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Abstract. In order to differentiate the perceived QoS between traffic
classes in heterogeneous packet networks, equipment discriminates in-
coming packets based on their class, particularly in the way queued
packets are scheduled for further transmission. We review a common
stochastic modelling framework in which scheduling mechanisms can be
evaluated, especially with regard to the resulting per-class delay distrib-
ution. For this, a discrete-time single-server queue is considered with two
classes of packet arrivals, either delay-sensitive (1) or delay-tolerant (2).
The steady-state analysis relies on the use of well-chosen supplementary
variables and is mainly done in the transform domain. Secondly, we pro-
pose and analyse a new type of scheduling mechanism that allows precise
control over the amount of delay differentiation between the classes. The
idea is to introduce N reserved places in the queue, intended for future
arrivals of class 1.

1 Introduction

In heterogeneous packet-based networks, the Quality of Service (QoS) perceived
by a particular application highly depends on the presence of and interaction
with other flows, due to statistical multiplexing and queueing in the intermediate
network nodes. This is particularly the case in situations of high network load or
congestion in intermediate network nodes. In a sense, managing a large hetero-
geneous network successfully, is a many-facetted problem, not unlike governing a
society. Different groups of people have different characteristics, desires and as-
pirations, often conflicting with each other, but all of them are part of the same,
highly interactive system. The actions of one group will always affect the others
to some degree and it is the responsibility of the authorities to issue clear rules
and laws as to how human interactions should take place, as well as to distribute
the limited (monetary) resources among the different interest groups. Ideally, the
primary aim of government’s legislation and budget is to maximise prosperity
and individual well-being. In this sense, traffic flows in a network are similar
to people in society in many respects. Just like people, they share the same
infrastructure, are unpredictable and may exhibit erratic or even malevolent be-
haviour. Therefore, enforcing strict rules and intelligent resource distribution are
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required to achieve maximal QoS satisfaction. Hence, there is a continuing trend
of introducing QoS-awareness into the equipment of network nodes, with the aim
of sharing available network resources (e.g. bandwidth) among the traffic flows in
a more intelligent and deliberate way, tailored as closely as possible to the needs
of each flow. For this, many different techniques are used, both at the applica-
tion level (traffic shaping, congestion notification) and at the level of the network
(congestion avoidance, active queue management, specific packet scheduling and
packet discarding mechanisms), see e.g. [25] for an overview. In answer to the
scalability problems that arise when trying to meet the QoS demands of each
separate flow in the network, the Differentiated Services (DiffServ) architecture
[4] has been proposed. DiffServ is packet-based instead of flow-based. This means
the individual flows are aggregated into a limited number of service classes and
nodes decide on the per-hop behaviour of each packet based on its class. A sim-
ulation study of DiffServ with both delay and loss QoS classes is found in [44].
A controllable DiffServ mechanism is Proportional Differentiated Services [18],
which aims to quantitatively differentiate the QoS among the classes relative to
some predefined parameters. Many other scheduling mechanisms that limit the
delay of a selected flow keep track of a ‘deadline’ for each queued packet, such
as earliest deadline first (EDF) [43, 38] and alternative best-effort [26] or use
virtual clocks [52]. An overview can be found in [25, 40]. Another approach to
accommodate delay-sensitive traffic, is to keep queues small by discarding pack-
ets before congestion can arise. Several packet-discarding strategies have been
presented and analysed in literature, such as push-out buffer (POB) [11], partial
buffer sharing (PBS) [10, 27], random early detection (RED) [39, 23] and their
variants. Aside from policies deciding whether or not a packet is admitted to
the buffer, there is also a host of scheduling mechanisms that are responsible for
determining which packet from the buffer is the next to be transmitted once the
output link becomes available. QoS-aware scheduling mechanisms aim at pro-
viding somehow a better service to selected flows with higher importance, at the
expense of a worse service delivered to the other flows. A theoretically ideal and
fair way to share the server capacity over different flows is Generalised Processor
Sharing (GPS) [41, 51], but this mechanism is difficult to apply in packet-based
networks, so adaptations for packet scheduling are needed. For instance in the
framework of ATM [3], weighted-round-robin (WRR) and weighted-fair-queueing
(WFQ) [13] were proposed to achieve GPS-like weighted throughput and fair-
ness [33]. For these mechanisms, there are separate queues for each type of traffic
and the server ‘visits’ each queue in a cyclic, weighted and/or timed manner [42].
In the DiffServ framework, WFQ and WRR were recycled to ‘class-based’ WFQ
and WRR, meaning that the flows (sometimes several thousands) are aggregated
into a limited number of service classes between which a service differentiation
is desirable.

We first review a common stochastic modelling framework by which the per-
formance of some basic scheduling mechanisms can be evaluated, especially with
regard to the resulting per-class delay distribution. A discrete-time single-server
queueing model is considered with two classes (or ‘types’) of packet arrivals,



either delay-sensitive (type 1) or delay-tolerant (type 2). The queue operates
in slotted time and all packets are assumed to require a single slot of service.
We make abstraction of any packet loss and assume the queue to have infinite
capacity. The arrival process is time-independent, although the numbers of 1-
and 2-packets that arrive within a slot may be correlated. The equilibrium delay
distribution experienced by each class is obtained via some standard intermedi-
ary steps. The first À is to identify a minimal but sufficiently large state space
by which the system can be described as a Markov process. As we will see, the
number of required supplementary variables [12, 28] or ‘dimensions’ in the state
space specifically depends on the considered scheduling mechanism. Secondly Á
the equilibrium distribution of the system’s state over this space is calculated as
a joint probability generating function (pgf), which in turn is required for the
final step, Â obtaining the per-class delay distribution, also in the form of a gen-
erating function. This generating-functions approach, also outlined in e.g. [29,
49, 5], has proven to be successful in application to an impressively broad range
of queueing models. We here specifically apply it to assess the performance of an
alternative scheduling mechanism called the MR (Multiple Reservation) mecha-
nism, which we introduce in the next section.

2 Class-based scheduling mechanisms

The quintessential QoS-flat scheduling mechanism (or ‘queueing discipline’) is
FIFO (First-In First-Out) where packets are served in their arrival order, with-
out regard of their class. Occasionally useful disciplines are also LIFO (Last-In
First-Out) [2] and ROS (Random Order of Service) [30, 22]. The latter not only
neglects the class but also the arrival order of the packets. Clearly, no significant
differentiation in the per-class delay distribution is expected under any of these
disciplines. On the other hand, the most extreme way of service differentiation
is AP (Absolute Priority) or ‘HOL priority’ (Head of Line), either preemptive or
non-preemptive, see [45, 47, 24, 9, 48] as well as the contribution of Walraevens
et al. in this volume. Under AP, the next scheduled packet is the one that (1)
belongs to the set of queued packets with highest priority and (2) has the longest
waiting time of the packets in the set. If there are M traffic classes with lower
classes having higher priority, then a class-i packet only has a transmission op-
portunity in the complete absence of packets from classes 1 to i−1. Hence, AP

guarantees the lowest possible delay for class-1 traffic, at the cost of increasing
the delay for the other classes. The drawback is that classes with lower prior-
ity may experience dramatically high delay, especially when the partial load of
the higher-priority classes is high, an effect known as packet starvation. There-
fore, AP may be a bridge too far in many situations. Several amendments to AP

have been proposed that try to soften the severe strictness of the policy. For
example, in [46] a Probabilistic Priority scheme is discussed that assigns a small
probability pi to each class by which the server may skip service to class i+1,
even though class-i packets are available. In case of two priority classes, [35, 36]
analyse different ways of implementing priority jumps (PJ), as proposed in [32].
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Fig. 1. A queue operating under MR with N = 4. The queue spaces are numbered as
indicated, and the positions of the reservations at the start of slot k are given by the
variables mj,k (j=1, . . . , N).

The idea is to allow class-2 packets (with lower priority) to promote to class
1 on some occasions and ‘jump’ to the tail of the high-priority queue. Consid-
ered jumping schemes are: HOL-PJ where class-2 packets jump after some de-
lay threshold, HOL-MBP (Merge-by-probability) where the entire class-2 queue
jumps with some probability β, HOL-JOS (Jump-or-serve) where jumps occur
at the same rate as the output link, HOL-JIA (Jump-if-Arrival) where jumps
are synchronised with class-2 arrivals, and so on. We here specifically focus on
the performance analysis of a new queue scheduling mechanism that can realise
a statistic reduction of the delay for type 1 traffic at the cost of increasing the
delay for type 2 traffic. This delay differentiation is achieved by introducing a
total of N (N >1) reserved spaces in the queue that will be occupied by future
arriving packets of type 1. We refer to this scheduling mechanism as the Multiple
Reservation (MR) discipline. The basic idea was first coined by Burakowski and
Tarasiuk in [8], where a rudimentary estimation of the mean delay for both traf-
fic types is given in case of Poisson arrival flows. In our previous work [14, 15],
we have obtained exact expressions for the equilibrium distribution of the delay
of both packet types, in case of a single reserved position (i.e. N=1), as well as
for geometric service times in [19]. This was subsequently extended in [16, 17] to
the general case N > 1 where efficient numerical procedures were presented to
calculate the pgf, mean and tail distribution of the delay experienced by both
types of packets. As a convention, let us number the positions of the spaces in
the queue as in Fig. 1, i.e. the server has position 0, while the queue spaces have
numbers that increase with their distance to the server. The policy for storing
and scheduling packets in the queue is then the following:

I Initially, there are N reserved positions (R’s) in the queue, on positions 1 to
N . This is also the case every time the queue is empty or ‘idle’.

I Of all the packets arriving in a slot, the 1-packets are stored in the queue first
and then the 2-packets.

I If a 1-packet is stored, it seizes the most advanced R in the queue (i.e. the
one with the lowest position number) and makes a new R at the end of the
queue. A 2-packet on the other hand, is stored at the end of the queue in the
usual FIFO manner.



I As long as it is not seized by a 1-packet, an R behaves as a normal packet in
the sense that it shifts one place to the right every time a packet leaves the
server. However, an R cannot enter the server at position 0, nor can it leave
the queue.

It is clear that the number of R’s always remains equal to N , due to the fact
that each 1-packet seizes an R but at the same time also creates an R at the
end of the queue. Note that MR is work-conserving and maintains the per-type
packet ordering, just like FIFO and AP. The differentiation in delay arises from
the fact that 1-packets may jump over already stored 2-packets. For example, in
the situation of Fig. 1, the next arriving 1-packet will take position 3, thereby
jumping over 4 packets of type 2. Clearly, the higher we choose N the more the
delays of type 1 and type 2 packets will differ. More so, if N →∞ the queue
operates in exactly the same way as AP, providing the maximum possible delay
differentiation. In this way, the number of reservations N in the queue can be
seen as a parameter by which the amount of delay differentiation can be carefully
controlled.

3 Discrete-time queueing model

In the following, we propose a discrete-time queueing model by which the per-
class delay distribution under a specific scheduling mechanism can be assessed
quantitatively. We assume all packets are stored in a single queue with infinite
capacity and that each packet requires one slot service. In general, packets belong
to one of M service classes with class i having more strict delay requirements
(higher priority) than class i+1. Let ai,k denote the number of packets of type i
(16 i6M) that arrive in the queue during slot k. We assume that the numbers
of arrivals in subsequent slots are independent and identically distributed (iid),
with their joint distribution given by the pgf

A(z1, . . . , zM ) , E[z
a1,k

1 · . . . · zaM,k

M ] . (1)

This allows for the numbers of arrivals of different classes during the same slot
to be correlated. We assume delayed access for the packets, meaning that any
arrivals during slot k are not stored in the queue until the end of that slot.
Consequently, no packet can be served during the slot in which it arrived. Let
the random variable υi,k denote the number of packets of type i present in the
system at the beginning of slot k, summing up to uk=υ1,k+. . .+υM,k, denoting
the total system content at that time. In case of QoS-flat disciplines, it is often
logical to single out a traffic class i and regard the other as an aggregated class ı̄.
Let aı̄,k =

∑
j 6=i aj,k, then A(x, z) , E[xak,ı̄zak,i ] = A(x

1
, . . . , x

i−1
, z
i
, x
i+1
, . . . , x

M
) is

the joint distribution of the arrivals in slot k of classes ı̄ and i. This is equivalent
to considering M = 2, with type-1 packets having delay priority over type-2
packets, and joint pgf A(z1, z2) = E[z

a1,k

1 z
a2,k

2 ]. We will also use the marginal
distributions Ai(z) of the number of arrivals per slot of type i= 1, 2, which are
given by

A1(z) , E[za1,k ] = A(z, 1) , A2(z) , E[za2,k ] = A(1, z) . (2)



The total number of arrivals (both of type 1 and 2) during slot k is denoted by
aT,k=a1,k+a2,k with pgf AT (z)=E[zaT,k ]=A(z, z). The mean number of arrivals
per slot (arrival rate) of type i follows from the moment-generating property of
pgfs as λi = E[ai,k] = A′i(1), while the total arrival rate is λT = λ1 +λ2 =
A′T (1) . Some higher-order derivatives evaluated for z = 1 are λ′i = A′′i (1) and

λ′T = A′′T (1), as well as the mixed moment λ12 = ∂2

∂z1∂z2
A(1, 1) = E[a1a2]. To

keep the forthcoming expressions tractable, we use the following notation for
the distribution of the type-1 arrivals in the probability domain. Let the mass
function of the number of 1-arrivals per slot be

βi , Prob[a1,k= i] , i > 0 , and α , β0 = A1(0) = A(0, 1) , (3)

such that A1(z)=
∑+∞
i=0 βi z

i. Additionally, define

Ai∗(z) , E[za2,k{a1,k= i}] , i > 0 , (4)

which is the pgf of the number of 2-arrivals in case there are exactly i arrivals of
type 1 in the same slot, and where E[X{Y }] = E[X|Y ] Prob[Y ]. Note also that
βi=Ai∗(1), i>0.

4 Equilibrium state of multi-class queues

The ‘system’ we are considering is the queue as specified above, containing pack-
ets of both classes. Our final goal is to obtain the distribution of the per-class
delay. Formally, let us consider an arbitrary class-i packet (i=1, 2) and tag it as
packet P. Denote the arrival slot of P as slot I. We define the delay di of P as
the number of slots between the end of slot I and the end of the slot in which P
departs from the queue. It is clear that for most scheduling disciplines, di heavily
depends on the state of the system when P arrives. For example, if the system
content uI is large at the moment P arrives, its delay will typically be large as
well, because all of the already present packets have to be served prior to P’s
transmission. This is the reason why intermediate step Á of obtaining the exact
equilibrium system state is required.

As mentioned in section 1, the first step À however is to identify a suitable
description of the system’s state during an arbitrary slot k which contains enough
information so that the per-class delay distribution can be derived from it. The
variables 〈s1, . . . , sn〉 that are chosen to be part of the system state are called the
system state variables and we characterise their distribution in slot k by their
joint pgf Pk. The primary concern here, is to choose the collection of system
state variables in such a way that it is Markovian, in the sense that Pk+1 can
be determined from Pk without relying on any information pertaining to slots
other than k. We assume that the system reaches equilibrium for k →∞, i.e. that
appropriate stability conditions for the system’s parameters are met. Whenever
we deal with random variables assumed in this equilibrium regime, we may
drop the time index k where appropriate. For the equilibrium distribution of
the system state we thus write P = limk→∞ Pk. For a general arrival process,



note however that the distribution PI of the system state in the arrival slot of
P may be different from the overall equilibrium distribution P . Nevertheless, it
is known [5] that due to the temporally uncorrelated (iid) nature of the packet
arrival process we assumed in section 3, the system state as ‘seen’ by an arbitrary
arriving packet of either type has the same distribution as the system state in
an arbitrary slot, i.e. PI = P . The results we obtain in this section can therefore
immediately be used for the delay analysis in sections 5 and 6.

So let us apply steps À and Á to the QoS-flat disciplines first. For 2-class
FIFO, it suffices to maintain the total system content 〈uk〉 as per-slot information,
i.e. the only required system state variable is uk. The evolution of the system
content is governed by the well-known Lindley equation:

uk+1 = (uk − 1)+ + aT,k , (5)

where (·)+ is the operator max(·, 0). The equilibrium pgf of the system state
then follows as

U(z) , lim
k→∞

E[zuk ] = AT (z)E[z(u−1)+

] = (1−λT )
AT (z)(z − 1)

z −AT (z)
, (6)

see [5, 6, 29]. Applying the moment-generating property of pgfs on (6), as well as
applying de l’Hôpital’s rule, we obtain the mean equilibrium system content as

E[u] = U ′(1) = λT +
λ′T

2(1− λT )
. (7)

The importance of (6) and (7) is the fact that they hold for most work-conserving
disciplines. The total system content u, i.e. all packets irrespective of their class,
is distributed as in (6) for all the scheduling mechanisms we consider in this pa-
per. Whether the total system content alone suffices as system state description
is another matter of course. For LIFO, no system state needs to be maintained
at all (i.e. 〈〉) since the delay of P is independent of the number of packets uI
already stored in the system. For ROS on the other hand, 〈uk〉 is again sufficient.

For QoS-aware scheduling mechanisms, the delay of P usually depends on
how many of the present packets in the system are of type 1 and how many of
type 2. In case of AP [47] however, it turns out that keeping track of the total
system content uk alone is sufficient for the delay analysis, i.e. we require 〈uk〉,
leading again to (5)–(7). Nevertheless, the joint pgf of υ1 and υ2 can be obtained
using the system equations

υ1,k+1 = (υ1,k−1)+ +a1,k , υ2,k+1 =

{
(υ2,k − 1)+ + a2,k if υ1,k=0 ,

υ2,k + a2,k if υ1,k>0 .
(8)

The joint pgf of υ1 and υ2 then found as [47]

U(z1, z2) = E[zυ1
1 zυ2

2 ] = (1−λT )
A(z1, z2)(z2 − 1)

z1 −A(z1, z2)

(z1 −X(z2))

z2 −X(z2))
, (9)



where the functionX(z) is implicitly defined byX(z) = A(X(z), z) andX(1)=1.
For the variants of mechanisms with priority jumps (PJ) [35, 36] mentioned in
the introduction however, the required state space is usually 〈υ1,k, υ2,k〉, leading
to different variants of (9).

For the Multiple Reservation mechanism (MR), recall that the jth packet in
an arriving batch of 1-packets seizes the jth reserved space if j 6 N . Hence,
besides the queue content uk we also need to keep track of the precise positions
of all N reservations in the queue. We number the R’s from 1 to N , with the
first reservation being the one closest to the server, i.e. the one with the smallest
position number. Conversely, we may also say that the jth reservation (j =
1, . . . , N) has order j. At the start of slot k, we denote the position of the order
j reservation by mj,k, as is illustrated in Fig. 1. As a 1-packet always seizes the
R with the lowest position number, it is seen that there can be no 1-packets
in the queue on positions larger than m1,k. In other words, all packets behind
the first reservation must be of type 2. So what variables need to be added to
the system state in order for the per-class delay distribution to be derived? If
P is of type 1 and the jth 1-packet of an arriving batch, it will seize the jth
order reservation (j 6N). Each time, a new reservation is made at the end of
the queue, at position uk +N . Therefore, it is clear that the positions of all
R’s together with the queue content uk need to be part of the system’s state
variables, i.e. 〈mj,k, j=1, . . . , N ;uk〉.

The following system equations establish the value of the system state vari-
ables in slot k+1, for all possible values of those variables in slot k. The working
method is to start from a certain state at the start of slot k. Then consider every
possible event during this slot in terms of arrivals, storage, scheduling and de-
partures and finally, write down the new system state this results in at the start
of slot k+1. In principle, this yields a function from one (N+1)-dimensional space
to another, although this space can be somewhat reduced by ruling out states
than can never be reached. For instance, because of their physical meaning, we
know that the system state variables must satisfy the constraint

1 6 m1,k < m2,k < . . . < mN,k 6 (uk − 1)+ +N , (10)

which for the position of the jth reservation individually results in

j 6 mj,k 6 (uk − 1)+ + j , j=1, . . . , N . (11)

As a convention, let j indicate any value from 1 to N , unless stated otherwise.
In our analysis it turns out that, instead of the variables mj,k, it is often more
convenient to work with the variables

m̂j,k , mj,k − j , (12)

which all have 0 as their minimal value instead of j. Therefore, the constraints
(10) and (11) now respectively become

0 6 m̂1,k 6 m̂2,k 6 . . . 6 m̂N,k 6 (uk − 1)+ , (13)



0 6 m̂j,k 6 (uk − 1)+ . (14)

Obviously, knowledge of the value or distribution of mj,k implies that of m̂j,k

and vice versa, so we may interchangeably use both as system state variables.
For the system equations we can distinguish between four cases, in all of

which the new system content uk+1 is determined by (5). Observe also that a2,k

appears in (5) but not in any of the following equations for m̂j,k+1 where only
the number of arrivals of type 1 is of importance. Assuming that the system is
not empty to begin with, the events during slot k can generally be summarised
as follows. First, there are a1,k 1-arrivals to be stored. One by one they seize the
first R they see and make a new one at the end. As such, seen as a group, the
first N of these 1-arrivals take R’s that existed before slot k, while any remaining
1-arrivals seize an R that was created by a previous 1-arrival in slot k. At the end
of the slot, after the 2-packets have been stored as well, the packet in the server
terminates its service and leaves the queue. Then, at the start of slot k+1 a new
packet will enter service, at least if there are any left in the system. It is the first
packet (the one with lowest position number p) that will jump over any R’s at
positions 1 to p−1 into the server at position 0. Then, since position p is free
now, all packets and reservations on positions larger than p shift one position
towards the server. As we have said, these considerations lead us to distinguish
four groups of system equations as follows.
I uk=0 (empty system)

First of all, in case of an empty system we know that the N reservations are
grouped together on positions 1 to N , so

uk=0 ⇒ m̂1,k = m̂2,k = . . . = m̂N,k = 0 .

Therefore, we have in slot k+1:

m̂j,k+1 = (a1,k − 1)+ . (Empty)

I uk>0, a1,k=0 (no 1-arrivals)
In this and the remaining cases, we know that the system is not empty in slot
k. Since a1,k=0 there are no arrivals of type 1 here. None of the reservations
will be seized so they all survive to the next slot. However, after the packet
in service during slot k has left, they will be shifted by one position as far as
the lower constraint in (14) is not violated. We have

m̂j,k+1 = (m̂j,k − 1)+ . (Keep)

I uk>0, a1,k= i with 16 i<N
In this case, the number of 1-arrivals i is smaller than the number of reserva-
tions N . These i arrivals seize the first i reservations, i.e. those at positions
m1,k up to mi,k and make i new reservations at the end of the queue. So the
last i reservations in the next slot will be newly created and positioned to-
gether at the end of the queue. Then, accounting for the fact that one packet
will leave, it turns out that we have

m̂j,k+1 = uk + i− 2 , if j = N−i+1, . . . , N . (AtEnd)



On the other hand, the first N−i R’s in the new slot are reservations that were
not seized and have survived. Their ordering number has simply decreased
by i or in other words, they have ‘i-shifted’:

m̂j,k+1 = m̂j+i,k + i− 1 , if j = 1, . . . , N−i . (i-shift)

I uk>0, a1,k= i with i>N
Now, there are at least as many 1-arrivals as there are reservations. In this
case all new reservations will be grouped at the end of the queue, since none
of the old R’s survive. Equation (AtEnd) now applies for all new reservation
positions, i.e.

m̂j,k+1 = uk + i− 2 , j = 1, . . . , N . (AtEnd)

Now we use the above equations to obtain the equilibrium distribution of the
system state 〈mj,k, j=1, . . . , N ;uk〉, of which we define the joint pgf as

Pk(y1, y2, . . . , yN ; z) , E[y
m̂1,k

1 y
m̂2,k

2 · · · · · ym̂N,k

N zuk ] . (15)

The equations (Empty), (Keep), (i-shift) and (AtEnd) allow to relate the joint
pgf Pk+1 of the system state in slot k+1 to the distribution Pk in slot k. We
perform separate calculations for the four cases above, splitting up the joint pgf
into four terms as

Pk+1(y1, y2, . . . , yN ; z) = E[y
m̂1,k+1

1 y
m̂2,k+1

2 · · · · · ym̂N,k+1

N zuk+1 ]

= E[. . . {uk=0}] + E[. . . {uk>0, a1,k=0}] (16)

+

N−1∑
i=1

E[. . . {uk>0, a1,k= i}] +

+∞∑
i=N

E[. . . {uk>0, a1,k= i}] .

For the first term, (Empty) applies, as well as (5) such that

E[y
m̂1,k+1

1 y
m̂2,k+1

2 · · · · · ym̂N,k+1

N zuk+1{uk=0}]

= E[(y1 y2 · · · yN )(a1,k−1)+

za1,k+a2,k{uk=0}]
= . . .

=
p0,k

y1 y2 · · · yN
[
(y1 y2 · · · yN − 1)A(0, z) +A(y1 y2 · · · yN z, z)

]
, (17)

where, p0,k=Uk(0)=Pk(0, 0, . . . , 0; 0) is the probability that the system is empty
at the beginning of slot k. The second term of (16) can be further developed with
(Keep), which yields

E[y
m̂1,k+1

1 y
m̂2,k+1

2 · · · ym̂N,k+1

N zuk+1{uk>0, a1,k=0}]

= E[y
(m̂1,k−1)+

1 y
(m̂2,k−1)+

2 · · · y(m̂N,k−1)+

N zuk−1+a2,k{uk>0, a1,k=0}]

= A(0, z)E[y
(m̂1,k−1)+

1 y
(m̂2,k−1)+

2 · · · y(m̂N,k−1)+

N zuk−1{uk>0}]



= A(0, z)

+∞∑
n=1

n−1∑
j1=0

n−1∑
j2=j1

n−1∑
j3=j2

· · ·
n−1∑

jN=jN−1

y
(j1−1)+

1 · · · y(jN−1)+

N zn−1pk(j1, . . . , jN ;n)

= A(0, z)

+∞∑
n=1

zn−1

[
n−1∑
j1=1

n−1∑
j2=j1

n−1∑
j3=j2

n−1∑
j4=j3

· · ·
n−1∑

jN=jN−1

yj1−1
1 yj2−1

2 yj3−1
3 · · · yjN−1

N pk(j1, . . . , jN ;n)

+

n−1∑
j2=1

n−1∑
j3=j2

n−1∑
j4=j3

· · ·
n−1∑

jN=jN−1

yj2−1
2 yj3−1

3 · · · yjN−1
N pk(0, j2, . . . , jN ;n)

+

n−1∑
j3=1

n−1∑
j4=j3

· · ·
n−1∑

jN=jN−1

yj3−1
3 · · · yjN−1

N pk(0, 0, j3, . . . , jN ;n)

+ . . .

+

n−1∑
jN=1

yjN−1
N pk(0, 0, . . . , 0, jN ;n)

+pk(0, 0, . . . , 0;n)

]
=
A(0, z)

z

[
1

y1y2y3 · · · yN

(
Pk(y1, y2, y3, . . . , yN ; z)− Pk(0, y2, y3, . . . , yN ; z)

)
+

1

y2y3 · · · yN

(
Pk(0, y2, y3, . . . , yN ; z)− Pk(0, 0, y3, . . . , yN ; z)

)
+ . . .

+
1

yN

(
Pk(0, 0, . . . , 0, yN ; z)− Pk(0, 0, . . . , 0, 0; z)

)
+Pk(0, 0, . . . , 0, 0; z)− p0,k

]
, (18)

where we have used the following notation for the mass function of the system
state distribution in slot k:

pk(j1, j2, . . . , jN ;n),Prob[m̂1,k=j1, m̂2,k=j2, . . . , m̂N,k=jN , uk=n]. (19)

In the third term of (16), we must apply (i-shift) for the new reservations of
order 1 to N−i and (AtEnd) for the remaining reservation positions. We have
for 16 i<N , using (4):

E[ y
m̂1,k+1

1 · · · ym̂N−i,k+1

N−i︸ ︷︷ ︸
(i-shift)

· ym̂N−i+1,k+1

N−i+1 · · · ym̂N,k+1

N︸ ︷︷ ︸
(AtEnd)

·zuk+1{uk>0, a1,k= i}]

= E[y
m̂i+1,k+i−1
1 · · · ym̂N,k+i−1

N−i yuk+i−2
N−i+1 · · · y

uk+i−2
N zuk−1+i+a2,k{uk>0, a1,k= i}]

= (zy1y2 · · · yN−i)i−1(yN−i+1 · · · yN )i−2Ai∗(z)



E[y
m̂i+1,k

1 · · · ym̂N,k

N−i (zyN−i+1 · · · yN )uk{uk>0}]

= (zy1y2 · · · yN−i)i−1(yN−i+1 · · · yN )i−2Ai∗(z)[
Pk(1, 1, . . . , 1

i
, y1, y2, . . . , yN−i; zyN−i+1 · · · yN )− p0,k

]
. (20)

Finally, in the last term of (16), we find for i>N using (AtEnd),

E[y
m̂1,k+1

1 y
m̂2,k+1

2 · · · ym̂N,k+1

N zuk+1{uk>0, a1,k= i}]
= zi−1(y1y2 · · · yN )i−2Ai∗(z)

[
Uk(zy1y2 · · · yN )− p0,k

]
. (21)

Adding up the terms (17), (18), (20) and (21), we get the right-hand side of (16).
If equilibrium kicks in, we can single out the function P (y1, . . . , yN ; z) and find
our basic functional equation for the equilibrium distribution of the MR system
state with N reservations:(

z ỹ1 −A(0, z)
)
P (y1, y2, . . . , yN ; z)

= z p0

[
(ỹ1 − 1)A(0, z) +A(z ỹ1, z)

]
+A(0, z)

[
(y1−1)P (0, y2, . . . , yN ; z)

+ y1(y2−1)P (0, 0, y3, . . . , yN ; z)

+ y1y2(y3−1)P (0, 0, 0, y4, . . . , yN ; z)

+ . . .

+ y1y2 · · · yN−1(yN−1)P (0, 0, . . . , 0; z)− ỹ1p0

]
+

N−1∑
i=1

(z ỹ1)i

ỹN−i+1
Ai∗(z)

[
P (1, . . . , 1

i
, y1, y2, . . . , yN−i; z ỹN−i+1)− p0

]
+

+∞∑
i=N

ziỹi−1
1 Ai∗(z)

[
U(z ỹ1)− p0

]
, (22)

where we define ỹj as the product yjyj+1 · · · yN . This functional equation com-
pletely determines the equilibrium distribution P , although we see that a lot of
unknown functions have yet to be determined. Nevertheless, all these unknowns
can be resolved by using relation (22) only, as we will demonstrate. Observe that
there are a total of 2N unknown functions on the right-hand side of (22). Let
us designate a shorthand to each of these functions and order them in a list as
follows

1. 1 = P (0, y2, y3, y4, . . . , yN ; z)

2. 1 = P (1, y2, y3, y4, . . . , yN ; z)

3. 2 = P (0, 0, y3, y4, . . . , yN ; z)

4. 2 = P (1, 1, y3, y4, . . . , yN ; z)

5. 3 = P (0, 0, 0, y4, . . . , yN ; z)

6. 3 = P (1, 1, 1, y4, . . . , yN ; z)



...

2N−1. N = P (0, 0, 0, 0, . . . , 0; z)

2N. N = P (1, 1, 1, 1, . . . , 1; z) = U(z) (23)

Note that we could have included the probability p0 in this list as well, although
it easily follows as p0 =1−λT by imposing the normalisation condition on U(z).
The unknown functions can be determined in this order by performing the ap-
propriate substitutions in (22). In fact, the functional equation is able to provide
each of the unknowns in the list as a function of unknowns further in the list. To
make clear how this is done, let us denote by the function P (y1, y2, . . . , yN ; z)
in an explicit form, i.e. equal to (22) but with all unknowns (those in list (23))
resolved. On the other hand, we represent by ? 1 1 2 2 . . .NN a relation deter-
mining P (y1, y2, . . . , yN ; z), but in which the functions after the question mark
are still unresolved. Obviously, this is the functional equation in the form given
by (22). Clearly, the final explicit expression for the equilibrium distribution of
the system state we are looking for is . Even for small N though, obtaining
is an enormous task to do by hand, so we only explain how to do this, rather
than actually doing it.

As we have said, (22) holds the key to determining all the unknown functions
explicitly by evaluating it for the right arguments. In what follows, we describe
a ‘binary tree backtracking’ scheme that shows us the way. There are two types
of substitutions that yield relevant information. The first one is to let

y1→1, y2→1, . . . , yn−1→1, yn→1 , (24)

for some n= 1, . . . , N . This directly gives the relation n ? n+1n+1. . .NN. The
second type of substitution is to let

y1→1, y2→1, . . . , yn−1→1, yn →
A(0, z)

yn+1yn+2 · · · yNz
, (25)

which is mostly the same as (24), except for the last step. Note that if (25) is
performed on (22), the left-hand side vanishes. Based on the fact that probability
generating functions are bounded for arguments lying in the unit disc and by
using a similar argumentation as in [14, 15], we know that the right-hand side
has to vanish as well. This provides the relation n ? nn+1n+1. . .NN.

We can arrange the substitutions of type (24) and (25) in a binary tree as
shown on the left side of Fig. 2. Branches going down correspond to substitutions
yj→ 1, while branches to the right indicate a substitution yj→A(0, z)/ỹj+1z.
Hence, every path in this tree corresponds to either (24) or (25), depending on
the last branch. In other words, each path represents a sequence of substitutions
which, if applied to the functional equation, yield the relation indicated on the
node the path ends in. Starting from the top of the tree, we can progressively
determine the relations on each node, until finally, we obtain N =U(z) explicitly.
Note that we have included the latter function in the list of unknowns notwith-
standing the fact that it is known to be (6). On the right side of Fig. 2, we show



y1 → A(0, z)

y2y3 · · · yNz

y1 → 1

y2 → A(0, z)

y3y4 · · · yNz

y2 → 1

y3 → A(0, z)

y4y5 · · · yNz

y3 → 1

yN−1 → 1

yN → A(0, z)

z

yN → 1

? 1 1 2 2 . . . NN

1 ? 1 2 2 3 . . . NN

1 ? 2 2 3 3 . . . NN

2 ? 2 3 3 4 . . . NN

2 ? 3 3 4 4 . . . NN

3 ? 3 4 4 5 . . . NN

N−1 ? NN

N ? N

N

? 1 1 2 2 . . . NN

1 ? 1 2 2 3 . . . NN

1 ? 2 2 3 3 . . . NN

2 ? 2 3 3 4 . . . NN

2 ? 3 3 4 4 . . . NN

3 ? 3 4 4 5 . . . NN

N−1 ? NN

N ? N

N

1

1

2

2

3

N−1

N

N

Fig. 2. Binary tree backtracking scheme to obtain the unknown functions for the MR
system state distribution. First, we go from top to bottom executing the substitutions
indicated on the branches. This progressively yields relations for each unknown in the
list as a function of all unknowns further in the list. Then, it is possible to backtrack
from the bottom to the top which allows to fully resolve the function on each node.

the second part of the calculation scheme. Starting from the bottom node, we
work our way to the top by backtracking the previously obtained unresolved
relations. Indeed, once we have N, we can use this in the node with relation N

? N to resolve N. In turn, the explicit expressions N and N allow to obtain N−1

in the node with relation N−1 ? NN, and so forth until we reach the top. At this
point, we have an explicit expression for , as well as for every other unknown
in the list (23). Note that in case N = 1, the scheme exists of only one stage
containing substitutions y1→ 1 and y1→A(0, z)/z, which we have used in [14,
15] to obtain U(z) and P (0, z) respectively.



We now discuss an important property regarding the behaviour of the MR

system which may not readily be apparent from the analysis so far. Let us first
introduce the following notation: m[N]

j,k is the position of the jth reservation at
the beginning of slot k in a system with N reservations. Corresponding to (12),
let also m̂[N]

j,k = m[N]

j,k−j. Of course, if it is clear from the context that we are
considering a system with N reservations, the superscript [N ] may be dropped.
In what follows, we use this notation for other quantities as well, to indicate the
number of reservations in the system they are related to. The following theorem
is crucial to our analysis of the packet delay distribution.

Theorem 1 (Reservation Theorem). If a queue with N reservations and a
queue with N−1 reservations are both empty in slot 0 and are both subjected to
the same number of arriving 1- and 2-packets in each of the following slots 0 to
k−1, then we have that

m
[N ]
j,k = m

[N−1]
j−1,k + 1 , or equivalently, m̂

[N ]
j,k = m̂

[N−1]
j−1,k , (26)

at the beginning of slot k, for j=2, . . . , N .

Proof. As we assume that both systems are empty in slot 0, the variables m̂[N]

j,0

and m̂[N−1]

j,0 are all equal to 0 such that (26) holds. Now, suppose that (26) holds
in slot k for all j=2, . . . , N . If we can show that

m̂
[N ]
j,k+1 = m̂

[N−1]
j−1,k+1 , j=2, . . . , N , (27)

then by induction, this proves the theorem. For certain values of the reservation
positions in slot k, the system equations (Empty), (Keep), (AtEnd) and (i-shift)
provide the new reservation positions in slot k+1. Therefore, we must compare
these equations to their equivalent in case of a system with onlyN−1 reservations.
Doing so, assuming that (26) holds, it can be checked easily that (27) holds as
well, for every possible value of uk and a1,k. This completes the proof.

Together with the fact that the MR systems with N and N − 1 reservations
also hold the same total number of packets, theorem (26) leads to the following
corollary concerning the joint pgfs of the system state of both systems. Let P [N]

k

be the system state distribution (15) for a system with N reserved spaces. It is
now easily seen that

P
[N ]
k (1, y2, . . . , yN ; z) = E[y

m̂
[N]
2,k

2 y
m̂

[N]
3,k

3 · · · · · y
m̂

[N]
N,k

N z]

= E[y
m̂

[N−1]
1,k

2 y
m̂

[N−1]
2,k

3 · · · · · y
m̂

[N−1]
N−1,k

N z]

= P
[N−1]
k (y2, . . . , yN ; z) . (28)

If we let the arguments y2 to yn assume the value 1, then it directly follows from
(28) for some 06n<N that

P
[N ]
k (1, . . . , 1, yn+1, . . . , yN ; z) = P

[N−n]
k (yn+1, . . . , yN ; z) . (29)

This property says that the distribution of the last N−n reservation positions in
a system with N reservations is equal (up to a fixed shift) to that of reservation
positions in a system with only N−n reservations.



5 Delay analysis in multi-class queues

Before continuing, let us remind the usefulness of Little’s law [21, 34], which
states that E[u] = λTE[d]. The mean of the delay d of an arbitrary packet (re-
gardless of type) can therefore immediately be obtained from (7). For a 2-class
system, this can be written as

E[u] = E[υ1] + E[υ2] = λTE[d] = λ1E[d1] + λ2E[d2] . (30)

Additionally, the law also applies for packets of a single type only, i.e. E[υi] =
λiE[di], i = 1, 2. So for the work-conserving scheduling disciplines we consider
here, once the mean delay of one type of packets is known, that of the other type
directly follows from (7) and (30). That said, we now perform the per-class delay
analysis Â for the QoS-flat scheduling mechanisms. As we will see, contrary to
intuition, the distributions of d1 and d2 are not necessarily the same, even though
the scheduling mechanism does not distinguish between classes [50]. For FIFO,
the delay of a packet of class i is di=(u−1)++fi+1, where fi is the number of
packets that arrive in the same slot as P and are stored in the queue before P.
Note that we used u instead of uI since they have the same distribution anyway.
Let aI1 and aI2 be the total numbers of arrivals of type 1 and 2 respectively
during the arrival slot I of P. Note that these variables do not have the same
joint distribution as a1 and a2. If P is of type i, the joint mass function of the
numbers of arrivals of type 1 and 2 during the arrival slot of P is given by [5]

Prob[aI1 =j1, a
I
2 =j2] =

ji
λi

Prob[a1 =j1, a2 =j2] , i=1, 2 . (31)

Taking into account that the arrivals in slot I are stored in totally random order
and that whenever aI1+aI2 =h, P is stored in any of the h possible positions with
equal probability, one finds for the pgf Fi(z) of fi:

Fi(z) =
1

λi

1

1−z

∫ 1

z

∂

∂zi
A(x, x)dx , with E[fi] =

λ12+λ′i
2λi

. (32)

Hence, the delay of a packet of type i has pgf Di(z)=E[z(u−1)++fi+1] given by

Di(z) = zFi(z)
(1−λT )(z−1)

z−AT (z)
, with E[di] = 1+

λ′T
2(1−λT )

+
λ12+λ′i

2λi
, (33)

the latter complying to (30). In case of LIFO, the delay of P is determined by
the number of packets f∗i stored after P in slot I instead of before. Clearly,
fi and f∗i have the same distribution (32). In the following slots, the queue
content needs to drop by f∗i levels before P can be served. We therefore have

di=1+
∑f∗i
n=1 ηn where the ηn are iid random variables with common pgf YT (z),

known as sub-busy periods and defined as η=min{h>0 : uk+h=uk−1} for any
slot k where uk > 0. In other words, a sub-busy period η is the time it takes
to end up with one less packet in the system as when the period started. By a



recursive probabilistic argument [5, 47], the pgf YT (z) of η can be obtained as
the solution of YT (z) = zAT (YT (z)) and YT (1) = 1, from which Y ′T (1) = 1

1−λT
.

The delay of an i-packet under LIFO is therefore

Di(z) = zE[(YT (z))f
∗
i ] = zFi(YT (z)) , with E[di] = 1 +

λ12+λ′i
2(1−λT )λi

, (34)

again with the latter complying to (30), as can be checked. Note that this deriva-
tion does not require knowledge of the distribution of u, as we already mentioned
in section 4. For ROS, the order in which the arrivals of slot I are stored does
not matter, since this mechanism does not keep any order in the queue. Both
classes of packets have therefore exactly the same distribution of which the mean
directly follows from (7) and (30). Higher-order moments can be derived as well,
see [30].

For the per-class delay analysis of the QoS-aware mechanisms AP and MR,
packets of different types arriving in slot I are not stored in the queue as a
random mix so that (32) can not be used. Instead, first all 1-packets are stored
and then all 2-packets. Therefore, supposing P is of type i, it is useful to define `i
as the number of i-packets arriving in slot I that are stored before (and including)
P. Its pgf Li(z) is found as

Li(z) =
z(1−Ai(z))
λi(1− z)

, i=1, 2 , (35)

again by considering (31) and the fact that P could be any of the aIi arrivals
with equal probability. Likewise, if P is of type 2, the joint pgf of aI1 and `2 is
found to be

F (x, y) = E[xa
I
1y`2 ] =

y

1−y
A1(x)−A(x, y)

λ2
. (36)

Now, in case of the QoS-aware absolute priority mechanism AP, the delay of
1-packets can be retrieved fairly easy. Note that the 1-packets are entirely insen-
sitive to the presence of 2-packets. Therefore, the delay d1 is the same as in a FIFO

system where only 1-arrivals occur, i.e. where a2 = 0 and hence AT (z) =A1(z).

For such an arrival process, (32) reduces to F1(z) = 1−A1(z)
λ1(1−z) and (33) to

DAP

1 (z) =
1−λ1

λ1
z
A1(z)−1

z−A1(z)
. (37)

Note that the system content distribution (6) for a FIFO-system with only 1-
arrivals indeed equals the marginal distribution U(z, 1) of (9), see (49). For the
delay of 2-packets however, we need to take into account that d2 is affected by
1-arrivals occurring after slot I [47]. We have

d2 = 1 +

(u−1)++aI1+`2−1∑
n=1

η1,n , (38)



where the η1,n are iid variables denoting a sub-busy period pertaining to 1-
packets only, i.e. the time required for u1,k to be reduced by one unit. Seen dif-
ferently however, η1,n is also the time it takes for P to advance one position in the
queue. Unlike before with LIFO, now only 1-arrivals can impede the advancement
of P and the pgf Y (z) of η1,n is therefore implicitly given by Y (z)=zA1(Y (z))
with Y (1)=1. Hence, from (38) and using (36),

DAP

2 (z) =
1−λT
λ2

z
AT (Y (z))−A1(Y (z))

Y (z)−AT (Y (z))
. (39)

The delay moments can directly be derived from (37) and (39), as well as ex-
pressions for the tail behaviour of these distributions. Concerning the latter, we
note that DAP

2 (z) may exhibit non-exponential decay in some situations, see [37,
47] for a discussion. The delay analysis under MR of type-1 packets is given in
the following section. Once E[d1] is calculated, the mean delay E[d2] can then
directly be obtained from (7) and Little’s law (30). However, for a full analysis of
the delay distribution experienced by packets of type 2, we refer to our previous
work [16, 17].

6 Type-1 delay of the reservation mechanism

Our purpose here is to obtain the delay d1 experienced by a packet P of type 1
as it goes through the MR system with N reserved spaces. Let us introduce

ωj = Prob[`1 =j] =
1

λ1

+∞∑
i=j

βi , j > 1 , (40)

for the mass function of `1, such that according to (35), L1(z) =
∑+∞
j=1 ωjz

j .
What is of importance is the exact position in which P will be stored at the end
of slot I. If P is the first of the batch (`1 = 1) it will seize the first reservation
at position m1, if `1 = 2 then it takes position m2, and so forth. If `1 is larger
than N however, P will seize a reservation created by one of the `1−1 previous
1-arrivals in slot I, located somewhere at the end of the queue. We find that

d1 =

{
mj if `1 = j 6 N ,

(u− 1)+ + `1 if `1 > N .
(41)

Taking the z-transform and using (40), we get

D1(z)=

N∑
j=1

ωjE[zmj ] + E[z(u−1)+

]

+∞∑
j=N+1

ωjz
j

=

N∑
j=1

ωjE[zm̂j ]zj + E[z(u−1)+

]
(
L1(z)−

N∑
j=1

ωjz
j
)
, (42)



where E[z(u−1)+

] is given in (6). The marginal distribution E[zm̂j ] appearing
in (42) on the other hand, is more difficult to obtain. However, this is where
Theorem 1 and its corollary (29) come into play. For j=1, . . . , N we have

E[zm̂
[N]
j ] = P [N ](1, 1, . . . , 1, z

j
, 1, 1, . . . , 1; 1) = E[zm̂

[N−j+1]
1 ] . (43)

The conclusion is that instead of having to calculate the marginal distributions of
all reservation positions m̂[N]

j (j=1, . . . , N), it is sufficient to obtain the marginal

distributions of m̂[N−j+1]

1 , i.e. only of the first reservation positions in the systems
with 1 up to N reservations.

6.1 Distribution of the first reservation position m1

The marginal distribution of m̂1 can be obtained from the full system state dis-
tribution in slot I determined by functional equation (22). We derive a recursive
relation for E[zm̂1 ] by using substitutions similar to those in the first stage of
Fig. 2. Specifically, let all arguments in (22) be equal to 1 except for the first
one, for which we take y1→ z. Using Theorem 1 again in the form of (43), we
find

(z−α)P [N ](z, 1, 1, . . . , 1; 1) = p0(z−1)fN (z) + α(z−1)P [N ](0, 1, . . . , 1; 1)

+

N−1∑
i=1

βiz
iP [N−i](z, 1, 1, . . . , 1; 1) , (44)

where

fn(z) ,
1

z−AT (z)

+∞∑
i=n

βiz
i , n > 1 . (45)

Note that the factor (z−AT (z))−1 is entirely due to the last term of (22) where
U(z) appears under the mentioned substitution. Let us also define

Φn(z) , fn(z)− fn(α)=
1

z−AT (z)

+∞∑
i=n

βiz
i − 1

α−AT (α)

+∞∑
i=n

βiα
i . (46)

In (44), the probability P (0, 1, . . . , 1; 1) that m̂1 = 0 can be obtained from the
functional equation by evaluating it for the right arguments. First, let z → α
in (44) such that the left-hand side vanishes. As we have explained before, the
other side must be equal to 0 then as well, which results in

P [N ](0, 1, . . . ; 1) = −p0

α
fN (α) +

1

α(1−α)

N−1∑
i=1

βiα
iP [N−i](α, 1, . . . ; 1) . (47)

Plugging this into (44) yields the desired recursive relation for the distribution
of the first reservation position. If we first introduce a shorter notation for this



distribution, Ωn(z)=P [n](z, 1, . . . , 1; 1)=E[zm̂
[n]
1 ], then we finally find

ΩN (z)=p0(z−1)
ΦN (z)

z−α
+

N−1∑
i=1

βi
ziΩN−i(z)− z−1

α−1α
iΩN−i(α)

z−α
. (48)

In principle, our work is done now, since this relation determines all Ωn(z),
n= 1, . . . , N , being the distributions of the first reservation position in systems
with 1 up to N reservations. Through (42) and (43), this directly provides the
pgf of d1. Indeed, (48) can be solved in an iterative way since ΩN (z) appears only
on the left-hand side while the other side only depends on Ω1(z) to ΩN−1(z).
However, the problem is that we also have to determine the constant Ωn(α) in
step n (n=1, . . . , N−1). Since Ωn(z) is a pgf and α<1, we know there must be
a solution for the quantities Ωn(α) lying between 0 and 1, but obtaining these
values in a direct analytic way proves to be difficult. The main issue here is that
if (48) is solved by iteration, the complexity doubles with each step, producing
expressions of exponentially increasing length and requiring the n-fold use of de
l’Hôpital’s rule. Fortunately, the quantities Ωn(α) can be obtained numerically
using an entirely different approach, discussed in the next paragraph.

6.2 Obtaining the unknowns Ωn(α)

It is seen that for N =∞, the packets in the MR system behave the same as
in the AP system. Indeed, the MR queue will decouple into two logical sub-
queues in this case: one for the 1-packets at the front closest to the server and
one containing a swarm of 2-packets at the far end. We call these sub-queues
the 1-queue and the 2-queue respectively. In between these sub-queues there
is an impenetrable barrier containing an infinite number of R’s that causes a
‘decoupled’ operation of the system. Arrivals of type 1 will always be stored in
the first R of the barrier and thus find connection to the logical 1-queue. On
the other hand, the MR discipline dictates that the arriving 2-packets are stored
at the end of the queue and therefore become part of the logical 2-queue. If
the server becomes available, the next packet that is scheduled for service is
the one positioned closest to the server. Since the 1-packets are grouped on the
first positions, the server always schedules a 1-packet if one is available. Only if
there are no 1-packets present, a 2-packet will jump over the barrier to be served
next. We can use this resemblance of the logical 1-queue in an MR system with
N=∞ to the high-priority packets in the queue under AP, to obtain the limiting
distribution Ω∞(z) of the position m̂[∞]

1 of the first reservation. As before, note
that since for AP the 1-packets are not in any way affected by the 2-packets, we
know that υ1 is distributed as for FIFO given that there are no 2-arrivals. Hence,
similar to (6), we have

U AP

1 (z) = (1−λ1)
A1(z)(z − 1)

z −A1(z)
. (49)

Now, assuming that υ1 is also the number of 1-packets in the logical 1-queue,
we have

m̂
[∞]
1 = m

[∞]
1 − 1=(υ1 − 1)+ . (50)



With (49), it then easily follows that

Ω∞(z) = (1−λ1)
z − 1

z −A1(z)
, and Ω∞(α) = (1−λ1)

α− 1

α−A1(α)
. (51)

Whereas calculating the functions Ωn(z), n=1, 2, . . . iteratively from (48) is
difficult, taking the transform of this sequence is much easier. Specifically, let us
define Ω(x, z)=

∑+∞
n=1Ωn(z)xn, which is the generating function of the generat-

ing functions Ωn(z). From (48) we find a closed-form expression for Ω(x, z):

Ω(x, z) =
p0(z−1)Φ(x, z)− z−1

α−1 (A1(αx)− α)Ω(x, α)

z−A1(zx)
, (52)

where we have used the x-transform of the functions Φn(z) as well, Φ(x, z) =∑+∞
n=1 Φn(z)xn, which from (46) is calculated as

Φ(x, z) =
x

1−x

[A1(z)−A1(zx)

z −AT (z)
− A1(α)−A1(αx)

α−AT (α)

]
. (53)

The function Ω(x, z), being the transform of probability generating functions,
is known to be analytic for x and z lying in the unit disc. If we could find
a pair (x, z) in that region for which the denominator in (52) becomes zero,
then we know the numerator should be zero as well. Fortunately, one can invoke
Rouché’s theorem to show that if |x|<1, there always exists a unique Ŷ (x) for
which |Ŷ (x)|<1 and that satisfies

Ŷ (x) = A1

(
x Ŷ (x)

)
, with Ŷ (1) = 1 . (54)

Note that Ŷ (z)=Y (z)/z where Y (z) was used in (39). Now, if we let z→ Ŷ (x)
in (52), the numerator must vanish, which yields

Ω(x, α) = p0(α−1)
Φ(x, Ŷ (x))

A1(αx)− α
. (55)

This, together with (53), allows us to write (52) as

Ω(x, z) = p0
x

1−x
z−1

z−A1(zx)

[
A1(z)−A1(zx)

z −AT (z)
− A1(Ŷ (x))− Ŷ (x)

Ŷ (x)−AT (Ŷ (x))

]
, (56)

which determines the sequence of pgfs Ω1(z), Ω2(z), . . .. Let us assume a fixed
(complex) value of z, then it is possible to obtain Ωn(z) by inverting the x-
transform (56). There exist many numerical methods to obtain the coefficients
[xn]Ω(x, z) of a generating function and most of them involve the evaluation
of Ω(x, z) on a number of discrete points on a contour C around the origin in
the x-plane. For instance, the inversion method in [1] uses a circular contour Cr
of radius 0< r < 1 around x= 0. However, the problem with the evaluation of
Ω(x, z) now is that the function Ŷ (x) appearing in (56) is not known explicitly.
Indeed, we know that Ŷ (x) exists and is unique, but we only have the implicit



relation (54) to determine it. This complicates matters a bit, since every time
we want to evaluate Ω(x, z) for a certain x on Cr (and a certain z, of course),
we also have to determine Ŷ (x) numerically from (54). To find this value, one
can choose any complex root-finding algorithm to find the root z∗ = Ŷ (x) of
z∗−A1(z∗x). We can apply this numerical inversion method particularly in case
z = α, i.e. to obtain the quantities Ωn(α), n = 1, 2, . . . which we will need to
obtain the mean value of the type-1 packet delay.

6.3 Mean value of the type-1 packet delay

For the pgf D1(z) of the type-1 packet delay, we now have from (42) and (43)
that

D1(z) =
N∑
j=1

ωjz
jΩN−j+1(z) + p0

z−1

z−AT (z)

(
L1(z)−

N∑
j=1

ωjz
j
)
, (57)

where the functions Ωn(z) follow from the discussion in the previous paragraph.
As such, D1(z) can be evaluated numerically for any particular z. The mean
packet delay follows from (57) as

E[d1] = D′1(1) =

N∑
j=1

ωj Ω
′
N−j+1(1) + L′1(1) +

λ′T
2(1−λT )

+∞∑
j=N+1

ωj , (58)

where Ω′n(1) = E[m̂[n]

1 ], n= 1, . . . , N and where we have used the fact that p0 =
1−λT . Clearly, the problem at hand is now to determine the mean value E[m̂[n]

1 ]
of the first reservation position in a system with n reservations, n = 1, . . . , N .
In order to do so, we assume that the quantities Ωn(α) are available. As we
discussed, they can either be obtained analytically by iterating (48) and taking
the limit z→α in each step, or they follow from the numerical inversion method
discussed in the previous paragraph. Differentiating (48) to z and taking the
limit z→1 on both sides, we find after some straightforward manipulations and
using (46):

E[m̂
[N ]
1 ] =

1

1−α

[
λ1−1 +

λ′T
2(1−λT )

+∞∑
i=N

βi −
p0

α−AT (α)

+∞∑
i=N

βiα
i

+
1

1−α

N−1∑
i=1

βiα
iΩN−i(α)

]
+

N−1∑
i=1

βi
1−α

E[m̂
[N−i]
1 ] . (59)

As was the case with (48), this relation can be solved iteratively. However, still
assuming that we know the sequence Ωn(α), it is possible to provide a direct
solution of the expected values E[m̂[n]

1 ] from (59). For the sake of clarity, let us
define the following shorthands

µn , E[m̂
[n]
1 ] = Ω′n(1) , n=1, . . . , N , (60)



δi ,
βi

1−α
, i>0 , (61)

Γn ,
1

1−α

[
λ1−1 +

λ′T
2(1−λT )

+∞∑
i=n

βi −
p0

α−AT (α)

+∞∑
i=n

βi α
i

+
1

1−α

n−1∑
i=1

βi α
iΩn−i(α)

]
. (62)

This reduces (59) to

µN = ΓN +

N−1∑
i=1

δi µN−i . (63)

In this relation, the quantities Γn, n = 1, . . . , N and δi, i > 1 are fully known
whereas the quantities µn are the mean values we seek. One can already deduce
from (63) that each µn will be a linear combination of the quantities Γ1 up to Γn
with coefficients being a function of δ1 up to δn. In order to find these coefficients
we proceed as follows. Let us first arrange the values obtained from (62) in a
N×1 matrix Γ ,

Γ T ,
[
Γ1 Γ2 Γ3 . . . ΓN

]
. (64)

Secondly, we use the values (61) to define the following N×N matrix,

H ,



δ1 1 0 0 · · · 0
δ2 0 1 0 · · · 0
δ3 0 0 1 · · · 0
...

. . .

δN−1 0 0 0 · · · 1
δN 0 0 0 · · · 0


. (65)

This matrix H is an instance of what is known as a Leslie matrix [31] due to
P.H. Leslie who used this kind of matrices in 1945 for the study of population
growth. In addition, let e be the row matrix e ,

[
1 0 0 . . .

]
of appropriate size.

Now, it can be verified that µn is obtained by calculating the (n−1)th power of
H, i.e. the solution of (63) is

µn = e Hn−1 Γ , n=1, . . . , N . (66)

This provides the mean values µn=Ω′n(1) in the expression for the mean delay
(58) which now becomes

E[d
[N ]
1 ] = e

( N∑
j=1

ωj HN−j
)
Γ +

λ′T
2(1−λT )

(
1−

N∑
j=1

ωj
)

+ 1 +
λ′1
2λ1

. (67)

This expression allows us to calculate the mean delay of type 1 in the system
with N reservations by means of N−1 matrix multiplications. However, in doing
so, it is possible to arrange the calculations in such a way that the mean values



E[d[n]

1 ] of the delay in the corresponding systems with less than N reservations
are produced as well. In other words, calculating the delay in a system with one
additional reservation requires only one additional matrix multiplication. The
following algorithm shows how this can be achieved.
I For n= 1, . . . , N , calculate the values Ωn(α), either analytically or numeri-

cally, as explained before. Note that for high n, one could consider approxi-
mating Ωn(α) by the limiting value Ω∞(α) given in (51).

I For n=1, . . . , N , calculate the entries Γn in the matrix Γ using (62).
I Now construct the matrix H as in (65) and define the starting values

ψ0 =
λ′T

2(1−λT )
+ 1 +

λ′1
2λ1

and Q0 = 0 . (68)

Then, for n=1, . . . , N , calculate

ψn = ψn−1 −
λ′T

2(1−λT )
ωn , and Qn = Qn−1 H + ωnI , (69)

where I is the N×N identity matrix. As the mean value of d[n]

1 follows from
(67) for N =n, we can now see that after the nth step in this iteration, the
mean delay of type 1 in a system with n reservations is given by

E[d
[n]
1 ] = ψn + e Qn Γ . (70)

6.4 Tail distribution of the type-1 packet delay

Another important characteristic of the delay distribution besides the mean
value, is its tail distribution. We use the dominant pole approximation which
is known to yield very accurate results, see e.g. [5, 7]. Specifically, from the in-
version formula for z-transforms, it follows that the probability mass function
Prob[d1 =n] can be expressed as a weighted sum of negative nth powers of the
poles of D1(z). Since all these poles have a modulus larger than 1, Prob[d1 =n] is
dominated by the contribution of the pole zd with the smallest modulus. It was
shown that this ‘dominant’ pole zd must necessarily be real and positive in order
to ensure a nonnegative probability mass function. As such, the probability for
a 1-packet to experience a delay of n slots can be expressed by the following
geometric form for sufficiently large values of n:

Prob[d
[N ]
1 =n] ∼= −θ[N ]

1 z−n−1
d , (71)

where zd is the pole of D1(z) with smallest modulus and θ[N]

1 is the residue in
zd:

θ
[N ]
1 = ReszdD1(z) = lim

z→zd
(z−zd)D1(z) . (72)

The first thing to do therefore, is to identify the dominant pole zd of D1(z). After
careful inspection of the expression (57), one can prove that its dominant pole
can only originate from the factor (z −AT (z))−1 appearing in the second term,



but also present in each Ωn(z) through (46) and (48). Note that the multiplicity
of this factor is equal to 1 in all of these terms. As such, zd can be obtained
numerically as the smallest real root larger than 1 of

z −AT (z) = 0 . (73)

This value is independent of N and identical to the dominant pole we have in
case of FIFO, see (6). Secondly, we have to evaluate the limit in (72) to obtain
the residue θ[N]

1 . Fortunately, not all terms in D1(z) as given in (57) have zd as a
pole. Consequently, all the contributions to D1(z) that do not, will vanish when
taking the limit z→zd, due to the factor (z−zd). Therefore, if we only consider in
(48) the contributions that have a pole in zd, we hope that the recursion becomes
easier to solve. This approach is still exact, because we only neglect terms that
would vanish under the limit (72) anyway. Let us define Ω∗n(z), n = 1, . . . , N
as these ‘modified’ versions of the original functions Ωn(z) determined by (48),
such that

ReszdΩ
∗
n(z) = lim

z→zd
(z−zd)Ω∗n(z) = lim

z→zd
(z−zd)Ωn(z) = ReszdΩn(z) . (74)

Note that these modified functions are no longer pgfs. Their only correct inter-
pretation is having the same residue in zd as the original pgfs. (48) yields

Ω∗N (z) = p0(z−1)
fN (z)

z−α
+

N−1∑
i=1

βi
zi

z−α
Ω∗N−i(z) , (75)

where we recall that fn(z) is defined in (45). The required residues (74) are
therefore determined by the recursion

ReszdΩN (z) =
p0

1−A′T (zd)

zd−1

zd−α

+∞∑
i=N

βiz
i
d +

N−1∑
i=1

βi
zid

zd−α
ReszdΩN−i(z) , (76)

where we have used de l’Hôpital’s rule and definition (45). This relation can be
represented much simpler if we introduce

µ∗n , ReszdΩn(z) , n=1, . . . , N , (77)

δ∗i ,
βi

zd−α
zid , i>0 , (78)

Γ ∗n ,
zd−1

zd−α
p0

1−A′T (zd)

+∞∑
i=n

βi z
i
d , n=1, . . . , N , (79)

similar to (60)–(62). Relation (76) then becomes

µ∗N = Γ ∗N +

N−1∑
i=1

δ∗i µ
∗
N−i , (80)



which is symbolically exactly the same as (63) and therefore has the same kind
of solution:

µ∗n = ReszdΩn(z) = e (H∗)n−1 Γ ∗ , n=1, . . . , N . (81)

Here, the matrix H∗ is the same as H, but with every entry δi replaced by δ∗i .
Using this solution, we finally find from (57) for the residue θ[N]

1 :

θ
[N ]
1 =e

( N∑
j=1

ωj z
j
d (H∗)N−j

)
Γ ∗+

p0zd
λ1

A1(zd)−1

1−A′T (zd)
+
p0(1−zd)
1−A′T (zd)

N∑
j=1

ωj z
j
d . (82)

As with the mean value of the delay, the calculation of the residue θ[N]

1 can be
performed in such a way that the equivalent residues θ[n]

1 for systems with fewer
than N reservations are produced as well. The following algorithm implements
this.
I For n=1, . . . , N , calculate the entries Γ ∗n in the matrix Γ ∗ using (79).
I Now determine the values δ∗i as in (78) and populate the matrix H∗. The

residues θ
[1]
1 to θ

[N ]
1 can now progressively be obtained as follows. Define the

starting values

ψ∗0 = p0
zd
λ1

A1(zd)−1

1−A′T (zd)
, and Q∗0 = 0 . (83)

Then, for n=1, . . . , N , calculate

ψ∗n = ψ∗n−1 + p0
1−zd

1−A′T (zd)
ωn z

n
d , and Q∗n = Q∗n−1 H∗ + ωn z

n
d I . (84)

After each step, the residue θ[n]

1 then follows from (82) as θ
[n]
1 = ψ∗n+e Q∗n Γ

∗.

7 A comparative example

Let us consider a specific example to demonstrate the delay differentiation re-
alised between the two packet types by MR as compared to FIFO and AP. We
choose the distribution of the arrivals as

A(z1, z2) =
1

1+λ1 − z1 λ1
· eλ2(z2 − 1) , (85)

i.e. the numbers of arrivals per slot of type 1 and 2 are independent and have
a geometric and Poisson distribution respectively, with partial loads λ1 and λ2.
In Fig. 3 we plotted E[d[N]

1 ] and E[d[N]

2 ] as functions of the traffic mix λ1/λT
and for a fixed total load λT = 0.9. The mean delay under FIFO and the mean
delay for 1- and 2-packets under AP are shown as well. Note that for FIFO we
plotted only one curve, indicating the delay of an arbitrary packet regardless
of its type. We see that the higher N , the more the mean delays of both types
deviate from FIFO and the closer they get to their respective AP limits. On the
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Fig. 3. Mean delay of both 1- and 2-packets versus the traffic mix λ1/λT in case of
N = 1, 3, 5, 10, 15, 20, 25 and 30 reservations in the queue. The arrivals of type 1 and
type 2 are independent and have a geometric and Poisson distribution respectively with
total load λT =0.9.

far left side of the plot, there are but few 1-packets among a multitude of 2-
packets. As a consequence, the queue contains mainly 2-packets and always has
almost all of its reservations positioned directly in front of the server. Therefore,
a rare arriving 1-packet can generally jump over the whole queue content and
be served directly in the next slot. So even if there is only one reserved space,
the behaviour under the MR mechanism is equal to that under AP for very low
λ1/λT , resulting in a maximal delay differentiation. On the far right of the plot,
most of the traffic is of type 1, while 2-packets arrive only very rarely. From
the point of view of the 1-packets, there is no difference between FIFO, AP or
the intermediate MR mechanism if λ1/λT is very high. However, the delay of a
rare 2-packet is influenced a great deal by the queueing discipline in this case.
While such a packet is almost sure to stay in the queue forever under AP, its
delay under MR increases from the FIFO value more or less linearly with N . In
our opinion, this is where the main strength compared to AP emerges. If only a
small part of the traffic consists of low-priority traffic, their delay can be chosen
at an arbitrary level by changing N , whereas the delay is almost infinite under
AP (packet starvation).

8 Conclusions

We have reviewed an approach for modelling and analysing multi-class queues
in heterogeneous packet network architectures (e.g. DiffServ). In particular, a
discrete-time single-server queue with infinite capacity is considered. In case
there are two traffic classes, type 1 with delay-sensitive and type 2 with delay-
tolerant packets, we show the effectiveness of a transform domain analysis with
carefully chosen supplementary variables to assess the per-class packet delay



distributions. The achieved QoS differentiation mainly depends on the scheduling
mechanism in the queue. We considered, partially or in whole, First-In First-
Out (FIFO), Last-In First-Out (LIFO), Random Order of Service (ROS), Absolute
Priority (AP) and a novel approach based on Multiple Reservations (MR). For
the latter, we discussed in detail the delay analysis of the type 1 packets in the
queue.
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