1,244 research outputs found

    Transform-domain analysis of packet delay in network nodes with QoS-aware scheduling

    Get PDF
    In order to differentiate the perceived QoS between traffic classes in heterogeneous packet networks, equipment discriminates incoming packets based on their class, particularly in the way queued packets are scheduled for further transmission. We review a common stochastic modelling framework in which scheduling mechanisms can be evaluated, especially with regard to the resulting per-class delay distribution. For this, a discrete-time single-server queue is considered with two classes of packet arrivals, either delay-sensitive (1) or delay-tolerant (2). The steady-state analysis relies on the use of well-chosen supplementary variables and is mainly done in the transform domain. Secondly, we propose and analyse a new type of scheduling mechanism that allows precise control over the amount of delay differentiation between the classes. The idea is to introduce N reserved places in the queue, intended for future arrivals of class 1

    Discrete-time queueing models: generalized service mechanisms and correlation effects

    Get PDF

    Performance issues in optical burst/packet switching

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01524-3_8This chapter summarises the activities on optical packet switching (OPS) and optical burst switching (OBS) carried out by the COST 291 partners in the last 4 years. It consists of an introduction, five sections with contributions on five different specific topics, and a final section dedicated to the conclusions. Each section contains an introductive state-of-the-art description of the specific topic and at least one contribution on that topic. The conclusions give some points on the current situation of the OPS/OBS paradigms

    Dynamic Traffic Scheduling and Resource Reservation Algorithms for Output-Buffered Switches

    Get PDF
    Scheduling algorithms implemented in Internet switches have been dominated by the best-effort and guaranteed service models. Each of these models encompasses the extreme ends of the correlation spectrum between service guarantees and resource utilisation. Recent advancements in adaptive applications have motivated active research in predictive service models and dynamic resource reservation algorithms. The OCcuPancy_Adjusting (OCP_A) is a scheduling algorithm focused on the design of the above-mentioned research areas. Previously, this algorithm has been analysed for a unified resource reservation and scheduling algorithm while implementing a tail discarding strategy. However, the differentiated services provided by the OCP _A algorithm can be further enhanced. In this dissertation, four new algorithms are proposed. Three are extensions of the OCP _A. The fourth algorithm is an enhanced version of the Virtual Clock (VC) algorithm, denoted as ACcelErated (ACE) scheduler. The first algorithm is a priority scheduling algorithm (i.e. known as the M-Tier algorithm) incorporated with a multitier dynamic resource reservation algorithm. Periodical resource reallocations are implemented. Thus. enabling each tier's resource utilisation to converge to its desired Quality of Service (QoS) operating point. In addition. the algorithm integrates a cross-sharing concept of unused resources between the various hierarchical levels to exemplify the respective QoS sensitivity. In the second algorithm. a control parameter is integrated into the M-Tier algorithm to ensure reduction of delay segregation effects towards packet loss sensitive traffic. The third algorithm, introduces a delay approximation algorithm to justify packet admission. The fourth algorithm enhances the VC scheduling algorithm. This is performed via the incorporation of dynamic features in the computation of the VC scheduling tag. Subsequently, the delay bound limitation of the parameter is eliminated

    Analysis of discrete-time queueing systems with multidimensional state space

    Get PDF

    Efficient Resource Management Mechanism for 802.16 Wireless Networks Based on Weighted Fair Queuing

    Get PDF
    Wireless Networking continues on its path of being one of the most commonly used means of communication. The evolution of this technology has taken place through the design of various protocols. Some common wireless protocols are the WLAN, 802.16 or WiMAX, and the emerging 802.20, which specializes in high speed vehicular networks, taking the concept from 802.16 to higher levels of performance. As with any large network, congestion becomes an important issue. Congestion gains importance as more hosts join a wireless network. In most cases, congestion is caused by the lack of an efficient mechanism to deal with exponential increases in host devices. This can effectively lead to very huge bottlenecks in the network causing slow sluggish performance, which may eventually reduce the speed of the network. With continuous advancement being the trend in this technology, the proposal of an efficient scheme for wireless resource allocation is an important solution to the problem of congestion. The primary area of focus will be the emerging standard for wireless networks, the 802.16 or “WiMAX”. This project, attempts to propose a mechanism for an effective resource management mechanism between subscriber stations and the corresponding base station

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial
    corecore