51 research outputs found

    Worst-Case Execution Time Guarantees for Runtime-Reconfigurable Architectures

    Get PDF
    Real-time systems are ubiquitous in our everyday life, e.g., in safety-critical domains such as automotive, avionics or robotics. The correctness of a real-time system does not only depend on the correctness of its calculations, but also on the non-functional requirement of adhering to deadlines. Failing to meet a deadline may lead to severe malfunctions, therefore worst-case execution times (WCET) need to be guaranteed. Despite significant scientific advances, however, timing analysis of WCET guarantees lags years behind current high-performance microarchitectures with out-of-order scheduling pipelines, several hardware threads and multiple (shared) cache layers. To satisfy the increasing performance demands of real-time systems, analyzable performance features are required. In order to escape the scarcity of timing-analyzable performance features, the main contribution of this thesis is the introduction of runtime reconfiguration of hardware accelerators onto a field-programmable gate array (FPGA) as a novel means to achieve performance that is amenable to WCET guarantees. Instead of designing an architecture for a specific application domain, this approach preserves the flexibility of the system. First, this thesis contributes novel co-scheduling approaches to distribute work among CPU and GPU in an extensive analysis of how (average-case) performance is achieved on fused CPU-GPU architectures, a main trend in current high-performance microarchitectures that combines a CPU and a GPU on a single chip. Being able to employ such architectures in real-time systems would be highly desirable, because they provide high performance within a limited area and power budget. As a result of this analysis, however, a cache coherency bottleneck is uncovered in recent fused CPU-GPU architectures that share the last level cache between CPU and GPU. This insight (i) complicates performance predictions and (ii) adds a shared last level cache between CPU and GPU to the growing list of microarchitectural features that benefit average-case performance, but render the analysis of WCET guarantees on high-performance architectures virtually infeasible. Thus, further motivating the need for novel microarchitectural features that provide predictable performance and are amenable to timing analysis. Towards this end, a runtime reconfiguration controller called ``Command-based Reconfiguration Queue\u27\u27 (CoRQ) is presented that provides guaranteed latencies for its operations, especially for the reconfiguration delay, i.e., the time it takes to reconfigure a hardware accelerator onto a reconfigurable fabric (e.g., FPGA). CoRQ enables the design of timing-analyzable runtime-reconfigurable architectures that support WCET guarantees. Based on the --now feasible-- guaranteed reconfiguration delay of accelerators, a WCET analysis is introduced that enables tasks to reconfigure application-specific custom instructions (CIs) at runtime. CIs are executed by a processor pipeline and invoke execution of one or more accelerators. Different measures to deal with reconfiguration delays are compared for their impact on accelerated WCET guarantees and overestimation. The timing anomaly of runtime reconfiguration is identified and safely bounded: a case where executing iterations of a computational kernel faster than in WCET during reconfiguration of CIs can prolong the total execution time of a task. Once tasks that perform runtime reconfiguration of CIs can be analyzed for WCET guarantees, the question of which CIs to configure on a constrained reconfigurable area to optimize the WCET is raised. The question is addressed for systems where multiple CIs with different implementations each (allowing to trade-off latency and area requirements) can be selected. This is generally the case, e.g., when employing high-level synthesis. This so-called WCET-optimizing instruction set selection problem is modeled based on the Implicit Path Enumeration Technique (IPET), which is the path analysis technique state-of-the-art timing analyzers rely on. To our knowledge, this is the first approach that enables WCET optimization with support for making use of global program flow information (and information about reconfiguration delay). An optimal algorithm (similar to Branch and Bound) and a fast greedy heuristic algorithm (that achieves the optimal solution in most cases) are presented. Finally, an approach is presented that, for the first time, combines optimized static WCET guarantees and runtime optimization of the average-case execution (maintaining WCET guarantees) using runtime reconfiguration of hardware accelerators by leveraging runtime slack (the amount of time that program parts are executed faster than in WCET). It comprises an analysis of runtime slack bounds that enable safe reconfiguration for average-case performance under WCET guarantees and presents a mechanism to monitor runtime slack using a simple performance counter that is commonly available in many microprocessors. Ultimately, this thesis shows that runtime reconfiguration of accelerators is a key feature to achieve predictable performance

    A Dataflow Framework For Developing Flexible Embedded Accelerators A Computer Vision Case Study.

    Get PDF
    The focus of this dissertation is the design and the implementation of a computing platform which can accelerate data processing in the embedded computation domain. We focus on a heterogeneous computing platform, whose hardware implementation can approach the power and area efficiency of specialized designs, while remaining flexible across the application domain. The multi-core architectures require parallel programming, which is widely-regarded as more challenging than sequential programming. Although shared memory parallel programs may be fairly easy to write (using OpenMP, for example), they are quite hard to optimize; providing embedded application developers with optimizing tools and programming frameworks is a challenge. The heterogeneous specialized elements make the problem even more difficult. Dataflow is a parallel computation model that relies exclusively on message passing, and that has some advantages over parallel programming tools in wide use today: simplicity, graphical representation, and determinism. Dataflow model is also a good match to streaming applications, such as audio, video and image processing, which operate on large sequences of data and are characterized by abundant parallelism and regular memory access patterns. Dataflow model of computation has gained acceptance in simulation and signal-processing communities. This thesis evaluates the applicability of the dataflow model for implementing domain-specific embedded accelerators for streaming applications

    A time-predictable many-core processor design for critical real-time embedded systems

    Get PDF
    Critical Real-Time Embedded Systems (CRTES) are in charge of controlling fundamental parts of embedded system, e.g. energy harvesting solar panels in satellites, steering and breaking in cars, or flight management systems in airplanes. To do so, CRTES require strong evidence of correct functional and timing behavior. The former guarantees that the system operates correctly in response of its inputs; the latter ensures that its operations are performed within a predefined time budget. CRTES aim at increasing the number and complexity of functions. Examples include the incorporation of \smarter" Advanced Driver Assistance System (ADAS) functionality in modern cars or advanced collision avoidance systems in Unmanned Aerial Vehicles (UAVs). All these new features, implemented in software, lead to an exponential growth in both performance requirements and software development complexity. Furthermore, there is a strong need to integrate multiple functions into the same computing platform to reduce the number of processing units, mass and space requirements, etc. Overall, there is a clear need to increase the computing power of current CRTES in order to support new sophisticated and complex functionality, and integrate multiple systems into a single platform. The use of multi- and many-core processor architectures is increasingly seen in the CRTES industry as the solution to cope with the performance demand and cost constraints of future CRTES. Many-cores supply higher performance by exploiting the parallelism of applications while providing a better performance per watt as cores are maintained simpler with respect to complex single-core processors. Moreover, the parallelization capabilities allow scheduling multiple functions into the same processor, maximizing the hardware utilization. However, the use of multi- and many-cores in CRTES also brings a number of challenges related to provide evidence about the correct operation of the system, especially in the timing domain. Hence, despite the advantages of many-cores and the fact that they are nowadays a reality in the embedded domain (e.g. Kalray MPPA, Freescale NXP P4080, TI Keystone II), their use in CRTES still requires finding efficient ways of providing reliable evidence about the correct operation of the system. This thesis investigates the use of many-core processors in CRTES as a means to satisfy performance demands of future complex applications while providing the necessary timing guarantees. To do so, this thesis contributes to advance the state-of-the-art towards the exploitation of parallel capabilities of many-cores in CRTES contributing in two different computing domains. From the hardware domain, this thesis proposes new many-core designs that enable deriving reliable and tight timing guarantees. From the software domain, we present efficient scheduling and timing analysis techniques to exploit the parallelization capabilities of many-core architectures and to derive tight and trustworthy Worst-Case Execution Time (WCET) estimates of CRTES.Los sistemas críticos empotrados de tiempo real (en ingles Critical Real-Time Embedded Systems, CRTES) se encargan de controlar partes fundamentales de los sistemas integrados, e.g. obtención de la energía de los paneles solares en satélites, la dirección y frenado en automóviles, o el control de vuelo en aviones. Para hacerlo, CRTES requieren fuerte evidencias del correcto comportamiento funcional y temporal. El primero garantiza que el sistema funciona correctamente en respuesta de sus entradas; el último asegura que sus operaciones se realizan dentro de unos limites temporales establecidos previamente. El objetivo de los CRTES es aumentar el número y la complejidad de las funciones. Algunos ejemplos incluyen los sistemas inteligentes de asistencia a la conducción en automóviles modernos o los sistemas avanzados de prevención de colisiones en vehiculos aereos no tripulados. Todas estas nuevas características, implementadas en software,conducen a un crecimiento exponencial tanto en los requerimientos de rendimiento como en la complejidad de desarrollo de software. Además, existe una gran necesidad de integrar múltiples funciones en una sóla plataforma para así reducir el número de unidades de procesamiento, cumplir con requisitos de peso y espacio, etc. En general, hay una clara necesidad de aumentar la potencia de cómputo de los actuales CRTES para soportar nueva funcionalidades sofisticadas y complejas e integrar múltiples sistemas en una sola plataforma. El uso de arquitecturas multi- y many-core se ve cada vez más en la industria CRTES como la solución para hacer frente a la demanda de mayor rendimiento y las limitaciones de costes de los futuros CRTES. Las arquitecturas many-core proporcionan un mayor rendimiento explotando el paralelismo de aplicaciones al tiempo que proporciona un mejor rendimiento por vatio ya que los cores se mantienen más simples con respecto a complejos procesadores de un solo core. Además, las capacidades de paralelización permiten programar múltiples funciones en el mismo procesador, maximizando la utilización del hardware. Sin embargo, el uso de multi- y many-core en CRTES también acarrea ciertos desafíos relacionados con la aportación de evidencias sobre el correcto funcionamiento del sistema, especialmente en el ámbito temporal. Por eso, a pesar de las ventajas de los procesadores many-core y del hecho de que éstos son una realidad en los sitemas integrados (por ejemplo Kalray MPPA, Freescale NXP P4080, TI Keystone II), su uso en CRTES aún precisa de la búsqueda de métodos eficientes para proveer evidencias fiables sobre el correcto funcionamiento del sistema. Esta tesis ahonda en el uso de procesadores many-core en CRTES como un medio para satisfacer los requisitos de rendimiento de aplicaciones complejas mientras proveen las garantías de tiempo necesarias. Para ello, esta tesis contribuye en el avance del estado del arte hacia la explotación de many-cores en CRTES en dos ámbitos de la computación. En el ámbito del hardware, esta tesis propone nuevos diseños many-core que posibilitan garantías de tiempo fiables y precisas. En el ámbito del software, la tesis presenta técnicas eficientes para la planificación de tareas y el análisis de tiempo para aprovechar las capacidades de paralelización en arquitecturas many-core, y también para derivar estimaciones de peor tiempo de ejecución (Worst-Case Execution Time, WCET) fiables y precisas

    A model-based approach for the specification and refinement of streaming applications

    Get PDF
    Embedded systems can be found in a wide range of applications. Depending on the application, embedded systems must meet a wide range of constraints. Thus, designing and programming embedded systems is a challenging task. Here, model-based design flows can be a solution. This thesis proposes novel approaches for the specification and refinement of streaming applications. To this end, it focuses on dataflow models. As key result, the proposed dataflow model provides for a seamless model-based design flow from system level to the instruction/logic level for a wide range of streaming applications

    Automatically Parallelizing Embedded Legacy Software on Soft-Core SoCs

    Get PDF
    Nowadays, embedded systems are utilized in many areas and become omnipresent, making people's lives more comfortable. Embedded systems have to handle more and more functionality in many products. To maintain the often required low energy consumption, multi-core systems provide high performance at moderate energy consumption. The development started with dual-core processors and has today reached many-core designs with dozens and hundreds of processor cores. However, existing applications can barely leverage the potential of that many cores. Legacy applications are usually written sequentially and thus typically use only one processor core. Thus, these applications do not benefit from the advantages provided by modern many-core systems. Rewriting those applications to use multiple cores requires new skills from developers and it is also time-consuming and highly error prone. Dozens of languages, APIs and compilers have already been presented in the past decades to aid the user with parallelizing applications. Fully automatic parallelizing compilers are seen as the holy grail, since the user effort is kept minimal. However, automatic parallelizers often cannot extract parallelism as good as user aided approaches. Most of these parallelization tools are designed for desktop and high-performance systems and are thus not tuned or applicable for low performance embedded systems. To improve this situation, this work presents an automatic parallelizer for embedded systems, which is able to mostly deliver better quality than user aided approaches and if not allows easy manual fine-tuning. Parallelization tools extract concurrently executable tasks from an application. These tasks can then be executed on different processor cores. Parallelization tools and automatic parallelizers in particular often struggle to efficiently map the extracted parallelism to an existing multi-core processor. This work uses soft-core processors on FPGAs, which makes it possible to realize custom multi-core designs in hardware, within a few minutes. This allows to adapt the multi-core processor to the characteristics of the extracted parallelism. Especially, core-interconnects for communication can be optimized to fit the communication pattern of the parallel application. Embedded applications are often structured as follows: receive input data, (multiple) data processing steps, data output. The multiple processing steps are often realized as consecutive loosely coupled transformations. These steps naturally already model the structure of a processing pipeline. It is the goal of this work to extract this kind of pipeline-parallelism from an application and map it to multiple cores to increase the overall throughput of the system. Multiple cores forming a chain with direct communication channels ideally fit this pattern. The previously described, so called pipeline-parallelism is a barely addressed concept in most parallelization tools. Also, current multi-core designs often do not support the hardware flexibility provided by soft-cores, targeted in this approach. The main contribution of this work is an automatic parallelizer which is able to map different processing steps from the source-code of a sequential application to different cores in a multi-core pipeline. Users only specify the required processing speed after parallelization. The developed tool tries to extract a matching parallelized software design along with a custom multi-core design out of sequential embedded legacy applications. The automatically created multi-core system already contains used peripherals extracted from the source-code and is ready to be used. The presented parallelizer implements multi-objective optimization to generate a minimal hardware design, just fulfilling the user defined requirement. To the best of my knowledge, the possibility to generate such a multi-core pipeline defined by the demands of the parallelized software has never been presented before. The approach is implemented for two soft-core processors and evaluation shows for both targets high speedups of 12x and higher at a reasonable hardware overhead. Compared to other automatic parallelizers, which mainly focus on speedups through latency reduction, significantly higher speedups can be achieved depending on the given application structure

    Autotuning for Automatic Parallelization on Heterogeneous Systems

    Get PDF

    Systematic Design Space Exploration of Dynamic Dataflow Programs for Multi-core Platforms

    Get PDF
    The limitations of clock frequency and power dissipation of deep sub-micron CMOS technology have led to the development of massively parallel computing platforms. They consist of dozens or hundreds of processing units and offer a high degree of parallelism. Taking advantage of that parallelism and transforming it into high program performances requires the usage of appropriate parallel programming models and paradigms. Currently, a common practice is to develop parallel applications using methods evolving directly from sequential programming models. However, they lack the abstractions to properly express the concurrency of the processes. An alternative approach is to implement dataflow applications, where the algorithms are described in terms of streams and operators thus their parallelism is directly exposed. Since algorithms are described in an abstract way, they can be easily ported to different types of platforms. Several dataflow models of computation (MoCs) have been formalized so far. They differ in terms of their expressiveness (ability to handle dynamic behavior) and complexity of analysis. So far, most of the research efforts have focused on the simpler cases of static dataflow MoCs, where many analyses are possible at compile-time and several optimization problems are greatly simplified. At the same time, for the most expressive and the most difficult to analyze dynamic dataflow (DDF), there is still a dearth of tools supporting a systematic and automated analysis minimizing the programming efforts of the designer. The objective of this Thesis is to provide a complete framework to analyze, evaluate and refactor DDF applications expressed using the RVC-CAL language. The methodology relies on a systematic design space exploration (DSE) examining different design alternatives in order to optimize the chosen objective function while satisfying the constraints. The research contributions start from a rigorous DSE problem formulation. This provides a basis for the definition of a complete and novel analysis methodology enabling systematic performance improvements of DDF applications. Different stages of the methodology include exploration heuristics, performance estimation and identification of refactoring directions. All of the stages are implemented as appropriate software tools. The contributions are substantiated by several experiments performed with complex dynamic applications on different types of physical platforms
    • …
    corecore