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Samenvatting

We leven in een tijdperk waarin communicatienetwerken tot zelfs de kleinste
delen van ons dagelijkse leven zijn doorgesijpeld. ’s Ochtendsvroeg worden
we wakker met onze wekker afgestemd op ons favoriete radiostation, tijdens
het ontbijt checken we de laatste tweets en statusupdates van onze vrienden
en familieleden. Terwijl we op het perron staan te wachten, zoeken we op
of de trein vertraging heeft en wanneer we eindelijk het station verlaten,
lezen we het nieuws op onze tablet, smartphone, bril of zelfs polshorloge.
Na het werk bellen we onze geliefde om te vertellen over onze dag, onderweg
pikken we de boodschappen op die we online hebben besteld en ’s avonds
ontspannen we ons door naar een film op aanvraag te kijken.

De meeste mensen vinden deze netwerktoepassingen vanzelfsprekend en
stellen er strenge eisen aan: er mag geen ruis op de radio zitten, webpagina’s
moeten snel laden, de spraak via de telefoonlijn moet goed zijn van kwaliteit
en gestreamde media moeten vlot afspelen. Gezien vele van deze toepas-
singen tegelijkertijd afhankelijk zijn van dezelfde fysieke bronnen, houdt het
tegemoetkomen aan die kwaliteitsvereisten verschillende technologische uit-
dagingen in. Om deze uitdagingen aan te gaan, is een diepgaand begrip van
de onderdelen van communicatienetwerken onontbeerlijk om de prestaties
van communicatiesystemen te bestuderen en om accurate voorspellingen te
doen over de infrastructuur nodig om bepaalde prestatiedoelen te bereiken.

In dit proefschrift stel ik de resultaten voor van mijn onderzoeksacti-
viteiten binnen de onderzoeksgroep SMACS1 (vakgroep TELIN2, Univer-
siteit Gent) gedurende de voorbije jaren. Dit onderzoek omvat de analy-
tische studie van verschillende modellen voor wachtlijnsystemen binnen het
domein van telecommunicatienetwerken en operationeel onderzoek. Analy-
tische studies zoals deze kunnen dan overgedragen worden naar reële pro-
blemen, zoals degene die we eerder hebben aangehaald. Daarnaast bieden
ze ook het nodige inzicht om gëınformeerde beslissingen te nemen om de
vooropgestelde prestatiedoelen te bereiken.

De term wachtlijnsysteem behelst alle soorten systemen waarin gebrui-
kers aankomen en hun beurt moeten afwachten om één of andere dienst te
ontvangen. In de wetenschappelijke en toegepast wiskundige discipline van
de wachtlijntheorie worden dergelijke systemen omgevormd tot wiskundige

1Stochastische Modellering en Analyse van Communicatiesystemen
2Telecommunicatie en Informatieverwerking
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modellen die op hun beurt geanalyseerd kunnen worden om kennis te ver-
garen over de prestaties van het systeem. Doorgaans is men gëınteresseerd
in stochastische eigenschappen zoals het gemiddeld aantal gebruikers in het
systeem, de gemiddelde tijdsvertraging die gebruikers ondervinden en de
probabiliteit dat die vertraging een bepaalde drempelwaarde overschrijdt.

In klassieke wachtlijnsystemen worden gebruikers bediend zodra de be-
dieningseenheid beschikbaar is en in de volgorde waarin ze toekomen in
het systeem. In sommige gevallen is het bedieningsproces echter gewijzigd
om specifieke prestatiedoelen te bereiken. Zulke wachtlijnsystemen met een
gewijzigd bedieningsproces vormen het eerste thema van dit proefschrift,
getiteld veralgemeende bedieningsmechanismen. Een eerste onderwerp bin-
nen deze categorie betreft systemen waarin de gebruikers ingedeeld kunnen
worden in twee aparte klassen: een kleine groep vertragingsgevoelige gebrui-
kers met hoge prioriteit en een merendeel aan gebruikers met lage prioriteit
en minder strikte vertragingsvereisten. Dit scenario is courant binnen de
meeste communicatienetwerken, waar sommige gegevensstromen zoals ge-
streamde media minder vertraging kunnen verdragen dan de grote meerder-
heid aan internetverkeer bestaande uit surfverkeer, e-mails, het downloaden
van bestanden, enz. In zulke gevallen is het wenselijk om de vertraging
van de prioritaire gebruikers te verminderen of zelfs te minimaliseren, maar
nog steeds voldoende doorvoer te verlenen aan niet-prioritaire gebruikers.
Een ander onderwerp binnen deze categorie behandelt systemen waarbij
het voordelig is om meerdere gebruikers na elkaar te bedienen, ook wanneer
dit betekent dat gebruikers wellicht moeten wachten terwijl de bedienings-
eenheid eigenlijk werkloos is. Dit kan voorkomen wanneer de kostprijs om
de bedieningseenheid te starten na een periode van inactiviteit beduidend
groter is dan de kostprijs om individuele gebruikers te bedienen. In der-
gelijke gevallen moet er meestal een afweging worden gemaakt tussen de
bijkomende vertraging en de winst in energie-efficiëntie of werkingskosten
door meerdere gebruikers na elkaar te bedienen en de bedieningseenheid te
stoppen wanneer die geen werk meer heeft.

De abstractie van een reëel wachtlijnsysteem naar een wiskundig model
gaat doorgaans gepaard met een zekere vereenvoudiging die ervoor moet
zorgen dat de analyse van het model haalbaar is. Zeker in geval van sto-
chastische processen zoals het aankomst- en bedieningsproces, kan een ac-
curaat model erg lastig zijn om te analyseren, terwijl een te verregaande
vereenvoudiging naar een model van een beperkte moeilijkheidsgraad erg
onnauwkeurige resultaten kan opleveren. In realiteit omvatten zulke pro-
cessen doorgaans enige correlatie die een niet te onderschatten impact kan
hebben op de prestatie van het systeem. Wanneer deze correlatie accuraat
wordt gemodelleerd, creëert dit vaak een aanzienlijke uitdaging voor de
wachtlijntheoreticus die het systeem analyseert. Het tweede thema van dit
proefschrift is gewijd aan zulke correlatie-effecten die kunnen optreden in
pakketgebaseerde telecommunicatienetwerken zoals het internet. Wanneer
het aankomstproces van een wachtlijnsysteem meer bepaald overeenkomt
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met de uitgang van een bestandsserver of een media streaming server, is er
vaak tijdscorrelatie aanwezig in het aankomstproces vanwege segmentatie
van grote datastructuren. We presenteren twee verwante modellen voor een
dergelijk aankomstproces en analyseren hoe deze correlatie de prestaties van
het systeem bëınvloedt. In het eerste geval beschouwen we een zeer alge-
meen model dat een breed gamma aan reële aankomstprocessen kan voor-
stellen terwijl we het wachtlijnsysteem zelf vrij eenvoudig houden. In het
tweede geval ligt de focus minder op correlatie binnen het aankomstproces,
maar nemen we een realistisch model voor de uitgangslijn met gecorreleerde
uitgangsonderbrekingen.

Dit proefschrift is als volgt opgebouwd. Deel I doet dienst als een in-
leiding en is specifiek bedoeld voor lezers die niet geheel vertrouwd zijn of
slechts beperkte ervaring hebben met wachtlijntheorie in discrete tijd. We
lichten toe wat wachtlijntheorie is in Hoofdstuk 1, geven een overzicht van
dit proefschrift in Hoofdstuk 2 en introduceren enkele basiseigenschappen
van wachtlijnsystemen in Hoofdstuk 3. We maken de lezer dan vertrouwd
met de wiskunde achter probabiliteitsgenererende functies in Hoofdstuk 4
en presenteren een elementair wachtlijnmodel, notaties en basistechnieken
in Hoofdstuk 5.

In Deel II bestuderen we twee wachtlijnmodellen waarbij geprobeerd
wordt om de werking van wachtlijnsystemen zodanig aan te passen dat spe-
cifieke prestatiedoelen behaald kunnen worden. Hoofdstuk 6 onderzoekt
een planningstechniek voor communicatiesystemen waarbij aan een gespe-
cificeerd deel van het verkeer voorrang moet worden verleend. In Hoofdstuk
7 bestuderen we een mechanisme om het aantal keren dat de bedienings-
eenheid wordt geactiveerd en gedeactiveerd te verminderen.

Deel III is gewijd aan het modelleren van tijdscorrelatie in aankomst- en
bedieningsprocessen en aan het analyseren van de impact van deze correlatie
op de prestaties van het systeem. In Hoofdstuk 8 analyseren we de vertra-
ging die structuren, genaamd sessies, bestaande uit meerdere pakketten on-
dervinden wanneer ze zich door een wachtlijnsysteem bewegen. Hoofdstuk
9 beschouwt een enigszins minder complex aankomstproces, maar introdu-
ceert tijdsgecorreleerde onderbrekingen van de uitgangslijn.





Summary

We live in an era where communication networks have seeped into even
the smallest parts of everyday life. In the early morning we wake up with
our alarm clocks tuned in to our favorite radio station, during breakfast we
catch up on the latest tweets and status updates of our friends and family.
Waiting on the platform, we look up if the train is going to be delayed
and when we have finally left the station, we read the news on our tablets,
smartphones, glasses or even wrist watches. After work, we phone our loved
ones to tell about our day, en route we pick up the groceries we have ordered
online and at night, we relax by watching a movie on demand.

Most people take these network applications for granted and set strict
demands on them: there must not be any static on the radio, web pages
should load fast, speech quality on the phone should be good and streamed
media should play smoothly. Seeing as many of the applications rely on
the same physical resources simultaneously, meeting the quality of service
requirements comes with some technological challenges. Rising to these
challenges, a profound understanding of the components in communication
networks is essential to study the performance of communication systems
and to make accurate projections on the infrastructure required to meet
certain performance goals.

In this dissertation, I present the results of my research activities at the
SMACS3 research group (TELIN4 department, Ghent University) during
the past couple of years. This research consists of the analytical study of
various models for queueing systems within the area of telecommunication
networks as well as operations research. Analytical studies like these can
then be ported to real-life problems, such as the ones illustrated above, and
provide the insight necessary to make informed decisions in order to meet
the intended performance goals.

The term queueing system applies to any kind of system at which cus-
tomers arrive and have to wait their turn in order to receive some kind of
service. In the scientific and applied mathematical discipline called queueing
theory, these systems are converted into mathematical models that can then
be analyzed in order to obtain knowledge about the system’s performance.
Usually, one is interested in stochastic properties such as the average number

3Stochastic Modeling and Analysis of Communication Systems
4Telecommunications and Information Processing
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of customers in the system, the mean delay experienced by the customers
and the probability that this delay exceeds a certain threshold.

In classical queueing systems, customers are served as soon as the ser-
vice unit is available and in the order they have arrived to the system. In
some cases however, the service process has been modified in order to reach
specific performance goals. Such queueing systems with a modified service
process constitute the first theme in this dissertation, called generalized ser-
vice mechanisms. A first topic addressed in this category concerns systems
where customers can be classified into two distinct classes: a small class of
high-priority delay-sensitive customers and a majority of low-priority cus-
tomers with less stringent delay requirements. This scenario is common in
most communication networks, where some data streams such as streamed
media are less delay-tolerant than the bulk of the Internet traffic comprised
of web browsing, e-mails, file downloads, etc. In such cases it is desirable to
reduce or even minimize the delay of the high-priority customers, while still
offering sufficient throughput to the low-priority customers. Another topic
in this category concerns systems where it is advantageous to serve multiple
customers in a row, even if this means that customers might have to wait
when the service unit is in fact idle. This can occur when the cost of ini-
tializing the service unit after a period of inactivity is considerably higher
than the cost for serving individual customers. In such cases a trade-off
must usually be made between the additional delay bestowed upon the cus-
tomers and the profit made in terms of energy efficiency or operating costs
by serving multiple customers in a row and switching the service unit off
when it becomes idle.

The abstraction of a real-life queueing system into a mathematical model
usually involves some sort of simplification in order to ensure that the anal-
ysis of the model is feasible. Especially in the case of stochastic processes
such as the arrival and the service process, an accurate model can be quite
tedious to analyze, whereas oversimplification to a model of low to moder-
ate difficulty can yield quite inaccurate results. In real life, such processes
usually incorporate some kind of correlation that can have a considerable
impact on the system’s performance. When modelled accurately, this cor-
relation creates a considerable challenge for the queueing theorist analyzing
the system. The second theme of this dissertation is devoted to such cor-
relation effects that can occur in packet-based telecommunication networks
such as the Internet. More specifically, when the arrival process of a queue-
ing system corresponds to the output of a file server or a media streaming
server, there is usually time correlation in the packet arrival process due to
fragmentation of large data structures. We present two related models for
such an arrival process and analyze how this correlation affects the system’s
performance. In the first case, the model is very general and can represent
a vast range of real-life arrival processes, while the queueing system itself
is kept rather simple. In the second case, we focus less on the correlation
in the arrival process but in contrast we incorporate a realistic output line
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model with correlated output interruptions.
This dissertation is structured as follows. Part I serves as an introduction

and is of particular interest for readers who are not entirely familiar or have
only limited experience with queueing theory in discrete time. We explain
what queueing theory actually is in Chapter 1, we give an overview of this
dissertation in Chapter 2 and we introduce some elementary properties of
queueing systems in Chapter 3. We then familiarize the reader with the
mathematics of probability generating functions in Chapter 4 and introduce
a basic queueing model, notations and techniques in Chapter 5.

In Part II, we introduce two queueing models aimed at modifying the
operation of queueing systems in order to reach certain specific performance
goals. Chapter 6 investigates a scheduling technique for communication
systems where a specified portion of the traffic should be prioritized. In
Chapter 7, we study a mechanism for reducing the number of times the
service unit is activated and deactivated.

Part III is devoted to modelling time correlation in arrival and service
processes and to analyzing the impact of this correlation on the system’s
performance. In Chapter 8 we analyze the delay experienced by multi-
packet entities, referred to as sessions, when they pass through a queueing
system. Chapter 9 then considers a slightly less complex arrival process,
but introduces time-correlated interruptions of the output line.





Part I
Introduction





Chapter 1
Queueing Theory

We start this dissertation with a brief introductory chapter on queueing
theory, its history, common notations and some specifics of discrete-time
models.

1.1 Queueing theory, systems and models

Although often unaware, we are all confronted with numerous examples of
queueing systems throughout our everyday life: standing on the platform
waiting for a train, waiting in line at the counter of a store, sitting in the
waiting room of the doctor’s office or experiencing delays when trying to
order concert tickets online, etc. In each of these situations, customers
gather in order to receive a certain service but have to wait because such
a service takes time, only a limited number of customers can be served
simultaneously or resources required for a service are not present.

Together, the whole of the gathering customers, the queue and the ser-
vice unit along with the processes describing them define a queueing system.

Queueing theory is the scientific and mathematical field that researches
such queueing systems and their behavior. This research is usually aimed at
studying various performance measures such as the moments of the system
content and the customer delay, assuming certain system parameters. As
the majority of queueing research in this work is performed in a (digital)
communication network setting, we will refer to the individual elements
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Arrival process Queue Server

Figure 1.1: Illustration of a generic queueing model.

arriving to a queueing system as packets, and we will use the word server
as a shorthand for the service unit.

In order to perform such queueing analyses, the real-life queueing sys-
tems under study are converted into an abstract mathematical queueing
model. This model translates real-life aspects of the system (e.g. the arrival
process) into mathematical structures (e.g. a certain probability distribu-
tion) that constitute an acceptable representation of the real-life counter-
part. Throughout this dissertation, we will illustrate the structure of the
queueing models under study by means of a modular schematic such as
Figure 1.1. This schematic not only depicts the main constituting parts of
a queueing model, but also shows how individual queueing models can be
combined in order to create queueing networks. The study of such queueing
networks however is beyond the scope of this dissertation.

1.2 A brief history

In the early 1900s, the Danish scientist Agner Krarup Erlang (1878-1929),
working for the Copenhagen Telephone Company (KTAS), was frequently
presented the classic problem of dimensioning the number of circuits and
operators needed to provide an acceptable telephone service. Note that in
those days, human operators were needed to connect callers with callees
using telephone switchboards and jack plugs. He was one of the first to
perform detailed studies about telephone traffic, resulting in his 1909 publi-
cation [32] where he presented the observation that random telephone traffic
follows a Poisson distribution. Later on, studying the cost versus quality
trade-off, he composed his renowned formulae for call loss and waiting times
[33], which were soon adopted by telephone companies all over the world.

Erlang is considered to be the founding father of what is now called
queueing theory and since its genesis with Erlang’s 1909 paper, queueing
theory itself has evolved along with network technologies, leading to new
approaches, new techniques, new demands and new goals. Without going
into technical detail, one can still understand that there is quite a differ-
ence between dimensioning an analog circuit-switched telephone network
and dimensioning a digital packet-switched backbone network that sup-
ports various services of various types (e.g. telephony, television broadcast,
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the Internet, . . . ).
Although queueing theory is predominantly applied to the performance

analysis of communication systems, it has also found its way into other ap-
plication domains. Some examples are: transportation [50, 110] (e.g. traf-
fic congestion control, public transport scheduling), production processes
[52, 99] (e.g. stock management, process planning, machine breakdowns
and repairs), healthcare [53, 98] (e.g. emergency planning), etc.

1.3 Kendall notation

The standard classification method for describing queueing models is re-
ferred to as the Kendall notation, named after the English scientist David
George Kendall. In [70], he introduced the shorthand notation A/S/c as a
concise description of the main characteristics of a queueing system. The A
describes the distribution of the interarrival times between the individual
packets; from this parameter one can often identify whether the correspond-
ing queueing model is a discrete-time model or a continuous-time model.
Common arrival process notations are:

A Type Description

G/GI C, D Independent and Arbitrarily distributed inter-
arrival times (GI = General Independent)

Geo, GeoX D Geometrically distributed interarrival times
M, MX C Poisson arrival process (M = Memoryless)
MAP C Markovian arrival process
D(B)MAP D Discrete (Batch) Markovian arrival process
PH C Phase-type distributed interarrival times
Ek C Erlang-k distributed interarrival times

Table 1.1: An overview of common arrival process descriptors. The first
column contains the Kendall notation, note that the superscript X is a
placeholder for a batch size. The second column denotes whether the arrival
process is continuous-time (C), discrete-time (D) or can be either of the two.

The parameter S describes the service times of the individual pack-
ets. Similar to the descriptor of the interarrival times, the service process
descriptor S can often be used to distinguish between discrete-time and
continuous-time queueing models. Common notations for the service pro-
cess are given in Table 1.2.

Finally, the third parameter, c, denotes the number of servers in the
queueing system.

Over the years, the Kendall notation has been extended and adapted
to fit the needs of authors studying more complex queueing systems. A
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S Type Description

G/GI C, D Arbitrarily distributed and independent service
times

D C, D Deterministic (fixed) service times, usually 1 slot
per packet in the discrete-time case

Geo D Geometrically distributed service times
Ek C Erlang-k distributed service times

Table 1.2: An overview of common service process descriptors. The first
column contains the Kendall notation. The second column denotes whether
the service process is continuous-time (C), discrete-time (D) or can be either
of the two.

common extended Kendall notation is given by A/S/c/K/N/D, where K
denotes the queue capacity, i.e. the maximal number of packets that can
reside in the queue at any time. The parameter N then stands for the
size of the population from which the packets in the system stem and thus
denotes the maximal number of packets that can be in the system at any
time. This parameter can have a significant effect on the effective arrival
rate. Finally, D denotes the queueing discipline; this usually is either FIFO
(First in, first out) a.k.a. FCFS (First come, first served), where packets
are served in the order in which they entered the queue or LIFO (Last in,
first out) a.k.a. LCFS (Last come, first served), where the newest arrivals
are first served. The final three parameters can be omitted in case they
correspond with their default values (i.e. K =∞, N =∞ and D = FIFO).
This yields the notation A/S/c, conform with the short Kendall notation
defined above.

When analyzing discrete-time queueing systems, it is usually more mean-
ingful to describe the number of arrivals per slot, rather than the interar-
rival times between individual packets. In order to visualize this alter-
native convention, the delimiter / is replaced by −, yielding the notation
A− S − c−K −N −D or an abbreviated form thereof. The parameter A
then no longer refers to the interarrival times, but denotes the distribution
of the number of packet arrivals per slot.

1.4 Discrete-time queueing models

Given the nature of telephony, Erlang used continuous-time models as a
mathematical representation of the telephone networks he studied. There-
fore, it comes as no surprise that the majority of queueing literature studies
continuous-time queueing models. Discrete-time queueing models received
only little attention until the publication [88] of Torben Meisling in 1958
put discrete-time queues on the radar of queueing theorists. Since then,
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discrete-time queueing gained interest [13, 74, 93, 105], particularly because
of its applicability in computer systems and digital communication systems.

In discrete-time queueing models, time is assumed to be divided into
intervals of fixed length referred to as slots, which act as the smallest dis-
tinguishable time units. This assumption raises questions about how this
slotted time translates to the various events that occur in queueing systems.
More specifically, we need to specify when exactly arrivals can occur, when
exactly services can start, when exactly services can end, when exactly we
observe the system, . . . .

Throughout this dissertation, we will therefore always assume the timing
conventions described below and depicted in Figure 1.2. Packets can arrive

time

potential
departures

potential
service
start potential

departures

potential
service
start

potential arrivals

observable slot

Figure 1.2: Illustration of the timing conventions adopted in this disserta-
tion.

to the system at any time during a slot, but they are only inserted at the
very end af their arrival slot. Services can only start at the very start of
slots and last for an integer number of slots with departures at the very end
of the final slot of the service. As such, all changes in the system state only
occur in infinitesimally small intervals surrounding slot boundaries. Con-
versely, the system state is unchangeable during actual slots, i.e. excluding
the infinitesimal intervals. Therefore, we observe the system only during
slots (illustrated by the gray area), such that we are certain that the system
state has stabilized. For the sake of clarity, we will however frequently refer
to the system state at the beginning of a slot, merely to emphasize that we
observe the system before any departures or arrivals that can occur at the
end of the slot.
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Chapter 2
Topics Addressed in this Dissertation

2.1 Generalized service mechanisms

In a classical discrete-time queue operating under the FIFO-policy, packets
are appended to the queue when they arrive to the system. Meanwhile, the
service unit drains the queue by pulling the oldest packet from the queue’s
head, provided that the service unit is empty and the queue is not. In some
scenarios, there might however be specific performance goals that cannot
be accomplished using this approach. In such cases, generalized service
mechanisms can be applied to the system, altering how packets are inserted
in the queue, how they move through the queue and/or how they are pulled
from the queue by the service unit. We consider two such scenarios.

First, we consider a system where packets belong to one of two possible
classes. A small portion of the packets should be transmitted with as lit-
tle delay as possible, such as packets containing real-time data or streamed
media, this is the high-priority class. The low-priority class covers the ma-
jority of the packets which is delay-tolerant and requires best-effort treat-
ment only. The FIFO-policy makes no distinction between these classes and
can therefore not impose such a delay differentiation. Absolute Priority is
another scheduling discipline and blocks the passage of low-priority packets
as long as there are high-priority packets in the system. We introduce the
Reservation discipline, which achieves delay differentiation by letting some
high-priority packets overtake low-priority packets. We compare the perfor-
mance of this milder scheduling discipline with the two extremes of FIFO
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and Absolute Priority.
A second type of systems with a generalized service mechanism are sys-

tems where the activation of the service unit after a period of inactivity
comes at a considerable cost. This scenario is less likely to occur in commu-
nication networks, but can be particularly interesting for production pro-
cesses. It might then be more cost-effective to postpone the activation of
the service unit - if idle - until a specified number of customers has arrived.
In order to prevent excessive delays if the arrival rate is low, a timer can be
installed to guarantee a maximal waiting time for the first customer. We
study this double-threshold policy and compare its effects on the system’s
functioning and the customer delay with the effects of applying only one of
these thresholds.

2.2 Correlation effects

The analysis of a queueing system usually starts with the construction of
a mathematical model corresponding to that system. A model that accu-
rately grasps the characteristics of the queueing system usually yields results
that are more reliable than the results obtained by poorly constructed or
oversimplified models. One of those characteristics is correlation in one
of the system’s subprocesses and this correlation often has a considerable
impact both on the analysis of the system and the system’s performance.
We present two related models for correlated arrival processes tailored to
accurately represent the output of file servers and media streaming servers.
We apply these models to queueing systems with unreliable output lines
and analyze the system state and the delay of individual packets as well as
entire multi-packet structures representing large files or complete streams.
In a first case, we consider a complex arrival model that can represent a
vast range of real-life arrival processes in the context of a rather simple
queueing system. In a second case, we consider a more complex output line
model with correlated output interruptions, on top of a slightly less complex
arrival process. In both cases we investigate the effect of these correlated
processes on the system’s performance.

2.3 Dissertation outline

In Chapter 1, we have elaborated on the history of queueing theory, set-
ting a scene for the remainder of this dissertation. Next, we will discuss
some elementary properties of queueing systems in Chapter 3 and provide
a mathematical background for probability generating functions in Chapter
4. We illustrate some basic analysis techniques and common notations in
Chapter 5, where we analyze a basic queueing model.

Part II considers two queueing models with generalized service mecha-
nisms. In Chapter 6 we consider the reservation-based scheduling technique,
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which is aimed at prioritizing a specified portion of the traffic, without chok-
ing the non-prioritized traffic. We determine the distributions for the system
state and the packet delay of either packet class, as well as the tail proba-
bilities of the packet delay. We compare our results with FIFO-scheduling
and Absolute Priority scheduling, which are the two extremes in priority
scheduling. Chapter 7 studies a queueing system where service unit acti-
vation is postponed until a specified number of customers is waiting in the
queue or until the first customer has been waiting for a certain amount
of time. We analyze the operation of the queueing system and the delay
of customers, depending on when they arrive in the system and present
an approximation technique. We compare our findings with those of other
policies where only the number of customers in the queue or the waiting
time of the first customer triggers the activation of the service unit.

In Part III, we study correlation effects caused by correlated arrival and
service processes. In Chapter 8 we introduce sessions as multi-packet enti-
ties that produce a variable number of arrivals over a variable number of
consecutive slots. We extend previous research on this subject by analyzing
the delay incurred by these sessions as they pass through the system and
study the effects of the various parameters that control the time-correlation
induced by session-based arrival processes. In Chapter 9, we consider not
only a correlated arrival process, but also output line interruptions with time
correlation. More specifically, the arrival process generates packet trains of
geometric length and the accessibility of the output line is governed by a
Markovian process with an arbitrary state space. We present a technique
for studying the system state as well as the packet and train delay, allow-
ing us to analyze the effects of both sources of correlation on the system’s
performance.

Finally, we conclude this dissertation with a summary of the main contri-
butions presented here and some subjects that were left untouched through-
out this work.

2.4 Overview of publications

The research presented in this dissertation has resulted in several journal
papers and conference contributions. The listing below offers a detailed
view of these papers.

Publications in international journals

1. Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel and Sabine
Wittevrongel. Analysis of discrete-time buffers with heterogeneous
session-based arrivals and general session lengths. Computers & Oper-
ations Research, 39 (12) 2905–2914, December 2012. ISSN 0305-0548.
doi: 10.1016/j.cor.2011.11.023.

http://dx.doi.org/10.1016/j.cor.2011.11.023
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2. Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel and Sabine
Wittevrongel. The impact of the NT -policy on the behaviour of a
discrete-time queue with general service times. Journal of Industrial
and Management Optimization, 10 (1) 131–149, January 2014. doi:
10.3934/jimo.2014.10.131.

3. Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel and Sabine
Wittevrongel. Performance analysis of buffers with train arrivals and
correlated output interruptions. Accepted for publication in Journal
of Industrial and Management Optimization.

4. Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel and Sabine
Wittevrongel. Delay analysis of a discrete-time GI − GI − 1 queue
with reservation-based priority scheduling. Submitted for publication
in European Journal of Operational Research.

Papers in proceedings of international conferences

1. Bart Feyaerts, Stijn De Vuyst, Sabine Wittevrongel and Herwig
Bruneel. Analysis of a discrete-time priority queue with place reser-
vations and geometric service times. In Proceedings of the Sixth Con-
ference on Design, Analysis, and Simulation of Distributed Systems,
(DASD 2008), pages 140–147, Edinburgh, Scotland, United Kingdom,
June 2008.

2. Bart Feyaerts and Sabine Wittevrongel. Performance analysis of a pri-
ority queue with place reservation and general transmission times. In
Proceedings of the 5th European Performance Engineering Workshop
(EPEW 2008), volume 5261 of Lecture Notes in Computer Science,
pages 197–211. Palma de Mallorca, Spain, September 2008. ISBN
978-3-540-87411-9.

3. Bart Feyaerts, Stijn De Vuyst, Sabine Wittevrongel and Herwig
Bruneel. Session delay in file server output buffers with general session
lengths. In Proceedings of the 2010 IEEE International Conference on
Communications (ICC 2010), pages 1–5, Cape Town, South-Africa,
May 2010. doi: 10.1109/ICC.2010.5502624.

4. Bart Feyaerts, Stijn De Vuyst, Sabine Wittevrongel and Herwig
Bruneel. Analysis of a discrete-time queueing system with an NT -
policy. In Proceedings of the 17th International Conference on Ana-
lytical and Stochastic Modeling Techniques and Applications (ASMTA
2010), volume 6148 of Lecture Notes in Computer Science, pages 29–
43, Cardiff, United Kingdom, June 2010. ISBN 3-642-13567-6, 978-3-
642-13567-5.

http://dx.doi.org/10.3934/jimo.2014.10.131
http://dx.doi.org/10.3934/jimo.2014.10.131
http://dx.doi.org/10.1109/ICC.2010.5502624
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5. Bart Feyaerts, Stijn De Vuyst, Sabine Wittevrongel and Herwig
Bruneel. Analysis of a discrete-time NT -policy queue with general
service times. In Proceedings of the 7th International Conference on
Queueing Theory and Network Applications (QTNA 2012), paper 16–
1, pages 1–9, Kyoto, Japan, August 2012.

6. Bart Feyaerts, Sabine Wittevrongel, Stijn De Vuyst and Herwig
Bruneel. Discrete-time queues with train arrivals and Markovian
server interruptions. In Proceedings of the 8th International Confer-
ence on Queueing Theory and Network Applications (QTNA 2013),
pages 83–89, Taichung, Taiwan, July/August 2013.

Abstracts and other presentations

1. Bart Feyaerts and Sabine Wittevrongel. Delay analysis of a place
reservation queue. In Book of Abstracts of the 9th FirW PhD Sympo-
sium, pages 84–85, Ghent, Belgium, December 2008.

2. Bart Feyaerts, Stijn De Vuyst, Sabine Wittevrongel and Herwig
Bruneel. The GeoX,X/G/1 queue with the reservation discipline. In
Booklet of Abstracts of the 23rd Belgian Conference on Operations
Research (ORBEL ’09), page 95, Leuven, Belgium, February 2009.

3. Bart Feyaerts, Stijn De Vuyst, Sabine Wittevrongel and Herwig
Bruneel. Modelling data traffic performance in file servers : session-
based arrivals. In Proceedings of the 24th Belgian Conference on Oper-
ations Research (ORBEL 24), pages 154–155, Liège, Belgium, January
2010.
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Bruneel. On the NT -policy for discrete-time queues. In Proceed-
ings of the 25th Belgian Conference on Operations Research (ORBEL
25), pages 40–41, Ghent, Belgium, February 2011.
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Chapter 3
Elementary Properties

This chapter outlines some basic properties from queueing and probability
theory that we will repeatedly use throughout this dissertation.

3.1 Steady state

Under the right conditions, the impact of the initial state of a queueing
system will wither over time. The system then enters a steady state (also
called regime or equilibrium) where the system state distribution at random
instants is stochastically identical. Given that steady-state performance
measures are not related to any specific initial state, it is especially inter-
esting to investigate the regime behavior of queueing systems. A queueing
system can only reach this equilibrium if it complies with the equilibrium
condition that states that the average number of arrivals per time unit is
not greater than the maximal average number of possible departures per
time unit. Usually even, the average number of arrivals must be strictly
less than this maximum. When the system reaches equilibrium, the actual
average number of departures per time unit will be equal to the average
number of arrivals per time unit.

Note that in case of a finite buffer capacity, this condition is met by
definition. In case of infinite buffers however, the equilibrium condition is
indispensable. Otherwise, the actual queue length as well as the packet
delay will increase to infinity.
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3.2 Little’s law

One of the most important theorems in queueing theory is Little’s law,
named after John D. C. Little, the professor who first proved the validity
of the theorem in a continuous-time setting in 1961 [81, 82]. Little’s law
states that the average number of packets in a system in equilibrium (E[u])
is equal to the product of the average arrival rate (λ) and the average time
spent by the packets in the system (E[d]). This can be expressed formally
as

E[u] = λE[d] . (3.1)

This result, however simple it may seem, is very important and remarkable
in that it is independent of the distribution of any aspect of the system.
Furthermore, it can not only be applied to systems in their entirety, but
also to subsystems, or even partial arrival flows.

It has been proved that Little’s law is also applicable to a large class of
discrete-time systems [45]. Specifically, Little’s law can be applied to syn-
chronized discrete-time systems, i.e. systems where service is synchronized
to slot boundaries. The service of a packet then starts at (just after) a
slot boundary and ends at (just before) a subsequent slot boundary and is
expressed as an integer number of slots.

Although this theorem is widely applicable, we will refrain ourselves
from exploiting it as a means to obtain either E[u] or E[d]. Rather, we will
usually use it as a test to ensure the validity of our results.

3.3 PASTA / BASTA

In continuous-time systems where arrivals are governed by a Poisson process,
the fraction of packets that arrive to a system in a certain state P generally
equals the fraction of time the system resides in that same state P . This
equality is referred to as the PASTA property (Poisson arrivals see time
averages) [122]. The discrete-time counterpart is referred to as the BASTA
property (Bernoulli arrivals see time averages) [7].

3.4 Law of total expectation

In probability theory, the law of total expectation states that for any two
random variables X and Y , the expected value of X can be calculated as
the expected value of the conditional expected value of X given Y , i.e.

E[X] = E[E[X|Y ]] . (3.2)

Note that E[X|Y ] is in fact a random variable dependent on Y , such that
the outer E[. . .] operator denotes the mean of that random variable and
performs the weighted sum

∑
y Prob[Y = y] E[X|Y = y].
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In practice, this means that when E[X] is hard to determine directly, one
might try to find a random variable Y for which the different conditional
means E[X|Y = y] are less challenging to calculate. We will make frequent
use of this technique and therefore we introduce the shorthand

E[X {Y = y}] , Prob[Y = y] E[X|Y = y] . (3.3)
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Chapter 4
Probability Generating Functions

Throughout this work, we will make frequent use of probability generating
functions (pgf s) as a means of describing distributions. The pgf X(z), where
z is a complex number, of a nonnegative discrete random variable X, defined
as

X(z) , E
[
zX
]

=

∞∑
n=0

Prob[X = n] zn, (4.1)

comprises the same information about X as its probability mass function
(pmf ) x(n) , Prob[X = n], albeit more succinct. Note that in (4.1), the
notation E[. . .] denotes the expected value of the random variable within
brackets. In this chapter we will present some properties of pgfs that we
will use repeatedly over this dissertation, both for univariate distributions
and for multivariate distributions.

4.1 Multivariate pgfs

Similarly to (4.1), the joint pgf Y (z1, . . . , zN ) of the N ≥ 1 nonnegative
discrete random variables Y1, . . . , YN can be defined as

Y (z1, . . . , zN ) , E
[
z1
Y1 . . . zN

YN
]

=

∞∑
n1,...,nN=0

Prob[Y1 = n1, . . . , YN = nN ] z1
n1 . . . zN

nN .

(4.2)
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The marginal pgf Yi(z) (i ∈ {1, . . . , N}) of Yi can be obtained from (4.2)
by substitution of zi = z and zn = 1 for all values of n 6= i.

A pgf can also be constructed as the weighted sum of partial pgfs, where
a certain random variable is assumed to have a fixed value. For example,
let the partial pgfs Fj(z1, . . . , zN−1) (j ∈ N) be defined as

Fj(z1, . . . , zN−1) , E
[
z1
Y1 . . . zN−1

YN−1 {YN = j}
]

=

∞∑
n1,...,nN−1=0

Prob[Y1 = n1, . . . , YN−1 = nN−1, YN = j] z1
n1 . . . zN−1

nN−1 .

(4.3)

The joint pgf Y (z1, . . . , zN ) of Y1, . . . , YN can then be found from the law
of total expectation as

Y (z1, . . . , zN ) , E
[
z1
Y1 . . . zN

YN
]

=

∞∑
j=0

Fj(z1, . . . , zN−1)zN
j . (4.4)

4.2 Normalization condition

The normalization condition states that every probability distribution must
be normalized. Specifically for discrete random variables, this means that
the sum of all probabilities must be equal to 1. This can be expressed in
terms of the previously defined pgfs X(z) and Y (z1, . . . , zN ) as

X(1) = 1, and Y (1, . . . , 1) = 1. (4.5)

Note that partial pgfs do not necessarily obey the normalization condition,
rather we get that

Fj(1, . . . , 1) =
∞∑

n1,...,nN−1=0

Prob[Y1 = n1, . . . , YN−1 = nN−1, YN = j]

= Prob[YN = j] ≤ 1. (4.6)

4.3 Radius of convergence

Both definitions (4.1) and (4.2) contain a power series that may or may not
converge. It can be shown that the power series in (4.1) converges at least
for all z ∈ C with |z| ≤ 1. Likewise, the power series in (4.2) converges at
least for all z1, . . . , zN ∈ C with max (|z1| , . . . , |zN |) ≤ 1. This is induced
by the fact that probabilities are limited to [0, 1] and distributions respect
the normalization condition.

Within this radius of convergence, pgfs are analytic functions, and there-
fore they must not have any singularities in this area.
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4.4 Probability generating property

According to the definitions (4.1) and (4.2), it is possible to construct a
pgf from the corresponding pmf. It is also possible to invert this procedure
and to extract values of the pmf from the pgf. Seeing Prob[x = n] as the
coefficient of zn in the Taylor expansion of X(z) at z = 0, Prob[x = n] can
be found as

Prob[X = n] =
1

n!

dnX(z)

dzn

∣∣∣∣
z=0

, n ≥ 0. (4.7)

Although it might look somewhat more complex, inversion of multivariate
pgfs can be done similarly:

Prob[Y1 = n1, . . . , YN = nN ]

=

(
N∏
i=1

1

ni!

)
∂
∑N
i=1 niY (z1, . . . , zN )

∂z1
n1 . . . ∂zNnN

∣∣∣∣∣
z1=0,...,zN=0

, n1, . . . , nN ≥ 0.

(4.8)

From these formulas the following particular property of practical use
can be obtained:

Prob[X = 0] = X(0), and Prob[Y1 = 0, . . . , YN = 0] = Y (0, . . . , 0).
(4.9)

Actual application of formulas (4.7) and (4.8) is computationally ex-
tremely challenging and thus practically unfeasible, especially for large val-
ues of n1, . . . , nN . The inversion can however be performed using approxi-
mate techniques, as described in [1, 2].

4.5 Moment generating property

From (4.1), factorial moments of the random variable X can be calculated
as

E

[
X!

(X − n)!

]
=

dnX(z)

dzn

∣∣∣∣
z=1

, n ≥ 0. (4.10)

Choosing n = 1, we get

E[X] =
dX(z)

dz

∣∣∣∣
z=1

= X ′(1). (4.11)

For n = 2, this becomes

E[X (X − 1)] = X ′′(1), (4.12)
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such that the variance Var[X] of X can be found as

Var[X] = E
[
X2
]
− E[X] = X ′′(1) +X ′(1)−X ′(1)

2
. (4.13)

Moments of a single random variable from a multivariate pgf can be
obtained similarly, starting from the corresponding marginal pgf.

4.6 Linear combination of random variables

The use of pgfs will allow us to write and perform stochastic calculations
more concisely and elegantly than when using pmfs, especially when we
want to determine the distribution of a random variable which is a linear
combination of other random variables. For instance, let Y1, . . . , YN be a
set of nonnegative discrete random variables with joint pgf Y (z1, . . . , zN )
and marginal pgfs Yi(z) (i ∈ {1, . . . , N}) and let X be a linear combination
of these random variables, i.e.

X =

N∑
i=1

ciYi, (4.14)

for the tuple of nonnegative coefficients (c1, . . . , cN ).
If we want to determine the pmf of X, we find

Prob[X = m] =

∞∑
m1,...,mN−1=0

Prob

[
Y1 = m1, . . . , YN−1 = mN−1,

cNYN = m−
N−1∑
i=1

cimi

]
. (4.15)

Alternatively, calculating the pgf of X, we get

X(z) , E
[
zX
]

= E
[
z
∑N
i=1 ciYi

]
= E

[
N∏
i=1

zciYi

]
= Y (zc1 , . . . , zcN ). (4.16)

In the special case where the random variables Y1, . . . , YN are indepen-
dent, both expressions can be simplified to

Prob[X = m] =

∞∑
m1,...,mN−1=0

(
N−1∏
i=1

Prob[Yi = mi]

)
(

Prob

[
cNYN = m−

N−1∑
i=1

cimi

])
, (4.17)

and

X(z) =

N∏
i=1

Yi(z
ci). (4.18)
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Now we consider the case where the discrete random variable X is
the sum of N nonnegative discrete random variables Yi (i ∈ {1, . . . , N})
which are independent and identically distributed (iid) random variables
with common pgf Y (z). We assume that the number N of random vari-
ables in the sum is in fact a nonnegative discrete random variable with pgf
N(z) and that this random variable is independent of the random variables
Y1, . . . , YN . The calculation of the pmf of X then becomes

Prob[X = m] =

∞∑
n=0

Prob[N = n]

∞∑
m1,...,mn−1=0

(
n−1∏
i=1

Prob[Yi = mi]

)
(

Prob

[
Yn = m−

n−1∑
i=1

mi

])
. (4.19)

For the calculation of the pgf X(z) on the other hand, we can exploit the
law of total expectation and get

X(z) =

∞∑
n=0

Prob[N = n] E
[
z
∑N
i=1 Yi

∣∣∣N = n
]

=

∞∑
n=0

Prob[N = n]Y (z)
n

= N(Y (z)). (4.20)

4.7 Tail distribution

The previous section has shown that when a random variable is a linear
combination of other random variables, it can be quite beneficial to analyze
its distribution using pgfs rather than pmfs. Not only can this approach
yield a neater analysis, but the moment generating property allows us to
find the moments of the random variable quite easily from its pgf. Some
interesting performance measures however, rely on the pmf of a random
variable of which the pgf has been calculated. In such cases, we could invoke
the probability generating property, or a numerical approximation technique
as mentioned above. If we are only interested in the tail distribution of a
random variable X, i.e. the portion of the distribution of X where X has
large values (Prob[X = n] for large n), we can also resort to the complex
residue technique, which is known for its rather accurate results [13, 14].
The tail distribution is especially interesting if we want to determine the
probability that a random variable X exceeds a certain threshold XT , where
XT is rather large.

The complex residue technique is based on the fact that the pgf X(z) of
X is actually the z-transform of the corresponding pmf x(n). In particular,
based on the inversion formula for z-transforms and assuming for the sake
of argument that X(z) is meromorphic, it follows that x(n) can be written
as a weighted sum of negative nth powers of the poles of X(z). Due to the
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fact that X(z) is a pgf and thus converges for all z with modulus |z| ≤ 1, all
poles of X(z) are outside of the unit circle and the contribution of the pole
of X(z) with the smallest modulus (assuming there is only one such pole)
will have the most impact on x(n). This pole is therefore referred to as the
dominant pole, noted zd. Furthermore, in order to guarantee nonnegative
values for x(n), the dominant pole must be real and positive [14]. In general,
this dominant pole can not be calculated analytically, numerical techniques
such as the Newton-Raphson method or the Illinois [30] method on the other
hand do provide the possibility to obtain zd. Once the dominant pole zd is
found and if X(z) has only a single dominant pole zd of multiplicity 1, the
tail distribution of X can be approximated as

Prob[X = n] ≈ −θzd−n−1, for sufficiently large n, (4.21)

where θ is the complex residue of X(z) for z = zd:

θ , ReszdX(z) = lim
z→zd

(z − zd)X(z). (4.22)

The probability for X to exceed a certain threshold XT can then be ap-
proximated as

Prob[X > XT ] ≈ −
∞∑

n=XT+1

θzd
−n−1 = −θzd

−XT−1

zd − 1
. (4.23)



Chapter 5
The GI −GI − 1 Model

In this section, we will present and analyze the GI − GI − 1 model, i.e.
a queueing model where both the arrival process and the server process
are iid . This means that the numbers of arrivals during subsequent slots
are statistically independent, and the same goes for the service times of
subsequent packets. Note that the abbreviation GI stands for general and
independent.

In the sections that follow, we will use this system as a base on which
we will build more complex systems, by taking out specific features and
replacing them with more advanced alternatives. Therefore, any notation,
assumption, . . . in the analysis below, will be adopted in all of the next
sections, unless otherwise stated. Analysis of this GI − GI − 1 model will
allow us to present some basic techniques of discrete-time queueing theory
and will serve as a roadmap for future analyses.

Note that the analysis presented here follows and summarizes the anal-
ysis presented in [11].

5.1 Model description

We consider a synchronized discrete-time queueing system with infinite stor-
age capacity and one service unit. A graphical representation of this model
is depicted in Figure 5.1. Packets arrive according to an arrival process
defined by the pgf A(z) of the number of arriving packets per slot. We
assume the arrival process to be iid , such that the number of arrivals in
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Figure 5.1: Illustration of the GI −GI − 1 model.

one slot does not affect the number of arrivals in another slot. We define
λ , A′(1), i.e. the mean number of arrivals in a random slot, also referred
to as the arrival rate. The actual number of arrivals during a random slot
k is denoted as ak.

The system operates under the FIFO policy, such that packets are stored
in arrival order in a buffer with infinite capacity, until they are pulled out
by the server. The number of slots required to successfully serve a packet
is dictated by the server process with pgf S(z). Like the arrival process,
the server process is iid as well, such that service times of different packets
are statistically independent. The mean length of a service is denoted as
µ = S′(1) and when inverted, it yields the service rate, i.e. 1/µ is the mean
number of packets transmitted in a single slot.

The load of the system, defined as ρ , λµ, represents the ratio of the
speed at which packets are inserted in the queue versus the speed at which
packets can leave the queue. For the system to be stable, i.e. to obey the
equilibrium condition, it is required that ρ < 1, such that in the long run,
the output line can handle all arriving packets. For ρ ≥ 1, the queue would
eventually continue to grow without ever being depleted completely. Packets
would then face ever increasing delays, such that the system would appear
to be clogged.

As mentioned in 1.4, services are synchronized to slot boundaries, i.e.
they start at the beginning of a slot and last an integral and strictly positive
number of slots. If no service is started at the beginning of a slot (e.g.
because the system is empty at the start of the slot), the server will be idle
during the entire slot.

5.2 Markovian state description

The goal of the analysis, is to determine the distribution of the delay ex-
perienced by the packets in the system. In order to do so, we will require
specific information about the condition of the system at certain points in
time. This information is stored in random variables that constitute a vec-
tor for each of these epochs, the system state vector. This vector should
be Markovian, i.e. given the vector vk at an epoch k, the distribution of
the variables in the subsequent vector vk+1 is independent of the preceding
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vectors vk−1, vk−2, . . . .
In case of the GI −GI − 1 model, we will require the number of packets

uk in the system at the beginning of a random slot k, as well as the number
of slots hk left until service completion of the packet in the server at the
beginning of slot k. If there is no packet in service at the beginning of slot
k, i.e. the system is empty at that point (or uk = 0), we impose that hk = 0.
The vector 〈hk, uk〉 then forms the system state vector at the beginning of
slot k.

Note that if hk = 1, the packet in service will leave the system at the end
of slot k and the server will attempt to pull a new packet from the queue.
If hk 6= 1, no departure will take place, and the queue content will simply
grow according to the arrivals during slot k. These considerations can be
formulated as:

• if hk = 0:

hk+1 =

{
0, if ak = 0,

s, if ak > 0,

uk+1 = ak, (5.1)

• if hk = 1:

hk+1 =

{
0, if uk = 1 and ak = 0,

s, if uk > 1 or ak > 0,

uk+1 = uk − 1 + ak, (5.2)

• if hk > 1:

hk+1 = hk − 1,

uk+1 = uk + ak. (5.3)

In these equations, the variable s was used to represent a sample of the
service time distribution. These equations are called the system equations,
as they describe the system state evolution from slot to slot.

5.3 Buffer analysis

Let us now consider the distribution of the system state vector at the be-
ginning of a random slot k. More specifically, we define Pk(x, z) as the joint
pgf of the system state at the beginning of slot k as

Pk(x, z) , E
[
xhkzuk

]
, (5.4)
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Given that an empty system at the beginning of slot k implies that hk = 0,
we have that

Pk(x, 0) = Pk(0, 0) = p0,k, ∀x, (5.5)

where we introduced p0,k to denote the probability for the system to be
empty at the beginning of slot k.

Exploiting the system equations derived earlier, we can calculate the
joint system state pgf Pk+1(x, z) at the beginning of slot k + 1 as

Pk+1(x, z) , E
[
xhk+1zuk+1

]
= E

[
xhk+1zak {hk = 0}

]
+ E

[
xhk+1zuk−1+ak {hk = 1}

]
+ E

[
xhk+1zuk+ak {hk > 1}

]
= Pk(0, 0) (A(0) + S(x) E[zak {ak > 0}])

+A(0)Prob[hk = 1, uk = 1]

+ S(x) E
[
zuk−1+ak {hk = 1, uk − 1 + ak > 0}

]
+A(z) E

[
xhk−1zuk {hk > 1}

]
, (5.6)

In our further analysis, the case where hk = 1, plays a special role, therefore
we introduce the partial pgf Qk(z) as

Qk(z) , E
[
zuk−1 {hk = 1}

]
=

∞∑
n=1

Prob[hk = 1, uk = n] zn−1, (5.7)

such that
Qk(0) = Prob[hk = 1, uk = 1] . (5.8)

This definition helps us to determine Pk+1(x, z) as

Pk+1(x, z) = A(0) (1− S(x))Pk(0, 0) + S(x)A(z)Pk(0, 0) +A(0)Qk(0)

+ S(x) (A(z)Qk(z)−A(0)Qk(0))

+
A(z)

x
(Pk(x, z)− xzQk(z)− Pk(0, 0))

= A(0) (1− S(x)) (Pk(0, 0) +Qk(0)) +A(z)
xS(x)− 1

x
Pk(0, 0)

+A(z) (S(x)− z)Qk(z) +
A(z)

x
Pk(x, z). (5.9)

This equation expresses the system state pgf at the beginning of slot k + 1
in terms of expressions belonging to slot k. Assuming we would know the
initial system state distribution, i.e. at the beginning of slot k = 0, iteration
of (5.9) would allow us to determine the system state distribution at the
beginning of any subsequent slot. However, we are not concerned with the
system state distribution at the beginning of a certain slot, rather we want
to investigate the steady-state behavior of the system.
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The steady-state counterparts of the expressions derived earlier can be
found by taking the limit for k → ∞. Note that this implies that corre-
sponding expressions for k and k+ 1 will converge. In what follows, we will
leave out the time index k for expressions in steady state. Specifically for
the system state, the pgfs Pk(x, z) and Pk+1(x, z) will converge into P (x, z),
which can be calculated as

P (x, z) , lim
k→∞

Pk(x, z) = lim
k→∞

Pk+1(x, z)

=
1

x−A(z)
[A(0)x (1− S(x)) (p0 +Q(0)) (5.10)

+A(z) (xS(x)− 1) p0 + xA(z) (S(x)− z)Q(z)] ,

with Q(z) and p0, the steady-state counterparts of Qk(z) and p0,k respec-
tively. Note that (5.10) still contains two unkown parameters Q(0) and p0

and that the function Q(z) is yet undetermined. These will be calculated
in the remainder of this section.

First, we note that the property in (5.5) also translates to its steady-state
counterpart. This leads to two separate methods to obtain P (1, 0)

P (1, 0) = P (0, 0) = p0, steady-state counterpart of (5.5), (5.11)

=
A(0)Q(0)

1−A(0)
, from (5.10), (5.12)

such that
p0 = A(0) [p0 +Q(0)] . (5.13)

The next step involves the property of pgfs that states that all pgfs are
bounded when all arguments are in the unit disk. More specifically, P (x, z)
should be bounded for x = A(z) with |z| ≤ 1. Note that |z| ≤ 1 is a
sufficient condition such that |A(z)| ≤ 1 since A(z) is a pgf. Substitution
in (5.10) would however cause the denominator to become 0, leading to
an unbounded result, unless of course the numerator is 0 as well and de
l’Hôpital’s rule can be applied. Expressing that the numerator of (5.10)
becomes 0 for x = A(z) allows us to determine Q(z) as

Q(z) =
S(A(z)) (A(z)− 1)

A(z) (z − S(A(z)))
p0. (5.14)

Finally, we determine p0 from the normalization property of pgfs that
states that any pgf should return 1 when all arguments are equal to 1.
Specifically we first determine P (1, z) as

P (1, z) =
A(z) (1− z)Q(z)

1−A(z)
, (5.15)

such that, again using de l’Hôpital’s rule

P (1, 1) =
Q(1)

λ
= 1. (5.16)
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Note that Q(z) is a partial pgf and therefore does not satisfy the normal-
ization property. Rather, we can determine Q(1) from (5.14) as

Q(1) =
λ

1− λµp0. (5.17)

Substitution of (5.17) in (5.16) and application of the normalization prop-
erty P (1, 1) = 1 then gives

p0 = 1− λµ. (5.18)

Note that Q(1) = Prob[h = 1] corresponds to the fraction of slots in which
there is a departure, and thus Q(1) can also be considered to be the actual
departure rate, i.e. the mean number of departures in a single slot. This
means that the actual average number of departures per slot is equal to the
average number of arrivals per slot. As such, this illustrates the statement
in Section 3.1.

Equations (5.13), (5.14) and (5.18) then allow us to transform (5.10) to
the closed-form expression

P (x, z) = (1− λµ)

[
1− xz (1−A(z)) (S(x)− S(A(z)))

(x−A(z)) (z − S(A(z)))

]
. (5.19)

The pgf U(z) of the system content at the beginning of a random steady-
state slot can either be found by substitution of x = 1 in (5.19) or by
substitution of (5.14) and (5.18) in (5.15) as

U(z) = (1− λµ)

[
1− z 1− S(A(z))

z − S(A(z))

]
= (1− λµ)S(A(z))

z − 1

z − S(A(z))
.

(5.20)
The mean system content at the beginning of steady-state slots can then be
found as described in Section 4.5. More specifically, we determine the first
order derivative of U(z) and evaluate it for z → 1 such that after multiple
applications of de l’Hôpital’s theorem, we get

E[u] = U ′(1) = λµ+
A′′(1)µ+ λ2S′′(1)

2 (1− λµ)
. (5.21)

This result is the discrete-time counterpart of the Pollaczek-Khintchine for-
mula for determining the mean system content in an M/G/1 queue [71, 101].

Another interesting measure is the unfinished work w at the beginning
of a random steady-state slot. This is the total number of slots needed to
remove all u packets, present at the beginning of that particular slot, from
the system. If the system is already empty at the beginning of that slot, of
course w = 0. These considerations yield

w =

{
0, if u = 0,

h+
∑u−1
i=1 si, if u > 0,

(5.22)
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where the si’s denote the service times of the u − 1 packets in the queue.
The pgf W (z) of the random variable w can then be found as

W (z) , E[zw] = Prob[u = 0] + E[zw {u > 0}]

= p0 + E
[
zhS(z)

u−1 {u > 0}
]

= p0 +
P (z, S(z))− p0

S(z)

= (1− λµ)A(S(z))
z − 1

z −A(S(z))
. (5.23)

5.4 Packet delay analysis

We can now proceed to determine the packet delay distribution for packets
that arrive during an arbitrary slot in the steady state. The delay d of a
random steady-state packet P that arrives to the system in the course of
slot S is defined as the integer number of slots starting immediately after
S, up until the end of the slot during which P leaves the system. This delay
consists of three parts:

• the unfinished work (wS − 1)
+ , max(0, wS − 1) at the end of slot S,

related to the packets in the system at the beginning of S;

• the total service time of all χP packets that have arrived during slot
S as well, but are to be served before P;

• the service time of P itself.

The delay of P can then be found as

d = (wS − 1)
+

+

χP+1∑
i=1

si, (5.24)

where the si’s now denote the service times of the packets mentioned in the
two last items of the enumeration above.

Note that S is not a random slot; in fact it is the arrival slot of the
randomly chosen packet P. At the very least this implies that the number
of arrivals aS during S must be greater than or equal to 1. Moreover,
the probability that a randomly chosen packet arrives during a slot with
α arrivals in total is proportional to the number of arrivals α in that slot.
Therefore we find the distribution of aS as

Prob[aS = α] =
α

λ
Prob[ak = α] , α ≥ 1. (5.25)

Given that packet arrivals are iid , the BASTA-property holds and the sys-
tem state distribution at the beginning of S is stochastically identical to
the system state distribution at the beginning of a truly random steady-
state slot. As a result, the distribution of wS in turn is identical to that of
w. Given the fact that P was chosen randomly, its position within all aS
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arrivals during S is uniformly distributed and the pgf X(z) of χP can be
found (see e.g. [90]) from

Prob[χP = n| aS = α] =
1

α
, n ≥ 0, α ≥ 1, (5.26)

as

X(z) , E[zχP ] =

∞∑
n=0

Prob[χP = n] zn

=

∞∑
α=1

Prob[aS = α]

α−1∑
n=0

Prob[χP = n| aS = α] zn

=
1

z − 1

∞∑
α=1

1

α
Prob[aS = α] (zα − 1) =

A(z)− 1

λ (z − 1)
, (5.27)

with mean

E[χP ] = X ′(1) =
A′′(1)

2λ
. (5.28)

The pgf D(z) of the packet delay can then be found as

D(z) , E
[
zd
]

= E
[
z(wS−1)+

]
E
[
S(z)

χP+1
]

=
W (z) + (z − 1)W (0)

z
S(z)X(S(z))

= (1− λµ)S(z)
(z − 1) (1−A(S(z)))

λ (1− S(z)) (z −A(S(z)))
. (5.29)

The mean packet delay can be determined by evaluation of the first deriva-
tive of (5.29) for z = 1. After multiple applications of de l’Hôpital’s theorem,
we get

E[d] = D′(1) = µ+
A′′(1)µ+ λ2S′′(1)

2λ (1− λµ)
. (5.30)

Application of Little’s theorem (3.1) confirms the validity of this expres-
sion. Similar to (5.21), (5.30) is the discrete-time version of the Pollaczek-
Khintchine formula for the expected delay in an M/G/1 queue.

Finally, we will approximate the tail distribution of the packet delay
using the complex residue technique. It can be shown that the dominant
pole zd of the packet delay pgf D(z) must be a zero of z − A(S(z)), such
that zd = A(S(zd)). The complex residue θ of D(z) for z = zd can then be
found as

θ , ReszdD(z) = lim
z→zd

(z − zd)D(z)

=
(1− λµ)S(zd)(zd − 1)

2

λ (S(zd)− 1) (1−A′(S(zd))S′(zd))
. (5.31)
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Figure 5.2: The mean packet delay vs. the system load ρ for various arrival
distributions.

The tail probability of the packet delay d for sufficiently large values of n
can then be approximated as

Prob[d = n] ≈ −θzd−n−1. (5.32)

5.5 Numerical examples

In the previous sections, we have calculated analytical results for some com-
mon performance measures, such as the expected value and the tail distri-
bution of the packet delay. In this section, we illustrate these results by
means of graphs in order to show the implications of the results calculated
in the above.

First, we will investigate the mean packet delay E[d]. From (5.30), we
see that the mean packet delay is influenced by the first and second order
moments of both the packet arrival distribution and the service distribution.
Intuitively one can assume that an increase in the mean and the variance of
the number of arrivals per slot will lead to an increase in the mean packet
delay and we can see this intuitive relation reflected in (5.30), although
somewhat obfuscated.

To make matters more clear, we start off by investigating the impact
of various packet arrival distributions on the mean packet delay. Therefore
we consider four different distributions for the number of packet arrivals
ak in a random slot k: a Bernoulli distribution, a binomial distribution
B(n, p) with n = 5, a Poisson distribution and a geometric distribution.
In Figure 5.2, the mean packet delay E[d] is plotted for each of the packet
arrival distributions as a function of the system load ρ = λµ. The service
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Figure 5.3: The variance of the arrival distributions vs. the system load.

times have a shifted geometric distribution with parameter 0.2, such that
the expected service time is µ = 1.25 slots per packet. The packet arrival
rate is then for each value of ρ obtained as λ = ρ/µ and the parameters of
the packet arrival distributions are adjusted in accordance. Figure 5.2 shows
that for each of the packet arrival distributions, the mean packet delay E[d]
increases as the system load increases. This increase in the mean packet
delay is gently at first, but when the system load nears 1, the mean packet
delay grows excessively, as the system approaches instability. For a fixed
value of the system load, and thus a fixed value of the arrival rate λ, we
can see that the Bernoulli distributed arrival process yields the lowest mean
packet delay, whereas the geometrically distributed arrival process yields
the highest mean packet delay.

This discrepancy can be explained by looking at the variance of the
packet arrival distributions, as depicted in Figure 5.3 for the same system
configuration. It can be shown - even symbolically - that for a fixed value
of λ ∈ ]0, 1], the considered arrival distributions have a fixed order when or-
dered according to increasing values of their variance, namely: the Bernoulli
dsitribution, the binomial distribution, the Poisson distribution and finally
the geometric distribution. This is reflected in Figure 5.3, although the or-
der only becomes clear when the curves start to fan out. Comparing Figure
5.2 with Figure 5.3 the effect of the difference in the arrival process vari-
ance on the mean packet delay becomes manifest. The observation that an
increase in variance of the arrival process leads to an increase of the mean
packet delay is in fact a typical result in queueing theory.

Next, we will discuss the impact of various service time distributions on
the mean packet delay. In this case, we consider two standard service time
distributions, more specifically a shifted Poisson distribution and a shifted
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Figure 5.4: The mean packet delay vs. the service rate 1/µ for various
service time distributions.

geometric distribution, as well as two mixtures of a degenerate distribution
and a shifted Poisson or geometric distribution. The weight of the degen-
erate distributions with pgf Sdegenerate(z) = z in both mixtures is equal to
0.25. Figure 5.4 shows the mean packet delay E[d] for each of the service
time distributions versus the service rate 1/µ. The number of packet arrivals
per slot is Poisson distributed with arrival rate λ = 0.2 packets per slot. The
equilibrium condition is illustrated by both the void for 1/µ <= 0.2 and the
exorbitant values of the mean packet delay when the service rate drops and
approaches 0.2. When the service rate further increases, the mean packet

delay decreases and approaches 1+ A′′(1)
2λ(1−λ) when the service rate approaches

1. This minimal value is plotted in Figure 5.4 as a dashed gray line and cor-
responds to the mean packet delay in a system with service times of exactly
1 slot per packet. Similar to the previous charts, the difference in variance
between the service time distributions causes the curve corresponding to
the shifted Poisson service times to be lower than the curve corresponding
to the shifted geometric service times.

Finally, we take a look at the packet delay tail distribution. As can be
expected from (5.32), the approximation yields a linear curve when plotted
on a logarithmic scale. More specifically, the decay rate of the packet delay
is given by 1/zd, such that the downward slope of the curve will be equal
to −log(zd).

First, we show the effect of the packet arrival rate on the tail distribution
of the packet delay. In Figure 5.5, we show the pmf of the packet delay on a
logarithmic scale for a GI −GI − 1 model with Poisson distributed packet
arrivals and shifted geometric service times with service rate µ = 1.25. The
different curves plotted in Figure 5.5 correspond to different values of the
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Figure 5.5: The packet delay pmf, simulated (dots) and approximated
(lines) using (5.32) for various values of the system load ρ.

system load ρ and a corresponding arrival rate of λ = ρ/µ. For low values of
the system load, the packet delay decay rate is rather large, implicating that
the probability Prob[d = n] for the delay to span n slots rapidly decreases
when n increases, resulting in a steep curve. In practice, this means that
long delays are rare and most packets will experience only a short delay.
When the system load on the other hand is high, the decay rate is small,
and long delays become abundant.

The effect of the packet service rate is depicted in Figure 5.6, where the
packet delay pmf is plotted on a logarithmic scale for a system with Poisson
distributed arrivals with rate λ = 0.2 and shifted geometric service times,
for various values of the service rate. As a higher service rate corresponds
to smaller service times, we see that the slope of the curves increases when
the service rate increases.
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Figure 5.6: The packet delay pmf, simulated (dots) and approximated
(lines) using (5.32) for various values of the service rate 1/µ.
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Part II
Generalized Service Mechanisms





Chapter 6
The Reservation Discipline

6.1 Introduction

Although modern packet-based communication networks support an in-
creasingly diverse spectrum of applications, each with their own set of Qual-
ity of Service (QoS) requirements, network traffic can roughly be divided
into two types, according to its delay sensitivity. On one side we have delay-
sensitive traffic, usually generated by real-time applications (e.g. multimedia
streaming, telephony, gaming, . . . ), characterized typically by stringent re-
quirements in terms of mean delay and delay variance (also known as jitter),
but rather tolerant to packet loss. Conversely, we also have delay-tolerant
traffic (e.g. www, ftp, e-mail, . . . ), that can withstand higher delays and
jitter, but in turn is less resilient to packet loss. As both types of traf-
fic usually have to share network resources, the challenge thus arises to
manipulate the network traffic such that both types of traffic can coexist,
with delay-sensitive traffic streams meeting their delay requirements with-
out crippling delay-tolerant traffic.

Over the years, many solutions have been proposed to tackle this issue,
varying in complexity and efficiency, with the most intuitive being the Ab-
solute Priority (AP) scheduling discipline. In a queueing system operating
under the AP discipline, traffic is divided into two classes according to its
priority, and the low-priority packets are only served if no high-priority pack-
ets are present in the queue. Due to its intuitivity, AP has been researched
extensively, both for uncorrelated packet arrivals (e.g. [87, 92, 106, 113, 115])
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and for correlated arrival processes (e.g. [4, 64, 112]). Several methodologies
have been used to study the effects of the AP discipline, such as the Supple-
mentary Variables technique [113], the Large Deviations method [64] and
matrix-analytic methods [67]. The main drawback of AP is that in a sys-
tem operating under AP, low-priority traffic can be completely obstructed
in case of a high load of high-priority traffic. This effect is called starvation
of the low-priority traffic. Variations on the AP scheduling discipline aimed
at overcoming this problem, have been proposed and studied. In [108], a
probabilistic priority scheme is discussed that assigns a small probability to
each class by which the server may provide service to a lower-priority class,
even if higher-priority packets are available. Another idea is to allow pack-
ets to be promoted to a higher-priority class under certain well-specified
conditions, or conversely, to degrade to a lower class [80, 86]. In [22], time
is divided in fixed frames and a ‘frame-bound’ priority for a certain class
is established by favorably reordering the packets that arrived within the
same frame. Priority systems usually are either strictly preemptive (i.e. the
service to low-priority packets is cancelled or interrupted as soon as a high-
priority packet is available) or strictly nonpreemptive (in which case service
in progress to a lower-priority packet is allowed to be completed before ser-
vice to a higher-priority packet is started). In [73, 116] however a hybrid
method is studied where a lower-priority service is only preempted by an
incoming higher-priority packet if the service of the former did not advance
beyond a certain threshold. The scheduling disciplines mentioned above are
all aimed at a hierarchically differentiated service, where a certain class of
traffic is granted explicit priority over other packet stream classes. Other
popular approaches to differentiated service are proportional-rate (so-called
fair-queueing) and proportional-delay methods.

The goal of proportional-rate schedulers is to guarantee for each traffic
class a pre-defined fraction of the available output bandwidth. Implemen-
tations usually have a separate queue for each class and the server visits
these queues periodically or according to a more involved rule. Generalized
Processor Sharing (GPS) achieves optimality in this respect, but this is a
theoretical approach which assumes the work in the queue to be infinitely
divisible. A suboptimal but practical approximation of GPS that can handle
atomic packets of a certain size is Weighted Fair Queuing (WFQ). Although
WFQ allows for a realistic implementation, it is computationally rather
complex since it needs to recalculate virtual finish times for all queues each
time a packet is either enqueued or dequeued somewhere. Many modifi-
cations exist: Start-time Fair Queueing (SFQ), Self-clocked Fair Queueing
(SCFQ), Worst-case Fair Weighted Fair Queueing (WF2Q), Frame-based
Fair Queueing (FFQ), Weighted Round-Robin (WRR), Deficit Round-Robin
(DRR), all of which are widely used and have their specific advantages in cer-
tain situations [55, 103]. The theoretical performance of these complicated
algorithms however is poorly understood, although there is a large body of
research on polling systems [79, 111], their queueing-theoretic counterpart.
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Recently, some studies have also been performed on the delay differentiation
of probabilistic implementations of GPS in a discrete-time setting. In [18],
the server selects a queue to pull a packet from with a probability depending
on both queue levels. A more in-depth analysis in case of a fixed probability
of choosing either queue is given in [114].

Unlike proportional-rate scheduling, proportional-delay scheduling is
concerned with fairly sharing the queueing delay incurred to the packet
streams [119, 123]. Related to proportional-delay methods are the deadline-
based disciplines, but these are not class-based strictly speaking. Deadline-
based systems require each packet to have a strict deadline by which that
packet should have been transmitted. Here, the Earliest Deadline First
(EDF) scheduler is known to achieve the smallest possible overall lateness
of the packets. Many specific scheduling disciplines have been proposed
and studied which combine elements of rate, delay, queue and even loss
fairness in order to achieve specific objectives in terms of service differenti-
ation [65, 107]. For example, the Discriminatory Processor Sharing (DPS)
discipline continuously reevaluates the GPS weights in order to assign a
higher rate to longer queues [56] or longer jobs [57].

The Reservation-based scheduling discipline, introduced by Burakowski
and Tarasiuk in [15] and studied in this chapter, offers yet another approach
towards priority scheduling. Under the Reservation discipline, a dummy
packet referred to as a reservation serves as a placeholder for a future high-
priority packet. When a high-priority packet is inserted, it takes the place
of the reservation which is reinserted at the queue’s tail afterwards. This
easy-to-implement discipline thereby effectively prevents starvation of low-
priority traffic. In the original paper [15], the mean delays of both traffic
streams were roughly estimated by means of a continuous-time model with
Poisson arrivals. The distribution of the packet delays in a discrete-time
buffer with reservation-based scheduling and general uncorrelated arrivals
has been studied in the case of constant packet service times equal to exactly
one slot [25, 26]. This chapter reproduces my research on the Reservation
discipline for general uncorrelated arrivals in case of geometric service times
[36] and general independent service times [34, 35].

6.2 The Reservation discipline

The Reservation discipline achieves its priority scheduling by a combination
of two mechanisms that both affect the way packets are inserted into the
queue. Firstly, the Reservation discipline reorders all packets arriving in
the same slot such that high-priority packets will be inserted into the queue
before the low-priority packets. Secondly, after reordering the high-priority
packets are not simply appended to the queue, rather they (one by one)
replace a dummy packet R, referred to as a reservation, which is then rein-
serted at the queue’s tail. Therefore, the first high-priority packet to be
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before insertion:

server

1121R22121

after insertion:

server

11211221R2

Figure 6.1: Example of how the Reservation discipline handles packet in-
sertion.

Arrival process

with 2 classes
FIFO Server

R

Figure 6.2: Illustration of the reservation system.

inserted at the end of a slot, can possibly jump over a large portion of the
queue and since the reservation is immediately repositioned at the end of
the queue, the remainder of the high-priority packets gain less profit. The
low-priority packets are then inserted behind the reservation.

The net effect of this insertion mechanism is illustrated in Figure 6.1,
where high-priority packets are displayed as white squares with label 1 and
low-priority packets are depicted as gray squares with label 2. The reserva-
tion is shown as a black square with label R.

Due to this twofold modification to the standard FIFO scheduling disci-
pline, every low-priority packet can be outpaced by a high-priority packet,
albeit only once. In general, this will present only a minor setback for the
low-priority traffic, but can provide a nonnegligible gain for certain high-
priority packets. The Reservation discipline can therefore be expected to
have the most impact on the high-priority delay in cases where there is
much low-priority traffic in relation to high-priority traffic. Note that, once
inserted, the priority level of the actual data packets has no further signifi-
cance for the queueing system.

6.3 Mathematical model

We reuse the GI − GI − 1 model, as described in Chapter 5, with the
application of an alternate arrival process along with the insertion mecha-
nism described above. In this chapter, the arrival process A consists of two
sub-processes A1 and A2, where A1 models the high-priority traffic and A2
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Arrival process

with 2 classes
FIFO Geometric

R

Figure 6.3: Illustration of the reservation system with geometric service
times.

corresponds to low-priority traffic. This is depicted in Figure 6.2, where a
block was added between the arrival process and the queue to indicate the
Reservation discipline and the fact that it only interferes with how packets
are inserted in the queue. Packets are classified according to the arrival
process they originated from, class 1 referring to the high-priority traffic
and class 2 being the low-priority traffic. The number of arrivals of class j
during slot k is denoted by aj,k (where j = 1, 2); the total number of arrivals
during slot k is then given by aT,k = a1,k + a2,k. The numbers of arrivals of
either class are supposed to be iid from slot to slot, but correlation between
the arrivals of both classes during a single slot is accepted. This allows us
to model the entire arrival process by the joint pgf

A(z1, z2) , E[z1
a1,kz2

a2,k ] . (6.1)

Note that we omitted the time index k for the pgf A(z1, z2), based on the
assumption that the arrival process is iid from slot to slot. We can omit this
index for the random variables a1,k and a2,k as well, but in contexts where
we want to refer to specific slots, we will specify this index as a means of
clarity. As a shorthand, we introduce the marginal pgfs A1(z) and A2(z)
and the pgf AT (z) of the sum a1,k + a2,k as

A1(z) , A(z, 1), A2(z) , A(1, z), AT (z) , A(z, z). (6.2)

The mean number of class-j arrivals is defined as λj , A′j(1), such that the

total arrival rate is λT , A′T (1) = λ1 + λ2.
We will analyze the model described above for geometric service times

and general independent service times separately in the next two sections.

6.4 Geometric service times

In this section, we assume that the service times are distributed according
to a shifted geometric distribution as illustrated in Figure 6.3. This implies

S(z) ,
σz

1− (1− σ) z
, (6.3)
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where σ = 1/µ (0 < σ ≤ 1) is the service rate.

6.4.1 System equations

In view of the delay analysis, the system state vector should contain infor-
mation about the system content and the position of R at the beginning of
a slot. Therefore, we introduce mk as the position of R within the queue at
the beginning of slot k. Note that we consider the server to be at position 0,
such that mk must always be strictly positive, with mk = 1 denoting that
R is at the head of the queue The system content uk at the beginning of
k must not include R, since it is no data packet and is ever present in the
queue. Following the definitions of mk and uk, we get that

mk = 1, if uk = 0, and 1 ≤ mk ≤ uk, if uk > 0. (6.4)

Note that, contrary to the GI − GI − 1 model, we do not include a
random variable to monitor the progress of the active service. This is typical
of systems with geometric service times, where packets in service have a
fixed probability of continuing service. We therefore introduce a Bernoulli
variable rk that equals 1 with probability σ, corresponding to the end of a
service; when rk is equal to 0, a service in progress during slot k does not
end in slot k, which occurs with probability 1 − σ. The random variable
rk does not depend on the actual value of k and is controlled by the pgf
R(z) , 1 − σ + σz. As a shorthand we introduce the complementary pgf
R̄(z) , σ + (1− σ) z.

Assuming we know the system state vector 〈mk, uk〉 at the beginning of
slot k, we can construct its slot k + 1 counterpart as follows. If there is no
class-1 arrival during slot k, any arriving class-2 packet will be appended to
the queue, without affecting the position of R. If there is at least one class-
1 arrival during slot k, R is seized and reinserted at the tail of the queue.
After all class-1 packets arriving in slot k have been inserted, any class-2
arrival will be appended to the queue. A departure only occurs at the end
of slot k, if the system is not empty at the beginning of k and if the packet
in service terminates its service at the end of slot k. These considerations
lead to the following set of system equations:

mk+1 =

{
(mk − 1− rk)

+
+ 1, if a1,k = 0,

(uk − rk)
+

+ a1,k, if a1,k > 0,
(6.5)

uk+1 = (uk − rk)
+

+ a1,k + a2,k, (6.6)

with (·)+ , max (0, ·) as introduced before.
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6.4.2 Buffer analysis

We start our buffer analysis by defining the joint pgf Pk(y, z) of the system
state vector at the beginning of slot k as

Pk(y, z) , E
[
ymk−1zuk

]
. (6.7)

We choose to add the −1 in the exponent of y such that Pk(0, 0) corresponds
to the probability of having an empty system at the beginning of slot k, since
uk = 0 implies that mk = 1. Additionally, Pk(0, z) is the partial pgf of the
system content at the beginning of slot k with R at the queue’s head.

From the system equations and based on the fact that (a1,k, a2,k) are
statistically independent of (mk, uk), we find the pgf Pk+1(y, z) of the system
state vector at the beginning of slot k + 1 as

Pk+1(y, z) , E
[
ymk+1−1zuk+1

]
= A1(0) E[za2,k |a1,k = 0]

·
(
σE
[
y(mk−2)+

z(uk−1)+
]

+ (1− σ) E
[
ymk−1zuk

])
+

1−A1(0)

y
E[(yz)

a1,kza2,k |a1,k > 0]

·
(
σE
[
(yz)

(uk−1)+
]

+ (1− σ) E[(yz)
uk ]
)

=
A(0, z)

yz

(
σy (z − 1) p0,k + σ (y − 1)Pk(0, z) + R̄(yz)Pk(y, z)

)
+
A(yz, z)−A(0, z)

y2z

(
σ (yz − 1) p0,k + R̄(yz)Pk(1, yz)

)
, (6.8)

where p0,k denotes the probability of the system to be empty at the begin-
ning of slot k. Note that

p0,k , Prob[uk = 0,mk = 1] = Prob[uk = 0]

= Pk(0, 0) = Pk(1, 0) = Pk(y, 0), ∀y. (6.9)

Assuming the equilibrium condition λT < σ holds, the functions Pk(y, z)
and Pk+1(y, z) for k → ∞ converge to the same limiting function P (y, z).
Taking this limit of (6.8), we get the pgf P (y, z) of the system state at the
beginning of a random steady-state slot as

P (y, z) =
A(0, z)

yz

(
σy (z − 1) p0 + σ (y − 1)P (0, z) + R̄(yz)P (y, z)

)
+
A(yz, z)−A(0, z)

y2z

(
σ (yz − 1) p0 + R̄(yz)P (1, yz)

)
=

σA(0, z)

yz − R̄(yz)A(0, z)
(y (z − 1) p0 + (y − 1)P (0, z)) (6.10)

+
A(yz, z)−A(0, z)

y
(
yz − R̄(yz)A(0, z)

) (σ (yz − 1) p0 + R̄(yz)P (1, yz)
)
.
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This result will be further expanded once we have obtained closed-form
expressions for the unknowns p0, P (0, z) and P (1, z).

The marginal pgf U(z) of the system content u at the beginning of a
random steady-state slot can be found as

U(z) , E[zu] = P (1, z)

=
1

z − R̄(z)A(0, z)

[
σAT (z) (z − 1) p0 + (AT (z)−A(0, z)) R̄(z)U(z)

]
=

(z − 1)S(AT (z))

z − S(AT (z))
p0. (6.11)

The mean system content at the beginning of a random steady-state slot
can then be found as

E[u] = U ′(1) = λTµ+
λ′Tµ+ λ2

Tµ
′

2p0
=
λT
σ

+
λ′T

2σp0
+
λ2
T (1− σ)

σ2p0
, (6.12)

where we introduced the shorthand notations λ′T , A′′T (1) and µ′ , S′′(1) =
2 (1− σ) /σ2.

Note that the system content is not in any way affected by the Reserva-
tion discipline: R is not included in the system content and once inserted,
no more distinction is made by the system between packets of either class.
Therefore it could be expected that (6.11) and (6.12) would be similar to
(5.20) and (5.21). Application of the normalization condition to (6.11) al-
lows us to determine the empty system probability as

p0 = 1− λT
σ

= 1− λTµ, (6.13)

similar to the corresponding result in the GI −GI − 1 model.
Substitution of (6.11) in (6.10) yields

P (y, z) =
σA(0, z)

yz − R̄(yz)A(0, z)
(y (z − 1) p0 + (y − 1)P (0, z)) (6.14)

+
(yz − 1) (A(yz, z)−A(0, z))

y
(
yz − R̄(yz)A(0, z)

) (
σ + R̄(yz)

S(AT (yz))

yz − S(AT (yz))

)
p0.

For y = R̄(yz)A(0, z)/z, the denominator in (6.14) becomes 0, presumably
causing a singularity. After some calculations, this equality becomes y =
S(A(0, z))/z. Assuming such values of y exist within the open unit disk
for values of z also in the open unit disk (i.e. |S(A(0, z))/z| , |z| < 1), the
numerator in (6.14) must become 0 as well, because P (y, z) is a pgf and
thus analytic for every y and z both in the open unit disk. Note that this
assumption is realistic, as we show in Section 6.7, there always exists a
non-empty subset ℵ of the open unit disk such that

z ∈ ℵ ⇒
∣∣∣∣S(A(0, z))

z

∣∣∣∣ < 1. (6.15)
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This yields an additional relation that allows us to find P (0, z) as

P (0, z) =
p0

z − S(A(0, z))

[
(z − 1)S(A(0, z)) + z2 1− S(A(0, z))

S(A(0, z))
φ(z)

]
,

(6.16)

where we introduced the shorthand

φ(z) =
A(0, z)−A(S(A(0, z)), z)

A(0, z)−AT (S(A(0, z)))
. (6.17)

Finally, we can get a closed-form expression for P (y, z) by substituting
(6.16) in (6.14), resulting in

P (y, z) =
p0

yz − S(A(0, z))

[
(z − 1)S(A(0, z))

yz − S(A(0, z))

z − S(A(0, z))

+ z (yz − 1)
S(A(0, z))− S(AT (yz))

A(0, z)−AT (yz)

A(yz, z)−A(0, z)

yz − S(AT (yz))

+z2 (y − 1)
1− S(A(0, z))

z − S(A(0, z))
φ(z)

]
. (6.18)

6.4.3 Packet delay analysis

The actual goal of the Reservation discipline, is to decrease the mean delay
for class-1 packets, without interfering too much with the mean class-2
packet delay. It therefore makes sense to analyze the packet delay for the
two classes separately, by selecting a random steady-state class-j (∈ {1, 2})
packet Pj and investigating its delay dj . Similar to the delay analysis in the
GI−GI−1 model, we note that due to the iid nature of the arrival process,
the BASTA-property holds. Thus although the arrival slot S of packet Pj
is not a random slot, the system state distribution at the beginning of S
is identical to the system state distribution at the beginning of a random
steady-state slot, governed by the joint pgf P (y, z).

In contrast, the numbers of arrivals (a1,S , a2,S) during slot S does not
have the same distribution as the numbers of arrivals (a1, a2) during a ran-
dom steady-state slot. Not only do we have that aj,S ≥ 1, but the probabil-
ity that the randomly selected packet Pj belongs to slot S is proportional
to the number of class-j arrivals during S. Similar to (5.25), we then find

Prob[a1,S = α1, a2,S = α2] =
αj
λj

Prob[a1 = α1, a2 = α2] . (6.19)

Since all a1,S class-1 packets will be inserted before any of the a2,S class-2
packets, we only need to keep track of the relative position of Pj among
all aj,S class-j packets. Therefore we define χPj as the number of class-j



50 The Reservation Discipline

packets arriving during S that are to be served before Pj . Similar to (5.27),
the pgf Xj of χPj can then be found as

Xj(z) , E[zχPj ] =
Aj(z)− 1

λj (z − 1)
, (6.20)

with mean

E
[
χPj

]
= X ′j(1) =

λ′j
2λj

, (6.21)

where λ′j , A′′j (1).

Delay of class-1 packets

The delay d1 of a random class-1 packet P1 is fully determined by

• the remaining service time of the packet in service at the beginning of
S, if any;

• the total service time of the data packets in the queue (i.e. excluding
the packet in the server, if any) at the beginning of S, that have to
be served before P1;

• the total service time of the χP1
class-1 packets arriving along with

P1, that have to be served before P1;

• the service time of P1 itself.

Let n1 be the sum of the number of packets mentioned in the second and
third item, i.e. the total number of packets in front of P1 at the actual
moment of its insertion, excluding the one in the server, if any. If P1 is the
first class-1 arrival in slot S (i.e. χP1

= 0), it will replace the reservation
R at position mS in the queue. On the other hand, if P1 is not the first
class-1 packet arriving in slot S (i.e. χP1

> 0), it will be appended to the
queue in arrival order, such that all (uS − 1)

+
data packets, present in the

queue itself at the beginning of S, will be served before P1. This translates
to

n1 =

{
mS − 1, if χP1

= 0,

(uS − 1)
+

+ χP1 , if χP1 > 0.
(6.22)

The delay d1 of P1 can thus be found as

d1 =

{∑n1+1
i=1 si, if uS = 0,∑rS+n1+1
i=1 si, if uS > 0,

(6.23)

where rS = 0 corresponds with a departure during slot S and rS = 1 denotes
that the packet in service at the beginning of S does not leave the system
during slot S. The si denote service times of individual packets; due to the
memoryless property of the geometric distribution, we do not need to make
any distinction between the packet in service at the beginning of slot S, if
any, and the other packets.
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The pgf D1(z) of the class-1 packet delay d1 can then be calculated as

D1(z) , E
[
zd1
]

= E
[
S(z)

n1+1 {uS = 0}
]

+
S(z)

z
E
[
S(z)

n1+1 {uS > 0}
]

= p0S(z)X1(S(z)) +X1(0)
S(z)

2

z
(P (S(z), 1)− p0)

+
S(z)

z
(X1(S(z))−X1(0)) (U(S(z))− p0)

=
p0S(z)

λ1

[
1−A1(S(z))

1− S(z)
− (1−A1(0))

S(z)

z

− 1−AT (S(z))

z −AT (S(z))

(
S(z)−A1(S(z))

1− S(z)
+A1(0)

)
(6.24)

+ (1− z) 1−A1(0)

z −A1(0)

(
A1(0)−A1(S(z))

z −AT (S(z))
− A1(0)S(z)

zS(A1(0))
φ(1)

)]
.

From (6.24) we can find the expected class-1 delay after some mathematical
elaboration as

E[d1] =
1

σ

(
2 +

λ′T
2σp0

+
λ′1 − 2λT

2λ1

)
− p0

λ1

A1(0)

S(A1(0))
(1− φ(1)) +

λTµ
′

2p0
,

(6.25)
where λ′T , A′′T (1).

Delay of class-2 packets

Similar to n1, we define n2 as the total number of data packets in front of a
random steady-state class-2 packet P2 at the actual moment of its insertion,
excluding the one in the server, if any. This includes

• the (uS − 1)
+

data packets in the queue at the beginning of S, ex-
cluding the one in the server, if any;

• the a1,S class-1 packets arriving during slot S;

• the χP2 class-2 packets arriving along with P2, that have to be served
before P2;

or more concise

n2 = (uS − 1)
+

+ a1,S + χP2
. (6.26)

Note that P2 is preceded in the queue by the reservation R, which is
in fact no data packet and therefore does not contribute to P2’s delay. As
long as P2 has not yet entered the server, R can however be replaced by a
class-1 packet, which in turn does contribute to the delay of P2. Therefore,
we first define v as the sum of the remaining service time minus 1 slot of
the packet in service at the beginning of S, if any, and the total service time
of all n2 data packets that arrive during S and have to be served before
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P2. The random variable v thus represents the minimal number of slots P2

spends in the queue before entering the server and can be found as

v =

{∑n2

i=1 si, if uS = 0,∑rS+n2

i=1 si, if uS > 0.
(6.27)

Note that due to the fact that χP2
depends on a2,S , we have that a1,S and

χP2 are stochastically correlated, with their joint pgf following from (6.19):

E[xa1,SyχP2 ] = E

[
xa1,S

a2,S−1∑
n=0

1

a2,S
yn

]
= E

[
xa1,S (ya2,S − 1)

a2,S (y − 1)

]
= E

[
xa1 (ya2 − 1)

λ2 (y − 1)

]
=
A(x, y)−A1(x)

λ2 (y − 1)
, (6.28)

such that the pgf V (z) of v can be found as

V (z) , E[zv] = E[S(z)
n2 {uS = 0}] +

S(z)

z
E[S(z)

n2 {uS > 0}]

= E
[
S(z)

a1,S+χP2

](
p0 +

U(S(z))− p0

z

)
=
σp0

λ2

z

S(z)

AT (S(z))−A1(S(z))

z −AT (S(z))
. (6.29)

Note that the expression U(S(z)) in the above calculation bears some spe-
cial meaning. If we consider the amount of work in the system during an
arbitrary steady-state slot, instead of the number of packets, it is clear that
due to the memoryless nature of the service time distribution the pgf of this
quantity is given by U(S(z)), which yields

U(S(z)) = p0AT (S(z))
z − 1

z −AT (S(z))
. (6.30)

The delay of P2 then consists of these v slots augmented with 1 service
time (i.e. of P2 itself) if R is not replaced during the v slots or augmented
with 2 service times if a class-1 packet does arrive before P2 enters the
server. Introducing the Bernoulli variable γn that is equal to 0 if and only
if no class-1 packet arrives during n consecutive slots, we have that

Prob[γn = 0] = A1(0)
n
, and Prob[γn = 1] = 1−A1(0)

n
, (6.31)

with pgf
Γn(z) , E[zγn ] = z + (1− z)A1(0)

n
. (6.32)

The class-2 packet delay d2 can then simply be calculated as

d2 = v + sP + γvs∗, (6.33)
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where sP is the service time of P2 and s∗ is the service time of the class-
1 packet that seized R, if any. Both these service times are identically
distributed as random service times and thus have pgf S(z). We then find

D2(z) , E
[
zd2
]

= E
[
zv+sP+γvs∗

]
= S(z) E[zvS(z)

γv ]

= S(z) [S(z)V (z) + (1− S(z))V (zA1(0))]

=
σp0zS(z)

λ2

[
AT (S(z))−A1(S(z))

z −AT (S(z))
(6.34)

+ (1− S(z))
A1(0)

S(zA1(0))

AT (S(zA1(0)))−A1(S(zA1(0)))

zA1(0)−AT (S(zA1(0)))

]
.

The mean class-2 packet delay is then

E[d2] =
1

σ

(
2 +

λ′T
2σp0

+
λ′T − λ′1

2λ2
− V (A1(0))

)
+
λTµ

′

2p0
. (6.35)

Delay of a random packet

Additionally, we can determine the distribution of the delay d of a random
steady-state packet, thus without selecting the class in advance. The prob-
ability for a random steady-state packet P to belong to a specific class-j
can be simply found as

Prob[P belongs to class j] =
λj
λT

. (6.36)

The pgf D(z) of the delay d of P is then the weighted sum of the delay pgfs
of both classes

D(z) =

2∑
j=1

λj
λT

Dj(z). (6.37)

More importantly, the mean packet delay E[d] of a random steady-state
packet can then be calculated as

E[d] = D′(1) =
λ1

λT
E[d1] +

λ2

λT
E[d2] =

1

σ
+

λ′T
2λTσp0

+
λTµ

′

2p0
. (6.38)

Note that (6.38) is identical to (5.30) after substitution of S(z) as in (6.3).
Therefore, it comes as no surprise that (6.12) and (6.38) comply with Little’s
law, which for this system translates to

E[u] = λT E[d] = λ1 E[d1] + λ2 E[d2] . (6.39)

Tail distributions

From (6.24) and (6.34), it can be shown that the tail distributions of the
packet delay for both packet classes are governed by the same dominant
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Figure 6.4: Illustration of the reservation system with general independent
service times.

pole zd. This dominant pole is the smallest real positive zero larger than 1
of the factor z − AT (S(z)) in the denominators. The complex residues θj
(j ∈ {1, 2}) of the pgfs Dj(z) for z = zd can then be found as

θ1 =
p0 (zd − 1)S(zd)

λ1 (1−A′T (S(zd))S′(zd))

[
S(zd)−A1(S(zd))

1− S(zd)
(6.40)

+
A1(0) (zd − 1) + (1−A1(0))A1(S(zd))

zd −A1(0)

]
,

and

θ2 =
σp0zdS(zd)

λ2

zd −A1(S(zd))

1−A′T (S(zd))S′(zd)
. (6.41)

The tail distribution of the class-j packet delay can then be approximated
as

Prob[dj = n] ≈ −θjzd−n−1. (6.42)

6.5 General service times

In this section we let go of the restriction for the service times to be geo-
metrically distributed. Instead, we assume a general iid server process, just
like in the GI −GI − 1 model, such that service times are independent and
identically distributed for subsequent packets. The corresponding system is
illustrated in Figure 6.4.

6.5.1 System equations

In the previous section, the geometric server process allowed us to discard all
information about the progress of the active service from the system state
vector. In case of general independent service times however, the remaining
service time hk at the beginning of slot k of a packet in service is required
in order to determine the distributions of the system content uk+1 and the
remaining service time hk+1 at the beginning of slot k + 1. We therefore
expand the system state vector at the beginning of slot k from the previous
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section to the vector 〈hk,mk, uk〉. Where mk and uk are the position of the
reservation R and the system content at the beginning of slot k, as defined
in the previous section.

In order to construct the system equations, we first combine the obser-
vations from the GI−GI−1 model and the reservation model for geometric
service times. Only in case the system is empty (uk = 0) at the beginning of
slot k, hk = 0, by definition. The reservation R is then at the first position
in the queue, such that mk = 1, and will move backward in the queue ac-
cording to the number of class-1 arrivals during slot k. If there are arrivals
during slot k, one of these packets will be allowed access to the server at the
beginning of slot k+ 1. In case the system is not empty at the beginning of
slot k, the packet in the server receives one more slot of service during slot
k, such that a departure occurs if hk = 1. The reservation will only move
backward in the queue if class-1 packets arrive during slot k. If a departure
occurs at the end of slot k, all packets will shift one position closer, except
for R if it was already at position 1. These observations yield the following
sets of system equations:

• if hk = 0:

hk+1 =

{
0, if aT,k = 0,

s, if aT,k > 0,

mk+1 =

{
1, if a1,k = 0,

a1,k, if a1,k > 0,

uk+1 = aT,k, (6.43)

• if hk = 1:

hk+1 =

{
0, if uk = 0 and aT,k = 0,

s, if uk > 0 or aT,k > 0,

mk+1 =

{
(mk − 2)

+
+ 1, if a1,k = 0,

uk − 1 + a1,k, if a1,k > 0,

uk+1 = uk − 1 + aT,k, (6.44)

• if hk > 1:

hk+1 = hk − 1,

mk+1 =

{
mk, if a1,k = 0,

uk + a1,k, if a1,k > 0,

uk+1 = uk + aT,k. (6.45)
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6.5.2 Buffer analysis

The system state pgf Pk(x, y, z) at the beginning of slot k is defined as

Pk(x, y, z) , E
[
xhkymk−1zuk

]
. (6.46)

Note that again, we refer to mk − 1 rather than to mk itself; in this way,
since uk = 0 if and only if both hk = 0 and mk = 1, Pk(0, 0, 0) is the
probability of having an empty system at the beginning of slot k. Using the
law of total expectation, we can then determine Pk+1(x, y, z) as follows

Pk+1(x, y, z) , E
[
xhk+1ymk+1−1zuk+1

]
= E

[
xhk+1ymk+1−1zuk+1 {hk = 0}

]
+ E

[
xhk+1ymk+1−1zuk+1 {hk = 1}

]
+ E

[
xhk+1ymk+1−1zuk+1 {hk > 1}

]
, (6.47)

according to the three cases for the system equations distinguished in the
previous section.

The first term on the right hand side of (6.47) can then be calculated
by application of (6.43). Again using the law of total expectation, we get

E
[
xhk+1ymk+1−1zuk+1 {hk = 0}

]
= E

[
x0y0z0 {hk = 0, a1,k = 0, a2,k = 0}

]
+ E

[
xs
∗
za2,k {hk = 0, a1,k = 0, a2,k > 0}

]
+ E

[
xs
∗
ya1,k−1zaT,k {hk = 0, a1,k > 0}

]
,

=

(
AT (0) + S(x) (A(0, z)−AT (0)) +

S(x)

y
(A(yz, z)−A(0, z))

)
p0,k

=

(
(1− S(x))AT (0) +

S(x)

y
((y − 1)A(0, z) +A(yz, z))

)
p0,k, (6.48)

where p0,k , Prob[hk = 0] = Pk(0, 0) is the probability that the system is
empty at the beginning of slot k. The second term on the right hand side
of (6.47) can be found similarly by using (6.44) as

E
[
xhk+1ymk+1−1zuk+1 {hk = 1}

]
= E

[
x0y0z0 {hk = 1, uk = 1, a1,k = 0, a2,k = 0}

]
+ E

[
xs
∗
y(mk−2)+

zuk−1 {hk = 1, uk > 1, a1,k = 0, a2,k = 0}
]

+ E
[
xs
∗
y(mk−2)+

zuk−1+a2,k {hk = 1, a1,k = 0, a2,k > 0}
]

+ E
[
xs
∗
yuk+a1,k−2zuk−1+aT,k {hk = 1, a1,k > 0}

]
= (1− S(x))AT (0)Qk(0, 0) +

S(x)

y
A(0, z) (Qk(y, z) + (y − 1)Qk(0, z))

+
S(x)

y
(A(yz, z)−A(0, z))Qk(1, yz), (6.49)



Chapter 6 57

where we introduced the function Qk(y, z) as

Qk(y, z) , E
[
ymk−1zuk−1 {hk = 1}

]
=

∞∑
i=1

∞∑
j=1

Prob[hk = 1,mk = i, uk = j] yi−1zj−1. (6.50)

We then find the third term on the right hand side of (6.47) from (6.45) as

E
[
xhk+1ymk+1−1zuk+1 {hk > 1}

]
= E

[
xhk−1ymk−1zuk+a2,k {hk > 1, a1,k = 0}

]
+ E

[
xhk−1yuk+a1,k−1zuk+aT,k {hk > 1, a1,k > 0}

]
=
A(0, z)

x
(Pk(x, y, z)− p0,k − xzQk(y, z))

+
A(yz, z)−A(0, z)

xy
(Pk(x, 1, yz)− p0,k − xyzQk(1, yz)) . (6.51)

Substitution of (6.48), (6.49) and (6.51) into (6.47) then allows us to express
Pk+1(x, y, z) in terms of Pk(x, y, z):

Pk+1(x, y, z) =
1

x
A(0, z)Pk(x, y, z) +AT (0) (1− S(x)) (p0,k +Qk(0, 0))

+
xS(x)− 1

xy
((y − 1)A(0, z) +A(yz, z)) p0,k

+
y − 1

y
S(x)A(0, z)Qk(0, z) +

S(x)− yz
y

A(0, z)Qk(y, z)

+
S(x)− yz

y
(A(yz, z)−A(0, z))Qk(1, yz)

+
1

xy
(A(yz, z)−A(0, z))Pk(x, 1, yz). (6.52)

Given the fact that if the system is empty at the beginning of slot k, the
reservation R is at the head of the queue (i.e. mk = 1) and by definition
hk = 0, we get that

p0,k , Prob[uk = 0] = Prob[hk = 0,mk = 1, uk = 0]

= Pk(0, 0, 0) = Pk(x, y, 0), ∀x, y. (6.53)

Similarly, if there is exactly one packet in the system at the beginning of
slot k, this packet must reside in the server and the queue itself is empty,
which again means that R is at the queue’s head.

Qk(0, 0) = Prob[hk = 1,mk = 1, uk = 1] = Qk(y, 0), ∀y. (6.54)

Assuming system stability (i.e. λTµ < 1), expressions (6.46) and (6.52)
will converge for k →∞ and the system will reach a steady state. Omitting
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the time index k for expressions corresponding to this steady state, we
determine the system state pgf in steady-state as

P (x, y, z) =
1

y (x−A(0, z))
[xy (1− S(x))AT (0) (p0 +Q(0, 0))

+ (xS(x)− 1) ((y − 1)A(0, z) +A(yz, z)) p0

+ x (y − 1)S(x)A(0, z)Q(0, z) + x (S(x)− yz)A(0, z)Q(y, z)

+ x (S(x)− yz) (A(yz, z)−A(0, z))Q(1, yz)

+ (A(yz, z)−A(0, z))P (x, 1, yz)] . (6.55)

Substitution of y = 1 then yields

P (x, 1, z) =
1

x−AT (z)
[x (1− S(x))AT (0) (p0 +Q(0, 0))

+ (xS(x)− 1)AT (z)p0 + x (S(x)− z)AT (z)Q(1, z)] . (6.56)

Note the similarity between (6.55) and the initial expression for the steady-
state pgf of the system state of the GI − GI − 1 model (5.10). In fact,
substitution of y = 1 yields an expression without knowledge about R’s
position in the queue. The Reservation discipline only interferes with how
packets are inserted into the queue and has no effect whatsoever on the
system content or the service times. Similar to the argumentation in the
previous section, it therefore was to be expected that substitution of y = 1
results in expressions similar to the ones in the GI −GI − 1 model.

Moreover, results obtained for the GI − GI − 1 model can be adopted
and transformed according to the parameters of the current system. This
yields for the empty system probability

p0 = 1−A′T (1)S′(1) = 1− λTµ. (6.57)

The system content pgf follows as

U(z) , E[zu] = Q(1, z) =
S(AT (z)) (AT (z)− 1)

AT (z) (z − S(AT (z)))
p0, (6.58)

with mean

E[u] = U ′(1) = (1− p0) +
λ′Tµ+ λ2

Tµ
′

2p0
, (6.59)

where λ′T , A′′T (1) and µ′ , S′′(1).
Substitution of z = 0 in (6.56) and using the property that Q(y, 0) =

Q(0, 0),∀y (see (6.53)), it then follows that

p0 =
AT (0)

x−AT (0)
((x− 1) p0 + xQ(0, 0)) , ∀x. (6.60)
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After substitution of x = 1, we get

p0 =
AT (0)Q(0, 0)

1−AT (0)
, (6.61)

such that

AT (0) (p0 +Q(0, 0)) = p0. (6.62)

Since P (x, y, z) is a pgf, it must be bounded for all points (x, y, z) for
which |x| ≤ 1, |y| ≤ 1 and |z| ≤ 1. In particular, this should hold for
(A(0, z), y, z) with |y| ≤ 1 and |z| ≤ 1. Mind that, due to the fact that
A(z1, z2) is a pgf, we have that |A(0, z)| ≤ 1 for |z| ≤ 1. However, if
we were to substitute x = A(0, z) in (6.55), the denominator would be-
come 0 such that the corresponding numerator should vanish as well. This
way, we can then apply de l’Hôpital’s theorem to find a bounded value
for P (A(0, z), y, z). With (6.58) and (6.62), this consideration leads to an
additional relation which allows us to determine Q(y, z) as

Q(y, z) =
S(A(0, z))

yz − S(A(0, z))

A(0, z)− 1

A(0, z)

(
y +

A(yz, z)−A(0, z)

A(0, z)−AT (yz)

)
p0

+
(y − 1)S(A(0, z))

yz − S(A(0, z))
Q(0, z)− A(yz, z)−A(0, z)

A(0, z)−AT (yz)
Q(1, yz). (6.63)

The same argumentation can be applied to the partial pgf Q(y, z) ,
E
[
ym−1zu−1 {h = 1}

]
with respect to the denominator yz−S(A(0, z)). Just

like any normal pgf, partial pgfs must also be bounded for arguments on
the unit disk (which in this case corresponds to when |y| ≤ 1, |z| ≤ 1), such
that there must not be any singularities in the open unit disk. Provided
we can find a point (S(A(0, z))/z, z) in the unit disk, a bounded value for
Q(S(A(0, z))/z, z) can only be found if the numerator becomes 0, yielding

Q(0, z) =
A(0, z)− 1

A(0, z) (z − S(A(0, z)))
(S(A(0, z))− zφ(z)) p0, (6.64)

where we recycled φ(z) from (6.17). We note again that it is possible to
find a non-empty subset ℵ of the open unit disk that contains a z for which
|S(A(0, z))/z| ≤ 1. We will come back on this in 6.7.

At this point, we have determined all of the unknowns in (6.55). Sub-
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stitution of these results then yields the closed-form expression

P (x, y, z) = p0

{
1− xz 1−A(0, z)

x−A(0, z)

S(x)− S(A(0, z))

z − S(A(0, z))

}
+

p0

yz − S(A(0, z))

{
xz (yz − S(x))

A(0, z)−AT (yz)

A(yz, z)−A(0, z)

yz − S(AT (yz))(
S(A(0, z))

1−A(0, z)

x−A(0, z)
− S(AT (yz))

1−AT (yz)

x−AT (yz)

)
+

xz (1− x)

x−A(0, z)

A(yz, z)−A(0, z)

x−AT (yz)

(
S(A(0, z))

S(x)− S(AT (yz))

yz − S(AT (yz))
− S(x)

)
+xz2 (y − 1)

1−A(0, z)

x−A(0, z)

S(x)− S(A(0, z))

z − S(A(0, z))
φ(z)

}
. (6.65)

6.5.3 Packet delay analysis

The analysis of the packet delay is very similar to that presented in the
previous section. In fact, the only difference is in the service time distri-
bution, such that all argumentations that do not involve the actual service
time distribution can be adopted without hesitation.

For instance, this implies that for a random steady-state class-j packet
Pj , the system state distribution at the beginning of its arrival slot S, is
stochastically identical to that of a random steady-state slot, governed by
P (x, y, z). The pmf of the numbers of arrivals (a1,S , a2,S) during slot S is
given by

Prob[a1,S = α1, a2,S = α2] =
αj
λj

Prob[a1 = α1, a2 = α2] . (6.66)

The pgf of the number of class-j packets χPj arriving during S and to be
served before P is

Xj(z) , E[zχPj ] =
Aj(z)− 1

λj (z − 1)
. (6.67)

Delay of class-1 packets

Similar as in 6.4.3, the delay of a class-1 packet P1 can be determined from

• the remaining service time hS of the packet in service during slot S,
if any;

• the total service time of all data packets in the queue (i.e. excluding
the packet in the server, if any) at the beginning of S, that have to
be served before P1;

• the total service time of the χP1 class-1 packets arriving along with
P1, that have to be served before P1;

• the service time of P1 itself.
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Note that this time, the service time distribution generally is not memory-
less, such that similar to (6.23) we now get

d1 = (hS − 1)
+

+

n1+1∑
i=1

si, (6.68)

where n1 is the number of data packets in the queue (i.e. excluding the
packet in the server, if any) and to be served before P at the exact time of
its insertion in the queue and the sis denote complete service times of the
n1 packets and P itself. The value of n1 depends on the system state at
the beginning of S the number χP1

of class-1 arrivals during S and to be
served before P, specifically we have{

n1 = mS − 1, if χP1
= 0,

n1 = (uS − 1)
+

+ χP1
, if χP1

> 0.
(6.69)

The pgf D1(z) of the class-1 packet delay d1 can then be found as

D1(z) , E
[
zd1
]

= E
[
S(z)

n1+1
∣∣∣uS = 0

]
+ E

[
zhS−1S(z)

n1+1
∣∣∣uS > 0

]
= p0S(z)X1(S(z)) +X1(0)

S(z)

z
(P (z, S(z), 1)− p0)

+
1

z
(X1(S(z))−X1(0)) (P (z, 1, S(z))− p0)

=
p0

λ1
S(z)

{
1−A1(S(z))

1− S(z)
+ (z − 1)

1−A1(0)

z −A1(0)

A1(S(z))−A1(0)

z −AT (S(z))

+
AT (S(z))− 1

z −AT (S(z))

S(z)−A1(S(z)) + (1− S(z))A1(0)

1− S(z)

+
(1−A1(0))2 [S(A1(0))− S(z) + (S(z)− 1)φ(1)]

(z −A1(0)) (1− S(A1(0)))

}
. (6.70)

The mean class-1 packet delay can then be found as

E[d1] = µ

(
2 +

λ′Tµ
2p0

+
λ′1 − 2λT

2λ1
− p0

λ1

1−A1(0)

1− S(A1(0))
(1− φ(1))

)
+
λTµ

′

2p0
.

(6.71)

Delay of class-2 packets

When a class-2 packet is inserted in the queue, it is always inserted behind
the reservation R, such that the class-2 packet delay distribution depends
on the possibility of R to be taken by a class-1 packet. Therefore, we first
consider the number of slots v a random class-2 packet P2 would have to
wait in the queue if the reservation is not taken. This number depends on

• the remaining service time hS of the packet in service during slot S,
if any;
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• the (uS − 1)
+

data packets in the queue at the beginning of S, ex-
cluding the one in the server, if any;

• the a1,S class-1 packets arriving during slot S;

• the χP2
class-2 packets arriving along with P2, that have to be served

before P2;

such that v can then be calculated as

v = (hS − 1)
+

+

(uS−1)++a1,S+χP2∑
i=1

si. (6.72)

As explained in the analysis for geometric service times, the random vari-
ables a1,S and χP2

are correlated, with joint pgf

E[xa1,SyχP2 ] =
A(x, y)−A1(x)

λ2 (y − 1)
, (6.73)

such that the pgf V (z) of v can be found as

V (z) , E[zv] = E

[
z(hS−1)++

∑(uS−1)++a1,S+χP2
i=1 si

]
= E

[
S(z)

a1,S+χP2 {uS = 0}
]
+

1

zS(z)
E
[
zhSS(z)

uS+a1,S+χP2{uS > 0}
]

= E
[
S(z)

a1,S+χP2

]
S(z)

(
p0 +

P (z, 1, S(z))− p0

zS(z)

)
=
p0

λ2

1− z
1− S(z)

AT (S(z))−A1(S(z))

z −AT (S(z))
. (6.74)

If the reservation R is not seized during these v slots (i.e. there is no
class-1 arrival in any of v subsequent slots), P2 will enter the server as
planned. If a class-1 packet does arrive before P2 is in service, the total
waiting time of P2 is augmented with one service time such that

d2 = v + sP + γvs∗, (6.75)

where γn is a Bernoulli random variable that is 0 with probability A1(0)
n
,

which corresponds to the reservation not being seized. Additionally, sP is
the service time of P2 and s∗ is the service time of the class-1 packet that
seized R, if any. The pgf D2(z) of the class-2 packet delay d2 follows as

D2(z) , E
[
zd2
]

= S(z) {S(z)V (z) + (1− S(z))V (zA1(0))}

=
p0

λ2
S(z)

{
S(z)

1− z
1− S(z)

AT (S(z))−A1(S(z))

z −AT (S(z))
(6.76)

+ (1− S(z))
1− zA1(0)

1− S(zA1(0))

AT (S(zA1(0)))−A1(S(zA1(0)))

zA1(0)−AT (S(zA1(0)))

}
,
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and the expected class-2 packet delay then becomes

E[d2] = µ

(
2 +

λ′Tµ
2p0

+
λ′T − λ′1

2λ2
− V (A1(0))

)
+
λTµ

′

2p0
. (6.77)

Delay of a random packet

Again, the pgf D(z) of the delay d of a random steady-state packet (i.e. the
packet can be of either class) can be found from the weighted sum of the
class specific delay pgfs as

D(z) =

2∑
j=1

λj
λT

Dj(z), (6.78)

with mean

E[d] = D′(1) =
λ1

λT
E[d1] +

λ2

λT
E[d2] = µ

(
1 +

λ′T
2λT p0

)
+
λTµ

′

2p0
. (6.79)

As expected, the results (6.59) and (6.79) comply with Little’s law.

Tail distributions

Similar to the case of geometric arrivals, the packet delay pgfs D1(z) and
D2(z) share the same dominant pole zd, defined by the equation zd −
AT (S(zd)) = 0. Assuming we know zd, we can then calculate the com-
plex residues θj (j ∈ {1, 2}) of the pgfs Dj(z) for z = zd as

θ1 =
p0 (zd − 1)S(zd)

λ1 (1−A′T (S(zd))S′(zd))

[
S(zd)−A1(S(zd))

1− S(zd)
(6.80)

+
A1(0) (zd − 1) + (1−A1(0))A1(S(zd))

zd −A1(0)

]
,

and

θ2 =
p0

λ2
S(zd)

2 1− zd
1− S(zd)

zd −A1(S(zd))

1−A′T (S(zd))S′(zd)
. (6.81)

From these residues, the tail distribution of the class-j packet delay can
then be approximated as

Prob[dj = n] ≈ −θjzd−n−1. (6.82)

6.6 Relation to the GI −GI − 1 model

As depicted in Figure 6.2, the Reservation discipline imposes some restric-
tions and modifications to the GI −GI − 1 model:
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• the packets generated by the arrival process can be categorized into
two classes reflecting the priority level;

• a reorder unit ensures that during each slot all newly generated high-
priority packets are inserted before any newly generated low-priority
packets;

• a reservation R is inserted in the queue as a placeholder for future
high-priority packets;

• when a high-priority packet is inserted in the queue, it replaces the
reservation R in the queue, the reservation in turn moves to the tail
of the queue.

As such, a normal FIFO queue fed by a two-class arrival stream can adopt
the Reservation discipline by the insertion of a reservation and some minor
changes to the way data packets are inserted to the queue. Most other
scheduling disciplines aimed at service differentiation require more profound
modifications, such as additional queues, decision units to select a certain
queue or packet according to some predefined settings.

Although the modifications required by the aforementioned differenti-
ated service discipline essentially change the way packets traverse through
the system, the effects of these schedulers can be suppressed by grouping
all packets into a single class, such that one of λ1 or λ2 is equal to 0. In
case of the Reservation discipline, this would eliminate the need for packet
reordering and cause all packets to be inserted to the queue either in front
of R (when λT = λ1) or behind the reservation (when λT = λ2). We now
explore the two possibilities λ2 = 0 and λ1 = 0 and study how this setting
affects some of the expressions obtained in 6.5.

First, we consider the case where there are only high-priority packets,
such that λT = λ1 and λ2 = 0. Given that the number of low-priority
arrivals during any slot k is a2,k = 0, the joint pgf A(z1, z2) breaks down to

A(z1, z2) , E
[
z1
a1z2

0
]

= E[z1
a1 ] = A1(z1)

= E[z1
aT ] = AT (z1), ∀z2. (6.83)

Furthermore, we know that R will always be at the queue’s tail, such that
mk = (uk − 1)

+
+ 1 at the beginning of any slot k, such that the joint

system state pgf P (x, y, z) can be found as

P (x, y, z) = lim
k→∞

Pk(x, y, z) = lim
k→∞

E
[
xhky(uk−1)+

zuk
]

= lim
k→∞

Pk(x, 1, yz) + (y − 1) p0,k

y
=
P (x, 1, yz) + (y − 1) p0

y

= p0

[
1− xz (1−A1(yz)) (S(x)− S(A1(yz)))

(x−A1(yz)) (yz − S(A1(yz)))

]
. (6.84)

Note that it is redundant to keep track of the position of R, since we deter-
mine its position directly from the system content. Furthermore, given the



Chapter 6 65

homogeneous nature of the arrival stream, the Reservation discipline will
have no effect on the ordering of the packets. Removing the information
concerning R’s position in (6.84) corresponds to the substitution of y = 1,
yielding the joint system state pgf (5.19) from the GI − GI − 1 model,
where A(z) has been replaced by A1(z). For the packet delay pgf of the
high-priority packets D1(z), substitution of A(z1, z2) = A1(z1) yields

D1(z) = p0S(z)
(z − 1) (1−A1(S(z)))

λ1 (1− S(z)) (z −A1(S(z)))
, (6.85)

which in turn corresponds to the packet delay pgf (5.29) of the GI−GI−1
model.

In the case where λT = λ2 (and thus λ1 = 0 and A(z1, z2) = A2(z2),
∀z1), all packets have low priority, such that every arriving packet will be
appended to the queue at some position behind the reservation. Therefore,
the R will be at position mk = 1 at the beginning of every slot k, such
that the joint system state pgf becomes P (x, y, z) = P (x, 0, z), which can
be obtained as

P (x, y, z) = P (x, 0, z) = p0

[
1− xz (1−A2(z)) (S(x)− S(A2(z)))

(x−A2(z)) (z − S(A2(z)))

]
,

(6.86)
which corresponds to the system state pgf (5.19) of the GI −GI − 1 model
with A2(z) as the pgf of the number of packet arrivals per slot. For the
packet delay, we note that A1(z) = A(z, 1) = A2(1) = 1, such that we
quickly find

D2(z) = p0S(z)
(z − 1) (1−A2(S(z)))

λ2 (1− S(z)) (z −A2(S(z)))
. (6.87)

From these observations, it can be understood that for either λ2 = 0 or
λ1 = 0, the Reservation discipline has no effect on the functioning of the
underlying system, and therefore has no effect on the system’s performance.
The model described in 6.4 will then break down to a GI−Geo−1 queueing
model and the model in 6.5 essentially becomes a GI −GI − 1 model.

In our analysis, we mentioned that substitution of y = 1 in (6.65) re-
moves the information about the location of the reservation, resulting in

P (x, 1, z) = p0

[
1− xz (1−AT (z)) (S(x)− S(AT (z)))

(x−AT (z)) (z − S(AT (z)))

]
, (6.88)

which also has the same structure as the corresponding expression (5.19)
for the GI −GI − 1 model. This expression however, does not allow for de-
termination of the packet delay distribution, since the packet delay depends
on the actual position of R at the moment of insertion. In case there is only
one packet class, the reservation remains either fixed at the queue’s head
(for λ1 = 0) or is always positioned at the tail of the queue (for λ2 = 0). In
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such cases, there is no need to include the position of R in the system state
pgf, such that substitution of y = 1 only removes redundant information
and determination of the packet delay distributions remains possible.

6.7 On the existence of ℵ
In course of the calculation of the system state pgfs for both the geomet-
rically distributed service times case and the general independent service
times case, we argued that a non-empty subset ℵ exists, allowing us to pro-
ceed with the calculations. In this section, we prove that such a subset ℵ of
the open unit disk does in fact exist, thus validating our calculations.

Our approach extends a technique used in [26], where an open annulus
ℵ = {z : r < |z| < 1}, with r = A(0, 0)/(A(0, 0) + 1−A1(0)), was defined.
Note that, by definition, this annulus is a subset of the open unit disk, and
except for the case where λ1 = 0, the set ℵ is non-empty. It was then proven
that

z ∈ ℵ ⇒
∣∣∣∣A(0, z)

z

∣∣∣∣ < 1, (6.89)

which also validates the technique used to determine (6.63) in 6.5.2. As
mentioned before, the Reservation discipline has no effect on the overall
buffer behavior if λ1 = 0, such that the calculation of the system state pgf
need not be done as described in Sections 6.4 and 6.5.

In order to validate the technique used to construct the expressions
(6.16) in 6.4.2 and (6.64) in 6.5.2, we note that for any |z| ≤ 1, we find that

|A(0, z)| =
∣∣∣∣∣
∞∑
n=0

Prob[a1 = 0, a2 = n] zn

∣∣∣∣∣ ≤
∞∑
n=0

Prob[a1 = 0, a2 = n] |z|n

≤
∞∑
n=0

Prob[a1 = 0, a2 = n] |z| = A1(0) |z| ≤ |z| ≤ 1. (6.90)

Using this result and an identical approach we find, again for |z| ≤ 1, that

|S(A(0, z))| =
∣∣∣∣∣
∞∑
n=1

s(n)A(0, z)
n

∣∣∣∣∣ ≤
∞∑
n=1

s(n)|A(0, z)|n

≤
∞∑
n=1

s(n) |A(0, z)| = |A(0, z)| , (6.91)

such that

|z| ≤ 1⇒
∣∣∣∣S(A(0, z))

z

∣∣∣∣ ≤ ∣∣∣∣A(0, z)

z

∣∣∣∣ . (6.92)

Combining (6.89) with (6.92) then yields

z ∈ ℵ ⇒
∣∣∣∣S(A(0, z))

z

∣∣∣∣ < 1. (6.93)
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Figure 6.5: A schematic illustration of an M ×M output buffering switch.

6.8 Numerical examples

We now illustrate the impact of the Reservation discipline on the steady-
state delay distributions for the packets of either class. Meanwhile, we
compare these results with their counterparts in FIFO-scheduled systems
and systems operating under the Absolute Priority discipline.

Therefore, we consider a practical example of a non-blocking output
buffering switch with M inlets and M outlets as shown in Figure 6.5. When
a packet arrives on one of the M switch inlets, it is routed to the output
buffer of the outlet corresponding to the packet’s destination. We assume
this internal routing to be independent for each individual packet and that
each inlet feeds each outlet uniformly. In case of iid Bernoulli arrivals on
each of the inlets with a combined arrival rate of λT , the total number of
packet arrivals to any of the switch’s outlet buffers per slot then follows the
binomial distribution noted B(M,λT /M), with pgf

AT (z) =

(
1− λT

M
+
λT
M
z

)M
. (6.94)

We now assume that each packet arriving on one of the inlets has a probabil-
ity α , λ1/λT to be a high-priority packet and a probability 1−α = λ2/λT
to be a low-priority packet. The joint pgf A(z1, z2) of the number of packet
arrivals per slot of either class at each of the outlet buffers can then be
found as

A(z1, z2) = AT (αz1 + (1− α) z2) =

(
1− λ1

M
(1− z1)− λ2

M
(1− z2)

)M
.

(6.95)
Due to the Bernoulli distributed arrivals at each inlet, at most M packets
can arrive during a single slot and there is a negative correlation between
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Figure 6.6: Mean packet delay for both packet classes as a function of λ1/λT
for different scheduling disciplines and different service time distributions.

the numbers of packet arrivals of either class per slot. For the queueing
system’s server, we consider shifted Poisson distributed service times, with
pgf

S(z) = ze(µ−1)(z−1). (6.96)

First, we focus on the impact of the traffic mix λ1/λT on the mean
packet delay. Therefore, we consider an output buffer of a non-blocking
16 × 16 output buffering switch with a total arrival rate of λT = 0.6. For
the service process, we consider both a server with shifted geometric service
times as in Section 6.4 and a server with shifted Poisson distributed service
times as an example of the model studied in Section 6.5. For both servers,
the mean service length is set to µ = 1.5, such that the system load in
both cases is ρ = 0.9. In Figure 6.6, we have plotted the mean packet
delay for packets of either class in this system in case of FIFO scheduling,
AP scheduling and the Reservation discipline. Note that in case of FIFO
scheduling, all packets are treated equal and no service differentiation is
performed. Because of this and due to the specific nature of the arrival
process, this yields that the delay distributions of packets of either class
coincide with the delay distribution of an arbitrary packet. As such, we
have for each of the servers that both packet classes result in one overlapping
curve for the mean packet delay in the FIFO case. As expected, the curves
pertaining to the mean packet delay E[dj ] of packets of class j in case of
the Reservation discipline are contained between the FIFO curves and the
corresponding AP curves. The class-1 packet delay is clearly reduced as
compared to FIFO but not as much as would have been obtained with AP.
Conversely, even for high partial class-1 loads, the class-2 packet delay in the
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Reservation system remains neatly restricted to acceptable values not much
different from FIFO, whereas the AP scheduled system suffers from packet
starvation. We see that for very low partial class-1 loads, the differences in
delay characteristics between AP scheduling and the Reservation discipline
are negligible. In this case, most class-1 packets will enter the queue while
the reservation is located at the queue’s head, such that they can benefit
plenty from the Reservation discipline. As the partial class-1 load increases,
the reservation is more frequently seized and is less likely to be positioned at
the beginning of the queue. Therefore, the gain in class-1 delay performance
decreases more quickly for the Reservation discipline than for AP as λ1/λT
increases. For high partial class-1 loads, AP looses most of its effectiveness
and the mean class-1 delay E[d1] progressively increases and approaches
the mean class-1 delay obtained for the Reservation discipline. Under the
Reservation discipline, an increase in the partial class-1 load only causes an
increase in the probability of a class-2 packet to be jumped over by a class-
1 packet, whereas under AP there is an increase in the number of class-1
packets overtaking a class-2 packet. This results in a small increase for the
mean class-2 packet delay for the Reservation discipline, as opposed to a
progressive increase in the AP case.

Next, we look at the impact of the total arrival rate λT for fixed values
of the traffic mix λ1/λT and the mean service rate 1/µ. We consider the
same 16 × 16 output buffering switch as before, but we now only focus
on the system with shifted Poisson distributed service times. The traffic
mix is assumed to be set at λ1/λT = 0.15 and the mean service length
is µ = 1.5. The load ρ covers the interval ]0, 1[ and for each value of ρ,
the total arrival rate is then determined as λT = ρ/µ. Figure 6.7 shows
the mean packet delay for packets of either class for FIFO scheduling, AP
scheduling and the Reservation discipline. Again, we see that the curves
corresponding to the Reservation discipline are wedged between the FIFO
curve and the curves representing AP scheduling. Remarkably, the curve for
the mean class-1 delay for the AP case is limited for all values of the load,
whereas all other curves increase excessively under high load conditions.
This can be understood by the fact that under AP, the class-1 packets are
allowed to consume all the available system capacity as they want, leaving
the class-2 packets with whatever is left of this capacity. From a class-1
packet point of view, an AP scheduled system is then stable as long as
λ1µ < 1, resulting in bounded values for E[d1] even when the total system
load is 1. In the Reservation case, we see that for low to moderate load
conditions, the mean class-1 packet delay E[d1] hardly differs from its AP
counterpart. For high system loads however, more class-1 packets will be
inserted closeby the queue’s tail and the mean class-1 packet delay starts to
increase progressively.

Similar effects can be seen when we plot the mean packet delay for
packets of either class as a function of the service rate 1/µ, as depicted in
Figure 6.8. Here, the total arrival rate at an arbitrary output buffer of the
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Figure 6.7: Mean packet delay for both packet classes as a function of the
system load ρ = λTµ for different scheduling disciplines.

service rate 1/µ

E[dj ]

FIFO
AP
Reservation

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

class 2

class 1

Figure 6.8: Mean packet delay for both packet classes as a function of the
service rate 1/µ for different scheduling disciplines.
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Figure 6.9: The packet delay pmf, simulated (dots) and approximated
(lines) using (6.82) for both packet classes for different scheduling disci-
plines.

16 × 16 switch is fixed at λT = 0.2, with a traffic mix of λ1/λT = 0.15.
The service rate 1/µ of the Poisson server then covers the interval ]1/λT , 1].
Similar to our previous findings, we notice that all curves except for the
mean class-1 delay in the AP system grow excessively when the service rate
drops to 1/λT (because of which the system load becomes 1).

Finally, we take a look at the tail distributions of the packet delay. As
before, we consider an output buffer of a non-blocking 16× 16 switch with
total arrival rate of λT = 0.6 and a traffic mix of λ1/λT = 0.15. The service
times are shifted Poisson distributed random variables with mean µ = 1.5.
In Figure 6.9, the pmf of the packet delay is plotted on a logarithmic scale
for both packet classes and for the usual scheduling disciplines: FIFO, AP
and the Reservation discipline. As could be expected from (6.82), both
curves corresponding to the Reservation discipline are parallel to the FIFO
curve, due to the fact that the packet delay pgfs D1(z) and D2(z) for these
systems have the same dominant pole zd = AT (S(zd)). The fact that both
packet classes have the same delay decay rate is an inherent and unique
feature of the reservation-based scheduling discipline. Many other service
differentiation disciplines provide either a predefined throughput propor-
tionality or an average delay for each packet class, whereas the Reservation
discipline provides a proportionality of the delay quantiles of both packet
streams. Specifically, for small enough α, if we define the delay quantiles
dαj by Prob

[
dj > dαj

]
= α, j = 1, 2 then the spacing dα2 − dα1 is constant,

i.e. independent of α. This could be seen as a property of asymptotic delay
fairness between the packet streams where under no circumstance it can
happen that any of the streams exhibits a faster or slower delay decay rate
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than the other. It is conceivable that this property can be advantageous
in applications where the perceived fairness is mainly determined by the
perception of very long delays. This is clearly not the case for the AP dis-
cipline, where we see that the class-1 delay curve drops much more steeper
than the class-2 delay curve. This implies that high delays become much
more unlikely much quicker for class-1 packets than for class-2 packets.

From the previous examples, it can be seen that the Reservation dis-
cipline achieves a reasonable degree of service differentiation without the
side-effect of packet starvation. When used under appropriate conditions,
such as a small relative class-1 load and a total load that is not very high,
the gain in delay performance as experienced by class-1 packets only differs
slightly from AP, whereas the drawback for the class-2 packets is negligible.
In less than ideal conditions, the delay performance for both packet classes
however tends more towards the performance seen in FIFO scheduling. In
such circumstances, the performance of the Reservation discipline can be
enhanced by the insertion of multiple reservations R instead of just one.
The system would then be initialized with N reservations at positions 1 to
N in the queue and an arriving class-1 packet would then seize the reserva-
tion closest to the server, after which a new reservation is appended at the
queue’s tail. The number of reservations N could then be tuned to meet the
delay requirements, even in less than ideal circumstances. In Figure 6.10,
we present simulation results for the packet delay pmf for either packet class
on a logarithmic scale for FIFO scheduling, AP scheduling and the Reser-
vation discipline with N reservations, for multiple values of N . The system
parameters of Figure 6.10 are identical to the parameters for Figure 6.9. As
expected, we see that the additional reservations indeed result in a larger
distinction between the two traffic classes. This is illustrated by the fact
that for increasing values of N , the tail probabilities move further apart,
towards the tail probabilities of the AP system. Furthermore, we see that
the decay rate of the delay tail distributions is independent of the number
of reservations N , such that the tails of the curves are all parallel to each
other. Analytical results for systems operating under the Reservation dis-
cipline with N > 1 reservations in case of deterministic service times of 1
slot per packet can be found in [27, 29]. For more general service processes
however, the analysis of the system with multiple reservations has not been
done. Note that to study the Reservation discipline with N > 1 reserva-
tions, the analysis method presented in this chapter will need to be further
extended and a (N + 2)-dimensional state description will be required, as
one will need to keep track of the positions of all N reservations. One can
expect that such analysis will be quite involved.
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Figure 6.10: The packet delay pmf simulated for both packet classes for
FIFO scheduling, Absolute Priority scheduling and the Reservation disci-
pline with N reservations (N ∈ 1, 3, 5, 7, 9, 11, 13, 15).
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Chapter 7
The NT -Policy

7.1 Introduction

In many application fields of queueing theory, the delay is generally con-
sidered to be the main performance parameter of queueing systems. This
approach is common in wired computer networks and telecommunication
systems in general, but in other applications other parameters must be
taken into account as well. These other parameters can be financial or
even ecological in nature, such as operating costs, resource usage, power
consumption, . . . . We refer to these parameters as costs which we want
to reduce, while still offering an acceptable service. Especially in systems
where the service unit must undergo some costly initialization procedure
after an idle period (like powering up, recalibration, . . . ) or where leaving
the server activated but idle is costly, it might be beneficial to shape the
stream from the queue to the server such that work is clustered. Under
low to moderate load conditions for example, the service unit of the unal-
tered GI − GI − 1 model will exhibit frequent switch-overs between being
active and being inactive. Application of a clustering mechanism would
cause the duration of active and idle periods to be greater and the number
of switch-overs to be smaller. Given that this clustering is more suitable
in a general operations research context, and less in a telecommunication
context, we will use customers as the operative word referring to the items
passing through the queueing system, instead of packets.

Clustering is usually achieved by applying a threshold policy to the
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system that blocks the access to the service unit until a certain parameter
reaches a certain threshold. Probably the most intuitive threshold policy is
the so-called N -Policy, where a fixed number of N (> 1) customers have to
accumulate in the queue before the server is activated. The service unit then
starts serving all customers in succession until the system becomes empty,
after which the server is deactivated and remains idle until the threshold
N is reached again. This straightforward approach has the benefit of being
easy to implement, but it also has the weakness that when N is chosen too
large, relative to the customer arrival rate, then the time needed to reach
the threshold can become excessive. The N -policy was first presented and
studied in continuous time in [125], and various adaptations [69, 77, 117]
have been developed since. In discrete time, batch arrival and service for
N -policy queues has been studied in [6], a bi-level threshold mechanism
is studied in [59] and differentiated service between the N accumulated
customers and later arrivals is studied in [91].

Another intuitive threshold policy is the T -policy. Under this policy, a
customer arriving to an empty system will have to wait a fixed number of
T (> 1) slots until the server is activated. Just like with the N -policy, the
server then starts serving customers, until the system becomes empty and
the server is deactivated again. Obviously, this approach avoids unaccept-
able delays, even for extremely low arrival rates, but in general it achieves
less efficient clustering. The T -policy was studied in [60, 118].

In order to incorporate the best of both policies without the weaknesses,
the hybrid NT -policy was developed as a combination of the N -policy and
the T -policy. Under the NT -policy, the server is activated as soon as one
of the thresholds is reached, i.e. when N customers have accumulated in
the queue, or when the first customer in the queue has been waiting for T
slots, whichever happens first. In continuous time, the NT -policy has been
studied in [3, 68, 76].

In this chapter, we will revisit my contributions concerning the analysis
of the NT -policy in a single-server infinite-capacity discrete-time queueing
system. In the next section, we give a detailed description of the NT -
policy. Then, we present a general mathematical model that will allow for a
detailed analysis of the system. In the two subsequent sections, we analyze
the system content, the customer delay and the effects of the NT -policy, for
both deterministic service times of exactly 1 slot as presented in my paper
[37] and general independent service times as presented in my publications
[41, 43].

7.2 The NT -policy

In this section we describe in full detail how the NT -policy works, not only
for better understanding, but because a good insight in the functioning of
the NT -policy will prove useful in our analysis. Figure 7.1 illustrates the



Chapter 7 77

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N

Figure 7.1: Example of how the NT -policy affects the queueing system.

behavior of a queueing system with variable service times, operating under
the NT -policy, for N = 3 and T = 5. The initial situation depicted in
Figure 7.1 is such that the system is empty and therefore, the server is
deactivated. During slot 2, the first customer arrives to the empty system
and a timer is initialized to monitor the time spent in the queue by that
first customer. During slot 4, a second customer arrives and is added to the
queue without consequence. But when the third customer arrives during
slot 5, the N -threshold is reached and the server is activated such that the
first service can start at the beginning of the next slot (slot 6 in this case).
The server then keeps serving customers until the system becomes empty
again at the end of slot 10, such that the customer arriving in slot 11 finds
the queue empty and the server deactivated. Again a timer is started and
when it reaches T in slot 16, the server is activated again, although only
one more customer has arrived. Starting from slot 17 the server can then
resume serving customers, only to be deactivated when the system becomes
empty again at the end of slot 21.

From the argumentation above and Figure 7.1, it can be verified that the
system operates in a non-periodic cyclic pattern, consisting of three phases
delimited by the dotted lines. In what follows, we will refer to these phases
as empty, accumulating customers and serving customers.

Note that throughout this chapter, we will assume 1 < N ≤ T , in order
to guarantee that none of the thresholds is obsolete. Mind that for N = 1,
the N -threshold will be reached immediately on insertion of a customer into
an empty queue, such that the system in fact becomes a traditional queueing
system, i.e. without a threshold policy. Furthermore, our analysis is limited
to a Bernoulli arrival process, such that at most 1 customer can arrive during
a slot and the interarrival times are geometrically distributed. This implies
that the minimum number of slots to reach the N -threshold, after insertion
of the first customer, is N − 1 slots. Choosing N > T essentially makes it
impossible to reach the N -threshold before the T -threshold, such that the
N -threshold is obsolete and in fact we are left with a T -policy system.
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Bernoulli FIFO NT Server

Figure 7.2: Illustration of the NT -policy system.

7.3 Mathematical model

The mathematical model used in our analysis, corresponds to a special case
of the GI −GI − 1-model with a Bernoulli arrival process and where access
to the server is controlled by the NT -policy, as depicted in Figure 7.2.
Customers therefore arrive at a fixed rate of λ customers per slot such that
every slot exactly 1 arrival occurs with probability λ and with probability
1− λ there is no arrival. The pgf A(z) of the number of arrivals ak during
slot k is hence given by

A(z) , E[zak ] = 1− λ+ λz. (7.1)

For later use, we introduce the random variable An as the total number of
arrivals in n consecutive slots. The pgf An(z) of this random variable can
then be found as

An(z) = A(z)
n

= (1− λ+ λz)
n

=

n∑
j=0

(
n

j

)
(1− λ)

n−j
(λz)

j
. (7.2)

Related to this, we also define the random variable cn as the number of slots
needed to collect n arrivals, such that

Prob[cn = t] =

(
t− 1

n− 1

)
λn(1− λ)

t−n
, t ≥ n. (7.3)

Note that cn has a negative binomial distribution, such that its pgf Cn(z)
is given by

Cn(z) , E[zcn ] =

(
λz

1− (1− λ) z

)n
. (7.4)

We will analyze this queueing system for deterministic service times
equal to exactly one slot per customer and general independent service times
separately in the next two sections. Different types of analysis methods will
be used in these sections.

7.4 Deterministic service times

In this section, we limit our analysis to service times of exactly one slot
per customer, as depicted in Figure 7.3. Although this assumption is rather
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Bernoulli FIFO NT Deterministic

Figure 7.3: Illustration of the NT -policy system with deterministic service
times.

restrictive, it will allow us to become acquainted with the NT -policy, before
we study the NT -policy in a system with general service times.

7.4.1 System equations

From the description of the NT -policy in the previous sections, it is clear
that the system’s behavior highly depends on which phase the system is in.
Let us therefore introduce the random variable φk ∈ {0, 1, 2} to denote the
phase of the system at the beginning of a random slot k. Note that phase
transitions can only occur at slot boundaries, such that the phase of the
system remains unaltered during a slot. The random variable φk can only
take the values 0, 1 and 2, referring to the empty, the accumulating and the
serving phase respectively.

During the accumulating phase, we need to monitor the time spent in the
queue by the first customer. Thus, the random variable tk is defined as the
integer number of slots the first customer has been in the queue at the end
of a random slot k in the accumulating phase. Due to the fact that phase
transitions only occur at slot boundaries, tk can already be determined at
the beginning of slot k. Thus we have that 1 ≤ tk ≤ T for any accumulating
phase slot k. If tk = T , then for sure the system proceeds to the serving
phase in slot k + 1. We extend the definition of tk such that tk = 0 during
either the empty or the serving phase.

As usual, we also require the system content uk at the beginning of
a random slot k to complete the system state vector. During the empty
and the accumulating phase, the system content can only grow following
the arrival process, whereas during each serving phase slot there will be a
departure.

The system equations that relate the system state vector 〈φk, tk, uk〉 at
slot k with its slot k + 1 counterpart follow from the description of the
NT -policy as
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• if φk = 0:

φk+1 =

{
0, if ak = 0,

1, if ak > 0,

tk+1 =

{
0, if ak = 0,

1, if ak > 0,

uk+1 = ak, (7.5)

• if φk = 1:

φk+1 =

{
1, if tk < T and uk + ak < N,

2, if tk = T or uk + ak = N,

tk+1 =

{
tk + 1, if tk < T and uk + ak < N,

0, if tk = T or uk + ak = N,

uk+1 = uk + ak, (7.6)

• if φk = 2:

φk+1 =

{
0, if uk = 1 and ak = 0,

2, if uk > 1 or ak > 0,

tk+1 = 0,

uk+1 = uk − 1 + ak. (7.7)

7.4.2 Buffer analysis

Due to the finite state space, the system lends itself to be analyzed entirely
based on state probabilities, rather than the pgf approach we adopt in the
other sections of this work. These state probabilities are defined as

p0 , Prob[φk = 0] , (7.8)

p1,m,n , Prob[φk = 1, tk = m,uk = n] , 1 ≤ n < N, n ≤ m ≤ T, (7.9)

p2,n , Prob[φk = 2, uk = n] , 1 ≤ n ≤ N. (7.10)

The state probabilities can be interpreted as the frequency of occurrence
of the different states over an infinite time span. For our analysis, it is
however beneficial to consider the relative frequency of occurrence of the
different states within a single cycle. Note that the state 〈1, 1, 1〉 is bound
to occur exactly once per cycle, as it corresponds to the first slot of the
accumulating phase. The states 〈0, 0, 0〉 and 〈2, 0, n〉 on the other hand can
occur multiple times per cycle. For a given value of m the states 〈1,m, n〉 for
different values of n are mutually exclusive within a cycle, such that most
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of them will even never occur during a random cycle at all. We therefore
define the coefficients corresponding to the relative frequency of occurrence
of the different states within a single cycle as

q0 ,
p0

p1,1,1
, q1,m,n ,

p1,m,n

p1,1,1
, q2,n ,

p2,n

p1,1,1
. (7.11)

In order to determine the coefficients in (7.11), we recall the system
equations and the observations leading towards the system equations. If the
system is empty at the beginning of slot k it will move to the accumulating
phase upon the arrival of a customer, which has a probability λ to occur.
So we find that

p1,1,1 = λp0 ⇔ q0 =
1

λ
. (7.12)

A certain accumulating phase state 〈1,m, n〉 (1 < m) can only be reached
if there were n customers in the queue already in the previous slot and no
arrival occurred, or if the n’th customer arrived during that previous slot.
This observation leads to

q1,m,n = (1− λ) q1,m−1,n + λq1,m−1,n−1

=

(
m− 1

n− 1

)
λn−1(1− λ)

m−n
, 1 ≤ n ≤ m, (7.13)

where we silently assumed that q1,m,0 = 0,∀m since these coefficients relate
to system states that can never occur. Remarkably, the coefficients q1,m,n

are independent of either threshold N and T . Therefore, although state
〈1, T + 1, n〉 can never occur in the system, we can calculate q1,T+1,n (n <
N) from (7.13) to account for state transitions due to the T -threshold. This
allows us to express the serving phase coefficients q2,n for n < N as

q2,n = q1,T+1,n + (1− λ) q2,n+1 + λq2,n

=
q1,T+1,n

1− λ + q2,n+1 =
1

1− λ
N−1∑
j=n

q1,T+1,j + q2,N . (7.14)

The state 〈2, 0, N〉 can either be reached from the accumulating phase if
the N -threshold is reached or from state 〈2, 0, N〉 itself, if an arrival occurs.
Thus, we have

q2,N = λ

T∑
m=N−1

q1,m,N−1 + λq2,N =
λ

1− λ
T∑

m=N−1

q1,m,N−1. (7.15)

Finally, we calculate the sum of the coefficients for all possible system
states as defined in (7.11).

q0 +

N−1∑
n=1

T∑
m=n

q1,m,n+

N∑
n=1

q2,n=
1

p1,1,1

(
p0 +

N−1∑
n=1

T∑
m=n

p1,m,n +

N∑
n=1

p2,n

)
(7.16)
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Application of the normalization condition then allows to find the probabil-
ity p1,1,1 as

p1,1,1 =

(
q0 +

N−1∑
n=1

T∑
m=n

q1,m,n +

N∑
n=1

q2,n

)−1

. (7.17)

With p1,1,1 now determined, we can determine all other system state prob-
abilities from (7.11) and the closed-form expressions (7.12)-(7.15).

7.4.3 Phase durations and cycle length

Before we proceed to the delay analysis, we first determine how many slots
there are in a random cycle and in the phases that constitute that cycle.
Therefore we define the random variables Φi (i ∈ {0, 1, 2}) as the phase i
duration, i.e. the number of slots in a random phase i, with pgf Φi(z).

Empty phase

The empty phase starts once the last customer leaves the system such that
it becomes empty again and ends as soon as a new customer arrives. The
empty phase therefore consists of as many slots as needed to collect a single
arrival, given by the shifted geometrically distributed random variable c1.
We therefore find the pmf of the empty phase duration as

Prob[Φ0 = t] = λ(1− λ)
t−1

, t ≥ 1, (7.18)

with pgf

Φ0(z) , E
[
zΦ0
]

=
λz

1− (1− λ) z
. (7.19)

The mean empty phase pgf then follows as

E[Φ0] = Φ′0(1) =
1

λ
. (7.20)

Accumulating phase

In order to reach the N -threshold, there must be N − 1 arrivals during the
accumulating phase, given the fact that at the beginning of the accumulating
phase there is already 1 customer in the queue. Note that this takes cN−1

slots, with pmf Prob[cN−1 = t] = λ q1,t,N−1 (t ≥ N−1). If the N -threshold
is not reached when the timer reaches T − 1, the accumulating phase is
ended due to the T -threshold. In short, the accumulating phase takes as
many slots as needed to collect N − 1 (more) arrivals, with a maximum of
T slots. Thus, we find the pmf of the accumulating phase duration as

Prob[Φ1 = t] =

{
λ q1,t,N−1, N − 1 ≤ t ≤ T − 1,∑N−1
n=1 q1,T,n, t = T.

(7.21)
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The pgf of the accumulating phase duration is then given by

Φ1(z) , E
[
zΦ1
]

= λ

T−1∑
m=N−1

q1,m,N−1z
m + zT

N−1∑
n=1

q1,T,n, (7.22)

such that we find the mean number of slots in the accumulating phase as

E[Φ1] = Φ′1(1) = λ

T−1∑
m=N−1

m q1,m,N−1 + T

N−1∑
n=1

q1,T,n. (7.23)

An interesting measure of the NT -policy system is the probability ω
that a transition from the accumulating to the serving phase within a cycle
occurs due to the N -threshold. This probability can be calculated as

ω , Prob[N customers have accumulated during Φ1]

= λ

T∑
m=N−1

q1,m,N−1. (7.24)

Serving phase

The determination of the serving phase duration is less straightforward due
to the fact that the number of customers in the queue at the beginning of
the serving phase is unknown and that additional customers, arriving in
the course of the serving phase itself, must also be served. The number of
customers being served during a serving phase is therefore not fully deter-
mined a priori. In order to resolve the issue of the additional customers, we
introduce the random variable ∆ as the number of slots needed to reduce
the number of customers in the system by 1. Note that after every serving
phase slot with no arrival, the system content will decrease with 1 due to
the single slot service times. The system content will however remain un-
changed if a customer does arrive. Therefore, ∆ corresponds to the number
of slots until a non-arrival slot, with pmf

Prob[∆ = t] = λt−1 (1− λ) , t ≥ 1, (7.25)

and pgf

∆(z) , E
[
z∆
]

=
(1− λ) z

1− λz . (7.26)

The mean number of slots needed to reduce the system content by 1 is then
given by

E[∆] = ∆′(1) =
1

1− λ. (7.27)

The initial number of customers in the queue at the beginning of the
serving phase is correlated to the preceding accumulating phase duration.
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Note that if Φ1 < T , the serving phase was triggered by the N -threshold,
whereas for Φ1 = T , there could be less than N customers in the queue. To
account for this correlation, we first determine the joint pgf Φ1,2(x, y) of Φ1

and the subsequent Φ2 as

Φ1,2(x, y) , E
[
xΦ1yΦ2

]
= λ∆(y)

N
T−1∑

m=N−1

q1,m,N−1x
m + xT

N−1∑
n=1

q1,T,n∆(y)
n
A(∆(y)). (7.28)

The pgf Φ2(z) and the expected value E[Φ2] of the duration of a random
serving phase can then be found from (7.28) as

Φ2(z) = Φ1,2(1, z)

= λ∆(z)
N

T−1∑
m=N−1

q1,m,N−1 +

N−1∑
n=1

q1,T,n∆(z)
n
A(∆(z)), (7.29)

and

E[Φ2] = Φ′2(1) =
1

1− λ

(
λN

T−1∑
m=N−1

q1,m,N−1 +

N−1∑
n=1

(n+ λ) q1,T,n

)
. (7.30)

Cycle length

The total length Q of an arbitrary cycle can then be found as the sum of
the durations of the three constituting phases. Note that we must take the
correlation between the accumulating and serving phases into account, such
that the pgf Q(z) of the cycle length is given by

Q(z) , E
[
zΦ0+Φ1+Φ2

]
= Φ0(z)Φ1,2(z, z)

=
λz

1− (1− λ) z

(
λ∆(z)

N
T−1∑

m=N−1

q1,m,N−1z
m

+zT
N−1∑
n=1

q1,T,n∆(z)
n
A(∆(z))

)
. (7.31)

The mean cycle length could be found by taking the first derivative of
(7.31) for z = 1, however this would be needlessly cumbersome. A better
approach comes from the argumentation concerning the definition of the
state coefficients q.... Given that the state 〈1, 1, 1〉 occurs exactly once per
cycle, p1,1,1 serves as the rate at which cycles succeed each other and the
mean cycle length can be found as

E[Q] =
1

p1,1,1
= q0 +

N−1∑
n=1

T∑
m=n

q1,m,n +

N∑
n=1

q2,n. (7.32)



Chapter 7 85

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N

Figure 7.4: Illustration of d0. The darkened squares represent C0.

Phase probabilities

Finally, we define the phase probabilities pi , Prob[φk = i] (i ∈ {0, 1, 2})
that describe the probability of the system to be in a certain phase. Note
that the probability p0 was defined this way earlier. A phase probability pi
can be understood as the fraction of time slots the system is in phase i and
can be found as

pi =
E[Φi]

E[Q]
. (7.33)

This is particularly helpful to find p0 = (λE[Q])
−1

. The probability for
the server to be active can be found more efficiently from the assumption
that the system is stable and reaches equilibrium. As explained in section
3.1, in equilibrium, the actual average number of departures per slot must
be equal to the arrival rate. Given that departures exclusively occur every
serving phase slot, the actual departure rate is equal to p2, such that p2 = λ.
From p0 and p2, p1 can then be found from the normalization condition as
p1 = 1− p0 − p2.

7.4.4 Customer delay analysis

Given that the system behaves very differently over the various phases of
a cycle, we will perform the delay analysis for the three phases separately.
Let Ci (i ∈ {0, 1, 2}) therefore be a random customer that arrives during
phase i of a cycle and S be the arrival slot of that customer. Even though S
is not a random slot, the BASTA property (see Section 3.3) yields that the
system state distribution at the beginning of S is stochastically identical to
that of a random phase i slot. This will allow us to find the distribution
of the delay di experienced by Ci from the system state distribution at the
beginning of slot S.

Empty phase

If a customer C0 arrives during the empty phase, it will initiate an accumu-
lating phase at the beginning of slot S + 1. Once the accumulating phase
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Figure 7.5: Illustration of d1. The darkened squares represent C1.

is terminated, C0 will be the first customer to be served and will leave the
system 1 slot later, as depicted in Figure 7.4. Thus, we find the empty phase
customer delay d0 as

d0 = Φ1 + 1, (7.34)

with pgf
D0(z) , E

[
zd0
]

= zΦ1(z). (7.35)

Accumulating phase

As shown in Figure 7.5, a customer C1 that arrives during the accumulating
phase will first have to wait an unknown number of slots until the server
becomes active and all previous arrivals have left the system until it can
enter the server. At the beginning of the arrival slot S of Ci, the system
finds itself in state 〈1, tS , uS〉, i.e. there are uS customers in the queue
and the first customer has already been waiting for tS − 1 slots. Thus,
starting from slot S + 1, the server will only be activated once N − uS − 1
more customers have arrived, or T − tS more slots have passed. This time
span corresponds to the accumulating phase of an N ′T ′-policy system with
N ′ , N − uS and T ′ , T − tS , such that

d1 = Φ
(N ′,T ′)
1 + uS + 1, (7.36)

where Φ
(N ′,T ′)
1 denotes the accumulating phase duration of the correspond-

ing N ′T ′-policy system. Note that the distribution of Φ
(N ′,T ′)
1 can only be

determined from (7.21) if 1 < N − uS ≤ T − tS . If however uS = N − 1 or
tS = T , then slot S is the final slot of the current accumulating phase, such

that Φ
(N ′,T ′)
1 = 0. Application of this argumentation on (7.36) then yields

the distribution of the accumulation phase customer delay d1 as

Prob[d1 = t+ uS + 1] =


1, N ′ = 1, T ′ = 0, t = 0,

λ q1,t,N ′−1, 0 < N ′− 1 ≤ t ≤ T ′− 1,∑N ′−1
n=1 q1,T ′,n, t = T ′.

(7.37)
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Figure 7.6: Illustration of d2. The darkened squares represent C2.

The pgf D1(z) of d1 then follows as

D1(z) , E
[
zd1
]

=
p1,1,1

p1

[
N−1∑
n=1

q1,T,nz
n+1 + zN

T−1∑
m=N

q1,m,N−1 (7.38)

+

N−2∑
n=1

zn+1
T−1∑
m=n

q1,m,n

(
λ

T−m−1∑
t=N−n−1

q1,t,N−n−1z
t + zT−m

N−n−1∑
k=1

q1,T−n,k

)]
.

Serving phase

A customer C2 arriving in course of the serving phase is only delayed by the
service of customers, as illustrated in Figure 7.6. The customers adding to
the delay d2 of C2 are C2 itself and all customers in the queue at the start
of slot S, excluding the one in the server because it will leave the system at
the end of slot S. This yields

d2 = uS , (7.39)

with pgf

D2(z) , E
[
zd2
]

=

N∑
n=1

p2,n

p2
zn =

p1,1,1

λ

N∑
n=1

q2,nz
n. (7.40)

Customer delay

The delay distribution of a random customer C, regardless of the phase
during which C enters the system, can be found as the weighted sum

Prob[d = t] = p0Prob[d0 = t] + p1Prob[d1 = t] + p2Prob[d2 = t] , (7.41)

with corresponding pgf

D(z) , E
[
zd
]

= p0D0(z) + p1D1(z) + p2D2(z). (7.42)
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7.4.5 Relation to the GI −GI − 1 model

As mentioned in section 7.2, the considered NT -policy system becomes a
traditional queueing system for N = 1, and behaves as if there is no thresh-
old policy controlling the access to the server. Simple substitution of N = 1
in the above expressions should however not be performed without extra
care, since the above analysis expects every cycle to have an accumulating
phase during which the queue is not empty and the server is inactive. In
fact, if N = 1, there are only two possible system states: the empty system,
or the system with one customer in service, with corresponding probabilities

p0 = Prob[u = 0] , p2 = Prob[u = 1] . (7.43)

Due to the deterministic service times, an arrival in slot k causes the system
to be in the non-empty state during slot k+ 1, such that we can determine
the above probabilities as

p0 = 1− λ, p2 = λ. (7.44)

The system content pgf U(z) then follows as

U(z) = 1− λ+ λz = A(z). (7.45)

Since every customer is served in the slot following its arrival slot we find
the customer delay pgf D(z) as

D(z) = z. (7.46)

It can be easily verified that (7.45) and (7.46) satisfy the results (5.20) and
(5.29) for the GI −GI − 1 model with A(z) = 1− λ+ λz and S(z) = z.

7.4.6 Numerical examples

Before we expand the analysis of the NT -policy to general service times,
we first illustrate the system we have analyzed in the above by means of
various numerical examples. We will also compare the main results with
corresponding results related to either the N -policy or the T -policy.

First, we focus on the mean phase durations and the cycle length as a
function of the arrival rate λ. Note that due to the deterministic service
times, we have that the system load ρ = λµ = λ. Figure 7.7 shows the
mean phase durations and mean cycle length on a logarithmic scale for
an NT -policy system with parameters set to N = 41 and T = 100. The
mean cycle length of the corresponding N -policy and T -policy systems are
plotted as well. The background is filled according to the phase probabilities
p0 (dark grey), p1 (light gray) and p2 (white), such that the portion of a
vertical cut in a certain background color is equal to the phase probability
of the corresponding phase. We see that the mean empty phase duration
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Figure 7.7: The mean phase durations and the mean cycle length (on a
logarithmic scale) as a function of the system load ρ = λ.

drops down as the load ρ increases as E[Φ0] = 1/λ according to (7.20). The
evolution of the mean accumulating phase length E[Φ1] as a function of the
arrival rate λ is not as predictable from its formula (7.23), but is intuitively
clear. For low values of λ the probability to reach the N -threshold before
the timer expires is small, leading to an expected value of the accumulating
phase duration around T slots. For λ > (N − 1) /T , it becomes more and
more likely that the N -threshold is actually met, such that the E[Φ1] drops
to (N − 1) /λ for λ → 1. Similar to the accumulating phase, the effect of
λ on the expected serving phase duration is more clear from intuition than
from the corresponding formula (7.30). For very small values of λ, only few
customers are in the queue at the beginning of Φ2 and few customers will
arrive during the serving phase, resulting in small values of E[Φ2]. As the
arrival rate increases, more customers will be in the queue at the beginning
of the serving phase and there will be more arrivals during Φ2, resulting in an
increasing mean serving phase duration. As λ continues to increase beyond
(N − 1) /T , the number of initially accumulated customers will saturate at
N , whereas the number of additional arrivals during Φ2 will continue to
grow. When looking at the mean cycle length E[Q], we see that the NT -
policy in general yields cycles which are not longer than under either the
N -policy or the T -policy. This was to be expected based on the design of
the NT -policy.

Now we focus on the phase probabilities as depicted in the background
of Figure 7.7. These probabilities are important as they serve as a weight
factor in the calculation of the distribution of the delay of an arbitrary
customer, as shown in (7.41) and (7.42). We see that the probability of a
random slot to be part of an empty phase is high for extremely low arrival
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Figure 7.8: The customer delay pmfs.

rates, but it very soon drops as the arrival rate gets higher; for the greater
part of the graph, p0 is even negligible. The probability p1 runs a very
different course: if the arrival rate is very low, the majority of time will
be spent in the empty phase, but as the arrival rate increases, the system
will be empty for fewer slots per cycle and both p1 and p2 will increase.
Since the accumulation phase duration is limited to a maximum of T slots,
only the serving phase will become longer due to an increasing arrival rate,
therefore p1 will decrease again, while p2 continues to rise proportionally to
the arrival rate.

Next, we take a look at the delay probabilities for the case where λ = 0.4,
N = 41 and T = 100. In Figure 7.8 we show the delay pmf for customers
arriving during each phase individually, and for random customers as well.
Note that each of the random variables di (i ∈ {0, 1, 2}) has its own range of
support: d0 ∈ [N,T + 1], d1 ∈ [2, T + 1] and d2 ∈ [1, N ]. Even though the
individual curves are very different, they do add up to a smooth curve for
d with two remarkable outliers. The peak at n = T + 1 originates from the
pmf of d0 and corresponds to cycles where the timer expires. As such, this
peak accumulates all cycles where the T -threshold is met, regardless of the
number of customers in the system at the end of the accumulating phase.
The peak at n = N is caused by a peak in the pmf of the accumulating
phase customer delay d1. This is illustrated in Figure 7.9, where we show
the portions of the pmf of d1 on a log scale, split up according to the event
that triggered the transition from the accumulating phase to the serving
phase. From this graph, we can clearly see that the peak at n = N comes
from the cases where the N -threshold has been reached. In such cases, the
last arriving customer in the accumulating phase will be the Nth customer
in the queue and therefore will have a delay of exactly N slots. Moreover,
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Figure 7.9: Portions of the pmf of the accumulating phase customer delay
d1 split up according to the transition from Φ1 to Φ2.

if the (N − 1)th customer did arrive in the slot preceding to the arrival slot
of the Nth customer, its delay will also be N slots: the final accumulating
phase slot and the N − 1 slots required to serve all customers up to the
(N − 1)th. A similar argumentation holds for any customer arriving during
an uninterrupted series of consecutive slots in which every slot features an
arrival, including the arrival of the Nth customer. The peak at n = N
therefore accumulates the delays of all such customers.

Finally, we look at the effect of the arrival rate (the system load) on the
mean customer delay. For each phase, Figure 7.10 shows the mean customer
delay multiplied with the corresponding phase probabilities, for a system
where N = 41 and T = 100. Also plotted are the overall mean customer
delay for the NT -policy, the N -policy and the T -policy. For extremely
low load conditions, the mean customer delay is dominated by the mean
empty phase customer delay. Under these conditions, the accumulating
phase is likely to span the full T slots, such that the mean customer delay
approaches T + 1 for ρ → 0. For moderate load conditions, the mean
customer delay stabilizes under the influence of the accumulating phase.
For λ > (N − 1) /T , the relative importance of the serving phase starts to
dominate the mean customer delay. Again we see the hybrid nature of the
NT -policy reflected when comparing with the N -policy and the T -policy.
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Figure 7.10: Weighted mean customer delays as a function of the system
load ρ = λ.

7.5 General service times

In this section, we broaden the scope of our research to an NT -policy system
with general service times, as illustrated in Figure 7.11. The approach
presented here will differ significantly from the approach in other sections,
in that we will not construct any system equations in order to get some
general system state pgf that we can refer to. Rather, we will analyze
the system phase per phase and determine the desired expressions more
directly. We can expect our results to be similar to those of the previous
section, especially for the empty and the accumulating phase, given that
the server’s characteristics manifest only during the serving phase.

Adopting the notations from the GI −GI − 1 model, the pgf of the iid
service times is given by S(z) with mean µ. Furthermore, we assume the
system load ρ , λµ to be smaller than 1, such that the system is stable.

Bernoulli FIFO NT
General

Independent

Figure 7.11: Illustration of the NT -policy system with general independent
service times.
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7.5.1 Phase durations and cycle length

Similar to the previous section, we first focus on the cyclic behavior of the
NT -policy.

Empty phase

The empty phase starts once the last customer leaves the system such that
it becomes empty again and ends as soon as a new customer arrives. The
empty phase therefore consists of as many slots as needed to collect a single
arrival, given by the random variable c1. We therefore find that

Prob[Φ0 = t] = λ(1− λ)
t−1

, t ≥ 1, (7.47)

Φ0(z) , E
[
zΦ0
]

=
λz

1− (1− λ) z
, (7.48)

with mean

E[Φ0] = Φ′0(1) =
1

λ
. (7.49)

Accumulating phase

The accumulating phase is initiated by a customer arriving to an empty
system and is terminated when the queue contains N customers or when
the first customer has been in the queue for T slots, whichever happens
first. In order to differentiate between these two possibilities, we will add
〈N〉 to expressions specific to the case where the N -threshold is reached
and

〈
N
〉

for expressions where the timer expires before N customers have
accumulated.

The N -threshold can only be reached if N − 1 customers arrive over
T slots or less, subsequent to the arrival slot of the first customer. The
accumulating phase duration is then equal to the number of slots needed to
accumulate these N − 1 additional arrivals, given by the random variable
cN−1 , such that

Prob
[
Φ
〈N〉
1 = t

]
= Prob[cN−1 = t]

=

(
t− 1

N − 2

)
λN−1(1− λ)

t−N+1
, N − 1 ≤ t ≤ T, (7.50)

Φ
〈N〉
1 (z) , E

[
zΦ
〈N〉
1

]
=

T∑
t=N−1

Prob
[
Φ
〈N〉
1 = t

]
zt

= (λz)
N−1

T−N+1∑
j=0

(
j +N − 2

N − 2

)
((1− λ) z)

j
. (7.51)
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Given the fact that this is a partial pgf encompassing all cases where the
N -threshold is reached, we can determine the probability ω to reach the
N -threshold as

ω , Prob[cN−1 ≤ T ] = Φ
〈N〉
1 (1) = λN−1

T−N+1∑
j=0

(
j +N − 2

N − 2

)
(1− λ)

j
.

(7.52)
The N -threshold will not be reached if the number of arrivals AT during

the T slots following the arrival slot of the first customer, is less than N−1.
The pgf of the number of arrivals during the accumulating phase when it
does not reach the N -threshold, can therefore be determined as

A
〈N〉
T (z) =

N−2∑
j=0

Prob[AT = j] zj =

N−2∑
j=0

(
T

j

)
(1− λ)

T−j
(λz)

j
. (7.53)

The probability ω of the system not reaching the N -threshold can then be
found as

ω , Prob[AT < N − 1] = A
〈N〉
T (1) =

N−2∑
j=0

(
T

j

)
(1− λ)

T−j
λj . (7.54)

Before we determine the actual distribution of the accumulating phase
duration, we introduce Ψ as the number of customers in the system at the
end of an accumulating phase. The joint pgf of Φ1 and Ψ follows from (7.51)
and (7.53) as

E
[
xΦ1yΨ

]
= E

[
xΦ1yΨ {〈N〉}

]
+ E

[
xΦ1yΨ

{〈
N
〉}]

= Φ
〈N〉
1 (x)yN + xT yA

〈N〉
T (y). (7.55)

The marginal pgfs of Φ1 and Ψ can be determined by setting the appropriate
argument to 1, yielding

Φ1(z) , E
[
zΦ1
]

= Φ
〈N〉
1 (z) + ωzT , (7.56)

Ψ(z) , E
[
zΨ
]

= ωzN + zA
〈N〉
T (z), (7.57)

and the mean accumulating phase duration is given by

E[Φ1] = Φ′1(1) = ωT + Φ
〈N〉
1

′
(1). (7.58)

Serving phase

During the serving phase, the server is active and serves all customers in the
queue until it becomes empty again, after which the server is deactivated
and the system moves to the empty phase of a new cycle. The customers
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Figure 7.12: Illustration of a fundamental period, with AS = 3 arrivals
during the service of a primary customer and k customers in the system at
the beginning of the fundamental period.

served during the serving phase include not only the Ψ customers in the
queue at the beginning of the serving phase, but also every customer that
arrives while the server is active.

In order to account for these additional customers, we resort to the no-
tion of a fundamental period [13, 105] to denote the number of slots needed
to reduce the system content by 1 customer. More specifically, due to ar-
rivals and departures, the system content may fluctuate during a funda-
mental period, but it is terminated as soon as the system content becomes
less than it was at the beginning of the period. Although the definition and
the duration of such a fundamental period is independent of the scheduling
policy of the queue, it can be understood most intuitively in a LIFO set-
ting, as depicted in Figure 7.12. In Figure 7.12, a service S is started for a
(primary) customer, during which AS (secondary) customers arrive to the
system and add to the system content. After the service of the primary cus-
tomer, each of the secondary customers initiates a (secondary) fundamental
period ∆i, such that the total duration of the (primary) fundamental period
∆ becomes

∆ = S +

AS∑
i=1

∆i. (7.59)

Due to the fact that different arrivals and service times are stochastically in-
dependent, the same goes for fundamental periods, allowing us to determine
the pgf of a fundamental period as

∆(z) , E
[
z∆
]

= E
[
zS∆(z)

AS
]

= E
[
zSA(∆(z))

S
]

= S(zA(∆(z))) = S(z (1− λ+ λ∆(z))). (7.60)

Although (7.60) is an implicit expression, an explicit expression can be found
for the mean fundamental period duration as

E[∆] = ∆′(1) = µ (1 + λE[∆]) =
µ

1− λµ =
µ

1− ρ . (7.61)
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The serving phase duration can then be found as the sum of the fundamental
periods related to the Ψ customers in the system at the beginning of the
serving phase, such that

Φ2(z) , E
[
zΦ2
]

= Ψ(∆(z)), (7.62)

with mean

E[Φ2] = Φ′2(1) =
µΨ′(1)

1− ρ . (7.63)

Cycle length

The length of a cycle is the sum of the durations of its constituting phases.
However, we can not simply add the durations of the individual phases,
because in the former, we did not account for the correlation between the
accumulating and the serving phase duration. We therefore first introduce
Φ1,2(x, y) as the joint pgf of the accumulating and the serving phase dura-
tion,

Φ1,2(x, y) , E
[
xΦ1yΦ2

]
=

N−1∑
j=1

E
[
xΦ1yΦ2 {Ψ = j}

]
+ E

[
xΦ1yΦ2 {〈N〉}

]
= E

[
xΦ1∆(y)

Ψ {〈
N
〉}]

+ Φ
〈N〉
1 (x)∆(y)

N

= xT∆(y)A
〈N〉
T (∆(y)) + Φ

〈N〉
1 (x)∆(y)

N
. (7.64)

The pgf Q(z) of the cycle length can then be found as

Q(z) , E
[
zΦ0+Φ1+Φ2

]
= Φ0(z)Φ1,2(z, z)

= Φ0(z)

(
zT∆(z)A

〈N〉
T (∆(z)) + Φ

〈N〉
1 (z)∆(z)

N

)
, (7.65)

with mean

E[Q] = Q′(1) =
1

λ
+ ωT + Φ

〈N〉
1

′
(1) +

µ

1− ρ

(
ω +A

〈N〉
T

′
(1) + ωN

)
.

(7.66)

Phase probabilities

For later use, we define the phase probabilities pi (i ∈ {0, 1, 2}) as the
probability for the system to be in phase i during a random slot:

pi , Prob[system is in phase i] =
E[Φi]

E[Q]
. (7.67)

Although this definition is sufficient for the determination of any of the
three phase probabilities pi, a more efficient approach is advised in order
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to determine p2. In equilibrium, the mean departure rate of any queueing
system is equal to the mean arrival rate. In this system, departures only
take place during the serving phase and do so at a rate of µ−1 customers
per slot, such that p2 = λµ = ρ.

7.5.2 System content and customer delay

In this section we will look at the three different phases separately to analyze
both the system content ui (i ∈ {0, 1, 2}) at the beginning of a random slot
in phase i and the customer delay di of a random customer Ci that arrives
in course of phase i. This analysis will result in an expression for the partial
pgfs Ui(z) and Di(z) of ui and di respectively. From these, we can then find
the pgf U(z) of the system content at the beginning of a random slot and
the pgf D(z) of the customer delay of a random customer as

U(z) =

2∑
i=0

piUi(z) and D(z) =

2∑
i=0

piDi(z). (7.68)

Note that the BASTA property holds, as the arrivals are generated by a
Bernoulli process. As a result, an arbitrary customer C, arriving during slot
S, will perceive the system to be in a state that is stochastically indistin-
guishable from the state at the beginning of a random slot.

Empty phase

The empty phase is characterized by the system being empty, and therefore
u0 = 0 and U0(z) = 1. When a customer C0 arrives during the empty phase,
the empty phase will immediately be terminated and that customer will be
the first to get served once the accumulating phase has ended. Therefore,
that customer will stay in the queue for exactly Φ1 slots and reside in the
server during the entirety of its service. This gives us

d0 = Φ1 + S, (7.69)

with pgf
D0(z) , E

[
zd0
]

= S(z)Φ1(z). (7.70)

Accumulating phase

The accumulating phase is started as soon as an arrival occurs during
an empty phase, and during the accumulating phase, the system content
evolves from that 1 single customer to an unknown number of customers,
over an unknown number of slots. In order to deal with these unknowns,
we will first analyze the system as if it were a T -policy system, then we will
convert the resulting expressions to make them fit for the NT -policy system.
For clarity and to prevent confusion, we will decorate expressions belonging
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Figure 7.13: The accumulating phase customer delay in a T -policy system
- definition of e and r.

to the underlying T -policy system with a superscript (T ) and expressions
pertaining to the actual NT -policy system with a superscript (NT ).

Selecting an arbitrary accumulating phase slot S in the T -policy sys-
tem, we introduce the auxiliary random variables e and r as the contiguous
number of slots in that accumulating phase, respectively preceding and suc-
ceeding slot S, as illustrated in Figure 7.13. Given that in a T -policy system,
the accumulating phase duration of every cycle is equal to exactly T slots,
the expression T = e + r + 1 always holds and we can find the joint pgf of
e and r as

E[xeyr] =

T−1∑
t=0

Prob[e = t, r = T − t− 1]xtyT−t−1 =
1

T

T−1∑
t=0

xtyT−t−1

=
xT − yT
T (x− y)

. (7.71)

The joint pgf P (T )(x, z) of the remaining number of accumulating phase
slots r and the system content uS at the beginning of slot S can be calculated
from (7.71) as

P (T )(x, z) , E[xrzuS ] = E
[
xT−e−1z1+Ae

]
= xT−1z E

[(
A(z)

x

)e]
= z

(A(z))
T − xT

T (A(z)− x)
. (7.72)

Due to the memoryless arrival process and the iid server process, differ-
ent cycles are uncorrelated and so are different accumulating phases, both
in the T -policy and in the NT -policy system. Additionally, the system state
evolution during the accumulating phase in the NT -policy system cannot be
distinguished from its T -policy counterpart, until possibly the queue length
becomes N . Where the NT -policy system will terminate the accumulating
phase upon arrival of an Nth customer, this event will remain inconse-
quential in the T -policy system. The NT -policy counterpart of (7.72) can
therefore be obtained by removing the terms corresponding to uS ≥ N and
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ensuring normalization, such that

P (NT )(x, z) = E[xrzuS |uS < N ] =
P̂ (T )(x, z)

P̂ (T )(1, 1)
, (7.73)

where

P̂ (T )(x, z) =

N−1∑
k=1

([
zk
]
P (T )(x, z)

)
zk. (7.74)

The notation
[
zk
]
f(z) is known as the coefficient extractor notation [46]

and denotes the coefficient of zk in the function f(z). Due to the Bernoulli
arrivals we can determine these coefficients directly, without the need of
the probability generating property of pgfs or approximate techniques as
described in Section 4.4. By reverting some of the steps in (7.71) and
(7.72), we get

P (T )(x, z) =
z

T

T−1∑
t=0

xT−t−1A(z)
t

=
z

T

T−1∑
t=0

xT−t−1
t∑

n=0

(
t

n

)
(1− λ)

t−n
(λz)

n

=
1

T

T∑
n=1

λn−1zn
T∑
t=n

(
t− 1

n− 1

)
xT−t(1− λ)

t−n
, (7.75)

such that the desired coefficients follow as

[
zk
]
P (T )(x, z) =

λk−1

T

T∑
t=k

(
t− 1

k − 1

)
xT−t(1− λ)

t−k
, 1 ≤ k ≤ T. (7.76)

We can then find P̂ (T )(x, z) as

P̂ (T )(x, z) =
1

T

N−1∑
k=1

λk−1zk
T∑
t=k

(
t− 1

k − 1

)
xT−t(1− λ)

t−k
. (7.77)

From P (NT )(x, z), the pgf U1(z) of the system content u1 at the beginning
of a random accumulating phase slot follows as

U1(z) , E[zu1 ] = P (NT )(1, z). (7.78)

In (7.73), the random variable r should be understood as the number
of slots following S until timer expiration, even if the accumulating phase
under question is terminated before the T -threshold is reached. Therefore,
the underlying equality T = e+ r+ 1 remains valid for every accumulating
phase slot S and more specifically, the first accumulating phase slot (e = 0
and uS = 1) is uniquely characterized by r = T − 1. Thus, the probability
Prob[r = T − 1, uS = 1], which can be found as the coefficient of xT−1z in
P (NT )(x, z), denotes the fraction of accumulating phase slots that are the
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Figure 7.14: The accumulating phase customer delay.

first slot of their accumulating phase. Conversely, since every accumulating
phase has exactly one first slot, the mean accumulating phase duration can
be found as the inverse of this fraction, yielding

E[Φ1] =
1

[xT−1z]P (NT )(x, z)
= T P̂ (T )(1, 1). (7.79)

Now assume that slot S is no longer a random slot, but rather it is the
arrival slot of a random customer C1 that arrives during the accumulating
phase. Note that due to the BASTA property, the system state at the
beginning of slot S is stochastically identical to that of a random accumu-
lating phase slot. Therefore, the distribution of the system content uS at
the start of slot S will equal the distribution of u1. Once the server becomes
active in the next serving phase, the uS previously arrived customers will
be served first before C1 is allowed in the server. The delay experienced by
C1 therefore consists of the remaining accumulating phase duration and the
total service time of uS + 1 customers. As illustrated in Figure 7.14, the
remaining accumulating phase duration has the same distribution as the

full accumulating phase duration Φ
(N−uS ,r)
1 of an N ′T ′-policy system with

N ′ , N − uS and T ′ , r. The accumulating phase customer delay d1 can
therefore be found as

d1 = Φ
(N−uS ,r)
1 +

uS+1∑
j=1

Sj , (7.80)

where Sj is the service time of the jth customer in the queue. The pgf
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Figure 7.15: The serving phase customer delay - definition of v.

D1(z) of the accumulating phase customer delay d1 then follows as

D1(z) , E
[
zd1
]

= E
[
Φ

(N−uS ,r)
1 (z)S(z)

uS+1
]

=

T−1∑
t=0

N−1∑
j=1

Prob[r = t, uS = j] Φ
(N−j,t)
1 (z)S(z)

j+1

=

T−1∑
t=0

N−1∑
j=1

([
xtzj

]
P (NT )(x, z)

)
Φ

(N−j,t)
1 (z)S(z)

j+1
. (7.81)

The coefficients
[
xtzj

]
P (NT )(x, z) can be found from (7.73) and (7.77) as

[
xtzj

]
P (NT )(x, z) =

1

T P̂ (T )(1, 1)

(
T − t− 1

j − 1

)
λj−1(1− λ)

T−t−j
, (7.82)

for 1 ≤ j ≤ N − 1 and 0 ≤ t ≤ T − j.

Serving phase

As we have not composed any system equations, direct analysis of the sys-
tem content at the beginning of a random serving phase slot is somewhat
cumbersome. Therefore we provide a workaround for which we make use of
the embedded points approach, i.e. we will perform the analysis for specific
well-chosen epochs for which the analysis is more feasible and then use the
corresponding results to extract general results. Specifically, we will first
focus on the system content v at the beginning of the first slot of a random
service, as indicated by the dots in Figure 7.15. At the beginning of the
first service time of a serving phase, exactly Ψ customers are in the system.
At the beginning of a subsequent service time, the queue has grown accord-
ing to the AS arrivals during the previous service time and one customer
has left the system. The last service of a serving phase is characterized by
v = 1 in combination with the fact that no arrival occurs during that service
time. Therefore, subsequent values vn and vn+1 of the random variable v
are related through the piecewise equation

vn+1 =

{
Ψ, if vn = 1 and AS = 0

vn +AS − 1, otherwise.
(7.83)
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For ease of computation and notation, we introduce the auxiliary random
variables ṽ , v− 1 with pgf Ṽ (z) = V (z)/z and similarly ṽn , vn − 1. The
pgf Ṽn+1(z) of ṽn+1 can then be found as

Ṽn+1(z) , E
[
zṽn+1

]
= E

[
zvn+1−1

]
= E

[
zΨ−1 {vn = 1, AS = 0}

]
+ E

[
zvn+AS−2 {¬ (vn = 1, AS = 0)}

]
=

1

z

[
S(A(z))Ṽn(z) + (Ψ(z)− 1)S(A(0))Ṽn(0)

]
. (7.84)

Taking the limit for n → ∞, we get the pgf Ṽ (z) of the system content at
the beginning of a random service, reduced with 1 as

Ṽ (z) , E
[
zṽ
]

= lim
n→∞

Ṽn(z) = Ṽ (0)S(A(0))
Ψ(z)− 1

z − S(A(z))
, (7.85)

where Ṽ (0) can be found from the normalization condition Ṽ (1) = 1 as

Ṽ (0) =
1− λµ

Ψ′(1)S(A(0))
, (7.86)

such that we finally get

Ṽ (z) =
1− λµ
Ψ′(1)

Ψ(z)− 1

z − S(A(z))
. (7.87)

Now we consider a random serving phase slot S and note that it is part
of some service time SS . The service time SS is not random but follows
from the selection of S. As such, the probability that SS consists of n slots
is proportional to both the relative occurrence of service times of length n
and the length n itself, since S could be any of the n slots such that

Prob[SS = n] =
ns(n)

µ
, n ≥ 1. (7.88)

Furthermore, we redefine the random variables e and r respectively to de-
note the numbers of slots of SS elapsed before and remaining after slot S
and similarly to (7.71) we get

E[xeyr]=

∞∑
n=1

Prob[SS = n]

n−1∑
t=0

Prob[e = t, r = n− t− 1|SS = n]xtyn−t−1

=

∞∑
n=1

s(n)

µ

n−1∑
t=0

xtyn−t−1 =
S(x)− S(y)

µ (x− y)
. (7.89)

The system content u2 at the beginning of a random serving phase slot
S then follows as the sum of the system content v at the beginning of the
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corresponding service SS and the number of customers Ae that have arrived
during the first e slots of that service time. This yields

u2 = v +Ae = ṽ +Ae + 1, (7.90)

with pgf

U2(z) , E[zu2 ] = E
[
zṽ+Ae+1

]
= zṼ (z) E[A(z)

e
]

= z
1− λµ
µΨ′(1)

Ψ(z)− 1

A(z)− 1

S(A(z))− 1

z − S(A(z))
. (7.91)

Next, we assume that S is no longer a random slot, but rather the arrival
slot of a randomly selected customer C2 that arrives during the serving
phase. Again we note that this does not affect the system state distribution
at the beginning of S, as the BASTA property is in effect. Thus, the
distribution of the system content uS at the start of slot S will be identical
to the distribution of u2. The delay d2 of C2 consists of the remaining service
time r of the customer in service during slot S, the total service time of all
uS − 1 customers in the queue at the beginning of slot S and the service
time of C2 itself, such that we get

d2 = r +

uS∑
j=1

Sj , (7.92)

with pgf

D2(z) , E
[
zd2
]

= E[zrS(z)
uS ] = S(z)Ṽ (S(z)) E[A(S(z))

e
zr]

= S(z)
1− λµ
µΨ′(1)

1−Ψ(S(z))

A(S(z))− z . (7.93)

7.5.3 Relation to the GI −GI − 1 model

Again, we will compare our results for the system content pgf and the delay
pgf to the corresponding results found for the GI − GI − 1 model. For
N = 1, their is no accumulation phase and the NT -policy system we have
considered effectively becomes a traditional FIFO queueing system. Note
that simple substitution of N = 1 in the above expressions is discouraged,
since they were obtained especially for N > 1.

In case N = 1, the accumulating phase no longer exists, such that Φ1 = 0
with pgf Φ1(z) = 1. From (7.67) and the alternative method for finding p2,
we then find

p0 = 1− λµ, p1 = 0, p2 = λµ.

The pgfs of the empty phase system content and customer delay can be
found as

U0(z) = 1, and D0(z) = S(z). (7.94)
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Figure 7.16: The evolution of the system content in an NT -policy system
over 4000 slots with N = 400, T = 1000, λ = 0.3 and shifted geometric
service times with mean µ = 1.5.

For the serving phase system content and customer delay pgfs, we note that
the serving phase starts as soon as the first customer has entered the system,
i.e. Ψ = 1 with pgf Ψ(z) = z, yielding

U2(z) = z
1− λµ
λµ

S(A(z))− 1

z − S(A(z))
, (7.95)

D2(z) = S(z)
1− λµ
µ

1− S(z)

A(S(z))− z . (7.96)

Taking the weighted sum over the different phases, we get

U(z) =

2∑
i=0

piUi(z) = (1− λµ)

(
1 + z

S(A(z))− 1

z − S(A(z))

)
= (1− λµ)S(A(z))

z − 1

z − S(A(z))
, (7.97)

and

D(z) =

2∑
i=0

piDi(z) = (1− λµ)S(z)

(
1 + λ

1− S(z)

A(S(z))− z

)
= (1− λµ)S(z)

z − 1

z −A(S(z))
. (7.98)

Note that (7.97) is identical to the corresponding expression (5.20) in the
GI −GI − 1 model, and (7.98) can be found from (5.29) by substitution of
A(z) = 1− λ+ λz.

7.5.4 Fluid flow approximation

Especially for very large values of N and T , the determination of some per-
formance measures, such as the mean cycle length or the mean customer
delay, can be computationally tedious due to the multiple summations in
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the intermediate expressions. Therefore, we now explore a fluid flow ap-
proximation technique that yields very simple approximate expressions that
pose no computational challenge but still offer acceptable precision. The ap-
proximation is particularly suitable for situations where the arrival rate λ
is small, the service times have low variance, both thresholds N and T
are high and when the system tends to reach one of the thresholds much
more than the other. In such cases the step function of the system content
versus time, can be approximated tightly by a sawtooth function, as de-
picted in Figure 7.16, due to the variance in the arrival and service process
being small and the scale of the system reducing the relative importance
of any random variations. Note that the final condition is automatically
satisfied if the average number of arrivals during T slots differs much from
N − 1, the number of arrivals needed in the accumulating phase to reach
the N -threshold, i.e. λT �� N − 1. Figure 7.16 shows the system content
evolution over 4000 slots in a system that satisfies all of these conditions.
This graph also illustrates the underlying idea of a fluid flow approximation:
the upward and downward portions of the sawtooth curve almost seem to be
straight lines on a macroscopic scale, while on a microscopic scale the curve
consists of stepwise increments and decrements. The concept of a fluid flow
approximation, is to treat some discrete variable as if it were continuous,
thus omitting small scale details that have little influence on the large scale
behavior.

In the upward portions, the system is in the accumulating phase and
the system content gradually builds up at a rate of λ customers per slot.
During the serving phase, departures occur according to the service process,
while customers keep coming at the same rate; this interaction causes the
curve to decrease with a slope of µ−1 − λ. At this scale, cycles consist of
only two phases, a build-up phase and a build-down phase and the apex
of the sawtooth will always approach some fixed value ua. The expected
build-up phase duration Φu and the build-down phase duration Φd can be
approximated as

E[Φu] ≈ ua
λ
, and E[Φd] ≈

µua
1− λµ, (7.99)

such that the approximated mean cycle length becomes

E[Q] ≈ E[Φu] + E[Φd] ≈
ua

λ (1− λµ)
. (7.100)

The approximated mean system content can be found as half the height of
the sawtooth and the approximated mean customer delay then follows from
Little’s theorem, such that

E[u] ≈ ua
2
, and E[d] ≈ ua

2λ
. (7.101)

The height of the apex of the sawtooth depends on the relation between
N , T and λ. More specifically, if λT � N −1, it generally takes much more
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Figure 7.17: The mean phase sojourn times and the mean cycle length as a
function of the system load ρ = λµ.

than T slots to reach the N -threshold, such that most of the accumulating
phases are terminated due to timer expiration. In that case, the system
will contain on average ua = 1 + λT customers when the serving phase is
started. If on the other hand we have that λT � N − 1, the system will
usually accumulate N customers well before timer expiration, such that
ua = N . In summary, we have

ua =

{
1 + λT, λT � N − 1,

N, λT � N − 1.
(7.102)

7.5.5 Numerical examples

We end this section by means of some more numerical examples regarding
the NT -policy. Just like in Section 7.4, we will compare the results of the
NT -policy with results obtained for the N -policy and the T -policy.

Again, we first focus on the mean phase durations and the mean cycle
length as functions of the system load. In Figure 7.17 we show the mean
phase durations and the mean cycle length on a logarithmic scale forN = 41,
T = 100 and shifted Poisson service times with mean µ = 1.5. The back-
ground colors illustrate the distribution of the phase probabilities, such that
for each vertical cut, the dark grey portion corresponds to the empty phase
probability p0, the light grey portion then corresponds to the accumulating
phase probability p1 and the serving phase probability p2 is illustrated by
the white background. For very small values of the system load, the mean
cycle length is dominated by the contribution of the empty phase. Under
these load conditions, the accumulating phase practically always lasts for T
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Figure 7.18: The mean customer delay as a function of the system load
ρ = λµ.

slots during which only few customers will accumulate such that the serving
phase duration will be negligible. When the load increases, the empty phase
duration quickly drops and the serving phase duration starts to increase.
The mean accumulating phase duration is virtually unchanged until the ar-
rival rate λ = ρ/µ approaches (N − 1) /T . When the system load keeps on
increasing, the number of secondary arrivals during a fundamental period
increases, and the mean serving phase duration becomes dominant. When
comparing with both the N -policy and the T -policy, we see that the mean
cycle length of the NT -policy serves as a lower bound for the mean cycle
length in both primitive policies. For λ < (N − 1) /T , the mean cycle length
in the NT -policy coincides with its T -policy counterpart and for higher ar-
rival rates the NT -policy mimics the N -policy. When λ ≈ (N − 1) /T , both
thresholds N and T have a similar chance of being the first to be reached
and the differences between the three policies are minimal

Next, we study how the system load affects the mean customer delay.
Figure 7.18 shows the mean customer delay for a system with N = 41,
T = 100 and shifted Poisson service times with mean µ = 1.5. For each
phase, the mean customer delay is multiplied with the corresponding phase
probability, such that the sum of these weighed means corresponds to the
mean customer delay for a customer arriving in a random slot. For com-
parison, the mean customer delay in corresponding N -policy and T -policy
systems is plotted as well. As we could expect, Figure 7.18 is quite similar
to Figure 7.17. For a very low system load, the mean customer delay - just
like the cycle length - is dominated by the contribution of the empty phase.
As the system load increases to µ (N − 1) /T , the weight of the empty phase
contribution quickly drops and the mean customer delay is mainly shaped



108 The NT -Policy

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

p0E[d0]
p1E[d1]
p2E[d2]
E[d]

service rate 1/µ

N -policy
T -policy

Figure 7.19: The mean customer delay as a function of the service rate 1/µ.

by the accumulating phase portion. When the load increases even more,
the serving phase dominates the mean customer delay, growing excessively
as the system load approaches 1. Again we see that for the lower values of
the system load, the mean customer delay of the NT -policy matches the
mean customer delay in the T -policy system and for higher values of ρ, the
mean customer delay coincides with its N -policy counterpart.

Note the general similarity between the curves related to the mean phase
and cycle durations on the one hand and the weighted and total mean
customer delays on the other hand. Therefore we will from now on only focus
on the mean customer delay. In what follows we will investigate the influence
of other system parameters, such as µ, N and T , all of which have an effect
on the mean customer delays whereas, for example, E[Φ0] only depends on
λ. The curves displayed are then the counterparts of the curves displayed in
Figure 7.18, i.e. for each phase the mean customer delay weighted according
to the corresponding phase probability and the mean delay for a customer
arriving in a random slot for the three policies considered. As before, the
background of the charts will symbolize the phase probabilities.

The effect of the service rate 1/µ on the mean customer delay is por-
trayed in Figure 7.19, for a system where λ = 0.4, N = 41, T = 100 and
service times are shifted Poisson distributed. When the service rate 1/µ is
hardly greater than the arrival rate λ, the system load will be close to 1,
leading to excessive delays. In such cases, the serving phase probability will
approach 1, such that the mean customer delay is completely dominated
by the serving phase contribution. As the service rate increases, service
times decrease, leading to shorter delays, but also decreasing the weight of
the serving phase, especially in favor of the accumulating phase. In this
scenario, the relative importance of the empty phase is negligible.
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Figure 7.20: The mean customer delay as a function of N .

We now illustrate the impact of the N -threshold on the mean customer
delay in Figure 7.20 for a system with λ = 0.4, T = 100 and shifted Poisson
service times with mean µ = 1.5. Note that the serving phase probability
p2 = ρ is independent of N , such that the serving phase has a fixed weight
on the mean customer delay. For low values of the N -threshold, the accu-
mulating phase will be quite short and not many customers will be in the
system at the beginning of the serving phase, resulting in a rather small
mean customer delay. As long as N is sufficiently smaller than λT + 1, an
increase in N will cause an increase in the accumulating phase length and
in the number of customers in the system at the beginning of the serving
phase and as a result, the mean customer delay will increase as well. When
N becomes significantly larger than λT + 1, the N -threshold will become
practically unreachable before timer expiration, and the system will start
to behave like a T -policy system, independent of the actual value of N .

Now we investigate the effect of the time threshold T on the mean cus-
tomer delay, as illustrated in Figure 7.21 for a system where λ = 0.4, N = 41
and service times are shifted Poisson distributed with mean µ = 1.5. Again,
we clearly see that the actual value of T has no influence on the serving phase
probability p2. Similar to low values of N , low values of T will result in a
short mean accumulating phase duration and by consequence a small num-
ber of customers in the queue at the beginning of the serving phase, such
that the mean customer delay is rather small. When T becomes larger,
there will be more time for primary customers to accumulate during the
accumulating phase, such that the mean customer delay will increase ac-
cordingly. For values of T sufficiently larger than (N − 1) /λ, it will become
ever so probable that N customers can accumulate before the timer expires.
The system will then behave more and more like an N -policy system and
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Figure 7.21: The mean customer delay as a function of T .

the T -threshold will no longer affect the mean customer delay.
Finally, we illustrate the accuracy of the fluid flow approximation of the

mean customer delay E[d] in Figure 7.22 for a system with N = 41, T = 500
and shifted Poisson service times with mean µ = 1.5. The curves plotted
are the curves for the mean customer delay for the NT -policy system as
calculated in Section 7.5.2 and as approximated using (7.101). For the N -
policy and the T -policy the calculated curve for E[d] has been plotted as
well. For the fluid flow approximation, the NT -policy system is basically
reduced to a single threshold policy, according to the relation between λT
and N−1. In case λT � N−1, it is assumed that only the timer threshold T
is relevant and if λT � N − 1 only the N threshold is retained. Therefore,
it comes as no surprise that the approximated curve closely mimics the
original single threshold policy curves in the applicable regions.
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Chapter 8
Session-Based Arrivals and

Bernoulli Output Line Interruptions

8.1 Introduction

The main goal of queueing theory in general is to obtain knowledge and
understanding about queueing systems in the form of mathematical ex-
pressions, algorithms, graphs, . . . Depending on the characteristics of the
queueing system, some models may be more appropriate than others for in-
ferring accurate and realistic results. In general, a model tailored to match
the key properties and inner workings of a queueing system offers better
results than a general purpose model, where only some basic parameters
can be fitted.

Such a general purpose model is the GI−GI−1 model described earlier,
for which the arrival process and the server process can be configured as
any iid process. In many realistic situations however, the assumption of iid
arrivals is very much inadequate, as there is usually some sort of correlation
between subsequent arrivals. This is especially the case when considering
information packet arrival streams in telecommunication systems. Further-
more, it is known, as well as it is intuitively clear, that the performance
of a queueing system degrades as the (positive) correlation in the arrival
process increases [78, 83]. In general, the term correlation - apart from its
mathematical meaning - is mainly understood as a measure of burstiness or
some sort of dependence. In the Internet specifically, many reasons can be
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found for correlation, both technical and non-technical, e.g.

• most web pages require additional files to be downloaded, such as
images, css stylesheets, javascript files, . . . ;

• most data is too large to be sent as a single packet, such as large files,
multimedia streams, . . . ;

• some Internet applications require parallel connections, such as ftp;

• Internet usage shows temporal trends that are dependent on socio-
cultural and geographical factors [16].

In this chapter, we will study queues with session-based arrivals, a com-
plex arrival model devised to represent a particular type of short-term time
correlation in the arrival process.

A simple class of arrival processes incorporating correlation are the so-
called On/Off -processes [4, 31, 124, 126]. These models assume that a finite
number of users is responsible for generating information packets. Each user
can either reside in the On-state, during which the user is active and thus
generates packets, or the user can be in the Off-state meaning that the user
is idle and does not generate any packets.

Related to the On/Off-processes, but much more flexible are the fam-
ily of Markovian Arrival Processes (MAPs in short) [85, 94]. In a MAP,
a source governed by a Markov process generates packets at a rate that
depends on the state of that background Markov process. As an extension,
Batch Markovian Arrival Processes (BMAPs) [19, 84] and their discrete-
time counterpart D-BMAPs [5], were introduced in order to allow for batch
arrivals, instead of (at most) one per arrival instant. The family of MAPs
and all their varieties (see [96] for an overview) share the advantages that
they are versatile and allow for a tractable analysis. They can either be
used to model the entire arrival stream to the buffer [102] or to model one
of many multiplexed flows [104, 109].

Other traffic models that have been studied with respect to the related
buffer performance are e.g. (discrete) autoregressive arrivals [72] and semi-
Markov processes [47, 75]. Specifically designed to study the effect of traffic
correlation on very long time scales are also the self-similar or long range
dependent (LRD) traffic models [54, 97, 100].

Although the arrival models presented in the former are well-suited to
model correlated arrivals and even correlated traffic flows, they usually lack
the possibility to perceive the individual packets as part of a whole, higher-
level entity, commonly referred to as a message. In cases where results about
such messages are desired, appropriate arrival models, aware of the natural
grouping of packets are generally required. To that end, dispersed messages
were introduced [20] as collectives of constant numbers of consecutive pack-
ets in an independent arrival process. Although this model was a good first
step towards message modelling, the definition of dispersed messages is very
limitative, not allowing multiple simultaneous or variable-length messages.
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Both these limitations were overcome by the introduction of train ar-
rivals [12, 17, 21, 120], where messages are referred to as trains. Such a train
is a group of packets that arrive in consecutive slots at a rate of exactly one
packet per slot. This definition offers a versatile notion of messages, al-
lowing various distributions for the number of new trains per slot, for the
number of packets per train and even allowing for multiple simultaneous
trains. Most research involving train arrivals assumes the generation of new
trains to be iid , although some research has been committed to (Markovian)
correlated models for train generation [23, 24, 66].

In this chapter however, we focus on session-based arrivals, an exten-
sion of the train arrival model. With session-based arrivals, the messages
are called sessions, which are defined similarly to trains, except that a ses-
sion can generate a variable, yet strictly positive number of packets per
slot. Previous research on session-based arrivals [61, 62, 121] has resulted in
expressions for the system content and the packet delay. This chapter revis-
its my contributions about the session delay [38, 39] and the session-based
arrival model with multiple heterogeneous session types [40].

Note that the messages-based arrival processes are particularly relevant
when studying queueing systems in close proximity of the origin of the mes-
sages, e.g. the outgoing buffer of a file server. At points located further away
from the message source, intersecting streams and other network effects usu-
ally blur the correlation between the individual packets of a message.

8.2 Session-based arrivals

Session-based arrival streams generate packets as part of larger entities re-
ferred to as sessions. These sessions usually span over multiple consecutive
slots and produce packets at a variable rate of one or more packets per slot.
Session-based arrival streams can be grouped into different classes or types
according to their characteristics in terms of session incidence, bandwidth
and length, each of which can be described by a discrete probability distri-
bution. The session incidence distribution describes the number of newly
initiated sessions per slot. Note that we assume this distribution to be iid
from slot to slot and from session type to session type, such that all sessions
are initiated independently from each other, whether or not they belong to
the same session type. The bandwidth of a session is the variable yet strictly
positive number of packets generated by a session during a single slot. We
will assume that the session bandwidth distribution is iid from slot to slot
and from session to session. Finally, the number of slots during which a
session generates packets is called the session length, which we assume to
be iid from session to session. The definitions of the session bandwidth
and session length are illustrated in Figure 8.1. Here, the grayed session is
initiated in slot 4 and has a length of 8 slots during which it produces 20
packets at a variable rate.
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Figure 8.1: Example of how the packets arrive to a system with session-
based arrivals.
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Figure 8.2: The effect of an output line interruption.

In order to get familiar with the techniques required to analyze the ses-
sion delay, we will first assume homogeneous sessions (i.e. only 1 session
type) in Section 8.7.1. Afterwards, we will expand the analysis to the het-
erogeneous case in Section 8.7.2.

8.3 Output line interruptions

The service offered to the packets arriving in the system consists of trans-
mitting these packets over an output line, which we consider to be subject to
interruptions. When such an interruption occurs, no packets can be trans-
mitted. This is illustrated in Figure 8.2, where the packet with label 1 is
ready for transmission in slot k − 1, but due to an interruption it can only
leave the system during slot k, such that the packet labeled 2 can be trans-
mitted no sooner than in slot k+1. Note that the net effect of these output
line interruptions is essentially the same as if the packets have prolonged
transmission times and the output line is always accessible. For clarity, the
term transmission time denotes the number of slots needed to transmit a
packet over an accessible output line. The term effective transmission time
also incorporates the time lost due to output line interruptions.

These output line interruptions allow us to model the unreliable nature
of communication networks.
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Figure 8.3: Illustration of a system with session-based arrivals and geometric
output line interruptions.

8.4 Mathematical model

In this chapter, we will investigate the system depicted in Figure 8.3, more
specifically a FIFO queueing system fed by a session-based arrival process
with deterministic transmission times of 1 slot per packet and independent
Bernoulli output line interruptions. This means that during each random
slot, the output line is accessible with a fixed probability σ and with a
probability 1 − σ, the output line is interrupted. In combination with the
single-slot transmission times, this yields shifted geometrically distributed
effective transmission times with mean µ = 1/σ. Hence the shifted geomet-
ric server in Figure 8.3.

For the session-based arrival process, we consider T types of sessions,
each characterized by their incidence, bandwidth and length distributions,
which in turn are described by their pgfs. These pgfs are Bt(z) for the
number of new sessions of type t ∈ {1, . . . , T} in a random slot, Pt(z) for
the number of packets generated by a session of type t during a random
slot and Lt(z) is the pgf of the length af a random session of type t. As
mentioned before, we assume for each session type the numbers of new
sessions per slot to be iid , as well as the lengths of these sessions and the
numbers of packets per slot generated by these sessions.

This specific queueing system has already been studied in [121], yielding
expressions for the pgf, the mean value and the tail distributions of both
the system content and the packet delay. My personal contribution to the
analysis of this particular model, consists mainly of the study of the session
delay. Therefore, we will not revisit the previous work into full detail, but
we will summarize the most relevant results. The attentive reader may
notice some notational differences between the expressions mentioned here
and those in previous work, caused by adapting the original expressions to
the notations used in this dissertation.

The remainder of this chapter is structured as follows. In Section 8.5, we
elaborate on the arrival process and define some relevant variables that will
aid us in our further analysis. Section 8.6 summarizes the main results from
[121]. We then focus on the session delay, first for homogeneous sessions (i.e.
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T = 1) in Section 8.7.1, and then for arbitrary values of T in Section 8.7.2.
Finally, we illustrate our results by means of some numerical examples in
Section 8.8.

8.5 The packet arrival process

First, we look at the arrival process at session level and define an,k(t) as
the number of active sessions of type t in their nth slot during slot k.
Considering the fact that the number of sessions of type t in their first slot
is determined by the corresponding session incidence distribution, whereas
the number of sessions of type t in their non-first slot is determined by the
number of sessions of type t in the previous slot that continue to be active,
we find

a1,k(t) = bk(t), and an,k(t) =

an−1,k−1(t)∑
i=1

cin−1,k(t), n > 1, (8.1)

where bk(t) is the number of sessions of type t started in slot k and the
variables cin−1,k(t) are 1 if and only if the ith active session of type t, in its
(n− 1)th slot during slot k− 1, will continue during slot k and 0 otherwise.
The distributions of the continuity variables cin−1,k(t) can be derived from
the session length distributions. Therefore we first define πt(n) as the prob-
ability that a session of type t, that has been active for n slots will remain
active for at least one more slot:

πt(n) ,
1−∑n

i=1 `t(i)

1−∑n−1
i=1 `t(i)

, (8.2)

with `t(i) being the pmf of the length distribution of sessions of type t. The
pgf Cn−1,t(z) of the variables cin−1,k(t) can then be found as

Cn−1,t(z) , E
[
zc
i
n−1,k(t)

]
= 1− πt(n− 1) + zπt(n− 1), n > 1. (8.3)

At packet level, we do not need to distinguish between packets pertaining
to sessions of different types and thus we define mk as the total number of
packets arriving during slot k, given by

mk =

T∑
t=1

∞∑
n=1

an,k(t)∑
i=1

pin,k(t), (8.4)

where pin,k(t) is the number of packets generated by the ith session of type
t that was in its nth slot during slot k. The packet arrival rate λ, i.e. the
mean number of packet arrivals in an arbitrary steady-state slot, can then
be calculated as

λ = E[m] =

T∑
t=1

B′t(1)L′t(1)P ′t (1). (8.5)



Chapter 8 121

The system load ρ then becomes

ρ =
λ

σ
. (8.6)

8.6 Summary of previous work:
system equations, buffer analysis and
packet delay analysis

For the system state, we not only need to keep track of the system con-
tent, the number of active sessions and the progress of each of those ses-
sions, but also of the type of each session, yielding the system state vector〈
a1,k−1, . . . ,aT,k−1, uk

〉
. Here, we introduced the infinite dimensional vec-

tors at,k , 〈a1,k(t), a2,k(t), . . .〉 containing the number of active sessions of
a specific type t, grouped by the number of slots they have been active for
up until slot k. The transition of the vectors at,k−1 from slot to slot is
described by (8.1) and the transition of the system content at the beginning
of a slot can be described by

uk+1 = (uk − rk)
+

+mk, (8.7)

where rk is a Bernoulli variable that is 1 with probability σ and 0 with
probability 1− σ, thus modelling Bernoulli output line interruptions. From
(8.1) and (8.7), it can be seen that the set

{〈
a1,k−1, . . . ,aT,k−1, uk

〉}
of

system state vectors constitutes a Markov chain.
With xt = (x1,t, x2,t, . . .), the steady-state joint pgf Q(x1, . . . ,xT , z) of

the system state can be found as

Q(x1, . . . ,xT , z) =
1

z

(
T∏
t=1

Bt(x1,tPt(z))

){
σ (z − 1) p0

+ R̄(z)Q(G1(x1, z), . . . ,GT (xT , z), z)
}
, (8.8)

where p0 is the steady-state empty system probability, the function R̄(z) =
σ + (1− σ) z pertains to the output line state and the vector functions
Gt(xt, z) are defined as

Gt(xt, z) , (G1,t(xt, z), G2,t(xt, z), . . .) , 1 ≤ t ≤ T, (8.9)

with

Gn,t(xt, z) , Cn,t(xn+1,tPt(z)), n ≥ 1, 1 ≤ t ≤ T. (8.10)

The probability p0 that the system is empty at the beginning of a random
steady-state slot can be determined as

p0 = 1− 1

σ

T∑
t=1

B′t(1)L′t(1)P ′t (1) = 1− λ

σ
, (8.11)
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and the mean steady-state system content is

E[u] = −1

2

T∑
t=1

B′t(1)P ′t (1)L′′t (1) +
ρ (2− λ)

2 (1− ρ)

+
1

2 (1− ρ)σ

[ T∑
t=1

(Var[pt]− P ′t (1))B′t(1)L′t(1)

+

T∑
t=1

(
Var[bt]L

′
t(1)

2
+ Var[`t]B

′
t(1)

)
P ′t (1)

2
]
, (8.12)

where Var[bt], Var[pt] and Var[`t] are the variances of the incidence, band-
width and length distribution of sessions of type t respectively. The mean
packet delay E[dP ] then follows from Little’s theorem as

E[dP ] =
E[u]

λ
. (8.13)

For later use, we also define E[an(t)] as the mean number of active
sessions of type t in their nth slot during an arbitrary steady-state slot,
which can be found as

E[an(t)] =
∂

∂xn,t
Q(1, . . . ,1, 1) = B′t(1)

(
1−

n−1∑
i=1

`t(i)

)
= B′t(1)Λt(n),

(8.14)
where 1 is an infinite dimensional vector with all elements equal to 1 and
where we introduced Λt(n) ,

∑∞
j=n `t(j) for convenience. This auxiliary

function has two interesting properties which we will exploit later on:

Λt(1) =
∞∑
j=1

`t(j) = 1, and

∞∑
n=1

Λt(n) = L′t(1). (8.15)

The mean total number of active sessions E[a(t)] of a certain type t in an
arbitrary slot can then be found as

E[a(t)] =

∞∑
n=1

E[an(t)] =

∞∑
n=1

∂

∂xn,t
Q(1, . . . ,1, 1) = B′t(1)L′t(1). (8.16)

8.7 Session delay analysis

Given the complex nature of the session-arrival process, we first analyze the
session delay for homogeneous sessions (i.e. T = 1) in Section 8.7.1. The
method developed there will then serve as a guideline for the study of the
session delay for heterogeneous sessions in Section 8.7.2.



Chapter 8 123

8.7.1 Homogeneous sessions (T = 1)

In the case where there is only 1 single session type, the indices t in previous
expressions, referring to the session type are redundant and have therefore
been omitted in this section.

LetM be a randomly selected steady-state session and let S be the slot
during which that session M is started, i.e. the slot during which the first
packet of M arrives to the system. The delay dM of session M is then
defined as the integer number of slots between the end of slot S and the
end of the slot during which the session’s final packet effectively leaves the
system. As can be expected, the determination of the session delay poses
quite a challenge, therefore we will limit ourselves to the determination
of the mean session delay, which can be calculated using the law of total
expectation as

E[dM] =

∞∑
`=1

E
[
dM|`

]
Prob[session M has length `] , (8.17)

where dM|` denotes the delay of a session of length `, such that the session’s

final slot can be defined as S̄ , S + ` − 1. This conditional delay dM|`
consists of the total transmission time of the uS+1 packets in the queue at
the beginning of slot S + 1, the total transmission time of all mS+i packets
arriving during slots S + i, i ∈ {1, . . . , `− 1} except for the χMS̄ packets
arriving during slot S̄ but after the session’s final packet. Therefore we get

E
[
dM|`

]
=

1

σ

(
E[uS+1] +

`−1∑
i=1

E[mS+i]− E
[
χMS̄

])
. (8.18)

Note that, although S is not an arbitrary slot, the system state at the
beginning of S has the same distribution as the system state at the beginning
of a random steady-state slot. This is because sessions start independently
from slot to slot. Due to the fact that by definition at least 1 session
is started during slot S, this can not be said of the system state at the
beginning of slot S + 1, such that E[uS+1] 6= E[uS ] = E[u]. The pmf of the
number bS of new sessions in slot S can be found by considering that this
probability is proportional to the number of new sessions in that slot, or

Prob[bS = β] =
β

B′(1)
Prob[bk = β] , β ≥ 1, (8.19)

similar to (5.25). The joint pgf QS+1(x1, x2, . . . , z) of the system state at
the beginning of slot S + 1 can be found as

QS+1(x1, x2, . . . , z) , E

[( ∞∏
n=1

xn
an,S

)
zuS+1

]
=

x1

B′(1)

∂

∂x1
Q(x1, x2, . . . , z)

=
x1P (z)B′(x1P (z))

B′(1)B(x1P (z))
Q(x1, x2, . . . , z), (8.20)
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such that

E[uS+1] =
∂

∂z
QS+1(1, 1, . . . , 1) = E[u] + (1 +B)P ′(1), (8.21)

where we introduced the shorthand B , B′′(1)
B′(1) −B′(1) for convenience.

Given that all sessions share the same iid bandwidth distribution, we
find that

E[mS+i] = P ′(1) E

[ ∞∑
n=1

an,S+i

]
= P ′(1) E[αS+i] , (8.22)

where we introduced the shorthand αk ,
∑∞
n=1 an,k. Although (8.18) does

not make use of E[mS ] directly, we will require it later on. We could calcu-
late E[mS ] using the fact that Prob[a1,S = j] = j

B′(1)Prob[a1 = j], similar

to (6.19), or we can calculate it directly from QS+1(x1, x2, . . . , z) as

E[mS ] = P ′(1)

∞∑
n=1

E[an,S ] = P ′(1)

∞∑
n=1

∂

∂xn
QS+1(1, 1, . . . , 1)

= λ+ P ′(1) (1 +B) . (8.23)

For the mean number of packet arrivals in the subsequent `−1 slots S+i, i ∈
{1, . . . , `− 1}, we know that there will always be at least one session that
has been active for exactly i+ 1 slots, such that

E[a1,S+i] = B′(1), (8.24)

E[ai+1,S+i] = 1 + π(i) (E[ai,S+i−1]− 1)

= 1 +
B′′(1)

B′(1)
Λ(i+ 1), 1 ≤ i ≤ `− 1, (8.25)

E[an,S+i] = π(n− 1) E[an−1,S+i−1]

= B′(1)Λ(n), 1 < n 6= i+ 1. (8.26)

Substitution of (8.24), (8.25) and (8.26) in (8.22) then yields

E[mS+i] = λ+ P ′(1) (1 +BΛ(i+ 1)) , 1 ≤ i ≤ `− 1. (8.27)

Note that (8.23) is in fact consistent with (8.27), allowing us to expand the
range for i to 0 ≤ i ≤ `− 1 in the latter.

In order to determine E
[
χMS̄

]
, we note that due to the random order of

arrivals during a slot, χMS̄ only depends on the total number mS̄ of arrivals
during slot S̄ and the total number of packets generated by session M
during slot S̄, which we will refer to as pMS̄ . The relation between χMS̄ , mS̄
and pMS̄ can thus be expressed as

Prob
[
χMS̄ = x|mS̄ = m, pMS̄ = p

]
=

(
m−x−1
p−1

)(
m
p

) , 0 ≤ x ≤ m− p. (8.28)
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Therefore, we can calculate E
[
χMS̄

]
as

E
[
χMS̄

]
=

∞∑
j=1

∞∑
m=j

m−j+1∑
p=1

m−p∑
x=0

xProb
[
χMS̄ = x,mS̄ = m, pMS̄ = p, αS̄ = j

]
=

∞∑
j=1

∞∑
m=j

m−j+1∑
p=1

m− p
p+ 1

Prob
[
mS̄ = m, pMS̄ = p, αS̄ = j

]
=

∞∑
j=1

E

[
mS̄ − pMS̄
pMS̄ + 1

∣∣∣∣∣αS̄ = j

]
Prob[αS̄ = j] . (8.29)

In order to compute the conditional mean in (8.29), we will make use of a
helper function Ωj(x, y), defined as the conditional joint pgf of the random
variables pMS̄ and mS̄ , conditioned on αS̄ = j. We can calculate Ωj(x, y) as

Ωj(x, y) , E
[
xp
M
S̄ ymS̄ |αS̄ = j

]
= E

[
xp
M
S̄ yp

M
S̄ +

∑j−1
i=1 p

i
S̄ |αS̄ = j

]
= P (xy)P (y)

j−1
, (8.30)

where piS̄ is the number of packets generated by a session i during slot S̄.
Note that this number is independent of the total number of active sessions
during S̄ and the number of packets generated by any other session during
slot S̄. We can now determine the conditional mean in (8.29) as

E

[
mS̄ − pMS̄
pMS̄ + 1

∣∣∣∣∣αS̄ = j

]
=

(
∂

∂y

∫ 1

0

Ωj(x, y)dx

)∣∣∣∣
y=1

− 1 +

∫ 1

0

Ωj(x, 1)dx

= (j − 1)P ′(1)

∫ 1

0

P (x)dx, (8.31)

such that (8.29) eventually becomes

E
[
χMS̄

]
= P ′(1) (E[αS̄ ]− 1)

∫ 1

0

P (x)dx

= (λ+ P ′(1)BΛ(`))

∫ 1

0

P (x)dx, (8.32)

where we made use of the property P ′(1) E[αS̄ ] = E[mS̄ ] = E[mS+`−1].

We can then find the mean session delay conditioned on the session
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length by substitution of (8.21), (8.27) and (8.32) in (8.18), such that

E
[
dM|`

]
=

1

σ

[
E[u] + (1 +B)P ′(1) + (`− 1) (λ+ P ′(1))

+ P ′(1)B

`−1∑
i=1

Λ(i+ 1)− (λ+ P ′(1)BΛ(`))

∫ 1

0

P (x)dx

]

=
E[u]

σ
+
P ′(1)

σ

[
1 + (`− 1) (1 +B′(1)L′(1)) +B

∑̀
i=1

Λ(i)

− (B′(1)L′(1) +BΛ(`))

∫ 1

0

P (x)dx

]
, (8.33)

where we made use of Λ(1) = 1 and λ = B′(1)L′(1)P ′(1). Substituting
(8.33) in (8.17) finally yields the unconditional mean session delay

E[dM] =
E[u]

σ
+
P ′(1)

σ

[
1 + (L′(1)− 1) (1 +B′(1)L′(1)) +B

∞∑
i=1

Λ(i)
2

−
(
B′(1)L′(1) +B

∞∑
n=1

`(n)Λ(n)

)∫ 1

0

P (x)dx

]
.

(8.34)

8.7.2 Heterogeneous sessions (T > 1)

When considering multiple session types, we will not only condition the
mean session delay on the session length, but also on the session type, such
that the mean session delay E[dM] can be calculated as

E[dM] =

T∑
t=1

Prob[session is of type t]

∞∑
`=1

E
[
dMt|`

]
Prob[session Mt has length `] , (8.35)

where Mt denotes an arbitrary steady-state session of type t.
Just as in Section 8.7.1, the delay of a session Mt, started during slot

S, is defined as the integer number of slots between the end of slot S and
the end of the slot during which the session’s final packet effectively leaves
the system. The delay of an individual session is not affected directly by
the fact that there are multiple session types, this allows us to calculate the
mean delay E

[
dMt|`

]
of a session Mt of type t having a duration of ` slots

as

E
[
dMt|`

]
=

1

σ

(
E
[
uS+1|t

]
+

`−1∑
i=1

E
[
mS+i|t

]
− E

[
χMt

S̄

])
, (8.36)
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where the index extension |t denotes that the corresponding random variable
is conditioned on the type of the selected session Mt.

As argued before, S is not an arbitrary slot, but it is the first slot of the
randomly chosen sessionMt of type t. The probability that there are bS(t)
newly initiated sessions during slot S is therefore proportional to bS(t), such
that we can find the pmf of bS(t) as

Prob[bS(t) = β] =
β

B′t(1)
Prob[bk(t) = β] , β ≥ 1, (8.37)

just like (5.25) and (8.19). Conversely, slot S does have the same system
state distribution as at the beginning of a random steady-state slot. From
these observations, we can find the joint pgf QS+1|t(x1, . . . ,xT , z) of the
system state at the beginning of slot S + 1, conditioned on t similar as in
(8.20) as

QS+1|t(x1, . . . ,xT , z) , E

[(
T∏
τ=1

∞∏
n=1

xn,τ
an,S|t(τ)

)
zuS+1|t

]

=
x1,t

B′t(1)

∂

∂x1,t
Q(x1, . . . ,xT , z)

=
x1,tPt(z)B

′
t(x1,tPt(z))

B′t(1)Bt(x1,tPt(z))
Q(x1, . . . ,xT , z). (8.38)

Hence, the mean system content at the beginning of slot S + 1 follows as

E
[
uS+1|t

]
=

∂

∂z
QS+1|t(1, . . . ,1, 1) = E[u] + (1 +Bt)P

′
t (1), (8.39)

where we introduced the shorthand Bt ,
B′′t (1)
B′t(1) −B′t(1) for convenience.

Next, we need to determine the number of packet arrivals during each
of the slots S + i, 0 ≤ i ≤ `− 1 during which the session Mt is active. For
later use however, we first introduce the variables αS+i|t(τ) as

αS+i|t(τ) ,
∞∑
n=1

an,S+i|t(τ), 1 ≤ τ ≤ T, (8.40)

which can be combined into the vector αS+i|t ,
〈
αS+i|t(1), . . . , αS+i|t(T )

〉
.

The mean number of packet arrivals during slot S + i then follows as

E
[
mS+i|t

]
=

T∑
τ=1

P ′τ (1) E

[ ∞∑
n=1

an,S+i|t(τ)

]
=

T∑
τ=1

P ′τ (1) E
[
αS+i|t(τ)

]
. (8.41)

To obtain E
[
mS|t

]
we note that the mean number of active sessions of

type τ in their nth slot during slot S, denoted by E
[
an,S|t(τ)

]
, can be found
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from the system state pgf at the beginning of slot S + 1 (8.38). This yields

E
[
mS|t

]
=

T∑
τ=1

P ′τ (1)

∞∑
n=1

E
[
an,S|t(τ)

]
=

T∑
τ=1

P ′τ (1)

∞∑
n=1

∂

∂xn,τ
QS+1|t(1, . . . ,1, 1)

= λ+ P ′t (1) (1 +Bt) . (8.42)

For the remaining slots S + i (i ∈ {1, . . . , `− 1}) we find that

E
[
a1,S+i|t(τ)

]
= B′τ (1), (8.43)

E
[
ai+1,S+i|t(t)

]
= 1 + πt(i)

(
E
[
ai,S+i−1|t(t)

]
− 1
)

= 1 +
B′′t (1)

B′t(1)
Λt(i+ 1) (8.44)

E
[
an,S+i|t(τ)

]
= πτ (n− 1) E

[
an−1,S+i−1|t(τ)

]
= B′τ (1)Λτ (n), 1 < n, (n 6= i+ 1 ∨ τ 6= t). (8.45)

Note the difference between the expressions (8.44) and (8.45) on one hand
and the corresponding expressions (8.25) and (8.26) from the previous sec-
tion on the other hand. In each of the slots S+i, 1 ≤ i ≤ `−1, we only know
that there is at least 1 active sessionMt of type t that is in its (i+1)th slot,
which is reflected in (8.44). Any session active in any of those slots that is
either of type τ 6= t or not in its (i+1)th slot during S+1, is most certainly
not the selected session Mt, but rather a completely random session as is
reflected by (8.45). Substitution of (8.43), (8.44) and (8.45) in (8.41) then
yields

E
[
mS+i|t

]
= λ+ P ′t (1) (1 +BtΛt(i+ 1)) , 1 ≤ i ≤ `− 1, (8.46)

where we applied the property
∑∞
n=1 Λt(n) = L′t(1). Again we note that

(8.42) and (8.46) are consistent, such that (8.46) holds true for 0 ≤ i ≤ `−1.

Finally we need to determine the mean number of packets E
[
χMt

S̄

]
ar-

riving during the final slot S̄ of session Mt, but after the session’s final
packet. Since the order of the individual packet arrivals is purely random,
χMt

S̄ only depends on the total number mS̄|t of packet arrivals during slot

S̄ and the number of packets pMt

S̄ generated by session Mt during slot S̄.

The pmf of χMt

S̄ , conditioned on mS̄|t and pMt

S̄ can then be found as

Prob
[
χMt

S̄ = x|mS̄|t = m, pMt

S̄ = p
]

=

(
m−x−1
p−1

)(
m
p

) , 0 ≤ x ≤ m− p, (8.47)
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such that the mean value of χMt

S̄ can be found as

E
[
χMt

S̄

]
=

∞∑
j1,...,jT=0

∞∑
m=J

m−J+1∑
p=1

m−p∑
x=0

xProb
[
χMt

S̄ = x,mS̄|t = m, pMt

S̄ = p,αS̄|t = j
]

=

∞∑
j1,...,jT=0

∞∑
m=J

m−J+1∑
p=1

m− p
p+ 1

Prob
[
mS̄|t = m, pMt

S̄ = p,αS̄|t = j
]

=

∞∑
j1,...,jT=0

E

[
mS̄|t − pMt

S̄
pMt

S̄ + 1

∣∣∣∣∣αS̄|t = j

]
Prob

[
αS̄|t = j

]
, (8.48)

where j = (j1, . . . , jT ) and J =
∑T
τ=1 jτ . Similarly as in the previous

section, the calculation of the conditional mean in (8.48) can be simplified
by using the joint pgf of mS̄|t and pMt

S̄ , conditioned on αS̄|t. This pgf is
given by

Ωj|t(x, y) , E
[
xp
Mt
S̄ ymS̄|t

∣∣∣αS̄|t = j
]

= E
[
(xy)

p
Mt
S̄ y

∑T
τ=1

∑jτ
i=1 p

i
S̄(τ)−pMt

S̄

∣∣∣αS̄|t = j
]

=
Pt(xy)

Pt(y)

T∏
τ=1

Pτ (y)
jτ , (8.49)

where piS̄(τ) is the number of packets generated by a session i of type τ
during slot S̄. Note that this number is independent of the total number of
active sessions of any type during S̄ and the number of packets generated by
any other session during slot S̄. By means of (8.49), the conditional mean
in (8.48) then becomes

E

[
mS̄|t − pMt

S̄
pMt

S̄ + 1

∣∣∣∣∣αS̄|t = j

]
=

(
∂

∂y

∫ 1

0

Ωj|t(x, y)dx

)∣∣∣∣
y=1

− 1 +

∫ 1

0

Ωj|t(x, 1)dx

=

(
T∑
τ=1

jτP
′
τ (1)− P ′t (1)

)∫ 1

0

Pt(x)dx. (8.50)

Substitution in (8.48) therefore yields

E
[
χMt

S̄

]
=

(
T∑
τ=1

P ′τ (1) E
[
αS̄|t(τ)

]
− P ′t (1)

)∫ 1

0

Pt(x)dx

= (λ+ P ′t (1)BtΛt(`))

∫ 1

0

Pt(x)dx. (8.51)
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The mean delay of sessions of type t, conditioned on the session length
can then be found by substitution of (8.39), (8.46) and (8.51) in (8.36) as

E
[
dMt|`

]
=

1

σ

[
E[u]− λ+ ` (λ+ P ′t (1)) + P ′t (1)Bt

∑̀
i=1

Λt(i)

− (λ+ P ′t (1)BtΛt(`))

∫ 1

0

Pt(x)dx

]
, (8.52)

such that the mean session delay of a random type t session becomes

E[dMt ] =

∞∑
n=1

`t(n) E
[
dMt|`

]
=

1

σ

[
E[u]− λ+ L′t(1) (λ+ P ′t (1)) + P ′t (1)Bt

∞∑
n=1

`t(n)

n∑
i=1

Λt(i)

−
(
λ+ P ′t (1)Bt

∞∑
n=1

`t(n)Λt(n)

)∫ 1

0

Pt(x)dx

]
. (8.53)

In order to remove the conditioning on the session type, we need to deter-
mine the probability that a randomly chosen session is of a specific type t.
This probability corresponds to the portion of sessions of type t among all
sessions, and can be calculated as

Prob[random session is of type t] =
B′t(1)∑T
τ=1B

′
τ (1)

. (8.54)

Finally we can determine the unconditional mean session delay as

E[dM] =

T∑
t=1

Prob[random session is of type t] E[dMt
]

=
E[u]− λ

σ
+

∑T
t=1B

′
t(1)L′t(1) (λ+ P ′t (1))

σ
∑T
τ=1B

′
τ (1)

+
1

σ
∑T
τ=1B

′
τ (1)

T∑
t=1

B′t(1)

[
P ′t (1)Bt

∞∑
n=1

`t(n)

n∑
i=1

Λt(i)

−
(
λ+ P ′t (1)Bt

∞∑
n=1

`t(n)Λt(n)

)∫ 1

0

Pt(x)dx

]
. (8.55)

8.8 Numerical examples

In the remainder of this chapter we will illustrate the effects of the corre-
lation embedded in session-based arrival processes on the mean packet and
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Figure 8.4: The mean packet and session delay as a function of the system
load ρ = λ/σ.

mean session delay by means of some numerical examples. In the previous
chapters, we typically illustrated the effect of the system load on the delay
by varying the arrival rate λ while keeping the service rate fixed. With
session-based arrivals however, the arrival rate itself depends on four sys-
tem parameters: the number of session types T and the session incidence,
bandwidth and length distributions.

Therefore, we start by illustrating the effect of the different character-
istic distributions in Figure 8.4. This figure shows the mean packet delay
(gray lines) and the mean session delay (black lines) as a function of the
system load for homogeneous sessions (T = 1) and a transmission rate
σ = 0.95. The session incidence distribution is a Poisson distribution, the
session length is shifted geometrically distributed and the session band-
width has a shifted binomial distribution B(n, p) with n = 50. For each
pair of curves, two of the three distributions are kept fixed, while the third
one is variable. The default parameters for the distributions are such that
B′(1) = 0.04, L′(1) = 4 and P ′(1) = 2. The gray vertical line marks
the point for which all parameters have their default values. We see that
the different characteristic distributions of the session-based arrival process
each have a unique effect on the mean packet and session delay. Due to
the fact that new sessions start independently from each other, the session
incidence distribution does not introduce any correlation. Therefore, in case
of a change in the system load due to a change in the session arrival rate
B′(1), the net effect on the mean packet and session delay is less pronounced
than if the system load change were caused by a change in either the mean
session length or the mean session bandwidth. This is reflected in Figure
8.4 by the difference in the relative positioning of the curves left and right



132

Session-Based Arrivals and
Bernoulli Output Line Interruptions

transmission rate σ

log E[dP ]
log E[dM]

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

T = 1

2

3

4

5

Figure 8.5: The mean packet and session delay as a function of the trans-
mission rate σ.

of the grey vertical line.

Next, we illustrate the effect of the transmission rate σ on the mean
packet and session delay on a logarithmic scale for various numbers of session
types T in Figure 8.5. The number of new sessions of type t (t ∈ {1, . . . , T})
in a random slot is Poisson distributed with mean B′t(1) = 10−t−1 and have
a shifted geometrically distributed length with mean L′t(1) = 2 × 10t−1.
The bandwidth of each session has a shifted binomial distribution B(n, p)
with n = 50 with mean P ′t (1) = 4, identical for each session type. As such,
sessions of type t generally are longer than sessions of type t′ < t, but they
occur less frequent. By construction, the session type t is identical for each
configuration where t ≤ T . Therefore, all differences in the mean delays for
successive values of T are exclusively caused by the additional session types.
Given that the mean packet arrival rate E[m] increases for successive values
of T , the leftmost point for successive curves moves to the right while the
curves move up. As expected, we see that the mean delays decrease when
the transmission rate σ increases. Note however that Figure 8.5 exhibits the
peculiar property that under the right circumstances, the mean session delay
can be smaller than the mean packet delay. This rather counterintuitive
effect is a direct result of the definition of both the mean packet delay and
the mean session delay. Note that every session contributes equally to the
mean session delay, whether it consists of few packets only or a vast number
of packets. Therefore, the mean session delay is highly influenced by session
types with a high incidence rate. Conversely, the mean packet delay is
obtained by averaging the delay of any random packet, such that sessions
that generate a very high number of packets can have a significant impact
on the mean packet delay, even if such sessions do not occur very often.
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This explains the counterintuitive result presented in Figure 8.5.
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Chapter 9
Geometric Train Arrivals and

Markovian Output Line Interruptions

9.1 Introduction

It has been argued before that tailor-made queueing models, specific to cer-
tain real-life queueing systems generally yield better, more accurate results
then general-purpose queueing models. In Chapter 8, we introduced the
session-based arrival process as a more realistic model to approximate the
outbound server traffic in common network scenarios than the general inde-
pendent arrival process feeding the GI−GI−1 model. The augmented level
of detail, provided by the session-based arrivals came at the cost of a more
challenging mathematical analysis of the key performance measures. In this
chapter however, we raise the bar further, by imposing a more complex
process governing the output line interruptions.

In literature, different types of queueing models with output line inter-
ruptions have been studied before. In [8, 10, 51, 58, 63] various models are
studied, both for a single server setting as for multi-server applications, with
interruptions characterized by a single parameter f denoting the fraction of
the time the output line is accessible. In [9, 66], the output line interrup-
tions are governed by an On/Off-process, characterized by two independent
geometric distributions describing the duration of the accessible periods and
interrupted periods respectively. A more complex output line interruption
mechanism is studied in [28], where the arrival process is iid and the output
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Train arrivals FIFO MarkovJ

Figure 9.1: Illustration of a system with train arrivals and Markovian output
line interruptions

line is governed by a two-state Markov process. The output line is then
interrupted with a probability ej , dependent on the state j of the Markov
process, this allows for an intuitive representation of a good state 0 and a
bad state 1, by choosing 0 ≤ e0 < e1 ≤ 1.

In this chapter, representing my contributions [42, 44], we not only gen-
eralize this last model to a J-state Markov process governing the output line
state, but we also assume that the packets are part of geometric trains. As
described earlier, packet trains are multi-packet entities that during their
lifetime generate exactly one packet per slot. As such, the model studied
here will exhibit two sources of correlation: at the arrival side there is the
time correlation induced by the train arrival process; at the departure side
there is again time correlation due to the Markovian output line interrup-
tions. This is unlike the existing research papers, where at least one of these
processes was kept simple and uncorrelated.

9.2 Mathematical model

We consider the discrete-time queueing model illustrated in Figure 9.1, i.e.
a FIFO-queue fed by a train arrival process generating packets with trans-
mission times of exactly 1 slot per packet over an unreliable output line.
The output line is prone to interruptions governed by a Markov process
with J states, each with its own probability for the output line itself to be
accessible or interrupted.

The packet trains arrive to the system according to an iid distribution,
characterized by its pgf B(z) and are assumed to have shifted geometric
lengths, such that each individual packet has a fixed probability 1 − γ of
being the last packet of its corresponding train. The total number of active
trains ak during a random slot k can therefore be calculated as

ak = bk +

ak−1∑
i=1

cik, (9.1)

where bk is the number of new trains started in slot k and cik is a Bernoulli
variable equal to 1 if and only if the ith train that was active during slot
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k − 1 continues in slot k. The random variables cik therefore have the pgf

C(z) , 1− γ + γz. (9.2)

As mentioned before, this causes the trains to have a shifted geometric
length `, with pgf and mean given by

L(z) =
(1− γ) z

1− γz , and E[`] = L′(1) =
1

1− γ . (9.3)

Note that, due to the fixed rate of 1 packet per train per slot, the number
of active trains ak during a random slot k is equal to the number of packet
arrivals during that slot.

The output line interruptions are governed by a Markovian process with
J ≥ 1 states j ∈ {1, 2, . . . , J}. The actual state of this Markovian process,
or (less verbose) the output line state, in a slot k is denoted by the random
variable sk. Transitions between different states occur at slot boundaries
and are described by the transition matrix H, with the individual transition
probabilities as its elements:

[H]jj′ = σj′|j , Prob[sk = j′| sk−1 = j] . (9.4)

As a shorthand we also introduce σj as the probability for the Markovian

process to stay in state j, i.e. σj , σj|j . Given that H is a stochastic matrix,
corresponding to an irreducible Markov chain, the stationary probability
vector π can be found as a normalized left eigenvector of H corresponding
to eigenvalue 1, i.e. π = π H and π ·eJ = 1, where eJ is a column vector of
order J with all elements equal to 1. The jth element πj of the row vector
π corresponds to the probability that the output line is in state j at the
beginning of a random steady-state slot.

When the output line is in state j, the accessibility of the line is governed
by a Bernoulli distribution with pgf

Hj(z) , 1− ηj + ηjz, (9.5)

such that the line is accessible with probability ηj and interrupted with
probability 1 − ηj . The J probabilities ηj can be collected in the diagonal

matrix η , diag (η1, η2, . . . , ηJ). This accessibility matrix η can be used to
decompose the transition matrix H into H0 and H1, with

H0 , H (IJ − η) , and H1 , H η, (9.6)

where IJ is the J×J identity matrix, such that H0+H1 = H. From H0 and
H1, we can construct the matrix generating function H∗(z) , H0 + H1z
as the matrix counterpart of the functions Hj(z).

An interesting metric concerning the Markovian process is the steady-
state lag-κ correlation coefficient φ(κ) between the output line state in a
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random slot k and the output line state in slot k − κ, defined as

φ(κ) , lim
k→∞

ρsk,sk−κ = lim
k→∞

E[sksk−κ]− E[sk] E[sk−κ]√
Var[sk] Var[sk−κ]

. (9.7)

The lag-κ correlation coefficient φ(κ) (∈ [−1, 1]) is a measure of the statisti-
cal dependence between the states of the Markovian process in two slots that
are κ slots apart. Specifically for κ = 1, we find the correlation coefficient
between the output line state in two subsequent slots as

φ(1) =

∑J
j=1 jπj

∑J
j′=1 j

′σj′|j −
(∑J

j=1 jπj

)2

∑J
j=1 j

2πj −
(∑J

j=1 jπj

)2 . (9.8)

Note that the correlation coefficients only tell a part of the story and are
unable to quantify every aspect of the correlated nature of the Markovian
process. Especially for larger values of J , it can be understood that contri-
butions from a few unique states can be overshadowed by the contributions
of many other states.

9.3 Packet arrival process and system load

In the previous section, we already gave a short description of the arrival
process, explaining how trains are initiated and how they evolve. In this sec-
tion, we further focus on the arrival process and determine some interesting
results such as the mean packet arrival rate and the system load.

From (9.1), the steady-state pgf of the number of packet arrivals in a
random slot can be found implicitly as

A(z) = B(z)A(C(z)) = B(z)A(1− γ + γz). (9.9)

Recursive application of this equation results in the closed-form expression

A(z) =

∞∏
i=0

B(1− γi + γiz) =

∞∏
i=0

B(Ci(z)), (9.10)

where we introduced the shorthand function Ci(z) , 1− γi + γiz. In [95] it
has been proved that the infinite product in (9.10) converges for all γ ∈ ]0, 1[.
Although this expression contains an infinite product, we can determine the
mean packet arrival rate λ , E[a] explicitly from (9.10) as

λ , E[a] = A′(1) = B′(1)

∞∑
i=0

C ′i(1) =
B′(1)

1− γ = B′(1)L′(1). (9.11)

In order to determine the system load, we still need to determine the
effective service rate, i.e. the mean number of packets that can actually
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leave the system per slot, taking into account the output line interruptions.
Given that the transmission times are deterministic of exactly one slot per
packet, the effective service rate is equal to the rate at which the output
line is accessible, which can be calculated as

Prob[output line is accessible] =

J∑
j=1

πjηj = π η eJ. (9.12)

Thus, the system load can be determined as

ρ =
λ

π η eJ
. (9.13)

9.4 System equations and buffer analysis

Quite similar to the systems with session-based arrivals and geometric out-
put line interruptions studied in Chapter 8, the system content at the begin-
ning of slot k+ 1 can be expressed in terms of random variables pertaining
to slot k as

uk+1 = (uk − rk)
+

+ ak, (9.14)

where rk is a random variable that represents the output line accessibility
during slot k. Specifically, we have that

rk =

{
0, with probability 1− ηsk ,
1, with probability ηsk .

(9.15)

It follows from equations (9.1), (9.2), (9.4), (9.14) and (9.15) that the
set of vectors {〈ak−1, sk−1, uk〉} forms a three-dimensional Markov chain,
such that we choose 〈ak−1, sk−1, uk〉 to be the system state vector at the
beginning of a random slot k. The joint system state pgf Pk(x, y, z) for a
random slot k is then defined by

Pk(x, y, z) , E
[
xak−1y(sk−1)zuk

]
. (9.16)

Given the complex nature of the queueing system, we will not determine this
pgf directly, rather we introduce the partial pgfs Pj,k(x, z) (j ∈ {1, . . . , J})
as

Pj,k(x, z) , E[xak−1zuk {sk−1 = j}] . (9.17)

In view of our further matrix-based calculations, it will prove useful to
combine these partial pgfs into a row vector of order J , thus yielding the
vector generating function P∗k(x, z) , [P1,k(x, z), . . . , PJ,k(x, z)].
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From the system equations, we can then determine the partial system
state pgfs Pj,k+1(x, z) as

Pj,k+1(x, z) , E[xakzuk+1 {sk = j}] = E
[
(xz)

akz(uk−rk)+ {sk = j}
]

= B(xz) E
[
(C(xz))

ak−1z(uk−rk)+ {sk = j}
]

= B(xz)
(

(1− ηj) E[(C(xz))
ak−1zuk {sk = j}]

+ ηj E
[
(C(xz))

ak−1z(uk−1)+ {sk = j}
])

= B(xz)
(
ηj
z − 1

z
Prob[uk = 0, sk = j]

+ Ĥj(z) E[(C(xz))
ak−1zuk {sk = j}]

)
, (9.18)

where we introduced the shorthand Ĥj(z) , Hj(1/z) = 1 − ηj + ηj/z.
The partial expectation E[(C(xz))

ak−1zuk {sk = j}] in the right hand side
of (9.18) can be calculated as

E[(C(xz))
ak−1zuk {sk = j}] =

J∑
j′=1

σj|j′ E[(C(xz))
ak−1zuk {sk−1 = j′}]

=

J∑
j′=1

σj|j′Pj′,k(C(xz), z)

=
[
P∗k(C(xz), z) H

]
j
. (9.19)

The probability Prob[uk = 0, sk = j] can be found similarly as

Prob[uk = 0, sk = j] =

J∑
j′=1

Prob[uk = 0, sk−1 = j′, sk = j]

=

J∑
j′=1

σj|j′Prob[uk = 0, sk−1 = j′]

=
[
P∗k(0, 0) H

]
j
. (9.20)

Substitution of these results allows us to rewrite (9.18) more compactly as

Pj,k+1(x, z) = B(xz)

[
z − 1

z
νk + P∗k(C(xz), z) Ĥ∗(z)

]
j

, (9.21)

where νk , P∗k(0, 0)H1 and Ĥ∗(z) , H∗(1/z) = H0 + H1/z. Collecting
these partial pgfs into a row vector, we get the vector generating function

P∗k+1(x, z) = B(xz)

[
z − 1

z
νk + P∗k(C(xz), z) Ĥ∗(z)

]
. (9.22)
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Taking the limit of (9.22) for k → ∞ then yields the following expression
for its steady-state counterpart P∗(x, z):

P∗(x, z) = B(xz)

[
z − 1

z
ν + P∗(C(xz), z) Ĥ∗(z)

]
, (9.23)

where ν , P∗(0, 0)H1 is the steady-state counterpart of νk.
We now present a method for the determination of the unknown vector

ν. Note that ν contains J components νj , [ν]j (j ∈ {1, 2, . . . , J}), so that
composing a system of J linearly independent equations in νj is sufficient
to determine ν. Therefore, we start by eliminating the recursion in (9.23)
by choosing x such that the first arguments of the vector function P∗(., z)
on either side of the expression become equal. In other words, we choose
x = x(z) with

x(z) = C(zx(z)) = 1− γ + γzx(z)

=
1− γ
1− γz =

L(z)

z
. (9.24)

Substitution in (9.23) allows us to eliminate the recursion as

P∗(x(z), z)
(
IJ −B(L(z)) Ĥ∗(z)

)
=
z − 1

z
B(L(z)) ν, (9.25)

which we in general can use to find an explicit expression for P∗(x(z), z) as

P∗(x(z), z) =
(z − 1)B(L(z)) ν adj(M∗(z))

z det(M∗(z))
, (9.26)

where M∗(z) , IJ −B(L(z)) Ĥ∗(z). This technique for the determination
of P∗(x(z), z) can only be executed correctly if M∗(z) is not singular, i.e.
if 1/B(L(z)) is not an eigenvalue of Ĥ∗(z). Note that every component
of P∗(x, z) is in fact a partial pgf and thus bounded for all arguments x
and z on the closed unit disk (i.e. |x| , |z| ≤ 1). Specifically for x = z =
1, we get P∗(1, 1) which should yield the stationary probability vector π.
Substitution of z = 1 into (9.26) in order to extract some useful information
concerning ν would however be needlessly complicated. A more desirable
method is to evaluate the derivative of (9.25) for z = 1, from which we find
that

ν = π η − λ π +
d

dz
P∗(x(z), z)

∣∣∣∣
z=1

(IJ −H) . (9.27)

Summing the components of ν by computing the product of (9.27) with eJ

then yields the first equation for determining ν as

J∑
j=1

νj = ν · eJ =

 J∑
j=1

πjηj

− λ. (9.28)
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For the remaining equations, we choose z = z∗ where |z∗| ≤ 1, z∗ 6= 1
and det(M∗(z∗)) = 0, such that the denominators of the partial pgfs in
(9.26) become 0. Given the boundedness of pgfs on the closed unit disk,
each of the corresponding numerators must be 0 as well, such that for each
partial pgf de l’Hôpital’s theorem can be applied. Expressing this condition
for each pgf simultaneously, we get that

ν adj(M∗(z∗)) = 0J, (9.29)

where 0J is a row vector of order J with all elements equal to 0. Unfor-
tunately, the homogeneous system of linear equations for the unknowns νj
represented by (9.29) is linearly dependent and only yields one useful equa-
tion. In general however, the determinant of M∗(z) has J − 1 zeroes z∗ 6= 1
in the open unit disk, each zero giving rise to a distinct homogeneous system
of equations similar to (9.29) and consequently to one additional equation
in the unknowns νj , linearly independent from any other equation. This
approach holds if all zeroes z∗ are distinct. However, for a zero z∗ of mul-
tiplicity r > 1, we can still obtain r unique systems of linear equations

di

dzi
ν adj(M∗(z))

∣∣∣∣
z=z∗

= 0J, i = 0, . . . , r − 1. (9.30)

Together, (9.28) and the J − 1 variants of (9.29) and/or (9.30) form a set
of J independent linear equations in νj from which ν can be determined.

It may occur that there are less than J − 1 zeroes z∗ of det(M∗(z)) in
the open unit disk, and that therefore the approach presented above fails.
However, only a small modification to the approach is required to overcome
this problem. From [49], it follows that det(z M∗(z)) always has exactly
J − 1 zeroes z? in the open unit disk, if the condition

d

dz
z det(M∗(z))

∣∣∣∣
z=1

=
d

dz
det(M∗(z))

∣∣∣∣
z=1

> 0, (9.31)

holds. Note that this condition is in fact equivalent to the condition ρ < 1
for reaching steady-state, such that (9.31) always holds for stable systems.
From det(z M∗(z)) = zJdet(M∗(z)) it is clear that any zero z 6= 0 of
det(M∗(z)) is also a zero of det(z M∗(z)) and vice versa. If det(z M∗(z))
however has a zero in z = 0, this translates to a pole for det(M∗(z)) and
less than J−1 zeroes z∗ in the open unit disk. In order to take into account
all J−1 zeroes of det(z M∗(z)), we therefore must modify (9.29) and (9.30)
to

z?J−1ν adj(M∗(z?)) = 0J, (9.32)

for zeroes z? of det(z M∗(z)) of multiplicity 1 and

di

dzi
zJ−1ν adj(M∗(z))

∣∣∣∣
z=z?

= 0J, i = 0, . . . , r − 1, (9.33)
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for zeroes z? of det(z M∗(z)) of multiplicity r > 1. All J components of
ν can then be found from (9.28) and the J − 1 variants of (9.32) and/or
(9.33).

In practice, each of the νj corresponds to the probability for the system
to be empty at the beginning of a steady-state slot during which the Marko-
vian process governing the output line is in state j and the output line itself
is accessible, as can be understood from the definition ν , P∗(0, 0) H1.
The empty system probability vector P∗(0, 0) can therefore be found as
P∗(0, 0) = ν H1

−1 and the total probability for the system to be empty at
the beginning of a random steady-state slot is

p0 =

J∑
j=1

Pj(0, 0) = P∗(0, 0) · eJ = ν H1
−1 eJ. (9.34)

Note that a necessary condition for the system to be empty at the beginning
of a random slot k + 1 (whether or not in the steady state) is that there
must not have been any arrival during the preceding slot k (i.e. ak = 0),
independently of the state of the Markov process during either k or k + 1.
From this necessary condition, we can conclude that

Pj,k+1(x, 0) = E[xak {sk= j, uk+1 = 0}] = E[xak {sk= j, ak= 0, uk+1 = 0}]
= Pj,k+1(0, 0), ∀x. (9.35)

Using vector notations, we therefore have that

P∗k(x, 0) = P∗k(0, 0), and P∗(x, 0) = P∗(0, 0), ∀x. (9.36)

From the above analysis of the system state, the pgf U(z) of the system
content u at the beginning of an arbitrary steady-state slot can be found
directly as

U(z) , E[zu] = P (1, 1, z) =

J∑
j=1

Pj(1, z) = P∗(1, z) · eJ

= B(z)

[
z − 1

z
ν + P∗(C(z), z) Ĥ∗(z)

]
. (9.37)

In order to obtain the mean system content however, it is advantageous not
to start from P∗(x, z), but rather from P∗(x(z), z). Bearing in mind the
definition of x(z) in (9.24), we can calculate the first derivative of P∗(x(z), z)
with respect to z for z = 1 in terms of the partial derivatives of P∗(x, z) as

d

dz
P∗(x(z), z)

∣∣∣∣
z=1

= (L′(1)− 1)
∂

∂x
P∗(1, 1) +

∂

∂z
P∗(1, 1). (9.38)

Summing the components of this vector then yields

d

dz
P∗(x(z), z)

∣∣∣∣
z=1

· eJ = λ (L′(1)− 1) + U ′(1), (9.39)
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from which the mean system content can be found as

E[u] , U ′(1) =
d

dz
P∗(x(z), z)

∣∣∣∣
z=1

· eJ − λ (L′(1)− 1) . (9.40)

The unknown vector on the right-hand side of (9.40) can be determined
from (9.26) as

d

dz
P∗(x(z), z)

∣∣∣∣
z=1

=
1

M ′(1)

[(
λ− 1− M ′′(1)

2M ′(1)

)
ν adj(IJ −H)

+ ν
d

dz
adj(M∗(z))

∣∣∣∣
z=1

]
, (9.41)

where we introduced the shorthand M(z) , det(M∗(z)).

9.5 Packet delay analysis

In order to determine the delay experienced by a random steady-state packet
P, we need not only take into account the system state at the beginning of
the packet’s arrival slot S and the number of packets that arrive simulta-
neously with P, but also the output line state in all slots from S up to P’s
departure slot. Practically, the delay dP of P is the total number of slots
needed to serve and transmit all vP packets in the queue just after slot S,
excluding any packets that have arrived during the same slot as P that will
be transmitted later than P. This random variable can be determined as

vP = (uS − rS)
+

+ χP + 1, (9.42)

where χP is the number of packets that have arrived during S but are to
be transmitted before P, as in Section 5.4. Given that the position of P is
uniformly distributed over the aS slot S arrivals, the pmf of χP conditioned
on aS is given by

Prob[χP = n| aS = i] =
1

i
, n ∈ {0, . . . , i− 1} . (9.43)

This allows us to find the partial pgfs Vj,P(z) of vP as

Vj,P(z) , E[zvP {sS = j}] = E
[
z(uS−rS)++χP+1 {sS = j}

]
= z

∞∑
i=1

i−1∑
n=0

zn E
[
z(uS−rS)+ {sS = j, aS = i, χP = n}

]
= z

∞∑
i=1

1

i
E
[
z(uS−rS)+ {sS = j, aS = i}

] i−1∑
n=0

zn

=
z

1− z
∞∑
i=1

1− zi
i

E
[
z(uS−rS)+ {sS = j, aS = i}

]
. (9.44)
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Similar as in previous analyses, we note that slot S is not a random slot,
given that it features at least one arrival. Based on arguments from renewal
theory (see e.g. [90]), we can relate the partial expectation on the right-hand
side of (9.44) to the system state variables for a random steady-state slot k
as

E
[
z(uS−rS)+ {sS = j, aS = i}

]
= E

[
zuS+1−i {sS = j, aS = i}

]
= z−i E[zuS+1 {sS = j, aS = i}]

=
iz−i

λ
E[zuk+1 {sk = j, ak = i}] . (9.45)

Substitution in (9.44) then results in

Vj,P(z) =
1

λ

z

1− z
∞∑
i=1

(
z−i − 1

)
E[zuk+1 {sk = j, ak = i}]

=
1

λ

z

1− z
(
Pj(z

−1, z)− Pj(1, z)
)
, (9.46)

where Pj(x, z) is the jth component of P∗(x, z). Collecting all partial pgfs
Vj,P(z) for different values of j, we get the partial vector generating function
V∗P(z) as

V∗P(z) =
1

λ

z

1− z
(
P∗(z−1, z)−P∗(1, z)

)
. (9.47)

This vector generating function V∗P(z) returns a row vector of which the

jth component is in fact the partial pgf Vj,P(z) of the number of packets
vP in the system just after slot S, excluding the packets to be transmitted
later than P, assuming the output line state during slot S is j.

Next we need to determine the total number of slots needed by the
system to complete the transmission of all these vP packets. Note that as
described before, even though the transmission times are equal to 1 slot
per packet, the effective transmission time of a packet can be larger due to
the output line interruptions. Let seff,k be the effective transmission time
of a single packet starting at slot k, we can then find the conditional joint
probability

Prob[seff,k = i, sk+i = j′| sk = j] =
[
H0

i−1H1

]
jj′
, (9.48)

which corresponds to the individual components of the matrix generating
function

S∗eff(z) = z(IJ − zH0)
−1

H1. (9.49)

Assuming that during slot S the output line is in state j, the delay dP
of P has partial pgf 1j(S

∗
eff(z))

vPeJ, where 1j is a row vector with all zeroes
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except for the jth entry which is equal to 1. The packet delay pgf DP(z)
can then be found as

DP(z) , E
[
zdP
]

=

J∑
j=1

E
[
zdP {sS = j}

]
=

J∑
j=1

∞∑
n=1

E
[
zdP{sS = j, vP = n}

]
=

J∑
j=1

∞∑
n=1

1j (S∗eff(z))
n
eJ Prob[sS = j, vP = n]

=

J∑
j=1

1j Vj,P(S∗eff(z)) eJ. (9.50)

Note that the matrix functions Vj,P(S∗eff(z)) are well-defined if and only
if the eigenvalues of the matrix S∗eff(z) are in the domain of the functions
Vj,P(z). In that case, DP(z) can be calculated using the spectral decompo-
sition of S∗eff(z) as

DP(z) =

J∑
j=1

1j

κ(z)∑
i=1

Vj,P(λi(z))S
∗
eff,i(z)

 eJ

=

J∑
j=1

κ(z)∑
i=1

Vj,P(λi(z))

J∑
j′=1

[
S∗eff,i(z)

]
jj′
, (9.51)

where the λi(z) (i ∈ {1, . . . , κ(z)}) are the distinct eigenvalues of S∗eff(z) for a
particular value of z (see e.g. [89]). In case S∗eff(z) represents a diagonalizable
matrix, the corresponding spectral projectors S∗eff,i(z) can be obtained using
Lagrange interpolation as

S∗eff,i(z) =

∏κ(z)
i′=1,i6=i′ (S

∗
eff(z)− λi′(z)IJ)∏κ(z)

i′=1,i6=i′ (λi(z)− λi′(z))
. (9.52)

If S∗eff(z) is not diagonalizable, both (9.51) and (9.52) require a more tech-
nical treatment [89]. Essential to our analysis however, is the requirement
that the functions λi(z) are analytic in at least a neighborhood of z = 1
because we need to evaluate their derivatives in this point. In general, it is
known that the eigenvalue functions may not be analytic or even continu-
ous in the entire unit disk [48] but they are analytic in (a neighborhood of)
points where all eigenvalues are distinct. We therefore assume as a sufficient
condition that S∗eff(1) has κ(1) = J distinct eigenvalues, so that ultimately,
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the mean packet delay E[dP ] can then be found as

E[dP ] = D′P(1) =

J∑
j=1

J∑
i=1

λ′i(1)V ′j,P(λi(1))

J∑
j′=1

[
S∗eff,i(1)

]
jj′

+Vj,P(λi(1))

J∑
j′=1

[
S∗eff,i

′(1)
]
jj′

 . (9.53)

The analysis method for the packet delay established in this section
constitutes a basic step to study the train delay, as we will explain next.

9.6 Train delay analysis

Similar to the session delay in the previous chapter, the delay dM of a ran-
dom steady-state trainM is defined as the integer number of slots between
the end of the arrival slot S of the first packet P0 of the train, until the
end of the slot in which the final packet P̄ = P`(M)−1 of M departs from
the system. Note that this in fact corresponds to the delay of the train’s
final packet, augmented with the number of slots between the arrival of the
train’s first and last packet, i.e.

dM = `(M)− 1 + dP̄ . (9.54)

Similar to the delay dP of a random packet, the delay dP̄ of the train’s
final packet P̄ can be determined as the total effective transmission time
of all vP̄ packets in the system just after P̄’s arrival slot S̄, excluding the
packets that arrived during S̄ but have to be transmitted later than P̄.
This number vP̄ can be determined from the system state distribution at
the beginning of slot S̄ and the arrival process during S̄ as

vP̄ = (uS̄ − rS̄)
+

+ χP̄ + 1, (9.55)

with χP̄ being the number of packets that have arrived during S̄ but are
to be transmitted before P̄. The partial pgfs Vj,P̄ of vP̄ can then be found



148

Geometric Train Arrivals and
Markovian Output Line Interruptions

similarly as before, yielding

Vj,P̄ , E[zvP̄ {sS̄ = j}] = E
[
z(uS̄−rS̄)++χP̄+1 {sS̄ = j}

]
=

z

1− z
∞∑
i=1

1− zi
i

E
[
z(uS̄−rS̄)+ {sS̄ = j, aS̄ = i}

]
=

z

1− z
∞∑
i=1

1− zi
i

E
[
zuS̄+1−i {sS̄ = j, aS̄ = i}

]
=

z

1− z
∞∑
i=1

z−i − 1

i
E[zuS̄+1 {sS̄ = j, aS̄ = i}]

=
z

1− z

∫ 1/z

1

E
[
αaS̄−1zuS̄+1 {sS̄ = j}

]
dα

=
z

1− z

∫ 1/z

1

1

α
Pj,S̄+1(α, z)dα. (9.56)

In order to obtain the delay dP̄ of M’s final packet P̄, we first need to
determine the system state distribution just after slot S̄, which can be found
from the system state at the beginning of S̄ and the number of arrivals
during slot S̄. As before, the number of arrivals aS̄ during the train’s
final slot S̄ has a distribution that is not identical to the distribution of
the number of arrivals during an arbitrary steady-state slot. Due to the
correlated nature of the packet arrival process, the system state distribution
at the beginning of S̄ in general will also be different from the steady-state
system state distribution at the beginning of a random slot.

Given the fact that individual trains start independently, the first packet
P0 of a steady-state train does however perceive the system in an arbitrary
state. In other words, the distribution of the system state at the beginning
of the train’s first slot S is identical to the system state distribution at the
beginning of a random steady-state slot as studied in Section 9.4. Con-
versely, the distribution of the number of new trains bS started during slot
S is not identical to the distribution of the number of new trains started in
an arbitrary slot, as we know that at least one new train must start during
S. It can be seen that the number bS of new trains in slot S is proportional
to bS , such that we find the pmf

Prob[bS = β] =
β

B′(1)
Prob[bk = β] , β ≥ 1, (9.57)

similar as in (5.25), (8.19) and (8.37). From (9.57), the pgf BS(z) of bS can
be expressed in terms of its arbitrary steady-slot slot counterpart B(z) as
(see e.g. [90])

BS(z) , E
[
zbS
]

=
z

B′(1)

∞∑
β=1

Prob[bk]
d

dz
zβ = z

B′(z)
B′(1)

. (9.58)
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These observations allow us to find the partial system state pgfs Pj,S+1(x, z)
at the beginning of slot S + 1 as

Pj,S+1(x, z) , E[xaSzuS+1 {sS = j}] = E
[
(xz)

aSz(uS−rS)+ {sS = j}
]

= xz
B′(xz)
B′(1)

E
[
(C(xz))

aS−1z(uS−rS)+ {sS = j}
]

=
xz

B(xz)

B′(xz)
B′(1)

Pj(x, z)

= xz
B′(xz)
B′(1)

[
z − 1

z
ν + P∗(C(xz), z) Ĥ∗(z)

]
j

, (9.59)

or combined as a vector generating function

P∗S+1(x, z) = xz
B′(xz)
B′(1)

[
z − 1

z
ν + P∗(C(xz), z) Ĥ∗(z)

]
. (9.60)

For a subsequent packet Pk (k ∈ {1, . . . , `(M)− 1}) ofM arriving dur-
ing slot S+k, we must take into account the correlated nature of the packet
arrival process. In practice this means that we know that Pk is a continua-
tion of one of the aS+k−1 trains active in slot S+k−1 and that the system
cannot be empty at the beginning of slot S + k. From these considerations,
we can find the partial system state pgfs Pj,S+k+1(x, z) at the beginning of
slot S + k + 1 as

Pj,S+k+1(x, z) , E[xaS+kzuS+k+1 {sS+k = j}]
= E

[
(xz)

aS+kzuS+k−rS+k {sS+k = j}
]

= xz
B(xz)

C(xz)
Ĥj(z) E[(C(xz))

aS+k−1zuS+k {sS+k = j}]

= xz
B(xz)

C(xz)

[
P∗S+k(C(xz), z) Ĥ∗(z)

]
j
, (9.61)

which yields the vector generating function

P∗S+k+1(x, z) = xz
B(xz)

C(xz)
P∗S+k(C(xz), z) Ĥ∗(z). (9.62)

By iteration of (9.62) and substitution of (9.60) we can then relate the pgf
P∗S+k+1(x, z) to its steady-state slot counterpart P∗(x, z) as

P∗S+k+1(x, z) =
xzk

Gk(x, z)

(
k−1∏
i=0

B(zGi(x, z))

)
P∗S+1(Gk(x, z), z) Ĥ∗(z)

k

= xzk+1B
′(zGk(x, z))

B′(1)

(
k−1∏
i=0

B(zGi(x, z))

)
(9.63)[

z − 1

z
ν + P∗(Gk+1(xz), z) Ĥ∗(z)

]
Ĥ∗(z)

k
,
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where Gk(x, z) is defined iteratively as

G0(x, z) = x, (9.64)

Gk(x, z) = C(zGk−1(x, z)), k > 0. (9.65)

Note that (9.63) in fact yields (9.60) when substituting k = 0.
Substitution of k = `(M)−1 into (9.63) then gives the vector generating

function P∗S+`(M)(x, z) = P∗S̄+1
(x, z) of the system state just after the

arrival slot S̄ = S+`(M)−1 ofM’s final packet. The individual components
of P∗S̄+1

(x, z) can then be substituted into (9.56) to produce a closed-form

expression for the partial pgfs Vj,P̄ of vP̄ . From Vj,P̄ , we can then obtain
the pgf DP̄(z) of the train’s final packet P̄ as

DP̄(z) =

J∑
j=1

1j Vj,P̄(S∗eff(z)) eJ. (9.66)

Finally, the pgf DM(z) of the delay of a random train can be determined
as

DM(z) =

∞∑
i=1

E
[
zi−1+dP̄ {`(M) = i}

]
. (9.67)

The mean train delay E[dM] can then be found by substituting z = 1 into
the first derivative of (9.67).

9.7 Special cases

9.7.1 Blocking states

The method for finding the row vector ν was based on the assumption that
det(M∗(z)) has J − 1 roots z∗ 6= 1 on the unit disk, which is a reasonable
assumption in the majority of realistic cases. One realistic scenario where
this assumption fails, is when for one or more states the output line is always
interrupted. We refer to such states, if any, as blocking states.

For example, let state jb be such a blocking state, i.e. ηjb = 0 and
therefore the jbth column of H1 will contain only 0s. Assuming all other
J−1 states are non-blocking states, the determinant of M∗(z) will in general
have J − 2 roots z∗ 6= 1 in the open unit disk. When combining (9.28) with
the corresponding J − 2 variants of (9.29) and/or (9.30), we are still one
equation short in order to obtain ν. However, an additional equation can
be found directly from the definition ν , P∗(0, 0) H1. Considering only
the jbth component of ν, this yields

νjb =

J∑
j=1

Pj(0, 0)[H1]jjb = 0. (9.68)
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Together with the J − 1 equations supplied by the default method, we now
can calculate ν.

In case there are b > 1 blocking states, each of these blocking states will
reduce the number of roots with 1, leaving J − b − 1 roots z∗ 6= 1 to be
found. In turn, we can apply (9.68) for each of these blocking states.

9.7.2 J = 1: Geometric output line interruptions

If the Markovian process governing the output line interruptions has only
one single state, the system boils down to a system with Bernoulli output
line interruptions, as discussed in Chapter 8. During an arbitrary slot, the
output line is then accessible with a fixed probability η and interrupted with
probability 1− η.

In this case, the system state pgf breaks down to

P (x, z) = B(xz)

[
z − 1

z
ηp0 + Ĥ(z)P (C(xz), z)

]
, (9.69)

where Ĥ(z) , 1 − η + η/z and with the empty system probability p0 =
P (0, 0) = 1 − λ/η. For x = x(z) = L(z)/z, we get the recursion-free
expression

P (x(z), z) =
B(L(z)) (z − 1)

z
(

1− Ĥ(z)B(L(z))
)ηp0, (9.70)

which after derivation to z and evaluation for z = 1 allows us to find the
mean system content E[u] as

E[u] =
1

(η − λ)

[
λ (1− λ) +

γB′(1)

(1− γ)
2 (1− η + λ) +

B′′(1)

2(1− γ)
2

]
. (9.71)

For the analysis of the packet delay, we notice that the effective trans-
mission times have a shifted geometric distribution, with pgf

Seff(z) =
ηz

1− (1− η) z
. (9.72)

The pgf VP(z) of the number of packets in the system just after the arrival
slot of a randomly selected packet P, excluding any packets to be transmit-
ted after P can be found from (9.46) as

VP(z) =
1

λ

z

z − 1

(
P (z−1, z)− U(z)

)
=

1

λ

z

z − 1

(
z − 1

z
ηp0 + Ĥ(z)U(z)− U(z)

)
=
η

λ
(U(z)− p0) , (9.73)
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where U(z) = P (1, z) is the pgf of the system content. The pgf DP(z) of
the packet delay becomes

DP(z) =
η

λ

(
B(Seff(z))

[
z − 1

z
p0 +

1

z
P (C(Seff(z)), Seff(z))

]
− p0

)
,

(9.74)
due to the specific nature of Seff(z) for the J = 1 case, as given in (9.72).
More specifically, we have that

Seff(z)− 1

Seff(z)
=
z − 1

ηz
, and Ĥ(Seff(z)) =

1

z
. (9.75)

Similarly, the pgf of the train delay can be found from (9.67), where

DP̄(z) = VP̄(Seff(z)), (9.76)

VP̄(z) =
z

1− z

∫ 1/z

1

1

α
PS̄+1(α, z)dα, (9.77)

and

PS̄+1(x, z) = xz`(M)B
′(zG`(M)−1(x, z))

B′(1)

`(M)−2∏
i=0

B(zGi(x, z))


[
z − 1

z
ηp0 + P (G`(M)(x, z), z) H(z−1)

]
H(z−1)

`(M)−1
.

(9.78)

9.7.3 J = 2: Two-state Markovian process

For the case where the Markovian process governing the output line inter-
ruptions has J = 2 states, most results can be determined explicitly as
tractable expressions. We will present these explicit formulations here, for
the analysis up to the mean system content. For the delays, even this case
becomes quite tedious, owing to the spectral decomposition of the matrix
generating function of the effective transmission times.

For J = 2, only two parameters σ1 and σ2 are needed to fully describe the
state transitions in the Markovian process with the transition probability
matrix

H =

[
σ1 σ2|1
σ1|2 σ2

]
=

[
σ1 1− σ1

1− σ2 σ2

]
. (9.79)

This matrix has two eigenvalues, namely λ1 = 1 and λ2 = σ1+σ2−1 = φ(1),
with associated left eigenvectors

π =
1

2− σ1 − σ2

[
1− σ2

1− σ1

]T
and

[
1
−1

]T
, (9.80)
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respectively.
Note that φ(1) is in fact the steady-state lag-1 correlation coefficient

between the output line state in a random slot k and the output line state
in two subsequent slots, defined in (9.8) as

φ(1) , lim
k→∞

ρsk,sk−1
= lim
k→∞

E[sksk−1]− E[sk] E[sk−1]√
Var[sk] Var[sk−1]

. (9.81)

If φ(1) ≈ −1 this can be interpreted as a high probability that the Markovian
process does not remain in the same state in two consecutive slots. When
φ(1) ≈ 0, the Markovian process moves rather arbitrarily through its state
space. If φ(1) ≈ 1, one can expect the Markovian process to remain in a
state for numerous slots before making a transition to another state.

Knowing the stationary probability vector π, we can calculate the system
load ρ as

ρ =
λ

π η e2
=

λ (2− σ1 − σ2)

η1 (1− σ2) + η2 (1− σ1)
. (9.82)

In order to calculate ν, we find the first equation from (9.28) as

ν1 + ν2 = η1π1 + η2π2 − λ. (9.83)

Next, we determine the matrix function M∗(z) , IJ −B(L(z)) Ĥ∗(z) as

M∗(z) =

[
1− σ1B(L(z))Ĥ1(z) − (1− σ1)B(L(z))Ĥ2(z)

− (1− σ2)B(L(z))Ĥ1(z) 1− σ2B(L(z))Ĥ2(z)

]
, (9.84)

such that z∗ can be found as the unique zero of det(M∗(z)) on the unit disk
different from 1, i.e.

φ(1)B(L(z∗))2
Ĥ1(z∗)Ĥ2(z∗)−B(L(z∗))

(
σ1Ĥ1(z∗) + σ2Ĥ2(z∗)

)
+ 1 = 0.

(9.85)
Application of (9.29) then yields a system of equivalent equations given byν1 −

(
ν1σ2Ĥ2(z∗) + ν2 (σ2 − 1) Ĥ1(z∗)

)
B(L(z∗)) = 0,

ν2 −
(
ν2σ1Ĥ1(z∗) + ν1 (σ1 − 1) Ĥ2(z∗)

)
B(L(z∗)) = 0.

(9.86)

From (9.83) and (9.86) we can then find the individual components of ν as

ν1 =
(1− σ2) (η1π1 + η2π2 − λ)

φ(1)
(
B(L(z∗))Ĥ2(z∗)− 1

) , ν2 =
(1− σ1) (η1π1 + η2π2 − λ)

φ(1)
(
B(L(z∗))Ĥ1(z∗)− 1

) ,
(9.87)

such that the system state vector P∗(0, 0) corresponding to an empty system
follows as

P∗(0, 0) =
1

φ(1)η1η2
[η2ν1σ2 − η1ν2 (1− σ2) , η1ν2σ1 − η2ν1 (1− σ1)] .

(9.88)
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Note that the components of ν, and by consequence the components of
P∗(0, 0) as well, are symmetrical. In other words, the expression for ν2 is
identical to its ν1 counterpart, after replacing the index 1 by 2 and vice versa.
This illustrates the fact that the order of the states j (j ∈ {1, 2, . . . , J})
bears no real significance, even for J > 2.

Finally, we determine the mean system content (9.40). Therefore, we
first determine the first and second derivatives of M(z) , det(M∗(z)) for
z = 1 as

M ′(1) = −λ (σ1 + σ2) + η1σ1 + η2σ2 + φ(1) [2λ− (η1 + η2)] , (9.89)

and

M ′′(1) = −λ′ (σ1 + σ2) + 2 (λ− 1) (η1σ1 + η2σ2)

+ 2φ(1)
[
λ′ + λ2 − (2λ− 1) (η1 + η2) + η1η2

]
, (9.90)

where we introduced λ′ , L′′(1)B′(1) + L′(1)2B′′(1). Note that (9.82) and
(9.89) allow us to verify that indeed the equilibrium condition ρ < 1 is
equivalent to M ′(1) > 0. In order to obtain dP∗(x(z), z)/dz for z = 1, we
note that, specifically for the case J = 2, we have that

adj(M∗(z)) = I2 −B(L(z)) adj
(
Ĥ∗(z)

)
, (9.91)

adj(H∗(z)) = adj(H0) + z adj(H1), (9.92)

such that

d

dz
ν adj(M∗(z)) e2

∣∣∣∣
z=1

= ν (adj(H1)− λ adj(H)) e2

= φ(1) (η1ν2 + η2ν1 − λ (ν1 + ν2)) . (9.93)

The mean system content then follows as

E[u] =
1

M ′(1)

(
λ− 1− M ′′(1)

2M ′(1)

)
(1− φ(1)) (ν1 + ν2)

+
φ(1)

M ′(1)
(η1ν2 + η2ν1 − λ (ν1 + ν2))− γλ

1− γ . (9.94)

9.8 Numerical examples

To finish our study of the system with geometric train arrivals and Marko-
vian output line interruptions, we present some numerical examples to il-
lustrate the effect of different system parameters on the buffer performance.
Note that obtaining an analytical result for the mean packet delay as in
(9.53), or similarly the mean train delay from (9.67), has not yet succeeded.
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Therefore we will limit ourselves to investigating the mean packet delay as
obtained using Little’s result.

First, we look at the effect of both the incidence and train length of
the arrival process on the mean packet delay. In Figure 9.2, the mean
packet delay E[dP ] is plotted as a function of the system load, with Poisson
distributed numbers of new trains per slot and for various sizes J of the
Markovian state space. For each value of J , the entries of the transition
matrix H are given by:

[H]ij =

{
pi, i = j,

qk, |i− j| = k > 0,
(9.95)

where the transition probability is fixed at q = 0.15 and the probabili-
ties pi = 1 −∑J−i

k=1 q
k −∑i−1

k=1 q
k ensure the rows of H are normalized.

For each state j the probability for the output line to be open is given by
ηj = 1 − (j − 1)/(J − 1), such that the states are ordered according to
the linearly decreasing probability for the output line to be accessible. In
this configuration, for each J > 1, the output line is always open when the
Markovian process is in state 1 and state J is always a blocking state. For
the case of geometric output line interruptions (J = 1), the Markovian pro-
cess is defined slightly different, with H = [1] by definition and η = [0.5]. In
this configuration, the stationary probability vector is given by π = eJ

T /J
and the accessibility rate of the output line is π η eJ = 0.5. In order to let
the load ρ = λ/

(
π η eJ

)
move through the interval ]0, 1[, we then either fix

the mean train length at L′(1) = 4 while the incidence varies (solid lines)
or we fix the mean train arrival rate at B′(1) = 0.04 for a variable mean
train length (dotted lines). The gray vertical line marks the point ρ = 0.32
for which both the mean train arrival rate B′(1) and the mean train length
L′(1) assume their default values. Similar as for the session-based arrival
process described in Chapter 8, we see that the curves obtained for varying
mean train lengths pass the gray line at a steeper angle than the curves
corresponding to varying train incidence rates. This illustrates that the im-
pact of the mean train length on the system’s performance is clearly more
pronounced than the impact of the incidence rate. This can be understood
by the fact that the sole contribution to the time-correlated nature of the
train arrival process comes from the fact that trains can generate multiple
packets over consecutive slots. From Figure 9.2, we can also draw some
conclusions about the effect of the size of the state space of this particu-
lar Markovian process on the system’s performance. Most notably, we see
that the curves for the case of a single output line state (J = 1) are posi-
tioned considerably lower than the other curves, illustrating the fact that
the case J = 1 corresponds to geometric output line interruptions, which
in fact do not cause any correlation effects. Note that, due to the con-
struction method for H, not only the granularity of the Markovian process
increases when the state space increases, but also the correlation coefficient
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Figure 9.2: The mean packet delay as a function of the system load ρ = λ/σ
for various sizes J of the state space of the Markovian process.

φ(1) between the output line state in two consecutive slots. For clarity, this
correlation coefficient for each of the Markovian processes is given in Table
9.1. Intuitively, we can understand this by considering the mean number of
slots needed for the Markovian process to move from the blocking state J to
the interruption-free state 1. Due to the structure of H for different values
of J , this transition will generally require more slots for higher values of J ,
such that the lag-1 correlation coefficient φ(1), and by consequence also the
mean packet delay, increases for J = 2→ 5.

In Figure 9.3, we reconsider the system studied in Figure 9.2, except
that we now only consider a J = 3-state Markovian process governing the
output line, but for various values of the transition probability q to direct
neighbors. As could be expected from previous comments, we again see the
same difference in impact on the mean packet delay of variations in the train
incidence rate and variations in the mean train length as before. Therefore
we shift our attention to the impact of the transition probability q to direct
neighbors on the correlation coefficient φ(1) between the output line state
in two consecutive slots and, by consequence, on the mean packet delay. In
Table 9.2, where the lag-1 correlation coefficient for each configuration is

J 1 2 3 4 5
φ(1) - 0.7 0.805 0.867925 0.906115

Table 9.1: The correlation coefficient between the output line states in two
consecutive slots for the different Markovian processes in Figure 9.2.



Chapter 9 157

system load ρ

E[dP ]

variable incidence
variable length

q = 0.05
q = 0.15
q = 0.25
q = 0.35
q = 0.45

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

Figure 9.3: The mean packet delay as a function of the system load ρ = λ/σ
for various values of the transition probability q to direct neighbors.

given, we see that while q increases from 0.05 to 0.45, the lag-1 correlation
coefficient decreases. Clearly, due to the structure of H, a very small value
of q corresponds to a Markovian process where state transitions occur rarely
at best, leading to a high lag-1 correlation coefficient and thus a high mean
packet delay. Conversely, when q is rather high, it will be very unlikely for
the Markovian process to remain in a certain state during consecutive slots,
such that the lag-1 correlation coefficient will be rather small. From Figure
9.3 and Table 9.2, it is clear that the effect of the lag-1 correlation coeffi-
cient is by no means proportional. More specifically, if the lag-1 correlation
coefficient φ(1) is small, a small increase ∆φ(1) in the lag-1 correlation coef-
ficient has only a small effect on the mean packet delay. If however the lag-1
correlation coefficient is already significantly high, the same small increase
∆φ(1) can have a devastating effect on the mean packet delay.

Next, we investigate the impact of the correlation coefficient φ(1) be-
tween the output line state in two consecutive slots further. Figure 9.4
shows the mean packet delay on a logarithmic scale as a function of the
lag-1 correlation coefficient φ(1). We consider a J = 3-state Markovian

q 0.05 0.15 0.25 0.35 0.45
φ(1) 0.945 0.805 0.625 0.405 0.145

Table 9.2: The correlation coefficient between the output line states in two
consecutive slots for the different values of the transition probability q to
direct neighbors in Figure 9.3.
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Figure 9.4: The mean packet delay as a function of the correlation coefficient
φ(1) between the output line states in two consecutive slots.

process governing the output line, with η = diag(1, 0.5, 0), structured as in
the previous examples and the transition matrix

H =

 p2 2p (1− p) (1− p)2

1
2

(
1− p2

)
p2 1

2

(
1− p2

)
(1− p)2

2p (1− p) p2

 , (9.96)

such that the stationary probability vector is given by

π =
1

3p+ 1

[
1
2 (p+ 1) 2p 1

2 (p+ 1)
]
, (9.97)

and the accessibility rate of the output line is π η eJ = 0.5. Note that
the lag-1 correlation coefficient can be found from (9.96) and (9.97) as
φ(1) = 2p− 1. By letting the probability p cover the range ]0, 1[, the lag-1
correlation coefficient φ(1) then covers the complete range ]−1, 1[. Similar
as in previous figures, Figure 9.4 shows multiple pairs of curves, each pair
now corresponding to different values of the system load ρ. The default
settings for the train incidence distribution and the mean train length are
identical to those in the previous figures. In other words, the solid line
curves correspond to L′(1) = 4 and a Poisson incidence distribution with
variable mean, whereas for the dotted line curves the mean number of new
trains per slot is fixed at B′(1) = 0.4. The variable parameters of the
arrival processes are then chosen such that the equation L′(1)B′(1) = ρσ
holds, where σ , π η eJ is the output line accessibility rate. Note that
with these settings for the arrival processes, a system load of ρ = 0.2 is
smaller than the load ρdefault = 0.32 that would be obtained when both
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B′(1) and L′(1) assume their default values (i.e. the vertical gray line in the
previous figures). Therefore, the dotted line curve for ρ = 0.2 is positioned
lower than its solid line counterpart, whereas for the other values of the
system load ρ, the dotted line curves are positioned higher than their solid
line counterparts. We also see our previous findings concerning the impact
of the correlation coefficient confirmed in Figure 9.4. For negative, small
and even moderate positive values of the lag-1 correlation coefficient φ(1),
it seems that the mean packet delay is hardly influenced by the correlation
coefficient between the output line state in two consecutive slots. For high
values of φ(1) however, it becomes clear that the lag-1 correlation coefficient
can in fact have a dramatic effect on the mean packet delay.

Finally, we present the effect of the output line accessibility rate σ ,
π η eJ on the mean packet delay in Figure 9.5. Note that this accessibility
rate is determined by both the transition probabilities via the stationary
probability vector π and the probabilities for the output line to be acces-
sible in each state of the Markovian process. In order to separate both
contributors, we consider a J = 3-state Markovian process governing the
output line, controlled by two parameters x, y ∈ ]0, 2[, with the transition
matrix given by

H =

p1(x)
2

2p1(x) (1− p1(x)) (1− p1(x))
2

p2(x)
2

2p2(x) (1− p2(x)) (1− p2(x))
2

p3(x)
2

2p3(x) (1− p3(x)) (1− p3(x))
2

 , (9.98)

where the probabilities pj(x) (j ∈ {1, 2, 3}) are defined as

pj(x) =

{
1
4x (4− j) , 0 < x ≤ 1,

1− 1
4 (2− x) j, 1 ≤ x < 2.

(9.99)

The output line accessibility matrix is given by

η = diag (min(1, y), y/2,max(0, y − 1)) . (9.100)

With this configuration, the parameter x allows us to control the transition
probabilities such that for x → 0, the Markovian process is biased to state
3 with the worst accessibility rate, whereas for x → 2 the state 1 with the
least interruptions is favored. Similarly, the parameter y allows us to control
the overall accessibility of the output line. Now we can fix the transition
parameter at x = 1 while the accessibility parameter y covers the range ]0, 2[
in order to study the effect of the accessibility matrix η on the mean packet
delay (solid line). Conversely, we can also isolate the effect of the stationary
probability vector π on the mean packet delay by fixing the accessibility
parameter at y = 1 while x covers ]0, 2[ (dotted line). Note that the relation
between (x, y) and σ is not straightforward, even when one of the parameters
x or y is set to its default value, the values for σ on the horizontal axis are
therefore also calculated values, just like the values of log E[dP ] on the
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Figure 9.5: The mean packet delay as a function of the output line accessi-
bility rate σ , π η eJ.

vertical axis. The train arrival process is identical to the process described
for the previous figures, with the default parameter settings, i.e. the train
incidence distribution is a Poisson distribution with mean B′(1) = 0.04
and the mean train length is L′(1) = 4, such that the mean packet arrival
rate is λ = 0.16. When looking at Figure 9.5, it is virtually impossible to
tell both curves apart. We have repeated the experiment for other values
of J and the default settings for x and y but every time, the alternative
curves seemed to overlap with the curves displayed here. Therefore it is a
reasonable assumption that the total effect of the accessibility rate σ on the
mean packet delay overshadows the individual contributions of H and η.
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In this dissertation, we have presented and analyzed various discrete-time
queueing models, each with their specific qualities and challenges. We now
revisit these models and summarize the main contributions of these analyses.
Furthermore, we also present some of the possibilities and challenges that
were left untouched in this work.

E.1 Main contributions

In Chapter 6, we have considered a scenario where a network buffer is fed
by two distinct classes of information streams of which one should be prior-
itized. We have analyzed a reservation-based priority scheduling discipline
and we have compared its characteristics with the two extremes of FIFO
scheduling and Absolute Priority. We have established closed-form expres-
sions for the pgfs of the steady-state system state and the packet delay for
both individual classes. Our results show that the Reservation discipline
effectively solves the problem of starvation of low-priority packets under a
heavy high-priority load, which is known to occur under Absolute Priority.
This comes at the cost of a reduction of the high-priority delay performance,
which can amount to a considerable pullback, especially under heavy load
conditions or a large relative high-priority load. By simulation, we have
shown that by inserting additional reserved positions, the delay differentia-
tion offered by the Reservation discipline can be made adjustable.

Chapter 7 was set in an operations research context, such as production
processes, where activation of the service unit comes at a considerable cost.
In order to reduce the operational cost of the queueing system, service to
customers is postponed until a certain number of customers have accumu-
lated. Preventing excessive delays, the arrival of the first customer initiates
a timer which activates the service unit after a specified amount of time,
regardless of the number of additional customers in the queue. This double
threshold policy, referred to as the NT -policy, induces a three-phase cyclic
pattern in the system’s functioning, such that at first the system is empty,
after the first arrival it is accumulating more customers while the service
unit remains idle and finally, the service unit is activated and is serving cus-
tomers. We have presented two different scenarios for the customer service
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times and correspondingly showed two distinct methods for the performance
analysis. In each case, this analysis resulted in closed-form expressions for
the distributions of the sojourn times, the system content and the customer
delay, conditioned on each of the phases. We have illustrated the effects
of the system parameters and have compared the NT -policy with policies
that employ only one of the two thresholds. Additionally, we also presented
an approximation technique with reasonably accurate results that can dras-
tically reduce the computational power needed to acquire results for large
values of the thresholds.

In Chapter 8, we were concerned with an accurate and realistic model
for arrival streams generated by file servers and media streaming servers
in modern packet-based communication networks. Due to fragmentation of
large data volumes, such traffic sources tend to generate sequences of pack-
ets which together form a whole, rather than individual packets that occur
independently from each other. We have modelled these traffic sources using
session-based arrivals and applied them to a queueing system with single-
slot service times and geometric output line interruptions. With this traffic
model, packets occur as individual parts of stochastic structures called ses-
sions, which are characterized by three distributions describing the session
arrival rate, the length in slots of the sessions and the number of packets
generated per session per slot. Existing research studied the system content
and the packet delay, we on the other hand have extended this research by
analyzing the session delay.

Finally, in Chapter 9, we went a step further in modelling a realistic
buffer in a file server or media streaming server in contemporary packet-
based communication networks. In this scenario, we considered not only a
correlated train-based arrival process, but also correlated interruptions of
the queueing system’s output line. Similar to session-based arrivals, train-
based arrival processes produce sequences of packets referred to as trains,
which are characterized by an incidence and length distribution, but trains
produce exactly one packet per slot. The accessibility of the output line
is described by a Bernoulli random variable that depends on the state of
an arbitrary-sized Markovian process. We have presented an analytical
technique for the determination of the system content distribution and the
distributions of the packet and train delays. We illustrated the impact of the
different system parameters on the packet delay, with a specific interest in
the effects of the correlation in both the arrival process and the interruption
process.

E.2 Future work

As opposed to the time and energy one can spend on the research of even
well-contained topics, the research possibilities of those topics are limitless.
The research presented in this dissertation is no different. In this section,
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we therefore point out some topics that were left untouched in our analysis
but that may be worth investigating.

As mentioned in Chapter 6, the insertion of additional reserved posi-
tions in a queueing system with reservation-based scheduling introduces
adjustability of the delay differentiation between the two traffic classes.
Even though we presented simulated results for such a queueing system
with an arbitrary number N of reservations, an analytical study was not
performed for iid service times. In order to successfully perform such an
analysis, a (N + 2)-dimensional state description will be required, since one
will need to keep track of the positions of all N reservations. As such, it
is expected that the analysis will be quite complicated. Additionally, it
can be interesting to investigate how a correlated arrival process affects the
delay performance of the system and the delay differentiation obtained by
reservation-based scheduling. Another interesting extension would be to
consider class-specific service time distributions.

Our analysis of the NT -policy in Chapter 7 considered individual cus-
tomers arriving with geometric interarrival times only. Alternative arrival
processes may yield different results, especially if the arrival process allows
for multiple arrivals during one slot. In that case, it might happen that the
N -threshold is met during the same slot as the arrival of the first customer,
such that the accumulating phase should be skipped. The underlying goal
of the NT -policy is to reduce a certain cost induced by the initialization of
the service unit. A detailed cost analysis of such a system might therefore
be another interesting extension to the research presented here.

In Chapters 8 and 9, we constructed realistic and accurate models for
the output buffers of file servers and media streaming servers. Once the
packets have moved further in the network, the correlation between indi-
vidual packets in a single session or packet train becomes less clear, as these
packets will be heavily dispersed. As such the paradigms of sessions and
trains as defined in this dissertation are not fit for the analysis of a mid-
network buffer. In order to tackle this problem, it could be interesting to
study how packet trains and sessions evolve as they pass through one or
more queueing systems.
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