ECG sensors because of 

interference from other portable devices. Existing arrhythmia classification methods were tested on 

noise-free or carefully chosen and often clean ECG signals, which produced accurate classification 

results (Elhaj, Salim, Harris, Swee, & Ahmed, 2016). However, these methods may not provide the 

same high accuracy in the presence of a noisy ECG.  

 

The current research was concerned with identifying and developing algorithms for remote patient 

monitoring that reduce the data needed to be transmitted so that the sensor and mobile device battery 

life can be extended.  The research was also concerned with developing algorithms that forecast HRV 

minutes in to the future, and are able to execute with minimal storage and processing capacity. In 
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addition, the thesis focused on developing advanced machine learning algorithm for reliable and 

robust analysis of ECG signals for the automatic classification and detection of various cardiac 

arrhythmias. 

 

Most of the algorithms focused on in this research involve the analysis of heart function using new 

approaches for ECG signal and heart rate variability (HRV) analysis. The next section demonstrates 

ECG features, then HRV analysis will be further explained.   

1.2 Basic ECG Components 

An ECG is a non-invasive technique to read the electrical function of the heart over an interval of 

time by placing electrodes on the body. It is commonly used for diagnosis of cardiovascular diseases 

due to its simplicity and non-invasive nature (Goldberger et al., 2017). A normal ECG beat/cycle, 

called Normal Sinus Rhythm (NSR), as shown in Figure 1.2, can be illustrated by a signature 

waveform. 

 

Figure 1.2 depicts an ECG signature waveform composed of five peaks and troughs P, Q, R, S, and 

T. Each wave is generated by a physiological event of the heart where the P wave reflects the 

depolarisation of the atria muscle; it has a duration of 0.08–0.11 seconds in a healthy heart. The Q, 

R, S points represent the QRS complex that derives from the depolarisation of the ventricular muscle 

with a normal duration of 0.06–0.10 seconds. The T wave indicates the repolarisation of the 

ventricular muscle that normally has a duration of 0.20 seconds (Rai, Trivedi, & Shukla, 2013). ECG 

signals obtained from three to ten leads, where electrical activity is typically measured 1000 times 

per second. Consequently, an ECG signal generates large streams of data and requires large space on 

storage devices to be kept in digital form (Task Force of the European Society of Cardiology, 1996). 

 

  

Figure 1.2. ECG signal diagnostic features 
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Figure 1.3. Electrical conduction system of the heart (Wasilewski & Poloński, 2012) 

Many heart arrhythmias can be detected from ECG waves, segments, and intervals. The P wave starts 

with the first deflection from baseline and ends when the wave meets the baseline once again. The P 

wave strongly suggests that the atria have followed through with a contraction   

 

The PR segment is the section between the end of the P wave and the starting of the QRS complex. 

It represents the electrical conductivity through the slow atrioventricular (AV) junction (Reed, 

Robertson, & Addison, 2005)     

 

The PR interval starts at the end of the P wave to the start of the QRS complex. It produces clues to 

both the location of the originating impulse and the integrity of the conduction tracks of the heart. 

The PR interval measures the AV node efficiency. Also, it assesses the duration taken for an electrical 

impulse to travel from the sinus node to the AV node. PR intervals longer than 0.2 seconds are usually 

diagnosed to be symptoms of first degree heart block, while PR intervals shorter than 0.12 seconds 

could be considered as tachyarrhythmia (Goldberger et al., 2017). 

 

The QRS complex represents the tracks of ventricular depolarisation. Early depolarisation produces 

a small downward deflection called the Q wave. A normal Q wave is narrow and small in amplitude. 

Following depolarisation of the interventricular septum, ventricular depolarisation then progresses 

from the endocardium through to the epicardium across both ventricles generating the R and S waves. 

The R wave is the first positive deflection of the QRS complex. The S wave follows the R wave and 

continues below the baseline or isoelectric line. Abnormal ventricular depolarisation can produce 

QRS complexes that often have altered characteristics. The QRS complex width represents an 
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important diagnostic feature and indicates the location of the originating electrical impulse for 

ventricular contraction. The morphology of the QRS complex is often used to diagnose different heart 

diseases (Gacek & Pedrycz, 2011; Rodríguez-Liñares et al., 2014). 

 

The QT interval reflects the full ventricular cycle of depolarisation and repolarisation. It represents 

the interval from the starting of the QRS complex to the end of the T wave. The QT interval is less 

than half the RR interval. It is highly variable, depending on gender, age, heart rate and the influence 

of drugs. A prolonged QT interval longer than 0.45 seconds is an indicator of ventricular 

tachyarrhythmia, which is a risk factor of sudden death (Gertsch, 2008).  

 

The PR segment and ST segment are both isoelectric in that no electrical activity can be collected 

from the surface electrodes over this period. Hence, there is no wave deflection visible on the ECG 

waves. The ST segment reflects depolarisation of the ventricles. This segment can reveal insufficient 

blood supply to the heart, also called ischemia, when it is depressed or elevated from the isoelectric 

line. This shift from the isoelectric is created by the changes in electrical current flow properties of 

the dead conductive cells, because of ischemia from coronary blockage. ST segment elevation refers 

to myocardial infarction, while ST segment depression represents coronary ischemia, which may be 

produced by overdose of substance or coronary blockage, e.g. digoxin or potassium (Gregg, Zhou, 

Lindauer, Helfenbein, & Giuliano, 2008). 

1.3 Heart Rate Variability  

One of the most promising analyses to assess heart activity is heart rate variability (Task Force 1996; 

ChuDuc, NguyenPhan, & NguyenViet, 2013). HRV is a physiological event that describes the 

changes in time between successive heartbeats, which is controlled by the autonomic nervous system 

(ANS) and endocrine activity (Miličević, 2005). The ANS consists of the parasympathetic nervous 

system (PNS) and the sympathetic nervous system (SNS). The PNS initiates a slow diastolic 

depolarisation of heart tissues, which decreases the heart rate. The SNS initiates a quick diastolic 

depolarisation of heart tissues, which increases the heart rate, and the balance of these two systems 

ensures the integrity of the heart rate and its variability (Johnson & Loewy, 1990). 

 

The assessment of HRV represents a simple and non-invasive technique that can be exploited to 

provide an indication of ANS function (Widjaja, Vlemincx, & Van Huffel, 2012). In cardiac patients, 

for example, a reduction in HRV can be associated with sudden cardiac death, hypertension, heart 

failure, myocardial infarction, ischemia and coronary heart disease (Jarrin, McGrath, Giovanniello, 

Poirier, & Lambert, 2012; Rodríguez-Liñares et al., 2011) and in non-cardiac patients it can indicate 
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cardiac rhythm changes associated with diabetes, obesity, metabolic syndrome, insulin resistance, 

irritable bowel syndrome, dyspepsia, anorexia nervosa, anxiety, risk of mortality and major 

depressive disorder  (Jarrin et al., 2012).  

 

HRV estimations are calculated from ECG information. Most effectively, inter-beat intervals or the 

time from normal ECG peak of the beat (the R peak) to the next normal R peak is called the RR or 

NN (normal to normal) interval, which is typically measured in milliseconds (Kranjec, Beguš, Geršak, 

& Drnovšek, 2014) and illustrated in Figure 1.2. The R peak is the largest upward deflection of a 

normal ECG as shown in Figure 1.2 and indicates depolarisation of the ventricles (Reed et al., 2005). 

RR interval/ RR data can be calculated from short-term or long-term ECG records. Short-term 

measurement is normally based on at least five minutes of recording. Long-term measurement is 

normally for several hours up to 24 hours and longer (Khandoker, Karmakar, Brennan, Palaniswami, 

& Voss, 2013). The next section describes the problem in more detail and advances specific research 

aims. 

1.4 Thesis Contribution 

Although ECG data, and particularly HRV, is promising for remote patient monitoring systems, the 

majority of algorithms that analyse HRV have not been developed for real time processing of signals, 

robustness to noise or minimal computational requirements. Fang, Huang, and Tseng (2013) and 

Elgendi (2013) have identified that approaches to process ECG signals that rely on smaller datasets 

and execute faster are required for remote patient monitoring because they require low complex 

resources. In this research, new algorithms for ECG transmission, ECG classification, and HRV 

analysis have been advanced and evaluated against existing approaches to assess the extent to which 

the new algorithms are suited for remote patient monitoring and arrhythmias detection.  

The project’s overriding aim is to advance a new approach to remote patient monitoring by: 

 

1. Advancing an algorithm for reducing ECG signals to compress the amount of data that needs 

to be transmitted.  

2. Advancing a new real-time algorithm that forecasts HRV measures minutes into the future so 

HRV can be analysed ahead of time. 

3. Advancing new techniques that detect and classify arrhythmias from normal beats based on 

noisy or free noise signals.  

 

The new ECG reduction method depends on analysing a simple statistical algorithm we referred to 

as Max_Min with a sliding window technique that directly selects only those key points on an ECG 
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signal in the time domain, which are critical for the maintenance of ECG signal quality and generation 

of accurate ECG diagnostic features.   

 

The advanced forecasting algorithm relies on data models known as “count data” systems. Count data 

is statistical data, which represents the number of data occurrences over a specified interval or event 

(Cameron & Trivedi, 2013). The count data model has emerged as a powerful statistical tool in many 

fields such as machine learning, pattern recognition, data mining, medical, and bioinformatics 

(Bakhtiari & Bouguila, 2014; Tu & Koh, 2017). In medical investigations, count data is often 

measured using binomial or Poisson models, which are discrete probability distributions (Sloane & 

Morgan, 1996; Tang, He, & Tu, 2012). A binomial model represents the discrete probabilities of each 

of the possible numbers that appear in a known sample set. It forecasts the number of successes in a 

given number of trials (Cameron & Trivedi, 2013). A Poisson model represents a common approach 

to process count data. It is a statistical model, which refers to the number of discrete events that are 

observed in a given interval of time or space such as the number of phone calls in 24 hours. It also 

estimates the range of spread around a known average rate of occurrence (Winkelmann, 2013).  

 

The detection of a premature ventricular contraction rhythm depends on a count data model and a 

rule-based system generated from clinical experiences. A rule-based system provides rules that are 

used to represent facts as a set of if-then statements known as production rules or if-then rules (Grosan 

& Abraham, 2011). More details on the count data model and rule-based system are explained in 

Chapter 3 and Chapter 4. 

 

A novel method for the accurate classification of cardiac arrhythmia to identifying various types of 

arrhythmia based on ECG features is proposed in this thesis. This work applied the most common 

methods of ECG-based cardiac arrhythmia classification by evaluating the signal pre-processing, 

heart beat segmentation, feature extraction and machine learning algorithms. Four different combined 

structures including genetic algorithm (GA) with artificial neural network (ANN), principal 

component analysis (PCA) with ANN, GA-SVM (support vector machine), and PCA-SVM were 

formed by engaging two filtering techniques that are widely used with ECG signal namely Haar 

wavelet and Butterworth FIR to render the obscure complexities in the noisy ECG signal. 

Furthermore, a new arrhythmia classification technique is introduced by combining t-distributed 

stochastic neighbour embedding (t-SNE) with self-organizing maps (SOM). The t-SNE visualises 

high-dimensional data by providing each data sample a position in a two or three-dimensional map 

(Maaten & Hinton, 2008). This approach is a modification of the stochastic neighbour embedding 

(SNE) (Hinton & Roweis, 2003). The SOM algorithm is an example of an unsupervised machine 
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learning technique and is commonly exploited for structure visualisation of high dimensional data. 

The location of points in a two-dimensional grid aims to reflect the similarities between the 

corresponding patterns in a multidimensional space (Kohonen, 1982). The SOM is widely applied to 

classification and clustering problems in many fields such as data exploration in industry, finance, 

natural sciences, medical and linguistics (Kim & Mazumder, 2017; Kolasa, Długosz, Talaśka, & 

Pedrycz, 2017). It allows for visualisation of relationships between patterns in a multidimensional 

space. More information on the t-SNE and SOM is found in Chapter 5. 

1.5 Research Questions 

As illustrated above, the research aims to advance a new approach to remote patient monitoring.  

The following research questions will be addressed to meet each aim: 

 

Q1. How can ECG be reduced with minimal computational resources for battery driven devices 

so that key ECG indicators can be readily extracted and battery life extended? 

  

Q2. How can short duration HRV indicators be predicted minutes ahead of their occurrence    

within the constraints of remote patient monitoring? 

 

Q3. How can a life-threating rhythm (PVC) be detected using HRV features within the 

constraints of remote patient monitoring? 

 

Q4. How can many types of arrhythmias be classified using ECG features within the presence    

of remote patient monitoring noise? 

 

 

As aforementioned, the thesis aims to advance a novel technique to remote patient monitoring. Each 

of the sub-aims of this research will be discussed in the following sections prior to the description of 

HRV measurements and arrhythmias detection.   

1.6 ECG Reduction/Compression 

ECG datasets become so large quickly that (Padhy, Sharma, & Dandapat, 2016)  and (Sufi & Khalil, 

2011b) have raised the need for data reduction/compression techniques to be developed for ECG 

streams so that functionalities such as ambulatory recording systems, ECG signal storage, ECG signal 

transmission over digital telecommunication or wireless networks, become practically feasible. 

Furthermore, many wearable ECG devices (e.g. Shimmer ECG Sensor) have recently emerged that 
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deploy the Bluetooth protocol to stream ECG data to a mobile device for transmission to servers for 

online storage. These devices require ECG reduction/compression and simple algorithms to maintain 

ECG key points and calculate ECG in real time because of inherent limitations of battery-operated 

devices, including memory, processor capacity and power-consumption constraints. Along a similar 

vein, Elgendi (2013) and Fang et al. (2013) have identified that approaches to process ECG signals 

that rely on smaller datasets and execute faster are required for remote patient monitoring.  

 

ECG compression methods encode the ECG data to compress the amount of ECG data that needs to 

be stored or transmitted. Also, they require to decode/reconstruct the compressed ECG data to extract 

the raw ECG data, while ECG reduction methods reduce the amount of ECG data by selecting the 

important ECG data and omitting the remaining. Thus, they do not require a reconstruction process 

to extract the raw data that leads to the consumption of reduced computational resources and power 

for battery-driven devices. In general, ECG reduction/compression techniques are grouped into three 

categories; direct time domain techniques, transform techniques and parameter techniques 

(Jalaleddine, Hutchens, Strattan, & Coberly, 1990; Rossi et al., 2002). Direct time domain techniques 

have lower complexity than transform and parameter techniques. Consequently these algorithms can 

be easily executed in mobile devices (Rossi et al., 2002). Direct time domain algorithms apply simple 

interpolation techniques, which usually harness previous information to predict future samples 

(Jalaleddine et al., 1990). Recently, a compressed sensing (CS) algorithm has been introduced as a 

powerful method to compress ECG signal. CS collects only the sparse samples in a particular domain. 

A signal has sparse description if small samples of its coefficients represent a major percentage of the 

energy (Craven, McGinley, Kilmartin, Glavin, & Jones, 2015). In fact, the CS algorithm acquires 

important coefficients/non zero samples and applies mathematical methods such as L1 optimisation 

to retrieve the raw data during reconstruction. Nonetheless, few investigations have simulated CS on 

the Shimmer ECG sensor in order to decrease power consumption (Craven et al., 2015).   

 

This thesis introduces a new ECG reduction algorithm, which has been tested clinically and on test 

samples. It was implemented on the ECG sensor node, maintained all ECG key points/diagnostic 

features and extended the sensor battery life significantly. This algorithm was compared with existing 

real time ECG compression/reduction methods that can execute on the Shimmer ECG sensor. 

        

High performance and low complexity compression and ECG measurement schemes for medical 

signals are crucial in applications related to mobile healthcare and real-time patient monitoring.  
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1.7 Forecasting HRV Minutes into the Future 

The Task Force (1996) recommends that HRV analysis should be calculated over five minutes for a 

short-term analysis. Many researchers have attempted to estimate the five-minute HRV in a shorter 

time than the Task Force recommended. For example, Smith,  Owen, and Reynolds (2013a) provided 

a survey including the methods used to analyse HRV for less than a 60-second period. The survey 

comprised assessments of frequency domain, time domain and nonlinear parameters. The authors 

indicated that these parameters require validation from clinics before they can be applied to short-

term HRV measurement. Chang and Lin (2005) compared three-minute with five-minute HRV 

analysis. This research indicated that HRV indices can accurately be calculated from three minutes 

except the all-important SDNN parameter. Recently, many investigations (Chen, Yao, Yin, & Li, 

2017; Jelinek, Adam, Krones, & Cornforth, 2017; Khandoker, Jelinek, & Palaniswami, 2009) have 

approved the Chang and Lin (2005) finding.    

 

In this thesis, an algorithm that can accurately predict the five-minute SDNN parameter from three 

minutes of data is advanced. The key advantage of the proposed algorithm is an accurate prediction 

of many HRV, including SDNN indices from three minutes of data. The algorithm executes so 

quickly that it can be revised in real time as each new data point is sensed. Furthermore, many 

investigations proposed that the SDNN/RMSSD ratio can be used as surrogate for the LF/HF 

parameter (Antônio, Cardoso, & De Abreu, 2014; Brisinda, Venuti, Iantorno, Efremov, & Cataldi, 

2014). Recently, numerous studies reported that SDNN/RMSSD achieved higher accuracy results 

than LF/HF (Billman, 2013; Holper, Seifritz, & Scholkmann, 2016), which means that if the SDNN 

index can be predicted from three minutes, it can help to analyse HRV only from time domain 

parameters, especially in real time monitoring platforms in three minutes. In addition, HRV 

parameters (Time domain parameters) can be executed on battery driven devices because existing 

methods that are used to calculate HF and LF require high computational resources. 

 

HRV is typically assessed in the short-term or long-term. Reed et al. (2005) demonstrated that existing 

HRV methods require all RR data be available over a five-minute analysis (period for a short analysis) 

or 24 hours (for a long analysis). In addition, existing algorithms are computationally complex so it 

can be expected to use a high level of computational resources in order to assess HRV. More details 

on the forecasting method are demonstrated in Chapter 3. 
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1.8 Arrhythmia Classification 

Arrhythmias are heart pulses that become either too slow (bradycardia), or too fast (tachycardia), 

and/or abnormal. There are various patterns of arrhythmias, some of which are harmless, whereas 

others produce critical health conditions. On the one hand, ventricular arrhythmias are fatal. On the 

other hand, atrial arrhythmias are less life-threating, but atrial fibrillation raises the risk of stroke (Qu, 

Hu, Garfinkel, & Weiss, 2014). 

 

Premature ventricular contraction (PVC) is a serious cardiovascular condition that can lead to life-

threatening conditions. The instant recognition of life-threatening cardiac arrhythmias is a 

challenging problem of clinical significance (Li et al., 2014; Liu et al., 2012; Liu et al., 2010). 

Although, several studies employed RR data to classify and detect PVC beats (Nabil & Reguig, 2015), 

approaches that are sufficiently accurate and can execute rapidly for fast real-time PVC detection 

have proven to be elusive. 

We provide a new PVC arrhythmia detection method that employs three-minute RR data to reliably 

detect PVC beats in a simple and fast way within the constraints of remote patient monitoring. 

Moreover, it detects PVC beats from non-PVC beats, using intelligent data mining methods in a few 

seconds. The third thesis question regarding arrhythmia detection within the limitation of battery 

operated devices is addressed in Chapter 4.  

 

Numerous studies used different linear and nonlinear techniques generated from ECG features to 

recognise arrhythmias, e.g. artificial neural network (ANN) methods, discrete wavelet transformation 

(DWT) methods, principal component analysis (PCA) method, linear discrimination analysis (LDA) 

method, independent component analysis (ICA) method, support vector machine (SVM) algorithm, 

genetic algorithm (GA), and self organisation method (SOM). Furthermore, some investigations 

combined the above techniques to enhance the classification accuracy. For instance, Martis, Acharya, 

and Min (2013) combined PCA, LDA and ICA with ANN and SVM.  Also, (Allami, Stranieri, 

Balasubramanian, & Jelinek, 2016b) proposed a wrapper hybrid technique, GA-ANN to detect and 

classify bundle branch block (BBB) arrhythmia. A (BBB) is a delay or obstruction along electrical 

impulse pathways of the heart manifesting in a prolonged QRS interval usually greater than 120ms. 

The automated detection and classification of a BBB is important for prompt, accurate diagnosis and 

treatment to reduce morbidity and mortality.   
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These methods require more complex computations processing than HRV arrhythmia detection 

methods because they consist of three main stages, namely feature extraction, feature selection, and 

classifier construction (Wang, Chiang, Hsu, & Yang, 2013). The current state-of-the-art methods of 

ECG-based automated abnormalities heartbeat classification have been surveyed by presenting ECG 

signal pre-processing, heartbeat segmentation techniques, feature description methods, and learning 

algorithms. More details on the linear and nonlinear methods are described in Chapter 5.  

 

One of the main aims of this research was to develop advanced machine learning algorithms for 

reliable and robust analysis of ECG signals for timely detection of various cardiac arrhythmias. In 

this thesis, the construction of optimised classification models and their performance in detection of 

various arrhythmias are reported. In addition, a new classification method that can enhance and speed 

the classification accuracy is proposed. This significant improvement of cardiac arrhythmia 

classification, which is exhibited by the new ECG beat classifier improves the efficiency of 

cardiovascular monitoring in a clinical setting. Heart rate variability measurements and ECG features 

have been widely used to detect arrhythmias. These HRV measurements are outlined in the next sub-

section.  

1.9 Heart Rate Variability Measurements 

Time domain and frequency domain evaluations represent the most common linear methods for HRV 

analysis. Time domain measurements rely on statistical methods, and frequency domain 

measurements depend on power spectrum density (Ong et al., 2008). Due to the sophistication of the 

heart control function, it is unlikely that HRV can be entirely explained using linear techniques. 

Consequently, many nonlinear techniques have been used to identify the properties of the beat-to-

beat variability (Tarvainen, Niskanen, Lipponen, Ranta-Aho, & Karjalainen, 2014). The next section 

illustrates linear (Time and Frequency domain) and nonlinear (e.g. entropy methods) HRV 

measurements.    

1.9.1 Time domain methods 

Time domain techniques are applied directly to a series of successive RR items. The simplest is the 

mean value of RR cycles or, similarly, the mean HR. Several indices have been applied to assess the 

variability of RR cycles: 

 

SDNN (the standard deviation of normal to normal RR cycles) represents the overall (both long-term 

and short-term) variation within the RR interval series (Niskanen, Tarvainen, Ranta-Aho, & 

Karjalainen, 2004). Low values usually refer to possible disease and low heart rate variability 
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(Khandoker et al., 2013). A healthy heart has a SDNN value of 141+/−39ms for 24-hour 

measurements (Task Force, 1996). In Chapter 3, the SDNN is estimated using a count data model. 

 

SDANN (the standard deviation of the average RR cycles) assesses five-minute segments over a 24-

hour recording to measure the autonomic influence on HRV (Niskanen et al., 2004). A healthy heart 

has an SDANN value of 127+/−35ms (Task Force, 1996).   

 

 RMSSD (the root mean square of successive differences of the RR cycles) has been used as a measure 

of the short-term variability (Niskanen et al., 2004). A healthy heart has an RMSSD value of 27+/− 

12ms (Task Force, 1996).   

 

NN50 (the number of successive cycles differing by more than 50ms) is a short-term HRV 

measurement (Niskanen et al., 2004), while pNN50 is the segment of NN50 intervals as a proportion 

of the complete value of NN intervals (Niskanen et al., 2004). 

 

SDNN and SDANN measure both the sympathetic and parasympathetic activity of the heart rate, 

whereas RMSSD and pNN50 reflect the parasympathetic function (Task Force, 1996).  

 

The time domain measures of HRV typically require algorithms that are less complex than frequency 

domain measures, which are discussed next, and require resource intensive transformations. This 

makes time domain methods more suited to remote patient monitoring than those in the frequency 

domain.     

1.9.2 Frequency domain methods 

The frequency domain techniques involve a power spectra assessment computed for the RR cycle 

sequence. The spectrum assessments are then divided into three main bands in case of short-term 

(generally five minutes) HRV recordings as (Carvalho et al., 2003; Xhyheri, Manfrini, Mazzolini, 

Pizzi, & Bugiardini, 2012): 

HF band: high frequency bin (0.15–0.4 Hz) refers to the parasympathetic tone. 

LF band: low frequency bin (0.04–0.15 Hz) refers to the sympathetic tone or autonomic balance. 

VLF band: very low frequency bin (0.0033–0.04 Hz) remains uncertain and is generally treated as 

slow physiological influences such as endocrine.  

 

The ratio between HF and LF is applied to measure the fractional distribution between the two 

systems and is a significant pointer of sympathovagal balance. 
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Ultra low frequency (ULF) is obtained if long-term data (24 hours or more are under estimation. 

 

Frequency domain features are all calculated in standard units known as absolute values of power 

(ms²); LF and HF can also be computed in normal units although the normalisation tends to 

underestimate their values in total power changes. SDNN and SDANN indexes correspond to ULF 

power; RMSSD and pNN50 to HF power and LF and VLF power to SDNN index (Carvalho et al., 

2003; Xhyheri et al., 2012). 

1.9.3 Nonlinear methods 

Measurements other than time or frequency domain methods have been implemented for HRV 

(Tarvainen et al., 2014). These measurements include: 

 

Entropy measures (e.g., sample entropy, compression entropy, and approximate entropy). 

Poincare plot (Kamen & Tonkin, 1995). 

 

Fractal measures (e.g. detrended fluctuation analysis, multifractal analysis, and power-law 

correlation) (Glass, Lerma, & Shrier, 2011). 

 

Symbolic dynamics (SDyn) (Kurths et al., 1995). SDyn measurement is applied to analyse the coarse-

grained dynamics of HR fluctuations based on symbolisation and probability distribution.  

 

All linear and nonlinear HRV methods require at least five minutes or 24hours, which will be further 

explained, to detect heart dysfunction. Hence, they consume more power when applied for continuous 

cardiac monitoring systems, using battery driven devices such as ECG sensor and smartphone 

devices. Also, some of them need visual analysis such as Poincare plot.  

1.10 Detection of Arrhythmia 

There are several mechanisms of arrhythmia, including abnormal/enhanced automaticity, re-entry and 

conduction delays (Nabil & Reguig, 2015). Ectopic or premature beats can be generated from the 

atrial, junctional or ventricular regions of the heart. The most salient feature of a premature beat is 

one that occurs earlier than expected in the cardiac cycle and has a morphology different than the 

normal underlying rhythm. The morphological changes are key points in identifying arrhythmia.  
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The detection of cardiac arrhythmia involves the site of its origin and its rate. Arrhythmias are widely 

different and may be normal, symptomatic, life threatening or, in some cases, fatal. Hence, automatic 

arrhythmia classification is critical in clinical cardiology. It is achieved by analysing ECG features 

(diagnostic features). 

 

Recently, a major investigation of published algorithms has concluded that decreased 24-hour SDNN 

is an important independent predictor of arrhythmic events following myocardial infarction 

(Khandoker et al., 2013). The SDNN parameter, linear and non-linear parameters, extracted from 

HRV, will be discussed in the next section.      

1.10.1 Arrhythmia detection using HRV   

The central issue in arrhythmia detection using HRV involves the selection of HRV indicators that 

can be used to accurately detect abnormal from normal sequences. In this research, we do not search 

for new HRV indicators but rather look for simple algorithms that can execute in real time on data 

streaming from wearable sensors, because SDNN is extensively used clinically and relatively easy to 

calculate. It also has good prospects to be an accurate indicator for arrhythmia detection. For the 

current research count RR data was employed and SDNN and mean equations developed that can 

classify ECGs in real-time using less time than the standard time.   

1.10.1.1 Time domain indicators 

Standard deviation of normal to normal beats (SDNN) is a simple yet powerful time domain indicator 

that has proven to be important clinically (Malliani, Lombardi, & Pagani, 1994). Murray, Ewing, 

Campbell, Neilson, and Clarke (1975) discovered that SDNN was decreased in diabetic patients 

without the normal cardiovascular indicators of autonomic neuropathy. Kleiger, Miller, Bigger, and 

Moss (1987) used SDNN to predict which patients survived following an acute myocardial infarction 

(AMI). Both Murray et al. (1975) and Kleiger et al. (1987) elucidated the decrease in HRV as an 

indicator of reduced parasympathetic activity. Wolf, Varigos, Hunt, and Sloman (1978) illustrated 

that patients with a low value of short-term HRV had a poor prediction after AMI. In the late 1980s, 

the Multicenter Post-Infarction Project (MPIP) approved the expected value of decreased HRV by 

measuring long-term SDNN over 24 hours following AMI (Kleiger et al., 1987). Vaage-Nilsen, 

Rasmussen, Jensen, Simonsen, and Mortensen (2001) assessed 24-hour tachograms using SDNN of 

103 patients one week following an AMI. The study concluded that SDNN analysed for the day time 

period one week after AMI was under 30 minutes while during the night time SDNN was under 18 

minutes. Moreover, SDNN during daylight hours was stable for 1.5 years after AMI whereas in 

healthy men, SDNN was remarkably decreased. SDNN during the night time, one month after AMI, 

was usually also decreased. Therefore, the authors found during the night time a gradual recovery of 
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parasympathetic preponderance starting early after AMI and during daylight hours and a continuous 

irregular sympathetic preponderance for sixteen months after AMI. 

 

A ten-year observational investigation by ATRAMI (Autonomic Tone and Reflexes after Myocardial 

Infarction) for patients after multicenter post-infarction project (MPIP) verified that decreased SDNN 

in the long term is connected with a higher relative risk of 3.2 for mortality during 21 months of 

observation. Thus, SDNN was suggested as a simple measure to analyse the sympathovagal balance. 

SDNN provides an assessment of overall HRV but, as an index of variations in sympathovagal 

balance, it is limited (La Rovere et al., 1998). Huikuri and Stein (2013) relied on SDNN for prognosis 

of cardiac patients. It is worth noting that research based on HRV from a 24-hour ECG signal and 

two years risk for sudden cardiac death has used mean RR data, SDNN, and other parameters for long 

and short term recording to explain the relationship between sudden death and disturbance of ANS 

function (Algra, Tijssen, Roelandt, Pool, & Lubsen, 1993). 

 

Findings from SDNN studies demonstrate that if the SDNN for 24 hours can be calculated and the 

SDNN for days, months, and years be estimated, then sudden cardiac death risk can be predicted 

using only 24-hour measurements. However, there is currently a great deal of research involved in 

searching for indicators of HRV other than SDNN surveyed by (Khandoker et al., 2013).   

1.10.1.2 Frequency domain indicators 

Many methods can be applied to measure the range, centre frequency, and amplitude of the fluctuant 

factors invisible in the variability wave. A majority of research has used either autoregressive 

approach (AR) or fast Fourier transformation (FFT). The AR method automatically provides the 

range, centre frequency, and related power of fluctuant factors without requiring a priori selection. 

The FFT is simplest to calculate but needs a priori decision of the number and frequency range of the 

bands of interest. The benefit of the AR method is that only a short section of data is required for an 

efficient spectral calculation (Malliani et al., 1994). These methods require complex calculation 

processes and consume a large amount of power and storage for microprocessors homecare devices 

that are used to monitor HRV (Lee & Chiu, 2010). 

1.10.1.3 Wavelet technique 

Many studies have employed Wavelet techniques for HRV analysis to describe HR rhythms. The 

study introduced by Ashkenazy et al. (1998) applied Multi-resolutional Wavelet transformation of 

RR intervals. They succeeded in distinguishing between healthy and subjects with CVD. The authors 

concluded that fluctuations in normal subjects were greater than in patients. However, wavelet 

algorithms require high computational time not suited for real-time recording and analysis. Linear 
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methods possibly cannot fully illustrate HRV because of the complex control system of the heart. 

Accordingly, HRV has been measured by using various nonlinear methods to fully capture the 

characteristics of the beat-to-beat variability.  

1.10.1.4 Nonlinear algorithms  

Investigation of nonlinear dynamics (NLD) algorithms has been reviewed by (Voss, Schulz, 

Schroeder, Baumert, & Caminal, 2009). The authors have classified methods obtained from NLD for 

measuring HRV into four groups. The first group is fractal measurements. It consists of three 

algorithms (power-law correlation, detrended fluctuation analysis (DFA), and multifractal analysis). 

These methods assess self-affinity of heartbeat fluctuations over multiple time scales. The second 

group are entropy measurements, which include approximate entropy, sample entropy, multiscale 

entropy, Renyi entropy and compression entropy. This group of measures determines the 

regularity/irregularity or randomness of heartbeat fluctuations. The third group of NLD measures is 

symbolic dynamics (DSyn). DSyn is applied to analyse the coarse-grained dynamics of HR 

fluctuations based on symbolisation. The final method noted here is the Poincaré plot representation, 

which measures the heartbeat dynamics based on a simplified phase space embedding. These methods 

introduced supplementary information and assisted classical time and frequency domain assessments 

of HRV.    

1.10.1.5 Symbolic dynamics 

Kurths et al. (1995) presented symbolic dynamics algorithm for the HRV assessment as an index for 

risk stratification of sudden cardiac death. The SDyn method aims to explain the overall short-time 

dynamics of beat-to-beat variability. The first step converts the time series into a symbol sequence of 

4 symbols with the alphabet A= (0, 1, 2, and 3) to categorise the dynamic variations within that time 

series. Three successive symbols from the alphabet describe the symbol strings by 64 different word 

patterns. The probability distribution of each single word within a word series is then measured. These 

short-term oscillations are generally produced by vagal and baroreflex functions (Voss et al., 2009). 

 

 Further support for applying SDyn can be found in the work of Porta et al. (2001), where the 

development the SDyn algorithm has been proposed to decrease RR data. The number of RR data 

was reduced to 300 beats and samples of length three (L=3) were built. Besides, the range of the RR 

series was divided into six levels from 0 to 5 (Guzzetti et al., 2005). Samples with L=3 were classified, 

without any loss, into four groups. The first group includes samples with no variation (0V), the second 

includes samples with one variation (1V), the penultimate group includes samples with two like 

variations (2LV), and finally the last group includes samples with two unlike variations (2UV).  
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While Voss et al. (2010) used a new SDyn method known as segment symbolic dynamics (SSD). The 

aim was to compare SSD parameters with time-frequency domain and nonlinear parameters to 

measure the compatibility of the SSD algorithm for risk stratification in patients with ischemic heart 

failure. For computing SSD, a 30-min RR intervals window was segmented into one minute 

overlapping windows. Word and symbol transformations were applied for each window. Also, 

probabilities of word type occurrences were measured. Results indicated that the SSD algorithm 

improved significantly the risk stratification for ischaemic cardiomyopathy patients.  

 

Loss of information detail and outliers (ectopic beats and noise) and the selection of symbol strings 

represent the main limitations of the SDyn algorithm (Porta et al. 2001).  Therefore, it consumes more 

time and requires complex computational resources for remote sensing and automated analysis. 

1.10.1.6 Heartprints 

A novel method has been proposed by Glass et al. (2011) for a better understanding of heartbeat 

behaviour in risk stratification. The dynamical properties of ventricular premature complexes (PVC) 

over 24 hours were measured in an effort to understand the underlying mechanisms of ventricular 

arrhythmias and the arrhythmias that occur in individual patients. Two dimensional density plots, 

known as Heartprints were suggested to record dynamical characteristics of premature ventricular 

complexes in Holter recordings. Heartprints display distinctive features in individual patients over 24 

hour epochs. However, this method requires visual evaluation from specialists and is therefore not 

suitable for automated analysis at this stage.   

 

Other approaches have been used to detect HRV patterns such as nonlinear complexity measures, 

wavelet transform and sophisticated artificial neural networks (Vu et al., 2010). However, these 

approaches may not always be technically feasible for real-time processing of HRV data from 

wearable sensors and mobile devices due to high computational resources and power consumption 

1.11 Intellectual Contribution and Significance  

The major contributions of this PhD research are: 

One of the main contributions of this research is a simple and computationally inexpensive algorithm 

for real time ECG reduction.  A novel ECG reduction algorithm that can be applied was proposed 

within ECG sensor node to increase sensor battery life significantly.   

 

A second contribution is the advancement of a new real-time algorithm that forecasts HRV measures 

minutes into the future so HRV can be analysed ahead of time. 
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A third contribution is to build a real diagnosis system based on ECG sensor and mobile phone that 

can detect arrhythmia in a simple and fast manner. 

 

A fourth contribution is the advancing a new algorithm that detects many types of arrhythmias from 

normal beats in the presence of noise.    

 

Therefore, this PhD research contributes at building a new ECG analysis method in real time to assist 

people and clinicians with measuring HRV and detect arrhythmias quickly and easily enough to 

deploy on wearable devices.  

1.12 Organisation of Thesis 

This introductory chapter provides background information related to cardiovascular remote patient 

monitoring application, its real-time reduction and detection. Also, it explains existing problems and 

clarifies the motivation behind the research undertaken. Furthermore, it lists the research questions and 

significant contributions of this PhD thesis.  

The rest of this paper is organised as follows: 

 

Chapter 2 explains different techniques for real time ECG signal reduction/compression, answering 

the first research question. It also demonstrates how the proposed method can be executed within 

wearable ECG sensor node. In addition, the chapter reports the experimental results and cardiologists 

results. 

 

The analysis of advancing a new real-time algorithm that predicts HRV measures minutes into the 

future is represented in Chapter 3. The analysis of the results and observations on these HRV measures 

are also illustrated in this chapter. 

 

Chapter 4 details a novel life-threatening arrhythmia detection algorithm. It also demonstrates how the 

proposed real cardiac monitoring system can be implemented within wearable ECG sensor node and 

mobile phone. In addition, it represents experimental results. 

 

Chapter 5 describes different techniques for the automated arrhythmias detection and classification a 

new wrapper based hybrid technique compared to the existing hybrid methods in the presence of 

noise, answering the third research question. It also details how the proposed technique can be 

improved classification performance and accuracy. Moreover, it illustrates the experimental results. 
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Finally, Chapter 6 concludes the project. The limitations of the study presented in this thesis and the 

directions for future research are explained in this chapter.    

1.13 Chapter Summary 

In this chapter, cardiovascular disease is introduced and the importance of real-time ECG reduction 

and early detection of heart disease are described. The challenges inherent in the implementation real-

time cardiac monitoring system based on battery operated devices are outlined. In addition, the need 

for automated detection and classification techniques in order to help patients and cardiologists to 

increase the arrhythmias detection accuracy, sensitivity and reduce the workload are detailed. ECG 

features play a pivotal role in the prediction and classification accuracy. Novel ECG signal reduction, 

prediction and classification techniques are proposed in this PhD project. The research questions and 

the contributions of this thesis are then listed followed by the organisation of the thesis. The next 

chapter answers the first question of this thesis. 
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CHAPTER 2 
 

2 ECG Reduction for Wearable Sensor 

 

By utilising simple algorithms with a sliding window that can boost the compression ratio to a higher 

level with limited computational resources, simpler, faster and more effective ECG reduction 

technique can be achieved.  The concept is to reduce the ECG at body area side (i.e. on patient's ECG 

sensor), before transmission to a portable device (e.g. a Smart phone). Hence, the scheme of the 

reduction technique requires special investigation with the aim being to decrease the number of 

operations. This chapter reports on a new reduction technique to reduce the amount of ECG data that 

needs to be transmitted in real time from the body sensor to a Smart phone with a Bluetooth or Zigbee 

protocol. 

 

In this chapter, first of all, current real-time ECG compression/reduction algorithms that can be 

implemented within ECG wearable sensors are described. Secondly, the objective of 

reduction/compression and the causes for selecting a novel ECG compression/reduction technique 

are provided. Then, the proposed reduction technique is explained in detail, with examples from a 

standard database and body sensor databases. In the results section of this chapter, signal quality, 

performance and power consumption are compared with respect to current compression techniques. 

The cardiologists’ evaluation of the proposed ECG reduction technique is also illustrated in the results 

section. Finally, the discussion and chapter summery is provided prior to the chapter conclusion.  

 

Why ECG reduction/compression is important for wearable sensors? 

 

Advances in wearable ECG sensor technology in recent years has changed the way ECG signals are 

collected, stored and processed (Lee, Chen, Hsiao, & Tseng, 2007; Scully et al., 2012). This can lead 

to reductions in the use of Holter devices in favour of real-time, continuous monitoring (Oresko 

2010). Secondly, ECG sensors generate large streams of data that easily exhaust storage of mobile 

devices and need high bandwidth capacity for transmission. Some applications are required to process 

and store ECG recordings for one or more days (Elgendi, Eskofier, Dokos, & Abbott, 2014). ECG 

data collected from a patient at sampling rate 500Hz with 16-bit resolution for 24 hours can easily 

reach up to 6.5 GB. Thus, in order to transmit this huge data using standard wireless techniques such 

as Wi-Fi and Bluetooth, requires a dedicated limited speed of 631 kbps as in Equation 2.1.  
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R𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑 =
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎

𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
=  

6.5 GB

24 hours
= 631 kbps                             (2.1) 

 

Few telemedicine services provide this transmission speed (Sufi, Fang, Khalil, & Mahmoud, 2009). 

During the streaming of huge ECG data, a reduction/compression method can be used to reduce 

bandwidth and transmission requirement for faster transmission on minimum bandwidth wireless 

link.  ECG reduction/compression technique also adds value to home or hospital telecare monitoring 

systems; they are usually based on mobile devices, by increasing their battery life as described in 

Chapter 1. 

 

Trials of the ECG reduction algorithm advanced here were applied to the MIT-BIH Arrhythmia (Mark 

& Moody, 1997) and Shimmer3 ECG databases. The MIT-BIH Arrhythmia database was used for 

testing and the Shimmer3 dataset was used for measuring the generalisation capability performance 

of the method and evaluation of the proposed techniques in a real-time transmission context. Both 

datasets will be described in this chapter.  The ECG reduction results on the MIT-BIH Arrhythmia 

database was published in a peer reviewed conference (Allami, Stranieri, Balasubramanian, & 

Jelinek, 2016a)  

2.1 ECG Data Reduction/Compression Background and Related Work   

The current ECG reduction/compression methods can be grouped under two main approaches: 

lossless and lossy. Lossless algorithms can reconstruct the raw signal from compressed signal without 

any data loss. In contrast, lossy algorithms can retrieve an estimated version of the raw signal. Lossy 

compression methods possibly provide higher compression ratios than lossless algorithms with 

minimal changes between raw data and compressed data (Ibaida, Al-Shammary, & Khalil, 2014). 

 

Lossy compression algorithms are commonly used to reduce/compress ECG signal (Ibaida et al., 

2014; Sufi & Khalil, 2011a). They are mainly grouped into three categories: direct methods (reduction 

methods), transformational methods and parameter/feature methods. Transformational methods 

employ transformations processing such as discrete cosine transform (DCT) (Lee & Buckley, 1999), 

fast Fourier transform (FFT) (Reddy & Murthy, 1986), and discrete wavelet transform (DWT) 

(Rajoub, 2002). The rationale underpinning transformational methods represent the signal in a 

suitable transform domain and select the number of transform coefficients to be streamed, in place of 

the raw samples.  
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Parameter/feature methods use neural networks, vector quantisation and pattern matching (Cárdenas-

Barrera & Lorenzo-Ginori, 1999; Maglaveras, Stamkopoulos, Diamantaras, Pappas, & Strintzis, 

1998). Their rationale is to process the temporal series to obtain some knowledge to forecast the signal 

behaviour. Many parameter/feature methods require the detection of the QRS complex first, for the 

extraction of features, prior to the deployment of pattern recognition or machine learning methods 

(Ibaida, 2014; Sufi et al., 2009). 

 

In general, all the transformational and parameter/feature algorithms are designed for PC-based 

environments that have high memory requirements, processer capacities and I/O ports. Unlike mobile 

devices that have limited hardware resources, challenge the execution of transformational and 

parameter/feature algorithms on mobile phone (Sufi, 2011).    

    

Direct methods reduce/compress the ECG signal directly in the time-domain without any pre-

processing. Direct algorithms extract a subset of significant points simply and swiftly by utilising  the 

information of previous points (usually using prediction methods) or employing the information of 

both future and previous points (usually using interpolation methods) (Jalaleddine et al., 1990). 

Therefore, they are efficient in terms of compression ratio and fast processing. They directly detect 

and eliminate redundant points from the raw signal and some of them provide minimum distortion 

(Ranjeet, Kumar, & Pandey, 2011). This makes direct methods more suited for remote patient 

monitoring than transformational and parameter/feature methods. Also, they can be simply executed 

on mobile devices (Ranjeet, Kumar, & Pandey, 2013; Rossi et al., 2002). Although other methods 

achieve higher compression ratios than direct methods, they consume more time, power and 

computational resources to be suitable for deployment with wearable sensors devices (Francescon et 

al., 2015; Jalaleddine et al., 1990).  

 

ECG data reduction/compression using a lossy method provides a distorted version of the original 

data. Hence, the quality of reconstructed data should be evaluated using subjective and objective 

measures. Subjective evaluation is achieved visually by cardiologists (Chen, Hsieh, & Yuan, 2004; 

Huang, 2004; Zigel, Cohen, & Katz, 2000). Objective evaluation is commonly achieved using four 

fundamental measures; signal reconstruction error, compression ratio, compression performance and 

root mean square error. The compression ratio (CR) describes the effectiveness of an ECG 

compression method. The percentage root mean square difference (PRD) is a computation of error due 

to signal infidelity. This measures the distortion between the original and the reconstructed signal 

(Huang, 2004; Ibaida et al., 2014). Root mean square error (RMSE) is calculated from actual and 

expected measurements (Hyndman & Athanasopoulos, 2014). 
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Why is a novel ECG reduction/compression required for wearable sensors? 

 

Firstly, most existing ECG compression/reduction algorithms are computationally expensive. In 

addition, they are designed and evaluated on PC environments and some of them on mobile phone 

environments (Sufi, 2011). Furthermore, almost all the current ECG compression/reduction 

algorithms are evaluated based on objective evaluation. Subjective evaluations have hardly ever been 

carried out.   

 

Secondly, ECG signals from wearable sensors processed on battery-driven devices require algorithms 

to execute rapidly in real-time, due to limitations in processor capability, power and memory (Elgendi 

et al., 2014). Therefore, there is increasing attention on the advancement of simple algorithms that 

reduce the data signals streamed so that wearable sensors battery life can be extended. In addition, 

the large datasets and limited processing capacity of devices near the sensors results in the need to 

consider near, or real-time reduction of large ECG data sets for critical operations in ambulatory 

recording systems, ECG signal storage systems and for ECG signal transmission over wireless 

networks (Francescon et al., 2015; Padhy et al., 2016). Moreover, any reduction in ECG signals 

should not impede clinicians’ diagnostic assessments (Mamaghanian, Khaled, Atienza, & 

Vandergheynst, 2011).  

 

Most existing ECG data reduction algorithms are designed to reduce information size while 

maintaining significant information, so that the ECG wave can be reconstructed from the reduced 

form as intact as possible (Moody, Soroushian, & Mark, 1987). Critically, any ECG data reduction 

algorithm should preserve the essential features (diagnostic features) of the ECG signal (P, QRS, T) 

waves as these peaks and troughs as well as the calculated intervals (i.e. QT interval) are used for the 

clinical interpretation of the ECG (Lee, Kim, & Lee, 2011; Zigel et al., 2000). However, some existing 

ECG compression methods discussed below are not entirely lossless but result in changed diagnostic 

features. 

 

Lastly, algorithms that aim to reduce existing compression algorithms that achieve considerable 

compression by applying computationally resource intensive transformations are difficult to deploy 

on wearable devices, which are constrained by power and memory limitations. In contrast, many 

reduction algorithms cannot be reversed to re-create the original signal but they reproduce important 

features (diagnostic features) of the signal only. Moreover, many existing reduction algorithms 

require a block of ECG data and cannot reduce a signal incrementally as it arrives from wearable 
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devices so that the need to store the entire stream can be obviated. In addition, most current 

compression algorithms need extra processing on the compressed ECG in order to reconstruct the 

origin data that leads to consume more time and power, especially in case of resource constraint 

mobile devices, where reconstruction time could be long. 

 

In this chapter, a simple, yet effective ECG data reduction algorithm where the signal cannot be 

reconstructed as intact but nevertheless has a number of benefits is introduced. First, the compression 

ratio is higher than many existing real-time reduction methods. Also, most ECG diagnostic features, 

intervals and ECG waves can be detected from reduced data. Second, the algorithm can be applied 

on programmable ECG mobile sensors such as Shimmer3 ECG sensor and demonstrably increase the 

battery life. Finally, the reduction processing is computationally less expensive than current ECG 

data reduction/compression methods because the algorithm is simple and can execute every few 

milliseconds on data streaming in to devices or sensors. 

 

To the best of our knowledge, this is the first time the efficacy of an ECG reduction algorithm has 

been assessed in a real-world system, based on subjective and objective evaluations, to reduce and 

stream ECG data with wearable ECG sensors. In the next section, direct and real-time ECG 

reduction/compression methods will be described more in depth. 

2.1.1 Direct methods 

Real-time ECG data reduction algorithms known as “lossy” methods are those where the reduced 

ECG signal usually cannot be reconstructed or recovered in an exact manner. Algorithms in this 

category include turning point (TP) (Mueller, 1977), amplitude zone time epoch coding (AZTEC) 

(Cox, Nolle, Fozzard, & Oliver, 1968), coordinate reduction time encoding system (CORTES) 

(Abenstein & Tompkins, 1982), and Fan/SAPA (Scan Along polygonal Approximation) (Singh, 

Kaur, & Singh, 2015).  

2.1.1.1 Analysis of direct methods 

Reduction of ECG signal does not require retaining all data points but rather only some points of the 

ECG data are essential (P, Q, R, S, T as illustrated in Figure 1.2 in chapter 1), and relevant intervals. 

The subtlety of the ECG signal may be ignored in favour of higher compression ratios (Jalaleddine et 

al., 1990; Ranjeet et al., 2011; Rossi et al., 2002). Hence, numerous types of compression/reduction 

methods that contain some errors have been applied to reduce ECG signals. 

 

Many of the direct algorithms are based on interpolation or prediction techniques. Interpolation and 

prediction methods eliminate data redundancy by testing the successive value of neighbouring points. 
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Interpolation methods including first-order and zero-order interpolators (FOI, ZOI) utilise prior 

information of both previous and next values, whereas prediction methods such as first-order and 

zero-order predictors (FOP, ZOP) employ only prior information of some previous values 

(Jalaleddine et al., 1990). 

 

The description of prediction and interpolation techniques is represented below. Polynomial predictor 

is a data compression algorithm in which a polynomial of order j is fitted via previously recognised 

data points and then extrapolated to predict subsequent points.  

 

The polynomial predictor equation written as: 

 

X'n = Xn-1 + Fxn-1 + F2Xn-1 + ... + FjXn-1                                                                                                                                     (2.2) 

 

Where 

 

X'n = predicted sample point at time tn 

 

Xn-1 = point value at one point period prior to tn 

 

FXn-1 = Xn-1 - Xn-2                                                                                                                                                                                         (2.3)    

 

FjXn-1 = Fj-1Xn-1 – Fj-1Xn-2                                                                                                                                     (2.4)  

   

When j=0 the polynomial predictor is called zero-order predictor (ZOP). ZOP algorithm predicts each 

data point in the same way as the previous one as illustrated in Equation 2.5 below: 

 

X'n = Xn-1                                                                                                                                                                                                                  (2.5) 

 

Most techniques apply the ZOP algorithm as a step technique or floating aperture. This method keeps 

a single data point and omits each successive point that remains within a tolerance band ± e, whose 

centre remains on the kept point and changes them with a horizontal line. When a point is outside the 

tolerance band, the new point is kept as depicts in Figure 2.1. This process is repeated until all data 

finish. 
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Figure 2.1. An example of the ZOP floating aperture algorithm (Jalaleddine et al., 1990) 

The first-order predictor (FOP) algorithm applies a polynomial predictor with j = 1. Two previous 

samples have to be defined in the FOP algorithm as represented in the equation below. 

 

X'n = 2Xn-1 + Xn-2                                                                                                                                                                                          (2.6)                                                                                                                                                                                           

 

The FOP algorithm is similar to ZOP algorithm. Its difference lies in the way the forecasting line is 

drawn. Rather than a horizontal line, the two previous samples are used to generate a starting sample 

and a slope for the prediction. A tolerance band is still implemented, and when a data point remains 

outside the tolerance band, a new FOP is created (Lynch, 1985). 

 

 

Figure 2.2. An example of the FOP algorithm (Jalaleddine et al., 1990) 

 Polynomial interpolator algorithm differs from polynomial predictor algorithm in that previous and 

next data points are employed to generate the forecasting polynomial. The zero-order interpolator 

(ZOI) algorithm adjusts the ZOP by allowing the horizontal line has height corresponding to the mean 

of a set of data rather than simply that of the first point. As illustrated in Figure 2.3, both algorithms 

(ZOI algorithm and ZOP algorithm) maintain all data points within a tolerance band around the 
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reconstructed data. ZOI algorithm achieves higher compression results because it choses data points 

more appropriately. 

 

Figure 2.3. An example of the ZOI algorithm (Jalaleddine et al., 1990)  

 

FOI algorithm uses two points to create a slope and line similar to FOP algorithm but it applies the 

ZOI idea in selecting two points that leads to an optimised compression ratio. 

 

FOP algorithm with two degrees of freedom (FOI-2DF) is also called a two-sample projection 

algorithm. It keeps two successive data points and generates a line linking the points. If altering the 

line to pass via the third data point rather than the second still keeps the second data point within a 

tolerance bound around the line, a new line is drawn from the first point to the fourth rather than to 

the third as explained in Figure 2.4. This also applies to the jth point, when data points between the 

first and the jth remains outside the tolerance bound around the line. The line linking the first and (j-

1)th sample proposes to be the best approximation and is kept. It has been regularly found to be the 

most successful of the FOI's (Kortman, 1967).  However, the kept data refer to a height and a distance 

to the next kept point. When reconstructing the data, the line is drawn via the kept height and the next 

kept height, using this new height as starting point of the next line (Jalaleddine et al., 1990). The FOP 

requires many calculations and it also requires data look ahead. 
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Figure 2.4. An example of the FOI-2DF algorithm (Jalaleddine et al., 1990) 

 

Cox et al. (1968) introduced the AZTEC algorithm that changes a plain ECG signal into slopes and 

horizontal lines (plateaus). When a plateau of three points or more are formed then the slope is saved. 

The amplitude and length are saved while the horizontal lines use the zero-order interpolator method 

to reduce the data. The information saved from a slope is the length of the slope and its final 

amplitude. Although the AZTEC method realises on a high CR of about 10:1 (500 Hz sampled ECG 

with 12 bits resolution), it provides imprecise reconstruction of ECG waves because T and P waves 

have slow varying slopes. Also, the accuracy of the decompression ECG waves is often unacceptable 

to cardiologists due to the discontinuity (step-like quantization) that appears in the reconstructed ECG 

signal (Jalaleddine et al., 1990). In addition, it produces a PRD of 28 % and requires pre-processing 

to reduce an ECG signal.  

 

The turning point method, proposed by Mueller (Mueller, 1977) reduces the sampling frequency of 

an ECG wave to 100 Hz and preserves the peak of the large amplitude QRS waves. The Turning point 

method operates by substituting each of three successive values with the two that best represent the 

slope of the three values. The second of the two stored values is used for the computation of the next 

two values.  It uses the first value (V0) as a reference value for the future iteration. The next two 

successive values represented as V1 and V2. The method keeps either V1 or V2, based on which value 

maintains the slope change of the raw data. Turning point maintains the essential aspects of the ECG 

data and supplies a CR of 2:1. However, it is sensitive to sampling rate and relevant clinical 

information is lost if a minimum or a maximum value is lost. Therefore, if one of the two values in 

the pair is a local minimum or a local maximum, then it is the other value in the pair that is eliminated 

(Horspool & Windels, 1994). In fact, the proposed method advanced in this study is similar to the 
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turning point method but it provides a higher CR and overcomes the local minimum and local 

maximum problem that may lead to missed diagnostic features.  

 

The high precision of the turning point reduction technique and the superior CR of the AZTEC 

technique were merged into the CORTES method. (Abenstein & Tompkins, 1982) demonstrated the 

implementation analysis of the CORTES, AZTEC, and Turning Point methods for ECG’s sampled at 

200 Hz with PRD 7 and CR of 4.8:1.  

 

Fan and SAPA methods represent an ECG data reduction algorithm which provides a CR of around 

3:1 and PRD of nearly 4 (250 Hz sampled ECG). These two methods depend on a first-order 

interpolation with two degrees of freedom (FOI-2DF) algorithm. The Fan algorithm achieves the 

FOI-2DF without saving all the raw data samples between the last transmitted and the present sample 

(Singh et al., 2015). The real-time ECG data compression algorithms that can execute on wearable, 

programmable ECG sensor devices are explained next.   

 

A real-time ECG data compression algorithm, +SLOPE, was introduced by (Tai, 1991). This algorithm 

processes some neighbouring patterns as a vector and expands the vector if the next pattern falls in a 

fan spanned by the vector and threshold angle. By this approach, +SLOPE constantly restricts linear 

parts of different slopes and lengths. Initially, the Slope algorithm reads the first three points (P1, P2, 

and P3). These three points are considered to be represented in a linear segment which expects to be 

increased by coming points. When P4 is coming, then it is tested with the threshold if P4> threshold 

then P4 is considered to be the first point of a new linear segment else, P4 adds to the current segment. 

The +SLOPE algorithm reproduces ECG signal well. However, the approach can lead to QRS 

misdetection and a CR of 4.8 and PRD of 7.  The +SLOPE algorithm was tested on the MIT-BIH 

Arrhythmia database by (Tai, 1991).    

                         

A compression engine was introduced by Fang et al. (2013) for portable real-time ECG data 

monitoring to transfer ECG signal wirelessly and analyse heart rate variability in real-time. The 

compression engine achieves a compression ratio of approximately 2.5 by classifying every ECG 

sample based on prior samples with the Golomb-Rice k-parameter algorithm. The compression 

algorithm was evaluated on the MIT-BIH Arrhythmia database. The ECG signals were resampled to 

256 Hz before being tested and achieved a compression ratio of approximately 2.5. 

 

Sufi (2011) introduced an ECG algorithm based on genome sequences. The genome sequences ECG 

compression method was implemented with three ECG compression methods known as ZOP, SAPA 
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and Peak, for comparison, on a mobile phone platform for real-time ECG compression. The basic 

idea of the Sufi research is to stream ECG data from a wearable data to a patient mobile phone via 

Bluetooth or Wi-Fi in real time. The received ECG data compresses and transmits to a doctor’s mobile 

phone via SMS or MMS in real time. The author reported the results of execution time, CR and PRD 

for all four methods. The ZOP method provides fastest execution time with CR of 3.7 and PRD of 

2.6. The peak method required the highest execution time with CR of 6.6 and PRD of 2.1. The SAPA 

and genome sequences methods approximately recorded similar execution time with CR of 3, 3.9 and 

PRD of 4, and 0, respectively. Although the Peak method achieves high CR it consumes more time 

and computational resources to detect the QRS complex. Also, it is not ideal for diagnosis because it 

completely eliminates T waves, more details of the Peak method are represented in (Rossi et al., 2002) 

investigation. 

 

The Sufi (2011) study was not implemented using real-time ECG data collected from a wearable ECG 

sensor. Rather, the study was evaluated based on 12 records obtained from MIT-BIH Arrhythmia 

database. In addition, it did not measure the power consumption of the mobile phone. Further, the SMS 

and MMS have limited size and are not suitable for real wearable ECG sensor that stream ECG data 

from 4 or 5 channels because it requires more power, processor capability and memory.           

 

Modern real-time ECG compression methods that can be applied within wearable ECG sensors to 

reduce power consumption and reconstruct signal quality are described below.  

2.2 Compressed Sensing for ECG Signal Compression 

Compressed sensing (CS) is a recent compression method which imposes the sparsity of data in 

compression and reconstruction processes (Baraniuk, 2007). It applies simple linear transformation 

methods such as sensing matrix that relies on an implementation of Gaussian random distribution to 

reduce the amount of data and exploits the sparsity of the compressed data in the reconstruction 

process. The sparsity indicates that most of the input data are zeros (Zhang, Jung, Makeig, & Rao, 

2013). On the other hand, the CS methods transmit only nonzero data. Recently, numerous 

investigations have implemented CS techniques for ECG compression and provided high CR (Craven 

et al., 2015; Parkale & Nalbalwar, 2017). However, an ECG signal is not sparse in its nature. Hence, 

traditional CS methods fail in the compression and reconstruction processes. Therefore, current 

studies have proposed more complex methods including machine learning, DWT, and DCT, etc. to 

solve non sparse ECG signal (Da Poian, Brandalise, Bernardini, & Rinaldo, 2016).  

 



33 

 

Nevertheless two studies proposed by (Da Poian et al., 2016; Mamaghanian et al., 2011) attempted 

to simulate/develop CS algorithms and thresholding based DWT algorithm directly on a Shimmer 

ECG wearable sensor. Those studies aimed to measure power reduction, CR, and signal quality. 

Mamaghanian et al. illustrated the advantage of CS in wearable ECG sensor for compression and 

collection of adult ECG data. The method was evaluated against the DWT algorithm in terms of 

power saving on Shimmer ECG node. The method was evaluated on standard records from the MIT-

BIH Arrhythmia database. However, the ECG collection was not implemented in real-time on 

Shimmer ECG device. Instead, the ECG data was stored on the memory of Shimmer sensor and 

resampled at 256 Hz. The method utilized a sliding window size of 512 because of memory size 

restriction. The sliding window required two seconds to collect an ECG segment of 512 points at the 

sampling rate of 256 Hz. So, it consumed more time, where one minute of processing requires 30 

seconds waiting plus the execution time of the algorithms. The authors reported that CS algorithm 

provided CR of about 2 or 51%, energy consumption of 7.29 mJ and increased battery life by 37%. 

DWT algorithm achieved CR of 3.7 or 73%, energy consumption of 9.86 mJ, and decreased battery 

life. Those results were based on one channel ECG segment size of 512 samples and very good 

reconstruction quality.  

 

Last year, a study also compared the CS algorithm against DWT algorithm based on foetal ECG data 

(Da Poian et al., 2016). ECG data was also obtained from a standard database, Physionet Challenge 

database (Physionet, 2013). During the compression phase, the method utilised a sliding window size 

of 256 sampling at 1 kHz. Results represented that CS and DWT algorithms achieved CR of about 4 

or 75 % and provided good signal quality. In addition, the results illustrated CS algorithm consumed 

less power (1.2 Joule) than the DWT algorithm (1.8 Joule). The authors indicated that DWT algorithm 

cannot be executed in real-time based on four channels ECG data recordings at a sampling rate 1 kHz 

due to limitation of memory size of sensor node. In the reconstruction stage, the study employed more 

complex technique called block sparse Bayesian learning, because existing CS techniques do not 

reconstruct high quality foetal ECG data from CS methods. 

  

Both studies above that were implemented or simulated within Shimmer ECG sensors were based on 

standard ECG data obtained from Physionet databases (Physionet, 2015). Accordingly, the authors 

indicated that ECG collection stage was not implemented in real-time on Shimmer ECG node. In 

addition, the reading process was not real. The power consumption results, therefore, can be said to 

require more analysis (Craven et al., 2015). Also, there was buffering time/delay (2 seconds or 1 

second) for a window to collect data. All above problems generate imprecise measurements of battery-

life. CS methods require very complex computational techniques to reconstruct the raw signal. 
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Consequently, the study recommended to apply the reconstruction process based on a cloud server, 

especially for systems that use mobile devices for ambulatory monitoring (Craven et al., 2015).    

 

All the methods above provide a CR that is less than the proposed method except the AZTEC method 

which produced a CR of 10 but does not retain all relevant clinical data. It typically misses P and T 

waves. Other approaches have a fixed CR whereas the proposed algorithm can be varied. So, it can 

provide CR of about 10 and in some cases miss P and T waves as well, when their amplitudes are low. 

Also, existing methods require more processing time and suffer from buffering problems when they 

execute on a wearable ECG sensor. In addition, they need to reconstruct the ECG signal that consumes 

more time and power for battery driven device. Sufi, Khalil, and Mahmood (2011) reported that 

cardiovascular detection based on compressed ECG data is quicker than reconstruction followed by 

detection. Therefore, they consume more time and energy than the proposed method advanced in this 

thesis. Each of the proposed algorithms will be discussed in the following sections prior to the 

description of experiment results. 

2.3 Method Description 

In this investigation, a sliding window in time-domain is analysed with a simple filter referred to as 

Maximum_Minimum (Max_Min) to reduce the amount of ECG data rapidly. The aim of the proposed 

algorithms is to reduce data points making sure that P, Q, R, S, and T are not removed so that the 

features useful for diagnostic purposes remain intact and energy consumption for wearable sensor is 

reduced as much as possible. In addition, the same procedures as proposed by other statistical methods 

such as mean and median were applied for comparison. The approach also enables variable 

compression ratios.  

2.3.1 Proposed ECG reduction algorithm 

The direct ECG data reduction algorithm proposed here implements real-time direct reduction. The 

algorithm reads and stores n consecutive raw ECG measurements. The algorithm then takes a stream 

of millivolt readings as input and operates in the same way regardless of the sampling rate.  

The algorithm, described in Table 2.1 operates as follows.  

 

The algorithm reads n consecutive +/- ve millivolt ECG readings. The maximum point of the samples 

in the window is identified. If this maximum is positive, it is retained in the reduced set and the other 

points are discarded. This ensures the P, R and T peaks are not discarded. If the maximum point is 

not positive, the minimum is identified and retained and the others are discarded. This ensures the Q 

and S troughs are not missed. 
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Algorithm 2.1: Proposed ECG reduction algorithm coding schema 

Input: Plain ECG signal in +/- millivolts 

Output: Reduced ECG signal +/- millivolts 

 

Step 1: Window size (n)  

Step 2: While ECG ≠ N  Do 

Step 3: Read n  

Step 4: Max= Maximum sample in n 

Step 5: Min= Minimum sample in n  

Step 6: If  Max>= 0 Then save Max  

            Else save Min 

Step 7: End while 

Step 8: Return to Step 2 

 

 

 

Figure 2.5. An example of proposed ECG reduction algorithm 

It is noted that usually each window of size 5 consists of samples close to each other and some of the 

samples are repeated as depicted in Figure 2.5. In other words, they have low standard deviation. 

Therefore, the mean and median methods can be implemented to reduce ECG signal and achieve 

good results, especially for ECG signals that have high amplitudes. 

2.3.2 Mean and median ECG reduction algorithm 

The algorithms apply the same procedures listed in Algorithm 2.1. They read and store a window of 

n consecutive raw ECG samples. The mean of the samples is identified then only the mean is saved 

and other samples are discarded. The mean algorithm estimates the slop a sample, when it has been a 
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part of the selected samples as represented in Algorithm 2.2. It is similar to the Turning Point 

algorithm which only estimates the slope change sample and omits the other samples. 

 

  

Algorithm 2.2: Mean ECG reduction algorithm coding schema 

Input: Plain ECG signal in +/- millivolts 

Output: Reduced ECG signal +/- millivolts 

 

Step 1: Window size (n) 

Step 2: While ECG ≠ N  Do 

Step 3: Read n  

Step 4: M=Mean(n) 

Step 5: Save M  

Step 6: End while 

Step 7: Return to Step 2 

 

Median algorithm is the same as the mean algorithm except it uses median not mean as illustrated in 

Algorithm 2.2. 

 

Mean and median algorithms preserve the essential aspects of the ECG data. However, they do not 

always retain the original peaks and troughs and the relevant clinical information is lost or estimated 

incorrectly if a window of size 5 composes of incoherent samples and the standard deviation of the 

sample is high. The proposed ECG reduction algorithm is virtually guaranteed to retain the original 

peaks and troughs as described in Figure 2.5. 

2.4    Results 

2.4.1 Experimental Results 

The proposed algorithms were evaluated using the MIT-BIH Arrhythmia database (Mark & Moody, 

1997) and Shimmer3 ECG database collected for the current study. The MIT-BIH Arrhythmia 

database is commonly used in ECG signal analysing because it includes different patterns of ECG 

signal and contains data from 48 ECG traces for 30 minutes from different patients. Furthermore, it 

has two channel ambulatory ECG recordings in digital format with an 11 bits and 360 Hz sampling 

rate. The Shimmer3 ECG dataset consists of 52 records (Normal and Abnormal) of 30 minutes real 

world ECG signals obtained from various patients at sampling rate 256 Hz. The Shimmer3 ECG 

dataset was collected during 2016–2017 and classified by experienced cardiologists at Ibn Alnafees 

Hospital in Baghdad, Iraq. A single Shimmer3 ECG sensor (matchbox size) strapped to the patients 
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received a signal from five electrodes attached to the chest. Patients were selected for the data 

collection by the attending registrar who applied the inclusion criteria: cognate, over 18 and under 75 

years. We applied the proposed algorithms on both MIT-BIH Arrhythmia database and Shimmer3 

ECG dataset.   

2.4.1.1 Proposed ECG reduction results 

Figure 2.6 depicts part of the raw ECG from Record no. 103 of the MIT-BIH Arrhythmia database. 

This record represents a Normal ECG. Figure 2.7 also illustrates a segment of record No. 103 but 

where only some of the samples have been selected for storage by the proposed ECG reduction 

algorithm described above in Algorithm 2.1 using a window of size 5. Figure 2.7  demonstrates that 

each peak and trough has been correctly identified. The algorithm provides a compression ratio of 5 

and 1% PRD. Furthermore, it can be used with long and short term ECG signal at different sampling 

rates.  

 

 

Figure 2.6. Segment of normal ECG for record no. 103 with raw samples 

 

Figure 2.7. Segment of normal ECG for record no. 103 with reduced samples illustrates all ECG peaks and troughs are 

maintained after reduction process 
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Extra ECG examples readings from Shimmer3 ECG dataset are represented in below figures in order 

to illustrate that the proposed ECG reduction algorithm can be implemented in different ECG signals 

collected from wearable ECG sensor or traditional devices sampling at different rates. 

 

Figure 2.8. Segment of Normal ECG for record no. N001 with raw samples readings from Shimmer3 ECG dataset 

 

Figure 2.9. Segment of normal ECG for record no. N001 with reduced samples and a window of size 5 shows all ECG 

peaks and troughs are maintained after reduction process readings from Shimmer3 ECG dataset 

The proposed ECG reduction algorithm can be acceptable to reduce a Normal ECG data when a 

window size was increased up to 15  because the reduced ECG signals  maintained the diagnostic 

features and P,Q,R,S,T waves, especially R waves. For example, Figure 2.8 represents raw ECG 

signal with five ECG beats. When the proposed ECG reduction algorithm was applied to reduce the 

ECG signal using a window size of 15 the reduced ECG signal conserved for P,Q,S,T points and all 

R points as shown in Figure 2.10. 
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Figure 2.10. Segment of Normal ECG for record no. N001 readings from Shimmer3 ECG dataset with reduced samples 

and a window of size 15 illustrates some ECG peaks and troughs such as P and Q waves are missed after reduction process 

but the R and T waves are still saved 

 

The proposed ECG reduction algorithm (Max_Min) provided very good signal quality when it was 

applied to all cardiovascular arrhythmias with window size set from 2 to 5. It did not change the 

morphology/shape of  ECG signal waves (P, Q,R,S, T) and maintained  all P or T waves when their 

amplitutes were too low such as in Atrial Flutter rhythm or Atrial Fibrilliation rhythm. Also, it 

included the P, R, T peaks as well as shown in Figure 2.11 and Figure 2.12 below, indicating that the 

automated detection algorithm to correctly detecting diagnostic features.  

 

Figure 2.11. Segment of ECG for record no. 200 with raw AF samples reading from MIT-BIH Arrhythmia database 

 

Figure 2.12. Segment of ECG for record no. 200 readings from MIT-BIH Arrhythmia database with reduced AF 

samples and a window of size 5 illustrates many ECG peaks and troughs are saved after reduction process  
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2.4.1.2 Mean ECG reduction algorithm results 

Figure 2.13 depicts part of the raw ECG from record no. 103 readings of the MIT-BIH Arrhythmia 

database. This record represents a Normal ECG. Figure 2.14 also illustrates a segment of record no. 

103 but where only some of the samples have been selected for storage by the mean ECG reduction 

algorithm described above in algorithm 2.2 using a window of size 5. Figure 2.14 illustrates that each 

peak and trough has been correctly retained. The  mean algorithm provides a compression ratio of 5 

and 2 PRD. Furthermore, it can be used with long and short term ECG signal at different sampling 

rates.  

 

Figure 2.13. Segment of normal ECG for record No. 103 with raw samples 

 

Figure 2.14. Segment of Normal ECG for record no. 103 with reduced samples illustrates all ECG peaks and troughs 

are maintained after reduction process 

More ECG examples obtained from Shimmer3 ECG dataset are illustrated in the figures below.  
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Figure 2.15. Segment of Normal ECG for record no. N001 with raw samples readings from Shimmer3 ECG dataset 

 

Figure 2.16. Segment of Normal ECG for record no. N001 with reduced samples using a window of size 5 illustrates all 

ECG peaks and troughs are maintained after reduction process readings from Shimmer3 ECG dataset 

The mean ECG reduction algorithm was unable to reduce a Normal ECG data set when window size 

was increased up to 10 because the reduced ECG signals missed some P, Q, R, S, T waves and 

changed the ECG signals morphology. Figure 2.16 represents the raw ECG signals, which consist of 

five ECG beats when the mean ECG reduction algorithm was applied to reduce the ECG signals. 

With a window size of 10 the reduced ECG signals missed the first, fourth, and fifth beat and changed 

the ECG signals morphology as shown in Figure 2.17. 

 

Figure 2.17. Segment of Normal ECG for record no. N001 readings from Shimmer3 ECG dataset with reduced samples 

and a window size of 10 illustrates some ECG peaks and troughs are missed after reduction process  
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The mean ECG reduction algorithm provided very good signal quality but only when it was applied 

to some cardiovascular arrhythmias such as PAC, Normal, and PVC rhythms with a window size  

from 2 to 5. In contrast, the mean ECG reduction algorithm changed the ECG signal rhythm and 

missed P or T or both (P, T) waves, particularly when their amplitudes were too low. For example, 

as shown in Figure 2.18, the original ECG signals comprised five ECG beats when the mean ECG 

reduction algorithm was employed to reduce the ECG signals with a window size of 5, whereupon 

the morphology of the reduced ECG signals changed significantly. Clearly, it represented the first, 

second, third and fourth beats very poorly and maintained only the fifth beat, as depicted in 

Figure 2.19 which caused the automated detection algorithms to fail in terms of detecting diagnostic 

features. 

 

Figure 2.18. Segment of ECG for record no. 200 with raw AF samples reading from MIT-BIH Arrhythmia database 

 

Figure 2.19. Segment of ECG for record no. 200 readings from MIT-BIH Arrhythmia database with reduced AF 

samples and a window size of 5 illustrates many ECG peaks and troughs are missed after reduction process 

2.4.1.3 Median ECG reduction results 

Figure 2.20 shows segment of the raw ECG from record no. 119 readings of the MIT-BIH Arrhythmia 

database. Figure 2.21 also depicts a part of record no. 119 but where only some of the samples have 

been selected for storage by the median ECG reduction algorithm using a window of size 5. 

Figure 2.21 illustrates that each peak and trough has been correctly estimated. The algorithm provides 
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a compression ratio of 5 and 3% PRD. Furthermore, it can be used with long and short term ECG 

signal at different sampling rates. 

 

Figure 2.20. Segment of PVC ECG for record no. 119 with raw samples 

 

Figure 2.21. Segment of PVC ECG for record no. 119 with reduced samples illustrates all ECG peaks and troughs are 

maintained after reduction process. 

More illustration segments, which support the meadian ECG reduction algorithm, extracted from 

Shimmer3 ECG dataset are represented in the figures below.  

 

Figure 2.22. Segment of PVC ECG for record no. N007 with raw samples readings from Shimmer3 ECG dataset 
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Figure 2.23. Segment of PVC ECG for record no. N007 with reduced samples and a window size of 5 illustrates all 

ECG peaks and troughs are maintained after reduction process readings from Shimmer3 ECG dataset 

The median ECG reduction algorithm was unable to reduce PVC ECG data when the window size 

was increased to 8 because the reduced ECG signals eliminated the diagnostic features and changed 

the ECG signals’ morphology.  In Figure 2.23, the original ECG signals comprised five ECG beats, 

however after the median ECG reduction algorithm was utilised to reduce the ECG signal using a 

window size of 8, the second and third beats were eliminated. In addition, some of the first, fourth, 

and fifth beats missed some P, Q, S, T points and retained only the R points,  as depicted in 

Figure 2.24. 

 

Figure 2.24. Segment of PVC ECG for record no. N007 readings from Shimmer3 ECG dataset with reduced samples 

and a window of size 8 illustrates some ECG peaks and troughs are missed after reduction process  

The median ECG reduction algorithm provied very good signal quality when it was applied to 

Normal, PAC, and PVC rhythms with a window size set from 2 to 5. In contrast, the median ECG 

reduction algorithm changed the ECG signal morphology when the window size set higher than 5 and 

missed P or T or both (P, T) waves when their amplitutes were too low such as in Atrial Fibrilliation 

rhythm. For instance, in Figure 2.25, the raw ECG signal composed of five ECG beats is shown when 

the median ECG reduction algorithm was applied to reduce the ECG signal with a window size of 5. 

Again the morphology of the reduced ECG signals were changed. It misrepresented the first three 

beats due to the P, Q, R, S, and T waves not being recognised. The morphology of the fourth beat 
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was changed but the Q, R, S, T waves can be detected. Only  the fifth beat was maintained as depicted 

in Figure 2.26 that led automated detection algorithms to fail in detecting diagnostic features.  

 

Figure 2.25.Segment of ECG for record no. 200 with raw AF samples reading from MIT-BIH Arrhythmia database  

 

Figure 2.26. Segment of ECG for record no. 200 readings from MIT-BIH Arrhythmia database with reduced AF 

samples and a window of size 5 illustrates many ECG peaks and troughs were missed after reduction process 

Noise and data transmission losses are likely to impact more heavily on wearable ECG sensors 

because of the interference from other mobile devices in addition to the traditional ECG noise. This 

is described in the next section. 

2.4.2 ECG noise reduction results   

Typically, an ECG signal is affected by two main types of noise, electromyogram (EMG) and baseline 

wander (BW) (Moody, Muldrow, & Mark, 1984). EMG noise is generated because of muscular 

activity. It is mostly at a high frequency period from 5 to 500Hz. BW noise is generated because of 

the motion of electrodes or respiration. It is predominantly at low frequency periods under 0.5 Hz. 

ECG filtering improves diagnostic features recognition for both cardiologists and computerised 

analysis (Hashemi, Rahimpour, & Merati, 2015). Numerous publications indicated that adaptive 

filtering influenced the computation of morphological features of ECG signals (Gregg et al., 2008; 

Łęski & Henzel, 2005; Valvbrde et al., 1998). Censi et al. (2009) investigated how filtering methods 
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effect ECG signals. They concluded that high-pass filtering methods may reduce peaks and troughs 

substantially, which leads to inaccurate results. We discovered that all proposed ECG reduction 

methods can be reduced to a type of ECG noise as explained below.  

 

The mean ECG reduction algorithm removed high frequency noise and maintained diagnostic 

features based on a window size up to 4 (optimal case) as illustrated in Figure 2.28. When the window 

size was increased up to 5, the mean ECG reduction algorithm still removed high frequency noise but 

only when ECG signals had high P and T amplitudes. 

 

Figure 2.27. Segment of raw ECG for record no. 200 readings from MIT-BIH Arrhythmia database 

 

Figure 2.28. Segment of reduced ECG for record no. 200 readings from MIT-BIH Arrhythmia database with a window 

size of 4 illustrates many ECG peaks and troughs are saved after reduction process  

The median ECG reduction algorithm removed high frequency noise and reserved diagnostic features 

based on a window size up to 4 (optimal case) as shown in Figure 2.30. Also, it removed outliers in 

any sliding window. When the window size was increased to 5, the median ECG reduction algorithm 

still removed high frequency and low frequency noise but only when ECG signals had high P and T 

amplitudes. The time complexity of the median algorithm is O(nlogn) while the time complexity of 

the mean algorithm is O(n). Therefore, the median ECG reduction algorithm is more computational 



47 

 

expensive than the mean ECG reduction algorithm. However, the mean ECG reduction algorithm was 

ideal for high frequency noise. 

 

Figure 2.29. Segment of raw ECG for record no. N008 readings from Shimmer3 ECG database 

 

Figure 2.30. Segment of reduced ECG for record no. N008 readings from Shimmer3 ECG database with a window size 

of 4 illustrates many ECG peaks and troughs are saved after reduction process 

The proposed ECG reduction algorithm eliminated high frequency noise and maintained diagnostic 

features based on a window size of 5 (optimal case) as illustrated in Figure 2.31. Also, it still removed 

high frequency noise when ECG signals had low P and T amplitudes. The proposed ECG reduction 

algorithm is similar to the computational efficiency of the mean ECG reduction algorithm. Therefore, 

it is suitable for real-time ECG filtering.  

 

Figure 2.31. Segment of reduced ECG for record no. N008 readings from Shimmer ECG database with a window of 

size 5 illustrates many ECG peaks and troughs are saved after reduction process 
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As mentioned, reduction of ECG signals does not require retaining all data points; rather, only some 

points of the ECG data are essential (P, Q, R, S, and T), as well as relevant intervals. Some data is 

lost with the proposed ECG reduction algorithms in that all points in the window are discarded except 

for the minimum or maximum, mean or median. Whether these points are critical for the generation 

of important ECG indicators is discussed in the next section. The computerised results illustrated that 

ECG features generated from the reduced data were approximately similar to those generated from the 

raw data.  

2.5 Generation of Features from Reduced ECG Data 

Many methods employ P,QRS,T information to measure the distortion between raw and compressed 

or reduced ECG signal. For example,  Zigel et al. (2000) introduced  an algorithm to assess the 

distortion of an ECG signal. This algorithm is based on measures of P, QRS, and T diagnostic features 

and include the PR interval, ST segment and RR interval of the raw ECG signal and the compressed 

ECG signal. Zigel et al. (2000) reported that the feedback from cardiologists was more positive than 

with traditional distortion measures. Also, the link between diagnostic distortion and the PRD metric 

was categorized as: if the PRD from 0 to 2 % then signal quality is very good, if the PRD from 2 to 

9 % then signal quality is very good or good and if the PRD from >= 9 % then signal quality is not 

possible to determine. 

 

For the evaluation of the proposed ECG reduction methods, we used P, QRS, and T diagnostic 

features to measure the quality of the reduced signal. Further, we calculated PRD and CR parameters 

that are most commonly used to quantify the reduction effectiveness and accuracy while analysing 

the diagnostic quality of the reduced ECG data. CR and PRD are given as below: 

 

CR=(X/Y)                                                                                                                                       (2.7) 

 

PRD=|| X− Y||2/||X||2 ×   100                                                                                                         (2.8) 

              

Where X is the plain signal and Y is the reduced signal.  

We computed the P,QRS,T dignostice features for the raw data as follows: 

 

A=|i−N| × 1/frequency                                                                                                                      (2.9) 
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Where A represents any interval or segment such as PR interval. 

Where i refers to  start intervel and N referes to end interval.  

We reconstructed the dignostic features from the reduced data using Equation 2.10 below:  

 

Ā=|(i×WS) − (N× WS)| × 1/frequency                                                                                           (2.10) 

      

Where Ā represents any interval or segment such as ST segment and WS represents window size. The 

next section illustrates how the optimal window size was selected. 

2.5.1 Window size 

Most important ECG features that clinicians and many computerized algorithms apply to diagnose 

cardiovascular diseases were generated from the reduced ECG signal. Raw ECG signals were 

examined with window sizes of 2, 3, 4, 5, 6, 7, 8, 9 and 10 samples. We utilised the WFDB software 

that is available publicly to extract ECG features (diagnostic features) from raw and reduced ECG 

signals (Silva & Moody, 2014).  The window size was started from 2 then increased gradually. The 

width of window size depended on the detection of essential features (diagnostic features) of the ECG 

signal (P, Q, R, S, and T). The window size was increased in width if the P, Q, R, S, and T were 

correctly identified. 

 

 Table 2.1. Window size versus Max_Min ECG reduction algorithm accuracy/effectiveness  

Note: N/A represents failure to detect an interval 

 

Table 2.1 describes the link between window size, diagnostic features distortion and detection 

accuracy. When the window size is set to 2, 3 or 5, the quality of the reduced signal is high and the 

diagnostic features can be detected. When the window size increases to 6, the quality of the reduced 

signal is good and diagnostic features can be still detected, but the accuracy of the reduced signal 

decreases when the window size increases above 7. The P and T waves cannot be detected because 

of the reduced signal distortion resulting in a failure to detect ST and PR intervals. R waves can be 

Window 

size 

CR PRD%  

PR  

interval 

PRD%  

PR  

segment 

PRD%  

QRS  

complex 

PRD%  

ST  

segment 

PRD%  

ST  

interval 

PRD%  

QT  

interval 

PRD% 

RR  

interval 

2 samples 2:1 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

3 samples 3:1 99.9 99.9 99.9 99.9 99.9 99.9 99.9 

4 samples 4:1 99.9 99.7 99.9 99.3 99.9 99.9 99.9 

5 samples 5:1 99.2 99.6 99.3 99.1 99.2 99.5 99.4 

6 samples 6:1 85.4 69.5 93.9 72.7 78.9 93.5 99.2 

7 samples 7:1 71.3 N/A 92.8 N/A N/A 83.6 98.8 

8 samples 8:1 N/A N/A 92.1 N/A N/A 74.9 98.8 

9 samples 9:1 N/A N/A 91.4 N/A N/A 55.9 98.6 

10 samples 10:1 N/A N/A 90 N/A N/A 55.2 98.3 
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detected correctly with all window sizes from 2 to 10. A window size of 5 has been determined 

empirically to produce the optimal trade-off between compression ratio, accuracy and computational 

resources. The window size can be varied to achieve different trade-offs depending on the context.  

 

Table 2.2. Window size versus mean reduction algorithm accuracy/effectiveness  

It can be observed from Table 2.2, when the window size is set to 2, 3 or 4, the quality of the reduced 

signal is high and the diagnostic features can be accurately detected. When the window size increases 

to 5, the quality of the reduced signal is good and the diagnostic features can be still detected. The 

quality of the reduced signal decreases when the window size increases above 6. The P and T waves 

cannot be detected because of the reduced signal distortion, resulting in the failure to detect ST and 

PR intervals.  

 

Table 2.3. Window size versus median reduction algorithm accuracy/effectiveness  

 

Table 2.3 indicates that the window size has an almost similar effect on diagnostic features distortion 

and detection accuracy for both median and mean ECG reduction algorithms 

   

We conclude that based on proposed ECG reduction (Max_Min) algorithm most intervals including 

the QT interval can be accurately detected from reduced ECG signal with a window size of 5. The 

RR intervals data detected from the reduced signals have about 99% similarity to the RR data detected 

Window 

size 

CR PRD%  

PR  

interval 

PRD%  

PR  

segment 

PRD%  

QRS  

complex 

PRD%  

ST  

segment 

PRD%  

ST  

interval 

PRD%  

QT  

interval 

PRD% 

RR  

interval 

2 samples 2:1 99.2 99.1 99.3 99.5 99.2 99.9 99.9 

3 samples 3:1 98.9 99.3 99.2 99.7 99.5 99.8 99.9 

4 samples 4:1 84.1 91.4 87.1 88.3 88.4 91.7 90.9 

5 samples 5:1 73.5 74.4 85.6 86.4 86.4 87.2 87.5 

6 samples 6:1 63.6 50.7 73.8 68.4 74.3 74.3 85.7 

7 samples 7:1 N/A N/A 70.1 N/A N/A 79.8 82.4 

8 samples 8:1 N/A N/A 60.9 N/A N/A 63.1 73.5 

9 samples 9:1 N/A N/A 46.4 N/A N/A 43.7 63.2 

10 samples 10:1 N/A N/A 30.8 N/A N/A 38.5 60.8 

Window 

size 

CR PRD%  

PR  

interval 

PRD%  

PR  

segment 

PRD%  

QRS  

complex 

PRD%  

ST  

segment 

PRD%  

ST  

interval 

PRD%  

QT  

interval 

PRD% 

RR  

interval 

2 samples 2:1 99.7 99.8 99.7 99.9 99.9 99.9 99.9 

3 samples 3:1 98.4 99.5 99.5 99.7 99.5 99.9 99.9 

4 samples 4:1 90.3 90.3 90.1 90.5 90.2 90.8 90.5 

5 samples 5:1 73.7 74.1 85.3 86.6 86.9 86.9 87.9 

6 samples 6:1 63.9 51.9 72.9 68.7 75.1 75.8 86.2 

7 samples 7:1 N/A N/A 71.6 N/A N/A 80.8 82.8 

8 samples 8:1 N/A N/A 62.1 N/A N/A 63.6 73.3 

9 samples 9:1 N/A N/A 48.3 N/A N/A 43.7 63.5 

10 samples 10:1 N/A N/A 32.6 N/A N/A 39.9 61.2 
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from the raw ECG signal up to a window size of 10. Thus, time-domain, frequency-domain, and 

nonlinear heart rate variability (HRV) analysis results are almost identical to the original ECG signal 

results. In addition, we found that based on the median ECG reduction algorithm most intervals 

including the QT and RR intervals are accurately detected from the reduced ECG signal with a 

window size of 4. The QT and RR intervals data detected from the reduced signals have about a 99 

% similarity to the QT and RR data detected from the raw ECG signal up to a window size of 4. 

According to the mean ECG reduction algorithm, it can be concluded that most intervals including 

the RR and QT intervals are accurately detected from the reduced ECG signal with a window size of 

4. The RR and QT intervals data detected from the reduced signals have about a 98 % similarity to 

the RR and QT data detected from the raw ECG signal up to a window size of 4.  

Table 2.4. Comparison of proposed ECG data reduction algorithms (mean, median, Max_Min) 

Algorithm Optimal 

Window 

Size 

Signal 

Quility 

Arrhythmia type Sampling 

Rate 

CR PRD % 

Mean 2 to 4 Very 

good 

PVC,PAC,Normal,LBBB, 

RBBB 

Any 4 2 

Median 2 to 4 Very 

good 

PVC,PAC,Normal,LBBB, 

RBBB 

Any 4 3 

Max_Min 2 to 5 Very 

good 

All Any 5 1 

 

The Max_Min ECG reduction algorithm provided high signal quality and a compression ratio of 5 

when implemented with a window size of 5, so we selected this algorithm to compare with existing 

ECG reduction algorithms.  

 

Table 2.5 illustrates that the proposed ECG reduction algorithm achieves a very low PRD % at a 

compression ratio of 5 when executed with a window size of 5. This compares favourably with many 

other algorithms. 

Table 2.5. Comparison of ECG data reduction algorithms 

Methods CR Sampling Rate Hz , 

(No. of Bits) 

PRD% 

TP 2 200, 12 5.3 

AZTEC 10 500,12 28 

CORTES 4.8 200,12 7 

FAN/SAPA 3 250,- 4 

SLOPE 4.8 250,- 7 

Fang et al. 2.5 256,- - 

Proposed method 5 Any 1 
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The PRD was very low because every point selected was one of the raw ECG points. The compression 

ratio and accuracy are comparable with the algorithm mentioned in Table 2.5.  

  

The high compression ratio and simple instructions that the proposed ECG reduction method provided 

have significantly contributed to reduce the power consumption for wearable ECG sensor are 

described in Section 2.7.2.      

2.5.2 Energy consumption for wearable ECG sensor                

Power consumption for wearable sensors represents the main challenge of real-time monitoring 

systems (Craven et al., 2015; Islam et al., 2014). Therefore, an algorithm that can easily be 

implemented on wearable sensors, provide high compression ratio and maintain signal quality is 

crucial for reducing energy consumption.    

 

In this study, we used Shimmer3 ECG wearable sensor as a reference to measure energy consumption 

in milli Joules. The Shimmer3 motherboard consists of a low-power Texas Instrument 16-bit 

MSP430F5437A microcontroller, 2.7 Volts, a low-power CC2420 IEEE 802.15.4 compliant radio, 

and has a Bluetooth module. In addition, Shimmer3 has a 450 mAh lithum-ion rechargeable battery 

that can work up to 16 hours when the sampling rate is 200 Hz. The MSP430 microcontroller runs at 

8 MHz and has 16 KB of RAM, 256 KB of Flash memory. Also, it has a fast hardware multiplier, but 

does not have a floating-point unit (Shimmer, 2015). The energy consumption has been evaluated for 

the runtime reduction methods by implementing each method on the Shimmer3 ECG board. We 

coded ECG reduction/compression algorithms on Shimmer3 sensor by using Code Compose Studio 

(CCS) version 7.1 that is available publicly at (Texas Instruments, 2015b). The execution time for 

each reduction/compression algorithm was calculated based on an ECG segment size of 1000 samples 

readings from Shimmer3 ECG database using Equations 2.11 and 2.12. Due to routine interruptions 

that occur during processing, overall execution time was affected. The reduction/compression 

processes were repeated 200 times and the average execution time calculated to accurately measure 

runtime as illustrated in Table 2.6. 

 

Power=Volts × Amp                                                                                                                     (2.11) 

 

Energy consumption= Power × Runtime                                                                                      (2.12) 
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Table 2.6. Comparison of ECG data reduction algorithm for energy consumption  

Methods Average run time for 200 runs 

(ms) 

Energy consumption 

(mJoule) 

TP 98 1.47 

AZTEC 174 2.61 

CORTES 270 4 

FAN/SAPA 123 1.84 

SLOPE 286 4.30 

Fang et al. 253 3.8 

Proposed method 102 1.52 

 

The runtime and energy consumption are comparable with the algorithms listed in Table 2.6 and are 

particularly good, given that the algorithm executes in real-time and increases battery life using high 

CR, minimal CPU, storage requirements and power consumption as described in the next section.  

2.5.3 Energy consumption based on real test data streaming 

The executing of simple algorithms within wearable sensors consumes low power but the 

transmission process drains significant power because the sensor’s radio generally accounts for most 

of the overall power consumption (Craven et al., 2015; Da Poian et al., 2016). For example, the Texas 

Instruments Inc. state that the CC2420 radio consumes 230nJ of power to transmit a bit of data, except 

start up and redundancy packed constitutes (Texas Instruments, 2015a).  

 

As previously mentioned, only two methods measured Shimmer power consumption. However, these 

methods provided inaccurate results because they were based on standard ECG data, not on a real-

time monitoring system with ECG data streaming. In contrast, the proposed method was executed 

based on a real monitoring system with real ECG data generated from a Shimmer3 ECG sensor as 

follows. Shimmer3 ECG sensor battery life was measured based on different sampling rates 256 Hz 

without any reduction/compression method to measure the actual battery life. The battery was fully 

charged and real ECG signals were collected from a volunteer with Normal ECG rhythm via 

Bluetooth to a laptop device based on Consensys v1.1.0 software that is freely available (Shimmer, 

2015). The Consensys v1.1.0 software manages the Shimmer3 ECG sensor and provides many 

facilities such as Manage device, Live data and Manage data. The Manage data provides information 

about data size and recording time. The Live data has many options such as connection with the 

sensor via Bluetooth, record ECG data, setting and display the battery level. From the manage device, 

researchers can upload their own algorithms on a Shimmer3 sensor node. After that, each 

reduction/compression method was implemented and uploaded on the Shimmer3 node to calculate 

the battery life as reported in Table 2.7.  
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Table 2.7. Battery life based on real test for real-time ECG reduction/compression methods at sampling rate 256 Hz 

Method Battery-life (h) 

Standard 13 

Tp 18.52 

AZTEC 38.47 

CORTES 20.17 
FAN/SAPA 17.50 

SLOPE 18.20 
Fang et al. 11.10 

Max_Min (N=5) 29.52 

Max_Min (N=10) 45.15 

 

Table 2.7 demonstrates that the proposed algorithm increases Shimmer3 battery-life significantly 

with a window size of 5 or 10. It can be concluded that the Shimmer3 with a window size of 5 can be 

used as a Holter because it can work more than 24 hours continuously. 

    

Most ECG compression/reduction methods have only been evaluated with statistical measures. The 

proposed ECG reduction algorithms have been evaluated based on statistical measures, as illustrated 

above, and with clinical tests, as outlined in Section 2.8 as follow.   

2.6  Clinical Analysis 

To validate the proposed methods clinical analysis was also performed by an expert cardiologist. We 

sent large ECG segments via Email that approximately covered all arrhythmia types obtained from 

Physionet databases (Physionet, 2015) and Shimmer3 ECG dataset to a senior cardiologist 

(independent/blind cardiologist). The expert cardiologist was not familiar with the research and was 

asked to assess the ECG segments.   

The ECG segments were illustrated in Figure 2.32. 

 

 

 

 

 

 

 

 

 

Figure 2.32. ECG data folders that sent to the cardiologist 

Subfolder  

Algorithm 1 Source1 
 

A ……

… 

N B 

 
P ……

…       

P30 P1 Main folder Subfolder  
ECG 

segments 

Subfolder  

Source 2 



55 

 

 

Algorithm 1 refers to mean ECG reduction algorithm (Folder name).  

Source 1 refers to name of File 1 that has ECG segments obtained from Physionet databases. 

Source 2 refers to name of File 2 that has ECG segments obtained from Shimmer3 ECG databases. 

(A) refers to an arrhythmia segment (ECG picture) such as Normal rhythm that has all ECG segments 

(raw and reduced segments) inside File 1 or File 2, etc.  

P refers to raw ECG (raw ECG picture).  

P1 refers to the reduced ECG segments based on mean ECG algorithm with a window size of 2.  

P2 refers to the reduced ECG segments based on mean ECG algorithm with a window size of 3, etc. 

 

The cardiologist classified the ECG segments as ‘good’, ‘difficult’, and ‘fake’ then sent the following 

message: 

 

“The ECG segments that you sent are classified into three groups known as ‘good’, ‘difficult’ and 

‘fake’. ‘Good’ refers to similar to what I can see on the monitor that is currently used and the clinical 

condition was easy to diagnose. ‘Difficult’ are traces that raise uncertainty about the diagnosis. Hence, 

the diagnosis was not able to be made according to these ECG signals. ‘Fake’ looks like computerised 

ECG and unlikely to be generated from a patient monitoring system.”   

 

Following the subjective classification the results were sent to three cardiologists in Ibn Alnafees 

group in order to generalise the expert cardiologist’s classification (good, difficult, and fake). The 

three cardiologists confirmed the expert cardiologist’s classification results except for the ‘fake’ 

results, some of which were classified as real ECG as illustrated below.  

 

Due to the ECG segments that were sent to the expert/independent cardiologist based on the three 

proposed ECG reduction methods were very large only some of these ECG segments are described 

below with the cardiologist’s results. 

2.6.1 Mean ECG reduction results 

We selected some ECG segments that show different type of arrhythmias from Physionet databases.  

Figure 2.33 illustrates the normal, raw ECG for record no. 103 was classified as ‘good’ by the 

cardiologist.  
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Figure 2.33. Segment of raw Normal ECG for record no. 103 classified as Good readings from MIT-BIH Arrhythmia 

database 

The cardiologist was able to classify the reduced ECG segments based on the mean ECG reduction 

algorithm with a window size starting from 2 to 11 as depicted in Figure 2.34.  

 

Figure 2.34. Segment of reduced ECG for record no. 103 classified as Good with a window size of 11 

Extra complex rhythm is presented in the figures below. 

 

 

Figure 2.35. Segment of raw SV ECG for record no. 804 classified as ‘good’ 

 

Figure 2.36. Segment of reduced SV ECG for record no. 804 classified as ‘fake’ with a window size of 5 
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2.6.2 Median ECG reduction results 

Median ECG reduction results were almost the same as the mean ECG reduction results from the 

cardiologist’s viewpoint. Some ECG segments that illustrate various type of arrhythmias obtained 

from the Shimmer3 ECG dataset are shown below in order to illustrate the cardiologist’s results. 

 

Figure 2.37. Segment of raw AF with Artifact ECG for record no. N001 classified as ‘difficult’ 

The cardiologist classified the reduced ECG segment for record no. N001 as ‘difficult’ with a window 

size of 2,3,4,5. When the window was increased to 6, the cardiologist classified the reduced segment 

as ‘fake’ as represented in Figure 2.38.    

 

Figure 2.38. Segment of reduced AF with Artifact ECG for record no. N001 classified as ‘fake’ with a window size of 6  

2.6.3 Max_Min ECG reduction results 

The cardiologist was able to recognise arrhythmias based on Max_Min ECG reduction algorithm 

even with a large window such as size of 15. We selected some ECG segments that reflect different 

type of arrhythmias readings from Shimmer3 ECG dataset and Physionet databases.   

 

Figure 2.39. Segment of raw PVC ECG for record no. 119 classified as ‘good’ reading from MIT-BIH Arrhythmia 

database. 
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Figure 2.40. Segment of reduced PVC ECG for record no. 119 classified as ‘good’ with a window size of 15 

The overall results that were obtained from the blind/independent cardiologist for the proposed ECG 

reduction algorithms are summarised in the tables below.  

Table 2.8. The cardiologist overall results based on Max_Min ECG reduction algorithm obtained from Physionet 

databases and Shimmer3 ECG dataset 

Arrhythmia 

type 

Window 

Size 

Classification 

Type 

Window 

Size 

Classification 

Type 

Window 

Size 

Classification 

Type 

Normal 0,2,…15 Good 16,17,…19 Fake ----------- --------- 

AF 0,2,3,… ,6 Good 7,8,….20 Fake ----------- --------- 

Noisy AF 0,2,3,4 Difficult 5,6,7,8 Good 9,10,…..20 Fake 

AFIB 0,2, ,…..15 Good 16,17,….20 Fake ----------- ----------- 

PVC 0,2,…..19 Good 20,21,….30 Fake ----------- ----------- 

APC 0,2,…..15 Good 16,17,…20 Fake ----------- ----------- 

SV 0, 2,3,4 Good 5,6,7,……13 Fake ----------- ----------- 

VFL 0,2,…,8 Good 9,10,……20 Fake ----------- ----------- 

VT 0,2,…. 9 Good 10,12,……20 Fake ----------- ----------- 

Note: zero means raw ECG segment. 

Table 2.8 describes the link between window size, diagnosis and arrhythmias type. When the rhythms 

have high amplitudes such as Normal and PVC rhythms, the cardiologists detect the rhythms as good 

with window size set from 0 to 15 or 19. When the ECG rhythms have low amplitudes such as AF 

rhythm, the cardiologists classify the rhythm as difficult with a window size set from 0 to 4 because of 

the noise effect. AF rhythm was detected correctly with window sizes from 5 to 8, due to Max_Min 

algorithm, which reduced the noise and illustrated the rhythm type clearly to the cardiologists. Indeed, 

a window size of 5 has been identified clinically to provide the ideal trade-off between compression 

ratio and classification accuracy.  
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Table 2.9. The cardiologist’s overall results based on mean ECG reduction algorithm obtained from Physionet databases 

and Shimmer3 ECG database 

Arrhythmia 

type 

Window 

Size 

Classification 

Type 

Window 

Size 

Classification 

Type 

Window Size Classification 

Type 

Normal 0,2, ,…11 Good 12,13,…17 Fake ----------------- ----------------- 

AF 0,2,3 Good 4,5,6 Difficult 7,8,….20 Fake 

Noisy AF 0,2,….5 Difficult 6,7,8,….20 Fake ----------------- ----------------- 

AFIB 0,2, …..10 Good 11,17,….20 Fake ----------------- ----------------- 

PVC 0,2,……6 Good 7,8, ,….30 Fake ----------------- ----------------- 

APC 0,2,….7 Good 8,9,…14 Fake ----------------- ----------------- 

SV 0,2,3,4 Good 5,6,……13 Fake ----------------- ----------------- 

VFL 0,2,…..,7 Good 8,9,……20 Fake ----------------- ----------------- 

VT 0,2,…. 10 Good 11,12,……20 Fake ----------------- ----------------- 

 

Table 2.10. The cardiologist’s overall results based on median ECG reduction algorithm obtained from Physionet 

databases and Shimmer3 ECG dataset 

Arrhythmia 

type 

Window 

Size 

Classification 

Type 

Window 

Size 

Classification 

Type 

Window Size Classification 

Type 

Normal 0,2,3, …11 Good 12,13,…17 Fake ----------------- ----------------- 

AF 0,2,3 Good 4,5,6 Difficult 7,8,….20 Fake 

AFIB 0,2,3,……6 Good 7,8,….20 Fake ----------------- ----------------- 

Noisy AF 0,2,3,….5 Difficult 6,7,8,….20 Fake ----------------- ----------------- 

PVC 0,2,3,…11 Good 12,13, ,….30 Fake ----------------- ----------------- 

APC 0,2,3, …10 Good 11,12,…14 Fake ----------------- ----------------- 

SV 0,2,3,4 Good 5,6,……13 Fake ----------------- ----------------- 

VFL 0,2,…..7 Good 8,9,……20 Fake ----------------- ----------------- 

VT 0,2,…. 10 Good 11,12,……20 Fake ----------------- ----------------- 

 

From Table 2.9 and Table 2.10, it can be observed that the mean and median algorithms change the 

morphology of the ECG signals, particularly those that have low amplitudes, which causes inaccuracy 

in classification by the cardiologist.     
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2.7 Discussion 

The transmission, storage and analysis of ECG data in real-time is essential for remote patient 

monitoring with wearable ECG contexts. However, this remains a challenge to achieve within the 

power, the storage and processing capacity of wearable sensors. ECG reduction algorithms have an 

important role to play in reducing the processing requirements for wearable sensors. However, many 

existing ECG reduction and compression algorithms are computationally expensive to execute in 

wearable sensors and have not been designed for real-time computation and incremental data arrival. 

They have not been built for wearable sensor environments. 

 

 In this investigation, we tested the effect of statistical Max_Min, mean and median algorithms with 

different sizes of sliding windows on reduced ECG signal quality based on subjective and objective 

contents. Also, we measured the energy consumption for ECG sensor.  

 

the mean and median ECG reduction algorithms remove high frequency noise and maintain 

diagnostic features based on window size up to 4 (optimal case). When window size increases to 5, 

the mean and median ECG reduction algorithms still remove high frequency noise but only when 

ECG signals have high P and T amplitudes. Indeed, the median ECG reduction algorithm is more 

computational expensive than mean ECG reduction algorithm. Thus, the mean ECG reduction 

algorithm is optimal for high frequency noise. Although the mean and median reduction algorithms 

achieve good reduction results and accuracy, they can only be applied to some ECG types such as 

Normal, PVC, and PAC ECG signals because they change morphological diagnostic features.  

 

The Max_Min ECG reduction algorithm removes high frequency noise and maintains diagnostic 

features based on a window size of 5 (optimal).  Also, it still removes high frequency noise when 

ECG signals have low P and T amplitudes. It is approximately similar in computational efficiency of 

mean ECG reduction algorithm. Therefore, it is suitable for real-time ECG reduction and filtering. In 

addition, it provides very good signal quility for all  ECG signal types. 

 

Window size plays an important role in ECG signal quality. The Max_Min ECG reduction algorithm 

retains most intervals accurately from reduced ECG signals with a window size of 5. The RR intervals 

data detected from the reduced signals have about 99 % similarity to the RR data detected from the 

raw ECG signal up to a window size of 10. Thus a window size of 10 is possible for investigations 

using only HRV analysis because reduced RR data results are almost identical to the original RR data 

results, which leads to a significantly increased sensor battery life. Mean and median ECG reduction 
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algorithms maintain most intervals from a reduced ECG signal with a window size of 4. Those 

intervals have about 97 % similarity to the original intervals with a window size up to 4.  

 

Mean and median ECG reduction algorithms change the morphology of ECG signals because they 

estimate a sample from a window size of 2, 3, 4,…N. If those samples are close to each other as 

represented in Figure 2.5 (their standard deviation is low) then both algorithms provide good reduction 

or signal quality whereas if those samples have high standard deviation then both algorithms change 

ECG signals morphology significantly even with a small size window such as 2 or 3 because they 

estimate samples far from peaks or troughs. Usually an ECG signal generates samples with low 

standard deviation (close to each other or repeated) in a small window size. Therefore, the mean and 

median algorithms can be used to reduce ECG with some type of arrhythmias. In contrast, the 

Max_Min ECG reduction algorithm maintains the morphology of ECG signals and is guaranteed to 

select the original peaks and trough as illustrated in Figure 2.5. Also, it enhances the morphology of 

ECG signals if noise is present. For example, as reported in Table 2.8, the cardiologist classified a raw 

ECG signal as difficult, and after applying the Max_Min algorithm with a window size of 5, the 

cardiologists classified the reduced ECG signal as good.  

 

From a medical point of view, all proposed ECG reduction algorithms can reduce an ECG signal and 

maintain the diagnostic features but with different window sizes. For instance, mean and median ECG 

reduction algorithms are good with a window size starting from 2 to 5 if the ECG signals have high P 

and T amplitudes. When P or T amplitude is low, mean and median ECG reduction algorithms miss P 

or T waves if the window size is greater than 4. Therefore, they are not recommended for ECG signals 

that have low P or T amplitudes. The Max_Min ECG reduction algorithm is good for all ECG signals 

that have low or high P and T amplitudes with a window size ranging between 2 and 5. 

 

Computational test and medical testing recommend the use of Max_Min ECG reduction algorithm to 

reduce all ECG signal types. Therefore, we selected it for comparison with the real-time ECG 

reduction algorithms that can be executed on Shimmer3 wearable ECG sensor in term of CR and 

energy consumption. 

 

Existing methods that executed within Shimmer3 ECG node were not evaluated with an actual real-

time system. They employed ECG data obtained from Physionet databases. Hence, the data acquisition 

stage and runtime calculation of the algorithms may not be reliable. Accordingly, the energy 

consumption results were inaccurate. Furthermore, there was a waiting time (1 or 2 seconds) for 

reading ECGs because the sensor had a small memory capacity. All those issues led to inaccurate 
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measurement of energy consumption in prior literature. In fact, they suffer from wearable sensor 

resources limitation. Moreover, they measure the energy consumption based on few seconds.    

 

Rechargeable batteries provide different power when they are fully charged, half charged, and low 

charged. So, a very small segment of time such as 2 seconds or 1 min does not reflect the real time for 

a battery life. To accurately measure battery life, a complete analysis should be implemented for all 

battery stages; full charged, half charged, and low charged. 

   

 We implemented a complete real-time system based on Shimmer3 ECG sensor to read, reduce, and 

transmit ECG data to a base station via Bluetooth such as a laptop or a mobile device. This allowed us 

to accurately measured energy consumption and battery life. 

2.8 Conclusion 

The recording of ECG data generates a large amount of data which increases with different sampling 

rates and time. Nowadays, wearable sensor devices are being used in healthcare applications to 

process large ECG data. These devices are battery-driven and have low processor and memory 

capacities. In this work, we proposed three ECG reduction algorithms and presented a novel, naïve 

yet, relatively simple but highly effective algorithm (Max_Min ECG reduction algorithm), which 

reduces the size of ECG signals in real-time. It was implemented within the constraints of ECG 

wearable sensor. Our reduced ECG signals reflect the raw ECG signals. In addition, our investigation 

found a link between the window size that used to reduce ECG signal and the quality of the reduced 

ECG signal. We infer that most intervals including the QT interval must be accurately recognised 

from reduced ECG data with a window size of 5. The RR intervals data recognised from the reduced 

data have 98 % similarity to the RR data recognised from the original ECG data with a window size 

start from 2 to 10. The proposed technique outperformed other existing real-time reduction and 

compression ECG data techniques with compression ratio of 5 and with low energy consumption. 

Most current approaches were evaluated based on computerised analysis, whereas the proposed 

method was evaluated based on both computerised and clinical analysis. Unlike existing algorithms 

that provide a fixed CR, the proposed algorithm can be varied. However, when the window size 

increased P and T samples were missed leading to failure to detect ST and PR intervals.  

 

Moreover, in this chapter, we described a computationally naïve, yet effective, algorithm that 

achieves high ECG reduction rates while maintaining key diagnostic features including PR, QRS, ST, 

QT and RR intervals. While reduction does not enable ECG waves to be reproduced, the ability to 

transmit key indicators (diagnostic features) using minimal computational resources, is particularly 
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useful in mobile health contexts involving power constrained sensors and devices. Results of the 

proposed reduction algorithm indicate that the proposed algorithm outperforms other ECG reduction 

algorithms at a reduction/compression ratio (CR) of 5. If power or processing capacity is low, the 

algorithm can conceivably switch to a compression ratio of up to 10 while still maintaining an error 

rate below 10 %. 

 

Moreover, an expert cardiologist evaluated the three proposed reduction algorithms based on real 

ECG data collected from many patients who wore Shimmer3 ECG sensor and Physionet databases. 

The cardiologist was able to diagnose all arrhythmia types that were obtained from Max_Min ECG 

reduction algorithm with window size of 5. For some types of arrhythmia, the cardiologist could 

diagnose the reduced ECG data with window size start from 5 to 15. Indeed, Max_Min ECG reduction 

algorithm achieves higher compression ratio than existing real-time ECG reduction methods that can 

implement on wearable ECG sensor. Also, it extends battery life more than existing real-time ECG 

reduction methods.  

In addition, it provides very good ECG signal quality not only based on computerised tests but also 

on clinical tests. 

 

The recommendation advanced in this study is that the Max_Min ECG reduction algorithm is 

particularly well suited for the reduction of ECG data captured from wearable sensors on mobile 

patients in real-time and applied on programmable ECG sensors. Heart rate variability measures 

including the standard deviation of inter-beat variations (SDNN) require at least five minutes of ECG 

recordings to accurately measure HRV. The following chapter explains how to find HRV measures 

in relatively short time frames with a high degree of accuracy.  
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CHAPTER 3 

3 Heart Rate Variability Forecasting 

 

The previous chapter introduced a novel ECG reduction method that provides high compresion ratio 

and can also execute in real time with wearable sensors. The ECG sensor implements the proposed 

ECG reduction algorithm and transmits the reduced ECG data to a nearby, battery operated device 

usually a Smartphone. As mentioned in Chapter 1, HRV estimations can be calculated from an ECG 

signal over five minutes. The time from normal ECG peak of the beat (the R peak) to the next normal 

R peak is called the RR interval (Kranjec et al., 2014) and depicted in Figure 1.2. This chapter presents 

a new real time approach that uses three minutes ECG traces to reliably forecast HRV measures for 

recordings of five minutes duration using count data. The second research question regarding 

predicting HRV indicators minutes into the future within the constraints of remote patient monitoring 

is answered in this chapter.  

 

Three different approaches to forecast HRV measurements are discussed. The Count data model 

represents the core novel contribution to forecast HRV measurements whereas the machine learning 

approach is used for comparison. 

 

The datasets used for prediction is described in Chapter 2. Two datasets MIT-BIH Arrhythmia and 

Shimmer3 ECG are used for the experiments. The prediction results on the MIT-BIH Arrhythmia 

dataset were published in a peer reviewed journal (Allami, Stranieri, Balasubramanian, & Jelinek, 

2017). In addition, the proposed methods were tested in a real platform based on a Shimmer3 ECG 

sensor. 

 

This chapter begins with a background on HRV indicators, challenges faced by current ultra-short 

time frame HRV measurement methods, related works, and then describes the three HRV forecasting 

techniques.     

3.1  Background and Challenges 

HRV is typically measured using time-domain, frequency-domain and nonlinear measurements. The 

root mean square of successive differences (RMSSD) and the standard deviation of normal to normal 

intervals (SDNN) are common time-domain methods (Task Force, 1996). SDNN represents the over-

all (both long-term (24 hours) and short-term (5 minutes) variation within the RR interval series (Task 
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Force, 1996). SDNN has proven to be important clinically as it allows risk identification of adverse 

cardiac events (Ahonen et al., 2016; Antônio et al., 2014; Huikuri & Stein, 2013; Kleiger et al., 1987; 

Loguidice, Schutt, Horton, Minei, & Keeley, 2016; Malliani et al., 1994; Sánchez-Barajas, Figueroa-

Vega, del Rocío Ibarra-Reynoso, Moreno-Frías, & Malacara, 2015; Vaage-Nilsen et al., 2001; Wang 

et al., 2013). The standard deviation of the average RR cycles assessed over non-overlapping  five-

minute segments (SDANN) for 24 hours is another time domain measure that is particularly stable 

(Task Force, 1996). Measures of HRV are affected by heart rate and other local variations so readings 

of at least five minutes have been recommended (Task Force, 1996). However, the potential clinical 

benefit inherent in raising alarms early have led to many investigations attempting to find HRV 

measures in ultra-short time frames (Smith, Owen, & Reynolds, 2013b). 

 

Numerous investigations that analyse short-term HRV indices using very short time frames of 10–30 

seconds and, 1 to 3 minutes ECG traces have found that the RMSSD is a reliable measure and 

correlates to RMSSD results over longer ECG traces. However, this is not the case for SDNN or 

SDANN, which are sensitive to length of recording (Ahonen et al., 2016; Chang & Lin, 2005; Esco 

& Flatt, 2015; Nussinovitch et al., 2011; Smith et al., 2013a; Thong, Li, McNames, Aboy, & 

Goldstein, 2003). Therefore, all current studies depending on HRV still use a duration of five minutes 

as a standard measure, for instance, those proposed by (Beetham, 2015; Sánchez-Barajas et al., 2015; 

Wang et al., 2013). Recently, one of those studies indicated that time domain measurements 

calculated from ultra-short time series, especially SDNN, are inaccurate. Hence, for this work five 

minute recordings were used (Holper et al., 2016). 

 

There has been no publication outlining a reliable way to model long-term RR interval data from 

short ECG recordings that provide accurate long term SDNN or SDANN results. This study presents 

an algorithm that uses count data from three-minute ECG traces to reliably forecast HRV measures 

for recordings of a 5-minute duration.   

   

Predicting the five-minute HRV with three minutes of RR data is important in life-threatening 

arrhythmia such as those advocated by (Brisinda et al., 2014) as it can forecast AF arrhythmia in three 

minutes instead of five minutes. Moreover, it is useful in settings where a patient’s safety or distress 

is paramount as well as shortening consultation times. Screening programmes that use HRV, such as 

those introduced by (Kotecha et al., 2012) can be less stressful to  patients  and be more cost effective 

if three-minute rather than five-minute readings are required. Risk assessments based on HRV in 

emergency settings such as those advocated by (Heldeweg et al., 2016) can then also be performed 

more rapidly for enhanced patient safety. Low HRV extracted from two-minute traces has been shown 
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to be associated with sudden cardiac death (Maheshwari et al., 2016) and many other conditions. 

However, a review of HRV studies of short traces (seconds to three minutes) revealed large variations 

from recommended norms (Nunan, Sandercock, & Brodie, 2010), which precludes the use of short 

traces in clinical settings. The motivation underpinning the current study is to discover a mechanism 

to transform short ECG traces to accurately forecast the five-minute HRV measures so that the 

accepted norms derived from the five-minute HRV can be applied.  

 

 In recent years, real-time HRV patient monitoring systems have emerged, using a wireless protocol 

to stream data from sensors to a nearby, battery operated device (e.g. Smart phone) that re-transmits 

the data to a remotely located server (Balasubramanian & Stranieri, 2014). Algorithms that process 

the data to raise alarms ideally, execute on devices close to the sensor to avoid delays due to 

connectivity problems or computational resource constraints (Szczepański & Saeed, 2014).  Devices 

for wearable sensors are predominately portable and hence, battery powered. The execution of 

complex algorithms and transmission of data from these devices consume considerable power and 

therefore require computationally simple and data efficient algorithms that calculate HRV measures.  

 

The algorithm presented here achieves high accuracy for the RMSSD, SDNN, DSNN/RMSSD, 

Mean, and SDANN forecasts with minimal computational resources because it increments the 

frequency counts of RR intervals as ECG data streams in, and uses these counts to update HRV 

measures. 

 

Although frequency power domain measures of HRV have been found to be powerful, they are 

computationally expensive (Tarvainen et al., 2014). Also, state-of the-art investigations indicated that 

some frequency domain indices provided inaccurate measurements, particularly LF/HF and thus the 

time domain indicator DSNN/RMSSD was introduced as a surrogate indicator (Billman, 2013; Doret, 

Spilka, Chudáček, Gonçalves, & Abry, 2015; Saboul, Pialoux, & Hautier, 2014). Therefore, 

frequency domain measures have not been explored in this work. Related work is outlined in the next 

section. Following that, the methods section contains description of the algorithms before 

experimental results and discussion. 

3.2 Related Work 

Measures of HRV are affected by respiration frequency, heart rate and other local variations so 

readings of five minutes have been recommended especially for time and frequency domain measures 

(Task Force, 1996). This is to have a long enough trace for meaningful analysis and avoid non-

stationarity effects.  Non-stationary data can be defined as data where the variance, mean, and 
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autocorrelation change over time. Time and frequency domain measures within this time period are 

robust and provide useful immediate or long-term clinical information. The potentially clinical 

benefits inherent in raising alarms quickly following onset of arrhythmia have led to many 

investigations attempting to find robust HRV measures in short and ultra-short timeframes. For 

example, Smith et al., 2013a identified over 70 HRV measures that have been used for short (30 

beats) HRV analysis. Their study demonstrated that short-term HRV assessment has the potential to 

be a good non-invasive diagnostic tool. However, HRV measures utilised for short-term HRV 

analysis require personalised validation before they can be applied (Smith et al., 2013b).  

 

Esco and Flatt (2015) evaluated the agreement of the RMSSD index with other HRV features under 

ultra-short term recording conditions with athletes under resting and post-exercise conditions and 

concluded that 60 seconds may be an acceptable recording time for RMSSD but may not accurately 

represent other five-minute HRV measures. 

 

 Thong et al. (2003) combined two time domain and one frequency domain HRV measure from ten- 

second traces as a surrogate for a five minute HRV recording. They reported ten-second recordings 

were not an accurate reflection of a 5-minnute recording although the RMSSD was promising and 

the high frequency (HF) power required further investigation. Taking a longer timeframe, Chang and 

Lin (2005) compared three minutes to five minutes recordings and the HRV time and frequency 

domain measures obtained. The time-domain results indicated that RMSSD and pNN50 analyses 

were approximately similar at the third and fifth minute but SDNN results were significantly different. 

In frequency domain, Chang and Lin (2005) found that LF/HF power also varied significantly 

between the three and five minute recording. Both studies employed data from the MIT-BIH 

Arrhythmia Database (Mark & Moody, 1997) for their investigations.  

 

Nussinovitch et al. (2011) evaluated the reliability of ultra-short term HRV parameters. Their method 

calculated HRV indices for 10 seconds and 1 minute recordings and then compared the results to five-

minute measurements of HRV. Similarly to other work, they concluded that RMSSD seems reliable 

for analysing HRV from 10 second or 1 minute ECG recordings but this is not the case for SDNN. 

Frequency domain parameters require longer recording time depending on the frequency range of 

interest. A more recent study proposed by (Ahonen et al., 2016) has also confirmed the results of 

these previous studies. An Android-based patient monitoring system that uses wearable heart sensors 

to identify three types of cardiovascular diseases in real-time was presented by (Pierleoni, Pernini, 

Belli, & Palma, 2014). They used SDNN, RMSSD and pNN50 to detect stress states following five-



68 

 

minute ECG recordings but did not report energy consumption or attempt to determine HRV from 

shorter recordings.  

 

None of the studies that investigated the correlation of five-minute HRV using ECG traces shorter 

than five minutes considered the computational cost of calculating HRV measures. As described 

above, computational costs must be taken into account to prolong battery life when deploying HRV 

forecasts in a remote patient monitoring system with wearable sensors and mobile devices.  

3.3 Method Description  

In this chapter, prediction of five-minute SDNN and mean heart rate from a three-minute ECG 

recording is reported. Results indicated a high degree of accuracy. The approach uses count data 

combined with two statistical methods called Poisson distribution and binomial distribution. This 

requires minimal computational resources and is well suited to remote patient monitoring with 

wearable sensors that have limited power, storage and processing capacity. Furthermore, a machine 

learning method known as Recurrent Neural Network was employed for comparisons with the 

statistical methods.  

3.3.1 Count data 

The count data model has emerged as a powerful statistical tool in many fields including machine 

learning, pattern recognition, data mining, and bioinformatics (Bakhtiari & Bouguila, 2014) but has 

not been applied to ECG derived RR time series for risk prediction of arrhythmia. Count data is 

statistical data that represents frequency counts of the number of distinct data occurrences over a 

specified interval (Cameron & Trivedi, 2013).  

 

Many researchers have applied the count data model for estimation and prediction over intervals. For 

example, regression analysis of panel count data has been used to estimate the observation times 

(Zhao, Tong, & Sun, 2013).  Jung and Tremayne (2011) discussed recent interest in time series count 

data. This is data where the counts of a phenomenon over time are analysed. Techniques include static 

regression models and their extensions and more complex dynamic models. Furthermore, several 

knowledge discovery and machine learning techniques have been suggested for count data modelling 

and classification. For instance, Bakhtiari and Bouguila (2014) developed the Dirichlet model by 

enhancing the Bayes estimation method that can be used for count data classification and learning. 

Recently, a count data model enhanced accuracy prediction and reduced the number of trials for 

investigation in multiple environments such as genotype with environment interaction (Montesinos-

López et al., 2017). In addition, Marchal, Cumming, and McIntire (2017) suggested a predictive 
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model based on Poisson distribution to predict fire in forests based on information obtained from 

maps of fire weather and land cover. Moreover, in the medical field, count data from urine and plasma 

tests of children might contribute to identifying risk of acute kidney injury following cardiac surgery 

(Wang et al., 2016). 

 

Table 3.1 depicts RR data over a period of time. Record No. N024 reflects a normal (N) rhythm from 

the Shimmer3 ECG dataset and record No. 232 represents an atrial premature contraction (APC) 

rhythm from the MIT-BIH Arrhythmia database.  

Table 3.1. Count RR data for normal beats (record no. N024) and APC beats (record no. 232) heart trace 

Record No. 232 Record No. N024 

RR 

data 

Count 

RR data 

RR  

data 

Count 

RR data 

RR 

data 

Count 

RR data 

0.73 53 0.76 2 0.70 77 

0.71 49 1.67 2 0.71 58 

0.72 42 1.13 2 0.69 57 

0.68 27 1.38 2 0.68 51 

0.67 25 1.88 2 0.73 32 

0.70 23 1.83 2 0.72 27 

0.74 23 1.99 2 0.67 23 

0.66 13 1.80 2 0.75 18 

0.69 11 1.71 2 0.66 17 

0.75 8 1.81 2 0.74 16 

1.9 7 1.93 2 0.65 13 

0.65 5 2.77 1 0.76 10 

1.92 4 2.40 1 0.77 5 

1.85 4 1.12 1 0.78 4 

1.96 4 1.68 1 0.80 3 

1.89 4 2.53 1 0.81 3 

1.65 4 2.07 1 0.83 2 

1.87 3 1.63 1 0.86 2 

1.86 3 1.72 1 0.63 1 

1.82 3 2.63 1 0.88 1 

1.66 2 1.48 1 0.85 1 

1.97 2 1.77 1 0.90 1 

1.76 2 1.78 1 0.91 1 

1.43 2 1.35 1 0.84 1 

1.74 2 0.64 1 0.64 1 

0.73 53 2.66 1 0.60 1 

 

 

To predict count RR data, counts RR data was combined with a Poisson-generated function and a 

binomial-generated function that commonly apply to the count data model as explained in the next 

section. 



70 

 

3.3.1.1 Poisson distribution  

The Poisson distribution is a single parameter discrete probability distribution that takes positive 

integer numbers. It is appropriate for applications that include the counts of events that occur 

randomly in a given interval of time, such as distance, area or other dimensions (Winkelmann, 2013). 

Equation 3.1 describes the Poisson distribution where X is the number of events in any given interval, 

and λ is the mean number of events per interval, then the probability of observing x events in a given 

interval is given by Equation 3.1:  

P(X=x) =   𝑒−𝜆 𝜆
𝑥

𝑥!         x=1,2,3,4,……∞                                                                                          (3.1) 

  

X in Equation 3.1 refers to the number of RR data occurrences for 3 minutes and λ refers to the mean 

of RR intervals over specific period. In this study, the raw frequency counts from three minutes were 

filtered through a Poisson distribution in order to predict the five minutes frequency counts. The 

Poisson filter is applied through estimating the parameters of the distribution from the data, 

calculating the probability distribution and multiplying the probability distribution by the number of 

observations. Indeed, the Poisson probability plays a critical role in the prediction of the RR frequency 

counts for a five-minute period from the counts from the first three minutes as illustrated in Table 3.4. 

 

The binomial distribution was also used and compared to the results applying the Poisson distribution. 

Usually the binomial distribution is similar to the Poisson distribution, which depends on the mean 

function, while the binomial distribution relies on the probability density function. Consequently, it 

is worthwhile to test count RR data forecasting based on the binomial distribution as described in the 

subsequent section.  

3.3.1.2 Binomial distribution  

In statistics, the binomial distribution is defined as discrete probabilities of each of the possible values 

that appear in a known sample (Winkelmann, 2013). Also, the binomial algorithm has been applied 

to compute the count number of events that would occur in a specific context.  

Equation 3.2 below represents the probability distribution of a binomial random variable Y. 

 

P(Y) = X! /Y!×(X-Y)×qY(1-q) Y-X                                                                                                  ( 3.2) 

 

Where: 

 

Y is the number of events in any given sample size. 

X represents the sample size. 

q refers to the probability over a known context. 
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Y refers to the number of RR data occurrences for 3 minutes and q refers to the probability of RR data 

over a specific period. 

 

The same steps were used to forecast RR data, based on a binomial algorithm. 

3.4 RR Data Forecasting Technique  

As the standard mean and SDNN equations failed to calculate the mean and SDNN parameters from 

the Poisson model, the standard mean and SDNN equations were modified in order to calculate the 

parameters efficiently from the Poisson model, as illustrated as follows. 

 

The traditional equation for the mean RR is given as: 

µ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
                                                                                                                 (3.3) 

While the modified mean count RR is given as:  

 

  µ𝑐 =
∑ (𝑅𝑅𝑑𝑎𝑡𝑎𝑖 × 𝐶𝑜𝑢𝑛𝑡𝑅𝑅𝑑𝑎𝑡𝑎𝑖)𝑛

𝑖=1

𝑛
                                                                                      (3.4) 

 

The traditional equation for SDNN is:  

 

𝑆𝐷𝑁𝑁 = √
∑ (𝑥𝑖− µ)2𝑛

𝑖=1

𝑛−1
                                                                                   (3.5) 

  

Whereas the modified SDNN equation with count RR data is:  

 

𝑆𝐷𝑁𝑁𝑐 = √
∑ ((𝑅𝑅𝑑𝑎𝑡𝑎𝑖 × 𝐶𝑜𝑢𝑛𝑡𝑅𝑅𝑑𝑎𝑡𝑎𝑖)− µ)2𝑛

𝑖=1

𝑛−1
                                                                   (3.6) 

  

Where RRdata and CountRRdata are represented in Table 3.1 above. 

 

The forecasting technique is implemented in three steps as illustrated in Figure 3.1. First, a real-time 

QRS detection algorithm (Pan & Tompkins, 1985) was applied to extract RR counts for three minutes. 

In the second step, the Poisson probability was applied to estimate the count of RR data at a point in 
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time two minutes later. In the third step, the two equations (3.4, and 3.6) were applied to calculate 

SDNN and mean based on counted RR. 

 

 

 
    

    

 
 

Figure 3.1. Block diagram of the proposed forecasting system 

 

The following algorithm was used to predict the five minutes SDNN and mean RR from three minutes 

RR data: 

Algorithm 3.1: Forecasting algorithm coding schema 

Input: Three minutes of ECG data 

Output: Predicted SDNN and mean RR  

 

Step 1: While ECG ≠ N  Do 

Step 2: Apply real-time Pan and Tompkins QRS detection algorithm to extract RR data for  

             three minutes  

Step 3: Generate the Count RR data (RR data histogram)   

Step 4: Apply the Poisson probability to the RR counts in the RR data histogram to estimate the 

             RR counts after another two minutes 

Step 5: Combine the three-minute counted RR data histogram to the predicted two-minute  

            counted RR data histogram to form the predicted five-minutes RR data histogram 

Step 6: Use equations (3.4 and 3.6) to calculate mean and SDNN  

Step 7: End while 

 

 

The same steps were used to forecast RR data based on binomial algorithm. In addition, a recurrent 

neural network was employed to compare the statistical methods as illustrated in Section 3.5. 

3.4.1 Forecasting algorithm outputs  

The counts for a single record No. 234 are provided in Table 3.2 to illustrate the output of the 

algorithms. For this patient, 75 beats occurred 0.64 seconds from each other in three minutes and 113 

beats occurred with the same interval over five minutes. The Poisson algorithm predicted that 111 

beats of 0.64 seconds duration would occur in the five minutes whereas the binomial algorithm 

predicted that 96 beats of 0.64 seconds duration would occur in the five minutes.  Overall, for that 

patient, the table illustrates that the predicted counts from three minutes of data are close to the five 

ECG Signal 
Generate 

RR Counts 

for 3min 

Combine with 

Poisson 

model 

Calculate 

SDNN and 

Mean 

Extract 

RR from 

QRS 
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minutes counts that are actually observed. A new interval, 0.69, appeared once in the actual five 

minute count that was not present in the three minutes data and therefore not predicted. 0.66 second 

interval occurred 32 times in the 3 minutes and was predicted to occur 57 times using Poisson 

algorithm and 52 times using binomial algorithm over 5 minutes however, it occurred 67 times. 

 

Table 3.2. Sample frequencies for record No. 234 reading from MIT-BIH Arrhythmia database based on Poisson and 

binomial algorithms 

Three min RR data Forecasting count RR data Five min RR data (Actual RR data) 

RR data Count RR data Poisson Binomial RR data Count RR data 

0.64 75 
111 

96 0.64 113 

0.66 32 

57 

52 0.66 67 

0.65 69 

107 

90 0.65 112 

0.68 7 

14 

12 0.68 11 

0.63 65 

97 

86 0.63 98 

0.67 14 

27 

28 0.67 25 

0.62 15 

28 

30 0.62 29 

0.61 2 

4 

4 0.61 4 

  

  

0.69 1 

3.5 Forecasting based on Machine Learning 

The forecasts generated using the algorithms above were compared with the forecasts obtained from 

the Elman recurrent neural network. The Elman recurrent neural network (Elman, 1990) is widely 

used in time series prediction fields because it has a nonlinear prediction capability, faster 

convergence, and more accurate mapping ability (Wang & Wang, 2016). Details of the Elman 

recurrent neural network can be found in (Samarasinghe, 2016). The same three-minute RR data was 

submitted to the Elman recurrent neural network for comparison. The Elman network from MATLAB 

was used to learn from the three minutes training data to predict a point in time two minutes later. 

The network was trained by a continual readjustment process to the weight and the threshold values, 

in order to reduce the network error to a pre-set minimum of 1% or to stop at a pre-set number of 
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cycles. Then for the forecasting, held out samples or test data was presented to the trained network to 

obtain the test results. Results of the count data/Poisson algorithm, binomial algorithm, and Elman 

neural network are presented in the results section below. 

3.6 Results 

The evaluation of the proposed forecasting methods was measured by calculation forecasting error. 

The forecast error is Ej=𝑋j − 𝑋̂j, which is on the same scale as the data, where 𝑋j denotes the jth 

observation and 𝑋̂j denotes a forecast of Xj. Accuracy measures that are based on Ej are therefore 

scale-dependent and cannot be used to make comparisons between series that are on different scales. 

The most commonly used scale-dependent measures are based on the root mean squared error 

(RMSE) (Hyndman & Athanasopoulos, 2014). 

 

𝑅𝑀𝑆𝐸 = √
∑  (𝐸𝑗)2𝑛

𝑗=1

𝑛
                                                                                                                  (3.7) 

 

Table 3.4 illustrates that SDNN for the 48 records calculated from the 3 minutes is quite close to the 

SDNN calculated using the Count-Poisson method from the five-minute actual data. The results were 

then compared using two tailed paired t-test which was conducted to see if the SDNN results using 3 

minutes were significantly different than the actual SDNN. 

 

The level of significance was set at α = 0.05. The p-values obtained for the paired t-tests using various 

methods were noted in the Table 3.3. The t-test comparing the three minutes SDNN with actual five 

minutes SDNN (p < 0.05) confirm previous studies that reported significant differences. In contrast, 

there was no significant difference between the predicted and actual five minutes SDNN (p > 0.05).  

 

Table 3.4 also indicates that the SDNN is similar for the same data using the binomial algorithm 

(p>0.05) and Elman method (p>0.05). However, the results of the overall root mean square error 

(RMSE) between actual and predicted SDNN and mean values for the Poisson model was 3% and 

2%, respectively, whereas the results of the overall RMSE between actual and predicted SDNN and 

mean values applying the binomial algorithm was 6% and 4% respectively. The result of the overall 

RMSE between actual and predicted SDNN and mean values for the Elman network was 8% and 6%, 

respectively.  The results indicated that the Poisson model achieved a higher prediction accuracy 

(97%) than the binomial method (94%), and the Elman network (92%). Therefore, the accurate 

predictions of SDNN from the three-minute recordings compared to the longer recording periods of 



75 

 

the MIT-BIH data decreased the computation time from 24 hours to 14.40 hours, which leads to 

decreased energy consumption for battery-operated devices. 

Table 3.3. P-value results for comparing actual, Poisson, binomial and Elman methods 

Method P-value 

Actual 0.036 

Poisson 0.869 

Binomial 0.828 

Elman 0.636 

 

The p-value for the 3 minutes was less than the level of significance. Hence, the SDNN is significantly 

different than the actual SDNN. The p-values for the Poisson, binomial and Elman indicated that 

there was no significant difference between the predicted and actual five minutes data.  

   

Due to the fact that the SDNN parameter reflects the accuracy of mean and SDNN/RMSSD 

parameters, the SDNN of each record in the MIT-BIH Arrhythmia database for the three methods 

presented here was reported.   

 

Table 3.4 Actual and predicted SDNN for MIT-BIH Arrhythmia database records based on Poisson, binomial and 

Elman methods 

Actual Data Poisson 

 

Binomial 

 

Elman 

 

Record 

No. 

Three 

min 

SDNN 

(ms) 

Actual  

SDNN 

(ms) 

(5 min) 

Predicted 

SDNN(ms) 

 

RMSE 

 

Predicted 

SDNN(ms) 

 

RMSE 

 

Predicted 

SDNN(ms) 

 

RMSE 

 

100 25.2 38.5 35.2 2.33 31.7 4.81 30.3 5.80 

101 48.6 55.2 48.1 5.02 51.2 2.83 40 10.75 

102 38.5 76.8 73.4 2.40 67.4 6.65 65.6 7.92 

103 34 69 76.5 5.30 66 2.12 65.2 2.69 

104 40.9 86 80.2 4.10 82.1 2.76 77.7 5.87 

105 72.3 105.2 97.4 5.52 92.9 8.70 85.5 13.93 

106 210.9 190.3 190.9 0.42 186.7 2.55 180.7 6.79 

107 35.3 72.5 74.9 1.70 73.9 0.99 71 1.06 

108 45.3 100.2 90.9 6.58 103.8 2.55 101.6 0.99 

109 41.3 74.2 75.1 0.64 68.4 4.10 65.3 6.29 

111 29.5 30.8 30.3 0.35 25.1 4.03 20.9 7.00 

112 14.5 25.4 25 0.28 31.3 4.17 39.3 9.83 

113 73 140.2 135.8 3.11 129.6 7.50 120.6 13.86 

114 93.6 84.2 80.6 2.55 78.6 3.96 67.6 11.74 

115 62.6 123.5 120.2 2.33 111.5 8.49 109 10.25 

116 61 80 80.8 0.57 75.9 2.90 75 3.54 

117 62.6 134.8 130.9 2.76 128.2 4.67 80.8 38.18 

118 30.5 66.2 64.9 0.92 62.4 2.69 60.2 4.24 

119 200.2 249.7 243.5 4.38 261.9 8.63 182.8 47.31 

121 43 54 55.3 0.92 40.7 9.40 50.8 2.26 

122 50 29 30.1 0.78 28.5 0.35 27.9 0.78 
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Table 3.5. Overall results of RMSE between actual and predicted SDNN and mean values using Poisson, binomial and 

Elman methods 

 

 

 

 

 

From Table 3.5, it can be observed that the Poisson algorithm provided higher accuracy results than 

the other methods. Therefore, the Poisson algorithm was applied to predict count RR data obtained 

from Shimmer3 ECG database. Although the Elman method could provide more accurate results if 

combined with another machine learning method such as the technique proposed by (Jalal, Hosseini, 

& Karlsson, 2016) where the Elman neural network was combined with a nonlinear auto-regressive-

exogenous (NARX) neural network to predict volumes in a call centre. However, it is computationally 

rather expensive and not recommended for battery-operated devices. 

          

Actual Data Poisson Binomial Elman 

Record 

No. 

Three 

min 

SDNN 

(ms) 

Actual  

SDNN 

(ms) 

(5 min) 

Predicted 

SDNN(ms) 

 

RMSE 

 
Predicted 

SDNN(ms) 

 

RMSE 

 
Predicted 

SDNN(ms) 

 

RMSE 

 

123 115.6 167.4 167.8 0.28 89.8 54.87 102 46.24 

124 33.4 56.3 56.9 0.42 59.3 2.12 57.4 0.78 

200 166.3 123.6 125 0.99 136.5 9.12 128.9 3.75 

201 144.7 178.2 170.9 5.16 181.2 2.12 176.2 1.41 

202 63 67 66.8 0.14 67.9 0.64 59.9 5.02 

203 199 157.3 155 1.63 148.3 6.36 145.7 8.20 

205 12 64.2 64 0.14 69.5 3.75 64.8 0.42 

207 156 369 352.3 11.81 350.5 13.08 362.1 4.88 

208 116.1 148.9 147.3 1.13 143.7 3.68 138.5 7.35 

209 33.6 33.9 32.7 0.85 32.8 0.78 33.5 0.28 

210 109.4 123.8 122.7 0.78 119.5 3.04 119 3.39 

212 39.6 42.5 42 0.35 40.8 1.20 46.2 2.62 

213 19.3 44 44.6 0.42 50.2 4.38 50.5 4.60 

214 135.6 193.2 189.5 2.62 205.2 8.49 185 5.80 

215 60.5 78.5 79.9 0.99 68.8 6.86 81 1.77 

217 56.7 89.4 90.3 0.64 79.6 6.93 90.8 0.99 

219 144.6 130 129.3 0.49 124.4 3.96 121.2 6.22 

220 27.3 70.5 64 4.60 50.7 14.00 60.3 7.21 

221 194.5 201.4 190.3 7.85 202.7 0.92 194.8 4.67 

222 52.5 80.3 79.2 0.78 106.8 18.74 101.2 14.78 

223 75.7 73 70.3 1.91 79 4.24 73 0.00 

228 124.8 212.3 204 5.87 210.3 1.41 194.6 12.52 

230 52.2 90.5 97.4 4.88 95.6 3.61 101.3 7.64 

231 207.6 289 271.4 12.45 273.8 10.75 280.8 5.80 

232 205.6 478 460 12.73 465.5 8.84 479 0.71 

233 125.6 122.8 110.1 8.98 126.1 2.33 98.8 16.97 

234 14.1 14.6 20 3.82 15 0.28 12.4 1.56 

Methods RMSE(SDNN) RMSE(Mean) Accuracy % 

Poisson 3 2 97 

Binomial 6 4 94 

Elman 8 7 92 
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Algorithm 3.1 mentioned in Section 3.4 above has been applied to the Shimmer3 ECG dataset to 

compute the mean and SDNN. Results indicated that the SDNN for the 52 records assessed from the 

3 minute recordings is quite close to the SDNN assessed using the Count-Poisson algorithm from the 

five minutes raw data. The overall RMSE between actual and predicted SDNN and mean values for 

the Poisson model were 4% and 2%, respectively. 

As stated earlier, the main aim of this chapter is to forecast the HRV in real time. In order to fulfil 

this goal, an online system was built to test the forecasting method on a real platform as described 

below. 

3.6.1   Forecasting results based on a real world system 

Figure 3.2 depicts a general diagram for the real system. The reduction algorithm described in Chapter 

2 (Max_Min ECG reduction algorithm) with a window size of 10 was installed into the Shimmer3 

ECG sensor to stream reduced ECG data to a smartphone device at a sampling rate of 256 Hz. The 

window size was set to 10 because the forecasting method depends only on RR data and as illustrated 

in Chapter 2 the RR data that was generated from a window size of 10 achieved a high level of 

accuracy (98 %) and increases the sensor battery life. The Shimmer3 ECG sensor stored raw ECG 

data on its SD RAM and transmitted the reduced ECG data to the smartphone device to compare the 

RR measurements. On the smartphone device, the Pan-Tompkins algorithm was used to calculated 

RR data and the Poisson algorithm was applied to predict the five minute results from the 3 minute 

tracings. These procedures were applied to six volunteers (4 men and 2 women, aged between 24 and 

65) that had Normal rhythm over 30 minutes.  

 

 

 

 

 

 

Figure 3.2. General workflow of the proposed online system 

The results indicated that the SDNN for the 6 records assessed from the 3 minutes were close to the 

SDNN assessed from the five minutes original data using the Poisson algorithm. The overall RMSE 

between actual and predicted SDNN and mean values for the Poisson algorithm were 5% and 3%, 

respectively. 

Reduced ECG data  

Install  Install  

Smartphone 

Max_Min ECG reduction 

algorithm, window size=10 

Proposed forecasting 

method (Poisson) 
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3.7 Discussion 

A forecasting algorithm that can accurately predict the five-minute SDNN parameter from three 

minutes of data in a computationally simple way has been advanced. The algorithm executes quick 

enough that it can be applied in real-time as each new data point is obtained using count data, which 

has not been applied to this type of biosignals before.  

 

This study discovered that RR data is countable over a time as can be seen in Table 3.1 and Table 3.2. 

Consequently, Poisson and binomial distributions, which are widely used with count data models can 

be used to forecast count RR data. In count RR data, the Poisson probability approaches the count 

target faster than the binomial probability and achieves higher prediction accuracy than the binomial 

model. Although some RR frequency counts occurred infrequently or did not appear during the first 

three minutes of a five minutes period as represented in Table 3.2, these counts almost had no effect 

on the prediction. In contrast, RR intervals that appeared frequently play a greater role in the five 

minutes forecast. 

 

Previous studies found SDNN results differ significantly between 3 and 5 minutes. The current 

research advances equations that can predict the five-minute SDNN from 3 minutes of RR data in 

real-time using a counts data model. Results indicated that predicted SDNN results were similar to 

actual SDNN results with an overall accuracy of 97%. This contributes to obtaining optimal short 

time recording (5 minutes) for analysing HRV in short term recordings under 5 minutes. The proposed 

methods apply within the mobile device to determine clinical utility and computational savings. 

  

 Forecasting HRV can contribute to the early detection of AF and stress states and raising alarm for 

patients with heart disease or neurological conditions such as Parkinson’s disease and elderly subjects 

(Pierleoni et al., 2014). Furthermore, many recent investigations indicated that the SDNN/RMSSD 

parameter provides more accurate result than the LF/HF parameter for measuring cardiac 

sympathovagal balance, making this a convenient way to determine sympathovagal balance. 

Consequently, state-of-the-art studies are commonly used the SDNN/RMSSD parameter such as 

those advocated by (Antônio et al., 2014; Brisinda et al., 2014; Cardoso et al., 2014; Holper et al., 

2016; Kang, Kim, Hong, Lee, & Choi, 2016; Paparde, Plakane, Circenis, & Aivars, 2015) but with 

five minutes of RR data because the SDNN parameter requires five minutes duration to provide 

accurate results. Therefore, forecasting accurate SDNN contributes to measure all time domain 

parameters from ultra-short term (3 minutes). Also, it reduces the long-term HRV analysis from 24 

hours to 14.40 hours that leads to power savings for both wearable and mobile devices. In addition, 
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as illustrated above a real-time cardiac monitoring system that use wearable and mobile devices 

requires simple and fast methods such as time domain methods because transformational methods 

and intelligent methods are very expensive and consume power. 

3.8 Conclusion 

Heart rate variability (HRV) measures, including the standard deviation of inter-beat variations 

(SDNN), require at least five minutes of ECG recordings to accurately measure HRV. In this chapter, 

counts data derived from a 3 three-minute ECG recording was used to predict, the five-minute SDNN 

with a high level of accuracy using a simple method. The approach used counts data combined with 

a Poisson-generated function, which requires minimal computational resources and is well suited to 

remote patient monitoring with wearable sensors that have limited power, storage and processing 

capacity.  The ease of use and accuracy of the algorithm provides opportunity for accurate assessment 

of HRV and reduces the time taken to review patients in real-time.  

 

This thesis revealed that RR data is countable during a period of time and the count data model with 

a Poisson function can predict time domain indicators with a high degree of accuracy. More clinical 

and computerised investigations based on this finding are necessary. The next chapter will describe 

how to detect life-threatening arrhythmia based on the count data model together with knowledge-

based rules derived from clinical knowledge in short term and also detect life threatening arrhythmia 

using an artificial neural network (ANN) method in very short term.   
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CHAPTER 4 

 
4 Detection of Premature Ventricular Contraction 

In the previous chapter, a new HRV prediction technique that achieved a high level of forecasting 

accuracy and can also be implemented on wearable sensors and smartphones in real time was 

described. Continous monitoring for life-threating arrhythmia based on wearable and smartphone 

devices is an important application of wearable sensors and real-time analysis. Accordingly, this 

chapter provides a new PVC arrhythmia detection method that employs three minute RR data to 

reliably detect PVC beats in a simple and fast way within the constraints of remote patient monitoring. 

Moreover, it detects PVC beats from Non-PVC beats using an intelligent data mining method in a 

few seconds. The third thesis question regarding arrhythmia detection within the limitation of battery 

operated devices is addressed in this chapter.  

 

Two different techniques to detect PVC beats from Non-PVC beats are presented. Counts RR data 

combined with knowledge-based rules represents the core contribution to detect a life-threating 

arrhythmia for real time cardiovascular patient monitoring systems whereas the application of a 

machine learning method is discussed for comparison. 

 

Trials of the PVC detection algorithm were applied to three datasets: MIT-BIH Arrhythmia, St. 

Petersburg Institute of Cardiological Technics (INCART) (Goldberger et al., 2000) and Shimmer3 

ECG databases. The MIT-BIH Arrhythmia database was used for testing and the NCART database 

was used for measuring the generalisation capability performance of the method. The Shimmer3 ECG 

dataset was employed to examine the proposed techniques in a clinical setting.  

 

The INCART database contains 75 annotated recordings extracted from 32 Holter records. Each 

record is 30 minutes long and consists of 12 standard leads, each sampled at 257 Hz. The annotations 

were produced by an automatic algorithm and then corrected manually, containing over 175,000 

annotations. The PVC detection results on the MIT-BIH Arrhythmia database and NCART database 

were previously published (Allami et al., 2017). This chapter starts with a background and related 

works on PVC disease and then described the two PVC detection methods. The discussion and 

conclusion are elucidated prior to the description of experiment results. 
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4.1 Background and Related Works 

Extra excitations can appear in normal or abnormal heart traces known as premature ventricular 

contractions (PVCs). PVC beats represent the most common ventricular arrhythmia and are found in 

about 60 % of healthy hearts (Gertsch, 2008). The PVC beat is a pulse that appears earlier than the 

subsequent coming sinus pulse. Numerous PVC samples have been identified clinically. Samples 

occur as one PVC follows every sinus pulse (bigeminy), or every three pulses (trigeminy). PVCs 

possible appear in an abnormal case in pairs as couplets (one sinus beat followed by two PVCs), or 

triplets, (Qu et al., 2014). PVC beats appear in normal healthy persons, but in diseased hearts the 

frequency of appearance in the ECG is increased and can be an indicator of morbidity and risk of 

sudden cardiac death (Massing et al., 2006; Sörnmo & Laguna, 2005). The main causes for PVCs and 

their complex samples in the heart are still poorly understood (Qu et al., 2014). 

 
Figure 4.1. PVC patterns (Glass et al., 2011), where the left top section represents normal pattern, the left bottom refers 

to one PVC following every normal pulse, the right top section illustrates PVC ectopic beats pattern and the right down 

section depicts monomorphic ventricular tachycardia pattern 

 

PVCs exceeding a certain number per minute is a serious cardiovascular condition that can lead to 

life-threatening arrhythmias. The instant recognition of life-threatening cardiac arrhythmias is a 

challenging problem of clinical significance (Li et al., 2014; Liu et al., 2012; Liu et al., 2010). In 

particular, PVCs have been found to be related to mortality when linked with myocardial infarction 

(Iwasa, Hwa, Hassankhani, Liu, & Narayan, 2005) and have been shown to be associated with 

caffeine consumption or stress (Agrafioti & Hatzinakos, 2009).  
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Although, several studies employed RR data to classify and detect PVC beats (Nabil & Reguig, 2015), 

approaches that are sufficiently accurate and can execute rapidly for fast real-time PVC detection 

have proven to be elusive. Knowledge-based rules have classified and detected heart beats based on 

a sliding window technique (Tsipouras, Fotiadis, & Sideris, 2005) with positive predictive accuracy 

and sensitivity values of 86.54% and 87.27% respectively. A low complexity algorithm for real-time 

PVC detection that applied a template matching approach for detection of PVC beats from the MIT-

BIH Arrhythmia database (Li et al., 2014) provided robust results of 98.2 % accuracy and 93.1 % 

sensitivity. Though accurate, the template matching study required the detection of the QRS complex 

and T waves in real-time for five minutes of training and it was sensitive to the sampling rate. It can 

only be applied for ECG data sampling at 360 Hz. Similar results were obtained with an Android 

monitoring system based on wearable heart sensors to classify and detect PVC beats from RR 

intervals and applying knowledge-based rules (Pierleoni et al., 2014). Cuesta, Lado, Vila, and Alonso 

(2014) employed a linear discrimination analysis method based on only two RR features that were 

generated from knowledge-based rules to recognise PVC beats obtained from the MIT-BIH 

Arrhythmia database with specificity of 82.52% and sensitivity of 90.13%.      

 

The detection method presented in the current study uses frequency counts but requires the detection 

of only the QRS complex without the T wave, and only for three minutes rather than five, to achieve 

comparable PVC detection results. Furthermore, the approach advanced here is computationally 

simpler than template matching and is well suited to execution on power-constrained devices because 

the additional detection of T wave leads to greater power consumption on mobile devices. Moreover, 

it can be employed at any sampling rate. Recently many cardiovascular wearable sensor devices such 

as eMotion Faros (mega, 2016) can detect QRS waves and stream RR data in real-time and so can be 

deployed directly using the approach advanced here. 

 

Other techniques have been applied to classify PVC beats including nonlinear complexity measures, 

wavelet transform and sophisticated artificial neural networks (Li et al., 2014). For example, Zhou, 

Jin, and Dong (2017) combined clinical knowledge-based rules with deep neural networks for PVC 

detection. Support vector machine (SVM) have been deployed to discern PVC from Non-PVC beats 

(Bazi, Hichri, Alajlan, & Ammour, 2013). However, these techniques may not always be technically 

feasible for real-time processing of ECG data from wearable sensors and mobile devices due to high 

computational resources required and power consumption (Li et al., 2014).   
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4.2 Method Description 

In this study, PVC beats were detected using counts RR data obtained from a three-minute ECG 

recording with a high level of accuracy. The method utilises counts data with rule-based methods 

which consume minimal computational resources and is well suited to remote cardiac monitoring 

with mobile devices restrictions. Moreover, an intelligent method was used, which depends on QRS 

complex features and morphology, to compare with the statistical methods.  

4.2.1 Knowledge-based/Rule-based 

A Knowledge-based system represents an important method that is used to build decision support 

systems for chronic disease monitoring (Minutolo, Esposito, & De Pietro, 2011). For instance, 

Minutolo, Sannino, Esposito, and De Pietro (2010) designed a rule-based software for monitoring 

heart diseases based on contextual information. This software received data from wearable ECG 

sensors with data regarding a patient’s physical activities such as walking, running, lying, and 

standing up then analysed the data for detecting and signalling of critical or abnormal situations. 

Another research project proposed a rule-based decision support system based on information from 

HRV data (the expert’s selected the SDANN parameter), blood pressure, statistical, and geometric 

parameters (Minutolo et al., 2010). A multi-purpose real time tele-monitoring system suggested by 

Sannino, De Falco, and De Pietro (2014) exploited if-then rules to alert health service providers and 

includes a decision support for critical cases such as fall detection and apnoea monitoring. 

Furthermore, Exarchos et al. (2007) introduced an algorithm to classify arrhythmic beats. This 

method extracts a set of rules based on a decision tree produced from training datasets. In addition, 

fuzzy rule-based methods using RR data have been applied to classify cardiac arrhythmia. The rules 

were based on human experience and fuzzy logic (Bárdossy et al., 2014).  

RR segment analysis has emerged as a powerful tool that contributed to detection of heart 

arrhythmias, ventricular hypertrophy and other diseases (Ranjeet et al., 2013). The fact that abnormal 

beats (PVC beats) have a QRS pattern wider than normal beats allows for the identification of these 

beats relatively easily in addition to RR intervals being significantly different and HRV analysis being 

possible (Nabil & Reguig, 2015). Many types of arrhythmia, especially bradycardia and tachycardia, 

cause changes in RR periods (Nguyen et al., 2014). Consequently, an algorithm based on count data 

and rule-based methods that can automatically detect PVC from Non-PVC rhythms using RR data in 

short-term recordings is proposed. In addition, the method used in this project maintained detailed 

information, e.g. SDNN and mean RR data which support algorithm decision making.   
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A dataset for Normal and PVC rhythms is prepared as an example as shown in Table 4.1. Record No. 

112 reflects a normal (N) rhythm and record No. 119 represents a PVC (V) rhythm readings from the 

MIT-BIH Arrhythmia database for short term recordings.     

Table 4.1. Count RR data for PVC beats (Record No. 119) and Non PVC beat (Record No. 112) heart trace 

          Record No. 119 Record No. 112 

RR 

data 

Annotation Count RR 

data 

RR 

Data 

Annotation Count 

RR data 

0.88 N 47 0.70 N 127 

0.53 
V 

33 0.71 
N 

93 

0.91 
N 

32 0.69 
N 

91 

0.90 
N 

31 0.68 
N 

86 

0.89 
N 

30 0.67 
N 

36 

0.54 
V 

26 0.72 
N 

29 

0.86 
N 

23 0.73 
N 

22 

0.87 
N 

22 0.66 
N 

9 

0.93 
N 

22 0.74 
N 

6 

0.52 
V 

20 
   

0.92 
N 

17 
   

1.3 
N 

16 
   

1.28 
N 

15 
   

1.33 
N 

13 
   

1.29 
N 

13 
   

0.55 
V 

12 
   

1.31 
N 

11 
   

1.32 
N 

11 
   

0.85 
N 

10 
   

0.95 
N 

9 
   

0.94 
N 

9 
   

0.51 
V 

8 
   

0.96 
N 

7 
   

1.26 
N 

7 
   

0.56 
V 

6 
   

1.27 
N 

6 
   

1.25 
N 

6 
   

0.83 
N 

3 
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Record No. 119 Record No. 112 

RR 

data 

Annotation Count RR 

data 

RR 

Data 

Annotation Count 

RR data 

1.35 
N 

3 
   

1.23 
N 

3 
   

1.34 
N 

3 
   

0.84 
N 

3 
   

0.59 
V 

2 
   

1.24 
N 

2 
   

0.57 
V 

2 
   

1.22 
N 

2 
   

1.36 
N 

2 
   

0.63 
N 

2 
   

0.58 V 2    

1.4 N 1    

1.38 N 1    

0.98 N 1    

0.65 N 1    

0.97 N 1    

0.72 N 1    

0.50 V 1    

Note: V refers to PVC beat as annotated on the MIT-BIH Arrhythmia database. N refers to Non PVC beats such as 

N,L,R,a,F, and A, etc. as annotated on the MIT-BIH Arrhythmia database 

4.2.2 PVC detection technique based on count data model 

PVC beats have a QRS pattern wider than Non-PVC beats, RR intervals will be significantly different 

which makes the identification of these beats relatively easy (Nabil & Reguig, 2015; Nguyen et al., 

2014). Therefore, the RR data that are annotated as PVC beats tend to group together and can be used 

to discern PVC from Non-PVC beats in a simple and computationally efficient manner for real-time 

analysis. The PVC detection technique was executed in three steps as demonstrated in Figure 4.2. 

First, the real-time QRS detection algorithm (Pan & Tompkins, 1985) was applied to extract RR data 

for three minutes. In the second step, RR counts were generated in the same way as described for the 

forecasting algorithm. In the third step, knowledge rules were derived (Bauer et al., 2008; Tsipouras 

et al., 2005) to detect PVC from Non-PVC beats.  
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Figure 4.2. Block diagram of the proposed detection system 

 
 

The algorithm for the detection of PVC and Non-PVC beats is as follows: 

 

Algorithm 4.1: PVC detection algorithm coding schema 

Input: Three min of ECG data 

Output: Classification of each beat as PVC or Non PVC 

 

Step 1: While ECG ≠ N  Do 

Step 2 and 3 As per forecasting algorithm (Algorithm 3.1 in Chapter 3) 

Step 4: Sort counted data according to the count field in descending order       

Step 5: Select the first 6 RR data (i.e. the most frequent RR intervals) and 

             calculate the mean from those (First 6 RR data are empirically identified)  

Step 6: For each RR data point, if the RR data < mean and the absolute difference  

            value between (RR data and Mean) > 100 ms  

            Then the RR data is PVC else the RR data is Non PVC 

Step 7: End while 

 

The PVC beats can also be detected based on a few seconds to one minute but using more complex 

methods and features as explained in the next section. 

4.2.3 PVC detection based on ANN for mobile phones 

PVC arrhythmias are seriously life-threatening. Identification of PVCs on battery-driven devices 

requires fast and feasible real-time analysis methods, despite the current limitations in power, 

processor capability and memory. The same holds for the ability to measure large ECG recordings 

for one or more days. Existing methods have endeavoured to improve ECG assessment techniques to 

implement on mobile phones (Hayn, Jammerbund, & Schreier, 2011)  as evident in the 2011 

PhysioNet/Computing in Cardiology Challenge (Silva, Moody, & Celi, 2011), which has been created 

to promote the improvement of ECG software that can execute within a mobile phone. 

 

As (Szczepański & Saeed, 2014) note, algorithms execute on mobile devices to automatically classify 

heart arrhythmias are battery powered. Transmission of data from these devices consumes substantial 

ECG Signal Real-time RR 

data detection 

Count data 

model 

Knowledge 

based rules 

classification 

PVC 

or  

Non PVC 
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power (Gough, 2011). Accordingly, the PVC rhythm was recognised using artificial neural networks, 

which can work within smartphones for less than 20 seconds as described in the next sections.  

4.2.3.1 Arrhythmia recognition for Android-based mobile devices 

 Many arrhythmia recognition techniques have been developed that execute on phone devices (Baig, 

Gholam, & Connolly, 2015). In this study, the most recent algorithms that used only RR data for 

abnormal beat classification was applied using the MIT-BIH Arrhythmia database. For example, AF 

has been classified based on a smartphone solution. The system used short-term RR data features and 

provided an accuracy of 97% in classifying AF against healthy controls, with a specificity of 100% 

and a sensitivity of 93% (Lahdenoja et al., 2017). 

 

Gradl, Kugler, Lohmüller, and Eskofier (2012) introduced a real-time ECG monitoring system using 

Android-based mobile devices and Shimmer3 ECG sensor to detect abnormal arrhythmia. The system 

implemented the Pan-Tompkins algorithm for QRS-computation and rules-based proposed by 

(Krasteva & Jekova, 2007). It resulted in more than 99% overall QRS recognition with 89% 

sensitivity and 80% specificity for overall abnormal beat discrimination. The authors did not test their 

system with real ECG data and long-term ECG monitoring on mobile phones and how long it can 

work with limited battery-driven available devices.  

 

A real-time classification system for arrhythmia detection on Android-based mobile devices has 

suggested a comparison of the calculation and memory costs for each classification methods using 

the embedded classification software toolbox (Ring, Jensen, Kugler, & Eskofier, 2012). The 

comparison study relied on 16 features (statistical, heartbeat, and template-based) that were extracted 

only from R peak data. Classification methods included AdaBoost M1, C4.5, linear regression, 

multilayer perceptron, naive Bayes, nearest neighbor, PART and support vector machine (SVM).  The 

C4.5 classifier was not complex and resulted in high detection accuracy (91%). Therefore, 

(Leutheuser et al., 2014) recommended the implementation of C4.5 classifier on Android-based 

mobile devices.  

 

A back propagation neural network (BPNN) classifier performed on an Android platform to monitor 

and classify ECG signal in real-time has also been reported. The BPNN was tolerant of noise when 

used with higher-order statistics features based on wavelet decomposition. The BPNN algorithm 

executed based on 30 features that were extracted from R peak data based on the Pan-Tompkins 

method. Although the BPNN algorithm provided high detection accuracy of 98%, the results were 

based on only 15 records to recognize 7 different types of arrhythmia. For example, the PVC 

classification accuracy was 97% (Yen, Chang, & Yu, 2013). All of the above studies did not test on 
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ECG sensor in real time, and did not report battery life for portable devices. The current study suggests 

a PVC detection system for real ECG sensor and reports the battery life for portable devices in the 

next section.   

4.2.3.2 Suggested PVC beats detection technique based on ANN for Android smartphones 

The use of simple features that can be generated from the real-time method and fed to an ANN plays 

an important role in the detection of PVC beats within smartphones in a simple and computationally 

efficient manner for real-time execution. As previously stated, QRS complex shape and RR data are 

widely used to detect PVC beats. The PVC generally changes the QRS complex shape hence the 

amplitude of the QRS complex is much smaller or larger than normal QRS complexes (Zhou et al., 

2017). Therefore, we used three morphological features and seven time-domain/statistical features 

that can be directly extracted in real-time from the Pan and Tompkins algorithm.  

 

ANNs are commonly used in classification and pattern recognition applications. The ANNs are 

capable of learning the desired mapping between the input and output signals of the system without 

knowing the exact mathematical model of the system and are therefore excellent estimators in 

nonlinear systems. The feed-forward NN provides high accuracy in ECG data classification and 

recognition (Elhaj et al., 2016). Therefore, we opted for the cascade forward neural network (CFNN) 

classifier, which was utilised in system identification, nonlinear control, pattern recognition and 

classification.    

   

The PVC detection technique is implemented offline on a PC device as illustrated in Figure 4.3. First, 

the ECG reduction algorithm with a window size equal to 5 was executed to reduce and maintain the 

ECG signal in real-time. The window size was 5 as the proposed PVC detection algorithm requires 

to identify all Q, R, and S waves with a high degree of accuracy and as illustrated in Chapter 2, the 

size-5 window maintained all ECG waves. In the second step, Pan-Tompkins algorithm is applied to 

detect QRS complex in real-time. In the third step, computationally simple features (statistical and 

heartbeat features) are generated from 20 seconds that were determined empirically and were 

calculated for training and classification with the ANN. Finally, the CFNN classifier is applied to 

detect PVC or Non-PVC beats. 
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Figure 4.3. Block diagram of the proposed classification system 

4.2.3.3  Features extraction 

Feature groups play a pivotal role in detection performance and consist of a number of HRV features 

that optimise classification. Statistical results and heartbeat features are applied directly to the series 

of successive RR cycle items, so they are suited for real-time applications (Tarvainen et al., 2014). 

We generated 10 features for each ECG segment that were found very useful for classification (Asl, 

Setarehdan, & Mohebbi, 2008; Leutheuser et al., 2014; Oresko et al., 2010; Tsipouras & Fotiadis, 

2004; Yen et al., 2013). These features consisted of seven statistical features (HRV) and three 

morphological features (QRS width, QR amplitude, RS amplitude). The statistical features included 

standard deviation and mean of RR data. Another widely used index is the percentage of differences 

between adjacent RR intervals that are greater than 50ms or 10ms (pNN50 and pNN10). The 

description of the time-domain features is summarised in Table 4.2. 

 

Table 4.2. Statistical features  

Feature                                Description  

MeanRR Average of all RR intervals (µ) 

SDRR Standard deviation of all RR intervals 

rMSSD Square root of the mean of the squares of differences between adjacent RR intervals. 

pRR50 Percentage of differences between adjacent RR intervals that are greater than 50 ms.  

pNN10 Percentage of differences between adjacent RR intervals that are greater than 10 ms. 

Ratio 
    𝑅𝑎𝑡𝑖𝑜 =

(𝑚𝑎𝑥𝑅𝑅 − 𝑚𝑖𝑛𝑅𝑅)

µ RR
 

SDSD Standard deviation of differences between successive RR intervals. 

 

ANN classification 

Real-time ECG signal reduction 

Real-time QRS data detection 

Real-time statistical and heartbeat features 

extraction 

 

PVC / Non PVC 
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4.2.3.4  Performance 

For each signal, 10 statistical and heartbeat features were calculated using the MIT-BIH Arrhythmia 

database. These features were extracted for 20 seconds of ECG data and submitted into a separate 

vector. Each vector is tagged with one of the two possible labels PVC or Non PVC. For example, a 

vector for 20 seconds period is labelled as Non PVC provided it consists of 95% Non PVC RR data. 

Otherwise, the vector is labelled as PVC. These features are normalised to values between 0 and 1 

using min-max normalisation by Equation 4.1 and fed into the CFNN classifier for classification. The 

CFNN classifier trains with the back propagation learning rule for feed-forward networks, but it 

includes a weight connection from the input to each layer and from each layer to successive layers 

leading to the output. The main advantage of CFNN is that each layer of the neurons is related to all 

previous layer of neurons that reduces the training time. Also, it can achieve good results based on a 

small number of features and data (Bonanno et al., 2014; Littmann & Ritter, 1993). The entire 

database was 4320 patterns. Ten-fold cross-validation was used to estimate the generalisation. 

 

𝐹𝑛 =
𝑁−𝑁𝑚𝑖𝑛

𝑁𝑚𝑎𝑥−𝑁𝑚𝑖𝑛
                                                                                                                                                (4.1)                  

Where, Fn represents the normalised value of the feature, N represents the feature value, Nmax refers 

to the maximum value of the feature and Nmin refers to the minimum value of the feature in the 

corpus.  

 

The PVC detection technique constructed from MIT-BIH Arrhythmia database was tested against 

Shimmer3 ECG dataset (4680 patterns) 

 

The algorithm for the detection of PVC and Non-PVC beats based on CFNN classifier is as follows: 

 

Algorithm 4.1: PVC diagnosis algorithm coding schema based on ANN 

Input: Statistical and Heartbeat features 

Output: PVC diagnosis (Yes/No)  

Step 1: While ECG ≠ N  Do 

Step 2: Apply algorithm1 (Set window size, n=5) 

Step 3: Use Pan-Tompkins algorithm to detect QRS complex 

Step 4: Extract Statistical and Heartbeat features 

Step 5: Test pattern (PVC or Non PVC beats) using CFNN classifier    

Step 6: End while 
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The training and testing steps were implemented on a PC device and overall results are reported in 

Section 4.3. 

 

4.3 Results 

 

4.3.1 PVC detection results based on count data method 

The performance of the suggested PVC and Non PVC detection algorithm was measured by 

sensitivity (Se), by the positive predictive (+P) value and accuracy (Ac) for each of 10, non-

overlapping, three-minute segments from a 30 minute recording as described below. 

   Se=TP/(TP+FN) ×100                                                                                                                  (4.2) 

  +P=TP/(TP+FP) × 100                                                                                                                 (4.3) 

 Ac=(TN+TP)/(TP+FP+TN+FN) × 100                                                                                          (4.4) 

 

True positive (TP) refers to PVC beats correctly recognised, false negative (FN) refers to missed PVC 

beats, false positives (FP) refers to non PVC beats recognised as PVC’s and true negative (TN) refers 

to correctly recognised non PVC beats. 

 

Overall testing and 10-fold cross validation results of the proposed algorithm are illustrated in 

Table 4.4. The PVC detection results were compared with four published methods where a part or the 

full MIT-BIH Arrhythmia database were used (Cuesta et al., 2014; Li et al., 2014; Pierleoni et al., 

2014; Tsipouras et al., 2005).  

 

Table 4.3. PVC detection performance for each MIT-BIH Arrhythmia database record 

Rec. No. +P % Se % Ac % Rec.  No. +P % Se % Ac % 

100 99.5 100 99.9 201 97.8 97.2 96.9 

101 98.3 92.1 97.2 202 100 100 100 

102 100 100 100 203 50.8 45.7 88.4 

103 100 100 100 205 100 100 100 

104 97.7 77.4 69.8 207 60.6 11.3 30.4 

105 99.2 96.4 95.7 208 100 97.5 96.9 

106 99.7 98.8 98.7 209 99.6 98.5 99.6 

107 98.2 65.3 70.2 210 100 100 100 
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Rec. No. +P % Se % Ac % Rec.  No. +P % Se % Ac % 

108 99.7 65.4 65.8 212 99.5 99.5 99.8 

109 98.8 99.6 99.2 213 100 98.3 98.7 

111 99.6 86.5 88.6 214 97.7 99.3 98.7 

112 100 100 100 215 98.8 98.3 99.1 

113 100 100 100 217 99.9 99.4 99.8 

114 100 98.7 99.3 219 98.4 97.9 98.6 

115 100 100 100 220 100 100 100 

116 99.4 99.3 99.7 221 98.7 96.3 99.2 

117 99.8 99.6 100 222 100 100 100 

118 100 100 100 223 98.7 96.9 98.9 

119 99.2 100 99.9 228 86.7 98.6 98.3 

121 100 99.5 99.6 230 99.5 99.8 99.6 

122 100 100 100 231 100 100 100 

123 100 99.3 99.3 232 99.3 99.1 99.4 

124 100 98 99 233 93.6 99.5 99.8 

200 74.6 90.4 98.3 234 95.3 100 99.4 

 

Table 4.3 demonstrates the performance of the proposed algorithm for each record. For example, 

from record No. 100, it is evident that there were no PVC’s missed, but there was one false alarm in 

the 30-minute classifications.   

Table 4.4. Overall performance in the testing databases of MIT-BIH Arrhythmia , INCART and Shimmer3 ECG  

 

 

 

 

Table 4.5. Comparison between the suggested method and published real-time methods 

Study +P % Se % Ac % 

Tsipouras et al.  86.5 87.2 94.9 

Li et al.  81.4 93.1 98.2 

Cuesta et al.  82.52 90.13 92 

Pierleoni et al.  86 87 94 

Our method 96.6 93.7 95.4 

Database +P % Se % Ac % 

MIT-BIH Arrhythmia 96.6 93.7 95.4 

INCART 92.7 87.5 94.2 

Shimmer3 ECG 92 97 96.3 
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Table 4.5 illustrates the PVC method presented here provided better accuracy, sensitivity, and 

positive predictive value to detect PVCs. The algorithm in (Li et al., 2014) recognised PVCs beat-by-

beat so it may better meet the real-time analysis requirements. However, it is sensitive to the sampling 

rate and requires more complex computations. Also, the count data model proposed here can 

recognise PVCs in real-time based only on RR data that leads to low computational processing time. 

The previous methods require less data than the proposed method. However, as mentioned before, 

PVC beats can appear in normal healthy persons but, in diseased hearts, the frequency of PVC 

appearance in the ECG is increased and can be an indicator of increased risk of morbidity and 

mortality. Therefore, in a real-time cardiac monitoring system perhaps less data generates more false 

alarms than more data as not each PVC beat is dangerous, whereas the frequency of appearance over 

a period of time represents an indicator of risk and needs raising an alarm.  

 

This chapter aims to discuss and show how to detect PVC beats in real time. In order to fulfil the goal 

of this chapter, an online system has been built to test the detection algorithm in a real-time platform 

as explained below. 

4.3.2   Online PVC detection results based on count data method  

 Figure 4.4 depicts a general diagram for our real system. The reduction algorithm described in 

Chapter 2 (Max_Min ECG reduction algorithm) with a window size of 10 was installed in the 

Shimmer3 ECG sensor to stream reduced ECG data to a smartphone device at sampling rate 256 Hz. 

The window size set to 10 because the PVC detection method depends only on RR data and as 

illustrated in Chapter 2 the RR data that was generated from a window size of 10 achieved a high 

level of accuracy (98%). Hence, the window size of 10 increases the sensor battery life. On the 

smartphone device, the Pan-Tompkins algorithm was used to process RR data in a simple and fast 

way that consumed less CPU, RAM, and power as illustrated in the Section 4.3.4. The proposed PVC 

algorithm was applied to detect PVC beats.  

 

 

 

 

 

 

 

Figure 4.4. General workflow of the proposed PVC detection in real system 
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The experiment with the Shimmer3 involved recording ECG signals from six volunteers at Ibn 

Alnafees Hospital (4 men and 2 women aged between 24 and 65) with a normal rhythm over 30 

minutes. The overall results illustrated that the non-PVC rhythm for the 6 records assessed for 3 

minutes over 30 minutes provided 99%, 98%, and 97% sensitivity, positive predictive and accuracy 

respectively.  

 

In this chapter, PVC beats were also detected using the complex method of CFNN based on 20 second 

for comparison with the proposed statistical method in real world system (Shimmer3). Overall results 

of the intelligent method for sensitivity, positive predictive and accuracy based on a PC device and 

CFNN were 97.2 %, 98.3% and 97.8%, respectively. The trained data saved and uploaded to the 

Samsung J1 mobile phone for the classifier in the testing step of the real-time classifier on the mobile 

phone is described below.  

4.3.3 Online system design framework 

The real-time cardiac arrhythmia detection system is executed online on the Shimmer3 ECG sensor 

and Samsung J1 mobile device as depicted in Figure 4.5. First, the ECG reduction algorithm with a 

window size of five was executed on the Shimmer3 node to reduce and stream the ECG signal in real-

time to the mobile phone. Due to the heartbeat features required to detect Q, R, and S waves the 

window size was set to five in order to maintain all ECG waves (Q, R, and S) as illustrated in Chapter 

2. In the second step, within the mobile phone, we applied the Pan-Tompkins algorithm for QRS 

detection. In the third step, statistical and heartbeat features were calculated for testing using CFNN. 

Finally, the feed forward back propagation (CFNN) algorithm was applied to detect PVC or Non 

PVC beats. The PVC detection method within the Samsung J1 phone was implemented using Java 

software. 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

   Figure 4.5. General workflow for the proposed online PVC detection system  
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The online system was applied to the same six volunteers over 30 minutes. The overall results 

revealed that the Non PVC rhythm for the 6 records monitored over 30 minutes provided 98.3%, 

97.6% and 98.9 % sensitivity, a positive predictive value and accuracy respectively. A portable 

monitoring system is based on battery operated devices. Therefore, low power consumption methods 

are crucial. The power consumption analysis for the proposed methods is reported next. 

4.3.4 Power consumption 

In this study, the Samsung Galaxy J1 was used as a reference to measure energy consumption in 

Joules. The Samsung Galaxy J1 motherboard consists of a quad-core Cortex-A7 CPU clocked at up 

to 1.2 GHz with about 5 Watts power, 1GB Ram, OS Android 6.0, and has a Bluetooth module. In 

addition, the Samsung Galaxy J1 has a 1500 mAh rechargeable battery. The energy consumption has 

been estimated for the runtime PVC method by execution ten heartbeats of operations implemented 

by the micro-controller unit. The energy consumption is comparable with the algorithms listed in 

Table 4.6 and is particularly good given that the algorithm executes in real-time reduced energy 

consumption using, minimal CPU requirements, less time and power consumption. 

 

 Energy consumption= Power × Runtime                                                                                       (4.5) 

 

Table 4.6. Comparison between the suggested methods and more complex methods for energy consumption 

Method Runtime 

(Sec) 

Energy consumption 

(Joules) 

QRS detection 0.56 2.8 

T wave detection 0.080 0.4 

Our statistical PVC detection 0.36 1.8 

Our machine learning PVC detection 2.1 10.5 

   

In the online PVC detection based on ANN, we tested the Shimmer3 battery-life when it had 10% of 

charge and 20% of charge with ECG signal sampling at 256 Hz and a window size of 5. When the 

sensor battery had 10% charge the remaining function of the phone continued for about 1.15 hours. 

When the window size was increased from 5 to 10, the battery-life extended to about 2.10 hours. 

When the sensor battery had only 20% of charge remaining the phone continued to record for about 

2.35 hours and this increased to 3.2 hours when the window size was increased from 5 to 10. 

Therefore, it can be concluded that the Max_Min ECG reduction algorithm is more flexible than the 

existing ECG compression/reduction algorithms which have a fixed CR whereas the CR of the 
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Max_Min algorithm can be varied and can lead to an extended battery-life and provide an option to 

manage battery-life.  

 

Furthermore, PVC detection within the smartphone was implemented based on a complex method 

(ANN) with less time and a low complex method (count data/statistical method) with more time. 

Therefore, we measured the battery life for the smartphone based on both methods. The complex 

method consumed more computational resources and power and recognised non-PVC beats for about 

2.30 hours whereas the count data algorithm detected non-PVC beats for about 7 hours. Clearly, the 

statistical PVC detection technique consumes less power than the machine learning method and is 

more suitable for a continuous real-time cardiac monitoring system based on ECG sensors and 

smartphones. It reduced the power consumption for both mobile devices: the ECG sensor and 

smartphone. 

4.4 Discussion  

The portable cardiac monitoring system based on mobile devices requires algorithms that consume 

less power consumption and computational resources. A PVC detection technique that can accurately 

detect PVC beats from non-PVC beats over three minutes of data in a computationally simple way 

has been advanced. The method is implemented so swiftly that it can be applied in real-time as each 

new data sample is transmitted. Detection of frequent PVC beats can contribute to raising accurate 

alarms for patients with risk of serious arrhythmia. In comparison with previous published real-time 

techniques and machine learning method, the approach presented is computationally simple and can 

execute in real-time with high accuracy, sensitivity, and a positive predictive value compared with 

other methods. The method in (Li et al., 2014) requires the detection of QRS and T waves in real-

time. This consumes more processing time and power than the statistical approach advanced here 

which requires only the QRS and uses counts of RR data. In addition, T wave identification is more 

complex, thereby leading to greater error and power use. This is especially important for mobile 

devices. Furthermore, sensors streaming RR data are emerging. With our algorithm, the RR data can 

be processed directly further reducing processing time and resources whereas other techniques such 

as ANN cannot directly predict RR data because they are designed as block boxes. 

  

The proposed detection algorithm is more precise in alarm raising situations because it collects 

enough data to detect the frequency of PVC beats. Also, it can provide statistical information 

(RMSSD, Mean, and SDNN SDNN/RMSSD) which helps in raising an accurate alarm. The high 

performance that were found with the real trials are due to the classification between PVC and normal 

rhythms. Also, the number of volunteers is small. More investigation is required to study the optimal 
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data or period to raising an accurate alarm for real-time PVC monitoring system. In fact, the high 

performance that were found with the real trials are due to the classification between PVC and normal 

rhythms. Also, the number of volunteers is small. 

4.5 Conclusion 

 In this study, PVC beats were detected using counts data derived from a three-minute ECG recording 

using statistical/less complex method and from a few seconds using intelligent/sophisticated approach 

with a high level of accuracy. The statistical method required minimal computational resources and 

was well suited for the remote patient monitoring with wearable sensors that have limited power, 

storage and processing capacity. The time consumed and accuracy of the statistical algorithm provide 

opportunity for an accurate assessment of serious PVC beats in real time.  

 

Arrhythmias are widely different and may be normal, symptomatic, life threatening or, in some cases, 

fatal. Hence, automatic arrhythmias classification is critical for cardiology. The next chapter will 

demonstrate how to automatically classify and detect various cardiac arrhythmias using machine 

learning methods for reliable and robust analysis of ECG signals captured from wearable sensor and 

standard devices.    
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CHAPTER 5 

 

5 Arrhythmias Detection and Classification 

In the current chapter investigation of the portable cardiovascular monitoring system with the 

overarching aim to detect and classify many types of arrhythmias with and without the presence of 

noise will be discussed. Noisy recordings including diverse ectopics are a common occurrence in 

ECG traces. These are dealt with primarily by filters included in the recording and analysing software. 

However, in real-time recording systems filtering options are reduced, especially when count data is 

used. 

 

Arrhythmias are widely different and may be normal, symptomatic, life threatening or, in some cases, 

fatal. Thus, automatic arrhythmia classification based on ECG features (diagnostic features) is critical 

in clinical cardiology. This chapter explains various mechanisms for automatic arrhythmia detection 

and classification and provides a new wrapper based hybrid technique compared to the most 

commonly used hybrid methods in the presence of noise. Four different combined structures 

including genetic algorithm (GA) with artificial neural network (ANN), principal component analysis 

(PCA) with ANN, GA-SVM (support vector machine), and PCA-SVM are formed by engaging two 

filtering techniques which are widely used with ECG signal, namely Haar wavelet and Butterworth 

FIR to render the obscure complexities in the noisy ECG signal. Furthermore, a new arrhythmia 

classification technique is introduced by combining t-distributed stochastic neighbour embedding (t-

SNE) with self organizing maps (SOM). Finally, the chapter details how the proposed technique can 

improve classification performance. 

 

The datasets used for arrhythmia detection and classification were described in Chapter 2. Two 

datasets MIT-BIH Arrhythmia and Shimmer3 ECG were used for the experiments described in this 

chapter. The detection and classification results from the MIT-BIH Arrhythmia dataset were 

published in a peer reviewed conference (Allami et al., 2016b). In addition, the proposed methods 

based on the Shimmer3 ECG dataset were examined to validate our results based on a real cardiac 

monitoring platform. 

  

This chapter starts with a background on the characteristics of arrhythmias, related works, and then 

it describes the five methods for arrhythmia detection and classification.  
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5.1 Background and Motivation 

Cardiac arrhythmia is the fluctuation of the systematic rhythmic movement of the heart, associated 

with abnormal electrical heart function. Cardiac arrhythmia can be grouped under two main factors 

of cardiovascular disease: ventricular and atrial arrhythmias. In both cases, arrhythmias are 

substantially dangerous and can be life-threatening if not diagnosed properly within a few seconds to 

a few minutes of their occurrence. The presence of noise impedes cardiologists in detecting 

arrhythmias. In addition, visual analysis of long term ECG traces consumes time and may cause 

misdiagnosis or produce inaccurate diagnosis of the heart rhythm (Goldberger et al., 2017). Hence, 

automated detection and classification of arrhythmias is important for prompt, accurate diagnosis and 

treatment to reduce morbidity and mortality (Ceylan & Özbay, 2007; Luz, Schwartz, Cámara-Chávez, 

& Menotti, 2016). There are various characteristics of the ECG signal including interval, amplitude 

and shape that represent distinct arrhythmia types (Gacek & Pedrycz, 2011) and which makes it 

possible to distinguish and classify the different types of arrhythmia. In this thesis, the main focus is 

on classifying the Normal sinus rhythm (N) which represents a normal beat and the erratic 

heartbeats/arrhythmias for both atrial and ventricular arrhythmias and consider nine types of 

arrhythmia, including premature atrial contractions (PAC), aberrated atrial premature beats (AA), 

atrial escape beats (AE), nodal or junctional premature beats (NP), supraventricular escape beats 

(SVE), premature ventricular contraction (PVC), fusion of ventricular and normal beats (FS), R on T 

premature ventricular contraction (RPV) and bundle branch block (BBB). The PVC beats were 

explained in detail in Chapter 4 and the 8 types of arrhythmias are summarised below.  

 

Junctional premature beat is a ventricular contraction generated from the atrioventricular (AV) node. 

It has a normal QRS complex morphology, the P wave may disappear or be abnormal with a PR 

interval of less than 120 ms and normal T shape. 

 

Usually, PACs are a common type of arrhythmias that occur due to premature heartbeats emerging 

in the atrium. A PAC rhythm has an abnormal P wave shape. The QRS complex and T waves however 

retain their normal shapes. An atrial escape beat presents as an irregular P wave morphology. 

Nevertheless, depolarisation extends to the ventricles down the atrioventricular junction and the 

bundle branches. Accordingly, an atrial escape beat produces a normal QRS complex aberrated atrial 

premature beats are formed by conduction of the supraventricular impulse to the ventricles in a 

different way from the typical conduction it is characterised by a wide QRS 

complex. Supraventricular escape beats produce ECG signals with narrow complex rhythms. They 

may be irregular or regular. They also may provide a normal heart rate, slow or fast heart rate 
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depending on the underlying arrhythmia mechanism and presence of atrioventricular node block. 

While evaluating the rhythm, it is important to evaluate whether the P-wave is present and determine 

if the morphology and duration match the normal P-wave. Fusion beats appear when a ventricular 

beat joins with a supraventricular impulse to produce a hybrid complex. The fusion beats are of 

intermediate width and their morphology is similar to the ventricular and supraventricular complexes. 

The R on T is the superimposition of an ectopic beat on the T wave of a preceding beat and may result 

in ventricular fibrillation or ventricular tachycardia. Bundle branch block (BBB) is divided into left 

bundle branch and right bundle branch block. It is a delay or obstruction along the electrical impulse 

pathways of the heart manifesting in a prolonged QRS interval usually greater than 120ms. 

5.2 Related Work 

In the last few decades, numerous investigations introduced new techniques to extract ECG from 

time-domain, frequency-domain and morphological features to build classifiers from different 

architectures with various levels of complexity and schemes. Each has advantages and limitations. 

Most existing arrhythmia classification methods used the MIT-BIH Arrhythmia database to develop 

the classification system of the diverse types of arrhythmias that are recommended by the Association 

for the Advancement of Medical Instrumentation (AAMI) standard.  Five types of ectopic beats are 

defined including supra-ventricular ectopic beats (S), ventricular ectopic beats (V), fusion beats (F) 

and unclassifiable and paced beats (U) (ANSI-AAMI, 1998). Many data mining algorithms have been 

used to classify ECG signals such as that of (Raghav & Mishra, 2008) who applied a local fractal 

dimension technique to classify heart arrhythmias that provided promising results. Classification has 

also been implemented using artificial neural network (ANN) classifiers to classify and detect 

arrhythmias (Jiang & Kong, 2007; Martis et al., 2013; Nadal & Bossan, 1993; Özbay & Tezel, 2010; 

Yu & Chou, 2008). Numerous studies used support vector machine (SVM) method to classify ECG 

beats (Acır, 2006; Asl et al., 2008; Melgani & Bazi, 2008; Song, Lee, Cho, Lee, & Yoo, 2005; 

Zidelmal, Amirou, Ould-Abdeslam, & Merckle, 2013). Self-organizing maps (SOM) mechanism was 

also applied by many studies for ECG signals classification (He, Hou, Zhen, & Peng, 2006; 

Lagerholm, Peterson, Braccini, Edenbrandt, & Sornmo, 2000; Orjuela-Cañón et al., 2013; Wenyu, 

Gang, Ling, & Qilian, 2003). He et al. (2006) recognized four types of arrhythmias using leaning 

vector quantization (LVQ), back propagation neural network (BPNN) and SOM. The SOM classifier 

resulted in enhanced accuracy 95% compared with the LVQ with 91% and BPNN with 92%. Other 

investigations applied different well-known approaches such as k-means clustering (Kiranyaz, Ince, 

Pulkkinen, & Gabbouj, 2011), Bayesian (Sayadi, Shamsollahi, & Clifford, 2010), Fuzzy logic 

(Özbay, Ceylan, & Karlik, 2006) and K-nearest neighbor (k-NN) (Arif & Akram, 2010) to classify 

and detect arrhythmias. Nowadays, deep learning techniques have been used to classify ECG beats. 
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For instance, Al Rahhal et al. (2016) proposed a deep neural network classifier to classify five types 

of arrhythmias. The restriction of deep learning NN is that it requires a large amount of ECG signals 

for training. A comprehensive review for detection and classification of arrhythmias can be found in 

(Ince, Zabihi, Kiranyaz, & Gabbouj, 2017; Maglaveras et al., 1998)  

 

In the past two decades, many researchers have combined different feature selection approaches with 

heart beat classifier methods to select most effective features and improve detection and classification 

performance. Current reduction/optimisation methods to solve the feature reduction problem in ECG 

classification are described below. Genetic algorithm (GA) combined with a k-means algorithm to 

classify ECG signals into normal and arrhythmia is one option. The GA-k-means technique provided 

an accuracy of 95.97 % (Zhang, Liu, Wei, Wei, & Liu, 2014). In addition, GA integrated with ANN 

(multi-layer perceptron MLP) to classify many types of arrhythmias resulted in an overall accuracy 

of 94% (Maliarsky, Avigal, & Herman, 2014). Further, GA combined with many ANN classifiers to 

detect normal and BBB has also been investigated. The best GA-ANN approach reported a sensitivity, 

specificity and accuracy of 96%, 98% and 98% respectively (Kora & Krishna, 2016a). Wang, Chiang, 

Yang, and Hsu (2011) classified different arrhythmias using principal component analysis (PCA) and 

linear discriminant analysis (LDA) techniques for dimensionality reduction and applied a 

probabilistic neural network (PNN). PCA-PNN hybrid resulted in improved sensitivity, specificity 

and accuracy (97.17%, 99% and 99.61% respectively) compared to the LDA-PNN method (89.94%, 

98.27% and 98.26% respectively). A more recent study proposed a new method to detect five types 

of arrhythmias based on a combination of nonlinear and linear feature selection methods compared 

with the linear methods that require low computational complexity (Elhaj et al., 2016). The method 

combined discrete wavelet transformation (DWT) results with (PCA). The DWT technique was used 

to transform ECG signals and the PCA was applied to extract the features. Further, the nonlinear 

higher order spectra (HOS) cumulants technique and independent component analysis (ICA) for 

nonlinear dimensionality reduction were employed for analysing of nonlinear ECG data. The selected 

features that were generated from the DWT-PCA and HOS-ICA were submitted to the SVM and an 

NN classifiers for automated detection of normal and abnormal ECG data. The DWT-PCA-SVM 

technique reported an overall accuracy of 94.97%. The DWT-PCA-NN technique reported an overall 

accuracy of 97.34%. The HOS-ICA-SVM technique reported an overall accuracy of 99.13 %. The 

HOS-ICA-NN technique provided an overall accuracy of 97.76 %. Classification results based on 

linear-nonlinear approaches of the (DWT-PCA) + (HOS-ICA) with SVM provided a sensitivity, 

specificity and accuracy of 98.91%, 97.85% and 98.91% respectively) compared to the (DWT-PCA) 

+ (HOS-ICA) with NN achieved sensitivity, specificity and accuracy (98.90%, 98.90% and 98.90% 

respectively).  
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A new combined approach has been advocated by (Afkhami, Azarnia, & Tinati, 2016) to classify 

many types of arrhythmias based on a Gaussian mixture modelling (GMM) for feature selection with 

an expectation maximisation (EM) classifier. The GMM-EM reported an overall sensitivity, 

specificity and accuracy of 96.15%, 94.85% and 99% respectively.  A Hermite function has been 

integrated with SOM technique to classify four types of heart beats and provided a high degree of 

accuracy at 98.5% (Lagerholm et al., 2000). In addition, Wenyu et al. (2003) combined the PCA 

feature extraction method with a SOM classifier to reveal the relationship between ECG beat clusters 

and clinical categories. Other studies combined different well-known techniques such as fuzzy c-

means clustering (FCM) with PCA-NN and FCM-WT-NN (Ceylan & Özbay, 2007), ICA-PNN (Yu 

& Chou, 2008), FCM-PNN (Haseena, Mathew, & Paul, 2011), Cartesian genetic programming (CGP) 

with neural network (NN) (Ahmad, Khan, & Mahmud, 2013) and firefly and particle swarm 

optimization (FFPSO) technique with a Levenberg Marquardt neural network (LMNN) (Kora & 

Krishna, 2016b). More details about arrhythmia classification using hybrid techniques have been 

published (Luz et al., 2016; Martis, Acharya, & Adeli, 2014a)  

 

These existing methods were tested on noise-free or carefully chosen, often clean ECG signals, which 

produced accurate classification results (Elhaj et al., 2016). However, these methods may not provide 

the same high accuracy in the presence of a noisy ECG (Martis et al., 2014a). In addition, there has 

been no publication outlining a reliable way to classify and detect the accuracy of various type of 

arrhythmias based on noisy environments such as a wireless cardiac monitoring system. Noise and 

data transmission losses are likely to have a strong impact on wearable ECG sensors because of 

interference from other portable devices. 

5.3 Methodology 

It is clear from related works that there is a need for a computationally efficient technique for 

detection and classification of various type of arrhythmias that can provide high classification 

accuracy, high sensitivity as well as high specificity (almost no misses) based on noisy platforms. In 

this research, a novel wrapper based hybrid model is proposed for the classification of arrhythmias 

which uses stochastic neighbour embedding (t-SNE) in combination with self organizing maps 

(SOM) to improve classification performance. 

 

In this chapter, the approach adopted for fulfilling the main goal of the chapter has been laid out. An 

empirical technique has been applied and a series of classification experiments have been designed 

to assess the efficacy of t-SNE-SOM classification. Experiments have also been designed to compare 

the performance with the state-of-the-art hybrid approaches. A step by step procedure with all the 
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parameters and software programs harnessed for the experiments has also been presented in this 

chapter. The evaluation metrics adopted for comparing the performances have also been described in 

detail. 

 

All the classification experiments were implemented using MATLAB 2016a Software. The machine 

used for all experiments was Intel Corei7 CPU PC with Windows 10 (64 bit) operating system.  

5.4 Method Description 

An empirical/experimental methodology has been applied in this chapter to evaluate the effectiveness 

of the t-SNE feature selection for arrhythmias classification based on noisy and clean ECG signals. 

Essentially, classification of ten categories of arrhythmias was investigated. The classification 

performance of the t-SNE feature selection was assessed using a quantitative technique to compare 

the t-SNE method with current state-of-the-art feature selection methods applied for arrhythmia 

classification. Statistical analysis including sensitivity, specificity and accuracy were used. For 

instance, consider the confusion matrix for normal and arrhythmia classification as represented in 

Table 5.1. 

Table 5.1. Confusion matrix for normal and arrhythmia classification 

Actual 

class 

Predicted class 

Normal Arrhythmia 

Normal TP (True Positive) FN (False Negative) 

Arrhythmia FP (False Positive) TN (True Negative) 

 

Sensitivity is a very significant factor to consider when it comes to the detection of a certain disease 

from a clinical perspective. The high degree of sensitivity denotes lower value of FP results. In 

addition, Sensitivity, the ‘true positive rate’ and was represented in Equation 4.2 in Chapter 4. An 

evaluation with a high level of sensitivity tends to represent all possible positive conditions without 

missing any. Specificity and accuracy are also important measures. Specificity assesses the proportion 

of negatives that are correctly detected. It is also called the ‘true negative rate’ and is represented in 

Equation 5.1 below. The higher degree of specificity suggests a lower number of false negatives. 

Hence, a high level of specificity is better for ruling out a disease condition. ‘Accuracy’ represents 

the total number of correct predictions of all predictions made and is described in Chapter 4 in 

Equation 4.4.  

 

Specificity = TN/TN + FP                                                                                                                      (5.1) 
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5.5 General System Design 

The overriding aim of this chapter was to report on the classification of arrhythmias. A novel feature 

selection approach t-SNE was proposed for the classification. This approach is described in detail in 

Section 5.5.3. Figure 5.1 depicts a schematic overview of the technique utilised to use the wrapper 

based hybrid approach for the detection of arrhythmias. Each phase is described in the following 

subsections.  

 

 

  

    

 

 

        

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. General schematic of experimental procedure 

5.5.1 Pre-processing 

A typical ECG tracing of the cardiac cycle consists of a P wave, QRS complex, and T wave (Gacek 

& Pedrycz, 2011), as represented in Chapter 1, Figure 1.2. The performance of an ECG analysis 

system depends heavily upon the accurate and reliable detection of the QRS complex, as well as the 

T and P waves (Yochum, Renaud, & Jacquir, 2016). ECG signals are usually contaminated with noise 

including artifacts, power-line interference, baseline wander, and EMG noise (Afonso, Tompkins, 

Nguyen, Michler, & Luo, 1996). The elimination of noise from ECG signals is an essential task in 

arrhythmia classification because it contributes to accurate and reliable detection of the P-QRS-T 

waves that directly impact forecasts and classifications. We adopted two of the most widely used 
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filters for noise reduction: wavelet transforms (WT) and finite impulse response (FIR) (Lynn, 1971). 

In the last decade, numerous approaches based on wavelet transforms have been applied to eliminate 

noise, since they maintain ECG signal characteristics and thus avoiding missing diagnostic features. 

Also, they are computationally less complex than other methods (Singh & Tiwari, 2006). In our 

design, the Haar wavelet and Butterworth FIR filters were used to denoise the ECG signals. The Haar 

transform works well by providing a relatively sparse wavelet representation for signals that are 

approximately piecewise constant. The FIR filter attenuates recognized frequency bands including 

the noise generated from an electrical network (50 or 60 Hz), as it allows quick and easy application 

of the reject band filter. The primary obstacle with the FIR filter is that the frequency of the noise in 

the ECG signal is not always recognised (Luz et al., 2016). However, different frequency band filters 

can be applied to the signal in order to address the problem. 

5.5.2 Feature extraction 

The feature extraction phase plays an important role to provide reliable results in classification of the 

heartbeat. Any data generated from an ECG signal can be harnessed to identify its type and may 

considered as a feature. ECG features can be extracted in different ways including time-domain or 

frequency domain, ECG morphology and cardiac rhythm (Luz et al., 2016). 

 

The original amplitude of the time-domain ECG data was used as a feature vector to represent the 

ECG data after noise removal and baseline drift suppression. Then the QRS complex was detected 

using real-time Pan-Tompkins algorithm, the ECG data in a window of 550ms was selected as an 

ECG signal. In order to ensure the window covers most of the ECG properties, the length of the ECG 

signal before and after the R peak in each ECG beat were set at 140ms and 410ms respectively. For 

each signal, 19 features including PQ interval, RR interval and PT interval were identified. Additional 

features that were included were QR, QS and RS as well as a difference value in these features such 

as L(S) -L(Q).  

After feature extraction, the normalisation of the ECGs has an important role to play in improving 

classification performance. A typical classifier executes better when the input features are 

scaled/normalised within a standard range (Aksoy & Haralick, 2001). There are several methods to do 

this type of normalization/scaling. 

 

In this study, the Minmax normalisation method was used to normalise ECG features to values 

between 0 and 1 as described in Equation 4.1 in Chapter 4. Usually, the Minmax method transform 

data to a fixed range between 0-1. This way minimal standard deviations can be obtained, which 

reduce the impact of outliers. Normalisation/scaling the features can make training of the classifier 
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faster by suppressing the possibility of getting stuck in a local minimum. All ECG features were 

identified for each beat and submitted to separate vectors as either AA, APC, AE, NP, SVE, PVC, 

FS, RPV, LB, RB or N (Normal). The next phase involved feature reduction. 

5.5.3 Feature selection/reduction 

The process for determining the optimal subset of features from all the features is called feature 

selection/reduction. The feature selection process provides three main advantages for classification; 

reducing training time, improving accuracy and reducing overfitting and hence superior 

generalisation (Adnan & Islam, 2016; Rahman & Islam, 2014).  

 

Feature selection methods transform the extracted features from ECG signals from their original N 

dimension space to a new M dimension space, where M<N and preserve most useful information. 

The main aim of the feature selection methods is to select the most representative subset features to 

enhance the classification process. Some features that were extracted from ECG data may be 

irrelevant or redundant. Irrelevant features can result in overfitting and the redundant features require 

more training time, which leads to a less generalised classification model (Adnan & Islam, 2016).  

 

The aim of this experiment is to discover if a subset of features, which can discern different 

arrhythmia classes, and to identify the most significant features in order to decrease the training time, 

testing time and enhance classification performance. 

 

Many feature selection/reduction approaches have been used to identify the most significant features. 

Two most commonly used feature selection/reduction methods (PCA and GA) were employed for 

the experiments in addition to the proposed method t-SNE. The PCA method has been commonly 

used in statistical data analysis and feature selection (Castells, Laguna, Sörnmo, Bollmann, & Roig, 

2007). The motivation of PCA is to select significant features from high dimensions by transforming 

a set of variables in SL space, which are uncorrelated with each other and each of is a linear 

combination of the raw values, into another set in SM space maintaining the largest amount of variance 

in the data where basically M is less than L. 

 

PCA is implemented by projecting the variables into the feature space to compute the correlation 

between those features. The PCA calculates the principal components as a percentage of the full 

variability in the dataset. The first principal component produces the vector of the maximum 

variability; uncorrelated. The second principal component produces the vector for the subsequent 

direction orthogonal to the first principal component and so on. PCA divides the covariant structure 
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of the dependent variables into orthogonal components by computing the eigenvectors and 

eigenvalues of the covariance matrix. Measuring the covariance matrix of the data including sorting 

of eigenvectors in decreasing order of eigenvalues, eigenvalue decomposition and projection of the 

data into the new basis defined by the principal components. It takes the inner product of the raw data 

and the sorted eigenvectors (Castells et al., 2007; Martis et al., 2013).  

The main procedures of the PCA are listed below. 

 

Step 1: Find covariance matrix using Equation 5.2 

 

CM=(A−Ā) × (A−Ā)T
                                                                                                                                             (5.2) 

 

where A is the matrix in a subset of K x 4200, K is the total number of patterns and Ā refers to the 

mean vector of A. 

 

Step 2: Find the matrix of eigenvectors eV and diagonal matrix of eigenvalues eD using Equation 5.3 

 

eV-1 × CM × eV=eD                                                                                                                                                 (5.3) 

 

Step 3: Eigenvectors in eV are sorted in descending order of eigenvalues in eD and the data on these 

eigenvector directions are projected by taking the inner product between the data matrix and the sorted 

eigenvector matrix using Equation 5.4. 

 

Projected data (P) = {eVT × (A−Ā)T}T
                                                                                                              (5.4) 

where eV represents 4200 x 4200 dimension and each row refers to an eigenvector. Six features were 

selected from six columns of the projected data. 

 

The PCA technique was implemented for each subset and six principal components were extracted 

using 99 % of the total variability. In general, twelve features, 6 from each subset, were submitted to 

the SVM and ANN classifiers for the automated detection of normal and abnormal ECG data. 

 

The GA is an optimisation technique that replicates natural survival of the fittest where feature subsets 

with the best performance are included in the generation of new feature subsets. The next generation 

of subsets preserve favourable characteristics while unfavourable characteristics are omitted, leading 

to species progressive evolution (Mitchell, 1998). GA iterates and evolves a population by forming a 

new population at every step through selection, recombination, mutation and finally applying a fitness 

function (Beg, Islam, & Estivill-Castro, 2016; Mitchell, 1998). The selection process directly selects 

subsets of features to form a current population. Each subset (chromosome) is evaluated using a 

fitness function. Within each subset, a crossover operation or recombination creates a new feature 
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subset. Mutation applied to each feature subset to produce modified subsets. The fitness function then 

measures the quality of the solution expressed as the percentage of individuals correctly classified. 

The classification system is described in Figure 5.2 below that emphasizes the GA optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. GA training process. 

A vector of 19 features with each component being either one or zero was used for the encoding. A 

value of one means the corresponding feature is selected and a value of zero means the corresponding 

feature is ignored. The original population comprised 40 chromosomes that were randomly selected. 

The Swapping and Roulette Wheel selection techniques were utilized for crossover and mutation 

procedures. The Swap procedure randomly changed the location of two samples. The probability 

parameter of mutation was set to 0.1.   

 

Recently, a new dimensional reduction method called t-distribution stochastic neighbour embedded 

(t-SNE) has been introduced by Maaten and Hinton (2008). The t-SNE visualises high dimensional 
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data by providing each data sample a position in a two or three dimensional map (Maaten & Hinton, 

2008). This approach is a modification of the stochastic neighbour embedding (SNE) method that 

was proposed by (Hinton & Roweis, 2003). It is much easier to optimise than the SNE and provides 

significant enhancement in feature reduction by compressing the tendency to crowd samples together 

in the centre of the structure. Most of the existing nonlinear dimensionality reduction methods are not 

able to maintain global and local structures of the data in a single map. The t-SNE achieves more 

accurate results than current algorithms in creating a single map that exposes structure at numerous 

scales (Maaten & Hinton, 2008).  

 

The t-SNE converts a high dimensional dataset into a matrix of pairwise similarities and preserves 

the local structure of the high dimensional data and also reveals global structure such as the presence 

of clusters at many scales. It reduces the difference between two distributions: the distribution that 

estimates pairwise similarities of the input objects and the distribution that estimates pairwise 

similarities of the corresponding low dimensional samples in the embedding. For example, if the input 

of high dimensional dataset/ input objects Z = (y1,y2,y3,….,yN) and a function z(yi, yj) that measures 

the distance between a pair of objects is the Euclidean distance z(yi, yj) =||yi - yj|| and the aim is to 

learn a k-dimensional embedding in which each object is represented by a sample; E=(x1,x2,x3,….,xM) 

where xi ∈ Rk. The t-SNE uses the symmetrising two conditional probabilities (𝑃𝑟𝑜𝑖|𝑗) that compute 

the pairwise similarity between objects yi and yj as below: 

 

 𝑃𝑟𝑜𝑗|𝑖 =
exp(−z(𝑦𝑖,𝑦𝑗)

2
/2σ𝑖

2

∑ exp(−z(𝑦𝑖,𝑦𝑙)2/2σ𝑖
2

𝑙≠𝑖
   , 𝑃𝑟𝑜𝑖|𝑗 =

𝑃𝑟𝑜𝑗|𝑖+ 𝑃𝑟𝑜𝑖|𝑗

2𝑁
  where  𝑃𝑟𝑜𝑖|𝑖=0                        (5.5) 

 

The bandwidth of the Gaussian kernels ( 𝜎𝑖) in Equation 5.5 set in a way that the perplexity of the 

conditional distribution 𝑃𝑟𝑜𝑖 is equal to the predefined perplexity u. Therefore, the best number of 

 𝜎𝑖 differs per object in area of the data space with a higher data density and with lower density 𝜎𝑖 

tends to be minimal in area of the data space (Hinton & Roweis, 2003).  

 

In the k-dimensional embedding E, the similarities between two samples xi and xj such as the low 

dimensional models of yi and yj are computed using a normalised heavy-tailed kernel. The embedding 

similarity hij between the two samples xi and xj is estimated as a normalised Student-t kernel with a 

single degree of freedom as represented in Equation 5.6 below. 

 

ℎ𝑖𝑗 =
(1+||𝑥𝑖− 𝑥𝑗||2)

−1

∑ (1+||𝑥𝑙− 𝑥𝑘||2)−1
𝑙≠𝑘

     where ℎ𝑖𝑖=0                                                                                                   (5.6) 
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Dissimilar input objects (Xi and Xj) are modelled and matched far samples (Xi and Xj) in low 

dimensional using heavy tails of the normalised Student t-distribution. It provided more space to 

precisely model the small pairwise distances such as the local data map in the low dimensional 

embedding. 

 

The positions of the embedding samples Xi are identified by minimising the Kullback-Leibler (KL) 

distance/divergence function between the joint distributions (Pro and H). The KL is a distance 

formula from the true probability distribution (Pro) to a target probability distribution (H) as 

illustrated in Equation 5.7 below.  

 

𝐶(𝐸) = 𝐾𝐿(Pro||𝐻) =  ∑ 𝑃𝑟𝑜𝑖𝑗  log
𝑃𝑟𝑜𝑖𝑗

ℎ𝑖𝑗
𝑖≠𝑗                                                       (5.7) 

 
The gradient of the KL function between Pro and the Student t-distribution based joint probability 

distribution H is computed using Equation 5.7 above. 

 
Due to the asymmetry of the KL function, the objective function emphasises modelling high samples 

of 𝑃𝑟𝑜𝑖𝑗 (identical objects) by high samples of ℎ𝑖𝑗(nearby samples in the embedding space). The 

objective function is non-convex in the embedding E. Typically, it is minimized by descending along 

the gradient as described in Equation 5.8 below. 

 
𝛿𝐶

𝛿𝑥𝑖
= 4 ∑ (𝑃𝑟𝑜𝑖𝑗 − ℎ𝑖𝑗)(𝑥𝑖 − 𝑥𝑗)(1 + ||𝑥𝑖 − 𝑥𝑗||

2 

)−1
𝑗                                                                                         (5.8) 

 

The algorithm of the t-SNE method is described below. 

Algorithm 5.1. t-SNE method coding schema  

Input: ECG data Y= (Y1, Y2, Y3,…,YN) 

Output: Reduced ECG features X=(X1, X2, X3, . . . ., XM) 

 

Step 1: Set optimisation parameters; number of iterations S, learning rate £, momentum α(s)  

Step 2: Find pairwise similarities 𝑃𝑟𝑜𝑗|𝑖 using Equation 5.5 

Step 3: While (s ≠ S) Do 

Step 4: Find low dimensional similarities ℎ𝑖𝑗 using Equation 5.6 

Step 5: Find gradient 
𝛿𝐶

𝛿𝑋
  using Equation 5.8  

Step 6: Set 𝑋(𝑠) = 𝑋(𝑠−1) + £ 
𝛿𝐶

𝛿𝑋
 +  α(𝑠) (𝑋(𝑠−1) − 𝑋(𝑠−2))  

Step 7: s=s+1 

Step 8: End while 

Step 9: Return to Step 3 
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5.5.4 Classification 

After normalisation of ECG features, the next phase is classification of the arrhythmias based on the 

hybrid methods. The confusion matrix from the classification is identified and the performance is 

compared using sensitivity, specificity and accuracy.  

 

Numerous different classifiers have been harnessed for arrhythmia classification tasks (Martis et al., 

2014a). Each has limitations and advantages. Three most widely used classifiers; support vector 

machine (SVM), multilayer perceptron (MLP) and self organizing map (SOM) were applied for the 

experiments. Basically, the SVM classifiers apply different combinations of subsets of input data to 

reveal the optimal feature subset to separate out two groups. On the other hand, the MLP classifiers 

provide good results with uncertainty and noise. Also, they consider all the input features for 

identifying the output class. Therefore, it skips numerous features but could be valuable to identify if 

there are any dominant features which are capable to detect a specific arrhythmia among the various 

arrhythmia categories. The SOM classifier is a generic classifier which can process various categories 

and has been applied for variety of datasets.  

 

SOM is a non-parametric and flexible machine learning approach utilised for classification and 

clustering.  The SOM techniques are related to the nodes of a regular, generally two dimensional map. 

A SOM classifier builds the structures such that the closer samples will be related with nodes that are 

similar in the map, whereas less closer samples will be moved gradually farther away in the map 

(Kohonen, 2013). A SOM converts high dimensional, nonlinear statistical connections into simple 

geometric connection in a k-dimensional matrix as represented in Figure 5.3. SOM classifies input 

data according to how they are grouped in the input domain and learns both the topology and 

distribution of the input data. The topology of the SOM is composed of two layers: input layer and 

output layer. The input layer is entirely linked to the output layer of the map samples with weight 

vectors representing the feature of the samples. The samples in the output layer compete among 

themselves to find a winner sample. The winner sample adjusts its neighbours and weights by moving 

neighbours weight vectors to be closer to the input vector. As training proceeds, the sample and its 

neighbours represent similar groups whereas samples are not close to each other in the structure 

representing dissimilar groups. The final weight vectors usually relied on the series of the input 

dataset.  
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Figure 5.3. Classification by SOM method 

 

When percentage of training data for one category is the same as that of the other category, the 

training is called balanced learning. Nevertheless, in many datasets, this is not the case. It has been 

found that ANN methods outperform SVM methods when balanced learning is absent and the 

implementation of both classifiers become comparable with balanced learning (Ren, 2012). 

Classifiers such as SVM and MLP require a heavy learning/training stage. On the other hand, SOM 

methods can naturally process numerous number of classes, avoid overfitting, and most importantly 

require no training phase. Also, it can organise large and complex datasets. The training time required 

is zero in this case. However, as SOM must measure the similarity between nearest neighbours for 

each point during the classification process, more time is required during the classification stage. 

Therefore, SOM applies a learning technique where a function is estimated locally, and hence the 

prediction process is slow. Furthermore, it is difficult to identify what input weights to employ 

(Kohonen, 2001, 2013). 

The cascade forward neural network (CFNN) which was used with 10 hidden layers in the current 

study is trained with back propagation of errors (Bonanno et al., 2014) similar to feed-forward 

networks but includes a weight connection from the input to each layer and from each layer to 

successive layers. The ANNs are capable of learning the desired mapping between the inputs and 

outputs signals of the system without knowing the exact mathematical model of the system and are 

therefore excellent estimators of nonlinear systems. The network was trained by a continual 

readjustment process to the weight and the threshold value, in order to reduce the network error to a 

pre-set minimum of 1% or to stop at a pre-set number of cycles. Then for the forecasting, held out 

samples or test data was presented to the trained network to obtain the test results according to a 

standard approach.  
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GA was used to optimise the input features of the ANN and SVM to obtain smaller and more effective 

inputs. Data in the GA were represented by n-bit binary vectors. Thus, the search space corresponds 

to an n-sized Boolean space. For each generation, the evaluation of the data, i.e. input feature subset 

required for the training of the ANN and SVM and use of the result in an objective function.  

 

The SVM classifier illustrates a generalisation capability when using the maximal margin principle. 

A margin is the distance between the support vectors of two different groups. The training data from 

both groups nearby hyperplane is known as support vectors.  To extend SVM from two-class to 

multiclass classification task one of the most commonly used method called one against all (OAA) 

(Zhang, Dong, Luo, Choi, & Wu, 2014) was employed. Numerous kernel transformation methods are 

utilised to map the data into high dimensional functions including polynomial, quadratic and radial 

basis function (RBF)/Gaussian kernel. The RBF/Gaussian kernel is widely used with SVM 

classification and provides high degree of accuracy (Elhaj et al., 2016). Therefore, we selected the 

RBF kernel transformation method in SVM classification. 

 

The proposed method based on t-SNE and SOM is illustrated in Algorithm 5.2 below. 

 

Algorithm 5.2. Proposed t-SNE +SOM approach coding schema  

Input: ECG Features 

Output: AA/PAC/AE/NP/SVE/PVC/FS/RPV/LBB/RBB or N 

  

Step 1: Randomly initialise all weight vectors  

Step 2: Select random data from the feature reduced training data from t-SNE and submit it to the 

             SOM classifier 

Step 3: Compute the winner node or best matching unit (BMU) in the map  

Step 4: Identify the nodes within the neighbour nodes of the winner node (the size of the neighbour  

             nodes and learning rate reduce with each loop) 

Step 5: Adapt the weight of the nodes in the winner node neighbour according to the selected data  

Step 6: Repeat steps from 2 to 5 for K loops/convergence 

 

In the proposed t-SNE +SOM approach, the matrix size was 8400 patterns. The t-SNE parameters 

were randomly set up where the momentum was 0.5, the number of iterations was 1000 and the 

learning rate was 0.01.  
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Two optimization methods, early exaggeration and early compression, were utilized to optimize the 

t-SNE cost function and reduce the number of required iterations. The early exaggeration method was 

used to multiply all the𝑃𝑟𝑜𝑖𝑗’s by an n>1 in the initial stages of the optimization. This caused the 

ℎ𝑖𝑗’s to be very small to model their corresponding 𝑃𝑟𝑜𝑖𝑗′𝑠, so that the optimization focused on 

modelling the large 𝑃𝑟𝑜𝑖𝑗’s. The early compression method forced the map data to be close to each 

other at an early stage of optimization so that it was easy to explore the possible global organization 

space of the data. 

The MATLAB SOM toolbox was used in this stage to apply the training and accuracy classification. 

The SOM algorithm gradually led to an organized representation of the activation patterns drawn 

from the input space. We used two identifiable phases of the adaptive process, ordering and 

convergence. In the ordering phase, the topological ordering of the weight vector was set to 1000 

iterations of the SOM algorithm and careful consideration was given to selecting the neighbourhood 

and learning rate parameters. In the convergence phase, the feature map provided an accurate 

statistical quantification of the input space. The number of iterations in this phase was at least 500 

times the number of neurons in the network and the parameters were selected carefully.   

5.6 Experimental Results 

The aim of this experiment is to reveal if a subset of features, which can recognise types of arrhythmia 

classes, exists, and to identify the most significant features in order to reduce the training time and 

improve classification accuracy. Moreover, it is to find which hybrid approach is more robust to noise 

and improves classification performance by testing each method using noisy and less noisy ECG 

signals.  

 

Four different combined approaches including GA-ANN, GA-SVM, PCA-ANN and PCA-SVM were 

used by engaging two filtering techniques that are widely used with ECG signals, namely the Haar 

wavelet and Butterworth FIR to render the obscure complexities in the noisy ECG signal. 

Furthermore, a new arrhythmia classification technique known as t-SNE-SOM was introduced by 

combining t-distributed stochastic neighbour embedding (t-SNE) with self organizing maps (SOM). 

These five approaches were used in order to detect which method performs best for the arrhythmias 

classification task. 10-fold cross-validation technique was used for estimating the generalisation. The 

overall performance of the classifiers was estimated by computing the mean of the 10-fold cross-

validations. Performance was compared using sensitivity, specificity and accuracy. Experimental 

results for each hybrid approach based on the MIT-BIH Arrhythmia and Shimmer3 datasets are 

reported below. 
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5.6.1 Experiment results on MIT-BIH Arrhythmia dataset 

As noted before, noise is likely to have a heavier effect on wearable ECG sensors because of the 

interference from other portable devices. Usually, the MIT-BIH Arrhythmia database is clean, hence, 

we added Gaussian white noise to the all MIT-BIH Arrhythmia ECG signals as noise source to test 

the classification performance based on standard MIT-BIH Arrhythmia ECG signals and ECG signals 

have interference noise.  

5.6.1.1 Sensitivity 

Sensitivity is an indicator for measuring the number of people with actual arrhythmia conditions to 

the total test subject data of people with arrhythmia. This reveals how effective the classification 

algorithm in detecting the type of arrhythmia classes.  

Table 5.2. Arrhythmia classification results for sensitivity using GA-ANN  

Method Sensitivity % 

GA-ANN APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.8 100 100 100 100 99.9 100 98.9 100 100 100 

With noise and Haar filter 99.6 100 100 100 100 99.3 100 98.2 100 100 100 

Standard MIT-BIH and FIR filter 99.7 100 100 100 100 99.8 100 98.9 100 100 100 

With noise and FIR filter 99.5 100 100 100 100 99.2 100 98.1 100 100 100 

Standard MIT-BIH without filter 99.3 99.6 100 100 99.6 98.8 99.8 98 100 100 100 

 

Table 5.3. Arrhythmia classification results for sensitivity using GA-SVM  

Method Sensitivity % 

GA-SVM APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.6 100 100 100 100 100 99.6 98.4 100 100 100 

With noise and Haar filter 99 100 98.8 100 100 100 99.1 97.9 100 100 100 

Standard MIT-BIH and FIR filter 99.6 100 100 100 100 100 99.6 98.4 100 100 100 

With noise and FIR filter 99 100 98.8 100 100 100 99.3 97.5 100 100 100 

Standard MIT-BIH without filter 99.2 99.3 97.9 100 100 100 99 87.5 100 98.4 98.7 
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Table 5.4. Arrhythmia classification results for sensitivity using PCA-ANN  

Method Sensitivity % 

PCA-ANN APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 100 99.7 100 100 99.8 100 100 100 100 100 100 

With noise and Haar filter 100 98.3 100 100 98.6 100 100 100 100 100 100 

Standard MIT-BIH and FIR filter 100 99.7 100 100 99.8 100 100 100 100 100 100 

With noise and FIR filter 100 98.2 100 100 98.6 100 100 100 100 100 100 

Standard MIT-BIH without filter 100 98 100 100 97.3 99.8 100 100 100 100 100 

Table 5.5. Arrhythmia classification results for sensitivity using PCA-SVM 

Method Sensitivity % 

PCA-SVM APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.2 82.3 84.3 100 98.8 98.5 98.2 81.2 100 100 99.9 

With noise and Haar filter 99 80.9 84 100 98.2 97.2 96.8 80.3 100 92.9 97.5 

Standard MIT-BIH and FIR filter 99.2 82.5 84.3 100 98.3 98.1 97.9 62.5 100 98.6 97.8 

With noise and FIR filter 99 80.3 83.5 100 98.4 96.6 96.9 61.4 100 92.5 95.2 

Standard MIT-BIH without filter 99 79.8 82.4 100 97.9 96 96.4 56.2 100 91.4 87.2 

 

Table 5.6. Arrhythmia classification results for sensitivity using t-SNE-SOM 

Method Sensitivity % 

t-SNE-SOM APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 100 100 100 100 99.9 100 100 100 100 100 100 

With noise and Haar filter 100 100 100 99.8 99.7 100 100 100 100 100 100 

Standard MIT-BIH and FIR filter 100 100 100 100 99.9 100 100 100 100 100 100 

With noise and FIR filter 100 100 100 99.8 99.6 100 100 100 100 100 100 

Standard MIT-BIH without filter 99.2 100 100 100 99.6 98.8 100 98.9 100 100 100 

 

From the sensitivity results, it can be seen that PCA in combination with SVM performed to a lesser 

degree in identifying the type of arrhythmias with noise added to the ECG signals or with standard 
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ECG signals. The same trend was reflected even with filters added to reduce the noise from the signal. 

Also, many patients with APC, AA, AE, NP condition were left undiagnosed with this feature 

reduction and classification technique. ANN classifier performed better when combined with the 

feature reduction methods including GA or PCA over the SVM classifier when combined with GA 

or PCA. The proposed t-SNE+SOM method classified all the arrhythmia classes at approximately 

100%, except few SVE and PVC beats, based on noisy, standard ECG signals with filters and with 

standard ECG signals without filter. Therefore, it indicated the superiority over the existing methods. 

GA+SVM was weaker than GA+ANN for differentiating of atrial beats but its results were not of less 

value and other sensitivity values were in par with GA+ANN. 

5.6.1.2 Specificity 

The specificity results are provided for all the different classification methods in the tables below. It 

evaluates which classification technique performs better when compared to each other. The 

specificity results are importance because it finds the ratio of properly diagnosed healthy people with 

no condition from a pool of test patients who are healthy. This is essential to the overall structure of 

the classification scheme as it is properly diagnosed the healthy from the people with diseased heart. 

Table 5.7. Arrhythmia classification results for specificity using GA-ANN  

Method Specificity % 

GA-ANN APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.9 100 100 100 100 100 99.8 100 100 100 100 

With noise and Haar filter 99.7 100 100 100 100 100 99.5 100 100 100 100 

Standard MIT-BIH and FIR filter 99.9 100 100 100 100 100 99.8 100 100 100 100 

With noise and FIR filter 99.7 100 100 100 100 100 99.5 100 100 100 100 

Standard MIT-BIH without filter 99.1 99.8 100 100 99.4 100 99 99.2 100 100 100 

Table 5.8. Arrhythmia classification results for specificity using GA-SVM 

Method Specificity % 

GA-SVM APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.5 98.7 100 100 100 100 100 99.8 100 100 100 

With noise and Haar filter 99.2 98.3 100 100 99.8 100 100 99 100 100 100 

Standard MIT-BIH and FIR filter 99.5 98.7 100 100 99.9 100 100 100 100 100 100 

With noise and FIR filter 99.3 98.3 100 100 99.8 100 100 99 100 100 100 

Standard MIT-BIH without filter 99.1 97.8 100 100 99.5 99.4 100 98 100 100 99.5 
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Table 5.9. Arrhythmia classification results for specificity using PCA-ANN 

Method Specificity % 

PCA-ANN APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.9 100 100 99.2 100 100 100 99.8 100 100 100 

With noise and Haar filter 99.7 100 100 99 100 100 100 99.7 100 100 100 

Standard MIT-BIH and FIR filter 99.9 100 100 99.2 100 100 100 99.8 100 100 100 

With noise and FIR filter 99.7 100 100 99 100 100 100 99.6 100 100 100 

Standard MIT-BIH without filter 99.6 99.9 99.9 98.9 99.8 99.9 99.9 99.4 100 99.8 99.9 

Table 5.10. Arrhythmia classification results for specificity using PCA-SVM 

Method Specificity % 

PCA-SVM APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.7 99.9 99.8 99.9 99.6 99.8 99.7 99.7 99.9 99.3 99.8 

With noise and Haar filter 99.2 98.7 99.3 99.1 99.2 98.5 99.2 98.9 99.2 98.8 99.5 

Standard MIT-BIH and FIR filter 99.6 99.8 99.6 99.9 99.6 99.8 99.6 99.8 99.9 99.3 99.8 

With noise and FIR filter 99 98.8 99.2 98.9 98.9 98.5 99 98.9 99.1 98.5 99.4 

Standard MIT-BIH without filter 98.3 97.8 98.5 98 99.4 97.8 98.9 98.2 99 98.3 99.2 

Table 5.11. Arrhythmia classification results for specificity using t-SNE-SOM 

Method Specificity % 

t-SNE-SOM APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.8 100 100 100 100 100 100 100 100 100 100 

With noise and Haar filter 99.6 100 100 100 100 100 100 100 100 100 100 

Standard MIT-BIH and FIR filter 99.8 100 100 100 100 100 100 100 100 100 100 

With noise and FIR filter 99.5 100 100 100 100 100 100 100 100 100 100 

Standard MIT-BIH without filter 99.3 100 100 100 100 100 99 99.3 100 100 100 

From specificity results, it can be clearly observed that the proposed t-SNE-SOM classifier performed 

extraordinarily well with the specificity value of about 100 % for every class of arrhythmia, except 

the APC beats the specificity value was about 99.8 %, with noise added to the signals, without filter 

and with filters. This clearly states its supremacy in detecting the healthy individuals in the pool of 
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test patients. PCA-ANN and GA-ANN based classifiers also achieved high degree of performance 

whereas the performance of PCA and GA reduced when combined with SVM classifier.  

5.6.1.3 Accuracy  

Accuracy measures the feature reduction and classifier performance and detects accuracy of the 

arrhythmia class that were precisely identified. In fact, it provides the ratio of the heart beats that were 

correctly or properly detected out of the total number of beats.  

Table 5.12. Arrhythmia classification results for accuracy using GA-ANN 

Method Accuracy % 

GA-ANN APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.7 100 100 100 100 99.9 100 99.9 100 100 100 

With noise and Haar filter 99.8 100 100 100 100 99.8 99.7 99.2 100 100 100 

Standard MIT-BIH and FIR filter 99.7 100 100 100 100 99.9 100 99.9 100 100 100 

With noise and FIR filter 99.8 100 100 100 100 99.7 99.7 99.1 100 100 100 

Standard MIT-BIH without filter 99.5 100 100 99.8 100 98.8 99.6 99.8 100 100 100 

Table 5.13. Arrhythmia classification results for accuracy using GA-SVM 

Method Accuracy % 

GA-SVM APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.8 100 100 100 99.8 100 100 99.5 100 100 100 

With noise and Haar filter 99.7 100 100 100 99.3 100 99.7 99.3 100 100 100 

Standard MIT-BIH and FIR filter 99.8 100 100 100 99.8 100 100 99.5 100 100 100 

With noise and FIR filter 99.6 100 99.4 100 99.3 100 99.6 99.4 100 100 100 

Standard MIT-BIH without filter 99.6 97.6 99.3 100 99.2 100 98.9 98.5 100 98.7 97.5 

Table 5.14. Arrhythmia classification results for accuracy using PCA-ANN 

Method Accuracy % 

PCA-ANN APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.7 99.8 100 100 99.9 100 100 100 100 100 100 

With noise and Haar filter 99.2 99.5 100 100 99.6 100 100 100 100 100 100 

Standard MIT-BIH and FIR filter 99.7 99.8 100 100 99.9 100 100 100 100 100 100 

With noise and FIR filter 99.2 99.5 100 100 99.6 100 100 100 100 100 100 

Standard MIT-BIH without filter 99.2 99.2 100 99.6 99.5 99.7 100 100 100 99.5 99.6 
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Table 5.15. Arrhythmia classification results for accuracy using PCA-SVM 

Method Accuracy % 

PCA-SVM APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.8 94.1 92 99.9 99.2 99.4 99 90.5 99.9 99.7 99.8 

With noise and Haar filter 98.4 92.1 90 98.3 98.6 98.4 98.3 89.5 99.6 99.3 98.4 

Standard MIT-BIH and FIR filter 99.7 93.7 92 99.9 99.1 98.9 99 90.1 99.9 99.7 99.7 

With noise and FIR filter 98.4 92.1 90 98 98.4 98.4 98.3 81.1 99.6 99 98 

Standard MIT-BIH without filter 97.9 92 89.2 97.7 97.3 97.5 98 78 99.2 98.7 97.8 

Table 5.16. Arrhythmia classification results for accuracy using t-SNE-SOM 

Method Accuracy % 

t-SNE-SOM APC AA NP SVE PVC RPV FS AE N LB RB 

Standard MIT-BIH and Haar filter 99.9 100 100 99.7 100 100 100 99.8 100 100 100 

With noise and Haar filter 99.8 100 100 99.6 100 100 100 99.7 100 100 100 

Standard MIT-BIH and FIR filter 99.9 100 100 99.7 100 100 100 99.7 100 100 100 

With noise and FIR filter 99.8 100 100 99.5 100 100 100 99.7 100 100 100 

Standard MIT-BIH without filter 99.7 99.9 99.9 99.7 99.8 99.9 99.8 99.6 99.9 99.8 99.8 

 

From sensitivity, specificity and accuracy results, it can be observed that overall the methods 

discussed in this work provided less performance than other combination approaches whether with 

noise added to the signal or without noise. ANN combined with the feature reduction methods 

including GA or PCA performed considerably accurate, classifying the arrhythmic heart beats and 

providing approximately 99% accuracy in most of the arrhythmia classes across all the evaluation 

methods with noise, without noise and without both FIR and Haar filters. SVM combined with GA 

achieved reduced performance than GA-ANN method, as it struggled to provide the consistency over 

all the classes of arrhythmia such as with the sensitivity results. It also fails in the detection of the 

APC, AA. Our proposed t-SNE+SOM classification method achieved consistent performance 

throughout the evaluation of parameters and its sensitivity, specificity and accuracy values were 

approximately 99.8 % for all the classes of arrhythmia when tested with standard ECG signals, noisy 

ECG signals with filters and even with standard ECG signals without filter. That indicates its 

superiority over the existing ECG classification and detection techniques. Usually FIR and Haar 

filters achieve the same results. However, the Haar filter occasionally provided improvement in 

classification performance than FIR filter. Moreover, it can be concluded that feature 
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reduction/selection methods improve classification performance, especially our proposed method t-

SNE-SOM. Therefore, the selection of significant features plays a vital role in the classification, 

particularly when the ECG data is noisy. 

5.6.2 Experiment results on Shimmer3 dataset 

Shimmer3 ECG dataset contains all arrhythmia types that reported in the MIT-BIH Arrhythmia 

database except bundle branch block (BBB) rhythms, hence, nine types of arrhythmia have been 

classified using Shimmer3 ECG dataset as represented below. The Harr filter providing superior 

results over the FIR filter so was selected to remove noise from the Shimmer3 dataset. As the 

Shimmer3 ECG dataset was collected based on wearable ECG sensor/mobile environment, we did 

not add noise to the ECG signals.  

 

Overall testing and validation results of the proposed algorithm are illustrated in Table 5.17 and 

Table 5.18. The proposed arrhythmia classification and detection results were compared with four 

commonly used approaches using MIT-BIH Arrhythmia and Shimmer3 ECG dataset. 

 

Table 5.17. Overall classification performance using Shimmer3 dataset 

Method Se% Sp% Ac% 

GA-ANN using Shimmer3 and Haar filter 99.82 99.53 99.20 

GA-ANN using Shimmer3 without filter 99.42 99.36 99 

GA-SVM using Shimmer3 and Haar filter 98.67 98.44 97.68 

GA-SVM using Shimmer3 without filter 97.23 96.37 93.50 

PCA-ANN using Shimmer3 and Haar filter 99.50 99.39 99.13 

PCA-ANN using Shimmer3 without filter 99.21 99 98.93 

PCA-SVM using Shimmer3 and Haar filter 90.56 98.77 90 

PCA-SVM using Shimmer3 without filter 84.90 95.99 86.94 

t-SNE-SOM using Shimmer3 and Haar filter 99.83 99.62 99.50 

t-SNE-SOM using Shimmer3 without filter 99.66 99.55 99.10 

 

It can be observed from Table 5.17, that the ANN classifier achieved a better performance than the 

SVM classifier when combined with GA or PCA feature reduction methods with filter or without 

filter. The proposed t-SNE-SOM classifier achieved a higher degree of sensitivity, specificity and 

accuracy than existing detection and classification approaches for every class of arrhythmia with 
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noisy or less noisy ECG signals. This clearly shows its superiority in classification of the healthy 

individuals in the pool of test patients.  

Table 5.18. Overall classification performance using MIT-BIH Arrhythmia database   

Method Se% Sp% Ac% 

GA-ANN using MIT-BIH with noise and Haar filter 99.73 99.92 99.86 

GA-ANN using standard MIT-BIH without filter 99.55 99.68 99.77 

GA-SVM using MIT-BIH with noise and Haar filter 99.52 99.66 99.81 

GA-SVM using standard MIT-BIH without filter 98.18 99.39 99 

PCA-ANN using MIT-BIH with noise and Haar filter 99.71 99.85 99.84 

PCA-ANN using standard MIT-BIH without filter 99.55 99.72 99.66 

PCA-SVM using MIT-BIH with noise and Haar filter 93.34 99 96.44 

PCA-SVM using standard MIT-BIH without filter 89.66 98.48 94.84 

t-SNE-SOM using MIT-BIH with noise and Haar filter 99.95 99.96 99.91 

t-SNE-SOM using standard MIT-BIH without filter 99.68 99.78 99.80 

 

Table 5.17 and Table 5.18 illustrate the arrhythmia classification approach presented here provided 

high level of accuracy, sensitivity and specificity to detect and classify arrhythmias based on MIT-

BIH Arrhythmia and Shimmer3 ECG datasets with the presence of noise or with less noise. 

5.7 Discussion  

An automated method that can accurately detect and classify cardiac arrhythmias has been advanced. 

The primary challenge in the automated classification of the ECG data arises from the notable intra-

class variations in ECG data. The inter-person variation can cause a bigger challenge due to the 

inconsistency in classification performance between the class-oriented evaluation and the subject-

oriented evaluation. The existence of inter-person variations in ECG is further confirmed by the fact 

that individual characteristic information carried by ECG data can even be employed for human 

identification (Elhaj et al., 2016; Luz et al., 2016). 

 

The construction of subject-customised classification models, to observe the inter-person variations 

are made up of two categories, general models and specific models, which represent the data of the 

general population and the exact aspects of a subject, respectively. These models are implemented to 

complement each other, allowing personalized ECG analysis.  
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Both the statistical and heuristic classification models that are commonly used to evaluate the effect 

of those models on the results were selected and compared to our novel model. The ECG data from 

both the MIT-BIH Arrhythmia and the Shimmer3 ECG databases were used to train the classifier 

models and tested for the evaluation parameters in the detection of cardiac arrhythmias. The feature 

selection/reduction process and the classifier methods combined to present the results of the 

classification and the performance of each classifier for the ECG signals with noise removed and with 

noise introduced in the system. Noise removal provides improvement in classification performance 

as illustrated in Table 5.17 and Table 5.18. Filters were deployed to remove the noise from the signals 

and the performance of the classifier was analysed. Also, the raw signal was analysed with the 

inherent noise in the signal and the performance was evaluated. The efficiency of the classifier with 

all the parameters with noise, without noise, with filtering, and without filters was carefully studied 

and the results were evaluated and the findings were presented.  

The utility of the GA feature selection/optimization depends on the classifier and dataset. We have 

found that GA provides a powerful searching capability in high-dimensional feature spaces. The 

results of the GA combined with classifier methods ANN and SVM supports our discussion. The 

performance of ANN classifier in general was better when combined with GA or PCA than the SVM 

classifier under all the testing parameters. However, the classification accuracy suffered a bit with 

noise introduced and without any filter used in the GA-ANN model. PCA-SVM model provided less 

performance than other combination approaches whether with noise was added to the signal or 

without noise. It also fails in the detection of the atrial beats. This is partly because the classifier 

depends on how the features are scaled. Also, SVM is not efficient with a large number of features 

compared to the training samples. This is clear when looking at the performance of the PCA-SVM 

classifier for accuracy and sensitivity results. 

 The proposed t-SNE-SOM classifier presented in this study, provides a higher level of accuracy, 

sensitivity, specificity than existing detection and classification approaches for every class of 

arrhythmia with noisy or less noisy ECG signals. This clearly demonstrates its superiority in the 

classification of the many types of arrhythmia in the pool of test patients. 

5.8 Conclusion 

In this work, a novel ECG classification and detection approach were proposed. The t-SNE+SOM 

hybrid resulted in improved sensitivity, specificity and accuracy compared to the most widely used 

models in the presence of noise and with less noise. The t-SNE+SOM model provides a better, more 

accurate identification for presence of arrhythmias from wearable ECG recordings/mobile 

environment and standard environment leading to more timely diagnosis and treatment outcomes. 
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The t-SNE improved the diagnostic accuracy by ignoring redundant and noisy features to determine 

the most significant features. Our results indicate that the SOM has the ability to self-learn, organise 

the dataset, and detect possible interactions by the predictor variables. For all datasets and classifiers 

that were evaluated, the t-SNE-SOM approach provided improvements in the classification accuracy, 

sensitivity and specificity even with noisy data. One of the reasons behind the successful performance 

of the t-SNE-SOM model is its capability to integrate various optimal solutions given by the t-SNE 

method to enhance the generality of the final solution. Furthermore, it can be concluded that feature 

reduction/selection methods improve classification performance, especially our proposed method t-

SNE, even the ECG signals have noise without applying de-noising process. Therefore, selection of 

significant features plays a vital role in the classification, particularly when the ECG data is noisy. 
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CHAPTER 6 

6 Liminations and Future Work 

In this thesis, we attempted to address some problems that hinder health care monitoring system 

harnessing the power of mobile devices such as wearable ECG sensors and smartphones, especially 

for remote cardiovascular monitoring systems. In this chapter, the results of the various experiments are 

summarised and related back to the research questions. Also, we summarise the limitations of the current 

research and the ideas for extending the proposed techniques and various possible applications. 

6.1 Work Limitations and Suggested Future Work 

The experiments presented in this thesis produced a solution for remote monitoring of cardiovascular 

patients utilizing the power of portable computational platform, wearable ECG sensors and new 

analysis techniques. The telecardiology environment demonstrated within this study supports the 

assertion that remote monitoring can save lives of cardiovascular patient with faster solutions for 

transmission, power saving, forecasting and diagnosis. Nevertheless, there is a room for enhancement. 

 

Investigation on even simpler, efficient and faster ECG reduction, transmission and power saving for 

battery-driven devices with innovative lossy ECG data reduction/compression methods is required. 

The current study provides a compression ratio of 5 (optimal case) and maintains all diagnostic 

features with very good ECG signal quality. Also, the compression ratio could be increased up to 10 

and still achieve good ECG signal quality if RR interval data was used. A study on innovative ECG 

data reduction/compression method with higher compression ratios that can implemented on wearable 

ECG sensors is needed.  

 

The proposed methods presented in this thesis were mainly for standard ECG data (MIT-BIH 

Arrhythmia database and wearable ECG sensor dataset (Shimmer3 ECG dataset). Therefore, an 

investigation on advanced ECG reduction, forecasting and diagnosis techniques suitable for other 

ECG devices such as implantable devices needs to be performed.  

 

The forecasting accuracy was assessed against an often limited dataset of ECG signals that provided 

97 % of accuracy over 3 minutes. Also, the online forecasting was tested based on only a few 

volunteers for 30 minutes. The forecasting methods need to be validated on a larger dataset of ECG 

signals and shorter recording time such as 20 seconds or one minute.  
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For PVC detection, RR data for three minutes was used to reliably detect PVC beats from non-PVC 

beats using a simple and fast approach within the constraints of continuous remote patient monitoring. 

Also, PVC beats were detected from non-PVC beats using an intelligent method in a very short time 

period of a few seconds. An investigation using RR data to detect PVC beats using shorter recording 

time is required. Using a Count data model for 30 seconds or one minute to predict PVC beats can be 

an option. Moreover, the PVC detection method in a real mobile platform (ECG wearable sensor and 

smartphone devices) based on few volunteers for 30 minutes was implemented and tested. A study 

implementing our detection techniques but using only a wearable ECG sensor with more volunteers 

and time with cardiovascular disease and arrhythmias needs to be achieved. 

 

For automated arrhythmia detection and classification, the new hybrid intelligent method was 

implemented, which resulted in improved sensitivity, specificity and accuracy compared to the most 

widely used models in the presence of noise, using a PC device. Further research implementing the 

hybrid methods with a smartphone and measuring power consumption for each method to identify 

which method is suitable for real-time cardio monitoring system is required. The intelligent methods 

require complex computational processes and consume more power. A simple and fast method that 

requires minimal computational resources and which may be implemented with a wearable ECG 

sensor node needs to be developed. Using QRS complex features and P and T morphology and time-

domain statistical approaches such as template matching with knowledge-based rules may be an 

option.          

6.2 Summary 

Improvements in wearable sensor devices in recent years make it possible to constantly monitor 

physiological parameters such as electrocardiograph (ECG) signals for long periods. Remote patient 

monitoring with wearable sensors has an important role to play in health care, particularly given the 

prevalence of cardiovascular diseases (CVDs), a prominent cause of death world-wide.  

 

The analysis of ECG features from real time ECG signals generated from wearable sensors provides 

unique challenges. Sensors and mobile devices that receive and process the signals have limited 

power, storage and processing capacity. ECG sensors generate large streams of data that easily 

exhaust storage of mobile devices and need high bandwidth capacity for transmission. Consequently, 

algorithms that process ECG signals need to operate very quickly, use minimal storage resources and 

accurately detect abnormalities so that alarms can be raised. This is an emerging field and few 

algorithms that operate within the constraints of wearable sensor networks have been developed to 

date. 
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This research presented four techniques that enable ECG signals to be processed within the limitations 

of mobile devices. The first technique is a new real time ECG data reduction algorithm that detects 

and transmits only those key points on an ECG stream that are critical for the generation of accurate 

ECG features. Reducing the amount of ECG data transmitted without compromising clinical 

effectiveness markedly represents the first contribution. The second contribution involved using data 

transmitted to make forecasts of data characteristics in the near future, enabling algorithms that detect 

anomalies to operate on predicted data. The second technique accurately predicted the five-minute 

heart rate variability measure using only three minutes of data with an algorithm that executes in real 

time using minimal computational resources. The third contribution advanced approaches that 

predicted heart conditions using predictive analytics adapted for low resource computing. A real-time 

recognition system that has been applied to diagnose life-threatening heart diseases such as Premature 

Ventricular Contraction is advanced. A classification algorithm to enhance the performance of 

automated ECG classification with special focus in determining arrhythmic heart beats based on noisy 

ECG signals was also described. 
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