
Automatically Parallelizing
Embedded Legacy Software
on Soft-Core SoCs
Automatische Parallelisierung bestehender eingebetteter Software mit Soft-Core SoCs
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von Kris Heid aus Groß-Umstadt
Tag der Einreichung: 24.06.2019, Tag der Prüfung: 20.08.2019
Darmstadt — D 17

1. Gutachten: Prof. Dr.-Ing. Christian Hochberger
2. Gutachten: Prof. Dr.-Ing. Jeronimo Castrillon

Fachgebiet Rechnersysteme
Fachbereich Elektrotechnik
und Informationstechnik

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/227486484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Automatically Parallelizing Embedded Legacy Software on Soft-Core SoCs
Automatische Parallelisierung bestehender eingebetteter Software mit Soft-Core SoCs

Genehmigte Dissertation von Kris Heid aus Groß-Umstadt

1. Gutachten: Prof. Dr.-Ing. Christian Hochberger
2. Gutachten: Prof. Dr.-Ing. Jeronimo Castrillon

Tag der Einreichung: 24.06.2019
Tag der Prüfung: 20.08.2019

Darmstadt — D 17

URN: urn:nbn:de:tuda-tuprints-90205
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/9020

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Keine kommerzielle Nutzung – Keine Bearbeitung 4.0 International
https://creativecommons.org/licenses/by/4.0/deed.de

Erklärungen laut Promotionsordnung

§ 8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen Version
übereinstimmt.

§ 8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In
diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses
Versuchs mitzuteilen.

§ 9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der
angegebenen Quellen verfasst wurde.

§ 9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Ort, Datum und Unterschrift

Abstract

Nowadays, embedded systems are utilized in many areas and become omnipresent, making people’s lives
more comfortable. Embedded systems have to handle more and more functionality in many products.
To maintain the often required low energy consumption, multi-core systems provide high performance
at moderate energy consumption. The development started with dual-core processors and has today
reached many-core designs with dozens and hundreds of processor cores. However, existing applications
can barely leverage the potential of that many cores.

Legacy applications are usually written sequentially and thus typically use only one processor core. Thus,
these applications do not benefit from the advantages provided by modern many-core systems. Rewriting
those applications to use multiple cores requires new skills from developers and it is also time-consuming
and highly error prone. Dozens of languages, APIs and compilers have already been presented in the past
decades to aid the user with parallelizing applications. Fully automatic parallelizing compilers are seen
as the holy grail, since the user effort is kept minimal. However, automatic parallelizers often cannot
extract parallelism as good as user aided approaches. Most of these parallelization tools are designed
for desktop and high-performance systems and are thus not tuned or applicable for low performance
embedded systems. To improve this situation, this work presents an automatic parallelizer for embedded
systems, which is able to mostly deliver better quality than user aided approaches and if not allows easy
manual fine-tuning.

Parallelization tools extract concurrently executable tasks from an application. These tasks can then be
executed on different processor cores. Parallelization tools and automatic parallelizers in particular often
struggle to efficiently map the extracted parallelism to an existing multi-core processor. This work uses
soft-core processors on Field Programmable Gate Arrays (FPGAs), which makes it possible to realize cus-
tom multi-core designs in hardware, within a few minutes. This allows to adapt the multi-core processor
to the characteristics of the extracted parallelism. Especially, core-interconnects for communication can
be optimized to fit the communication pattern of the parallel application.

Embedded applications are often structured as follows: receive input data, (multiple) data processing
steps, data output. The multiple processing steps are often realized as consecutive loosely coupled
transformations. These steps naturally already model the structure of a processing pipeline. It is the goal
of this work to extract this kind of pipeline-parallelism from an application and map it to multiple cores to
increase the overall throughput of the system. Multiple cores forming a chain with direct communication
channels ideally fit this pattern. The previously described, so called pipeline-parallelism is a barely
addressed concept in most parallelization tools. Also, current multi-core designs often do not support
the hardware flexibility provided by soft-cores, targeted in this approach.

The main contribution of this work is an automatic parallelizer which is able to map different process-
ing steps from the source-code of a sequential application to different cores in a multi-core pipeline.
Users only specify the required processing speed after parallelization. The developed tool tries to ex-
tract a matching parallelized software design along with a custom multi-core design out of sequential
embedded legacy applications. The automatically created multi-core system already contains used pe-
ripherals extracted from the source-code and is ready to be used. The presented parallelizer implements
multi-objective optimization to generate a minimal hardware design, just fulfilling the user defined re-
quirement. To the best of my knowledge, the possibility to generate such a multi-core pipeline defined
by the demands of the parallelized software has never been presented before.

The approach is implemented for two soft-core processors and evaluation shows for both targets high
speedups of 12x and higher at a reasonable hardware overhead. Compared to other automatic paral-
lelizers, which mainly focus on speedups through latency reduction, significantly higher speedups can be
achieved depending on the given application structure.

Zusammenfassung

Eingebettete Systeme werden heutzutage in vielen Bereich eingesetzt, um unseren Alltag zu erleichtern.
Hierbei übernehmen diese immer mehr Aufgaben. Um die wachsende Anzahl an Aufgaben erledigen
zu können werden Mehrkernprozessoren benötigt, welche eine hohe Leistungsfähigkeit bei gleichzeitig
moderatem Energiebedarf bieten. Waren die ersten Mehrkernprozessoren noch mit zwei Rechenker-
nen ausgestattet, so existieren heute bereits Prozessoren mit dutzenden und hunderten Rechenkernen.
Viele bestehende Anwendungen können jedoch ohne Anpassungen kaum von dieser hohen Anzahl an
Rechenkernen profitieren.

Existierende Anwendungen haben meist einen sequenziellen Programmablauf und nutzen daher per se
nur einen einzigen Rechenkern. Somit können sie nicht von den Vorteilen und der Rechenleistung moder-
ner Prozessoren profitieren. Die Anwendungen müssten umgeschrieben werden, um das volle Potenzial
von Mehrkernprozessoren zu nutzen, was jedoch neue Fertigkeiten und Denkmuster von Entwicklern
fordert und zudem sehr mühsam und fehleranfällig ist. In den letzten Jahren wurden bereits eine Reihe
an Programmiersprachen, Programmierschnittstellen und Compilern entwickelt, um Entwickler bei der
Parallelisierung zu unterstützen. Dabei sind vollständig automatische Parallelisierer der heilige Gral der
Parallelisierung, da sie dem Nutzer den Großteil der Arbeit abnehmen. Automatische Parallelisierer kön-
nen jedoch teilweise nicht die Qualität der einer manuellen Parallelisierung von erfahrenen Entwicklern
erreichen. Die Meisten der entwickelten Parallelisierungswerkzeuge sind außerdem für Desktop- oder
Hochleistungsrechner entworfen worden und sind daher kaum an die Bedürfnisse eingebetteter Systeme
angepasst. Daher wird in dieser Arbeit ein automatischer Parallelisierer für eingebettete Systeme vor-
gestellt, welcher oftmals die Qualität manueller Parallelisierungen übertrifft und auf Wunsch manuelle
Anpassungen erlaubt.

Parallelisierungswerkzeuge sind in der Lage parallel ausführbare Aufgaben aus einer Anwendung zu
extrahieren und diese dann auf verschiedenen Prozessorkernen auszuführen. Vor allem automatische
Parallelisierer haben jedoch oft Probleme den gefundenen Parallelismus effizient auf die verfügbare be-
schränkte Anzahl an Kernen abzubilden. Daher werden in dieser Arbeit Soft-Core Prozessoren auf FPGAs
verwendet, welche es ermöglichen ein angepasstes Mehrkernsystem innerhalb weniger Minuten zu rea-
lisieren. Hierdurch kann das System auf die Charakteristiken des extrahierten Parallelismus angepasst
werden. Besonders die Kommunikationsinfrastruktur kann speziell auf das Kommunikationsmuster der
parallelisierten Anwendung angepasst werden.

Anwendungen eingebetteter Systeme haben oftmals die folgende Struktur: Eingangsdaten empfangen,
Verarbeitung der Daten (in mehreren Schritten), Ausgabe der Daten. Die verschiedenen Verarbeitungs-
schritte sind hierbei meist nur locker gekoppelte aufeinanderfolgende Transformationen der Daten. Die
beschriebenen Schritte weisen somit die Struktur eine Verarbeitungs-Pipeline auf. Daher ist das Ziel
dieser Arbeit diesen sogenannten Pipeline-Parallelismus aus der Anwendung zu extrahieren. Die ein-
zelnen Verarbeitungsschritte werden dann zur Erhöhung des Datendurchsatzes auf verschiedene Kerne
abgebildet. Hierbei passt eine Kette von Prozessorkernen mit direkter Kommunikation zwischen den
Nachbarn ideal zur Charakteristik des extrahierten Pipeline-Parallelismus. Das Konzept des Pipeline-
Parallelismus ist in heutigen Parallelisierungswerkzeugen eher selten vorzufinden, was auch daran liegt,
dass aktuelle Mehrkernsysteme nicht die benötigte Struktur bzw. Flexibilität von Soft-Cores bieten, um
die Pipeline-Muster ideal abzubilden.

Der Beitrag dieser Arbeit ist ein automatischer Parallelisierer, welcher in der Lage ist aus einer sequen-
tiellen Anwendung Pipeline-Parallelismus zu extrahieren und diesen auf eine zuvor beschriebene Kette
von Prozessorkernen abzubilden. Der Nutzer muss lediglich eine Verarbeitungsgeschwindigkeit vorge-
ben, welche die parallelisierte Anwendung erreichen soll. Der Parallelisierer extrahiert anschließend den
nötigen Parallelismus aus der Anwendung und erstellt automatisch ein individuell angepasstes Mehr-
kernsystem. In diesem System sind neben der Kommunikationsinfrastruktur auch bereits alle genutzten

Peripherien enthalten, sodass es direkt einsatzbereit ist. Der Parallelisierer optimiert das System in ver-
schiedenen Aspekten, um möglichst minimale Hardware zu generieren, die dennoch den Nutzervorgaben
entspricht. Die Generierung einer Mehrkern-Pipeline, die individuell auf die parallelisierte Anwendung
angepasst ist, wurde nach meinem besten Wissen noch nicht veröffentlicht.

Das Konzept wurde für zwei Soft-Core Prozessoren implementiert und die Evaluation weist einen hohen
möglichen Geschwindigkeitszuwachs des Faktors 12 und mehr, bei moderat erhöhtem Hardwarebedarf
auf. Im Vergleich zu anderen automatischen Parallelisierern, die sich lediglich auf eine Erhöhung des
Durchsatzes durch Verringerung der Latenz fokussieren, kann ein weitaus höherer Geschwindigkeitszu-
wachs erreicht werden, falls die Anwendung die nötigen Charakteristiken aufweist.

6

Contents

Abbreviations 10

List of Figures 12

List of Tables 14

List of Code Listings 15

1 Introduction 17
1.1 Motivation . 17
1.2 Problems & Goals . 18
1.3 Work plan . 19

2 State-of-the-Art 21
2.1 Multi-/Many-Core SoC Platforms . 21

2.1.1 Embedded Multi-Core Architectures . 21
2.1.2 Embedded Many-Core Architectures . 22
2.1.3 Soft-core multi-/many-cores . 24
2.1.4 Conclusion . 25

2.2 Extracting Parallelism from Applications: Design Choices . 26
2.2.1 Programming Paradigms . 26
2.2.2 Types of Parallelism . 27
2.2.3 Partitioning Level . 27
2.2.4 Memory Architecture . 28
2.2.5 Task Scheduling . 28
2.2.6 Conclusion and Scope . 28

2.3 Parallelization Tools . 29
2.3.1 Tools out of Scope . 29
2.3.2 DSLs/Language Extensions . 31
2.3.3 APIs/Libraries . 32
2.3.4 Annotations . 33
2.3.5 Automatic . 36
2.3.6 Summary . 38

3 Target Platforms 40
3.1 SpartanMC . 40

3.1.1 Inter-Core Communication . 40
3.1.2 Performance-Counter . 45

3.2 MicroBlaze . 46
3.2.1 Inter-Core Communication . 46
3.2.2 Timer - Performance Counter . 47

3.3 Inter-Core Communication performance evaluation . 48
3.3.1 1-to-1 Communication . 48
3.3.2 1-to-N and N-to-1 Communication . 48

3.4 Global Memory . 49

4 Used Multi-Core Architectures and Execution Concepts 51
4.1 Required Application Structure . 51

7

4.2 Pipeline . 51
4.2.1 Pipeline Hardware Limitations . 52

4.3 Pipeline with Replication . 53
4.3.1 Replicated Pipeline Hardware Limitations . 54

4.4 Shared Global Memory . 54
4.5 Communication Overhead . 54
4.6 Latency . 55

5 Automatic Parallelization 57
5.1 Overall toolflow . 57

5.1.1 AutoPerf: Application Profiling . 57
5.1.2 AutoStreams: Automatic Annotations . 57
5.1.3 µStreams: Annotated Source-Code Transformation . 59
5.1.4 Refine Timing Constraints . 59

5.2 Common Software Infrastructure . 60
5.2.1 Cetus . 60
5.2.2 Common Transformation Infrastructure . 62

5.3 AutoPerf . 64
5.3.1 Traditional Approaches . 64
5.3.2 Implementation . 66
5.3.3 Credibility of Measured Results . 67

5.4 LoopOptimizer . 69
5.4.1 Loop Parallelization Techniques . 70

5.5 AutoStreams . 73
5.5.1 Optimization Points . 73
5.5.2 Implementation . 74

5.6 µStreams . 78
5.6.1 Usable Pragmas . 79
5.6.2 Unsupported Constructs . 80
5.6.3 Implementation . 81

5.7 PeripheralDetector . 89
5.7.1 Workflow . 89
5.7.2 Implementation . 91
5.7.3 Sources of False Detection . 92
5.7.4 Automatic Peripheral Detection on Multi-Core Systems 93

6 Evaluation 94
6.1 Test Applications . 94

6.1.1 ADPCM . 95
6.1.2 MJPEG2000 . 95
6.1.3 IIR Butterworth Filter . 96
6.1.4 Firewall . 96

6.2 Application Profiles . 97
6.2.1 Benchmark Characteristics . 98

6.3 Possible Parallelization & Performance Gain . 100
6.3.1 Parallelization without Optimizations . 100
6.3.2 Parallelization with Replication . 104
6.3.3 Parallelization with DMA Interconnects . 107
6.3.4 Parallelization with LoopOptimizer . 110

8

6.4 AutoStreams Estimation Accuracy . 115
6.4.1 Hardware Estimation . 115
6.4.2 Application Runtime Estimation . 117

6.5 Parallelization with Peripheral In-&Output . 119
6.5.1 Firewall . 119
6.5.2 ADPCM with IO . 124

6.6 Manual vs. Automatic Parallelization . 126
6.7 Maximum Frequency Multi-Core Designs . 128

6.7.1 Speedup vs. Performance Loss through Lower Frequency 130
6.8 Latency in the Generated Pipelines . 131
6.9 Dynamic Verification: System Tests . 133
6.10 Comparison with Related Work . 133
6.11 Best Practice Proposals . 134

7 Conclusion & Future Work 135

References 139

Supervised Students’ Theses 146

Own Publications 147

9

Abbreviations

AHB Advanced High-performance Bus
AI artificial intelligence
APD Activity and Pattern Diagram
API application programming interface
ASIC application-specific integrated circuit
AST Abstract Syntax Tree

BRAM Block RAM

CDFG control data flow graph
Cell B.E. Cell Broadband Engine
CFG control-flow graph
CGRA coarse-grain reconfigurable architecture
CPN C for Process Networks

DAG directed acyclic task graph
DMA direct memory access
DMCG Directive-Based MPI Code Generator
DSE design-space exploration
DSL domain specific language
DSP digital signal processing block

EMB² Embedded Multicore Building Blocks

FMC FPGA Mezzanine Card
FPGA Field Programmable Gate Array
FSL fast simplex link

GCC GNU Compiler Collection
GPIO general purpose input/output
GPU graphics processing unit
GUI Graphical User Interface

HDL hardware desciption language
HLS high-level synthesis
HPC high performance computing

ICC Intel C/C++ Compiler
IDE integrated development environment
ILP instruction level parallelism
IoT Internet of Things
ISA instruction set architecture
ISR interrupt service routine

10

JTAG Joint Test Action Group IEEE 1149.1

KPN Kahn Process Network

LUT look up table

MCAPI Multicore Communications API
MDM MicroBlaze Debug Module
MIMD multiple instruction multiple data
MP-SoC multi-processor system-on-chip
MPI message passing interface
MRAPI Multicore Resource Management API
MTAPI Multicore Task Management API

NoC Network-on-Chip
NUMA nonuniform memory access

OpenHMPP Open Hybrid Multicore Parallel Programming
OS operating system

PPE PowerPC processor element

RISC reduced instruction set architecture

SANLP static affine nested loop program
SIMD single instruction multiple data
SMP symetric multi processor
SoC System-On-Chip
SPARC Scalable Processor ARChitecture
SPE synergetic processing element
SUIF Stanford University Intermediate Format

TBB Intel Threading Building Blocks
TLP thread-level parallelism
TPL task parallel library

UART Universal Asynchronous Receiver Transmitter

VLIW very long instruction word

WCET worst-case execution time

11

List of Figures

3.1 Core-Connector simplified schematic hardware design . 41
3.2 Dispatcher simplified schematic hardware design . 42
3.3 Concentrator simplified schematic hardware design . 43
3.4 MemSwap Dual simplified schematic hardware design . 44
3.5 MemSwap Multi simplified schematic hardware design . 44
3.6 Alternative approach for MemSwap Multi with fewer BRAMs 45
3.7 Shared Memory simplified schematic hardware design . 45
3.8 MicroBlaze Mailbox AXI-Stream simplified schematic hardware design 47
3.9 MicroBlaze shared memory simplified schematic hardware design 47
3.10 Transmission duration vs. data size for different 1-to-1 core-interconnects 49
3.11 Global memory throughput . 50
4.1 Pure pipeline, hardware configuration . 52
4.2 Replicated pipeline, hardware configuration . 53
4.3 Pipeline with global memory, hardware configuration . 54
5.1 Simplified Overall Automatic Parallelization Toolflow with Tool Section Reference 58
5.2 µStreams concept: SW transformation . 59
5.3 Simplified Cetus Abstract Syntax Tree (AST) generated from Listing 5.1 61
5.4 Simplified µStreams transformation pass runner class diagram 63
5.5 Detailed AutoPerf toolflow . 65
5.6 Detailed LoopOptimizer toolflow for different operation modes 69
5.7 Detailed AutoStreams toolflow . 73
5.8 Search tree for design space exploration . 76
5.9 Detailed µStreams toolflow (dashed=optional) . 78
5.10 Task dependency created from Listing 5.10 . 84
5.11 Generated pipeline structure and communication . 88
5.12 Detailed Peripheral-Detector toolflow (dashed=optional) . 90
6.1 Image tiles as processed by the JPEG 2000 encoder . 96
6.2 Firewall zones . 97
6.3 ADPCM 2x speedup requirement , no optimizations . 101
6.4 MJPEG 2x & 4x speedup requirement , no optimizations . 102
6.5 IIR 2x speedup requirement , no optimizations . 103
6.6 ADPCM with replication . 105
6.7 MJPEG with replication . 106
6.8 IIR with replication . 107
6.9 SpartanMC MJPEG replication with and without DMA-interconnects, 8x speedup require-

ment . 109
6.10 SpartanMC IIR replication with and without DMA-interconnects, 12x speedup requirement 110
6.11 ADPCM with loop optimization . 111
6.12 MJPEG with loop optimization . 112
6.13 IIR with loop optimization . 113
6.14 IIR 2x speedup requirement, loop splitting VS loop fission . 114
6.15 SpartanMC hardware estimation error . 115
6.16 MicroBlaze hardware estimation error . 116
6.17 SpartanMC cycles estimation error of different parallelized software parts 118
6.18 MicroBlaze cycles estimation error of different parallelized software parts 119
6.19 Firewall hardware design . 120
6.20 Network throughput in Mbit/s for different system configurations 122
6.21 Network packet throughput for different system configurations 122

12

6.22 Duration per SpartanMC core with ADPCM 8x speedup requirement, core 1: 5x replication 125
6.23 ADPCM 12x speedup requirement with DMA and loop optimizations, manually paral-

lelized, first try . 126
6.24 ADPCM 12x speedup requirement with DMA and loop optimizations, manually paral-

lelized, second try . 127
6.25 ADPCM 12x speedup requirement with DMA and loop optimizations, manually paral-

lelized after 16 tries . 128
6.26 ADPCM and IIR maximum achievable frequency evaluation over multiple connected Spar-

tanMC cores and interconnect types . 129
6.27 ADPCM and IIR maximum achievable frequency evaluation over multiple connected Mi-

croBlaze cores and interconnect types . 129
6.28 MJPEG2000 maximum achievable frequency evaluation over multiple connected Spar-

tanMC cores and interconnect types . 130
6.29 MJPEG2000 maximum achievable frequency evaluation over multiple connected MicroB-

laze cores and interconnect types . 131
6.30 Latency increase compared to the sequential variant with MicroBlaze 132
6.31 Latency increase compared to the sequential variant with SpartanMC 132

13

List of Tables

2.1 Reviewed parallelization tools . 30
4.1 Pipeline execution with 1-to-1 interconnects . 52
4.2 Pipeline execution with 1-to-N, N-to-1 interconnects, replicated superscalar pipeline 53
4.3 Latency for pipeline execution . 56
5.1 Produced performance-profile example . 64
5.2 Detection accuracy with different applications . 93
6.1 Benchmark processing step runtimes in cycles for SpartanMC and MicroBlaze 99
6.3 SpartanMC core and interconnect hardware cost on Artix-7 XC7A200T FPGA 108
6.4 Achieved speedups and AutoStreams DMA design choice . 109
6.5 Achieved speedups and AutoStreams DMA design choice for previous replicated designs . 109
6.6 Estimation accuracy as relative estimation error in percent . 123
6.7 SpartanMC ADPCM performance-profile with peripheral IO 125

14

List of Code Listings

5.1 Example Cetus Input Program . 61
5.2 Input source-code for profiling . 64
5.3 Instrumented source-code (diff-style highlighting: green lines with + are added) 67
5.4 Original loop . 70
5.5 Fissioned loop . 70
5.6 Split loop . 70
5.7 Break loop . 72
5.8 Break loop transformed . 72
5.9 Usable µStreams pragmas . 79
5.10 Example code to visualize task pipeline creation . 83
5.11 Simplified abstract XML hardware description . 86
5.12 Simplified main.c Freemarker task template . 87
5.13 Usage of differnt Peripherals in a SpartanMC C-application 89
6.1 Generated assembler code, IIR benchmark processing step 0, parallelized variant 104
6.2 Generated assembler code, IIR benchmark processing step 0, single-core variant 104

15

1 Introduction

Computers have become a major part of our everyday live. Even though they are not always directly
visible or identifiable as a computer. They are embedded into many products that we daily use. Today,
way more so-called embedded computers or embedded systems exist than traditional desktop comput-
ers. Embedded systems are used in many areas, such as car industry, avionics, manufacturing industry,
multimedia entertainment systems, health care and household items. With the Internet of Things (IoT)
boom in the last years, almost everything contains embedded systems and is connected. We live in a
world where coffee makers and dish washers can be controlled over the internet and cleaning robots
tidy up your home while you are at work. These embedded systems take over more and more jobs and
also the complexity which these systems handle increases. With more complex jobs, also the demanded
processing power increases. For example, a cleaning robot continuously scans the room with a 360 de-
gree distance measurement, generates a map of the room and calculates an ideal cleaning route covering
all areas. New obstacles may appear on the route and new rooms could become visible, requiring an
adaptation of the map and the route. At the same time the robot has to interact with a smartphone
to display the status and receive commands. These tasks require high processing power from a battery
driven device.

Traditionally, the processing power of a processor increases with a higher working frequency e.g. clock
frequency, besides other methods found in the past decades of research in this field. However, a higher
clock frequency and thereby increased operation voltage result in disproportionately high power con-
sumption [1]. Performance scaling with frequency has also physically reached its limits with today’s chip
manufacturing techniques. At the same time, embedded devices are often battery powered and demand
high processing power at an extremely low energy consumption.

These combined demands are fulfilled through multi-core processors nowadays. Multiple processors
are combined on one chip and process workloads together. Multi-core processors theoretically increase
processing power with each additional core, while the operation frequency and thereby the power con-
sumption can be kept low. Thus, a multi-core system can maintain the same processing power of a
single-core system at lower power consumption [2].

Writing software to use multiple concurrent processors is not that easy. Firstly, many existing algorithms
in software are not written to process data concurrently and not all algorithms hold such concurrency.
Secondly, software developers must learn new techniques to write new concurrent applications or adapt
existing applications.

1.1 Motivation

A lot of legacy applications already exist for embedded systems which could benefit from multi-core
devices. Especially legacy software that grew over the time requires adaptation since the additional
tasks cannot be fulfilled anymore with a single-core processor. Parallelism must be extracted from the
application. This parallelism is represented by different tasks that are mapped to different processor
cores. Several possibilities to detect and leverage parallelism already exist. The challenge is to find
enough parallelism and to map it efficiently to the multi-core platform [3]. Since multi-core platforms
have unique characteristics, like for example communication cost, several objectives have to be optimized
to successfully parallelize software. If for example an extracted parallel task is very small, it might
take more time to tell another processor to start this task and collect the results than to execute it
together with the original task on one processor. To aid the programmer in this process, already plenty
of programming languages and language constructs exist. These techniques require manual effort from
a developer. Alternatively, some automatic parallelization tools exist to relive the developer. Such tools
imply low effort for the developer but sometimes hand tuned parallelizations from skilled programmers
result in a better performance. Language constructs for parallelization often exhibit great parallelization

17

possibilities. This gives a developer a great choice for possible parallelization, but also great chances for
inexperienced developers to generate bad parallelizations.

Thus, automatic parallelization is desirable if it works well. And it works better when narrowed down to
specific use cases. Development for parallelization tools has mainly been driven by the high performance
computing (HPC) community, without focus on embedded systems. By targeting embedded systems
for parallelization, restrictions as well as new opportunities for automatic parallelization tools apply
in this narrowed field. In the domain of HPC, the maximum amount of parallelism is often desired.
The higher the parallelization is, the faster the application runs, the better the solution is considered.
Maximum parallelization is not necessarily optimal for an embedded system. Embedded systems often
have a minimum required processing speed. As long as this speed can be achieved by parallelization,
everything is fine. Higher parallelization is not required and might even lead to less energy efficiency.

With regard to hardware efficiency and task mapping to processors, another aspect can come into play for
embedded systems: FPGAs. FPGAs are special circuits to realize almost arbitrary other digital systems.
FPGA development has advanced so far that it becomes possible to even realize multiple embedded
processors (called soft-cores) on one FPGA. The flexibility and reprogrammability of FPGAs make it
possible to use arbitrary custom multi-core designs. It is thinkable to generate hardware to better fit the
needs and structure of the parallelized application. One could even adapt the multi-core system with
changing application requirements.

1.2 Problems & Goals

Different kinds of parallelism exist within applications that are coarse-grained enough to justify offload-
ing to a different processor: Task-level, data-level and pipeline parallelism. The first two are widely
researched and applied in parallelization tools. Pipeline parallelism is addressed by fewer tools, because
it is not as widely applicable and has restrictions regarding application structure. Nevertheless, it is
shown that parallelization for these applications on desktop computers[4, 5] gives promising results.
Cordes et al.[6] showed the applicability of this concept for a simulated embedded system. Besides
benchmark applications which mostly cover only one data transformation algorithm, embedded systems
might execute multiple such transformations and also have to handle data in and output (not covered
by Cordes et al.). Thus, the execution order is often: receive input data from peripherals, run (multi-
ple) data transformation steps, send output data to peripherals. Such an application structure already
exhibits different pipeline steps, which could very well be extracted and transformed into a processing
pipeline to increase the throughput of the application.

An automatic parallelization tool with the following characteristics would be well suitable for embedded
systems:

• Extract only necessary parallelism and not as much as possible. This would not result in the fastest
system, but a sufficiently fast system with a small hardware footprint.

• Consider full system parallelization and not only concentrate on parallelizing loops.

• Consider the influence of peripheral interaction during parallelization, even though embedded
systems always have peripheral interaction.

• Target low-performance embedded systems running bare-metal, incapable of running an operating-
system.

• Adapt a configurable hardware system such as soft-cores on FPGAs to the extracted parallelism
characteristics.

18

Currently there is no automatic parallelizing compiler for embedded systems covering the described
aspects.

There are several open questions which arise from the set objectives:

• How good are current soft-core communication interconnects and how big is the communication
overhead in contrast to computation complexity. Can interconnects be improved to better support
the pipeline concept?

• How much parallelism is extractable from this concept? Previous approaches were only using
processors with up to four cores.

• Can parallelization be done with distributed or shared-distributed memory systems to overcome
the bottleneck of a global common memory?

• Can automatic parallelization keep up with hand parallelized variants from experienced develop-
ers?

• Can multi-core soft-core designs be automatically created and tuned to the application character-
istics to not bother software developers with hardware design?

• What is the impact on the latency of a pipeline parallel design, since an upper bound for latency is
important in some embedded systems?

• Do multi-core designs have a negative impact on the maximum achievable frequency in contrast to
single-core designs, when realized on an FPGA?

1.3 Work plan

A work plan is elaborated to design an automatic parallelization tool, covering the aforementioned
aspects. The work plan also incorporates the described uncertainties and open questions to verify the
applicability of an automatic parallelization tool in this environment.

The following work packages are stated:

1. Find applications for low-performance embedded systems that benefit from the aspired pipeline
concept.

2. Analyze current multi-core capabilities of soft-cores and the performance of supported intercon-
nects. If necessary or possible, the multi-core capabilities and interconnect performance should be
improved to support pipeline parallelism.

3. Investigate the pipeline concept with low-performance embedded systems through a manual an-
notation based parallelization tool at first. With an annotation-based parallelization, different ap-
plications can be parallelized and the resulting performance can be measured. The parallelization
tool should work on the granularity of functions or multiple statements to deliver coarse-grained
enough tasks to justify offloading to a different processor core. Also, functions imply a clear, eas-
ily analyzable interface for input and output data. This first step should reveal, if this concept is
applicable and where possible improvements can be made.

4. The tools should be implemented as source-to-source tools. This makes the tools more independent
of the target architecture and the compiler implementation. Additionally, this gives the user the
freedom to easily analyze and manipulate the generated design without touching the implementa-
tion.

5. Design a profiler to give the user an idea of which parts to parallelize. Otherwise, the user would
need to guess and parallelize with trial and error.

19

6. Investigate concepts to also parallelize loops, which are often steps consuming much processing
time.

7. Develop concepts to detect used peripherals from the source-code. On the one hand, this allows
the parallelizer to adapt to peripheral interaction. On the other hand, the necessary hardware
infrastructure in terms of cores, interconnects and peripherals per core can be inferred.

8. In the last step, an automatic parallelization tool can be designed, using the previously developed
tools. The different intermediate tools allow an easy exchangeability to adapt for new target plat-
forms. An application performance profile should be automatically analyzed and annotations can
automatically be set for the previously developed parallelization tool. The automatic paralleliza-
tion tool should extract only as much parallelism as necessary to fulfill user defined requirements.
The user must specify a minimum input processing rate as often demanded by embedded systems.
Besides the parallelized software, a multi-core hardware design should be provided by the paral-
lelization tool. Different interconnects should be evaluated to get the necessary performance with
resource efficient interconnect. The tool should be able to obey restricted hardware bounds since
differently sized FPGAs exist or other digital systems are also desired on the same FPGA.

The following pages describe the state of the art, related work and the shortcomings of existing tools in
more detail. Afterwards, the chosen target architectures are analyzed, the tool’s implementation details
are highlighted and design choices are described according to the work plan. The quality of the imple-
mented automatic parallelization tool is evaluated with respect to different implemented optimizations
to increase extractable parallelism. A conclusion is given at the end and suggestions for future work are
made.

20

2 State-of-the-Art

In this section, firstly multi- and many-core architectures are reviewed in Section 2.1, with a specific
focus on low-performance embedded domain. Afterwards, Section 2.2 discusses different possible de-
sign choices for extracting parallelism out of sequentially written applications. Last but not least, in
Section 2.3 different parallelization tools are reviewed, categorized by their programming paradigm.

2.1 Multi-/Many-Core SoC Platforms

For many years the performance of processors was mainly increased through higher frequencies. When
high-end processors surpassed the 4 GHz domain around year 2000, power consumption and wire delays
became the dominant problems, limiting further scaling by frequency [1]. Researchers became aware of
this dead-end by the 80s and had already researched multi- and many-core architectures. In 2001 the
first dual-core processor (IBM POWER4) for personal computers was released. With the first multi-cores,
the overall performance of the system was boosted, given that the application is able to leverage multiple
cores. Also, multiple cores at lower clock rates achieved lower power consumption at the same level of
performance, compared to a higher clocked single-core design [2]. Over the years, the core count of
multi-core processors increased continuously from two up to hundreds or thousands of cores, which are
then typically referred to as many-core processors.

The term "embedded processor" can be widely stretched to also cover high performance desktop/server
processors embedded into a technical device which needs to be controlled or supervised. However, in
the context of this work, the focus is on processors with low power consumption, small size at low cost
which, implies more or less limited processing power.

In the following, the architectures are separated into multi- and many-core as well as configurable soft-
core multi-processor system-on-chips (MP-SoCs), with the latter being able to cover both of the former
domains, depending on user configuration.

2.1.1 Embedded Multi-Core Architectures

Today’s embedded multi-core processors are widely dominated by ARM. ARM processors are widespread
in many electronic systems, such as smartphones, automotive applications, sensors, medical devices or
modems and routers. Devices requiring considerable processing power, such as smartphones, nowadays
leverage System-On-Chips (SoCs) with multiple ARM high performance Cortex-A1 series cores. Due to
their popularity, there are many vendors producing Cortex-A multi-core SoCs: Freescale iMX2, Apple Ax,
Samsung Exynos3, HiSilicon Kirin4, MediaTek MTxxxx and Helio5, RockChip RK3xxx6, Qualcomm Snap-
dragon7, Nvidia Tegra8 etc., just to name a few. These SoCs are shared-memory architectures, typically
with a bus-based cache coherency protocol and nowadays often contain between four and eight cores.
ARM’s newest interconnect (CMN-6009) is even implemented as a mesh network, allowing for good

1 Product brief: https://www.arm.com/products/silicon-ip-cpu
2 Product brief https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-
mcus/i.mx-applications-processors:IMX_HOME

3 Product brief: https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-
9-series-9820/

4 Product brief: http://www.hisilicon.com/en/Products/ProductList/Kirin
5 Product brief: https://www.mediatek.com/products/smartphones/helio-x
6 Product brief: https://www.rockchip.nl/
7 Product brief: https://www.qualcomm.com/snapdragon
8 Product brief: https://www.nvidia.de/object/tegra-de.html
9 Product brief: https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-coherent-

mesh-network-family/corelink-cmn-600ae

21

https://www.arm.com/products/silicon-ip-cpu
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors:IMX_HOME
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors:IMX_HOME
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-9820/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-9-series-9820/
http://www.hisilicon.com/en/Products/ProductList/Kirin
https://www.mediatek.com/products/smartphones/helio-x
https://www.rockchip.nl/
https://www.qualcomm.com/snapdragon
https://www.nvidia.de/object/tegra-de.html
https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-coherent-mesh-network-family/corelink-cmn-600ae
https://developer.arm.com/products/system-ip/corelink-interconnect/corelink-coherent-mesh-network-family/corelink-cmn-600ae

scalability beyond eight cores. Due to the variety of ARM’s Cortex-A cores in terms of power and perfor-
mance, ARM’s big.LITTLE[7] concept is used in many mobile SoCs. High efficiency cores are used during
low performance, low power scenarios and less efficient, high performance cores are switched on when
required. The kernel scheduler implementation defines whether switching between the performance and
efficiency cluster/cores is possible on a per-core basis or only for the whole cluster. Alternatively, het-
erogeneous task scheduling can be implemented. The performance of Cortex-A series processors is good
enough to even run a recent full desktop operating system as shown with the Raspberry Pi project.

Besides the Cortex-A series, ARM also offers the Cortex-R and Cortex-M series targeting real-time and
very low power, performance and cost. The multi-core SoCs for these processors are not as widely ad-
dressed by the vendors as for the Cortex-A series. NXP Semiconductors has the LPC430010 containing
one powerful ARM Cortex-M4F and one or two low performance ARM Cortex-M0. The M0 is designed to
mainly handle peripheral interaction while the M4 does compute-intensive work. It is a shared-memory
32-bit architecture with interconnect over Advanced High-performance Bus (AHB). Texas Instruments
has the OMAP5 series11 containing two very powerful Cortex-A15 and two Cortex-M4. The M4 can be
used for low-power offload and real-time tasks. Even though it has two M4 cores, the chip rather belongs
to the high performance embedded domain through the Cortex-A15 cores, with the M4 rather resembling
a co-processor. The Espressif ESP3212 is a Tensilica Xtensa 32-bit LX6 symetric multi processor (SMP)
dual-core. The device is able to run FreeRTOS and thus task scheduling becomes possible. Besides
interaction between multiple peripherals, the device is even capable of running for example a simple
web-server. The Parallax Propeller13 is a 32-Bit hexa-core with a distributed-shared memory architec-
ture with its own instruction set architecture (ISA). Each core has its own 2KB RAM and a round-robin
arbitrated shared 64KB memory partly used as RAM and ROM. Quite uniquely, all cores can have simul-
taneous read/write access to the same peripheral pins and have to synchronize over mutexes. When it
comes to peripherals, many microcontrollers include hardware for SPI or I²C, while the Propeller has
dedicated cores for protocol handling. However, dedicating peripherals to cores and thus also dedication
interrupts, the reaction time to multiple interrupts becomes smaller and also more predictable. Each
core delivers 20 MIPS per core and is thus comparable with the Cortex-M0. Parallax later also released
the Propeller 2 with up to 16 cores at a slightly higher clock.

2.1.2 Embedded Many-Core Architectures

Many-Core processors offer much processing power due to the high number of cores. Image process-
ing is a application field that can very well make use of many-core architectures. Image processing is
also often applied in the domain of embedded computing. Many-core architectures realized as single
instruction multiple data (SIMD) processors are often proposed for low-power, high-efficiency. How-
ever, those architectures mostly focus on dividing data sets into multiple parts and applying parallel
(floating-point) operations only. This approach works well for scenarios having high data parallelism to
leverage, but these architectures lack in applicability to general purpose computing without data paral-
lelism. Examples are embedded graphics processing units (GPUs) as found in today’s smartphones and
also other products like Hiveflex ISP2300[8], ClearSpeed CSX series[9], Intel’s Myriad X14 and Teraflop-
s/Polaris[10], Imagine Stream Processor[11] and it’s commercialized variant SPI Storm 1. The Imagine
Stream Processor is slightly different. Its ability to model processing pipelines through a series of cores
is unique. These pipelines are realized over direct local connections instead of using rather limited

10 Product brief: https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-
mcus/lpc-cortex-m-mcus/lpc4300-cortex-m4-m0:MC_1403790133078#/

11 Product brief: http://www.ti.com/pdfs/wtbu/SWCT010.pdf
12 Datasheet: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
13 Datasheet: https://www.parallax.com/sites/default/files/downloads/P8X32A-Propeller-Datasheet-v1.4.0_
0.pdf

14 Product brief: https://www.movidius.com/myriadx

22

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc4300-cortex-m4-m0:MC_1403790133078#/
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/lpc-cortex-m-mcus/lpc4300-cortex-m4-m0:MC_1403790133078#/
http://www.ti.com/pdfs/wtbu/SWCT010.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.parallax.com/sites/default/files/downloads/P8X32A-Propeller-Datasheet-v1.4.0_0.pdf
https://www.parallax.com/sites/default/files/downloads/P8X32A-Propeller-Datasheet-v1.4.0_0.pdf
https://www.movidius.com/myriadx

global communication paths. Another area to which these architectures are suited well is the upcoming
artificial intelligence (AI) trend, which demands high parallel floating-point performance. Compared
to traditional GPUs, many hardware parts can be stripped off to get highly efficient low-power AI co-
processors.

Besides SIMD approaches, multiple instruction multiple data (MIMD) designs exist, being designed as
co-processors and some as standalone architectures. In MIMD, each core is able to run its own task on
its own data set, independent of other cores. A hybrid SIMD, MIMD approach is the Cell processor[12].
It contains one PowerPC general purpose processor and multiple (usually eight) synergetic processing
elements (SPEs) acting as co-processors. These co-processors have dual issue pipelines, one for floating-
point and one for non-floating-point operations. Each co-processor is implemented as SIMD processor
with multiple execution units, while all SPEs are organized as MIMD processors.

Due to high processing power demands in the high-performance computing domain, many-core archi-
tectures are often designed to achieve high processing power through a high number of powerful and
feature rich cores. However, with peak performance comes high power consumption, making these pro-
cessors mostly suitable for servers or high-end PCs. Examples for these processors are AMD’s EPYC15

processors with up to 32 cores or Intel Xeon Platinum 8xxx16 series with up to 28 cores. AMD uses
tightly coupled clusters[13] with up to eight cores. The clusters have direct connections to other clus-
ters, while Intel uses a 2D Mesh to connect all cores. Intel’s Xeon Phi started out as co-processors cards
and became a standalone architecture with the Knights Landing generation. In contrast to general pur-
pose server processors, their implemented cores have a simpler architecture to allow combinations of up
to 72 processor cores. However, with so many cores, inter-core communication and accesses to global
memory become a major burden with standard bus protocols. This is demonstrated by Xeon Phi’s use of
multiple ring buses that were later replaced by a 2D mesh. These architectures are surpassing 100W of
power consumption and are out of this works scope, even though they nicely show the newest trends of
many-core processors.

The concept of Mesh interconnects or Network-on-Chips (NoCs) in general is also used for lower perfor-
mance architectures among the embedded domain. A lot of these processors target networking appli-
ances, cloud computing, image and audio processing and many others. Specifically targeting network ap-
pliances are for example Cavium Networks’ Octeon CN38XX17 which contain a maximum of 16 MIPS64
cores connected via bus. NXP’s T424018 contains twelve processing cores communicating through a not
further specified point-to-point network called QorIQ. Moving towards chips with hundreds of cores,
the interconnect structures mostly implement variants of a 2D mesh. Broadcom’s XLP90019 can be con-
figured with 640 MIPS cores and Kalray’s MPPA Manycore20 contains 1024 very long instruction word
(VLIW) cores, both configured as clusters, interconnected by a 2D mesh. Adapteva’s Epiphany V[14]
also contains 1024 very small reduced instruction set architecture (RISC) cores, interconnected by a 2D
mesh. These systems are in general powerful enough to run an operating system, and have even with
that many cores a mid range power consumption of 5 to 50 Watt.

Moving further into the low power domain, Toshiba[15] presented a chip with 64 VLIW cores and
many special purpose accelerators interconnected through a tree-based NoC. The HyperX hx3100 pro-
cessor[16] contains 100 processing elements connected through a 2D mesh. Both systems consume

15 Product brief: https://www.amd.com/de/products/epyc-server
16 Product brief: https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-

processor-38-5m-cache-2-50-ghz.html
17 Product brief: https://www.cavium.com/pdfFiles/OcteonCN38XX_CN36XX_PB-Jan29-06-web-v1.pdf
18 Product brief: https://www.nxp.com/docs/en/fact-sheet/T4240T4160FS.pdf
19 Product brief: https://www.broadcom.com/products/embedded-and-networking-processors/communications/

xlp900/
20 http://www.kalrayinc.com/IMG/pdf/FLYER_MPPA_MANYCORE.pdf

23

https://www.amd.com/de/products/epyc-server
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://www.cavium.com/pdfFiles/OcteonCN38XX_CN36XX_PB-Jan29-06-web-v1.pdf
https://www.nxp.com/docs/en/fact-sheet/T4240T4160FS.pdf
https://www.broadcom.com/products/embedded-and-networking-processors/communications/xlp900/
https://www.broadcom.com/products/embedded-and-networking-processors/communications/xlp900/
http://www.kalrayinc.com/IMG/pdf/FLYER_MPPA_MANYCORE.pdf

around 1W of power, which makes them good representatives for a low-performance and low-power
embedded many-core system.

Besides commercial processors and many other 2D-mesh-like architectures with slight variations, there
also exist research architectures dealing with aspects and hardware constructs off the beaten track.
Apple-CORE[17] uses UTLEON3[18] processor cores bundled in clusters of four cores and clusters
are connected through a NoC. The peculiarity of the design lies in the ability of the processors fast
hardware-based task switching mechanism to hide communication latencies. It has hardware units to
organize software concurrency among the cores instead of leaving it to the operating system (OS). The
Ne-XVP[8] architecture also utilizes the strengths of Apple-CORE, such as multi-threaded cores and a
hardware task scheduler. The peculiarity here is that the scheduler synchronizes data to cores based
on software defined checkpoints elaborated by means of the ACOTES programming model (see Sec-
tion 2.3.4). Synchronization happens via configurable cache-to-cache tunnels. XGRID[19] uses a scalable
2D grid of simple, low performance RISC cores forming a distributed memory system. The interesting
part is the interconnect network which is very similar to current FPGA routing resources. The applica-
tion is transformed into a Kahn Process Network (KPN), which is then mapped to the processors. The
interconnects are configured accordingly at compile time.

Another class of processors are coarse-grain reconfigurable architectures (CGRAs)[20] which is an inter-
mediate between fully reconfigurable FPGAs and usual processors. This means that a CGRA has some
more complex structures like processing elements whose interconnect network can be dynamically con-
figured through so called contexts, realizing a series of operations on input data. To run an application
on such a processor, it is transformed into a control data flow graph (CDFG) which is then translated to
multiple contexts mapped to the CGRA. The CGRA needs reconfigured upon every context switch. The
similarity of CGRAs with the concepts in this work are the synchronization of processors/processing ele-
ments through arrival of data and the adaption of the hardware to the application’s data flow. However,
the reconfiguration in this work doesn’t happen during application runtime and data flow is extracted at
a coarser level.

2.1.3 Soft-core multi-/many-cores

Besides all previously shown commercial processors and research projects with configurable processor
count and interconnects there also exists the class of soft-core processors. These processors are often
described in hardware desciption language (HDL) and they can be synthesized on an FPGAs. Those
processors come in handy when off-the-shelf solutions do not provide the needs or the hardware envi-
ronment is rapidly changing (during development) with different requirements to the processor. There
already exists a broad variety of soft-core processors for different instruction sets and bit widths. Some
are one-man projects, some are university research projects and others are soft-cores provided by FPGA
manufacturers. The man-power behind the projects also usually reflects the eco-system’s comprehensive-
ness such as presence of a debugger, compiler, documentation, system-builder or available peripherals.
Since FPGAs have grown considerably, multi- and even many-core systems become realizable. At the
moment, most soft-core SoC kits deliver very limited support for multiple cores out-of-the-box.

One of the most popular soft-cores is the MicroBlaze[21] with many ISA compatible clones. To support
multi-cores the following components exist: A common global memory, a mutex peripheral and a FIFO
based bidirectional inter-core communication peripheral for distributed-memory systems called Mail-
box21, formerly known as fast simplex link (FSL). The PicoBlaze, MicroBlaze’s smaller 8 bit sibling, has
no multi-core support provided. Intel (former Altera) has the NiosII, a 32 bit RISC soft-core. The NiosII
uses the Qsys interconnect22, a dedicated N-to-M master-slave interconnect, for inter-core communica-

21 Product brief: https://www.xilinx.com/products/intellectual-property/mailbox.html
22 Datasheet: https://www.intel.co.jp/content/dam/altera-www/global/ja_JP/pdfs/literature/hb/qts/qsys_

interconnect.pd

24

https://www.xilinx.com/products/intellectual-property/mailbox.html
https://www.intel.co.jp/content/dam/altera-www/global/ja_JP/pdfs/literature/hb/qts/qsys_interconnect.pd
https://www.intel.co.jp/content/dam/altera-www/global/ja_JP/pdfs/literature/hb/qts/qsys_interconnect.pd

tion. Access to slave components, such as peripherals, is shared by all masters and can be exclusively
locked using integrated mutexes. Furthermore, communication is possible via a shared memory located
in the .data section23. Lattice’s LatticeMicro3224 is not advertised to have dedicated multi-core periph-
erals or mechanisms. The only option are third-party peripherals connected to the integrated Wishbone
bus. Cobham Gaisler’s (formerly Aeroflex Gaisler) Leon soft-cores can be configured as a multi-processor
system25. Multiple processors share a common memory and peripheral bus. Inter-core communication
thus happens via the common memory.

The SpartanMC SoC kit[22] offers different variants of inter-core communication for it’s soft-core. Com-
munication is possible via 1-to-1, 1-to-N and N-to-1 peripherals. Each either as FIFO-based or DMA-like
variant. Additionally, shared data and/or program memory is possible.

In conclusion, soft-core vendors mostly deliver quite limited multi-core functionality. However, the user
can always use one of the aforementioned cores together with a custom third-party (open-source) inter-
connect and trust in the interconnects compatibility to future processor releases.

2.1.4 Conclusion

As shown in Section 2.1, many multi-core systems still rely on a common central bus architecture nowa-
days. With additional cores, these systems are running into the memory wall [3] and thus cannot
fully utilize available processing power. This is one reason why many-core designs moved towards 2D-
mesh-like core-interconnects, often with distributed memory. This step shows the need for localized
communication in combination with lower communication interference compared to classical bus struc-
tures. Generic 2D mesh structures may work well for processors that must have the ability to execute
arbitrary applications. However, in the embedded domain, a processor might run a specific application
for years. Traditionally, this application is written to leverage a target multi-core processor as much as
possible. Choosing an off-the-shelf processor might limit future extensiblity of the software and poten-
tially require to target the application to a new processor. It would be promising to adapt the processor
and the communication infrastructure to the application and not vice versa. FPGAs in combination with
soft-core processors provide the freedom to generate an arbitrary number of cores and communication
infrastructure ideally suited to the application’s communication pattern, emphasizing communication
locality. Additionally, FPGAs allow continuous adaption to changing requirements. However, the price
to pay for the reconfigurability is, in contrast to an application-specific integrated circuit (ASIC), a lower
achievable clock speed, a lower energy efficiency [23] and a higher per unit price.

Since the full reconfigurability provided by FPGAs is not needed, one could settle for a less reconfigurable
platform in the future to regain clock frequency and energy efficiency. Thus, it is thinkable to use
a platform such as the proposed XGRID[19]. The cores and peripherals are fixed hardware and the
interconnect network can form arbitrary point-to-point connections configured at compile time.

The proposed concept of this work could also be applied to hard processors, even though the benefit of
hardware adaptability is lost. The software challenge would shift from generating the required hardware,
to efficiently mapping the software to a given hardware, which is actively researched in Daedalus[24]
for example.

23 Intel tutorial: https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_nios2_
multiprocessor_tutorial.pdf

24 Product brief: http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/
IPCores02/LatticeMico32.aspx

25 Vendor design reference: https://www.gaisler.com/doc/antn/GRLIB-AN-0005.pdf

25

https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_nios2_multiprocessor_tutorial.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_nios2_multiprocessor_tutorial.pdf
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx
http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/IntellectualProperty/IPCore/IPCores02/LatticeMico32.aspx
https://www.gaisler.com/doc/antn/GRLIB-AN-0005.pdf

2.2 Extracting Parallelism from Applications: Design Choices

There already exists a huge amount of approaches for parallelizing applications leveraging multi- and
many-core systems. The existing solutions differ in the programming paradigm which specifies the instru-
ments that the user has at hand for parallelization as well as the partitioning level indicating the language
constructs and task granularity. The tools also differ in the target hardware architecture which allows
parallelization only for specific processors or requires a shared and/or distributed memory architecture
specifically for inter-core communication.

2.2.1 Programming Paradigms

There are different programming paradigms to extract parallelism from applications. The approaches
mainly differ in the effort required to express parallelism and the kinds of parallelism that can be mod-
eled. The existing approaches can be summarized into the following categories and according examples
are named in Section 2.3.

Domain specific languages (DSLs): A custom language for expressing parallelism. The language models
parallelism implicitly through specific constructs. Some DSLs are very close to commonly known
general purpose languages and only modify/add specific aspects and thus are counted as language
extensions. A new compiler is always needed to translate the language. The benefit of a DSL is that
parallelism can be very well modeled and a high degree of parallelization can often be achieved.
However, the user has to learn how to use a new language. It also highly depends on the experience
and skill of the developer how successful the parallelization will be. In general, the user effort to
rewrite an existing application in a DSL can be relatively high.

Application programming interfaces (APIs)/libraries: An API or library offers functionality (often func-
tions) that can be called from the user code. The API only declares usable functions and the
implementation has to be provided by the compiler or a target specific library. The library in gen-
eral already offers an implementation which runs on one or more target platforms. The advantage
of an API or library is that an existing language is used, already known by the user. The user just
has to familiarize himself with the additional interfaces. Nevertheless, the user needs to rewrite
existing code to use the provided interfaces. Thus, the user effort to formulate the problem is
moderate when assuming that the user already knows the base language.

Language extensions: Language extensions modify or add certain aspects to existing languages. This
makes them easy to use for developers already familiar the language. Some language extensions
are so intrusive that they look like new languages and it becomes difficult to distinguish between
language extension and DSL.

Annotations: Existing code is extended with user annotations to indicate which and sometimes how
source-code parts can be parallelized. The benefit of using annotations is, that the original code
remains executable since annotations can be omitted by the compiler. Thus, usually no vast refor-
mulation of the code is needed, which typically results in little user effort. However, the user needs
to identify where annotations can be applied. Depending on the amount of available pragmas more
or less experience and knowledge is required.

Automatic parallelization: Automatic parallelization requires no user intervention and parallelizes appli-
cations up to a user specified or maximum possible degree. Automatic parallelization is the ideal
case from the user’s point of view. However, achieving a good speedup automatically is not easy
since beneficial parts for parallelization have to be identified and fitting parallelization pattern ap-
plied. Also, the target hardware architecture plays an important role when selecting source-code
parts to parallelize.

26

2.2.2 Types of Parallelism

Computer programs offer different kinds of parallelism which can be extracted and used to speed up
processing. Different levels of parallelism can also be combined to achieve higher speedups. However,
it highly depends on the application and also the programming style if such parallelism is exploitable.
Some levels of parallelism like instruction level parallelism (ILP) are implemented in hardware through
pipelines in the processors. Other types of parallelism mostly rely on compilers or parallelizing compilers
to extract parallelism and map the parallelism ideally to the target hardware. While fine-grained paral-
lelism like ILP is already well understood and leveraged, extracting parallelism on a coarser level is still
lacking behind the availability of multi- and many-core hardware developments with more and more
cores. In the following, the different kinds of coarse level parallelisms leveraged by current parallelizers
are described:

Task-level Prallelism is similar to thread-level parallelism (TLP) but on a coarser level. While TLP is used
in the processor to overcome high I/O latencies, task-level parallelism tries to distribute bigger,
independent parts of a program to all available processing cores. Typically, the task granularity are
whole functions, but it can also be a few statements. Task-level parallelism can very efficiently be
applied on embedded systems, since the often critical communication overhead is relatively low
due to the limited capabilities of embedded systems.

Data-level Prallelism is often leveraged when parallelizing loops. In many cases, loops process fractions
of large arrays in one iteration. Given no (or eliminable) loop carried dependencies this is a
beneficial parallelization technique. Nevertheless, data-level parallelism can also be used beyond
the borders of loops.

Pipeline Parallelism is very similar to the previously described task-level parallelism. Instead of searching
independent program blocks executed in parallel, different succeeding program parts may have
data dependencies. The different program parts are executed on different processing cores and
the dependent data is passed from core to core in a pipeline fashion. This kind of parallelism can
be very efficiently be applied to embedded applications, since they are often written in a pipeline
oriented fashion: collect data, multiple processing steps, output data.

2.2.3 Partitioning Level

Besides different methods how applications can be parallelized, there is also the aspect which constructs
can be parallelized. The following partitioning levels are commonly used:

Instruction: A single instruction or a sequence of instructions can be selected for parallelization. Paral-
lelization on groups of instructions allows parallelizing very small parts of the code. The keeping
the inter-core communication and task creation overhead low is essential for parallelization. Par-
allelization is not beneficial, if the communication takes longer than the direct calculation.

Loop: Many parallelizers focus on parallelization of loops. Loops often consume the majority of com-
puting time in some applications. Thus, it is consequent to target them for parallelization. Some
tools specialize in targeting the subset of static affine nested loop programs (SANLPs) which were
found to be highly parallelizable through mapping to KPNs. SANLPs are nested loops where loop
conditions, boundaries and the variable index are affine functions with iterator as argument [25].
However, most applications contain more than just a loop and other parts might also require par-
allelization.

Function: Well written programs consist of different functions containing instruction bundles as func-
tionally associated parts. These functions have clearly specified input and output data (neglecting

27

global variables). These functions often consist of big enough instruction bundles to be complex
and compute intense enough to justify parallelization overhead through offloading to a new thread.

2.2.4 Memory Architecture

All parallelization tools require specific memory architectures and means for inter-core communication.
The most common memory model is a global shared memory, to which each core has full access.
A shared memory makes inter-core communication very easy since the communication data is only
written to a specific memory location. The main problem of these systems is the high memory band-
width demands which often can barely be fulfilled with many-core processors. Multiple cache levels are
commonly used as countermeasure, at the cost of increased design complexity.

The complete opposite of the shared-memory model is distributed memory, giving each processor its
own memory. In this case, inter-core communication becomes more complex and has to be realized
through specific communication hardware.

A compromise between both approaches is the shared-distributed memory, where each processor has a
local data- and instruction-memory as well as a shared-data memory that all processors can access. The
shared memory can either be realized as one global memory or as several shared memories distributed to
the processors address ranges, but accessible by all others. The latter is also called nonuniform memory
access (NUMA). In a NUMA architecture, access time to the memory differs from local to distributed
shared memory.

2.2.5 Task Scheduling

The distribution of tasks to processors can either be done dynamically at runtime or statically at compile-
time. The advantage of dynamic scheduling is good distribution of the tasks to the available processors
if the task’s execution time is not known during compilation. The disadvantage of this method is the
necessity of either an OS for task scheduling or a custom implementation with similar minimal function-
ality. Particularly for low-performance embedded devices running an additional task scheduling layer
can be a big burden and further reduces the low processing-power. The tasks can be statically sched-
uled at compile time if they are known before running the application. This method is better suited for
low-performance environments.

2.2.6 Conclusion and Scope

The target platforms are low-power, low-performance embedded systems which might run the same ap-
plication for years. The target applications are legacy software but could also be newly written sequential
software. With these requirements, the perfect combination of programming paradigms, infrastructure
functionality and target platform can be selected.

Automatic parallelization is desirable as programming paradigm, since it puts no burden on the user.
Annotations come with slightly higher demands on the user but could achieve higher speedups with a
little manual effort. Pipeline parallelism should be leveraged to extract parallelism out of the applica-
tion. Firstly, because embedded applications are often structured in this way and secondly, because task-
and data-level parallelism have already been extensively researched. A distributed or shared-distributed
memory model should be used to also enable parallelization for many-core systems that likely run into
the memory bottleneck. Communication overhead is an extremely critical factor for successful paral-
lelization, especially in embedded distributed-memory systems. Communication and thread creation
must not cost more time than the execution of the respective code part. Functions and loops typi-
cally exhibit enough complexity to justify offloading to a different thread. Since the target platforms

28

typically have a static environment with constant demands on the application, the adaptivity of dy-
namic task-scheduling is usually not required and also not desired due to the higher required processing
power.

2.3 Parallelization Tools

Parallelization methods and tools are relevant topics for many decades already. Therefore, many ap-
proaches for parallelizing software have already been researched. Listing and describing all concepts
can fill a book itself. Thus, the most prominent and relevant work has been selected. Table 2.1 shows
all considered tools, categorizes them by programming paradigm, usable memory-architecture, target
platform, input language and more. A rating of how well the concept is applicable to embedded envi-
ronments is given for each entry. The tools functionalities and concepts are described in the following.
At the end of each description, the user effort for porting an existing legacy application and whether the
method can be applied to embedded environments is judged.

2.3.1 Tools out of Scope

This section describes (popular) parallelization tools which are not applicable to embedded applications.
Mostly, those tools target HPC environments and take resources such as an OS or libraries for granted,
which are not available for embedded systems. Other tools target GPUs which have architecturally not
much in common with embedded environments. The effort of porting the necessary libraries or func-
tionality is assumed to be very high and the performance on an embedded environment questionable.
Also, C as input language should be targeted, since it is still the standard programming language in most
embedded environments and most likely the language in which a legacy application is written in. Such
tools are only briefly described in the following together with a reason why they are not applicable for
embedded systems.

The most prominent tool in this section is CUDA[32], which offers an API for parallelizing C(++)-code
on Nvidia GPUs. Thus, the API is widely GPU architecture optimized and solely controlled by Nvidia.
Even though some embedded platforms contain GPUs, this is not a widespread characteristic. Brook[27]
from the year 2003 can be seen as a predecessor of CUDA. Brook itself is just a C language extension
for describing streaming programs. BrookGPU and its successor Brook+ are implementations for generic
GPUs using OpenCL or OpenMP. Just like CUDA they were designed for GPUs running in an x86 envi-
ronment and thus are unsuitable for embedded environments. Another interesting tool is Open Hybrid
Multicore Parallel Programming (OpenHMPP) which is a parallelizing compiler integrating GPUs and
accelerators in general. The parallelization is indicated through annotations in the source-code. The re-
quirements of OpenHMPP are a Unix like OS with a Pthreads library. On top of that runs the OpenHMPP
runtime library to schedule and launch code snippets to be accelerated. The snippets are then either
launched on the accelerator or on the host processor as a new thread, if the accelerator is not present.
The different abstraction layers for managing threads are mostly too much for embedded environments.
Additionally, OpenHMPP mainly focuses on accelerator integration and neglects acceleration in more ho-
mogeneous multi-core environments. No performance numbers for purely homogeneous environments
are given.

Moving from GPU accelerators to purely CPU centric solutions, there is Intel Threading Building Blocks
(TBB)26. TBB is a C++ template library also providing additional abstraction layers for task scheduling,
memory allocation and synchronization. The requirements of running TBB is a common desktop OS and
an x86 compatible CPU which excludes most embedded environments. Task parallel library (TPL)[70]
is a library for the .NET framework which initially was only available for the Windows OS, but also
recently became available for Linux and Android and thereby for embedded environments. However, it

26 https://raw.githubusercontent.com/01org/tbb/tbb_2018/doc/Release_Notes.txt

29

https://raw.githubusercontent.com/01org/tbb/tbb_2018/doc/Release_Notes.txt

Table 2.1: Reviewed parallelization tools

Tool pr
og

.
pa

ra
di

gm

pa
rt

it
io

ni
ng

le
ve

l

m
em

.-a
rc

h.

ta
rg

et
-a

rc
h.

ta
sk

-s
ch

ed
ul

in
g

O
S

re
qu

ir
ed

in
pu

t
la

ng
ua

ge

em
be

dd
ed

-a
pp

l.

re
fe

re
nc

es

Acotes annot. I,L,F S,D Cell B.E.,ISP2300,... S 7 C ++ [8]
AutoPar auto. L,F S any+OpenMP compiler D 7 C++ + [26]
Brook ext. F S&D GPU D 3 brook - [27]
CellSs annot. F S&D Cell B.E. D 7 C o [28]
Cilk ext. (L), F S x86,SPARC D 3 cilk o [29, 30, 31]
CUDA API F D GPU (Nvidia) D 3 C(++) - - [32]
Daedalus auto. L D PowerPC,MicroBlaze S 7 C ++ [24, 33, 34]
DMCG annot. L D x86+MPI S 3 C o [35]
EMB² lib. F S,D any supporting MTAPI D 7 C(++) + [36]
Eldorado auto. I,L,F S ARM S,D 7 C ++ [37]
HMPP annot. F S,D HPC+HW Acc. D 3 C - - [38]
Hypertool annot. F S,D SPARC+MPI S 3 C - [39]
Intel C++ Compiler auto. L S any+OpenMP compiler D 7 C(++) o [40]
TBB lib. L S x86 D 3 C++ - [41]
MAPS auto. I,F S,D TI OMAP,TCT,... S 7 C/CPN ++ [42, 43, 44]
MPA annot. I,L,F S ARM S,D 7 C ++ [45]
MTAPI API F S,D open S,D 7 open ++ [46]
OmpSS annot. I,L,F S,D x86,GPU (Nvidia) D 7 C(++),F o [47]
OpenCL API I,F S&D x86+GPU D 3 OpenCL C + [48]
OpenMP annot. I,L,F S any+OpenMP compiler D 7 C(++),F + [49]
OpenStream annot. I,F S x86 D 7 C + [50, 51]
Par4All auto. L S OpenMP, Cuda, OpenCL D 7 C + [52]
Pluto+ auto. L S,D any+OpenMP+MPI D 7 C(++),F + [53, 54, 55, 56]
parMERASA lib. I,F S&D parMERASA platform D 3 C ++ [57, 58]
Pthreads API F S any D 3 C + [59]
PIPS annot. F S,D x86+MPI S 7 C o [60, 61, 62]
PYRROS DSL F D nCUBE-2, iPSC 2 S 7 DAG - [63]
SL ext. F S Microgrids D 7 SL o [64, 65, 66]
SUIF auto. L S ALPHA, x86 S 7 C o [67, 68]
StreamIT DSL F S&D Cell B.E.,RAW S 7 StreamIT ++ [69]
TPL lib. I,L,F S x86+.NET D 3 C# - - [70]
TFlux annot. I,F S x86,TFlux D 3 C o [71, 72]

Used abbreviations: partitioning level→ Instruction, Loop, Function; memory architecture→ Shared, Distributed, S&D
shared-distributed; task scheduling→ Static, Dynamic; embedded applicable→ ++ designed and tested on embedded, +
not designed for embedded but applicability shown, o not designed for embedded but could be applied, - not designed for
embedded and embedded performance questionable, - - not reasonably applicable on embedded

was shown in [73] that the runtime environment easily consumes up to 47% of the total processing time
for some benchmarks during dynamic scheduling on powerful x86 processors. Thus, the usability in an
embedded environment is questionable.

What is also very popular nowadays and an often suggested method to speedup legacy code is high-level
synthesis (HLS). Bailey[74] mentions that there are several flaws, often limiting automatic hardware
generation for legacy code or the inferred hardware has bad performance. As stated in the user guide of
todays’ most popular HLS tool: VivadoHLS27, these are for example: pointer nesting or pointer casting,

27 https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-

synthesis.pdf

30

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_3/ug902-vivado-high-level-synthesis.pdf

recursion, system calls like sleep/printf and dynamic memory usage. All these unsupported but not
uncommon constructs make this approach often uninteresting, except if the user is willing to rewrite the
code (if possible) to work around these constructs.

2.3.2 DSLs/Language Extensions

PYRROS[63] is an automatic parallelization tool for directed acyclic task graphs (DAGs) developed in
1992. As input, the user has to provide a textual description of a DAG which explicitly models
tasks and inter-task communication. The language also has an interface for executing external
C functions. Afterwards, PYRROS schedules the defined tasks. In the first step without processor
bounds and in a second step tasks are clustered, ordered and statically mapped to a limited number
of cores. As target platforms are nCUBE-2 and Intel iPSC/2 message-passing multi-core platforms
are usable. To parallelize a legacy application, the user has to transfer the source-code to a DAG
with the option to reuse C functions. Due to the use of message-passing and static scheduling
this concept could be applied to nowadays embedded platforms even though designed for HPC
in 1992. However, the used message passing interface (MPI) might be different from today’s
well-known standard, since the first draft of MPI was published later than PYRROS.

Cilk[29] is a C language extension developed originally at MIT in 1994. C++ support was later added
and the tool commercialized under Cilk++[29, 30, 31]. Afterwards, it was bought by Intel, inte-
grated into the Intel C/C++ Compiler (ICC) and renamed to Cilk Plus. Cilk has keywords written
ahead of function declarations to identify them as parallel procedures. Threads of this function are
spawned with the spawn keyword ahead of the function call. After running the threads, the user
has to explicitly declare barriers to collect the results from those threads. An interesting concept
was introduced by being able to create successor threads with the spawn_next keyword which indi-
cates the usage as a processing pipeline. After only removing the keywords, the application would
be sequential again, which makes Cilk a minor language extension. Cilk++ added functionality to
parallelize loops without loop-carried dependencies (a loop iteration doesn’t depend on a previous
iteration). Reducer hyperobjects were introduced to allow efficient collection of results with reduc-
ers. To run Cilk programs, the Cilk runtime library is necessary. This library launches threads, cares
for communication and also implements a work-stealing scheduler to dynamically schedule tasks.
Cilk was originally developed for shared-memory HPC systems like Connection Machine CM-5, but
due to the low demands on the runtime library it could conceivably be applied in the embedded
domain.

StreamIt[69] is a successor of Cilk, developed in 2001 at MIT as a DSL instead of a language extension.
The focus of StreamIt, like the name says, lies more in parallelizing streaming applications and
achieving speedups through generating processing pipelines, as they are already hinted in Cilk++.
In StreamIt, a program consists of multiple data transformation functions called filters. All filters
have input and output channels to connect to other filters. Multiple filters are grouped to form a
processing pipeline and parallelization through splitting and joining data or feedback loops. The
split and join mechanism can be configured to distribute data streams in a round-robin fashion
one after another or to make a broadcast to all split filters. The filters are statically mapped each
to single processors at compile-time and run on bare-metal without an OS or a runtime. Cell
and the RAW[75], both shared-distributed memory systems, were used as target architectures.
These processors are rather high-performance architectures if they are counted into the embedded
domain at all. The main weakness of this approach is the possibility of deadlock, due to feedback
loops. A deadlock detector exists but the user has to manually resolve them. The user can generate
systems resulting in no speedup due to the feedback loops.

SL[64, 65, 66] is a C language extension created at University of Amsterdam in 2012. The language fo-
cuses on parallelizing whole functions as concurrent threads. The implemented constructs include

31

thread definitions similar to C function declarations. The shared data (so called communication
channels) is also declared in the thread definition. Each access to shared data has to be performed
over SL getter- and setter-functions. New threads of the previously defined tasks can be launched
via SL thread-creation functions. The thread-creation function has the means to define the number
of created threads, how threads are distributed to hardware resources and how threads should be-
have upon resource exhaustion or sharing. As target architecture, a custom multi-core architecture
called Microgrid is used. Implementations based on Pthreads also exist, thus targeting a variety of
architectures. Plans for using UTLEON3 as target architecture also exist. The implemented archi-
tectures point towards a usability in high to mid performance embedded environments. However,
example SL applications require many language extensions, making it look more like a DSL with
the implied effort for porting legacy applications.

2.3.3 APIs/Libraries

POSIX Threads (Pthreads)[59] is one of the earliest and up to today one of the most widely used APIs
for multi threading C-programs. Implementations exist for nearly all desktop and many embedded
operating systems and many other parallelizers make use of this library internally. The paralleliza-
tion works by referencing single C-functions in the task API which will then launch the function in
an extra thread. The API however covers thread management at a very low level. The user creates
and joins threads through calls of according API functions. The user has interfaces for creating
semaphores, mutexes and synchronization mechanisms with barriers and read/write locks. This
means that the user manually takes care of data communication. The fact that an OS is required
for dynamical task scheduling limits the applicability to mid- to high-performance embedded en-
vironments. The major drawbacks of Pthreads are the high user effort to manage threads on a
relatively low level and the high performance demands.

OpenCL[48] is a popular C API initially developed in 2009 to make GPU computing power available to
non graphical applications. The API was later also used for hardware accelerators. The nature
of the API however mostly considers one central processor running the main program and then
offloading application parts via OpenCL to accelerators or co-processors. The accelerator-kernel
creation is similar to thread creation in pthreads, but the communication is rather complicated.
This is due to different memories (host, local, private constant, global) which have to be differen-
tiated and addressed. Special focus on efficient host and accelerator memory transfers has been
laid to achieve good speedups resulting in many specific API functions. The API has already been
successfully used in embedded systems [76], however mostly in combination with embedded GPUs
and not in a homogeneous multi-core environment. Also, implementations targeting FPGAs have
been presented [77].

Multicore Task Management API (MTAPI)[78, 46] is an API developed by the Multicore Association in
2013. The main target of MTAPI was to provide task management (runtime scheduling or task
mapping) and synchronization on bare-metal as well as support for homo- and heterogeneous
multi-core architectures. At the same time, it aims to focus more on embedded needs, compared
to current APIs like TBB, Pthreads or Cilk. MTAPI was designed in conjunction with Multicore
Resource Management API (MRAPI)28 and Multicore Communications API (MCAPI)29-APIs for
embedded resource management and communication. Task creation and launching is very sim-
ilar to Pthreads. Compared to Pthreads, a task can be implemented through multiple environments
(for example one software implementation and one via a hardware accelerator). All task im-
plementations are announced to the runtime library, which chooses where the threads will be
launched. However, the scheduling can also be chosen through the implementation with different

28 https://www.multicore-association.org/workgroup/mrapi.php
29 https://www.multicore-association.org/workgroup/mcapi.php

32

https://www.multicore-association.org/workgroup/mrapi.php
https://www.multicore-association.org/workgroup/mcapi.php

schedulers or even static mapping. In conjunction with MRAPI and MCAPI, a consistent and em-
bedded adapted environment is presented, which however lacks in broadly available bare-metal
implementations. Implementations exist for example for the Freescale QorIQ family or NVIDIA
Tegra K1, both shared-memory high performance embedded multi-cores. The API has to be ported
to each new architecture with respect to the available hardware. Considering user-friendliness,
MTAPI suffers just like Pthreads from a relatively low level task management interface with a
moderate to high user effort for porting existing applications.

Embedded Multicore Building Blocks (EMB²)[36] is an open-source library that builds on top of MTAPI.
The library provides parallel implementations of loops, reduction and sorting. The user gives the
EMB² interface a data range to operate on and a function reference containing the desired loop
iteration, or reduction method. EMB² allows parallelization, given that the library provides the
needed building blocks. To the user, this comes at the cost of substituting function calls or code
parts with calls to the existing library. However, vast code restructuring to fit the library is likely.
The benefit of using MTAPI as interface makes programs easily portable to new architectures, given
MTAPI support.

parMERASA[57, 58] was developed in an EC project in 2016. The focus of this project was a timing-
analyzable parallelizer for hard real-time, embedded systems. The focus lay on parallelization and
giving timing grantees in combination with a timing predictable multi-core processor. parMERASA
defines four different design patterns for different kinds of parallelism: Data parallelism, pipeline
parallelism, task parallelism, and periodic task parallelism. The design patterns are abstract de-
scriptions of best practice solutions to parallelize the provided kind of parallelism. The user has to
restructure the legacy C-program to fit the design patterns. Afterwards, the patterns are recognized
and the whole application is transferred into an Activity and Pattern Diagram (APD). In the APD,
parallelism is extracted and in a second step mapped to the target hardware. The tool also allows
the construction of processing pipelines through processors as well as concurrent parallelism. At
the end, the tool provides parallel C-code generated through algorithmic skeletons, for each design
pattern. The algorithmic skeletons thus have to be adjusted for each target architecture. How-
ever, since the algorithmic skeletons are well-defined and understood, a worst-case execution time
(WCET) analysis can be applied. Concerning user effort, the software has to be (re)structured to
match the design patterns in order to enable parallelization. The authors already claim that this
process should be carried out by a software developer who knows the application well. The actual
effort depends on the supported design patterns and how much the code differs from the patterns.
The achieved speedup of the application is moderate, considered with respect to the WCET, which
mostly does not represent the common case. Also, the main drawback of the target architecture
(also called parMERASA) is the (partly) common data memory which might also be the main cause
of high WCETs. Applying this approach without the aspect of hard real-time systems might yield
significantly better parallelization speedups.

2.3.4 Annotations

OpenMP[49] is an annotation based parallelization approach started in 1997. It is inspired by paral-
lelization features of Cilk. Until today, it is still under active development and thus extended over
the years. Today, OpenMP is a widespread standard integrated in most compilers for multi-core sys-
tems, but mainly for shared-memory systems. It can also be used for distributed-memory systems
[79, 80] where often MPI is used for inter-core communication. Also, recent efforts aim to support
embedded systems [81, 82]. The concept of OpenMP is to write annotations before source-code
parts to be parallelized. Different annotations can be made on statements, functions and loops.
The variety of annotations makes OpenMP widely applicable. However, the entry barrier is high
due to the annotation possibilities. Another drawback is the necessity of manual data handling and

33

synchronization. The user must state which data should be shared or kept private in the parallel
regions. Synchronization is necessary to handle race conditions or the execution order. To sum
up, OpenMP is a widely used parallelization standard which was intended to be simple due to
annotations. However, its development over the years made it the ultimate but also complex par-
allelization tool. The applicability to embedded systems was mainly explored with shared-memory
systems. However, the achieved speedup for a image registration algorithm [82] and a beam-
forming algorithm [81] showed a significant speedup degradation for parallelizations with more
than 5 cores. Huang et al. [81] blames the breakdown on the lower memory performance and
thereby high synchronization overhead compared to desktop computers.

CellSs [28] has a similar concept to OpenMP and was especially designed to run on the Cell Broadband
Engine (Cell B.E.). In the year 2006, where OpenMP mainly addressed parallelizing loops, CellSs
provided an alternative by parallelizing whole functions. Functions to be parallelized are manually
annotated together with the in- and output variables. The concept is that the main function runs
on the PowerPC processor element (PPE) and annotated tasks are transferred into a task graph
and mapped and executed on the SPEs through the underlying runtime. The availability of only
one kind of pragma makes the concept very easily applicable. Only the manual search for in- and
output variables is cumbersome and error prone. It is also questionable if Cell B.E. still falls into
the domain of embedded. The focus on a relatively exotic processor architecture also avoids a
broad applicability of the concept. CellSs was continued by CellSs2[83] for SMP high performance
desktop environments. Later on, the concept was renamed to StarSs with CellSs or GPUSs being
specific architecture implementations.

Directive-Based MPI Code Generator (DMCG)[35] is a tool developed in 2008 for parallelizing MPI based
systems. The authors justify their tool since most other tools (like for example OpenMP) only fo-
cused on shared-memory systems. Through the usage of MPI, distributed-memory systems are
mainly targeted. DMCG expects keyword comments before loops without loop-carried dependen-
cies. The loop is then partitioned and statically distributed to all processing cores via MPI. The
necessary data dependencies are in contrast to others automatically recognized and an according
communication interface is added to the generated code. The code can then be compiled to any
MPI based system. From a user perspective, only one comment has to be added, which is easy.
However, the user has to previously analyze if the loop has no loop-carried dependencies. This
might not always be easy and limits the applicability to fewer problems. DMCG can be applied
very well to low performance embedded systems (even though designed for HPC clusters), since
only a lightweight MPI interface is required.

Data driven multithreading C pre-processor (DDMCPP)/TFlux[71, 72] was developed as an alternative to
OpenMP in 2008. The idea is to create a multi-threaded C pre-processor for handling code anno-
tations. Based on the code annotations, parallel C-code is generated, which requires the according
DDM-CMP runtime system and an OS. The user has to identify independent code blocks in the se-
quential C-program to be grouped. Inside these groups, the independent code parts are annotated
as concurrent threads. Each block and thread needs a list of variables received and sent before
and after code part execution. Threads are then launched whenever input-data (variables) are
available to the thread. Looking at simple example programs, the necessary annotations tripled
the size of the code. This represents the complexity and vast restructuring of the code required by
the user. Additionally, the user needs to perform a dependency analysis for all variables. Compared
to OpenMP, synchronization is done automatically. The applicability to embedded is restricted to
high performance embedded, due to OS support. The concept was also only tested for x86, Cell
B.E. processors and their own TFlux architecture.

MPA[45] is another alternative to OpenMP developed in 2009. Compared to OpenMP, MPA cares for
data synchronization automatically. The user writes function and loop references into a separate

34

file, grouping the references by threads to execute them. Loops can also be partitioned and spread
over multiple threads. The different threads are either dynamically scheduled with RTlib through
the OS’s Pthreads lib or statically mapped to processor cores without an OS. The tool also inte-
grates a high-level simulator which can be used to evaluate parallelization approaches. From user
perspective, the tool is easy to handle with a small set of annotations. The only struggle is to dis-
tribute the workloads equally to the available threads and deciding how many threads to be used.
However, with more threads, an equal distribution can become difficult to be done manually. The
tool was also proven to work on an embedded ARM environment.

Acotes[8] is another project developed around 2008 that identified the lack of OpenMP to automatically
synchronize threads and parallelize data-stream oriented applications. Acotes was also influenced
by the easy task synchronization concepts of CellSs, however focusing more on data-streaming
concepts like StreamIT. The user annotates the C-program with task groups building an implicit
barrier and launching tasks and task pragmas holding program parts to execute. The task group
ideally organizes its contained tasks in a processing pipeline. Task sub-commands also allow the
creation of task teams for concurrent task execution. However, in- and output data has to be
explicitly specified for tasks and task groups. The user also needs to specify in which manner
data should be distributed to task teams (array partitioning or everybody gets all). Compared to
OpenMP, possible pragma annotations were reduced, making it more user-friendly. The user still
needs to resolve data dependencies manually and the few available pragmas in turn have many
sub-commands, making it again more complex. On source-code level, the user annotations are
first translated to calls to a custom task management library. Afterwards, library implementations
allow static task mapping and synchronization to different target architectures through a GNU
Compiler Collection (GCC) plugin. Due to its slim interface requirements, Acotes is well suitable for
embedded environments and has also been designed to run on embedded platforms like HiveFlex
ISP2300 and others.

OpenStream[50, 51] evolved out of Acotes in 2013 and integrated data-stream processing concepts of
Acotes as extensions into OpenMP. The user appends the in- and output variables to the OpenMP
task pragma. The variables can further be annotated as data-streams with a fixed window size.
This allows the tasks to operate on data windows without the need to store the full data. As a nice
side effect, the variable annotations made OpenMP’s user annotated task synchronization obsolete
for data-streaming applications. Compared to OpenMP, the user-friendliness is increased for this
application domain. The annotated application is then processed in the same way as OpenMP.
The authors showed a working example with GCC on an x86 desktop computer. The authors also
claim that the proposed programming model of creating a processing pipeline makes it compared
to OpenMP better applicable to distributed-memory and embedded systems. They claim that the
smaller communication overhead can be well implemented through small buffers. This allows a
direct core communication instead of going through a global memory. However, this claim was
never proven in the evaluation.

OmpSs[47] is a project that tried to integrate features of StarSs (former CellSs) into OpenMP. Namely,
these are heterogeneous environments and the thread-pool model. The first aspect extends a tar-
get keyword to the task pragma allowing the execution on FPGAs or GPUs. Instead of fork-join,
the new thread-pool concept takes the burden of thread scheduling from the user. Threads in the
pool are thus triggered through a fulfilled data dependency and a scheduler chooses among all fit-
ting threads. The user-friendliness is thus increased through eliminating manual synchronization.
Also, the field of heterogeneous architectures is opened up to OpenMP through this approach.
However, the focus of OpenMP to shared-memory architectures is rather enforced through the
thread-pool approach requiring a central element with strong communication to all threads from
there. Through the use of a runtime-library designed for desktop and HPC systems, this approach
is only suitable for more powerful embedded systems.

35

2.3.5 Automatic

Stanford University Intermediate Format (SUIF)[67, 68] is maybe the first Fortran/C automatic loop par-
allelizer, initiated in 1994. SUIF consists of several (loop transformation) passes that increase
data locality and analyze data dependencies, which is useful for parallelization. On the one
hand, SUIF is able to recognize performed reduction pattern on arrays like sum, product, min-
imum and maximum calculation and replaces them with parallel representations. On the other
hand, parallelizable loops are identified based on array-region access patterns. As target platform,
shared-memory platforms like x86 and ALPHA are targeted. The compiler is able to either directly
transform the program to assembler of the target architecture or convert it back to source-code
with instrumented calls to a (not further specified) thread management library. The parallelization
is very easily applicable as a user, even though evaluation in [67] shows applicability at only half
of the tested benchmark programs. SUIF was developed for shared-memory desktop systems and
in general this concept could be applicable to embedded systems.

ICC30 was equipped with automatic loop parallelization around 2011. ICC is able to analyze if loops can
safely be parallelized and automatically parallelizes them. However, parallelization is restricted
to loops without loop carried dependencies, a fixed iteration number, without jumps in and out
of the loop, without pointer aliases and without external function calls. ICC can also write a log,
recording reasons why it failed parallelizing certain loops and which information could be provided
for successful parallelization. The user can then annotate missing information to parallelize loops
anyways. The compiler also categorizes loops based on a (not further specified) cost function that
determines how beneficial parallelization would be. The user can then tune how aggressive or
conservative the cost function should be applied. More loops are parallelized with higher chances
of a slowdown or only loops definitely resulting in a speedup. Thus, the user can very easily
parallelize some kinds of loops and with little user effort also loosen some restrictions. ICC is
applicable on x86 desktop multi-cores and to the few available Intel embedded CPUs. However,
these mostly target the high-performance embedded area. The Intel mid- and low-performance
environments like Intel Galileo and Intel Edison are currently discontinued without successors.

Pluto(+)[54, 55]: Pluto (started 2008) and its tuned successor Pluto+[53] are affine nested loop source-
to-source transformation tools. The key components of Pluto(+) are various C-source transfor-
mations of affine nested loops to allow better parallelization with OpenMP. The corresponding
pragmas are automatically added after the transformation. There also exists a Pluto based tool
[56] targeting distributed-memory systems through automatic insertion and synchronization with
MPI. The results show good speedups that mostly outperform ICC [53]. From the user perspective,
no additional effort is required for parallelization. However, affine nested loops represent only a
subset of scientific problems and applicability is thus limited. Even though the tools are designed
and tested for desktop and HPC environments, they can be applied to embedded through the usage
of OpenMP and MPI.

Daedalus[24, 33, 34] is another tool collection for parallelizing static affine nested loops launched in
2008. Static affine nested loops in C-programs are first transferred to a process network. The
generated process network is then mapped to the target architecture in a design-space exploration
(DSE) process. DSE is done via high level simulation of different hardware combinations. The
hardware properties are provided once for each model component. After the DSE, the custom
MP-SoC can be synthesized on an FPGA. Even though the tool claims to be fully automatic, manual
adaption effort is required [24] and the DSE process took a significant amount of time. However,
the tool can be very well applied to even low performance embedded environments. It was proven
to achieve good speed-ups [33] on MicroBlaze soft-core MP-SoCs and the concept could also be
transferred to non-configurable architectures providing an appropriate description.

36

MAPS[42] is a widely automatic parallelizer developed at RWTH Aachen in 2008. MAPS requires a se-
quential C application and a target platform description. The target description holds information
about execution cost of primitive operations such as multiplication and addition and the commu-
nication cost of the processors depending on the communication volume. As a first step, MAPS
offers the performance profile generation of the sequential C application. This reveals hot spots
and potential candidates for parallelization. MAPS suggests an application partitioning in the next
step, based on the application profile and the source-code. The suggestion can be reviewed and
revised in a Graphical User Interface (GUI). The evaluation showed that manual tuning is neces-
sary to achieve the same speedups as through completely manual parallelization. As a last step,
MAPS annotates tasks in source-code according to the chosen partitioning. In the initial publi-
cation, MAPS was only able to annotate so called TCT[84] tasks. In [43], MAPS is extended to
also emit other programming models such as pthreads or TI OMAP specific code. This opens the
approach to many more architectures. Furthermore, MAPS was extended to support heteroge-
neous environments [44], and the support to parallelize, schedule and map multiple applications
running concurrently on one MP-SoC platform [43]. The implementation already showed good
performance and speedups on different multi-core architectures in the embedded domain. Even
though automatic parallelization is possible with MAPS, manual tuning is required to achieve the
quality of manual parallelizations.

AutoPar[26] was developed in 2010 and it is very similar to Pluto. Compared to Pluto, AutoPar puts
the focus not only on parallelizing static affine nested loops but also on functions through the
OpenMP task directive. Besides this additional functionality, it is able to parallelize (only) object
oriented high-level C++-code. Just like Pluto, AutoPar provides a source-to-source compilation
with OpenMP pragmas and additional compiler passes to prepare the provided code for better
parallelization. The tool is thus able to parallelize a broader range of applications at no user effort.
AutoPar suffers restrictions on embedded environments inflicted through OpenMP. Additionally,
C++ has slightly higher performance and memory requirements compared to pure C.

PIPS [60] is a C/Fortran source-to-source compiler already initiated in 1988. Until today, it is constantly
extended and improved. Besides other source-code transformations, the strong points of PIPS are
a good (inter-procedural) dependency analysis and an array region analysis, predicting the part of
the program where an array element is to be read and written. These two methods are very handy
during program parallelization. Building up on that, PIPS can create a data-dependency graph.
The graph can then be analyzed through a resource aware list scheduling algorithm [62] which
automatically maps the graph to the given hardware. The tool is capable of mapping statements as
well as (partitioned) loops. The statement execution time is statically estimated in PIPS through an
assembler transformation and a lookup table with the associated cycles per operation. PIPS is able
to create OpenMP or MPI annotated source-code output. However, evaluation in [61](2016) shows
that the generation of generic MPI code is in many cases not beneficial without better execution
and communication cost models. To sum up, PIPS parallelizes applications just with the initial one-
time effort of specifying architecture parameters. PIPS can be applied to embedded architectures
due to the use of MPI and OpenMP, even though it has only been tested on desktop platforms.
The use of static estimated execution time is a major flaw since this assumption doesn’t hold for
embedded systems with unpredictable external influences through for example peripherals.

Eldorado[37] is an automatic C parallelizer, especially developed for embedded systems in 2013. El-
dorado internally uses the MPA tool for parallelization and data dependency resolving. Thus,
Eldorado just cares for extracting a certain amount of tasks with an appropriate size and maps
them to a given architecture with respect to communication and task creation overhead. These
constraints are architecture specific and have to be manually fed to the parallelizer. Eldorado tries
to find an optimal solution through integer linear programming approach. However, since it is NP-
hard to solve the problem, especially for larger applications, Eldorado operates on a hierarchical

37

control-flow graph (CFG). This makes it possible to shrink the solution space through the levels
of hierarchy but still allowing finer granularity if needed by descending in the hierarchy. From
the user perspective, this tool is able to parallelize without any manual effort. Eldorado was espe-
cially developed for embedded platforms and tested with different ARM shared-memory embedded
systems. However, this approach has some shortcomings. Firstly, for balancing tasks, an average
execution time per statement is taken. It is puzzling how this method should work for a dynamic
program flow. Secondly, Eldorado neglects peripheral interaction, which is essential for many em-
bedded systems. Thirdly, only loops are subject to parallelization, but an embedded application
consists of more than just loops.

2.3.6 Summary

Reviewing the approaches and tools brought up in the past decades, different characteristics and short-
comings become obvious:

• The effort of task creation and the communication overhead is often neglected. However, it is
an important factor if the parallelized solution yields speedups or not. For embedded environ-
ments, this overhead becomes easily dominant due to the low performance compared to a HPC
environment.

• Many tools try to extract as much parallelism as possible out of the application and map it to all
available processor cores. Not seldom, this even results in a constant speedup with more resource
usage or even a slowdown. This point is thus also related with neglecting architecture character-
istics. For targeting embedded environments, specifying a desired/necessary speedup could be a
solution for this problem.

• Many tools extract data- and task-parallelism. However, pipeline-parallelism is rarely extracted.
Pipeline-parallelism increases throughput at the cost of latency. This is not usable in all applications
but especially embedded environments with repetitive tasks are likely to benefit as long as no real
time requirements exist or can still be met.

• Most solutions try to map tasks to a fixed hardware architecture. The flexibility of a configurable
environment which adapts to the software as provided through soft-cores on FPGAs is barely lever-
aged.

• Many automatic parallelization solutions use rather inaccurate runtime approximations instead of
measurements through profiling to judge complexity of software parts. Particularly embedded envi-
ronments with peripheral interaction can barely be accurately approximated without user specified
bounds.

• Most solutions target shared-memory architectures, since they are still dominant nowadays.
Shared-distributed- or distributed-memory architectures however tend to scale better with more
processors due to the bottleneck of shared memory. Also, shared-memory architectures yield in
a high WCET due to the required but very pessimistic global memory access times [58]. Thus,
multi-core real-time applications on shared-memory architectures are hard to verify or show low
WCET speedups.

• Automatic parallelism extraction is often bound to data-parallelism in loops. Extracting loop-
parallelism is very promising but for a wholesome parallelization also other parallelization pos-
sibilities should be considered.

• Many approaches target the HPC environment and use an OS with dynamic task-scheduling. These
prerequisites can be taken as granted in the HPC domain, but in embedded environments dynamic

38

task-scheduling puts a big burden on the restricted processing power. Also, the flexibility of dy-
namic task-execution is not always needed for rather static and predictable embedded applications.

• All reviewed parallelization approaches are unaware of peripherals in multi-core environments.
Problems like mapping tasks to specific processor cores with peripheral interaction or handling
parallel access to one peripheral have to be tackled especially for embedded environments.

39

3 Target Platforms

As target platforms, soft-core SoCs are chosen to have a configurable hardware environment, adaptable
to the needs of the parallelized software. As specific implementations SpartanMC and MicroBlaze are
selected. SpartanMC is chosen since it is a project at our lab with good tool support and it can freely be
changed to the requirements the software might have. MicroBlaze is chosen since it is a very popular
soft-core offering multi-core and good toolkit support.

3.1 SpartanMC

SpartanMC[22] is a soft-core SoC with a data and instruction width of 18 bit. Modern FPGA’s memory
and arithmetic blocks are also 18 bit wide and thus the processor makes ideal use of the available
resources.

SpartanMC’s development was started at Professur Mikrorechner, TU Dresden and was later continued
at Computer Systems Group, TU Darmstadt. The SpartanMC environment is completely open-source and
downloadable from the SpartanMC website31.

The SoC is continuously improved, extended and already has a broad variety of peripherals and sup-
ported FPGAs. Besides the processor and peripherals, the SoC Kit also contains an adapted GCC, Binutils
and GDB implementation as well as a graphical system builder and a simulator. Each SoC can thus
be specifically tailored to match the application to be realized. The SoC’s peripherals are attached via
memory mapped IO. The SoC also supports a pseudo DMA variant. DMA peripherals don’t have control
over the full address range, but get assigned a fraction of the address-space. To be more accurate, the
processor and the DMA peripheral share one dual-ported Block RAM (BRAM), which is mapped into the
processors address-space on one port and the other port is controlled through the peripheral. This allows
both parties the access the same memory region, however simultaneous access to the same address has
to be resolved.

In SpartanMC multi-core environments, each core has its own code- and data-memory, while the latter
has been extended in this work to be also partly shared (see Section 3.1.1.6). Peripherals are attached
to a core via memory-mapped I/O and only the specific core can access the peripheral.

As interconnects, only 1-to-1 interconnects called Core-Connectors were available at the start of this
work. Within the process of creating well performing core-interconnect, existing hard and software was
tuned for highest possible performance and new specialized interconnects were designed.

3.1.1 Inter-Core Communication

For a simple 1-to-1 communication the Core-Connector can be used as a sending and receiving peripheral
on two cores. It is a lightweight peripheral and can also be deployed for arbitrary core communication
patterns. For a 1-to-N and N-to-1 communication a dispatcher and a concentrator peripheral is available.
These peripherals make it easy to distribute data from one to many cores and collect data from multiple
cores. The 1-to-N and N-to-1 communication pattern can also be realized with 1-to-1 interconnects,
having the disadvantage of a higher hardware usage and more complex arbitration through software.
Last but not least, a common global data-memory is available. Each core allocates a part of its available
address range for global data. This makes core communication very easy, but with the disadvantage
of handling concurrent global data accesses. The consistency of the data has to be guaranteed and
simultaneous accesses might lead to processor stalls if the global memory is busy serving data to another
core.
31 www.spartanmc.de

40

www.spartanmc.de

In the following, each communication paradigm is only briefly described since this is not the main
scope of the thesis. The detailed hardware and software implementation as well as hardware usage and
performance comparison can be found in [85] for the Core-Connector, Dispatcher and Concentrator and
in [86] for the global memory.

3.1.1.1 Core-Connector

The Core-Connector consists of a FIFO-buffer for unidirectional communication. A simplified hardware
schematic can be seen in Figure 3.1. The Core-Connector master, which is the sending module, has three
registers for data exchange with the processor:

Status: Signals if the FIFO has enough free entries, as demanded by the "Message Size" register.

Message Size: Specifies the number of consecutive data words to be written into the FIFO.

Data: The data to be delivered to the receiving core.

The Core-Connector slave can read data from the FIFO. Similar to the Core-Connector master, it has
three registers:

Status: Signals if the FIFO has enough used/data entries, as demanded by the "Message Size" register.

Message Size: Specifies the amount of consecutive data words that are desired to be read from the FIFO.

Data: Contains the FIFO’s head element.

Message Size

Data

Status

Registers

fill

din dout

FIFO

<=

Core Connector Master Core Connector Slave

Message Size

Data

Status

Registers

>=

C
o

re
 0

 D
a

ta
-B

u
s

C
o

re
 1

 D
a

ta
-B

u
s

Figure 3.1: Core-Connector simplified schematic hardware design

The advantage of having a message-size register is that data can be transmitted in bursts with "Duffs
Device"32 copy algorithm. Instead of checking the "Status" register for available data or free entries after
each received or sent value, the available buffer space is checked once and multiple data is then read
or written to/from the FIFO consecutively without intermediate checks. The data transfer is realized
through multiple consecutive load and store word commands with increasing immediate offsets. The
maximum burst-size is 16 for SpartanMC, since the immediate offset in SpartanMC’s load and store
command is four bit wide. For messages bigger than 16, the message is partitioned into multiple chunks,
transmitting bursts of at most 16 words. This method allows a transmission rate of nearly two cycles per
word [87], which is ideal for memory mapped IO peripherals. Jacob[85] shows that the ideal FIFO size
is twice the maximum burst size for large messages, given that the receiver is idle waiting for messages.
This allows the sender transmit a new burst while the previous burst is read. If the FIFO’s fill state is
unknown the sender has to wait until the FIFO is emptied for writing the next burst or write words one
by one, which is very slow. Larger buffer sizes only avoid blocking of the sender, if the receiver is not
ready.

32 https://www.lysator.liu.se/c/duffs-device.html

41

Message Size

Data

Status

Registers

Slave ID

fill

din dout

FIFO

<=

Dispatcher Master Dispatcher Slave 0

Message Size

Data

Status

Registers

Dispatcher Slave 1

...

used_entries

read

C
o

re
 0

 D
a

ta
-B

u
s

C
o

re
 1

 D
a

ta
-B

u
s

free_entries used_entries
read

free_entries

Figure 3.2: Dispatcher simplified schematic hardware design

The total size of the transmitted message cannot be read from the "Message Size" registers, and thus has
to be a priori known or dynamically transmitted by a first informative transmission.

3.1.1.2 Dispatcher

The idea of the Dispatcher is that the subsystem containing the Dispatcher master generates work pack-
ages. The work packages are distributed to several connected subsystems. These receive work packages
and process them in parallel. Thus, the Dispatcher generates a one-to-many topology. A simplified
schematic is shown in Figure 3.2. The Dispatcher master interacts with the processor in almost the
same fashion as the Core-Connector. The only exception is that the user specifies the receiver’s slave-
ID explicitly. Depending on the current slave-ID, only the selected slave sees the FIFO’s used and free
entries, while the master propagates an empty FIFO to all other slaves. Through this procedure, the
Core-Connector slave can be reused for receiving.

3.1.1.3 Concentrator

The Concentrator is the inverse of the Dispatcher module. It collects processed work packages from
several slaves, thus models a many-to-one connection. A simplified schematic is shown in Figure 3.3.

The Concentrator slave signals through the "Data Available" register that it wants to transmit data and
waits for the "Status" register to signal that the master module is ready to listen. Afterwards, it can
write its data through the "Data" register into the masters FIFO. Data sent to the master is preceded by a
header, generated by the hardware, holding the message size and the slave ID to differentiate multiple
messages in the FIFO from different slaves.

Arbitration can either happen through selecting the slave-ID via the "SW Arbiter" register or through a
hardware round-robin arbiter. After a slave is arbitrated, receiving the message proceeds in the same
way as with the Dispatcher or Core-Connector. The "Peek Data" register preserves the FIFO head entry
e.g. the message size if it needs to be read several times like in non-blocking receives.

42

fill

din dout

FIFO

Concentrator Master

Message Size

Data

Status

Registers

Peek Data

SW Arbiter

C
o

re
 1

 D
a

ta
-B

u
s

Concentrator Slave 0

C
o

re
 0

 D
a

ta
-B

u
s

Message Size

Data

Status

Registers

Data Available

send

msg size
send

data avail

Arbiter
grantConcentrator Slave 1

...

Figure 3.3: Concentrator simplified schematic hardware design

3.1.1.4 MemSwap Dual

The MemSwap Dual variant is an alternative of the FIFO-based Core-Connector to eliminate two disad-
vantages of the latter:

1. The maximum transmission speed is limited to two cycles per word.

2. The processor is used for data transmission to copy from local memory to the peripheral register.

The DMA based MemSwap module eliminates these disadvantages through a DMA memory section
between the core and the peripheral. The MemSwap module, shown in Figure 3.4, holds two BRAMs of
arbitrary size. Each BRAM is either assigned to the master or the slave module and should have enough
capacity to store the largest possible message. The data to be transmitted is directly written into the
peripherals DMA region. For data transmission, the assignment of the BRAM is simply swapped, which
allows duplex communication. For two communication partners this can be done efficiently with the
dual ported BRAM primitives. Each BRAM has two equivalent access ports (A&B) with an enabling port
which lets the BRAM ignore inputs and set outputs to zero. Outputs of both BRAMs are combined with
or-gates and resemble the DMA-Bus. Switching between BRAMs is initiated through the status register.
If the master and slave module both set the status register, the enabling port is inverted on all BRAM
ports, and thus the other BRAM becomes available through the DMA-Bus. A bit in the status register
indicates to the processor that the swap was performed and new data is available.

This technique avoids memory transfers between the processors main-memory and registers. The trans-
mission or respectively the switching between memories is a one cycle operation. Also, the processor
is able to perform other tasks while waiting for the memory swap. Nevertheless, it should be noted
that communication with a third partner requires memory copy operations through the processor, since
SpartanMC DMA peripherals don’t control the full address space.

3.1.1.5 MemSwap Multi

MemSwap Multi is an extension to the MemSwap Dual module, to support dispatcher and concentra-
tor features. Since the Dispatcher and Concentrator module have the same drawbacks as the Core-
Connector, this module eliminates those. A simplified hardware model is shown in Figure 3.5.

Compared to the MemSwap Dual module, the internal memory configuration is very similar. Each addi-
tional connection to the master module results in an additional BRAM pair, functioning the same way as
the two BRAMs in the MemSwap Dual module. For the master module, an additional arbiter is used to
switch between memory pairs and thereby control the current communication partner. The arbitration

43

Status

Registers BRAM 1

A B
Port

en en

A B
Port

en en

BRAM 2

Switch

MemSwap Master

DMA Bus DMA Bus

MemSwap Slave

Status

Registers
C

o
re

 0
 D

a
ta

-B
u

s

C
o

re
 1

 D
a

ta
-B

u
s

& &

Figure 3.4: MemSwap Dual simplified schematic hardware design

can either be configured as hardware round-robin arbitration, switching partners after successful mem-
ory swap or explicitly via software through the status register. Through the bidirectional communication,
this module can be used as dispatcher and concentrator.

This module has, compared to the MemSwap Dual module, an even higher demand for BRAMs. Each
communication partner requires two BRAM pairs, while the master module can only write into one
BRAM pair at a time. Alternatively, one could reduce the amount of BRAMs to only one BRAM per slave
and one for the master module, as shown in Figure 3.6. However, this would require a crossbar switch
for all salves, since each slave needs access to any BRAM that the master can write to. Crossbars are
relatively complex to realize and thus have a high hardware cost on an FPGA. Thus, it was decided to
dismiss this variant even though it would save BRAMs.

Status

Registers

A B
Mem

BRAM
Pair

MemSwap Multi Master

DMA Bus Arbiter
DMA Bus

MemSwap Slave 0

Status

Registers

C
o

re
 0

 D
a

ta
-B

u
s

C
o

re
 1

 D
a

ta
-B

u
s

A B
Mem

BRAM
Pair

MemSwap Slave 1

...

...

Figure 3.5: MemSwap Multi simplified schematic hardware design

3.1.1.6 Shared Memory

Herber[86] developed a shared-memory module. Just like DMA peripherals the shared memory uses a
part of the processor’s data section/address space. Typically, each processor also has local memory which
holds the code-section and parts of the data-section. The shared memory is initializable. Each processor’s
memory-bus is connected to the shared memory, where an arbiter controls simultaneous accesses. Each
core is optionally equipped with a one word read cache to overcome the potential BRAM bottleneck. The
arbiter is implemented as a work conserving round-robin arbiter.

On the software side the processor was equipped with atomic instructions to allow the safe usage of
mutexes and semaphores.

44

Status

Registers

A B
Mem
BRAM

Alternative MemSwap Multi Master

DMA Bus Arbiter
C

o
re

 0
 D

a
ta

-B
u

s

...

...

Slave 1

Slave 0
A B

Mem
BRAM

A B
Mem
BRAM

Crossbar

Figure 3.6: Alternative approach for MemSwap Multi with fewer BRAMs

BRAM

Cache

Arbiter

...

Shared Memory

Core 0

Local

Mem

Core 0

Local

Mem ...

Figure 3.7: Shared Memory simplified schematic hardware design

3.1.2 Performance-Counter

When parallelizing applications, one needs to know the execution time of the different application parts
and which parts of the application benefits from parallelization. An easy method is to use timers/coun-
ters on microcontrollers. This is not preferable: Firstly, especially on SpartanMC soft-core SoCs this
changes the critical path and thereby the maximum frequency. Secondly, the timer control through the
driver adds a variable time overhead through varying compiler optimizations which might distort the re-
sults. Performance-counters directly integrated into the processor core impose a better alternative. The
implemented performance-counter [88] is custom configurable to keep hardware overhead low. To get
cycle accurate measurements, the performance-counters can be started and stopped via dedicated pro-
cessor instructions. Through calling the performance-counter via inline assembler, the added overhead
is static and can be measured and thus automatically be corrected.

45

3.2 MicroBlaze

MicroBlaze is a 32 bit RISC soft-core SoC developed by Xilinx. It has a widely configurable architecture
which allows it to set foot in different domains such as microcontrollers, real-time processors and ap-
plication processors running Linux. The processor has for example configurable pipeline stages, caches,
interrupts, hardware multiplier/divider, memory management unit, floating-point and others. Selecting
from these options results in a different application performance and hardware resource usage. For this
work, the MicroBlaze is used in "performance"-mode without additional options. The newest MicroBlaze
version uses Xilinx Vivado as a system-builder. MicroBlaze uses the AXI-Interface for attaching extra
components like peripherals to the processor. This abstraction makes it easy to add peripherals and keep
the processor core at high clock rates. However, the common AXI bus also decreases the possible per-
formance especially in terms of latency. The generated hardware system can be exported to an adapted
Eclipse integrated development environment (IDE) to write the SoC’s application. The IDE will use the
GCC as cross-compiler and also has means to debug the application directly in the IDE.

Microblaze multi-core systems can out of the box only be configured as distributed-memory systems. A
shared-memory module has also been developed, that can be accessed via AXI from different cores.

The MicroBlaze has also been integrated into SpartanMC’s system-builder jConfig. The generation of a
multi-core system is possible in jConfig and as well as in Vivado and jConfig also exports a preconfigured
Vivado project "Block Design". Compared to Vivado, jConfig allows system generation on a higher ab-
straction level. Systems in Vivado are described as a schematic where different interfaces are connected
with wires. This method is well suited for designing arbitrary circuits, but shows especially for multi
core systems too much detail. Thus, the user might quickly loose the overview with that many cores,
peripherals, interconnects and wires. jConfig is designed for multi-core SoC generation and systems are
managed hierarchically in a tree structure. Details are only shown when collapsing a certain branch of
the tree. Besides the better structure, jConfig is also able to import an abstract hardware description,
automate most configuration and wiring.

3.2.1 Inter-Core Communication

Just like SpartanMC’s core-connector, MicroBlaze has an off-the-shelf inter-core communication periph-
eral called Mailbox. To be able to share data among multiple processors, a global memory is designed via
an AXI-BRAM-controller. For MicroBlaze, there is no direct equivalent to the SpartanMC Dispatcher and
Concentrator peripherals. These communication infrastructures are modeled through multiple Mailboxes
with software instead of hardware arbitration.

3.2.1.1 Mailbox

The MicroBlaze Mailbox is a FIFO-based communication peripheral. In contrast to the SpartanMC Core-
Connector, the Mailbox can only be used as bidirectional communication infrastructure. As it can be
seen in Figure 3.8, the Mailbox has AXI4 interfaces for two processors and each interface has its own
FIFO-buffer with configurable depth. The Mailbox in AXI4-Lite mode has registers for reading and
writing data. The Mailbox in AXI4-Stream mode interfaces the FIFO directly through special processor
instructions and has a significantly higher throughput due to the stream interface. Thus, for the intended
use case the AXI-Stream interface should be used.

The default Xilinx Mailbox drivers are optimized for comprehensiveness and robustness in terms of
faulty user inputs. Since the target is to interface the Mailbox software through generated code and fast
inter-core communication is a critical issue, throughput and latency should be favored over the drivers
robustness and comprehensiveness. In this context a custom Mailbox driver was implemented to achieve
a lower latency and a better throughput especially for large data.

46

fill

din dout

FIFO

Mailbox

A
X

I4
-S

tr
e

a
m

 C
o

re
0

A
X

I4
-S

tr
e

a
m

 C
o

re
1

fill

dindout

FIFO

Figure 3.8: MicroBlaze Mailbox AXI-Stream simplified schematic hardware design

3.2.1.2 Shared Memory

Schladt[89] presents a shared-memory module for MicroBlaze. As shown in Figure 3.9, several pro-
cessors can be attached to the module via AXI-Full interfaces attached to an AXI-Interconnect module.
The memory is realized through BRAMs and interfaced through an AXI-BRAM-Controller. All elements
of the shared memory are available in the Xilinx Vivado IP Integrator as building blocks that just need
to be configured and wired. With increasing number of connected processors and requests, the shared
memory can easily become a bottleneck. Thus, the memory accesses have to be implemented as effi-
ciently as possible. Schladt[89] (Section 3.1.3) compares the different MicroBlaze peripheral interfaces:
AXI-DP, AXI-DC and LMB in their applicability for a shared memory. The outcome is that the LMB bus
is only connectable to one processor and must always respond in one clock cycle and thus cannot be
used. The MicroBlaze is only capable of using data caches with the AXI-DC bus, which might relax the
shared BRAM bottleneck depending on the access patterns. The throughput and latency for the AXI-DC
bus supporting bursts is also better for a consecutive access pattern, however this can be different for
other access patterns.

Microblaze Shared Memory

AXI4-Full Core0

AXI4-Full Core1

AXI4-Full Core2

AXI4-Full CoreN

...

AXI

Interconnect
BRAM

Controller
BRAM

AXI

Figure 3.9: MicroBlaze shared memory simplified schematic hardware design

3.2.2 Timer - Performance Counter

The usage of MicroBlaze performance-counters has vastly been investigated by Schild[90]. MicroBlaze
can be configured with the extended Debug option and an additional MicroBlaze Debug Module (MDM)
allows the usage of event and performance-counters. This method works only for single-core systems
since only one MDM is allowed for the whole system. Multiple processors can be attached to one MDM
but only one processor can start and stop measurements. However, for an independent performance
evaluation of multi-core systems each core would need to start and stop performance measurements
independently, from within the application.

47

Therefore, a simple timer peripheral IP-core is used for performance evaluation, even though it is not an
ideal choice. The timer can be started, stopped and read via an AXI-interface. The advantage of using a
timer also resides in a significantly smaller hardware footprint.

3.3 Inter-Core Communication performance evaluation

Synthetic benchmarks are applied to get an idea of the different inter-core communication performance.
With these results, an ideally fitting communication infrastructure can be chosen for a parallelized real
world application and an estimate of the later overall system performance can be given.

3.3.1 1-to-1 Communication

To measure the performance of the SpartanMC Core-Connector, SpartanMC MemSwap Dual and Mi-
croBlaze Mailbox, arrays of ascending size are transmitted. The next transmission is only started when
the previous transfer completely finished (FIFO buffer is empty). The time measurement is done via
general purpose input/output (GPIO) ports. Every time send/receive is started/finished, a GPIO port is
set high/low. A logger module writes the current simulation time in a text file on transition change of
an attached GPIO port. This method allows the measurement of the throughput as well as the latency
from writing the first value to reading the first value, which would not be possible with a performance-
counter since it is restricted to events on one processor. Figure 3.10 shows the send duration for different
numbers of words. The measurement is started and stopped when the sending function is entered or
left, respectively. The duration for sending and receiving are only marginally different for all peripherals
and thus receiving is not shown here. The MemSwap module has a constant transmission time since
only BRAM ports have to be switched and the 9 cycles are mainly calling the driver function. The core-
connector has an initial effort for calling the driver of 45 cycles and it transmits new values each two
cycles. After each burst of 16 words, a buffer space check is initiated which adds some overhead. If
the buffer is large enough for the whole message, fewer checks have to be applied, which explains the
gap at 32 words (the configured FIFO size). The Mailbox has an initial overhead of 76 cycles and each
additional value takes on average 4.5 cycles to transmit. The Mailbox driver is tuned to be similar to
the Core-Connector driver which results in a higher throughput. Concluding, the Mailbox performance
is slightly worse than the Core-Connector. On the one hand this is caused by the AXI-Bus and on the
other hand the lack of the Mailbox’s FIFO fill count through the stream interface prohibits better per-
formance. The fill count is required to achieve high throughput with the driver algorithm described in
Section 3.1.1.1. Nevertheless, it should be noted that the Mailbox transmits 32 bit wide words, while
SpartanMC is limited to 18 bit. This gives the Mailbox a transmission rate of 6.3 bit/cycle for transmitting
128 words, while the Core-Connector reaches 6 bit/cycle.

The latency of the different interconnect peripherals is:

Core-Connector: 34 cycles

Mailbox: 84 cycles

MemSwap: 1 cycle

3.3.2 1-to-N and N-to-1 Communication

Since MicroBlaze doesn’t have dedicated communication peripherals for this communication type, an
equivalent circuit is realized through multiple Mailboxes and software arbitration. Thus, the performance
is equal to the Mailbox measurements in the previous section. As the Concentrator and the Dispatcher
driver and hardware are very similar to the Core-Connector as well as the MemSwap Dual compared
to the MemSwap Multi, throughput and latency measurements are nearly identical. However, when

48

0 10 20 30 40 50 60 70 80 90 100 110 120 130

0

200

400

600

transmitted data words

du
ra

ti
on

(c
lo

ck
cy

cl
es

)

Core-Connector
regression f(x)=45.95+x*2.62
Mailbox
regression f(x)=76.3+x*4.5
MemSwap
regression f(x)=9

Figure 3.10: Transmission duration vs. data size for different 1-to-1 core-interconnects

multiple transmitters (N-to-1) want to communicate with the receiver at the same time, the latency
increases and throughput decreases respectively. In this case the transmitter’s data rate drops equivalent
to the number of transmitters, while the receiver rate remains constant [85].

3.4 Global Memory

To show the performance of the global memory, the throughput for the SpartanMC and MicroBlaze global
memory is measured for a varying number of simultaneous accesses. The throughput is measured with
each attached core reading and writing the same array in the global memory within a loop. Thus, the
generated assembler code mostly consists of load and store commands and covers the worst case for
simultaneous access.

As shown in Figure 3.11a, the total throughput of the global memory slightly increases with additional
cores For SpartanMC. Thus, a single core cannot utilize the maximum bandwidth of the memory. How-
ever, the throughput for each core goes down with every additional competitor. For the MicroBlaze
this looks different, as shown in Figure 3.11b. For each additional core, the total throughput and the
throughput per core goes down. The reason for the low performance has two reasons. One reason is that
the AXI interface works very well for bursts and bursting is not possible for the applied access pattern
and the other reason is that caching also does not work for the pattern. In practice this might look a lot
better and the scenario describes the worst case.

49

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Simultaneous accessing cores

B
yt

es
/c

yc
le

Total throughput global memory
Throughput per core

(a) SpartanMC

2 4 6 8
0

0.2

0.4

0.6

0.8

1

Simultaneous accessing cores

B
yt

es
/c

yc
le

Total throughput global memory
Throughput per core

(b) MicroBlaze

Figure 3.11: Global memory throughput

50

4 Used Multi-Core Architectures and Execution Concepts

Since pipeline parallelism should be extracted from the application, it is very easy and straight forward
to map the extracted pipeline steps to a hardware architecture matching this structure closely. Such a
structure can easily be generated through the use of soft-core SoCs on FPGAs. Three types of multi-core
structures where chosen for the execution: Pipeline, Superscalar pipeline and shared global memory.
The concept to use global memory is not favored in this work due to several reasons. Firstly, a shared
memory is evaluated in the first tests to yield a relatively low maximum clock frequency for designs
with multiple cores. Secondly, shared memory can easily become the bottleneck and performance is
sometimes unpredictable. Thirdly, there already exists a variety of concepts for pipeline parallelism
with shared-memory architectures [6]. In the following the required application structure for pipeline
parallelism extraction is discussed and the theoretical performance of the used processing pipeline types
is elaborated. The formulas have been verified with different pipeline diagrams theoretically and also
measured with benchmark applications in practice.

4.1 Required Application Structure

As already stated, applications require certain characteristic to extract pipeline parallelism successfully[4,
5, 6]. The application should consist of different processing steps, where each step can calculate results
for the next processing step. Later processing steps must not deliver results for a preceding step of the
next iteration. Such a construct is also called loop carried dependency and would create a backwards
dependency in the pipeline with idle waiting of an earlier stage. However, it is possible to have such a
backwards dependency within one processing step.

It could also happen that a single processing step takes quite long but further pipeline stages cannot be
extracted. In such a case replication is beneficial to create superscalar pipeline stages which will increase
throughput.

Global variables are tricky since each pipeline stage contains data of different input data sets. If two
stages read and write to global data, it is not certain that the later pipeline stages write before an earlier
one reads data, as it would occur in the original version. Such cases could be detected and handled,
but they would create undesirable backward dependencies in the pipeline. In a case where an earlier
pipeline stage only writes and never reads a global variable no backwards dependencies exist and the
variable can be propagated through the pipeline. Also, if only single processing steps access a global
variable, it can be privatized to this step.

Different applications from PARSEC benchmark suite[91], CHSTONE[92], MediaBench[93], Dhrys-
tone[94] have been reviewed. It was discovered that necessary structures to extract pipeline parallelism
can be found in several applications, like ADPCM or (M)JPEG2000. However, a lot of applications are
too large for the restricted target architecture’s memory or use floating-point calculation which is also
not featured in all target architectures. Also, if one imagines how embedded applications are structured,
pipeline parallelism can be recognized. The structure is typically: Receive input data from a peripheral,
process input data, output processed data, . . . repeat forever. Even if no parallelism can be extracted
during data processing, input and output often consume a considerable share of total execution time.
Outsourcing input and output to an extra processing core could increase the application’s throughput.

4.2 Pipeline

Figure 4.1 shows a processing pipeline with three stages. For SpartanMC, Core-Connector and MemSwap
and for MicroBlaze the Mailbox can be used to transfer data from one core to another. Table 4.1 shows
the expected performance from a processing pipeline type. T1, T2,. . . represents the different tasks, S/R

51

represents sending and receiving from one core to another and gray boxes indicate idle waiting of the
previous task. Send and receive boxes belong to the sending as well as to the receiving task. Typically,
the transferred application state (message) is larger than the FIFO size in case of FIFO interconnects.
Therefore, the sending task starts to fill the buffer but can only finish sending if the receiving core reads
from the FIFO. For smaller messages than the FIFO and a high sending rate of a task, the sending task
only starts to wait idle when the FIFO is full of multiple transferred application state messages. For
larger messages FIFO fill and empty effects at the beginning and end of a transmission are negligible and
omitted in the following. For MemSwap modules, a transfer is only a multiplexer switch in between the
BRAMs.

1-to-1
interconnect

Core Core
1-to-1

interconnect
Core

Figure 4.1: Pure pipeline, hardware configuration

Table 4.1: Pipeline execution with 1-to-1 interconnects
Ti Processing time task i S/R Communication time Preceding task idle waiting

Time→

Data1 T1 S/R T2 S/R T3

Data2 T1 S/R T2 S/R T3

Data3 T1 S/R T2 S/R T3 ←Initiation interval→

Data4 T1 S/R T2 S/R T3

The throughput of the pipeline can then be calculated with multiple data input sets where task1 receives
the different data sets and hands them through the pipeline. The initiation interval is then the time
between data outputs from the pipeline. Thus, the termination of the last task represents the end of the
data set processing. Without simulation, the initiation interval can be calculated as:

ini t iat ion_interv al =MAX (receiv ei + calculat ioni + sendi)
where:

i ∈ [0, ..., tasks]
receiv ei, calculat ioni, sendi = the receive,calculate and send time

of the indexed pipeline stage.

(1)

In the example, the initiation interval is five time steps defined through task2. The throughput of the
pipeline is calculated as number of data set divided by the initiation interval.

4.2.1 Pipeline Hardware Limitations

Processor pipelines cannot always be applied. Firstly, peripherals are always attached to one core. Cores
can exchange data inputs from peripherals or outputs to peripherals, but cannot access the same periph-
eral interface from multiple cores. Different possible concepts are discussed in [95], to gain exclusive
access to peripherals from multiple cores. However, these concepts would require extensive changes to
the used soft-core SoC’s peripheral implementations. Thus, the easiest and already supported method is
to keep one peripheral attached to one core and communicate the necessary data to that core.

52

4.3 Pipeline with Replication

For replicated stages specialized 1-to-N interconnects peripherals such as Dispatcher or MemSwap Multi
can be chosen or multiple 1-to-1 interconnects with the Mailbox can be used. N-to-1 specialized in-
terconnects are the Concentrator or the MemSwap Multi. Specialized interconnects are hardware opti-
mized and allow communication partner selection directly through software or arbitration in hardware
as round-robin.

1-to-N
interconnect

Core . . . N-to-1
interconnect

Core

Core

Core

Figure 4.2: Replicated pipeline, hardware configuration

The initiation interval calculation for a superscalar pipeline stage as shown in Figure 4.2 is slightly
different. In Table 4.2, task1 starts the execution and can then pass the application state to one replicat-
ed/superscalar pipeline stage. In the example the two replicated stages execute task2. The application
state is then passed to the replicated pipeline stage that is currently free. After transmitting, task 1 can
handle a new data set. However, since task2 takes longer to execute than task1, task1 would have to wait
for task2 to finish in a non-superscalar pipeline. Since another core also executes task2 (more specifically
2.2), the next data-set can be sent to this core.

Table 4.2: Pipeline execution with 1-to-N, N-to-1 interconnects, replicated superscalar pipeline
Time→

Data1 T1 S/R T2.1 S/R T3

Data2 T1 S/R T2.2 S/R T3

Data3 T1 S/R T2.1 S/R T3

Data4 T1 S/R T2.2 S/R T3 ←2xInit. interval→

Data5 T1 S/R T2.1 S/R T3

Data6 T1 S/R T2.2 S/R T3

From the previous equation for calculating the initiation interval, task2 would be the critical pipeline
stage requiring five time steps for receiving, calculation and sending. Through the 2x replication of
task2, data-sets finish alternating every two or three time steps once the pipeline is filled. This means
that the calculated initiation interval of a replicated pipeline stage with the previous formula can be
divided by the replication factor. Meaning that the resulting initiation interval for the example results in
2.5 time steps. This results in the following formula:

ini t iat ion_interv al = MAX (
receiv ei + calculat ioni + sendi

repl icat ion_ f actori
) where: i ∈ [0, ..., tasks] (2)

53

4.3.1 Replicated Pipeline Hardware Limitations

Replication cannot always be applied or it does not always make sense to apply it. The same limitations
concerning peripherals apply as stated in Section 4.2.1. With this limitation it also does not make sense
to replicate the first or the last stage since these typically receive inputs or send outputs via peripherals.

Replicated pipeline stages next to each other is another undesirable construct. Pipeline stages with
different replication factors would require crossbar switches which are quite costly to implement[96].
Replication with the same replication factor could use 1-to-1 interconnects. However, Lorych[97] points
out that such constructs have a higher communication and hardware overhead compared to an equiva-
lently increased replication factor.

4.4 Shared Global Memory

As shown in Figure 4.3 global memory can be attached to any core if desired. However, usage of global
memory is restricted to only read data from the global memory. Writing data to global memory easily
destroys the "clocked" behavior of the pipeline stages, since each pipeline stage operates on a different
data set. Writing to the global memory is possible at the user’s responsibility to resolve conflicts. Since
there are already enough global-memory architectures and the memory often becomes the bottleneck,
global-memory should only be used as last resort. A well applicable scenario for global memory would
be static data that each core reads rarely. Thus, each core would save local memory and the rare accesses
do not overload the shared resource. The performance influence of global memory access can barely be
modeled since it heavily depends on the number of simultaneous accesses which in turn depend on the
application and the generated assembler code. From the assembler code one could find out the number
of accesses, but finding out if they are simultaneous in a static program analysis is barely possible.

1-to-1
interconnect

Core Core
1-to-1

interconnect
Core

global memory

Figure 4.3: Pipeline with global memory, hardware configuration

4.5 Communication Overhead

Using FIFO interconnects, a core has to first fetch data from the inbound interconnect. In the ideal case,
this is a load-store combination per data-word to copy from the FIFO to the core’s local memory. Then
the core can use and modify the received data. The modified data has to be again copied to the outbound
FIFO if a successor core also needs the data.

The advantage of using MemSwap interconnects is that communication (switching BRAMs) happens
within a few cycles. The inbound data is then transparently mapped into the core’s address space. The
outbound interconnect BRAM lies in a different address range than the inbound interconnect BRAM.
Thus, if data is received and also has to be sent to another core, a memory-copy from the inbound to the
outbound interconnect’s address range has to be initiated. In the ideal case, this also requires a load-
store combination per word with the memcpy function. The MemSwap interconnects can thus transfer

54

data very fast, but have a penalty for passing the data to the next core. In the worst case, one memory-
copy is required with MemSwap modules, while FIFO-based interconnects require two memory-copies.
Thus, transferring with MemSwap modules is twice as fast in the worst case.

4.6 Latency

Pipelining increases the throughput at the cost of latency. This section shows the theoretic influences
on the latency of a pipeline. As worst case assumption, one can use the following formula for a filled
pipeline and always available input data:

latenc y = ini t iat ion_interv al × N with: N = total pipeline stages (3)

Thus, the latency of the pipeline is again dictated by the longest pipeline stage duration. In an unbal-
anced pipeline the predecessor of the critical stage has to wait idle until the critical stage can receive
new inputs and the idle waiting propagates through all predecessors. This assumption is too pessimistic
for successors of the critical stage. For better understanding, Table 4.3 shows a pipeline diagram with an
unbalanced five stage pipeline. The initiation interval of the pipeline is four time steps with task3. Thus,
the latency with the worst case formula is 5× 4 t ime steps = 20 t ime steps, but the latency from the
simulation in Table 4.3 is only 13 time steps. What is neglected in the previous formula are firstly, that
send and receive time slots are overlapping and should not be counted twice. Secondly, task4 and task5,
the successors of the critical stage, do not have idle wait slots. The critical pipeline stage already slowed
down the processing rate such that equally long or shorter successor stages do not have problems with
the given processing rate. A better formula is shown in the following:

latenc y =index_ii × ini t iat ion_interv al − (
index_ii
∑

i=1

MAX (sendi−1, receiv ei))

+
N
∑

i=index_ii+1

(calculat ioni +MAX (sendi, receiv ei+1))

with:

index_ii = pipeline stage index of the longest stage

N = total pipeline stages

(4)

All predecessors of the critical pipeline stage are slowed down to the latency of the critical pipeline
stage. Thus, for each preceding stage and the critical stage, the receive time has to be subtracted,
since it is already included in the send time of the predecessor. Wait times of predecessors are thus
automatically included. For all successors, no wait times occur, since they are either shorter or equally
long as the critical stage and thus can easily keep up with the output rate of the critical stage. So, only
the calculation and send time of each successor stage has to added. It can now also be the case that, even
though sending and receiving is overlapping, one is slightly shorter than the other due to buffer states
or different overhead for calling the respective functions. The inaccuracy can be corrected by taking the
maximum of send and receive time.

For a perfectly balanced pipeline, no wait times exist and the previous formula can be simplified to:

latenc y =
N
∑

i=0

(calculat ioni +MAX (sendi, receiv ei+1)) with: N = total pipeline stages (5)

55

The only additional latency overhead is the communication time per core.

Table 4.3: Latency for pipeline execution
Time→

Data1 T1 S/R T2 S/R T3 S/R T4 S/R T5

Data2 T1 S/R T2 S/R T3 S/R T4 S/R T5

Data3 T1 S/R T2 S/R T3 S/R T4 S/R T5

Data4 T1 S/R T2 S/R T3 S/R T4 S/R T5

←−−−−−−−−−−−−−−−−−−−− Latency −−−−−−−−−−−−−−−−−−−−→

56

5 Automatic Parallelization

The automatic parallelization is realized through several µStreams tools. The advantage of multiple
tools with intermediate files is that the user can control and influence intermediate steps since each step
produces valid source-code. Also, the tools are exchangeable for other (future) target platforms.

All µStreams tools use Cetus [98], a C source-to-source compiler, in the background to parse the source-
code to be parallelized into an AST as Java representation. The AST can then be analyzed and modified
through the µStreams tools.

µStreams is the base implementation providing the infrastructure to interact with Cetus, run optimiza-
tion, modification or analysis passes. It also holds a set of passes which provide more general tasks,
like for example program argument parsing. These passes are reusable for µStreams extensions. Pro-
grams like AutoPerf, LoopOptimizer and AutoStreams are implemented as extensions to µStreams. They
widely use the µStreams infrastructure and some passes, but also extend the functionality with their own
compiler passes to fulfill the desired behavior.

The following sections first give an overview of the proposed toolflow and the input and output files.
Afterwards, Cetus’ capabilities and working principle are briefly explained and then the µStreams infras-
tructure to run different transformation passes on top of Cetus is presented. The flowing sections show
the working principle and some implementation details of the µStreams tools.

5.1 Overall toolflow

Note: Parts of this section have already been published in [99]. Self-citations are not marked in order to
improve the reading flow.

The overall toolflow for automatic parallelization is shown in Figure 5.1. The following sections give
a short overview of the tools’ tasks, why they are needed and how the tools interact. More detailed
implementation description is given later on.

5.1.1 AutoPerf: Application Profiling

The legacy sequential source-code is firstly profiled with AutoPerf[100]. This step reveals the bottleneck
of the application and hints beneficial parallelization opportunities. The code is instrumented with
calls to the SoC’s performance-counter or timer. Each C-statement is embraced by a call to start the
performance-counter and afterwards read and reset it. The instrumented source-code and an abstract
hardware configuration is provided as output. The provided design can be synthesized and run on the
FPGA after automatically importing and building with the system-builder (jConfig). The user has to
take care of providing an average or worst-case environment for the peripheral interaction during the
measurement. A performance-profile is printed via UART or similar after the application finishes.

5.1.2 AutoStreams: Automatic Annotations

The produced performance profile and the original source-code are fed to Auto-Streams[99]. The user
then specifies the desired throughput of the application. AutoStreams will parse the source-code into
an AST. A CFG of the profiled source-code parts is created. A CFG node then represents a statement of
the profiled application. Often, loops consume vast parts of the overall application runtime. Loops are
automatically partitioned into multiple smaller loops with the LoopOptimizer, if required. This decreases
the time granularity and increases number of CFG nodes.

Afterwards, AutoStreams tries to partition the application to use as little hardware as possible to achieve
at least the user defined throughput. AutoStreams has the following optimization points:

57

5.3 AutoPerf run on HW

.csv.c legacy
source-code

performance
profile

5.5
AutoStreams

.c annotated
source-code

5.4
LoopOptimizer

5.6 µStreams

parallelized
source-code

.c.c .xml
abstract HW
description

jConfig

.v
multi-core

HDL
description

5.7
PeripheralDetector

compile, synthesize
and run on HW

refine
timing

.csv
parallelization

profile

provide
design

internal
call

internal
call

Figure 5.1: Simplified Overall Automatic Parallelization Toolflow with Tool Section Reference

Hardware: AutoStreams has to decide whether it is better to use more cores with slow communication
or maybe fewer cores with fast, but hardware costlier communication interconnects. It should also
be considered if some cores should be replicated in the pipeline.

Partition points: The partitioning points have to be selected firstly with respect to the maximum user
defined duration per stage. As a second step as few partitions as possible should be created and
each partition should have similar, at best equal runtime to get a balanced pipeline with high
throughput.

Peripherals: If different code parts use the same peripheral, these parts need to be mapped to the same
core.

The used partitioning is reflected in injected source-code annotations which can be reviewed and manip-
ulated by the user. µStreams can then be used to create a parallelized design based on the annotations
provided by AutoStreams.

58

5.1.2.1 LoopOptimizer: Loop Optimizations

Creating balanced pipelines doesn’t work well when single statements or CFG nodes, which are often
loops, dominate execution time. Placing µStreams pragmas inside loops is currently not supported, since
it will create pipeline backward dependencies, undoing the benefits of the pipeline. The LoopOptimizer
implements loop splitting and loop fission to provide AutoStreams with loop restructuring and more
possibilities for partitioning points.

Loop fission finds independent statements inside a loop’s body. Independent statements are partitioned
into a separate loop while the loop condition remains identical for all loops.

Loop splitting is a method to distribute the iterations of the original loop to several loops handling a
fraction of the original iterations. Thus, the iterations are partitioned while the loop’s body stays the
same.

5.1.3 µStreams: Annotated Source-Code Transformation

The target of µStreams[101] is to partition the original source-code at the pragma annotations into sev-
eral chunks, forming a processing pipeline. Each pipeline stage will do a fraction of the work of the
original application and pass results to the next pipeline stage proceeding in the same way. Thus, the
first core is able to handle new data inputs in shorter intervals, increasing the application’s through-
put. A simple example can be seen in Figure 5.2. Currently, µStreams has only one pragma: #pragma
microstreams task with the option to specify replicate *number of replicas* to make non-dividable
pipeline stages superscalar. Dependencies between the partitioned source-code parts are automati-
cally identified and communication infrastructure is automatically created in software and hardware.
µStreams is also able to detect used peripherals at the different source-code parts, based on used APIs
and variable types with the PeripheralDetector. One firmware file per core is written as C source-code
at the end of modification. Additionally, an abstract hardware description (XML) is created, specifying
processor cores, core-interconnects and peripherals. The user also has the option to add performance-
counters to automatically measure the performance of the parallelized design. The abstract hardware
description and the firmware sources can be imported into the system-builder (jConfig), automatically
connecting and building the components. Afterwards, the system can be synthesized and compiled to be
run on an FPGA.

while(1){
int values[128];
int output;
read_input(&values);
filter_input(&values);

output=calculate(&values);

output_result(output);
}

#pragma microStreams task

#pragma microStreams task

Output:

int values[128];
read_input(&values);
filter_input(&values);
send(&values);

receive(&values);
int output=calculate(&values);
send(output);

receive(&output);
output_results(output):

Input:

C
o

re
 0

C
o

re
 1

C
o

re
 2

Figure 5.2: µStreams concept: SW transformation

5.1.4 Refine Timing Constraints

The user can review the optional parallel performance profile after execution on the FPGA and match it
against the requirements. In case of an unfulfilled requirement, the user can either restrict the through-

59

put requirements or slightly manually modify the pragma annotations, set by AutoStreams. A fitting
parallelization should be reached after a few refinement iterations.

5.2 Common Software Infrastructure

All parallelization tools require Cetus for source-to-source transformations. Therefor, the following sec-
tion quickly introduces the capabilities of Cetus. The following tools for parallelization are each usable
as standalone or combined. Thus, a common transformation infrastructure is presented. Each tool has
common as well as unique transformation steps, so called compiler passes. Section 5.2.2 presents an in-
frastructure to combine arbitrary compiler passes which together represent the different parallelization
or profiling tools.

5.2.1 Cetus

Cetus[98] is a source-to-source compiler/transformer for ANSI-C/C89. Even though, it is possible to
experimentally enable some popular C99 features like "freely placeable identifier declarations". As stan-
dalone version, Cetus offers several transformation passes like loop normalization, loop parallelization,
variable privatization or data dependency testing and also a mechanism to add custom compiler passes.
To transfer the C-source-files into an internal AST, ANTLR33 (ANother Tool for Language Recognition) is
used. An example of the generated AST from the source-code in Listing 5.1 can be seen in Figure 5.3.
Each generated AST element implements the Traversable interface for traversing through the tree (ac-
cess children and parent). Each tree element type is wrapped in its own class to access and modify the
type specific elements.

Cetus was chosen because it offers the following features:

Input language C: Still the standard in the embedded domain.

Source-to-Source compilation: The user is able to check and modify the generated design very easily.
Also, the user might be able to work around a bug after compilation. The compilation is also
independent of the target platform compiler.

Written in Java: Java was proven to increase productivity over C++ [102], in which many other com-
pilers are written.

As alternatives to Cetus, there would also be the possibility to use GCC or LLVM as a compiler. GCC
has no possibility for source-to-source compilation, as far as I know. Additionally, GCC’s plugin interface
has been quite unstable throughout the versions. Thus, if the plugin is not constantly adapted it might
become unusable in future releases. LLVM has source-to-source compilation features through Clang.
However, source-code transformations happen as text replacements and require new parsing to an AST
after each transformation. This is on the one hand very compute intense and on the other hand it is also
not possible to carry out a transformation in multiple steps where one step might produce invalid syntax.
Thus, Cetus was chosen over GCC and LLVM for writing a parallelizing compiler.

The main phases of Cetus are:

1. Parse command line arguments

2. Parse C-files & transfer into internal AST representation

3. Apply chosen optimization passes

4. Output (modified) C-files

33 http://www.antlr.org/

60

http://www.antlr.org/

Listing 5.1: Example Cetus Input Program
1 int i;
2 void main() {
3 //assign a value to i

4 i=3;

5 }

Program

TranslationUnit

DeclarationStatement

VariableDeclaration

. . .

Procedure

CompundStatement

AnnotationStatement ExpressionStatement

AssignmentExpression

. . .

Figure 5.3: Simplified Cetus AST generated from Listing 5.1

It is also possible to use source-code to AST parsing on its own. The Cetus infrastructure for command
line parsing and especially for running optimization passes has several issues:

1. Transformations are not designed to share work. Thus, execution order is arbitrary/statically de-
fined.

2. Program model and style is outdated.

3. Custom transformation passes might require dependencies to Java libraries, one might not want
per default to compile Cetus.

Solving the previous issues would require rewriting vast parts of Cetus, thus minimizing chances to
benefit from Cetus updates or for fixes to be accepted in the Cetus main repository. Thus, the best
alternative is to generate a modern, custom infrastructure for running compiler passes especially fitted
for the needs of µStreams. Even though Cetus uses rather outdated language features, the feature for
parsing the AST and the provided API are helpful. Thus, it was decided to use Cetus and slightly update
the implementation and add further functionality (mainly comfort functions and iteration through java
streams) through "Util" classes in µStreams.

Further information about the Cetus-API, papers and users-manual can be found on the Cetus web-
site34.

34 https://engineering.purdue.edu/Cetus/

61

https://engineering.purdue.edu/Cetus/

5.2.2 Common Transformation Infrastructure

As the Cetus transformation pass runner is incapable of providing the needs of the different µStreams
program variants, a new one is proposed here. Figure 5.4 shows a class diagram, depicting how different
optimization passes are executed.

The central information storage component is the Model class, which holds all information (a List of
ModelComponents) generated during transformation passes. For example these are all variables, depen-
dency graphs, the traversable Cetus AST or generated tasks. Anytime a transformation pass generates or
requires information it queries the "Model" object.

Each transformation pass extends the AbstractTransformationPass class, which in turn partly
implements the TransformationPass interface. The TransformationPass interface defines meth-
ods that tell which classes (derived from ModelComponent) are required on the model to execute
(requiredComponents()) or which pass has to run before (requiredTransformationPasses()). The
interface also demands a method returning ModelComponents that this pass provides to the Model. With
this information, the processable() method is able to tell if a pass is already executable or not. The
AbstractTransformationPass implements this method by looking if all required transformation passes
have already been executed. The transformation pass is executed, if all required ModelComponents are
either in the Model or no pending transformation pass exists providing the required ModelComponent,
since model components can also be required optionally by a pass.

To create a new compiler pass runner i.e. a new µStreams source-code transformer, the
getTransformationPasses() method of the abstract TransformationPassCollector class needs to
be implemented. This returns a list of classes implementing the TransformationPass interface (for ex-
ample ArgumentParser and CetusParser in Figure 5.4). This list of transformation passes is executed
by the TransformationPassRunner. The process() method evaluates which transformation passes
are processable by evaluating their respective method. In a second phase, the executable transforma-
tion passes are sorted. This is for example necessary if transformation pass A requires and provides a
ModelComponent and pass B also requires this ModelComonent. Thus, pass A is an optimization pass for
this ModelComponent and should ideally be executed before pass B.

Thus, this infrastructure provides a method to get a list of transformation passes to execute. The execu-
tion order is automatically determined by the required and provided components.

62

process
process

run

�interface�
TransformationPass

+boolean init()
+boolean process(Model)
+boolean processable(Model)
+List providedComponents()
+List requiredComponents()
+List requiredPasses()

AbstractTransformationPass

+ boolean processable(Model)

ArgumentParser

+boolean init()
+boolean process(Model)
+List providedComponents()
+List requiredComponents()
+List requiredPasses()

CetusParser

+boolean init()
+boolean process(Model)
+List providedComponents()
+List requiredComponents()
+List requiredPasses()

TransformationPassRunner

-List transformationPasses
-Model model

+boolean process()
-boolean runPass(Transf.Pass)
-void sortPasses(List)
-boolean leadsToOptPass(Transf.Pass)

MicroStreams

+List getPasses()

TransformationPassCollector

+boolean process()
+List getPasses()

. . .

Figure 5.4: Simplified µStreams transformation pass runner class diagram

63

5.3 AutoPerf

Note: Parts of this section have already been published in [100]. Self-citations are not marked in order to
improve the reading flow.

AutoPerf is an application profiling tool initially developed for the SpartanMC environment by Kamp[88]
during his bachelor’s thesis. It is based on Cetus and the common transformation infrastructure presented
in Section 5.2.2. The tool was constantly extended and now it is able to operate in the SpartanMC and the
MicroBlaze environment through a wrapper. AutoPerf is able to profile functions, compound statements
and loops. The idea is that AutoPerf gathers enough information to identify performance demanding
application parts that benefit from parallelization.

As shown in Figure 5.5 the toolflow for AutoPerf starts with the legacy C source-code of an application.
An example application is shown in Listing 5.2. The source-code is read by AutoPerf and instrumented
with calls of the performance-counter (see Listing 5.3). The instrumented source-code is returned along
with a description of the required hardware configuration as output. The hardware configuration is read
by the system-builder (jConfig) which creates an HDL top-level description and system headers of used
peripherals. The assembled hardware and the instrumented source-code can then be synthesized respec-
tively compiled and run on an FPGA. While running the system on the FPGA the user is responsible for
creating an appropriate environment in terms of input data and peripheral interaction for the measure-
ment. Depending on the intended parallelization use case, different environments should be used. If the
worst-case execution time should be revealed, an according environment revealing this scenario should
be created. Often, the worst-case execution time is too pessimistic and generates unbalanced paralleliza-
tions for most usage scenarios. Therefore, an environment representing an average use case might fit
better. After the profiling has been run on the FPGA, the results can be for example output via UART. The
output is fed back to the PC and parsed through a small formatting tool called SerialReader, which will
generate a CSV file as shown in Table 5.1. The generated CSV holds a unique identifier of the statement
along with the execution time in cycles. The unique identifier consists of the file, function, surrounding
compound statement, the first characters of the source-code line and the line number. Line number and
file would be unique as well, but Cetus does not annotate line numbers to all AST component types.

Listing 5.2: Input source-code for profiling
1 void main(){
2 while(1){
3 int values[128];
4 int output;
5 read_input(&values);

6 filter_input(&values);

7 output=calculate(&values);

8 output_result(output);

9 }

10 }

Table 5.1: Produced performance-profile example
UNIQUE ID; CYCLES
main.c:main:while:read_input:5; 2155
main.c:main:while:filter_input:6; 8912
main.c:main:while:output=calculate:7; 52169
main.c:main:while:output_result:8; 4652

5.3.1 Traditional Approaches

For profiling applications software and hardware based approaches are widely used [103]. The following
methods are often leveraged to profile C applications on embedded systems:

Simulation executes a processor model running the application in a simulation environment. The simu-
lation platform then is easily able to collect data about the executed instructions, in which program

64

.c source-code

5.3 AutoPerf

abstract
hardware

description
.xml .c instrumented

source-code

jConfig

toplevel
verilog

hardware
description

.v .h
system
headers

run on HW

UART

performance
counter

results and
system out

SerialReader

.csv
performance

profile

Figure 5.5: Detailed AutoPerf toolflow

part they reside and of course how long they take. Simulation based approaches have the drawback
of being slow and not all embedded systems can be simulated or have a simulator. Also, peripheral
IO would have to be simulated, which is not always easy.

Trace debugging adds additional tracers or debuggers in hardware, often communicating via a Joint Test
Action Group IEEE 1149.1 (JTAG) interface. The crucial part here is to have a powerful enough host
to process the huge amount of traced data, especially for many-core systems. With the availability
of FPGAs, tracing events of processors can already be done and dynamically configured on the
FPGA. Thus, the enormous amount of data can be minimized to the parts the user is interested
in. The drawback of this method is that the profiler’s and processor’s hardware-design have to be
adapted, if a new processor is to be supported.

Statistical profiling instruments code on a software basis. Counters are added for example to count
how often a function is called. The code is also sampled, meaning that the application execution
is regularly interrupted to collect the program-counter and infer the function currently executed.
Well-known examples of such profilers are GNU gprof[104] or Intel vTune. However, Froyd[105]
observed that profiling with gprof adds 10 to 260 percent execution time to the application. Espe-
cially peripheral handling might be influenced by this overhead and would not represent realistic

65

results. Also, statistical profiling is inaccurate depending on the sampling rate, due to its nature.
Increasing the sampling rate would again add overhead.

Instrumentation adds calls to a performance-counter to the code to measure time-spans between dif-
ferent points in the application. Nowadays, most processors, even in the embedded domain have
hardware performance-counters or timers to measure time. The intrusion overhead in the program
is smaller than with trace debugging and the method is more accurate than statistical profiling.
The method is observed to be not fully accurate since the instrumented code might sometimes
influence the applicable compiler optimizations.

Thus, AutoPerf’s method of using performance-counters or timers along with only slightly instrumented
code results in a higher accuracy compared to pure software approaches. It is also faster compared to
simulation. Furthermore, it offers the flexibility of being easily adaptable to other SoCs given that they
have a timer or performance-counter. Mainly, only a software wrapper for starting, stopping and reading
counters is required for a new environment to work with AutoPerf.

5.3.2 Implementation

Firstly, Cetus is used to read the source-files into a modifiable AST. Since Cetus would overwrite the
source-files after modification and the original files should be left intact, a copy of the source-folder is
created with AutoPerf appendix. Depending on the selected profiling mode via command line, one of the
following profiling modes is chosen:

Compound Statement and Loop Profiling: Performance counter calls are inserted in the AST before and
after statements to measure their duration. Either loops or compound statements can be profiled.
By default, the main function is instrumented when in compound statement profiling mode. An
example of the instrumented code from Listing 5.2 is shown in Listing 5.3. If the user wants to
profile other compound statements, the #pragma autoPerf should be put ahead of a compound
statement or function declarations. All direct children of the selected compound statements are
collected. Variable declarations are ignored since they only consume a neglectable runtime. If the
compound statement contains another compound statement, the contained statement is profiled
as one piece and not further broken down for profiling if not told so by a pragma. Before each
statement, a function call to start the performance counter is added. After each statement, function
calls are added to stop the performance counter, read the measured values and store them in a
structure. The structure where all results are stored has to be defined. The structure is stored
globally and contains the string of the unique identifier of each statement to be profiled along
with the performance measurement. The results of the measurements are output at the end of the
main function. It has to be noted that multiple iterations through the profiled compound statement
overwrite the results of the previous measurement. This is especially unhandy when profiling loops.
For this purpose the loop profiling mode can be used.

Loop Profiling: In contrast to the compound statement mode, the results of the measurement are not
printed at the end of the main function, but rather after each loop iteration and before continue
and break statements. It is obvious that this method results in a highly increased application
runtime especially for loops with many iterations. However, creating appropriately sized structures
holding the results of many iterations and printing results only at the end can easily consume most
of the valuable memory in an embedded system.

Accessing library functions of the performance counter, timer and UART requires including some headers
in the modified source-code. These libraries are appended to the existing include block if not already
contained.

66

Listing 5.3: Instrumented source-code (diff-style highlighting: green lines with + are added)
1 + #include<perf.h>

2 + #include<stdio.h>

3
4 + struct perf_auto_result perf_results[] = {

5 + {.name = "main.c:main:while:read_input:5"},

6 + {.name = "main.c:main:while:filter_input:6"},

7 + {.name = "main.c:main:while:output=calculate:7"},

8 + {.name = "main.c:main:while:output_result:8"},

9 + };

10
11 + FILE *stdout = (&UART_LIGHT_0_FILE);

12
13 void main(){
14 while(1){
15 + perf_auto_init();

16 + perf_auto_start();

17 int values[128];
18 int output;
19 read_input(&values);

20 + perf_auto_stop(0, perf_results);

21 + perf_auto_start();

22 filter_input(&values);

23 + perf_auto_stop(1, perf_results);

24 + perf_auto_start();

25 output=calculate(&values);

26 + perf_auto_stop(2, perf_results);

27 + perf_auto_start();

28 output_result(output);

29 + perf_auto_stop(3, perf_results);

30 }

31 + perf_auto_print(4, perf_results);

32 }

To have a unified API for controlling the SpartanMC performance counter and MicroBlaze timer in the
instrumented source-code, a wrapper for MicroBlaze is written. According include directives for the
wrapper are added in the source-code and the wrapper files are copied to the firmware folder. Usually
one would expect a library for this, but since the MicroBlaze sources included in Vivado cannot be
extended it was decided to keep them in the java project resources folder and copy them if needed.

5.3.3 Credibility of Measured Results

The measured results, acquired with the described method, are of course subject to errors. One kind
of error is the function call overhead through the performance-counter function calls. However, the
function call overhead is only a few cycles in both target architectures and it can statically be subtracted
from the measured results, since it is constant.

A different kind of error comes from applied or not applied compiler optimizations. Since the perfor-
mance counter calls hold inline assembler instructions, the GCC compiler will not apply optimizations

67

over inline assembler statements. On the one hand this makes the measurement accurate since in-
structions won’t be swapped, but on the other hand compiler optimizations applied previously are not
possible anymore. However, it has also been observed that isolating code parts can trigger some opti-
mizations [106]. In general, the applied optimizations strongly depend on the source-code, and they are
unpredictable without knowing the deep internals of the compiler. Since the parallelized system is also
intended to hold only fractions of the original application, a (not) applied compiler optimization here
might also be (not) possible in the parallelized system.

Another error resides in the possible microcontroller’s interaction with the environment. Imagine a mi-
crocontroller with a peripheral constantly collecting data. The microcontroller polls the data, processes
it and starts over again with polling the data. If the microcontroller takes longer for processing the data
due to the additional performance profiling overhead, more data will be available for polling in the next
iteration which might in turn take longer to process. In such a scenario, the user has to carefully adapt
the environment (in this case the peripheral) to the changed processing speed. Alternatively, one could
ignore the error, which would result in a pessimistic base for parallelization. However, the parallelized
system in turn would then likely be faster than expected, which is better than vice versa.

With the previous example scenario in mind, an error can also come from synthesizing the generated
hardware. Due to the added components for profiling, additional hardware has to be synthesized which
might result in a lower clock frequency. Therefore, the performance results are measured in clock cycles
to be independent of the achievable clock frequency.

As a countermeasure to not distort results more than necessary, the tool avoids executing different pro-
filing types in parallel. This means that loop and compound statement/functions have to be profiled in
separate runs. This eliminates the chances of loop profiling occurring during an outer compound state-
ment profiling. The loop profiling would output a performance profile in each iteration which would
heavily influence the outer compound measurement.

To eliminate false measurements when interrupts are present, the performance counter is stopped when
entering an interrupt service routine (ISR) and started again when leaving an ISR. For SpartanMC,
this is directly implemented in the performance-counter. Since MicroBlaze uses a simple timer for the
measurement, the ISR is instrumented in software to stop and start the timer when entering and leaving
the ISR function.

68

5.4 LoopOptimizer

Note: Parts of this section have already been published in [106]. Self-citations are not marked in order to
improve the reading flow.

In many programs, loops hold a majority of the total execution time and benefit from parallelization.
It has been discovered that a high degree of parallelization with µStreams is limited by loops in many
applications. These loops are atomic entities to µStreams and thus are only mappable to one processor. It
is the LoopOptimizer’s task to find a way to partition those loops such that µStreams can map loop parts
to different cores. Nowadays, many tools already exist that focus on loop parallelization. A majority of
these tools target HPC environments with shared-memory models or OS support. Since µStreams uses a
pipeline parallel execution, most well-known loop parallelization techniques and tools are not applicable
in this domain.

The LoopOptimizer can be used as a standalone transformer where it is used as a transformation pass
in the common transformation infrastructure. The workflow of this mode is visualized in Figure 5.6a.
The C source-code of a program with pragma annotations at loops to be transformed is provided by the
user. If a AutoPerf loop performance profile (Section 5.3) is not given, each iteration and statement is
(unrealistically) assumed to have equal execution time. The pragma annotation specifies the number of
loop fractions that the original loop should be transformed to. One can also choose a distribution to give
for example the fist partitioned loop 80% of the original loop’s runtime and the second will have 20%
runtime. As output, the tool delivers a transformed C source-code with the specified loops partitioned
accordingly.

The LoopOptimizer can also be used as a library to any tool, operating on a Cetus AST, as visualized
in Figure 5.6b. The tool delivers the loop AST to the LoopOptimizer and specifies the transformation
type as well as the partition size and number. Alternatively, the maximum possible partitioning can be
queried to a given loop AST. A modified AST is delivered as output, which the application can continue
to work with.

The library mode is used during automatic parallelization, while the standalone mode offers this func-
tionality for manual parallelization.

.c annotated
source-code

.csv
loop per-
formance

profile

LoopOptimizer

.c transformed
source-code

(a) Standalone

Cetus-based
tool

AST
loop AST to
transform

LoopOptimizer

AST
transformed

loop AST

select trans-
formation &
partitions &

performance-
profile

(b) Library

Figure 5.6: Detailed LoopOptimizer toolflow for different operation modes

69

5.4.1 Loop Parallelization Techniques

In many applications, loops are the most time-consuming computation steps. There exist many loop
transformation techniques to improve the parallelizability of an application. Many have already been
implemented in modern compilers to leverage current multi-core architectures. Techniques like loop
interchange, scalar expansion, scalar renaming and index-set splitting focus on improving fine-grained
parallelism, which is beneficial for VLIW or superscalar processors. Whereas techniques like privatiza-
tion, loop distribution, loop tiling aim to improve coarse-grained parallelism for shared-memory parallel
processors [107]. However, the aforementioned techniques are not usable to aid µStreams with paral-
lelization. In order to parallelize or transform an application with µStreams, a suitable place to split
the application is needed. µStreams pragmas cannot be placed inside loops, since the created pipeline
stages would also create a dependency on themselves. These large parts of non-splittable code often
create an imbalanced pipeline, which increases the duration of the critical computation step. Therefore,
these loops need to be partitioned into several smaller loops, each handling one part of the original loop.
µStreams pragmas can then be placed in between the partitioned loop parts and µStreams is then able
to analyze the dependencies and create a processing pipeline. All variables used in the loop’s body will
be transferred between the pipeline stages containing parts of the partitioned loop. All aforementioned
transformation techniques aim to execute the loop’s body or parts of the body simultaneously accounting
for interference of data read/written by multiple entities. For µStreams, interference is implicitly han-
dled since each pipeline stages operates on an own data set. Two static loop transformation methods
exist to allow µStreams to operate its intended way [107]: loop splitting and loop fission.

Listing 5.4: Original loop
1 //possible task creation

2 for(int i=0; i<10; i++) {
3 foo();

4 bar();

5 }

6 //possible task creation

Listing 5.5: Fissioned loop
1 //possible task creation

2 for(int i=0; i<10; i++) {
3 foo();

4 }

5 //possible task creation

6 for(int i=0; i<10; i++) {
7 bar();

8 }

9 //possible task creation

Listing 5.6: Split loop
1 //possible task creation

2 int i;
3 for(i=0; i<5; i++) {
4 foo();

5 bar();

6 }

7 //possible task creation

8 for(; i<10; i++) {
9 foo();

10 bar();

11 }

12 //possible task creation

However, µStreams allows further loop transformations after the program has been transferred into a
pipeline structure due to its source-to-source concept. Loop splitting has already been used in [108] to
increase pipeline performance for high-level synthesis with promising results.

70

To make a good partitioning of the loops, a detailed performance profile of the loop is helpful, but not
always necessary. For loop splitting, it is relevant how much time the loop body consumes in which
iteration. For loop fission, the execution time of each statement is important. AutoPerf can be used in
loop profiling mode for this purpose. In the following, the two loop optimization techniques, along with
their peculiarities and limitations are described.

5.4.1.1 Loop Fission

Loop Fission is a method to distribute the body of a loop over several loops, each containing a part of
the original body. In practice, it is often used to improve cache hit rates on large loops [107]. Also, the
generated independent program parts are very beneficial for multi-processor systems. An example can be
seen in Listings 5.4 and 5.5. The critical part of this transformation is ensuring correctness: Statements
that depend on other statements in the loop have to be executed in the same partial loop. Additionally,
if the called functions (like foo and bar in the example) have side effects or use global variables, the
order in which they are executed is also important. If it is changed by fission, the program may produce
incorrect results.

Recognizing these dependencies with a static analysis, especially those hidden within functions, is hard.
Without a robust interprocedural dependency analysis, uncertain statements need to be assumed as
dependent, which highly limits the number of partitions for fission. In practice splitting usually delivers
more partitions than fission since statements in a loop body mostly depend on each other.

A loop is first analyzed for independent code-blocks (I). These blocks are then distributed to a user-
specified number of partitions (N) as follows:

N = I: Every block is mapped to one partition.

N < I: The smallest independent statement blocks are merged, until I=N. If profiling data is present, the
smallest blocks in terms of execution time are merged. Otherwise, the smallest blocks by number
of statements are merged.

N > I: The loop does not have enough independent parts and cannot be distributed to the desired num-
ber of partitions. A warning is given, and N is set to I.

5.4.1.2 Loop Splitting

Loop Splitting is a method to distribute the iterations of the original loop to several loops handling a
fraction of the original iterations. In practice this method is usually used to improve input prefetching
on scalarized loops [107]. An example can be seen in Listings 5.4 and 5.6. The critical part of this
transformation is handling/recognizing the iteration variable and modifying the exit condition of each
generated loop.

5.4.1.2.1 Iteration variable: The iteration variable is defined here as the variable modified in (each)
iteration and controlling the exit condition of the loop. The variable can be boolean, integral (short,
byte, int, long, . . .), floating-point (float, double) or pointer. In this contribution, only integral types
and pointers are handled. Floats are not handled, because many embedded processors do not support
floating-point numbers. Boolean iteration variables either contain a trivial number of repetitions, a
statically not analyzable number of repetitions or depend on other variables which are then the true
iteration variables and are therefore not handled either. In the implementation, the iteration variable
is guessed automatically. In for-loops, the variable occurring most often in the initial statement, exit
condition, and afterthought statement is selected. In other loop types the iteration variable is the only
one used in the exit condition. It is obvious that this technique does not cover all thinkable possibilities,
but in practice most analyzed examples follow this pattern. Additionally, if the variable guessing fails or

71

is not distinct, an error is given and the user can specify the iteration variable by hand through a pragma
annotation.

5.4.1.2.2 Exit condition: A loop’s exit condition has to be a boolean condition, typically depending on
the iteration variable. To form a boolean expression, the iteration variable is typically checked against a
constant with ==, !=, <, <=, > and >= operators. Another possibility is of course to check against a
variable expression consisting of a function call, several other variables or concatenate different checks
with boolean operators. Transformations for those cases are not automated. Splitting loops into equal
parts requires knowledge of the exact iteration numbers. Modifying the exit condition can easily be done
statically when a constant to check against is used. With a variable expression, the safest method is to
use data from a previous profiling run. The reference value for the comparison in the exit condition of a
loop can then be expressed with the following formula if the iteration variable is known.

ex i t_condi t ioncur rent_spl i t = init_val +
�

(end_val− init_val) ·
t(current_split)
t(total_splits)

�

With:

ini t_v al = The iteration variable’s value before entering the loop

end_v al = The comparison expression part not containing the iteration variable

total_spl i ts = The total number of loops that should be created

cur rent_spl i t = The current loop’s index

t(x) = The partial loop’s execution time from the first iteration up to x

(6)

5.4.1.3 Special Conditions & SoC Peculiarities

5.4.1.3.1 Break Statement: It can be the case that split loops contain a break statement. If the break
is executed in one loop partition, all further partitions must not be executed. The solution is to add a
boolean variable which is set when a break statement is triggered. All transformed loops are conditionally
executed based on the boolean variable. The variable’s value can then be transferred to the following
cores to abort execution. An example can be seen in Listings 5.7 and 5.8.

Listing 5.7: Break loop
1 for(; i < 10 ; i++){
2 if(i==rand())
3 break;
4 }

Listing 5.8: Break loop transformed
1 int br=false;
2 for(i = 0; i < 5 && !br; i++)
3 if(i==rand()){
4 br=true;

5 break;
6 }

7 for(; i < 10 && !br; i++)
8 if(i==rand()){
9 br=true;

10 break;
11 }

5.4.1.3.2 Peripheral Usage: One peripheral cannot be used on several cores simultaneously, since a
peripheral is currently only attachable to single processor core (more detailed reasoning is later given in
Section 5.7.4). Thus, a peripheral should not be used in more than one loop. If this case is detected, an
error message informs the user to manually take action and resolve the problem if possible.

72

5.5 AutoStreams

Note: Parts of this section have already been published in [99, 109]. Self-citations are not marked in order
to improve the reading flow.

AutoStreams is the tool filling the gap between the performance profile and setting the pragma annota-
tions for µStreams. Without this tool, the user would have to analyze the performance profile and set
µStreams pragmas by hand. However, it is exhausting to create an optimal parallelization by hand, since
there are many factors to consider and optimize.

The tool flow of AutoStreams (shown in Figure 5.7) starts with a legacy source-code to be parallelized.
With AutoPerf, a performance-profile can already be provided. The performance-profile and the legacy
source-code is then given to AutoStreams. The user specifies the maximum time that the application
should take to process new input data or the number of pipeline stages to be created. AutoStreams finds
a possible processing pipeline considering the user requirements. Internally, the LoopOptimizer is called
to partition loops restricting further parallelization. AutoStreams outputs annotations into the legacy
source-code that in turn is parallelized with µStreams.

.c source-code .csv
performance

profile

AutoStreams

annotated
source-code

.c .txt design report

AST LoopOptimizerPeripheralDetector

Figure 5.7: Detailed AutoStreams toolflow

5.5.1 Optimization Points

For manual pragma setting, it is often complicated to optimize different aspects at the same time and
thus AutoStreams can deliver a multi objective optimization of the following factors:

Communication Overhead: Depending on the pragma positions, more or less program-state information
has to be passed to the next processor/pipeline stage. Setting pragmas a few statements later might
increase the processing time of the pipeline stage, but could dramatically decrease the number of
variable dependencies and thus communication time. To balance reasons for choosing one or
another, also the time required for communicating a certain amount of data has to be known or
estimated. Finding dependencies of all variables manually is tedious especially on larger programs.
Thus, a function to estimate the communication overhead based on the amount of exchanged data
is derived from the characteristics of the communication infrastructure. When using the SpartanMC
environment besides FIFO-based interconnects, also DMA-based interconnects can be used. These
interconnects have very low communication time cost. However, when variables are received that
also must be passed to the next pipeline stage a memory-copy between the two direct memory
access (DMA) regions is required.

Hardware Overhead Consideration: During the search for processing pipelines fulfilling the user require-
ments, not only one, but often many solutions are possible. AutoStreams should prioritize solutions
with the same performance, requiring less hardware than others. Each communication hardware

73

module and the processor have been synthesized for different FPGA families to estimate the hard-
ware cost. The modules have been synthesized multiple times with different seeds to average out
synthesis variations. Synthesis uses a search heuristic and different seeds deliver different start-
ing points which might result in different proposed solutions. The hardware numbers are stored
in AutoStreams for the different FPGA families. AutoStreams takes these measurement points for
hardware usage estimation, by calculating a linear regression with the measurements for each
hardware component and different configurations. The linear regressions are combined in an
analytical model, where different hardware components can be queried and an estimated FPGA
resource usage is returned.

Automatic Loop Partitioning: Since loops often consume much processing time, they should automati-
cally be partitioned to get balanced pipeline stages during parallelization with µStreams.

Trade off: Pipeline vs Superscalar: Making pipeline stages superscalar with replicate pragmas avoids the
necessity of additional pipeline stages adding communication overhead. However, it is not always
possible to make pipeline stages superscalar, for example if peripherals are used. Figuring out
when to use superscalar pipelines goes hand in hand with estimating communication and hardware
overhead and thus should be done automatically.

5.5.2 Implementation

The legacy source-code is transformed into an AST with Cetus in order to transform and analyze the
source-code. Firstly, the performance profile is read and the execution time is associated with the ac-
cording AST statements. Thus, the duration of each statement is known. By default, the main function is
profiled and transformed, but also any other function called only once is possible. One exception is that
the loop can be inside one (endless) while loop, as it is often the case for embedded applications.

5.5.2.1 Control-Flow-Graph Generation

A CFG is generated from the AST in the next step. This is necessary to create a pipeline structure from
the program flow and to determine the used variables in the different source-code parts. Initially, loops
appear as a single CFG node. Possible loop partitioning points can be requested from the LoopOptimizer,
and they replace the original loop’s CFG node with multiple virtual CFG nodes. Since only the execution
time of the full loop is known, a proportional amount of time is annotated to each partitioned virtual CFG
node. The actual loop transformation in the source-code is done only once in the end. When using loop
splitting, the LoopOptimizer returns a possible split-point after each iteration. However, especially loops
with many iterations would result in many virtual nodes and many possible split-points to be evaluated
for AutoStreams. For high numbers of nodes, the evaluation process can take extremely long since so
many possibilities exist. Thus, it was decided not to create one virtual node for every iteration, but to
create bigger bundles. By default, one virtual node holds a number of iterations that take as long as 5%
of the total runtime of the application, but the user can also specify a desired percentage. The fewer
iterations a virtual node has, the better pipelines can be balanced, but the longer it takes to evaluate all
possible solutions. The default value worked well for all tested benchmarks and solutions. The number
of virtual nodes is high enough to create balanced pipelines and low enough to evaluate all solutions
within a minute. In practice, it was observed that the estimated duration of an iteration often differs
in the parallelized system due to different compiler optimizations and thus a highly accurate split point
selection would not necessarily result in a better solution quality.

74

5.5.2.2 Communication and Hardware Cost Estimation

To decide on a code partitioning, the time costs for communication and the hardware costs for pro-
cessor cores and different communication interconnects are required. The different core-interconnects’
transfer speeds have been measured with different communication volumes as shown in Figure 3.10.
AutoStreams calculates linear regression functions to estimate communication cost for larger communi-
cation volume for each interconnect separately. The hardware cost is also inter- and extrapolated through
linear regression. Each core and core-interconnect has been synthesized multiple times with different
configurations, like memory size, number of endpoints for N-to-1 interconnects or varying DMA-size for
DMA-interconnects. For each synthesized configuration, the numbers of used look up tables (LUTs), reg-
isters, BRAMs and digital signal processing blocks (DSPs) are imported into AutoStreams. These values
are the supporting points for the linear regression. The procedure has to be done for each FPGA family,
since synthesis results and also hardware costs can differ. Currently, AutoStreams already contains mea-
surements for Artix-7 and Spartan-6 FPGAs. With the supporting points, AutoStreams calculates a linear
regression and inter- and extrapolates other configurations. Components like MemSwap Multi have two
dimensions of freedom: endpoints and DMA memory size. It is essential to have a multiple measurement
points distributed over the two-dimensional space to achieve good estimation results.

5.5.2.3 Design Space Exploration: Search Method

It is possible for all analyzed benchmarks to search for an ideal solution with respect to the chosen
granularity. Two steps are used to search for a solution with the branch-and-bound method. Firstly, a
non-optimal solution, fulfilling the users requirements, is created through a search heuristic. Secondly,
a branch-and-bound method is used to explore the design space through a decision tree. The numerous
possible solutions are limited through the non-optimal one. Every time a solutions is worse or knowingly
cannot get any better than the non-optimal solution, further search in this direction is stopped. In the
SpartanMC environment these steps are repeated with FIFO-based and DMA-based interconnects.

The search heuristic to find one possible solution for bounding the design space is described in the
following. The heuristic is used in different ways depending on the user specification for a maximum
processing time (initiation interval) or a desired number of pipeline stages:

Initiation interval: The search heuristic puts as many CFG nodes in a pipeline stage as the node’s ex-
ecution times and communication time stays below the specified limit. A new pipeline stage is
started if an additional node’s execution and communication time would exceed the given limit.
This search method does not deliver an optimal solution since it is not able to look ahead and see
if adding a node would decrease communication overhead, such that the pipeline stage fulfills the
requirements again.

Pipeline Stages: The optimal maximum execution time per stage (initiation interval) is calculated by
dividing the total application runtime through the number of specified stages. With the optimal
maximum execution time per stage, the previous search heuristic can again be applied. However,
it is unlikely that the heuristic finds the specified ideal solution. Thus, the search is repeated with
relaxed timing constraints until a solution with the specified number of pipeline stages is found.

The procedure of finding the optimal solution through the branch-and-bound method is shown in Fig-
ure 5.8. The algorithm starts with the first statement in the CFG as the first pipeline stage. Afterwards,
the next statement of the CFG is added to the current pipeline stage. As a second version, the new state-
ment is added as a new pipeline stage. This process is repeated until all CFG nodes have been handled.
It is checked if the generated pipeline stage fulfills the requirements in terms of user defined pipeline
stages and/or pipeline stage duration after each step. It is also checked as upper bound if the current
pipeline is better than the previously generated non-optimal solution. The quality of a valid solution is
firstly defined by the hardware cost and secondly by the execution time of the longest pipeline stage. As

75

lower bound, it is checked if the remaining CFG nodes accumulated execution time can yield in less or
equal amount of pipeline stages and shorter execution times per stage compared to the upper bound.
The pipeline configuration is dismissed if the described bounds are exceeded. The usage of these bounds
ensures that the pipeline stages are not too short, nor too long and the number of used pipeline stages
stays small.

5.5.2.3.1 Hardware Comparison Metric: Looking in a synthesis tool’s hardware report, the main num-
bers for hardware cost of an FPGA are: LUTs, registers, BRAMs and DSPs. The FPGA can realize various
hardware designs out of these components. The number of all components is limited. The number of
used components for a design specifies complexity and cost of a circuit. However, each of these com-
ponents (specifically LUTs) have different configuration options, which is left out here for simplicity. To
compare the complexity of a design, a cost metric has to be chosen. At first, there was the idea to com-
pare the component with the highest utilization and thus the rarity of the component. This solution is
not practical, since the rarest component might change during optimization, the optimization direction
will also change. That means, depending on the starting point, results might differ and these are barely
traceable to the developer or the user. As a second solution, the average utilization of all components
could be compared. However, due to the characteristics of soft-core processors to have a comparatively
high BRAMs utilization for memory, there would be no difference to directly comparing BRAMs. How-
ever, BRAM and also registers do not tell much about the complexity of the design. DSPs also seem
unfitting for comparison since only the processor core uses DSPs. Thus, only the number of cores matter
and core-interconnects would not be compared. The last component left are LUTs, which are actually
used for comparison since they reflect the design complexity and every component uses them. Never-
theless, the user is able to restrict the maximum usage of one of the previous mentioned components via
the options and thereby influence the optimization direction.

5.5.2.4 Design Space Exploration: Solution Selection

After all pipelines have been generated, the pipelines are sorted by their solution quality. The following
filters and sort criteria are applied to all generated pipelines:

1. Multiple peripheral usage: The PeripheralDetector library is leveraged to determine used periph-
erals in the different pipeline stages. As argued in Section 5.7 a parallelization with a peripheral
access spread over multiple cores most likely does not reflect the proper or intended behavior. If
this filter leaves no pipelines in the list, the user can deactivate this filter and solve the problem
manually afterwards.

2. Prefer small Hardware: If all configurations meet the desired pipeline stage duration require-
ments, the pipeline with the lowest estimated hardware resource usage is preferred. If the user
specified an FPGA device or maximum allowed hardware resources, the tool also ensures that the

add statement add pipeline stage

dismissdismiss

Figure 5.8: Search tree for design space exploration

76

design is able to fit the specified hardware bounds. In case it doesn’t fit, the design with the smallest
initiation interval is given, meeting the available resources.

3. Prefer fast pipelines: Among systems with the same hardware, AutoStreams prefers systems
whose longest pipeline stage has the shortest runtime (smallest initiation interval).

5.5.2.5 Reports

After a pipeline has been selected, the task pragmas are set into the source-code by modifying the AST
as specified in the selected pipeline configuration. The annotated source-code is written back to the file
system.

A parallelization report can also be created to sum up the characteristics of the selected pipeline:

• Used pipeline stages

• Cycles of the longest pipeline stage

• Estimated speedup compared to the performance profile of the sequential version

• Estimated hardware usage

• A list of pipeline stages:

– Start/end source-code segment

– Estimated calculation cycles

– Estimated communication overhead with communicated variables (send and receive)

– Found peripherals with the PeripheralDetector

– Stage replication count

The user can now start µStreams to parallelize the annotated source-code.

77

5.6 µStreams

Note: Parts of this section have already been published in [101]. Self-citations are not marked in order to
improve the reading flow.

The main idea behind µStreams is to transform the sequential source-code of a legacy C-Program into
a multi-core pipeline. The toolflow is shown in Figure 5.9 and Figure 5.2 shows how pragmas can be
added in the source-code, indicating pipeline stages. The example results in a three stage pipeline, since
the source-code itself is already one task. Each pipeline stage contains parts of the original program
along with a communication infrastructure between the pipeline stages. As different pipeline stages
access the same variables, they need to be transferred. It is important that each stage has its own copy
of the data, since each stage might modify the data. The generated code is shown in a simplified version
in Figure 5.2.

According to the software design, an abstract hardware XML-Description is automatically generated. The
description holds used components such as processors and communication interconnects along with in-
formation about how they should be connected to construct a processing pipeline. Performance-counters
can optionally be added to evaluate the communication and processing time of each stage. Additionally,
µStreams is able to detect used peripherals based on the source-code with the PeripheralDetector. The
generated abstract hardware description can be imported into jConfig, an SoC system-builder, which
generates a synthesizable hardware description. This process allows hardware generation in a default
configuration with little to no user intervention.

For a more detailed explanation, this section is divided into a paragraph describing the usable prag-
mas and unsupported C constructs, followed by a description of the necessary transformation steps to
parallelize an application.

.c annotated
source-code

µStreams

parallelized
source-code

.c.c .xml
abstract HW
description

jConfig

5.7 Peripheral-
Detector

HW &
dependency
visualization

.svg

import

internal
call

Figure 5.9: Detailed µStreams toolflow (dashed=optional)

78

5.6.1 Usable Pragmas

As it can be seen in Listing 5.9, µStreams task prag-
mas can be placed at the following positions:

• Ahead of any statement, including loops

• Ahead of a function call or function defini-
tion.

• Inside a function if this function is called only
once.

Each task pragma adds a task/pipeline stage to the
generated system. Pragmas ahead of function def-
initions add a new task for each function call ap-
pearing in the source-code.

Task pragmas cannot be placed at the following
positions, otherwise µStreams shows an error mes-
sage:

• Outside the main.c file, except for pragmas
before function definitions.

• Inside a function called multiple times.

• Inside loops, except for loops that don’t have
further executable statements after their exe-
cution (line 32 in Listing 5.9).

• Ahead of recursive functions

Currently only the main.c is transformed by
µStreams, other C-files are copied as is. If prag-
mas inside other C-Files should be used, the FTL-
Template system, writing the generated C-Files, has
to be replaced. The best alternative would be to
directly do transformations in the Cetus AST. Com-
pared to the FTL-Template system, this method has
a huge source-code overhead and makes modifica-
tions more complex for µStreams developers. How-
ever, most reviewed applications had the main pro-
cessing steps declared in the main.c file. Other ap-
plications had a mostly empty main.c file with only
one function call to another c-file’s function. The
contents of the other c-file could easily be copied
to the main.c file, thus the constraint of prag-
mas only in the main.c file can easily be worked
around. For pragmas inside loops/recursive calls,
it is hard (sometimes impossible) to statically ana-
lyze exactly how often the code inside is executed.
Thus, it can’t be determined how many tasks have
to be created.

Listing 5.9: Usable µStreams pragmas
1 void read_input(int values[128]){
2 for(int i=0; i<128; i++){
3 values[i] = PERIPHERAL.

readNext;

4 }

5 }

6
7 void filter_input(int values[128]){
8 for(int i=0; i<128; i++){
9 if(values[i] > 200)

10 values[i] = 200;

11 }

12 #pragma microstreams task
13 for(int i=0; i<128; i++){
14 if(values[i] < 10)
15 values[i] = 10;

16 }

17 }

18
19 int calculate(int values[128]){
20 int result=0;
21 for(int i=0; i<128; i++){
22 result+=values[i];

23 }

24 }

25
26 #pragma microstreams task
27 void output_result(int output){
28 printf("Output: %d", output);

29 }

30
31 void main(){
32 while(1){
33 int values[128];
34 int output;
35 read_input(&values);

36 #pragma microstreams task
37 filter_input(&values);

38 #pragma microstreams task
replicate(2)

39 output=calculate(&values);

40 output_result(output);

41 }

42 }

79

Beside the pipelined execution model, it is also possible to make pipeline stages superscalar with the
replicate syntax as seen in line 38 of Listing 5.9. The previous pipeline stage alternates between the
replicated pipeline stages for each data set passing through the pipeline. This is especially helpful for
pipeline stages whose source-code cannot be further pipelined, but impose the longest running stage.

5.6.2 Unsupported Constructs

Due to the freedom of the C-language there are some language constructs and programming techniques
which will result in a corrupt parallelized design. Even though these constructs might work, many are
considered bad practice. Unsupported constructs and why they are or cannot be considered are listed in
the following:

Static variables are variables having the static keyword at their declaration. Effectively, these are only
valid in their declaration scope but treated like global variables. Defined inside a function, they
keep their value among different calls of the function. Considering a scenario where the static
variable is declared in one pipeline stage and then modified in a later pipeline stage, the value
of the static variable would have to be passed back to the declaring pipeline stage before it is
executed the next time. Thus, the processing pipeline would have to be stalled and forwarding
communication infrastructures would be needed. Since this would drastically degrade the pipeline
performance, this is not implemented. An error is shown if a static variable is used in more than
one task. The user can ignore this error and manually handle it after parallelization.

Writing global variables is not supported, even though reading is. The main difficulty is that the variable
can be written by multiple pipeline stages. The first pipeline stage holds the first variable modifi-
cation v’, the second stage holds the second modification v” and so on. Having a single common
memory, the different pipeline stages write and read the modifications v’,v”. . . simultaneously, even
though in the non parallelized version the modifications would be written and read one after an-
other. Thus, the global variables would be in an inconsistent state. A solution would be to have a
big global memory that holds the global variable for each pipeline stage and transfer the variables
to the next stage when all pipeline stages finished execution. Implementing this mechanism would
result in a big hardware overhead, especially considering a giant crossbar for all pipeline stages.
However, the described mechanism is very similar to core-interconnects transferring the variable
states from one stage to the next. Thus, if possible the global variable is privatized and transferred
like other variables. An error is shown if privatization is not possible.

Pointer modifications are sometimes hardly comprehensible in a static analysis. For example if the
pointer address is modified to a different variable address. The other variable could be modi-
fied without being noticed in static program analysis. The only option to track the addresses and
memory changes is during program execution. The user has to track and avoid this behavior.
However, such pointer modifications are anyways considered bad practice. Nevertheless, pointers
whose address is only assigned once impose no problem.

Pragmas inside loops are not possible since they would create a backward dependency. A solution is
to partition loops with the LoopOptimizer (Section 5.4) and then put pragmas between the parti-
tioned loops.

ISRs are not directly supported. µStreams is not able to infer to which core different service routines
should be applied. Also, applying ISRs to pipeline stages might lead to an inconsistent pipeline
stage duration if the ISR is triggered. One option would be to copy the ISR to a pipeline stage whose
execution time including the ISR execution is below the execution time of the critical pipeline
stage. However, this is not always possible, especially in a well-balanced pipeline and ISRs could
be triggered very often slowing down the pipeline stage. The chosen solution is an ISR core,
excluded from the pipeline, handling all ISRs. This is not always possible, since ISRs might have

80

dependencies to data in other program parts. Thus, µStreams gives a warning if ISRs with data
dependencies are detected in the source-code and the user can copy the ISR functions to the desired
core.

goto statements are not supported if the jump label is located in another task. An error is given if such
a case is detected. However, goto statements are anyways considered bad style and should be
avoided.

Task annotated functions are functions which have a task pragma before the function definition. The
restriction is that this function must be called only once. Usually, a new task per function call has to
be created. However, function calls inside loops or recursive functions cannot always be statically
counted. Thus, µStreams gives an error message. The user has the possibility to (re)move the
function task pragma. Also, function calls to task annotated functions should ideally be followed
by another task pragma. Otherwise, the function task might have a backward dependency to the
previous task. In this case, an error is shown but the user is able to ignore the error and resolve
the problem manually after parallelization.

5.6.3 Implementation

5.6.3.1 Parsing Source-Files

µStreams uses Cetus to parse the annotated source-files into an AST. The input files can optionally be
preprocessed via an external preprocessor (GNU GCC) which will resolve all preprocessor directives,
like defines or includes. A fitting preprocessor is automatically chosen, based on the selected target
architecture. Running the preprocessor command could fail, often due to missing header files, like
for example peripherals.h. These headers are created by the system-builder, containing hardware
addresses of peripherals. Thus, this include-file is a leftover of a previous hardware system and will be
invalid with the parallelized hardware system. Therefore, such files are mimicked by empty dummies,
and corresponding errors are ignored.

5.6.3.2 Source-Code Partitioning

All µStreams pragma (#pragma microStreams task) occurrences are searched on the created AST. Dif-
ferent actions are taken depending on the succeeding elements of the pragma:

Function definition: For each according function call occurrence in the program a new task containing
the function call is created, if the number of calls can statically be analyzed.

Statement inside a function: A new task is created containing a copy of the traversable(s). Traversables
are added to the task until:

• a new task pragma is found

• the scope that the pragma is declared in ends

• a function call leading to a function definition with a task pragma is found

Each task pragma can be equipped with an optional replicate annotation. All tasks are searched for
a replicate annotation. Depending on the amount of specified replica, clones of the current task are
created.

81

5.6.3.3 Tracking Source-File and Function Dependencies

A function-call-graph is needed to know which task requires which function. A function-call-graph is
generated for each task’s traversable. All found function calls are stored in the task’s data structure. In the
end, distinct source-code folders are generated for each task. Only necessary functions and declarations
are copied to the main.c-file. Functions originally included via the #include directive are copied as is to
the new source-code folder.

5.6.3.4 Creating a Processing Pipeline

To transform the tasks into a processing pipeline the relationship between all tasks is analyzed. Each
task’s traversable is searched for nested tasks. All tasks are then organized as a tree and each task stores
its parent and child tasks.

5.6.3.4.1 Variable Access Analysis: After having created all tasks, it is highly likely that one task uses a
variable that is also used inside another task. Thus, this variable would create a dependency between
both tasks. Before analyzing the dependency, it has to be known which task uses which variable and if it
is read and/or written. Thus, all used variables, accesses to these variable inside each task’s traversable
and called functions are analyzed and saved for each task. If variable accesses occur in a nested task or a
variable declaration is global, it is flagged as such. Also, variable accesses in nested tasks are marked as
untouched. Furthermore, a write-access to the variable is added if the variable is declared and initialized
inside this task. The variables are also marked as read or write if the user specified required or provided
variables via pragma extensions.

In a second step, each found variable access is classified as read, write, read&write. This is done by
ascending the AST from the current variable and searching for access patterns. For example a write
access is assigned if a parent in the AST is an assignment expression (foo=bar+1) and the variable
appears on the left side of the assignment. An appearance on the right side of the assignment returns
a read. For a unary expression (var++ ...) read&write access is set. The usage as an argument of a
function is a read access, except if the argument is a pointer, then it is a read&write access. Setting
the access to read&write on pointer types is very pessimistic but necessary since a static analysis of the
pointed value, especially if it is modified, is hard and sometimes impossible. If the AST tree reveals
different types of accesses for a variable in a statement, they are finally combined.

5.6.3.4.2 Variable Privatization: If a global variable has been declared, but it is used in a single scope by
multiple tasks, the variable is transformed to a local variable. Variable privatization of global and local
variables is later implicitly done when generating the parallelized source-files. Since the global memory
is likely to become the performance bottleneck it is avoided whenever possible.

5.6.3.4.3 Control-Flow Graph: With the current information, it is only possible to tell if a statement in
the program is located before or after another statement in the source-code but not if the statement
might also be executed before or after this statement. Therefore, a CFG for each task and all functions
is necessary. The CFG later allows a prediction of where a variable was previously and will later be used
in the program flow.

The CFG is composed of different nodes containing one statement of the tasks/functions traversable.
The next node containing the next statement (usually the next line in the source-code) is appended to
the current node via an edge. Some nodes containing for example the head of a loop (respectively foot
for do while loops) have two next nodes, depending on the loop condition evaluating as true or false.
Through occurrences of loops, the CFG will also contain loops. Also, the generated nodes sometimes
hold additional information of the contained statements, like if this node is a graph start or end node
or transition to a new task is done. Task nodes will be created if a task pragma is found inside the
traversable of the current task. The nested task’s control-flow will not appear in the parents CFG.

82

Since the CFG should be used to predict the variable dependencies in different tasks, it’s straight forward
to put the extracted variable access information also into the CFG nodes.

5.6.3.4.4 Creating Task Dependencies: Until now, it is only known if a task is nested in another task.
However, the order of multiple nested tasks is not known yet, but needed to successfully create a pipeline.
The generated CFG delivers all necessary information through the order of the graph nodes and the
variables read/written in the nodes according statements.

The CFGs of the tasks are traversed for each variable that the task uses. If a variable is accessed in
another task, a task dependency is created. For read variables, only dependencies to previous read
accesses in the CFG are created. For written variables only read accesses to succeeding elements in the
CFG create dependencies respectively. Write after write accesses and read after read accesses are not
considered, since they either overwrite data unconditionally or do not change the data. An exception to
this are arrays and structures, since both have multiple fields which in this case do not appear as distinct
accesses. It is also not possible to analyze the accessed array offset statically if it depends on another
variable. This means that any write after write access on arrays and structures in another task is also
modeled as a task dependency.

5.6.3.4.5 Pipeline Formation: Now, task dependencies are modeled with respect to variable usage. How-
ever, the dependencies are not yet ensured to have the desired pipeline structure. The dependencies
could even form loops which would create counterproductive parallelized systems that are slower than
a single-core implementation. Thus, the dependencies have to be transformed into a pipeline structure
and scenarios where a parallelization is not applicable have to be detected.

Listing 5.10: Example code to visualize task
pipeline creation

1 foo(int *x){
2 (*x)++;

3 #pragma microStreams task
4 bar(&x);

5 }

6
7 main(){

8 int x = 5;
9 int y = 2;

10 #pragma microStreams task
11 foo(&x);

12 #pragma microStreams task
13 bla(&x, y);

14 }

Figure 5.10a shows the created task dependencies from the source-code in Listing 5.10. Each task has a
dependency to the parent task they are nested in, even though the parent task might not further touch
the variable and only forwards it (dependency variable x task 2→1, 1→0, 0→3). This would mean
that task 0 in the example needs to wait idle for task 2 to finish, which effectively makes launching
task 1 and 2 counterproductive. Task 0 could have done the same job in its idle time. These forward
only dependencies are detected by looking in the CFG if the intermediate nodes between task nodes
only hold annotation statements (comments or task pragmas). In the example in Figure 5.10a the task
dependency 2→1 and 1→0 of variable x would be replaced by a dependency from task 2 to task 0. In a
second iteration the task dependency 2→0 and 0→3 is converted to a 2→3 dependency. The process is
repeated until no further shortcuts are found.

83

Task 0
int x = 5;

int y = 2;

Task 1
foo(&x);

Task 2
bar(&x);

Task 3
bla(&x,y);

x x

x

x

x,y

(a) Before pipeline transformation

Task 0
int x = 5;

int y = 2;

Task 1
foo(&x);

Task 2
bar(&x);

Task 3
bla(&x,y);

x,y

x,y

x,y

(b) After pipeline transformation

Figure 5.10: Task dependency created from Listing 5.10

Now that the dependencies of variable x have been transformed into a pipeline, variabe y imposes a
different kind of dependency. Considering synchronization between tasks happens more or less syn-
chronous and task 0 receives/generates new data sets each time, such that the new data set is called d
and the data transferred to the task 1 becomes d ′, and task 2 receives d ′′ and so on. In the example, task
0 would be able to transmit y directly to task 3 and task 2 would transmit x. This would however result
in a false output, since task 3 would get d from task 0 and d ′′′ from task 2. Thus, the variables have to be
tunneled through the pipeline until they reach their destination task to maintain timing of the different
data sets.

5.6.3.5 Setting up Inter-Core Communication

Now that the task dependencies are transformed into a pipeline with optimized predecessor and succes-
sor tasks, appropriate core-interconnects based on the communication pattern have to be chosen. This
is either a Core-Connector, a MemSwapDual or a Mailbox for one predecessor and Concentrator/Dis-
patcher, MemSwap Multi or Multiple Mailboxes for multiple predecessors/successors. Also, if a task
contains globally read variables by multiple cores, a global memory is instantiated. Mailboxes are cho-
sen when the target system is MicroBlaze. Core-Connector, Dispatcher and Concentrator are chosen
when the target system is SpartanMC and no DMA interconnects should be used. MemSwap modules
are chosen for SpartanMC targets with DMA interconnects enabled. The procedure of assigning the con-
nections is simply by iterating through all tasks and requesting their predecessor tasks. All transmitted
variables are attached to each connection.

5.6.3.5.1 Transferred Variable Alignment: All used core-interconnects transmit data in words and the
core-interconnect drivers work very efficiently with load and store instructions on word-width. However,
it could happen that a variable with a smaller data-type (in the following example a char) than the word-
size has to be transmitted. By default, the compiler doesn’t naturally align the char to word addresses.
Thus, when using the drivers with a char, it could happen that the char is located in the upper half-word
in the sender’s firmware. The char is transferred into the core-interconnect’s word-wide register’s upper
half word by the driver. The driver writes the core-interconnect’s register contents also in word-width,
if the receiver reads the char, a pointer to the char is handed to the driver. The assigned receiver’s char
value is not the sender’s char value, but the memory content below the sender’s char, if now the receiver’s
char declaration is located in the lower half-word by the driver.

Another problem resulting from there is, that the receiver also overwrites the other half-word in the
memory next to the received char due to the word wide load/store in the driver. This is a potential
source of error. The solutions on this problem are:

Align everything on word bounds: This potentially wastes memory.

84

Put send/received variables in a struct: All variable accesses will need to be replaced by the struct access.
It has to be paid attention, that the structures size ends at a word boundary.

Chars become Integers: Operations counting for example on a char overflow would not work anymore.

It was decided to wrap all send and received values smaller than a word into a struct, since this method
has compared to the others no obvious disadvantages.

5.6.3.5.2 DMA-Interconnect Variable Preparation: The DMA core-interconnects have BRAMs mapped
into the address-range of the processor. The DMA interconnects are leveraged in µStreams such that
all transferred variables reside in the interconnect’s DMA section. During the computation phase,
these variables can be read and modified. After the computation is done, the DMA interconnect
gets the signal for transferring the DMA section. To tell the compiler that the respective variable
should reside in the according interconnect’s DMA section, the compiler directive __attribute__
((section(".dma.*peripheral_name*"))) is appended to the variables. However, the compiler has
the freedom to choose the variable’s memory locations inside this section. This is not necessarily the
declaration order. During memory switching, the location of each variable is implicitly assumed. Thus,
these variables must be declared in a struct in the interconnect’s DMA section, to fix the location and
order of the variables. This procedure allows transferring large variables to the next core within just a
few cycles. If a core receives variables, modifies them and then has to forward them again to the next
core, a memory copy from one receiving interconnect’s DMA space to the sending interconnect’s DMA
space has to be executed.

Since all sent/received variables now reside in a struct, their original declaration is deleted and all
accesses to the variable are replaced by the access to the variable inside the struct. At first, it has been
assumed that the additional wrapping in a structure would cost performance through less efficient code.
Therefore, a minimal test with a structure of 16 integers which are summed up was created, it became
obvious that accessing the elements through the structure produces fewer instructions thus more efficient
code. The compiler was able to use offsets for the load instruction, which was not used in the other case.
With these results, all used variables in the IIR benchmark single-core variant were packed in a structure
and the execution time was measured. This revealed that the variant with all variables in structures
produced around 3% faster code. However, this behavior might change in newer GCC versions or other
test applications (tested with SpartanMC GCC version: 7.1.0).

5.6.3.6 Used Hardware Detection and Instantiation

The peripheral detection described in Section 5.7 allows inferring used peripherals through analyzing
a Cetus AST. The peripheral detection analyzes each tasks traversable separately, returning the used
peripherals of each code section. The found peripherals are attached to each task for later hardware
generation. After the analysis, a sanity check analyzes that each peripheral is only used in one processor
core. If the same peripheral is used in multiple cores, the program most likely will not work as expected
by the user (a more detailed explanation of this limitation is given later in Section 5.7.4). An error is
given which in turn can be explicitly ignored by the user to manually handle the problem later.

If the user has selected a parallelization with performance evaluation, additional peripherals and hard-
ware configurations are required in order to analyze different execution phases of the parallelized pro-
gram:

Receive application-state: The processor receives the used variables from its predecessor in the pipeline

Process: Run the application with the received data.

Send application-state: The processor sends the used variables that are needed in later application parts
to the next processor in the pipeline.

85

Listing 5.11: Simplified abstract XML hardware description
1 <hardware>
2 <subsystem>
3 <core name="spartanmc_0" type="spartanmc" firmware="core0" globalMem="true" perfCounter="true"/>
4 <peripherals>
5 <peripheral name="spartanmc_0_core_connector_master_0" type="core_connector_master"/>
6 <peripheral name="spartanmc_1_uart_0" type="uart"/>
7 </peripherals>
8 </subsystem>
9 <subsystem>

10 <core name="spartanmc_1" type="spartanmc" firmware="core1" globalMem="true" perfCounter="true"/>
11 <peripherals>
12 <peripheral name="spartanmc_1_core_connector_slave_0" type="core_connector_slave"/>
13 </peripherals>
14 </subsystem>
15 <wiring>
16 <connection>
17 <peripheral name="spartanmc_0_core_connector_master_0"/>
18 <peripheral name="spartanmc_1_core_connector_slave_0"/>
19 </connection>
20 </wiring>
21 </hardware>

To make these measurements, each processor’s performance-counter has to be activated. In case of
the MicroBlaze timer peripherals are added to each core. The generated code will start and stop the
performance-counter/timer before and after each execution phase. To present the measured results to
the user, they are collected on one processor and printed via UART. Thus, a UART peripheral is added to
the fist processor in the pipeline. The result collection is done through a global memory attached to each
core, where each core stores the measurement results. The result collection could also be done through
a concentrator, but the global memory was chosen since it’s slightly easier to handle in software.

Since most information about the generated multi-core system is already present, the idea is to generate
an abstract system description which can then be imported by a system-builder. A simplified hardware-
XML example is given in Listing 5.11. The description holds the generated cores (subsystems), along with
the used peripherals found through peripheral detection. Additionally, the chosen inter-core communi-
cation is added to each subsystem. Properties in the XML core entry tell whether performance counters
for a performance evaluation shall be enabled and if the core should be connected to a common global
memory. The wiring entries reflect the communication relation between the different cores. Thus, which
core-interconnects shall be connected. The system-builder jConfig has an interpreter plugin to read this
file and instantiate an according configuration. jConfig has automation routines for many common pe-
ripherals that configure and wire the peripherals based on the environment. In ideal case, the user will
just review the configuration and confirm it to generate and build the Verilog top-level design for the
designed system. However, the automation routines cover default values for common cases, the user is
required to manually modify for more exotic settings.

5.6.3.7 Software Generation

Finally, new firmware source-files for each created task are written. This includes writing a new main.c
for every task in a new source-code directory. Only needed headers and C-files like previously collected
(Section 5.6.3.3) are copied to a newly created firmware directory for each core. The natural way of
generating the C-files would be to use Cetus which is the case for all non main.c files. However, it is
evident that generating a new C-File in the required structure has a lot of programming overhead in

86

Listing 5.12: Simplified main.c Freemarker task template
1 #include "main.h"
2 <#list include_files as include>${include.print()}</#list>
3
4 #define CORE_ID ${core_id}
5
6 <#list task.localFunctions as function> ${function.definition}; </#list>
7
8 <#if containsISRs> ${printISRs}</#if>
9

10 void main() {
11 <#if isPerformanceEvaluated> initPerfEval(__GLOBAL_MEM_HEAP_END);</#if>
12
13 while (TRUE) {
14 //rec/send variables
15 <#list task.getUsedLocalVariables() as variable>${variable.getDeclarationWithAssignment()}; </#list>
16 <#list task.getBody() as body>
17 <#if body.type == BodyType.CODE>
18 ${body.getCode()}
19 <#elseif body.type == BodyType.CONNECTION_PERIPHERAL>
20 <#include " ${body.type}_template.ftl">
21 ...
22 </#if>
23 }
24 }

Cetus. Generating even simple things like for example a function call requires much effort since Cetus
requires that all AST components are properly linked. After the software generation, the AST is not
touched anymore by any other transformation pass. Thus, a thorough build AST is not that important
anymore. It was decided to use Apache FreeMarker35, a template engine, for generating parallelized
source-code. This results in a template main.c file which will be filled with necessary information from
the Java objects. The advantage of this method is that static code contained in all generated main-files
can just be written down and the structure of the program is widely visible to the developer. A simplified
template for the main.c file is shown in Listing 5.12. FreeMarker commands are initiated with <#cmd>
and ended with <\#cmd> references to java objects outside FreeMarker commands are initiated with
${object.getString()}. Thus, functions can easily be created through calling the toString method
on the Cetus AST traversables or includes by generating appropriate strings within Java.

Another important part is the endless while loop’s body creation. In Listing 5.12 this is only hinted in line
16 through task.getBody() and thus retrieving a list of typed bodies that are treated differently. The
generation of these bodies is done through the so called BodyBuilder. The BodyBuilder gets a task with all
previously collected information sorts out the necessary components that must go into the template by
type. Additionally, the bodies also have some content that is either a string to be directly pasted into the
template (Line 18 Listing 5.12) or further properties that will be for example queried by other templates
(Line 20 Listing 5.12).

5.6.3.8 Parallelization Visualization

The visualization was mainly designed to reflect the generated pipeline structure along with the ex-
changed variables between the tasks for debugging. Otherwise, the user will have to open all generated

35 https://freemarker.apache.org/

87

https://freemarker.apache.org/

firmwares to compare send and received variables and the hardware-XML to see hardware and commu-
nication structure. An example output is given in Figure 5.11.

Task 0 Task 1 Task 2
counter

image_arr
image_new

Figure 5.11: Generated pipeline structure and communication

88

5.7 PeripheralDetector

Note: Parts of this section have already been published in [95]. Self-citations are not marked in order to
improve the reading flow.

The purpose of the peripheral detector is the inference of a hardware configuration from source-code.
Peripheral detection becomes possible since hardware is usually interfaced through a software API which
can be categorized. Through the usage of soft-cores on FPGAs, peripheral components are not fixed, but
can be instantiated as required. It is possible that the user writes an application and a fitting hardware
infrastructure is generated automatically, which had to be done before manually. Since not all configura-
tion information can be drawn from the application, a good system-builder is needed that connects and
configures components intelligently with default configurations.

Besides peripheral inference, the tool is also usable to detect in which part of the source-code a periph-
eral is used. This allows the parallelizer to conclude how an application with peripheral usage can be
parallelized. Possible peripheral usage from multiple concurrent cores has to be handled.

In contrast to the other presented tools, the PeripheralDetector is not a standalone tool and thus can only
be used as a library for example in a transformation pass in µStreams. The peripheral detector could
only be used as a standalone tool when using µStreams without pragma annotations.

5.7.1 Workflow

To demonstrate the different usage methods of peripherals in SpartanMC (and many other SoC-Kits),
a small code example is provided in Listing 5.13. The example shows the usage of interrupts, a USB
interface as DMA peripheral and UART, SPI master and I2C master as memory-mapped-peripherals. The
sample application covers all types of peripherals that are possible in this environment. The example also
shows the different types of how peripherals can be interfaced: Comfortably through a driver function
call (line 10/12) or directly through the defined custom peripheral structure on hardware registers (line
8).

Listing 5.13: Usage of differnt Peripherals in a SpartanMC C-application
1 extern void heavyProcessingTask(int* data);
2
3 FILE *stdout = &UART_LIGHT_0_FILE;
4
5 void main() {
6 while(1){
7 interrupt_enable();
8 USB11_0_DMA−>data01[0] = 16;
9 int data[1000];

10 while(i2c_master_readn(I_SQUARE_C, 1,1000,&data));
11 heavyProcessingTask(&data);
12 spi_master_write(SER_PERI_IF_0, &data);
13 }
14 }
15
16 //ISR0 interrupt
17 void isr00(void) {
18 printf("HELLO");
19 }

89

The peripheral detection could work on a Cetus generated AST of an application. The provided AST can
either be a full C-program or a part of the program i.e. a branch of the AST, such as a procedure or a
basic block.

The proposed workflow can be seen in Figure 5.12. To detect peripherals, some knowledge of all avail-
able peripherals is needed. This information can be found in the peripheral module XML-descriptions.
For each component in the system-builder jConfig, a XML hardware description must exist. This module
description includes besides other information:

• Module name

• HDL sources

• Parameters (for configuring HDL sources)

• HDL input/output ports

• C-header to interface peripheral

• C-struct name

Especially module-name, C-header and C-struct can be used for peripheral detection. In jConfig the
peripheral address is aliased with the module name by default in the generated C-headers. This alias
can comfortably be used in the application. However, the peripheral name and thereby the alias of the
peripheral can manually be changed by the user. Furthermore, the C-struct holds the struct type that is
used for the alias definition. The C-header holds all function declarations that can be used to interface
the driver of the module/peripheral. This information can be used for inferring peripherals from the
AST.

If a peripheral has been detected in the given AST, a Java object will be created for each peripheral.
These peripheral objects can then be used in the program, calling the PeripheralDetector.

The peripheral detector has originally been developed for SpartanMC, but it is also usable for MicroB-
laze. The jConfig system-builder has XML module descriptions for many MicroBlaze peripherals and the
processor itself. The systems can be configured inside jConfig which will generate a Vivado project and
a respective system configuration through the Vivado TCL interface.

.c source-code

Cetus-
based tool

AST

PeripheralDetector
jConfig

module library

.xml.xml

Hardware
module

descriptions

object
Java objects

of used
peripherals

import

access

Figure 5.12: Detailed Peripheral-Detector toolflow (dashed=optional)

90

5.7.2 Implementation

5.7.2.1 Approaches for Peripheral Detection

The peripheral detection can be done in three ways:

Matching names of constants: As can be seen in the example (Listing 5.13), one has the possibility to
access the peripheral directly through a constant pointer/alias to the according memory-mapped-
peripheral address. The constants’ names most likely contain the name of the peripheral and thus
it is possible to distinguish between different peripherals. However, since the constants’ names can
be arbitrarily changed by the user, this method is only reliable if the constants’ name contain a
name of a peripheral unit.

Analyzing includes: This is also a very easy technique to identify which peripherals are used. Unfortu-
nately, sometimes includes are specified but never used in the code or several peripherals share the
same include file. Thus, this method is not used here.

Matching API function calls: Most peripheral units have a driver API which gives easy access to its func-
tionality. With a mapping between API functions and peripherals, a peripheral can be distinguished
by looking at the API calls. This method is more reliable compared to constant’s name analysis
since, if an API function is called it is very unlikely that the corresponding peripheral will remain
unused.

5.7.2.2 Detection Algorithm

As previously described, two methods for peripheral detection have been chosen: API function call and
constants matching.

5.7.2.2.1 API Function Call Matching:

• At the beginning the XML descriptions of all peripheral modules are collected and loaded into a
library to easily access all components.

• In the next step all function calls in the program are searched in the AST provided by Cetus. A
function call that is not resolvable in any C-header-file in the project directory is assumed to be a
system function call.

• Now, all functions declared in the peripheral’s header files or respectively in the API of the periph-
eral are fetched. For this purpose all header files from all peripheral libraries are parsed in a new
instance of Cetus. All unresolvable function calls will now be matched with the system library in
the new Cetus instance. The matching of course considers the function name, argument number
and types.

5.7.2.2.2 Constants Matching:

• In the first step the AST provided by Cetus is parsed. All peripherals are usually accessed through
constants, and they are replaced by the memory address through the preprocessor during compila-
tion. The constants are defined in an automatically generated header-file from the system-builder.
The constants are generated by the names of the peripherals to the upper case. Since the system-
builder will run after the peripheral detection, the constants for the peripherals are not yet defined.
Thus, all undefined constants can be collected from Cetus. As an optimization, all peripheral con-
stants/names already found by API function call matching are neglected.

91

• For each undefined constant found, first a check is performed if the constant follows the naming
conventions for peripherals (all uppercase letters). Then the peripheral names from the library are
searched, to determine if the constant contains the peripheral name.

• After the previous step either one or more peripherals can be found. If for example the constant is
“UART_LIGHT_0” and there is a module named uart and one named uart_light in the library, there
would be two matches and a decision which one to prefer is needed.

• If there are more than one peripheral modules matching, the peripheral name having more succes-
sive matching characters in common with the constant will be preferred.

• In the last step the matching peripheral is added to a list of found peripherals.

5.7.3 Sources of False Detection

In the following scenarios a (correct) peripheral detection is not possible and an appropriate warning
message will be printed:

Non inferable constant name: If a constant is only directly used via the peripheral’s structure and the
constant is named such that it does not match any predefined peripheral name, a detection is not
possible. A warning for this scenario will be created in every case, since all defined constants
except for the peripheral constants must be resolvable in this step. The user can either modify
the constant’s name to properly match against a peripheral name or manually add a peripheral in
the system-builder. Alternatively, if the defined constant is not intended as a peripheral a proper
#define should be created in the source-code.

Defining variables from a constant: If the constant’s address is assigned to a variable, the peripheral de-
tector sees the variable as an alias to that constant. The variable can then be modified in the
following code to point to a different address, which can lead to a false peripheral detection. A
warning for this scenario can be given if the aliasing variable is modified in the following code.
The modified variable however could or could not be a valid alias. Even though no modification
happens on the variable itself, it could be changed through direct memory modification. Thus, a
certain detection of this scenario is not possible. However, such code only appears if the program-
mer violates peripheral usage conventions through the freedom that the C-Language gives. Such
techniques are as well commonly considered as bad style and not recommended.

Duplicate recognition: A constant is used in a peripheral API call but the constant is matched by its
name against a different peripheral. In such a case the function call detection takes precedence.
An unwanted name clash with an existing peripheral is more likely than the correct usage of a
peripheral’s API with a pointer to a different peripheral type. The warning in this scenario can
always be certainly given. The user is prompted to change the constant’s name for the sake of a
more readable source-code.

5.7.3.1 Detection Accuracy

Several legacy projects have been used to test the accuracy of the detection algorithm. Most legacy
projects used two to four different peripherals with UART being most frequently used. Table 5.2 shows
that all detected peripherals were correct. Even tough, it is possible to construct scenarios where a
peripheral detection is not possible, results show that this rarely happens.

92

Table 5.2: Detection accuracy with different applications
legacy peripherals
application detected used types

Hello World 1/1 UART
Firewall 2/2 Ethernet, UART
VP8 Decoder 4/4 USB, UART, DVI, DDR
MJPEG2000 2/2 Timer, UART
MD5 hash 3/3 2x Timer, UART
SHA256 hash 2/2 UART, Heartbeat
Proximity 4/4 UART, ISR, SPI, I2C

5.7.4 Automatic Peripheral Detection on Multi-Core Systems

Since the peripheral detection can be used in µStreams, it is possible to automatically detect peripherals
and parallelize the source-code in one process. To accomplish this, the application source-code will first
be split up based on the annotations. µStreams provides access to the AST of each task. So instead of
parsing the whole input code, the parsing will be restricted on a task basis and peripherals are attached
to each task. Each task is mapped to one processor core in µStreams. If a peripheral is not exclusively
used by one core, there are different policies which could be pursued:

Map all tasks sharing a peripheral to the same core: This policy would break parallelization of tasks on
many levels. First of all, the increase in performance achieved through the constructed pipeline
is likely to be degraded since the slowest pipeline stage dictates the operating speed of the whole
pipeline. Secondly, only adjacent tasks in the pipeline could be merged otherwise the pipeline can
not work properly. Thirdly, in the worst case all tasks would be mapped to one core and thus the
parallelization would be lapsed.

Multiplex peripherals: For a few peripherals this policy might be a valid approach. Yet, not all peripherals
would deliver the intended behavior when accessed from multiple cores as when accessed by one
core.

Rearrange the source-code: Since the before mentioned methods have major drawbacks or do not work
in all cases, fitting the hardware to the software is not automatically solvable. The only possible
method is to restructure the source-code or the parallelization. The following possibilities exist to
resolve the issues:

• Use several instances of one peripheral type to regain exclusive access per task.

• Rearrange all peripheral accesses to be within one task through statement reordering or dif-
ferent parallelization choices. Necessary data could be communicated between the cores.

A case that needs special handling is the peripheral usage in an ISR. Since the ISR is called from outside
of the program flow, the used peripheral inside it cannot directly be associated with an application part
reached through the program flow of the main function. In such a case, the peripheral is associated with
the function call to enable the ISR, since this call will appear in the program flow.

93

6 Evaluation

The automatic parallelization is evaluated in the following. Firstly, the used applications and their charac-
teristics are described, along with generated application profiles. Secondly, the automatic parallelization
is inspected and the different optimization steps, as well as parallelization possibilities enabled one by
one. This gives detailed insights into optimization decisions by AutoStreams. In the next step, two
real-world systems with actual peripheral interaction are evaluated to see performance as it would be
in a real system. Afterwards, the quality of the solution provided by AutoStreams is evaluated through
the achieved prediction accuracy and an automatically found solution is compared with a manual paral-
lelization. The influence of multiple cores on the achievable clock frequency and application latency is
also evaluated. Last but not least, a comparison with related approaches is exercised and best practices
are proposed with the conclusions from the evaluation.

6.1 Test Applications

In total, four different applications are selected for parallelization: ADPCM, MJPEG2000, IIR Filter and
a Firewall. These four applications cover a range of complexity as well as data sizes. The handled data
size defines the communication overhead and the according computation complexity if parallelization is
beneficial.

The chosen benchmarks like ADPCM, JPEG compression and digital filters are contained in many bench-
mark suits like: CHSTONE[92], MiBench[110], Powerstone[111] and others.

However, the aforementioned benchmark suites contain way more benchmarks than the selected ones.
Other benchmarks from these suites were not chosen due to various reasons:

Complexity: For example the PARSEC benchmark suite[91] is especially developed to be parallelized for
multi-core processors. The presented benchmarks including their data sets are often to large for
low-performance embedded systems. The necessary memory cannot be provided. Another counter
example are low complexity benchmarks like "bitcount" or "qsort" in MiBench. If an application only
has few instructions, coarse-grained pipeline parallelization might not be beneficial. Retrieving the
necessary data might take much longer in an embedded system compared to the computation. It is
also barely thinkable that an embedded system just executes bit counting. These trivial applications
would rather be implemented as one of many intermediate steps in a real system.

Pipeline parallelism: The application has to exhibit pipeline parallelism. Thus, different loosely coupled
processing steps one after another. Some applications directly exhibit this kind of structure and
for some it is hidden and cascaded due to the program structure. The application would need re-
structuring or AutoStreams would need better mechanisms to restructure the application or detect
pipeline parallelism in these scenarios.

32 bit focus: Many reviewed applications implicitly assume 32 bit architectures due to their data struc-
tures and bit shifts with overflow. The 32 bit focus is fine for MicroBlaze, but not for the 18
bit SpartanMC processor and many other embedded eight and 16 bit architectures. Thus, it is
necessary to port these applications to make them agnostic to target bit-width.

Thus, it has been decided to stay with a small but representative number of benchmarks and analyze
those in more detail than it would be possible with numerous benchmarks.

94

6.1.1 ADPCM

Note: Parts of this section have already been published in [106]. Self-citations are not marked in order to
improve the reading flow.

ADPCM is a compression approach used in many places like ITU audio codec G.726 or for signal com-
pression in wireless sensing applications. The encoding procedure is used here, as it consumes more
processing power.

ADPCM is based on differential pulse code modulation, where only the difference between consecutive
values is transmitted (together with one initial absolute value). Due to the continuous nature of most
signals, this leads to a reduced variance of the transmitted values and thus to smaller codes (given that
differences are efficiently encoded, e.g. with Huffman encoding).

ADPCM increases the efficiency of this encoding process by adding a prediction mechanism. Extrapo-
lating the past samples, a prediction for the next value is made. Instead of transmitting the difference
between samples, now the difference between the prediction and the sample is transmitted. This differ-
ence is also called prediction error di = x i − x̃ i. The prediction is calculated with a prediction filter of
order M with the coefficients ai, i ∈ 0...M − 1 and the previous samples x i−M , ..., x i−1:

x̃ i =
M−1
∑

k=0

ak · x i−M+k

The decoder needs to know the first M samples and the filter coefficient. Thus, they are transmitted
directly.

A block of samples is passed to encoding and for each block, the filter coefficients are calculated in ad-
vance. To find the optimal filter, coefficients of the autocorrelation rk of the current block are calculated.
These values are used to build a system of linear equations, whose solution results in filter coefficients
that minimize the variance of the prediction error sequence (d1, ..., dN) [112].

After computation of the prediction parameters and transmitting the first M samples directly, the remain-
ing samples can be encoded by computing a prediction for each sample, computing the prediction error
as the difference between the sample and the prediction and then finding a clever binary representation
for the prediction error as described in the following. The prediction error sequence is mapped from
signed to unsigned integer via code spreading.

These unsigned integer values are coded with Golomb-Rice-Coding which is very effective for input
streams in which small values are more probable than large values. This is the case for the prediction
error sequence for input streams like audio signals which can be predicted effectively.

6.1.2 MJPEG2000

Note: Parts of this section have already been published in [101]. Self-citations are not marked in order to
improve the reading flow.

To implement a simple Motion JPEG 2000 encoder36, each single picture of the raw image stream
is compressed with the JPEG 2000 encoder and appended to the compressed image stream. In
Motion JPEG2000 no inter-frame coding exists.

As a code base we used the Honeywell Versatility Stressmark[113], which implements a JPEG 2000
encoder. The following steps clarify the computational effort and data access on the image during
encoding (referenced image tiles can be seen in Figure 6.1):

95

1
2

3
4

6 8

75

10

11

12

9

13

Figure 6.1: Image tiles as processed by the JPEG 2000 encoder

Discrete wavelet transformation (DWT): The wavelet transformation is used to shift relevant image in-
formation (low frequencies) to the upper most left part of the image, while less relevant image
data (high frequencies) are moved to the right and down. This is done in several recursive steps.
First tile 13 is convoluted with the wavelet. This means that the tile is analyzed row by row and
low frequency parts are stored in the left half of the row and high frequency parts in the right one.
This procedure is repeated on the resulting image for each column and tile 9 and 5.

Quantization: After the DWT, the resulting values are quantized. First, all values of tile 1 are searched for
maximum and minimum values. Based on these values, individual quantization steps are chosen
and the whole tile is scanned again, binning the values accordingly. This is repeated with tiles 2-4,
6-8 and 10-12. After these steps, tiles 10-12 are zero.

Run-length encoding: All equal and consecutive values of tile 1 are run-length encoded. The process is
repeated for tiles 2-4 and 6-8.

Entropy encoding: For further compression, tiles 1-4 and 6-8 are entropy encoded, giving each run-
length encoded value an individual bit pattern varying in length.

6.1.3 IIR Butterworth Filter

IIR Butterworth Filter is a digital Filter implementation based on the IIR example from Atmel Advanced
Software Framework37. Compared to FIR filters, IIR filters require less processing power/operations to
reach equivalent accuracy.

This example implementation describes a Butterworth IIR high-pass filter of 5th order. The filter expects
48+5 samples of a signal in the time domain as input. The input and the previous output of the filter
are both convolved with a static function (e.g. array) representing the desired filter characteristics. The
output of the two convolutions are then accumulated to form the new 48 output values.

6.1.4 Firewall

In [86, 114, 89] a network firewall is implemented as another showcase for a possible parallelization.
The goal is to filter packets between an internal trusted and an external untrusted network. The firewall
works on the network and transport layer of the OSI-Model. The implementation contains a stateless
and a stateful filter, which will be explained in the following.

37 http://www.microchip.com/avr-support/advanced-software-framework-(asf)

96

http://www.microchip.com/avr-support/advanced-software-framework-(asf)

Firewall

trusted network untrusted network
traffic traffic

Figure 6.2: Firewall zones

6.1.4.1 Stateless Filter

The stateless filter is implemented as a simple list containing either elements to block or to allow. The
following elements can be specified in the filter rules and multiple elements can be combined to form
more precise rules:

• Packet types TCP/UDP/ICMP

• Network ports

• IPv4 & IPv6 source and/or destination addresses or address ranges

The implementation compares the received packets header to each entry on the filter list via linear search
and discards or forwards the packet accordingly. Whenever a rule matches, the search is aborted and the
according action is executed. A default action is executed as specified (Allow/Deny) if no rule matches.
With slight optimizations, this is the same behavior as carried out by PF [115], the OpenBSD packet filter
and many other firewall implementations.

6.1.4.2 Stateful Filter

As TCP is a connection oriented protocol, each connection to the untrusted zone through the firewall
needs a response channel. The open response port is noted in the TCP header and randomly chosen
by the connection initiator. To increase security, all incoming TCP packets from the untrusted zone are
usually blocked if not explicitly allowed. A stateful firewall keeps track of all initiated TCP connections
to the untrusted zone. The opened response ports are managed in a dynamic filter table by the firewall.
Closing the TCP connection or a timeout will delete the filter table’s entry.

6.2 Application Profiles

Note: Parts of this section have already been published in [99]. Self-citations are not marked in order to
improve the reading flow.

A performance-profile of each benchmark is required to parallelize the applications with the method
proposed in Figure 5.1. Therefore, AutoPerf is started with the respective firmware source-code folder
as arguments. The different computation steps of the benchmarks are all carried out step by step in their
main functions, which is profiled by default.

The AutoPerf generated abstract hardware description and the instrumented firmware is automatically
loaded into the system-builder. Afterwards, the top-level hardware design is generated by the system-
builder. This process worked for all benchmarks except the firewall which has a rather complex hardware
environment in contrast to the other benchmarks. The user thus has to review the generated design and
configure for example the MAC address and connections to the Ethernet chip located on an FPGA Mez-
zanine Card (FMC) extension board. Alternatively, it is also possible to open a hardware design where
the firmware was previously developed on and simply enable the processor’s performance-counter.

97

The hardware is then synthesized and the software compiled and run on the FPGA. Alternatively, the
system can also be simulated through HDL simulators if no external interfaces are required or simulation
models exist for the respective interfaces.

The performance-profile is then printed via UART and captured by the SerialReader to transfer the profile
into a CSV-file. This file can then be handed to AutoStreams to select an appropriate task partitioning.

An embedded system usually has some kind of in- and output, usually a peripheral device with a cer-
tain protocol. Since this work aims towards parallelizing the whole embedded application peripheral
in- and output is also considered. For the current implementation, a copy-loop for all input data should
model data in- and output including a short UART message giving feedback that processing finished.
This models peripheral interaction but still allows easier evaluation without providing manual periph-
eral input each time. The effects of the additional overhead using real peripherals is discussed further
in Section 6.5. However, this simplified view neglects environment effects and allows easier detailed
evaluation.

The measured performance-profiles can be seen in Table 6.1. The different processing steps are num-
bered and have representative names. The duration of each processing step is given in cycles since it
has little dependence on the achieved clock frequency per FPGA and can easily be scaled. The initiation
interval is the sum of all processing steps. This is also the duration after which the application is able to
accept new input data. This time is intended to be reduced during parallelization. Thus, speedups take
this time as reference.

6.2.1 Benchmark Characteristics

Looking at the benchmark performance-profiles, the steps consuming most processing time are loops
like ADPCM steps 1&7, MJPEG2000 steps 1&2 and IIR step 1. The structure of these loops allows
processing with the LoopOptimizer. Thus, these steps can be broken down to smaller pieces and don’t
necessarily impose the critical step of the processing pipeline. The filter loops in the firewall benchmark
also consume the most processing time. These loops are cascaded in several functions intermixed with
other function calls and thus, AutoStreams will not be able detect and partition these loops. AutoStreams
would have to be extended to accept performance-profiles of multiple functions, and each function would
have to be annotated so that AutoPerf profiles this function in a separate run. Even though this might
be a useful extension, it increases the burden of the user and is not required for the benchmarks to be
parallelized successfully anyways.

After analyzing the benchmarks’ data structure, a rough prediction on the communication effort can
be made. The computation effort in contrast to the communication overhead defines how efficiently
parallelization can be realized.

ADPCM has a 4096 element char array as input data, which is used in all parts of the benchmark.
Additionally, an 1510 elements output data char array is used from step 6 on. Around 10 integers
and integer arrays with around 10 to 20 elements are used to store intermediate values of the
computation steps.

MJPEG2000 contains a 128x128 sized uncompressed image as input data, resulting in an 16384 element
array. The element type is 18-bit wide integer for SpartanMC and 16-bit short for MicroBlaze.
The input array is transformed in steps 1-6. Steps 7-9 each generate an 16384 element array
with intermediate results that will only be used by directly succeeding steps. The benchmark also
supports larger images, but the size of the arrays would exceed SpartanMC’s address space.

IIR has an input integer array of 48+5 elements containing fixed point values between zero and one.
The input is only used in step 1. The output data is an array of the same size, even though only 48

98

Table 6.1: Benchmark processing step runtimes in cycles for SpartanMC and MicroBlaze

(a) ADPCM: In units of 103 cycles (rounded)
Processing step SpartanMC MicroBlaze

0: receive input 29 36
1: read adaptive input 624 582
2: auto correlation 7 4
3: extract eqn. system 1 1
4: solve eqn. system 139 76
5: back-substitution 9 4
6: write coefficients 1 1
7: compression loop 1060 754
8: write results 11 14

initiation interval (
∑

) 1880 1472

(b) MJPEG2000: In units of 103 cycles (rounded)
Processing step SpartanMC MicroBlaze

0: read input 164 147
Fwd. wavelet 1: row loop 376 302

full image 2: col. loop 360 294
Fwd. wavelet 3: row loop 90 78

top left quarter 4: col. loop 93 76
Fwd. wavelet 5: row loop 23 20
top left eighth 6: col. loop 23 19
7: quantization 176 267
8: run-length encoding 63 63
9: entropy encoding 118 111
10: print output 8 6

initiation interval (
∑

) 1494 1385

(c) Butterworth IIR Filter: In units of cycles
Processing step SpartanMC MicroBlaze

0: read input 429 494
1: filter loop 12966 8801
2: move output 19 40
3: write results 1243 1181

initiation interval (
∑

) 12609 10516

(d) Firewall: In units of cycles
Processing step SpartanMC MicroBlaze

1: Receive eth. frame 2803 2094
2: Static filtering 1685 1663
3: Dynamic filtering 18194 16521
4: Send eth. frame 2815 1942

initiation interval (
∑

) 25497 22220

99

values are used as output. The other elements are required to efficiently perform the convolution
during processing. The output is used in all benchmark steps.

Firewall has varying input data length ranging from 64 to 1518 bytes Ethernet packets stored efficiently
in a ring buffer. The data to be analyzed is however only the IP, ICMP, TCP or UDP header of
the packet, not the payload which varies in size. The header information is required in each
processing step. The payload of the packet is written while the packet is received and might or
might not be required in the last step, dependent on the filter’s decision to forward or block the
packet. To generate the performance-profile, a TCP IPv4 packet of 736 Bytes is send through the
firewall configured with 50 static filter rules and 1000 open TCP connections as dynamic filter rules.
This should represent an average internet packet in a small office configuration like described in
Section 6.1.4.

6.3 Possible Parallelization & Performance Gain

In the following sections, AutoStreams is run without optimization options and then step by step enabling
different implemented optimizations to highlight their benefit, resulting in increased speedups or differ-
ent parallelization methods. Each benchmark is parallelized and tested with a 2x, 4x, 8x and 12x speedup
requirement. Thus, the most time-consuming task in the generated pipeline should be 2x, 4x, . . . as fast
as the total single-core execution time. Speedups are used here to unify results throughout the different
benchmarks and to have comprehensible numbers, even though AutoStreams expects a requirement in
a time unit. All parallelized designs target the Xilinx Artix-7 XC7A200T FPGA. The detailed evaluation
is measured in cycles to make results comparable and independent of achieved clock frequencies on
different FPGAs. It is usually a quite long process of trial and error and multiple synthesis runs to find
the maximum frequency for an FPGA design. The achievable frequency for the multi-core designs is also
assumed to have a small but not dominating influence. Thus, it is not carried out in this evaluation.
The influence of different inter-core-communication peripherals and core numbers on the maximum
frequency is later evaluated in Section 6.7.

The evaluation is done by starting the pipeline with a single data input. Each core measures the cycles
for receiving and sending communication overhead, as well as the execution cycles of the assigned task.
After each core finished processing, the results are stored in a global memory and the pipeline’s first core
outputs the measured results (for example via UART).

The firewall benchmark is only evaluated in the full-system evaluation in Section 6.5 and not during the
detailed pipeline stage evaluation. The firewall is the only system using global memory for communica-
tion and managing filter rules. Thus, processing only a single packet would not reveal global-memory
contention. However, evaluating multiple packets would distort measurements for the input and output
core due to active waiting in an endless while loop.

6.3.1 Parallelization without Optimizations

The first parallelization evaluation uses AutoStreams without any optimizations. Only 1-to-1 FIFO based
core-interconnects are available and loop splitting, DMA based interconnects and core replication with
1-to-N and N-to-1 interconnects is prohibited. Thus, only processing pipelines e.g. chains of processing
cores without replication are generated.

Figures 6.3 to 6.5 show the resulting performance for the different benchmarks. For each resulting
core, the cycles spent receiving and sending data through interconnects and the cycles for processing
are shown. Solid bars indicate the actual measured results after executing the parallelized design. The
dashed bars indicate AutoStreams’ estimation based on the chosen partition points, the performance
profile and the chosen communication peripheral’s analytical send/receive time model. The red bar

100

indicates the users timing requirement to achieve the different speedups. The black bar indicates the
actual achieved speedup. If the black bar is above the red bar, the user’s timing requirements are not
fulfilled.

The SpartanMC ADPCM benchmark with a 2x speedup requirement (Figure 6.3a) can not fulfill the
requirements. Only a speedup of 1.78 is possible, while AutoStreams estimates a speedup of 1.76.
AutoStreams recognizes that the requirement is not achievable without optimizations, gives a warn-
ing and returns the best possible configuration it can find. Looking at the ADPCM performance-profile
(Table 6.1) reveals that step 7 already takes 1060×103 cycles, which is more than the 2x speedup require-
ment of 940× 103 cycles. This prohibits successful parallelizations without further optimizations. The
figure also shows that the workload for core 2 is tiny and one could argue that adding the workload to
the previous core (core 1) would not make much of a difference. However, since AutoStreams could not
find any solution satisfying the requirements, selecting the solution with the smallest hardware overhead
is skipped and the one with the highest possible throughput is chosen. The only bound for this solution
are available FPGA resources. The parallelized design for MicroBlaze shows the same characteristics
as the SpartanMC design, only that the achieved speedup with 1.93 matches AutoStream’s estimated
speedup and comes closer to the requirement. Also noticeable is that the communication overhead is
tiny in contrast to the task workload, usually making the application ideal for parallelization.

receive calculate send

receive estimation calculate estimation send estimation

0 1 2
0

5

10

·105

core

cy
cl

es

max.
req.

(a) SpartanMC

0 1 2
0

2

4

6

8

·105

core

cy
cl

es

max.req.

(b) MicroBlaze

Figure 6.3: ADPCM 2x speedup requirement , no optimizations

For the MJPEG benchmark, a 2x speedup requirement can flawlessly be achieved (see Figures 6.4a
and 6.4b). The three core design achieves a speedup of 2.69 for SpartanMC and 2.64 for MicroBlaze.
In contrast to the ADPCM benchmark the communication overhead is now noticeable but not (yet)
dominating, even though an integer array with 16k elements has to be transferred from core to core.
Also, the workloads for each core are quite balanced due to number of intermediate calculation steps
that can be well distributed among the cores. A balanced task duration over pipeline is desirable to
have a smaller core count and thus fewer required hardware resources. However, the distribution for
the 4x speedup is not that balanced anymore, as it can be seen in Figures 6.4c and 6.4d. Through the
increased number of required cores fewer distribution possibilities exist. The SpartanMC design achieves
only a speedup of 3.32 and the Microblaze design only a speedup of 2.8. For the SpartanMC design, a
successful parallelization is prevented by the yet unsplittable processing step 1 (see performance-profile
in Table 6.1). Yet, the MicroBlaze design could achieve a higher speedup with an additional core and is

101

not yet limited by unsplittable processing steps. Adding another core to the pipeline would require more
BRAMs than there are available on the used Artix-7 FPGA. AutoStreams recognizes this automatically
through the analytical hardware model and thus does not suggest such a configuration. In contrast to
the other benchmarks, MJPEG requires 64 BRAMs per core instead of 8, due to the large image that has
to be stored on each core.

0 1 2
0

2

4

6

8

·105

core

cy
cl

es

max.

req.

(a) SpartanMC 2x speedup requirement

0 1 2
0

2

4

6

8
·105

core

cy
cl

es

max.

req.

(b) MicroBlaze 2x speedup requirement

0 1 2 3 4
0

2

4

·105

core

cy
cl

es

max.

req.

(c) SpartanMC 4x speedup requirement

0 1 2 3 4
0

2

4

·105

core

cy
cl

es

max.

req.

(d) MicroBlaze 4x speedup requirement

Figure 6.4: MJPEG 2x & 4x speedup requirement , no optimizations

From the performance-profile of IIR benchmark in Table 6.1 it is already quite clear that a parallelization
without optimizations would not be very beneficial. The benchmark mainly consists of one big processing
loop and only short processing steps before and after that can potentially be distributed to other cores.
Therefore, the parallelization with SpartanMC revealed only a speedup of 1.12 and with MicroBlaze
1.05. Nevertheless, the MicroBlaze parallelization with only two cores is surprising and one would
rather expect a three core design to achieve a better speedup, as seen with SpartanMC. Looking deeper,
AutoStreams correctly identified that the required communication overhead for the extra core would
be larger than the required processing time to accomplish this task. Thus, the processing steps were
combined and communication avoided, a step barely identifiable during manual parallelization. This
lead to a faster pipeline and also a reduced hardware consumption.

102

0 1 2
0

0.5

1

1.5
·104

core

cy
cl

es
max.

req.

(a) SpartanMC

0 1
0

0.5

1

·104

core

cy
cl

es

max.

req.

(b) MicroBlaze

Figure 6.5: IIR 2x speedup requirement , no optimizations

6.3.1.1 Estimation Accuracy

The MJPEG 2x speedup requirement in Figure 6.4a and also other measurements reveal a discrepancy
between the estimated and the actual processing cycles. The assumption is that the source lies in the
GCC’s compiler optimizations after parallelization. Since the source-code is split into several smaller
pieces during source-to-source transformation and parallelization, it is vastly restructured. For compiling
to the target architecture, the GCC38 is used afterwards. Due to the restructuring, now different compiler
optimizations are applied compared to the single-core variant where AutoStreams’ estimation is based
on.

To verify this statement, the IIR benchmark is chosen since it is the benchmark with the lowest complex-
ity, where understanding the produced assembler code is still feasible. The SpartanMC IIR 2x speedup
example has an error of 4.9% in the estimation of processing step 0 mapped to core 0. To support the
claim of the dependency on compiler optimizations, the IIR single-core variant is profiled again with GCC
compiler optimization -O0 (no compiler optimizations) instead of -O2. AutoStreams is again executed
with the new performance profile and the parallelized code also compiled without GCC optimizations.
Now, the AutoStreams estimation is 100% accurate to the cycle. However, this is of course not a practi-
cal usable option and only used for problem identification. To track the root of the error with compiler
optimizations, GCC’s generated optimized assembler code of the profiled single-core variant and the par-
allelized version are compared. As shown in Listings 6.1 and 6.2 the parallelized-variant uses the branch
delay slot, while the profiled single-core variant has a NOP in the branch-delay slot, yielding less optimal
code.

With these findings, the SpartanMC MJPEG2000 example is also built with GCC optimizations turned
off. However, there the optimized parallel-profile did not match AutoStreams’ estimations for core 1
while the others estimations are cycle accurate. Again, looking into the generated unoptimized code,
it became obvious that the parallelized source-code variant uses different techniques to access image
data. It uses load offsets l18 i0,OFFSET(i1) while the profiled single-core variant leaves the offset 0
and requires an additional command to implicitly calculate the offset in register i1. The first assumption
for the difference is a different scope of the used variables after parallelization which however could not
be confirmed. Thus, the SpartanMC GCC seems to have a problem with determinism in the generated
code.

38 The used GCC versions are 7.1.0 for SpartanMC and 7.2.0 for MicroBlaze

103

Listing 6.1: Generated assembler code, IIR bench-
mark processing step 0, parallelized
variant

...

3c8: mov i1, i0

3cc: add i1, i0

3d0: add i1, g2

...

3e4: bnez i2, 0x3cc

3e8: mov i1, i0

...

Listing 6.2: Generated assembler code, IIR bench-
mark processing step 0, single-core vari-
ant

...

5ec: mov i1, i0

5f0: add i1, i0

5f4: add i1, g2

...

608: bnez i2, 0x5ec

60c: nop
...

It is also observed that the estimation for the MicroBlaze variants only showed estimation errors of
maximum 3.5% and an average error of 0.5% with mostly under-estimation. The SpartanMC variants
showed an estimation error of maximum 25% and on average 8% with over- and under-estimation.

As conclusion, the MicroBlaze GCC implementation seems to deliver more consistent optimization results
compared to SpartanMC’s GCC implementation. The SpartanMC GCC backend seems to have room for
detecting possible optimizations.

For estimating the communication overhead, an estimation function is used, created from testing the
transfer duration for different data sizes. The observed estimation error for SpartanMC FIFO based in-
terconnects is at maximum at 45% for very small transmissions like in the IIR benchmark, where a few
cycles difference result in a huge value in percent. For all other benchmarks, the observed error is al-
ways below 10% with constant underestimation. For MicroBlaze, the maximum observed error is 55%
for small transmissions, while larger transmissions show an error below 20% with constant underestima-
tion. The source of error also lies in the different applied compiler optimizations. The transmission time
benchmark’s assembler-code, which served as basis to the estimation function is well optimized. In the
benchmarks, some compiler optimizations like LTO (link time optimizations) or IVOPTS (high-level loop
induction variable optimizations) are crashing and are thus not applicable. Disabling these optimization
passes for compiling the transmission time benchmark also revealed a lower performance, fitting the
observed error. The observed error number in general could be better, but the observed constant under-
estimation is very good, since it prevents AutoStreams claiming that there is no solution found due to
too large communication overhead, when there actually exists one.

6.3.2 Parallelization with Replication

Using Dispatcher, Concentrator or multiple mailboxes as interconnect, pipeline stages can be replicated
becoming superscalar. The replicated cores then work as a team on the same task. New input data is
assigned to an idle core of the team and thus, the input-data acceptance-rate is increased. As limitation,
cores with peripheral interaction cannot be replicated. This applies specifically to the first and the last
core in the pipeline, since they have to handle data in- and output via peripherals.

AutoStreams now has the option to either add another pipeline stage or replicate this pipeline stage.
The benefit of replication is that replicated cores speedup one or multiple assigned benchmark processing
steps exactly by the replication factor. Partitioning the processing steps to multiple stages requires at best
an identical duration of the processing steps. This is necessary to ideally leverage the pipeline, but it also
adds a communication overhead per pipeline stage. The required interconnect hardware-overhead for
replication in contrast to the regular pipeline is slightly smaller for the SpartanMC. For the Microblaze,

104

0 1 2
0

5

10

·105

core

cy
cl

es
max.req.

(a) SpartanMC 2x speedup requirement,
core 1: 2x replication

0 1 2
0

0.5

1

1.5

·105

core

cy
cl

es

max.req.

(b) SpartanMC 12x speedup requirement,
core 1: 12x replication

0 1 2
0

2

4

6

8

·105

core

cy
cl

es

max.req.

(c) MicroBlaze 2x speedup requirement,
core 1: 2x replication

0 1 2
0

0.5

1

1.5
·105

core

cy
cl

es
max.req.

(d) MicroBlaze 12x speedup requirement,
core 1: 12x replication

Figure 6.6: ADPCM with replication

an N times replication requires 2xN Mailboxes while a pipeline with an equivalent core number requires
only N+2 Mailboxes.

Just like before, the different benchmarks are parallelized through AutoStreams with replication enabled
and 2x, 4x, 8x and 12x speedup requirement.

The ADPCM benchmark in Figure 6.6 is very well parallelizable with replication39. For SpartanMC,
the requirements are always met from 2x to 12x speedup requirement. Also, higher speedups until
54x would be possible until core 0 becomes the critical pipeline stage. For lower speedups, core 0
and 2 basically just handle in- and output. The reason for this is simply the lack of sufficiently small
processing steps after the first and before the last processing step, as it can be seen in performance-
profile in Table 6.1. Evaluating ADPCM on MicroBlaze reveals that the execution time of core 1, holding
the critical pipeline stage, is always underestimated. Thus, AutoStreams estimates a fulfilled requirement
while the measurement is slightly below the requirement: 1.93x for a 2x requirement or 11.58x for a
12x requirement. The requirement can still be fulfilled by simply slightly tightening the requirement,
such that AutoStreams promotes an additional replication core.

39 The replicated cores’ initiation intervals (cycles) are already scaled according to the replication factor

105

0 1 2
0

2

4

6

8

·105

core

cy
cl

es

max.
req.

(a) SpartanMC 2x speedup requirement,
core 1: 2x replication

0 1 2
0

1

2

·105

core

cy
cl

es

max.
req.

(b) SpartanMC 8x speedup requirement,
core 1: 7x replication

0 1 2
0

2

4

6

8
·105

core

cy
cl

es

max.

req.

(c) MicroBlaze 2x speedup requirement,
core 1: 2x replication

0 1 2
0

2

4

·105

core

cy
cl

es
max.

req.

(d) MicroBlaze 4x speedup requirement,
core 1: 3x replication

Figure 6.7: MJPEG with replication

Figures 6.7a and 6.7b show the results for parallelizing MJPEG2000 with SpartanMC. A parallelization
up to 4x is automatically successfully possible. For the 8x requirement, AutoStreams estimates core
0 to be the critical pipeline stage, while through misprediction actually core 1 is the critical pipeline
stage resulting in a speedup of 7.01x. Tightening the requirements would not work since AutoStreams
sees no option to speedup processing step 0 on core 0 which it thinks is the critical pipeline stage. A
successful speedup would still be possible when AutoStreams’ generated µStreams task replicate pragma
is manually modified from 7x replication to 8x replication before executing µStreams. The parallelization
for MicroBlaze gives a speedup of 3.56x with a requirement of 4x (see Figures 6.7c and 6.7d). Since
each MicroBlaze needs so much memory (BRAMs) for executing the benchmark, more cores do not fit on
the used FPGA. AutoStreams automatically detects this hardware boundary and does not suggest higher
replication factors that would result in hardware overuse.

Parallelizing the IIR benchmark with SpartanMC succeeds up to an 8x requirement (see Figures 6.8a
and 6.8b). For the 12x requirement, AutoStreams estimates core 2 to be the limiting pipeline step
through misprediction, while actually the 10 times replicated core 1 is the limiting stage resulting in
a 11.22x speedup. Manually increasing the replication factor in the pragma would lead to a fulfilled
requirement. For MicroBlaze a replication up to 7 times resulting in a speedup of 6.78 is possible with

106

0 1 2
0

500

1,000

1,500

2,000

core

cy
cl

es
max.

req.

(a) SpartanMC 8x speedup requirement,
core 1: 8x replication

0 1 2
0

500

1,000

1,500

core

cy
cl

es

max.req.

(b) SpartanMC 12x speedup requirement,
core 1: 10x replication

0 1 2
0

2,000

4,000

6,000

core

cy
cl

es

max.
req.

(c) MicroBlaze 2x speedup requirement,
core 1: 2x replication

0 1 2
0

500

1,000

1,500

core

cy
cl

es

max.

req.

(d) MicroBlaze 8x speedup requirement,
core 1: 7x replication

Figure 6.8: IIR with replication

an 8x requirement. There again, the last core, which cannot be replicated since it handles the output,
becomes the critical pipeline stage.

In conclusion, replication increases the possible speedups of all benchmarks. Fast inter-core communi-
cation is required to achieve higher speedups for benchmarks with much communication overhead. For
example the MJPEG2000 8x parallelization in Figure 6.7b would be possible with lower communication
overhead on core 0 and a higher replication factor would then automatically be chosen since now core 1
is estimated to be the critical pipeline stage.

It is also obvious, that especially for the smaller speedup requirements, the pipeline is not well-balanced
and the first and last cores have almost nothing to do. For example core 0 with processing step 0, in
the ADPCM 2x speedup example shown in Figure 6.6a, is not able to accommodate processing step 1
as-well since this is a too compute intensive loop to still hold timing requirements. If the loop could be
partitioned and a fraction distributed to core 0, the pipeline would be more balanced and the speedup
would increase with the same number of cores.

6.3.3 Parallelization with DMA Interconnects

The influence of faster but more hardware intense DMA core-interconnects is evaluated in this section,
since in the previous section some requirements are not achievable due to communication overhead.

107

Table 6.3: SpartanMC core and interconnect hardware cost on Artix-7 XC7A200T FPGA
(EP=end-points/connections, each core in default configuration with 10 BRAMs memory)

Module LUTs Registers 18 bit BRAMs DSPs

SpartanMC core 899 202 10 1
Core-Connector + 2 cores 1910 458 20 2
MemSwap Dual + 2 cores 2247 141 24 2
Dispatcher 2EP + 3 cores 2875 695 30 3
Dispatcher 8EP + 9 cores 8512 2109 90 9
Concentrator 2EP + 3 cores 2838 691 30 3
Concentrator 8EP + 9 cores 8436 1995 90 9
MemSwap Multi 2EP + 3 cores 3348 610 38 3
MemSwap Multi 8EP + 9 cores 10975 1885 122 9

Firstly, the different interconnect characteristics are recalled to understand AutoStreams’ trade-off be-
tween DMA-based interconnects’ hardware cost and the speedup. The FIFO-based interconnects’ trans-
mission time grows linearly with the data size to be transmitted. The DMA-based interconnects have a
constant transmission time, but the required memory size must accommodate all transferred data.

In contrast to FIFO-based interconnects, the DMA-based interconnects use BRAMs, but also some LUTs
and registers. A short overview of the used hardware for the different interconnects is given in Table 6.3.
In the following, there is just a focus on the used LUTs, since this is also used in AutoStreams for
hardware cost comparison. Comparing the FIFO-based Core-Connector with the DMA-based MemSwap
Dual interconnect reveals that the MemSwap module requires in total 337 more LUTs.

The same applies for 1-to-N and N-to-1 interconnects used during replication. An 1-to-N connection with
two endpoints realized with a MemSwap Multi interconnect consumes 473 more LUTs than an equivalent
configuration with a Dispatcher interconnect. A configuration with eight endpoints consumes 2463 more
LUTs, when realized with MemSwap Multi interconnects. In this case, the additional LUTs are more than
two additional SpartanMC cores would cost.

In conclusion, DMA-based interconnects always consume more LUTs than their FIFO-based counter parts.
Replication with the same number of total cores uses more hardware than a FIFO-based pipeline without
replication, but less than a DMA-based pipeline without replication.

Once again the benchmarks are executed with 2x, 4x, 8x and 12x speedup requirement. The previous
design points: "no optimizations" from Section 6.3.1 and "replication" from Section 6.3.2 are again
evaluated with DMA-based interconnects enabled. For each design point it is observed if DMA-based
interconnects are automatically suggested by AutoStreams. If FIFO-based interconnects are suggested,
DMA-based interconnects are forced to observe the achievable speedup with DMA interconnects. The
results for the designs "no optimization" are shown in Table 6.4 and "replication" in Table 6.5. The
highlighted cell indicates AutoStreams’ suggestion.

The "no optimization" ADPCM benchmark 2x speedup requirement is still not achievable. DMA-
interconnects are automatically suggested, since they slightly increase the achieved speedup from 1.78
to 1.8 but still don’t fulfill the requirements. The same applies for the IIR 2x requirement and MJPEG
4x requirement. For MJPEG 2x benchmark, FIFO-based interconnects are suggested even though DMA-
based would be slightly faster. Since the required speedup is fulfilled anyways, the FIFO-based solution
is selected to minimize the hardware cost.

The replicated ADPCM benchmark shows that FIFO-based interconnects are always chosen since require-
ments can always be fulfilled and thus hardware saved. The DMA-variant is surprisingly always slower

108

Table 6.4: Achieved speedups and AutoStreams DMA design choice (highlighted) for previous designs
"no optimizations", only DMA peripherals enabled

Speedup 2x 4x
requirement FIFO DMA FIFO DMA

ADPCM 1.78 1.80 - -
MJPEG 2.69 2.87 3.32 3.68

IIR 1.12 1.14 - -

Table 6.5: Achieved speedups and AutoStreams DMA design choice (highlighted) for previous replicated
designs and DMA peripherals enabled

Speedup 2x 4x 8x 12x
requirement FIFO DMA FIFO DMA FIFO DMA FIFO DMA

ADPCM 2.04 1.94 4.07 3.88 8.15 7.77 12.22 11.65
MJPEG 2.24 2.95 4.48 3.97 7.01 8.0 - -

IIR 2.24 2.29 4.49 4.57 8.97 9.14 11.22 11.39

than the FIFO variant. Nevertheless, AutoStreams’ estimation predicts equal performance to FIFO vari-
ant. Comparing the parallelized measurement with the estimation reveals less optimized code when
compiling for the DMA variants and thus a prediction error of 5%.

For the replicated MJPEG 2x and 4x requirements, AutoStreams selects the FIFO based solution to save
hardware. The 8x speedup requirement with FIFO-based interconnects cannot be fulfilled due to com-
munication overhead on core 0 (see Figure 6.9a). Through the reduced communication overhead, pro-
cessing step 9 (see Table 6.1) can be placed on core 2 instead of the replicated core 1. Thus, the
communication overhead as well as the workload on the critical pipeline stage can be reduced, which
results in a fulfilled timing requirement with an 8x speedup (see Figure 6.9b).

0 1 2
0

1

2

·105

core

cy
cl

es

max.
req.

(a) FIFO-interconnects, core 1: 7x replication

0 1 2
0

1

2

·105

core

cy
cl

es

max.req.

(b) DMA-interconnects, core 1: 7x replication

Figure 6.9: SpartanMC MJPEG replication with and without DMA-interconnects, 8x speedup requirement

For the replicated IIR benchmark, FIFO interconnects are selected up to 8x speedup requirement since
the requirements can always fulfilled. In the 12x requirement as shown in Figure 6.8b, the last stage
is estimated to be the slowest stage and using DMA interconnects would increase the speedup. The
replicated core 1 would become the critical pipeline stage without the communication overhead and

109

0 1 2
0

500

1,000

1,500

core

cy
cl

es
max.req.

(a) FIFO-interconnects, core 1: 10x replication

0 1 2
0

500

1,000

1,500

core

cy
cl

es

max.req.

(b) DMA-interconnects, core 1: 11x replication

Figure 6.10: SpartanMC IIR replication with and without DMA-interconnects, 12x speedup requirement

thus AutoStreams decides to increase the replication factor by one. Even though AutoStreams warned
that the requirement could not be fulfilled, the speedup is increased to 11.39 with DMA interconnects.

All transferred variables have to be put in a struct for using DMA-interconnects, which is placed into
the DMA address range. AutoStreams’ estimation accuracy is also evaluated, since the variable trans-
formations to struct accesses are a heavier source-code transformation compared to the use with FIFO
interconnects. The observed average error for estimations with DMA interconnects is 7.3% and with
FIFO interconnects 8%.

6.3.4 Parallelization with LoopOptimizer

It was already shown in the previous sections that it is often hard to create balanced pipelines due to
the granularity of the processing steps. It was observed in the benchmarks, that mostly single loops
dominate the execution time of the whole application. Thus, this step evaluates how well AutoStreams’
implemented loop partitioning technique works and how it improves parallelization.

AutoStreams is executed with 2x to 12x speedup requirement with loop partitioning enabled, but repli-
cation disabled. Replication is disabled, since loop partitioning shows its strengths best for long pipelines
and replication in the benchmarks only uses three stage pipelines with the middle stage replicated. There
are also scenarios where replication is not possible, for example if a processing step uses peripherals.

Parallelizing the ADPCM application with SpartanMC fulfills the requirement up to a 2x speedup (see
Figures 6.11a to 6.11c). For a 4x speedup requirement and higher, the requirement has to be restricted
in a second parallelization to meet the requirements. For the 12x requirement DMA interconnects are
automatically selected. Two processing cores can be saved, due to the reduced communication overhead.
The requirements are not met due to processing step 1 (see Table 6.1). The processing step’s loop is in
the 2x parallelization mapped to core 0 and for further parallelizations partitioned and distributed over
the first cores. Cores containing parts of this loop are highly underestimated by AutoStreams in most
parallelizations. After looking into the assembler code, it became obvious that there are many possible
loop optimizations omitted. This effect is increased through multiple nested loops. Since core 4 in the
12x speedup requirement only has a very short runtime, there is also the assumption that some iterations
of the loop have different complexity. To verify this statement, the code is inspected and the loop is
profiled with AutoPerf. However, the assumption could not be verified and each iteration has the same
runtime, thus only compiler optimizations cause the difference. Other partitioned loops can be optimized
very well even after partitioning and come very close to the expected duration. The parallelization with
MicroBlaze is also not showing that high estimation errors, which also indicates missing optimization

110

0 1 2
0

5

10

·105

core

cy
cl

es

max.

req.

(a) SpartanMC 2x speedup req.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

·105

core

cy
cl

es

max.

req.

(b) SpartanMC 8x speedup requirement

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

·105

core

cy
cl

es

max.

req.

(c) SpartanMC 12x speedup requirement using DMA interconnects

0 1 2 3 4
0

1

2

3

4

·105

core

cy
cl

es

max.
req.

(d) MicroBlaze 4x speedup requirement

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

·105

core

cy
cl

es

max.req.

(e) MicroBlaze 12x speedup requirement

Figure 6.11: ADPCM with loop optimization

with the SpartanMC GCC compiler and more consistent behavior of the MicroBlaze GCC. All speedup
requirements for ADPCM with MicroBlaze were fulfilled, even though for 12x requirement only tightly
(see Figures 6.11d and 6.11e).

A speedup of up to 4x can be achieved for parallelizing the MJPEG2000 benchmark with SpartanMC
(see Figures 6.12a and 6.12b). Since the MJPEG2000 application requires much memory, the BRAMs

111

0 1 2
0

2

4

6

8

·105

core

cy
cl

es

max.

req.

(a) SpartanMC 2x speedup req.

0 1 2 3 4
0

2

4

·105

core

cy
cl

es

max.req.

(b) SpartanMC 4x speedup requirement, with DMA

0 1 2
0

2

4

6

8
·105

core

cy
cl

es

max.

req.

(c) MicroBlaze 2x speedup requirement

0 1 2 3 4
0

2

4

·105

core

cy
cl

es
max.

req.

(d) MicroBlaze 4x speedup requirement

Figure 6.12: MJPEG with loop optimization

become the critical resource and not many cores can fit on the used FPGA. 13 cores are possible with
FIFO-interconnects and 8 cores are possible with BRAM-consuming DMA-interconnects. However, a
valid solution would require 12 cores with DMA interconnects or 16 cores with FIFO interconnects.
DMA interconnects are suggested by AutoStreams for the 4x speedup requirement, since this saves one
processing core in contrast to the usage of FIFO interconnects. However, due to the increased hardware
consumption of DMA interconnects, AutoStreams estimates to save 690 LUTs and the measurement after
synthesis revealed that actually 423 saved LUTs. Thus, the decision is correct even though estimation is
slightly inaccurate.

Using MicroBlaze for parallelization reveals that a 4x speedup is not possible anymore (see Figures 6.12c
and 6.12d). Communication becomes more dominant and more processing cores cannot be used since
no more BRAMs are available on the FPGA. AutoStreams gives a warning and returns the best possible
solution with a speedup of 3.57.

For parallelizing the IIR application with SpartanMC, DMA-interconnects are automatically chosen from
the 4x requirement on, since communication would otherwise become very dominant as it can be seen
for MicroBlaze in Figure 6.13. For the 8x speedup requirement, only five loop iterations are executed
per core. Through slightly false execution time estimation only a speedup of 7.76 can be achieved.
Parallelizing the 8x requirement only with FIFO interconnects would result in a 24 instead of a 12 core
design. The 12x requirement achieves a speedup of 11x and each core executes only two iterations.

112

0 1 2 3 4
0

1,000

2,000

3,000

4,000

core

cy
cl

es

max.
req.

(a) SpartanMC 4x speedup req., DMA

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1,000

2,000

core
cy

cl
es

max.req.

(b) SpartanMC 8x speedup requirement, DMA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

500

1,000

1,500

core

cy
cl

es

max.
req.

(c) SpartanMC 12x speedup requirement, DMA

0 1 2
0

2,000

4,000

6,000

core

cy
cl

es

max.
req.

(d) MicroBlaze 2x speedup req.

0 1 2 3 4 5 6 7 8 9 10 11
0

1,000

2,000

3,000

core

cy
cl

es

max.req.

(e) MicroBlaze 4x speedup requirement

Figure 6.13: IIR with loop optimization

Higher speedups are not possible since the first and last processing step which cannot be parallelized or
partitioned become the limiting step.

With MicroBlaze the 4x requirement cannot be reached, and slightly restricting the timing requirement
would work to just fulfill the 4x requirement. Further parallelization is not possible since the communi-
cation time dominates to much. Even for the 4x requirement, communication consumes about 66% of
the core’s processing capabilities.

113

Concluding the loop optimizations, it is a well applicable technique to increase the granularity of critical
processing steps since these are often loops. With the loop splitting technique, well-balanced pipelines
can be generated. In practice the GCC’s applicable optimizations after transformation are much more
limited and therefore a slightly higher discrepancy between AutoStreams’ estimation and the actual
performance must be accepted. However, the positive effects outweigh the negatives, since the negative
effects can usually be corrected through stricter timing requirements or manual modification of the
µStreams pragmas.

6.3.4.1 LoopOptimizer using Loop Fission Instead of Splitting

For the previous loop optimization benchmarks only loop splitting is used. However, the LoopOptimizer
also has the possibility to perform loop fission. The IIR benchmark is used to generate a two core
system and compare both methods. As it can be seen in Figure 6.14, loop fission results in the smaller
communication overhead. This fact lies in the nature of loop fission, which separates independent
statements of a loops body into multiple loops with the same iteration count. Since statements are
independent, also the dependencies and thereby communication is minimized.

0 1
0

0.5

1

·104

core

cy
cl

es

max.

req.

(a) SpartanMC with loop fission

0 1
0

0.5

1

·104

core

cy
cl

es

max.

req.

(b) SpartanMC with loop splitting

0 1
0

2,000

4,000

6,000

core

cy
cl

es

max.

req.

(c) MicroBlaze with loop fission

0 1
0

2,000

4,000

6,000

core

cy
cl

es

max.

req.

(d) MicroBlaze with loop splitting

Figure 6.14: IIR 2x speedup requirement, loop splitting VS loop fission

The downside of fission is firstly that it is seldom applicable. Fission is only applicable with IIR from all
used benchmarks. I assume the nature lies in programmer’s thinking structures, to solve transformation
steps one after another. Also, separating independent transformation steps in different loops usually
increases the understandability of the code. In practice, it is seldom possible to extract a high number of

114

independent parts with fission. At least, there are usually more loop iterations that can be leveraged with
loop splitting than independent body statements. This can also be observed with the SpartanMC example
in Figures 6.14a and 6.14b. With loop fission, the two extractable independent code parts have different
execution time and thus result in an unbalanced pipeline which is slower than a pipeline generated with
loop splitting.

6.4 AutoStreams Estimation Accuracy

AutoStreams estimates required hard- and software during parallelization. The estimation quality
thereby also influences the quality of the parallelized system in terms of pipeline balancing and min-
imal hardware selection. Sources of software estimation errors have already been discussed in Sec-
tion 6.3.1.1. Thus, the following sections should give a quantitative overview of all measured systems to
observe maximum and average errors.

6.4.1 Hardware Estimation

The hardware estimation accuracy is especially relevant if AutoStreams needs to make a choice between
different possible hardware configurations. For example, is it better to use replication or an additional
pipeline stage? Choosing a non optimal solution in such a scenario might not be too bad, as long as
speedup requirements are fulfilled. The estimation is also required to estimate if a given design fits in an
FPGA or user specified hardware limits. In such a scenario it would be bad to reject a good design point
due to hardware overuse, while it would actually be synthesizable. Thus, it would be good to either have
100% accurate estimators or rather slightly optimistic estimators to avoid false negative rejection.

−10 −5 0 5 10
0

2

4

6

8

relative estimation error in percent

#
oc

cu
ra

nc
e

(a) LUT

−15 −10 −5 0
0

5

10

15

relative estimation error in percent

#
oc

cu
ra

nc
e

(b) Register

Figure 6.15: SpartanMC hardware estimation error

Figures 6.15 and 6.16 show a histogram of the realtive estimation error in percent for LUTs and registers.
The data for the diagrams is collected by synthesizing design point sweeps for the ADPCM, IIR and
MJPEG2000 benchmark. Processor pipelines with two up to 25 SpartanMC and MicroBlaze cores and
all possible interconnects are synthesized. The same procedure is repeated for a replicated three stage
pipeline with intermediate core replicated from two, up to a factor of 10.

The synthesis target is the Artix-7 XC7A200T with a target frequency of 66MHz. This frequency is chosen
since it is achievable for almost all designs.

For synthesizing the SpartanMC systems, Xilinx ISE 14.6 is used due to better SpartanMC tool support
and for Microblaze systems, Xilinx Vivado 2018.2.1 is used. All default synthesis options were used for

115

−6 −4 −2 0 2 4
0

5

10

relative estimation error in percent

#
oc

cu
ra

nc
e

(a) LUT

−4 −2 0 2
0

2

4

6

8

relative estimation error in percent

#
oc

cu
ra

nc
e

(b) Register

Figure 6.16: MicroBlaze hardware estimation error

both tools, only the optimization level for ISE synthesis and mapping effort is set to high. Officially,
Xilinx suggests to use Vivado for 7 series FPGAs, but according to Xilinx FAQs40 ISE supports the first
released 7 series models (including XCA200T), but not all models.

As it can be seen in Figure 6.15 the achieved absolute value of the relative LUT estimation error for
SpartanMC is mostly below 7% with a tendency to slight underestimation. The observed maximum
absolute error is at 12%. The estimation error is assumed to come from an unfortunate random seed
of the synthesis placement process. To verify this assumption, the random seed has been explicitly set
via the -t option to a different random value. After the synthesis of the design with the former 12%
error, the new random seed results in a design with much fewer LUTs and thus with a relative estimation
error only 2%. The estimation accuracy for registers is at absolute maximum 16%, but mostly below 1%
with a tendency for underestimation. The maximum register error comes from a design with very high
timing pressure, since the synthesis struggles to achieve the demanded design frequency. The synthesis
has options to reduce the fan-out of a register by duplicating it and thus reducing the register’s load and
therewith improve the speed of the circuit. Another technique, called retiming, is used to move registers
along combinatorial paths to improve timing. This might also lead to more registers. After looking into
the generated design with the unexpected high register usage, it became visible that these techniques
must have been applied. One module holds the majority of the critical path and it has an extremely
high register usage. Expected are 45 registers, but actually 285 registers are used by the module. The
estimation error is below 2% for another synthesis run with reduced target frequency.

The LUT estimation for MicroBlaze designs in Figure 6.16a has a maximum absolute error of 6% but is
mostly below 3%. The register estimation in Figure 6.16b has similar error rates. In contrast to the LUT
estimation, AutoStreams has a tendency to slightly overestimate the registers.

The LUT estimation accuracy has to be taken with caution. The synthesis report counts the 7-series
6-input LUTs, configurable as two 5-input LUTs, each as one LUT independent of the actual width.
However, the synthesis might vary implementing a function with 5- or 6-input LUTs. The decision for
one LUT type might also depend on the timing pressure. Thus, for the same design, the number of LUTs
in the report may vary, leaving the reference value also with a certain variance.

The estimation accuracy for BRAMs and DSPs shows no error. DSPs can easily be estimated since each
core has a fixed number, thus only the core count is required. The same applies partly for BRAMs,
the configured memory size is directly reflected in BRAM numbers. Each core’s memory size in the

40 https://www.xilinx.com/support/answers/62332.html

116

https://www.xilinx.com/support/answers/62332.html

generated many-core design is the same as the one of the initial single-core design. This method is a
quite pessimistic approach but is proven to work well for all benchmarks41. DMA-based interconnects
also require BRAMs. The used BRAMs are again directly related with the used DMA address range and
the necessary range is calculated by AutoStreams based on the communication variables’ sizes. Thus, it
can accurately be calculated.

It is also observable that usually BRAMs are the limiting factor for the number of cores synthesizable
on an FPGA. For the Artix-7 XCA200T, 25 SpartanMC cores with default memory size of ten 18-bit wide
BRAMs (including two BRAMs for the register file) already uses 250 BRAMs. This is already roughly
35% of the available BRAMs, while only 20% LUTs, 3% registers and 4% DSPs are used. The BRAMs
are also the limiting factor for MicroBlaze multi-core designs. Other FPGAs like Spartan-6 family have a
similar ratio of BRAMs compared to other components.

As a result, the bounds of parallelization in terms of FPGA components can be exactly calculated, since
BRAMs are accurately estimated.

6.4.2 Application Runtime Estimation

Reasons for estimation errors have already been discussed in detail in Section 6.3.1.1 and Section 6.3.4.
The estimation error is identified there to come from not applicable compiler optimizations after paral-
lelization. Figures 6.17 and 6.18 show the estimation errors for all previously measured benchmarks in
Section 6.3. The errors are presented as relative error in percent between measurement and estimation
for calculation, receive and send time in cycles and per core.

The calculation relative estimation error in percent for SpartanMC in Figure 6.17a shows overestimation
as well as underestimation, while underestimation slightly dominates. The maximum observed error is
at -52% for the IIR 12x speedup requirement with loop optimizations (see Figure 6.13c, page 113). The
IIR source-code, which is mainly one loop, is split into 21 smaller loops with only two iterations and
each split loop has an estimation error of -52%. Since each loop is estimated with only 933 cycles, a few
cycles difference already have a huge impact on the percental error.

The estimation error for MicroBlaze systems, shown in Figure 6.18a, is not that high which might be due
to the better compiler optimizations. The relative estimation error is mostly between -10% and 0% with
extreme values from -16% to 20%.

The receive estimation errors for SpartanMC in Figure 6.17b are below 10% and for MicroBlaze in
Figure 6.18b below 15% on absolute. Send estimation errors for SpartanMC in Figure 6.17c are in the
worst case -36% and for MicroBlaze in Figure 6.18c even -57%. The maximum errors for both systems
primarily occur in scenarios with a low communication overhead. Thus, if communication only takes a
few hundred instead of several thousand cycles, a few cycles estimation error result already in a high
percental error. Interestingly, the AutoStreams estimator has support points at these exact points. The
estimator is based on a testbench with measurements for different transferred data sizes. After looking
into test’s assembler-code, it became obvious that the testbench yields well optimized code. However,
the parallelized design receive function’s assembler-code often has room for improvement. As already
stated in Section 6.3.1.1, the cause lies in not applied compiler optimizations. This also explains the
tendency for underestimation.

What is also significant are the peaks in the receive and send estimation error histograms. The peaks for
SpartanMC at 0% error represent all estimations for DMA interconnects. Since the time for switching

41 For a better memory utilization one would need a tool to calculate the maximum memory usage of source-core including
the used stack, which is problematic for recursive functions. Alternatively, one needs to reduce the memory size of
each core and observe when errors appear during program execution. For many-core systems, this is manually quite
exhausting and not certain to deliver a guaranteed memory bound.

117

−60 −40 −20 0 20
0

10

20

30

relative estimation error in percent

#
oc

cu
ra

nc
e

(a) Calculation

−10 −8 −6 −4 −2 0 2
0

50

100

relative estimation error in percent

#
oc

cu
ra

nc
e

(b) Receive

−30 −20 −10 0
0

50

100

relative estimation error in percent

#
oc

cu
ra

nc
e

(c) Send

Figure 6.17: SpartanMC cycles estimation error of different parallelized software parts

the memory is fixed it is well predictable. The other peaks represent FIFO interconnects. For all systems,
loops have to be partitioned for successful parallelization. These loop partitions are often of equal or
similar size and they are mapped to one core each, such that the programs look very similar for these
cores. This also results in identical applied compiler optimizations. Thus, the same prediction error also
occurs for these cores, which explains the polarized peaks.

118

−20 −10 0 10 20
0

2

4

6

8

relative estimation error in percent

#
oc

cu
ra

nc
e

(a) Calculation

−15 −10 −5 0 5 10 15
0

5

10

15

relative estimation error in percent

#
oc

cu
ra

nc
e

(b) Receive

−50 −40 −30 −20 −10 0
0

5

10

15

relative estimation error in percent

#
oc

cu
ra

nc
e

(c) Send

Figure 6.18: MicroBlaze cycles estimation error of different parallelized software parts

6.5 Parallelization with Peripheral In-&Output

In this section, two benchmarks are parallelized with real peripheral in- and output. The performance is
measured under these real-world conditions and it is proven that the concept is practically applicable.

6.5.1 Firewall

As a real-world example, different parallelization variants of the firewall are evaluated in the following.
The firewall is configured according to the assumptions described in Section 6.1.4. And the performance-
profile from Section 6.2.1 is taken. AutoStreams is used with the measured performance-profile from
Table 6.1 and requirements from 2x to 10x speedup.

6.5.1.1 Generated Hardware

AutoStreams does not have much degree of freedom for parallelizing the firewall in contrast to other
benchmarks. Firstly, the filter loop is cascaded in multiple function calls, which cannot be partitioned
with the LoopOptimizer. Even if it would be possible, loop partitioning is mostly helpful for creating
processing pipelines and (long) pipelines are not desirable for a firewall. If an early pipeline filter stage
finds a match in the filter tables, the packet would have to be handed through the pipeline and cores

119

located at the end of the pipeline would often idle through a previous rule match. Also, this would
drastically increase the packet’s latency. Thus, the only reasonable parallelization for AutoStreams is to
put the Ethernet frame receiving, sending and filtering on an extra core. The filter cores are replicated
to increase the performance. After 8x replication for SpartanMC and 9x replication for MicroBlaze,
the function to receive Ethernet frames theoretically becomes the critical pipeline step that cannot be
parallelized due to peripheral interaction.

TCP connections for dynamical filter-rules need to be centrally managed and synchronized among all
filter cores. Each of the replicated cores needs a list of the currently open TCP connections along with
the possibility to add a new TCP connection or discard a closed one. Thus, the easiest solution is a global
memory for the filter tables.

1-N
interconnect

Core
2x

Ethernet RX
. . . global mem. Core

2x
Ethernet TX

Core

Core

Figure 6.19: Firewall hardware design

AutoStreams’ suggested hardware design is displayed in Figure 6.19. The core receiving the Ethernet
packets puts them into the global memory and forwards the index with 1-N interconnects to the filter
cores. Each filter core reads the packet header at the received index and matches it against the filter
rules also residing in the global memory. On a match, the packet is either discarded from the memory or
a forward allowed flag is set on that packet. The Ethernet send core waits for the forward allowed flags in
the global memory and then copies the packets to the Ethernet hardware.

The achievable frequency of the generated design is widely independent of the core count. The critical
path goes through the Ethernet peripheral or the global memory depending on the synthesis run. The
resulting frequencies are 60MHz for SpartanMC and 125MHz for MicroBlaze.

6.5.1.2 Performance Evaluation

The generated designs for 2x,3x, up to 9x speedup are evaluated with a traffic-pattern that should fit to
a realistic application scenario.

Since a firewall’s performance heavily depends on the number of filter rules and the packet types, a real-
istic setting has to be created for the number of static and dynamic filter rules and the mixture of packet
types. A small office with around 20 computers is used as evaluation scenario. Thus, the Rechnersysteme
institution’s firewall also matches this scenario and it currently holds 50 static TCP and UDP filter rules.
This parameter is used to configure the static filter rules. The number of open connections per computer
is measured with netstat under normal computer usage with internet surfing and reveals around 5 to
50 open TCP connections depending on the usage. Thus, the open TCP connections are set to 1000 open
connections for 20 computers.

The mixture of packet and protocol types has been researched by Murray[116, 117]. It was found that
the network traffic consists of 89.55% TCP and 9.91% UDP packets. Furthermore, the packet size on
average has been measured with 736 Bytes. However, 90% of the observed packets were either below

120

100 Bytes or more than 1300 Bytes. Google publishes daily statistics42 for the ratio of IPv6 and IPv4 calls
to their servers. On 21th of February 2019 this has been 22.45% IPv6 traffic.

To generate a worst-case scenario, the traffic and filters were configured to have no filter matches forcing
the firewall to traverse all rules.

A packet generator Python script has been written and configured with the above numbers to produce a
realistic packet mix. The script generates 500000 packets and sends them at full speed to one 100Mbit
network port of the firewall. The script is executed twice at the same time to also fully utilize the
firewall’s second network interface and simulate bidirectional traffic. The network traffic is measured
with the Linux tool vnstat on the computer attached to the firewall network interfaces. vnstat allows to
capture the packet send and receive rate in Mbit/s and packets/s. The maximum achieved throughput
rate for the firewall input is measured with 193 Mbit/s and 32845 packets/s, which is close to the
optimum of 200 Mbit/s. Since the used processors are not too powerful, they struggle with forwarding
and filtering at this rate. Thus, there are (high) chances for packet drops due to network interface’s
full ring-buffer. The measured receive throughput with vnstat are thus the throughput rates that the
firewall is capable to handle. The measured throughput in Mbit/s at the receive interface of the PC
is mainly a metric for the performance of the firewall’s network interfaces. Thus, how fast the used
processor can serve the network interface. The throughput in packets per second rather shows the filter
capabilities of the firewall, since every packet, independent of the size has to be matched against the
filter rules. The measured throughput rates for the different suggested AutoStreams designs are shown in
Figures 6.20 and 6.21. The figures show measured throughput in Mbit/s and packets/s for the different
parallelized requirements with 2x, 3x,. . . speedup summed up for both firewall network interfaces. The
1x speedup measurement point indicates the single-core firewall implementation. Hatched bars indicate
the packets/s or Mbit/s throughput needed to fulfill the desired requirement. The dashed line shows
the maximum possible throughput defined by the network interfaces and the used packet mixture. The
speedup is set as processing time requirement with respect to the performance-profile, but detailed time
measurements are not feasible since the profiler would distort continuously running application with
multiple iterations. Thus, it has been decided to measure the actual achieved speedup in packets/s and
Mbit/s. The timing requirement should relate to these values and these are anyways the important
numbers to judge a firewall’s performance.

As shown in Figure 6.20, the achieved network throughput in terms of Mbit/s is only at around 1 Mbit/s
for SpartanMC and 3 Mbit/s for the MicroBlaze single-core design. The reason of the relatively low
single-core throughput rate is due to network interface’s full ring-buffer. Since the network interface
buffers are implemented as a ring-buffer, the chances for smaller packets to get a free spot are higher. The
buffer runs full and the single-core design cannot keep up with fetching packets from the interface since
it also has to filter and forward packets. The 2x requirement for MicroBlaze just fulfills the requirement,
while the SpartanMC system highly exceeds the requirements. The explanation lies in the different
performing global memory implementations in both systems. The network input and output are no
longer critical steps, since each network interface has a dedicated core which only copies network packets
to or from the global memory. However, the global memory in the MicroBlaze system has a higher latency
and lower throughput compared to the previously used local memory. For the SpartanMC, global and
local memory have identical characteristics which explains the higher speedup gain. The 4x and 5x
speedup for SpartanMC and 5x and 6x speedup requirement can be fulfilled with the same hardware
requirement. That is totally six cores with four times replication for SpartanMC and seven cores with
five times replication for MicroBlaze respectively. As it can be seen for higher speedups a saturation
sets in. The saturation is due to the full utilization of the global memory, which cannot keep up with
all the requests of that many filter cores. After the 8x speedup design for SpartanMC or 9x speedup for
MicroBlaze, AutoStreams does not suggest higher replication factors. The network interface performance

42 Google IPv6 statistics https://www.google.com/intl/en/ipv6/statistics.html

121

https://www.google.com/intl/en/ipv6/statistics.html

1x 2x 3x 4x 5x 6x 7x 8x 9x
0

20

40

60

80

100

120

140

160

180

200
Testbench max.

speedup requirement

Th
ro

ug
hp

ut
(M

bi
t/

s)

SpartanMC
MicroBlaze
Requirement

Figure 6.20: Network throughput in Mbit/s for different system configurations

1x 2x 3x 4x 5x 6x 7x 8x 9x
0

10

20

30

40

50

·103

Testbench max.

speedup requirement

Th
ro

ug
hp

ut
(p

ac
ke

ts
/s

)

SpartanMC
MicroBlaze
Requirement

Figure 6.21: Network packet throughput for different system configurations

is now the limiting factor and the I/O cores are fully utilized but cannot provide more packets to utilize
the filter cores at higher replication factors. It is also interesting to see that the MicroBlaze is able to
handle higher throughput compared to SpartanMC. The reason here is most probably a 2.5 times higher
clock frequency and the 32-bit instead of 18-bit architecture. This also results in a 2.1 times higher peak
data rate. The maximum reached data rate for SpartanMC is 88 Mbit/s and for MicroBlaze 188 Mbit/s.

122

Overall, the speedup requirements for the data rates were well achievable, due to the bad performance
from the high packet drop rates in the single-core design.

The behavior for the measured packet rate in Figure 6.21 is much more consistent with the expectations
since the packet drop rate for larger packets is not relevant from this perspective. Thus, the achieved
15x speedup for data rate results in a 2.7x speedup for the packet rate with the MicroBlaze 3x speedup
requirement. Each additional core for the designs with low speedup requirements results in a 60% to
70% higher packet filter rate. However, the packet rates for higher speedup requirements also show the
previously described saturation effect of the global memory. The speedup requirements for SpartanMC
can be fulfilled up to the 8x requirement and afterwards the I/O cores become the limit preventing fur-
ther scaling and AutoStreams already warns that the requirement cannot be fulfilled. The requirements
for MicroBlaze are never fulfilled. From the 5x requirement on, the demanded packet rate lies above
the maximum possible data of the network interface with the used packet mixture. Even the lower
requirements cannot be achieved. The explanation for this are two factors that AutoStreams does not
consider. Firstly, the performance-profile is generated with the faster MicroBlaze local memory for the
filter tables and not the slightly slower global memory implementation. Secondly, AutoStreams has no
estimation model for contention of multiple cores over the global memory, which also might be hard to
realize. Until the global memory saturates, a successful parallelization could be achieved through re-
stricted requirements. Summed up, the MicroBlaze is able to almost fully handle the maximum provided
data stream with 32362 packets/s, while the SpartanMC can only handle 22483 packets/s (about 70%
of the provided packet rate) before the network interface cores limit.

In conclusion, even though the speedup does not always behave as expected due to peculiarities of
the Ethernet hardware and unmodeled global-memory performance in AutoStreams, speedups are still
achievable automatically.

6.5.1.3 Estimation Accuracy

The estimation accuracy for the generated systems is collected in Table 6.6. The speedup estimation
error is collected for the estimated speedup in Mbit/s and packets/s. AutoStreams cannot estimate
increased MBit/s or packets/s directly, but a speedup for processing time. Thus, the estimated speedup
for processing time is transferred into estimated Mbit/s and packets/s for the multi-core designs, based
on the single-core measurements. The hardware estimation error is displayed in terms of LUT and
Register relative estimation error in percent. The DSP and BRAM error is not shown, since these values
were accurately predicted.

Speedup relative estimation error Hardware relative estimation error
Target Mbit/s Packets/s LUT Registers

processor average max. average max average max average max

SpartanMC 566% 887% 12% 26% 1% 6% 8% 11%
MicroBlaze 491% 659% 31% 47% 1% 1% 3% 3%

Table 6.6: Estimation accuracy as relative estimation error in percent

The prediction for the Mbit/s is always heavily below the measured performance. So the actual achieved
speedup in Mbit/s is better than expected, since the single-core design performs badly at high input data
rates (see Section 6.5.1.2). When the input data rate for the single-core design is lowered, it is observed
that the firewall’s throughput data rate goes up, since the drop probability for larger packets decreases.
However, in practice this is not an option, since a firewall should not limit the network interface data
rate. Interpolating the speedups from this throughput data rate gives data rates close to the observed
data rates for the multi-core designs.

123

The error for the packets/s for the SpartanMC systems is 12% on average of the absolute values and
26% at maximum. The achieved speedup is always underestimated by AutoStreams, so the real speedup
is higher than expected. The error decreases for higher speedups due global memory saturation, which
is not modeled in AutoStreams. The packets/s estimation error for MicroBlaze is 31% on average of
the absolute values and 47% at maximum. The average estimation is so high because MicroBlaze’s low
performance global memory is not considered in AutoStreams. The maximum error is observed for high
speedup requirements, where global memory saturation sets in.

In the first place the estimation errors for hardware usage were way off the track. Looking closer into the
synthesis hardware report revealed that the Ethernet interface’s hardware peripheral holds considerable
amounts of resources. After adding the resource usage for the Ethernet peripheral to AutoStreams’
hardware cost table, the results match the previously observed error ranges in Section 6.4.1. Not all
available peripheral hardware costs are modeled in AutoStreams, since there are so many and each
peripheral might have different configurations all yielding different hardware costs. The LUT estimation
error for SpartanMC is 6% at maximum and 1% on average of the absolute values, for MicroBlaze the
error is slightly better with maximum and average of 1%. The register estimation error is at maximum
11% and 8% on average of the absolute values with constant underestimation. The error for MicroBlaze
systems is better with a rounded 3% error at maximum and average. The presented estimation error
matched with measurements in Section 6.4.1, where parallelized systems without additional peripherals
(except core-interconnects and Universal Asynchronous Receiver Transmitter (UART)) are evaluated.

6.5.1.4 Performance Comparison with Related Work

Currently, there exists no related work leveraging many-core soft-core SoCs for a firewall. At the one
hand there are commercial firewall solutions using server hardware and desktop processors which are
widespread. These systems are able to leverage two 10 Gbit interfaces with default firewall applications
like pfsense43. On the other hand there are specialized FPGA solutions with custom data paths. The
presented systems[118, 119, 120] are able to handle from 1Gbit/s up to 80Gbit/s for larger Virtex-5
FPGAs depending on the quality and intention of the published solution. These systems are built for
high performance and are barely comparable with the used microprocessors. Rather comparable are
low-cost general purpose embedded boards with ARM processors, like the Raspberry Pi or Cubieboard.
Nabi[121] evaluated the achievable network filter performance on these boards with iptables and 1000
filter rules. The Raspberry Pi achieved a throughput of 15 Mbit/s and the Cubieboard 23 Mbit/s. The
presented parallelized firewall achieves maximum rates of 88Mbit/s for SpartanMC and 188Mbit/s for
MicroBlaze at an equivalent number of filter rules. Thus, the presented firewall has a higher data rate
compared to general purpose embedded boards, but lower performance than the aforementioned general
purpose server systems or application specific FPGA designs. However, it must be kept in mind that the
specialized FPGA designs require much manual tweaking and packet handling in hardware which was
not the case for the presented automatically parallelized firewall.

6.5.2 ADPCM with IO

The ADPCM benchmark is now equipped with real input and output peripherals to show the real live
applicability of the parallelizer and also the transferability of the measured results from Section 6.3.
The ADPCM, MJPEG2000 and IIR benchmark were previously run with input data initially loaded into
the memory and the output data also only remained in the memory after processing. This method
allows an easy evaluation of the design, since the peripherals require no external data drivers. The
ADPCM benchmark is selected to show the applicability of the concept with peripheral IO. ADPCM is

43 https://docs.netgate.com/pfsense/en/latest/book/hardware/hardware-sizing-guidance.html#table-

pfsense-hardware

124

https://docs.netgate.com/pfsense/en/latest/book/hardware/hardware-sizing-guidance.html#table-pfsense-hardware
https://docs.netgate.com/pfsense/en/latest/book/hardware/hardware-sizing-guidance.html#table-pfsense-hardware

picked since it operates on medium-sized input data sets (4096 bytes) and performed very well during
parallelization. USB and SPI are chosen as embedded microcontroller interfaces which also deliver the
required throughput for a parallelized application. An Ethernet peripheral would also be an option, but
it is already used for the Firewall example. SpartanMC is chosen as target platform since the provided
MicroBlaze USB peripheral requires an additional ULPI interface chip which is not available on the used
Nexys-Video FPGA board. The SpartanMC has a USB1.1 peripheral to directly interface the USB wires.
USB is used as input interface and SPI as output interface. Thus, the ADPCM compressed audio could be
for example stored on an SD-card, which has an SPI interface.

Table 6.7: SpartanMC ADPCM performance-profile with peripheral IO: In units of 103 cycles (rounded)
Processing step simulated IO peripheral IO

0: receive input 29 388
1: read adaptive input 624 624
2: auto correlation 7 7
3: extract eqn. system 1 1
4: solve eqn. system 139 139
5: back-substitution 9 9
6: write coefficients 1 1
7: compression loop 1060 1060
8: write results 11 254

initiation interval (
∑

) 1880 2483

A new application profile for ADPCM is generated in Table 6.7 to see the influences of the peripheral
interaction. However, since the algorithm stays the same, only the duration for input and output changes.
In the previous examples, IO is modeled with a memory copy. The memory copy function is implemented
very efficiently and also has no control overhead, thus imposes an ideal case. With real peripherals there
is a higher control overhead and also data preprocessing is necessary for peripheral interaction as shown
in Table 6.7. The results show that peripheral IO holds a notable part of the applications runtime. In
numbers, this is 25% of the total application runtime just for peripheral interaction.

0 1 2
0

2

4

·105

core

cy
cl

es

max.

req.

Figure 6.22: Duration per SpartanMC core with ADPCM 8x speedup requirement, core 1: 5x replication

A parallelization is started with an 8x speedup requirement and the new performance-profile.
AutoStreams suggests a three stage pipeline with the intermediate core five times replicated and a
6.3x speedup. AutoStreams recognizes that a higher replication or more cores gives no benefit, since
reading input data becomes the critical step and cannot be parallelized due to peripheral interaction.

125

Figure 6.22 shows the runtime per core. It is noticeable that the measured speedups are lower compared
to a system without peripheral IO and peripheral interaction becomes critical. Also, the communication
overhead becomes nearly negligible in the example since the calculation effort is much higher than the
communication overhead. Peripherals with better performance (USB2/3 or Quad SPI) are required to
achieve higher speedups. Unfortunately, these are not implemented in the SpartanMC SoC-Kit.

In conclusion, AutoStreams is also well applicable for real systems with peripheral IO. Successful paral-
lelization also depends on the peripheral’s performance. The other benchmarks could also be parallelized
with peripherals since the only change is the duration of input and output depending on the data size.

6.6 Manual vs. Automatic Parallelization

To evaluate the quality of the solutions provided by AutoStreams, it is tried to generate a hand opti-
mized solution which is better than the automatically parallelized one. As test case, a relatively bad
automatically parallelized solution is taken which does not fulfill the requirements and has a relatively
unbalanced pipeline. A bad automatically parallelized design as comparison represents an easier oppo-
nent to beat with manual parallelization. A not ideally automatically parallelized example is the ADPCM
12x speedup requirement with DMA and loop optimizations as shown in Figure 6.11c (page 111).

The process for finding a manual solution is described in the following. It is only tried to generate an
ideally balanced pipeline during manual parallelization. The communication overhead and a decision to
use FIFO or DMA-based interconnects is not manually evaluated. This decision makes finding a manual
solution a lot easier, since finding data dependencies is extremely exhausting and error prone when done
by hand.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4
·105

req.

max.

core

cy
cl

es

Figure 6.23: ADPCM 12x speedup requirement with DMA and loop optimizations, manually parallelized,
first try

At first, the ADPCM application-profile in Table 6.1 (page 99) is analyzed. It is decided to go with
a 13-core design since it is unlikely that 12 cores will fulfill the requirement. As a first try, a similar
application partitioning as suggested by AutoStreams is taken. Also, the partitioned loops have equal
partitioning points. This is the natural selection when calculating with equal runtimes for each loop
iteration.

The first performance-profile in Figure 6.23 looks similar to the one from the automatically parallelized
design after running µStreams and synthesizing the design. Core one to three have a significantly higher
runtime than expected and core four a significantly shorter runtime. These cores hold partitions of
application step one from Table 6.1. Also, the loop partitions of the application step seven from Table 6.1,
mapped to cores 6 to 12, were not always meeting the requirement.

126

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4
·105

req.

max.

core

cy
cl

es

Figure 6.24: ADPCM 12x speedup requirement with DMA and loop optimizations, manually parallelized,
second try

In the next iteration, the relative difference of each core with the requirement is calculated and the itera-
tions adapted accordingly. Fortunately, BRAM content can be updated in the bit-file (FPGA configuration
file) if only the software is changed, which makes a new synthesis (roughly 20 minutes) unnecessary.
The measured parallelized performance profile in Figure 6.24 shows that now core four, which previously
had a very short runtime, is highly overshooting the requirement. Thus, the linear scaling of runtime
to iterations did not work for the partitioned loop of application step one of Table 6.1. Even though, it
works well for the partitioned loop of the application profile step seven of Table 6.1. This is caused by
optimizations that could not be applied by the SpartanMC GCC compiler. The generated ADPCM 12x
speedup requirement MicroBlaze system has similar partitioning points, but does not show the same
behavior.

In the next step, the iterations of each loop partition are changed successively in small steps as well as
the smaller processing steps (2-6) of Table 6.1 are shifted back and forth. After 16 iterations of carefully
approaching runtimes of each core slightly below the requirement, a result with a well-balanced pipeline
below the requirement is found (see Figure 6.25. This process took in total three hours of manual work
including one synthesis run, manual modification of loop iterations, shifting µStreams task pragmas,
running µStreams, compiling the application, updating the BRAM contents and programming the FPGA
in each iteration.

The speedup is increased from 7.5x for the automatically generated design to 12x through the man-
ual tuning. Nevertheless, it should be noted that the chosen automatically generated design is one of
the worst performing parallelizations suggested by AutoStreams. Other automatically generated designs
have no or slight room for improvement through manual parallelization. Thus, manual tuning is neither
necessary, nor possible. Communication overhead calculation also is neglected for manual paralleliza-
tion, due the usage of DMA-interconnects. Also, the distinguishing between more cores with slower
FIFO-interconnects or fewer cores with faster DMA-interconnects is not done here. The lack of these
steps makes finding a manual solution a lot easier. The user doesn’t need to calculate data dependencies
and hardware costs for different scenarios. Particularly the automatic communication overhead analysis
resulted in slightly better designs for the MJPEG2000 (not shown here) compared to previously hand
optimized systems due to partitioning point choices with less communication overhead.

Thus, finding good manual parallelizations is extremely time-consuming. Even though, sometimes it
results in slightly better parallelizations. However, more often it results in equal or worse designs since
communication or hardware overhead of different possible configurations is not considered.

127

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1.5

·105

req.max.

core

cy
cl

es

Figure 6.25: ADPCM 12x speedup requirement with DMA and loop optimizations, manually parallelized
after 16 tries

6.7 Maximum Frequency Multi-Core Designs

Different proposed hardware designs can result in different achievable maximum frequencies, since FP-
GAs are used as target platform. Thus, through the increased hardware demand of a multi-core system
the synthesis tool might not be able to place the hardware as optimally as it can be done with a single-core
design. The possible reduced frequency of the multi-core system could then result in a lower speedup
than expected. To evaluate the influence of varying core numbers and core-interconnect types, the gen-
erated systems for the previous benchmarks in Section 6.3 are synthesized for maximum frequency.

The Artix-7 XC7A200T is used as FPGA target platform. For synthesizing SpartanMC designs, Xilinx ISE
14.6 is used due to better SpartanMC tool support and Xilinx Vivado 2018.2.1 is used for MicroBlaze
systems. The tools are run with default presets, only the ISE synthesis and mapping effort is set from
normal to high.

Each design point has been synthesized multiple times with different clock frequencies to find the max-
imum possible frequency. The search algorithm is implemented as binary search. The algorithm first
synthesizes with a relatively low frequency where the design will run for sure, afterwards at a high fre-
quency where the design is unlikely to run. Then, an intermediate frequency is chosen. Depending on
successful synthesis with the intermediate frequency, the search is continued in the lower half frequency
rage on failure or in the upper half on success. This process is continued until the FPGAs clock manager
(DCM) does not offer smaller frequency steps. The maximum frequency where synthesis does not have
timing violations is returned in the end. However, since the synthesis includes random decisions it can
be that the best found solution and thereby the maximum frequency varies.

The ADPCM/IIR multi-core designs with low core numbers typically achieve 90% to 95% of the single-
core design’s frequency, as it can be seen in Figures 6.26 and 6.27. The synthesized designs with the
highest core numbers achieve around 70% to 80% the frequency of the single-core design. Whereas the
70% achieved frequency seems to be due to synthesis variations, since designs with a higher core number
achieve again higher frequencies. To verify this statement, the frequency evaluation was started again
for the low peak designs with the option to try five synthesis runs with different seeds before declaring
a frequency not working. This option is not enabled by default, since frequency evaluation takes then
extremely long due to 30 up to 50 performed synthesis runs. However, after the exhaustive frequency
evaluation, the low peak design points had successful synthesized designs with higher frequencies in the
expected regions.

128

0 2 4 6 8 10 12 14 16 18 20 22 24 26

60

80

Used processor cores

M
ax

.
ac

hi
ev

ed
fr

eq
ue

nc
y

Single-core Core-Connector FIFO interconnect
MemSwap DMA-interconnect Replication (FIFO Dispatcher/Concentraor)

Replication (DMA MemSwap Multi)

Figure 6.26: ADPCM and IIR maximum achievable frequency evaluation over multiple connected Spar-
tanMC cores and interconnect types

0 2 4 6 8 10 12 14 16 18 20 22 24 26

120

140

160

180

Used processor cores

M
ax

.
ac

hi
ev

ed
fr

eq
ue

nc
y

Single-core Mailbox interconnect Replication Mailbox

Figure 6.27: ADPCM and IIR maximum achievable frequency evaluation over multiple connected MicroB-
laze cores and interconnect types

The used interconnect type does not play a significant role for the maximum frequency, except for
replicated designs with MemSwap Multi DMA-based interconnects. The reason for the low achiev-
able frequency lies in the pattern of the design and the higher BRAM usage. Fast routes in between
the components work best if the cores and interconnects are packed together as closely as possible.
However, there are not enough BRAMs available close by, so further away BRAMs have to be used re-
sulting in longer and slower routes. This does not apply for other interconnects, since they either don’t
use BRAMs and other components are plenty locally available or the MemSwap interconnects (using
BRAMs) form a long pipeline, where only the direct neighbors have to be close together. The same also
applies to the replicated MicroBlaze systems that perform around 10% worse than MicroBlaze systems
as multi-core pipelines.

The synthesized MJPEG designs in Figures 6.28 and 6.29 show that even the largest designs with max-
imum BRAM usage achieve 70% to 80% of the single-core frequency, just like the largest ADPCM/IIR
designs. For the same core number, the MJPEG designs achieve only around 75% of the ADPCM/IIR

129

0 1 2 3 4 5 6 7 8 9 10 11

20

40

60

Used processor cores

M
ax

.
ac

hi
ev

ed
fr

eq
ue

nc
y

Single-core Core-Connector FIFO interconnect
MemSwap DMA-interconnect Replication (FIFO Dispatcher/Concentraor)

Replication (DMA MemSwap Multi)

Figure 6.28: MJPEG2000 maximum achievable frequency evaluation over multiple connected SpartanMC
cores and interconnect types

design frequencies. Due to the higher required local memory and thereby the increased BRAM usage,
the BRAMs further away have to be accessed which results in long routes. Significant is the frequency
drop for the ten core SpartanMC design. This might be caused by the design using most of the available
BRAMs requiring long routes to reach far away BRAMs. However, other designs with similar BRAM usage
do not have such a significant frequency drop. Also, the replicated MicroBlaze designs show a significant
behavior. A design with a higher core count achieves a higher frequency, which is counter-intuitive.Thus,
these designs were investigated further and the top critical paths were reviewed. Also, these designs
were again synthesized multiple times with different seeds and the critical paths again inspected. Two
factors for the low performance are identified during this process. The significant designs use almost
all the FPGA’s BRAMs which are equally distributed over the FPGA. The critical path always goes from
the processor core to some BRAM used as memory and the path consists 80% of routing delay. Also, all
processor cores are always placed closely together. Thus, the first observation is, that the designs that
have cores placed closer to the center of the FPGA achieve a higher frequency. Furthermore, cores use
mostly BRAMs as memory close to the position of the core on the FPGA. The second observation is, that
some cores use most BRAM close to the core and some BRAMs are located extremely far away. Such
that the connection to the BRAM needs to be routed from one side of the FPGA to the other. It seems
as if the cores could swap some BRAMs, long paths could be avoided. The significant designs with low
frequencies both showed two described effects. With new synthesis runs and other seeds higher possible
frequencies were observed during this process.

Synthesized designs for the firewall are not shown since the critical path goes through the Ethernet
peripherals and the influences from multiple cores are not observable.

6.7.1 Speedup vs. Performance Loss through Lower Frequency

Achievable speedups in contrast to the performance loss through lower frequencies for multi-core designs
are mostly not significant. One exception are replicated systems with DMA-interconnects. Achievable
speedups of up to around 12x in terms of clock cycles would result in a speedup of 8.4x in wallclock
through the 30% lower frequency of the multi-core design. Thus, it is not that impressive anymore, but
still a very positive balance.

130

0 1 2 3 4 5

110

120

130

140

Used processor cores

M
ax

.
ac

hi
ev

ed
fr

eq
ue

nc
y

Single-core Mailbox interconnect Replication Mailbox

Figure 6.29: MJPEG2000 maximum achievable frequency evaluation over multiple connected MicroBlaze
cores and interconnect types

It is also observable that replication with DMA-based interconnects results in quite low frequencies, much
lower compared to an equivalent FIFO-based interconnect. Thus, the increased performance through the
faster interconnects mostly vanishes. For example the replicated SpartanMC MJPEG design in Table 6.5
achieves a speedup of 8x with DMA-based replication and 7.01x with FIFO-based replication in terms
of clock cycles. However, DMA-based replication achieves only 15% and FIFO-based replication 75%
of the single-core design’s frequency. Thus, the resulting speedup in wall-clock time is only 1.2x with
DMA-based replication, but 5.2x with FIFO-based replication. Thus, using DMA-based MemSwap Multi
modules for replication is mostly not advisable. To maintain higher frequencies, the FIFO-based Dis-
patcher and Concentrator modules should be favored, even though their slower transmission speed.

It would be useful to integrate an achievable frequency estimator into AutoStreams. Interconnects could
be chosen based on expected frequencies and also the performance loss through a lower frequency could
be compensated automatically by AutoStreams. However, these results only count for the used Artix-7
FPGA device. For other FPGA families the results could look different, thus the findings in this sections
have limited transferability and are not universally valid.

6.8 Latency in the Generated Pipelines

The influences on latency are evaluated here since pipelines are known to increase the throughput at the
cost of latency. For some embedded systems latency is an important number, since they need to react on
inputs within a certain time frame.

Different parallelized systems from Section 6.3.4 are used to retrieve latency numbers. These systems
were chosen since they have more pipeline stages than other evaluated systems and latency mainly
depends on the characteristics of the different stages.

As it can be seen in Figures 6.30 and 6.31, systems with fewer cores mostly result in a lower latency.
Fewer pipeline stages result in fewer data transfers and thereby a lower latency. The IIR benchmarks
have a comparably high latency. On the one hand IIR systems have a relatively large communication
overhead compared the processing time. On the other hand, the 12 core system also requires many data
transfers which also increases the latency. However, it can also be observed at the MicroBlaze ADPCM
12 core and 16 core systems that more cores result in lower latency, which seems contradictory. Thus, it
also plays a role for the latency, at which position in the pipeline the critical stage is located, according
to Equation (4) page 55. With respect to this equation, it is beneficial to have a well-balanced pipeline

131

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

IIR 12cores

IIR 3cores

MJPEG2000 5cores

MJPEG2000 3cores

ADPCM 16cores

ADPCM 12cores

ADPCM 5cores

ADPCM 3cores

116.8

23.1

13.7

6.5

15.6

17.3

5.8

3.6

increased latency in %

Figure 6.30: Latency increase compared to the sequential variant with MicroBlaze

0 10 20 30 40 50 60 70 80 90 100 110 120

IIR 24cores DMA
IIR 13cores DMA

IIR 25cores
IIR 5cores DMA

IIR 7cores
IIR 3cores DMA

IIR 3cores

MJPEG2000 5cores DMA
MJPEG2000 6cores

MJPEG2000 3cores DMA
MJPEG2000 3cores

ADPCM 14cores DMA
ADPCM 16cores

ADPCM 11cores DMA
ADPCM 11cores

ADPCM 5cores DMA
ADPCM 5cores

ADPCM 3cores DMA
ADPCM 3cores

89.3
43.8

105.7
14

32.8
6
8.1

25.8
16.7

1.3
8

15
35.8

14.3
21.8

13.1
17.1

47.6
12.8

increased latency in %

Figure 6.31: Latency increase compared to the sequential variant with SpartanMC

132

and the critical pipeline stage as early as possible to achieve a low latency. For example the SpartanMC
ADPCM 3 core DMA system has the second core as the critical pipeline stage and the first core only has
3% of the second core’s duration. The first core has to wait idle for a long time until the second core can
receive data from the first core, thus a 47.6% higher latency is caused.

In conclusion, latency is doubled with the worst benchmark. Mostly, only a 10% to 20% increased latency
is observed. The impact on the latency are not as dramatic as expected. In conclusion, the throughput
speedup grows at much higher rates compared to the latency increase. It depends on the purpose and
requirements of the embedded system if the increased latency is still acceptable.

6.9 Dynamic Verification: System Tests

Not only the shown benchmarks are used to verify the correctness of the implemented tools. Over
100 small test applications have been written to test different aspects. These tests are implemented as
system tests, taking around three minutes to execute, to ensure consistent behavior after implementation
modifications. The tests include handling of different C constructs and their correct transformation as
well as tests for the generated multi-core architectures. The starting point for the tests is typically a
minimal C-program with around 10 lines to cover the construct to be tested. A pre-parallelized reference
(software and hardware description) is also contained as golden sample to check against. Besides tests
checking the correct parallelization, there also exist tests to verify behavior with unsupported constructs
and error handling.

6.10 Comparison with Related Work

It is essential to take the same benchmark for a realistic comparison to show the performance of the
presented tools compared to related work. The only benchmark that is often found in related work is
ADPCM. The tool MAPS[42] from Cheng et al. and Eldorado[37] from Cordes both used the ADPCM as
benchmark.

MAPS is a semi-automatic C parallelizer for embedded systems. Sequential C applications can be profiled
and parallelized. The tool automatically gives parallelization hints and the user can revise the sugges-
tions in a GUI. MAPS also accepts applications described as C for Process Networkss (CPNs), a custom
KPN representation, for easier parallelism detection. The tool creates transformed parallel C source-code
for different target platforms. The generated tasks are statically mapped to processing cores. A detailed
description is given in Section 2.3.5.

Eldorado[37] is an automatic C parallelizer, also especially developed for embedded systems. Eldorado
uses internally the MPA[45] tool, to extract parallelism and dependencies. It also cares for the extraction
of properly sized tasks with respect to communication and task creation overhead.

Eldorado is evaluated on an ARM11 quad-core processor and MAPS uses a custom RISC multi-core
design[84] with a full crossbar interconnect. There exists an octa-core implementation on silicon of this
MP-SoC. However, an according cycle-accurate simulator with a configurable core number is used to
evaluate the generated MAPS designs.

MAPS achieves a maximum speedup of 1.28 with three generated threads. The parallelization took 30
minutes. Eldorado is able to achieve a 2x speedup and the automatic parallelization took less than a
minute. In contrast to the other tools, AutoStreams is able to extract a speedup of 12x and higher at a
reasonable hardware overhead. Just like Eldorado, parallelization with AutoStreams takes less than a
minute, not including synthesis time.

To get an idea of speedups achieved by other automatic parallelization tools for other benchmarks, two
other tools besides Eldorado and MAPS are picked: AutoPar[26], PIPS[62]. Other automatic paralleliza-
tion tools in Section 2.3.5 are omitted, since they only focus on loop and not full system parallelization.

133

AutoPar achieved a nearly linear scaling speedup up to eight threads with 8x speedup for three out of
four benchmarks on a system with two quad-core server CPUs (2x Intel X5460). One benchmark only
results in a 2x speedup.

Speedups with PIPS are shown in [62], with two dual socket, hexa-core server systems. Two out of the
presented four benchmarks show speedups of 4x to 5x with eight cores, while the other benchmarks are
only able to leverage six cores and achieve speedups of 2x to 3x.

The authors of MAPS also publish speedups for a JPEG encoder in [42, 43]. With MAPS’ automatic
parallelization, a speedup of 3.6x is achievable with 16 cores. A speedup of 5.5x is possible with the
same number of cores after some manual tweaking. With the application reformulation into a KPN
representation, a speedup of 4.1x is automatically extractable and a speedup of 9.5x is reached after
manual tweaking.

Eldorado’s speedup results are shown in [37] on a simulated quad-core architecture. Seven benchmarks
are presented, where one application can be parallelized with a speedup of 3.7x. The average achieved
speedup is at 2.7x.

In conclusion, parallelizers often use server multi-cores, shared-memory systems or simulators to evalu-
ate their results. Simulators have questionable transferability of the results to real systems and existing
architecture’s scalability is often limited by a fixed number of cores. Using FPGAs as evaluation platform
has the flexibility of a simulator to vary interconnect types and core numbers, but on the other hand the
design runs on real hardware for transferability. AutoStreams has shown speedups of 12x and more. The
MJPEG2000 benchmark yields the worst results with only a speedup of 4x. On average, AutoStreams
achieves higher total and average speedups compared to other tools. However, it should be noted that all
related tools target for optimizing latency and thereby also achieve a throughput speedup. AutoStreams
increases the throughput through pipelining at the cost of the latency. Compared to the other tools,
AutoStreams is not applicable to increase the latency through parallelization. However, when it comes
to an increased throughput, AutoStreams can well play its advantages.

6.11 Best Practice Proposals

This section summarizes the different lessons learned for parallelized hardware designs and software
partitioning methods.

In terms of minimal hardware, a pure pipeline is better than replication with the same number of cores.
Using FIFO interconnects always requires less resources compared to DMA interconnects. Also, replica-
tion with FIFO interconnects requires fewer resources than a pipeline with DMA interconnects.

FPGA designs with shared components on multiple processors result in relatively low frequencies. Thus,
global memories or DMA interconnects with replication are not desirable.

From the software side, loop splitting makes it possible to balance pipeline stages, since often loops
dominate the application runtime. A pure pipeline works well for applications with splittable loops or
high numbers of processing steps. Replication reduces communication overhead and larger source-code
parts can usually be mapped to the replicated cores supporting better GCC optimizations. Replication
also has a lower latency from input to output due to the reduced communication overhead. From
software side, DMA interconnects produce parallelizations with higher throughput (neglecting maximum
frequency).

Each core holds smaller source-code fractions for pipelines without replication. This would usually result
in an overall lower memory footprint compared to replication. However, this aspect is not optimized in
this work and has potential for improvement.

134

7 Conclusion & Future Work

Multi- and many-core embedded systems offer great processing power even in the low-power
low-performance domain. However, software developers struggle to leverage the offered processing
power. New concepts and tools are required to extract the necessary parallelism. Most of the offered
tools are focused on extracting data-parallelism in the context of desktop or HPC systems. Only few
tools exist which focus on low-performance embedded systems. These tools seldom extract pipeline
parallelism, even though it is well extractable from many embedded applications. In related work,
the pipeline structure is mapped to general purpose static multi-core architectures, not optimal for the
extracted parallelism. The parallelism extraction often only focuses on loop parallelization without a
view on the whole embedded system with peripheral interaction. Soft-core SoCs offer opportunities to
configure a many-core environment ideally fitting the structure of the extracted pipeline parallelism.

In this work, a set of tools is presented which support the developer with the full spectrum required for
a successful parallelization. Most of the tools require very little to no user interaction. The tool sup-
port ranges from automatic application profiling to discover bottlenecks, over automatic parallelization,
automatic many-core design generation up to an automated performance evaluation of the parallelized
application. The automatic parallelization is the key contribution of this work. It offers the specification
of a minimal required processing speed to the user and the parallelizer extracts the necessary parallelism
automatically. At the same time, the hardware is kept minimal with respect to number of processing
cores and core-interconnect types. The goal to extract only necessary parallelism is realized through the
automatic parallelizers design space exploration in Section 5.5.2.3 by evaluating all possible paralleliza-
tions and selecting a solution with minimal hardware, just fulfilling the user’s timing requirement. The
hardware’s minimalism and choices of the design space exploration are reflected and checked for various
design points in Section 6.3. The goal to consider parallelization restrictions with regard to peripheral
interaction is realized through the implementation of a peripheral detector in Section 5.7. This section
shows how peripherals are detectable in the source-code and also tells the resulting restrictions for par-
allelization. The most important restriction for MP-SoCs is that one peripheral can only be dedicated
to one core. This restriction is implemented in the automatic parallelizer. The consideration of periph-
eral interaction and the used concept of pipeline parallelism make the approach suitable for the initially
stated goal of full-system parallelization. Section 6.5 also shows the successful automatic full system
parallelization with two real world systems having peripheral input and output. Peripheral interaction is
often neglected in related work. It is shown in this work that peripheral interaction can hold large parts
(25%) of the total application’s processing time and should thus also be considered for parallelization.

The usage of freely configurable soft-core processors is proven to adapt very well to the requirements of
the parallelized application. The selected soft-core processors fulfill the initially stated requirement of
low-performance embedded systems as target platform. Extracted pipelines are directly transferable to a
multi-core pipeline as stated in Section 4 and proven with many parallelized designs during evaluation.
The soft-core’s interconnect performance is evaluated in Section 3.3.1 and Section 3.4. These sections
also propose new interconnect types specifically designed for pipeline parallelism and show how existing
interconnects are tweaked to peak performance, such that higher parallelization gains become possible.
It is shown in Section 6.3 that soft-cores are well performing as distributed-memory systems despite
large communication overheads in many cases. It is also shown in this section that a high amount
of parallelism is extractable: For example a 12x speedup is possible for one application on a moderate
14-core system. These numbers are out of reach for related approaches which mostly use shared-memory
architectures. These facts also answer the initial question of the applicability of pipe-parallelism as well
as the usage of distributed-memory systems for this concept. It is also shown in Section 6.5.1 that
soft-core shared-memory systems run into a saturation for speedup gain earlier than it is observed with
distributed-memory soft-core designs through communication overhead in Section 6.3.

135

Thus, an optimized many-core system can automatically be generated with soft-core processors for each
parallelized application. The necessity to only specify the source-code and minimum processing speed of-
fers the freedom of a configurable hardware architecture to software developers that are not experienced
in hardware design. The fact that no automatically parallelized hardware design had to be touched or
tuned during evaluation in Section 6.3 shows that automatic hardware creation works great.

Furthermore, different optimizations are proposed in order to extract more pipeline parallelism from
applications. The constant usage of source-to-source transformation leaves the concept open to new ar-
chitectures as well as further optimizations such as specific accelerators. Also, other kinds of parallelism
could still be extracted. The user also has the chance to review the parallelized design in each step and
modify it, if desired. Generally unsupported constructs can still be realized with a few tweaks in the
generated source-code, but without the need to modify the parallelizer itself.

During the evaluation, the presented approach delivers high throughput speedups of 8x to 12x and in
some cases even higher. Compared to related approaches, which use static hardware or extract data
parallelism, much higher speedup gains are possible. It is shown in Section 6.10 that related approaches
are able to parallelize the ADPCM application with a speedup of 1.2x to 2x, while the tool presented
in this work achieves speedups of up to 12x for the same application. The automatic parallelization
is able to optimize software and hardware with multiple objectives. Even experienced users struggle
to reconcile the different options and possibilities. It is shown in Section 6.6 that hand parallelized
solutions only beat the first shot of the automatic parallelization, but cost several refinement iterations
and hours of work. However, these refinements are also possible after automatic parallelization due
to the source-to-source concept. Often, a manual parallelization is not necessary, since the automatic
parallelization already delivers a well optimized system fulfilling the users requirements. The presented
automatic parallelization tool is also able to predict the performance of the parallel design very accurate
with an estimation error below 10% in most cases, as shown in Section 6.4.2.

The influence on the application latency is shown in Section 6.8 and is evaluated to be increased through
pipelining by usually only around 10% to 20% and 120% in the worst scenarios. Thus, the initial
question for effects on the latency can be answered with: Yes, it slightly effects the latency, but the
massive increased throughput outweigh the increased latency for throughput focused systems.

The clock frequency degradation caused by multiple soft-cores on one FPGA is another concern stated
at the beginning of this work. The frequency degradation between single-core and multi-core designs
is shown to exist in Section 6.7. In this section the influence on the frequency of different interconnect
types and number of used cores is evaluated. It is found, that the frequency degrades only slightly
with more cores. The chosen interconnect types and the used memory per core have a bigger influence.
It is shown that the usage of MemSwap Multi module and a large memory size per core require long
routing paths over the FPGA which results in low achievable frequencies. For example designs with
the MemSwap Multi interconnect achieve 20% up to 50% of the single-core design’s clock speed. All
other interconnects reach, depending on the core count, 75% up to 95% of the single-core design’s clock
speed. Thus, the MemSwap Multi interconnect should be avoided and equivalent interconnects with a
lower transmission rate but higher clock frequencies should be favored. Even though there is a slight
frequency degradation for these interconnects, still remarkable speedups are achievable.

In conclusion, the formulated questions are answered, the initial concerns were either baseless or solved
and the defined goals are fully achieved. To the best of my knowledge, no tool exists with the same scope
covering full system parallelization of embedded systems with configurable multi-core architectures.
However, there is still room for improvement. Also, new problems and aspects have arisen during this
work which could be subject to future work:

Automatic refinement: For a further automation of the proposed toolflow, it would be possible to auto-
matically read back the parallel performance-profile with AutoStreams, evaluate it and adapt the

136

proposed parallelization in a second iteration if requirements are not fulfilled. Currently, the user
has to take appropriate actions but it is thinkable to automate this step.

Consistent GCC optimizations: The SpartanMC GCC compiler is observed to deliver inconsistent results
for executed assembler optimizations. The MicroBlaze GCC shows more consistent assembler opti-
mizations in the sequential and parallelized designs. This yields a better performance predictability
and well-balanced pipelines. Some missing optimizations in SpartanMC GCC have already been
pointed out with examples.

Global memory support: Since this contribution mainly lays focus on distributed-memory systems,
shared-global memory handling is not extensively supported. There is currently room for improve-
ment to support synchronous global memory accesses. It is thinkable to automate synchronization
of critical memory sections with mutexes and semaphores. However, it is questionable whether au-
tomatically inferable accesses would result in too pessimistic constructs. Maybe, user annotations
could relax some restrictions with a bit manual effort and application knowledge. If the global
memory was integrated better, it would make sense to implement a performance estimator for a
parallelized system with global memory just like the estimators for the core-interconnects. Work
in the field of global memory and WCET estimators often predict extremely pessimistic results and
show that it is not easy to predict performance for shared-memory multi-core architectures[57].
Since it is already well possible to predict execution time for pipelined distributed-memory systems,
a WCET analysis of such a system might deliver less pessimistic worst-case speedups.

Memory size optimization: Currently, the memory of each core in the generated multi-core design is
designed with the same memory size as the single-core system. This assumption is very pessimistic,
since each core only holds a fraction of the single-core application. At the moment, a student thesis
is in progress to analyze maximum used memory for code and data sections as well as required
stack size from GCC intermediate files. The necessary memory size for each core could be optimized
with such a tool and the overall resources, especially precious BRAMs, could be saved.

MicroBlaze DMA interconnects: In contrast to SpartanMC, MicroBlaze has no equivalent to the Mem-
Swap DMA interconnects to allow fast data exchange. This DMA memory is directly integrated
into the processor’s memory range and has the same latency and throughput as the usual local
memory. The default peripheral interface to realize such a solution is AXI for MicroBlaze. In
contrast to the local memory interface (LMB), AXI has a higher latency and lower throughput.
Another option would be to use the MicroBlaze local memory interface. Any additional hardware
on this bus influences the critical path of the processor. It would be unclear for any approach if this
concept yields the same gain as for SpartanMC.

Statement reordering: Currently, the automatic parallelization uses the source-code as it is to extract a
pipeline. It is thinkable that some code fragments could be relocated after a dependency analysis.
This might sometimes help to reduce communication overhead and result in a more balanced
pipeline.

DSE for larger applications: Even though parallelization is possible within a minute for all used bench-
marks, significantly larger programs might run into performance issues with the branch-and-bound
algorithm. It might be necessary to implement a search heuristic like simulated annealing or a ge-
netic algorithm to find good solutions during design space exploration in the future. However, this
step would sacrifice accuracy for search speed. Currently, the upper bound algorithm still outputs
a valid solution even if exhaustive search takes too long.

Frequency estimation: It is desirable to have a maximum possible frequency estimator for the differ-
ent multi-core designs integrated in AutoStreams. Thus, multi-core designs resulting in a higher
frequencies could be preferred during design space exploration in AutoStreams. Since embedded

137

systems also contain peripherals, measurements for all peripherals at different configurations might
be required to get accurate estimations.

Energy consumption: The energy consumption of a multi-core design is completely neglected during
design space exploration. It would make sense to have measurements or estimators for this, since
power consumption is sometimes a critical factor for embedded systems.

Accelerators & other parallelism: The focus of all presented tools lies on source-to-source transforma-
tions to enable later modifications, among other reasons. It would be interesting to see if the
parallelized design can be further accelerated by partial application execution in external acceler-
ators. These accelerators could be nicely implemented on unused FPGA area. Also, opportunities
for further parallelization exploiting data-parallelism could be investigated.

Other multi-core architectures: FPGAs have the drawback to be quite limited in frequency compared
to an ASIC. Even though, they are an excellent vehicle for investigating new digital designs and
testing. However, fine-grained reconfigurability is not required for the presented concept. It could
be beneficial to use a multi-core design with fixed processors but configurable interconnect network
at compile time like presented with XGRID[19]. Such an approach would result in higher clock
frequencies and lower power consumption if implemented as an ASIC.

138

References

[1] Andrs Vajda. Programming Many-Core Chips. Springer Publishing Company, Incorporated, 2011.

[2] J. Svennebring et al. Embedded Multicore: An Introduction. Tech. rep. 2009.

[3] S. Pllana and F. Xhafa. Programming Multicore and Many-core Computing Systems. Wiley Series
on Parallel and Distributed Computing. Wiley, 2017.

[4] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. “A Practical Approach to Ex-
ploiting Coarse-Grained Pipeline Parallelism in C Programs”. In: Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO 40. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 356–369.

[5] Georgios Tournavitis and Björn Franke. “Semi-automatic Extraction and Exploitation of Hierar-
chical Pipeline Parallelism Using Profiling Information”. In: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques. PACT ’10. Vienna, Austria: ACM,
2010, pp. 377–388.

[6] Daniel Cordes et al. “Automatic Extraction of Pipeline Parallelism for Embedded Heterogeneous
Multi-core Platforms”. In: Proceedings of the 2013 International Conference on Compilers, Archi-
tectures and Synthesis for Embedded Systems. CASES ’13. Montreal, Quebec, Canada: IEEE Press,
2013, 4:1–4:10.

[7] ARM. big.LITTLE Technology: The Future of Mobile; Making very high performance available in a
mobile envelope without sacrificing energy efficiency. Tech. rep. 2013.

[8] Harm Munk et al. “ACOTES Project: Advanced Compiler Technologies for Embedded Streaming”.
In: International Journal of Parallel Programming (2010).

[9] Clearspeed. CSX Processor Architecture. Tech. rep. 2007.

[10] S. R. Vangal et al. “An 80-Tile Sub-100-W TeraFLOPS Processor in 65-nm CMOS”. In: IEEE Journal
of Solid-State Circuits 43.1 (Jan. 2008), pp. 29–41.

[11] U. J. Kapasi et al. “The Imagine Stream Processor”. In: Proceedings. IEEE International Conference
on Computer Design: VLSI in Computers and Processors. Sept. 2002, pp. 282–288.

[12] J. A. Kahle et al. “Introduction to the Cell multiprocessor”. In: IBM Journal of Research and
Development 49.4.5 (July 2005), pp. 589–604.

[13] TIRIAS-Research. AMD Optimizes EPYC Memory with NUMA. Tech. rep.

[14] Andreas Olofsson. Epiphany-V: A 1024 processor 64-bit RISC System-On-Chip. Tech. rep. Oct.
2016.

[15] H. Xu et al. “A low power many-core SoC with two 32-core clusters connected by tree based NoC
for multimedia applications”. In: Symposium on VLSI Circuits (VLSIC). June 2012, pp. 150–151.

[16] J. Irza, M. Doerr, and M. Solka. “A third generation many-core processor for secure embedded
computing systems”. In: IEEE Conference on High Performance Extreme Computing. Sept. 2012,
pp. 1–3.

[17] R. Poss et al. “Apple-CORE: Harnessing general-purpose many-cores with hardware concurrency
management”. In: Microprocessors and Microsystems 37.8, Part C (2013). Special Issue on Euro-
pean Projects in Embedded System Design: EPESD2012, pp. 1090–1101.

[18] Martin Daněk et al. UTLEON3: Exploring fine-grain multi-threading in FPGAs. Springer, Nov. 2011,
pp. 1–219.

139

[19] V. Gunes and T. Givargis. “XGRID: A Scalable Many-Core Embedded Processor”. In: IEEE 17th
International Conference on High Performance Computing and Communications, IEEE 7th Interna-
tional Symposium on Cyberspace Safety and Security, and IEEE 12th International Conference on
Embedded Software and Systems. Aug. 2015, pp. 1143–1146.

[20] G. Theodoridis, D. Soudris, and S. Vassiliadis. “A Survey of Coarse-Grain Reconfigurable Architec-
tures and Cad Tools”. In: Fine- and Coarse-Grain Reconfigurable Computing. Dordrecht: Springer
Netherlands, 2007, pp. 89–149.

[21] Joel Seely, Srikanth Erusalagandi, and Jayson Bethurem. The MicroBlaze Soft Processor: Flexibility
and Performance for Cost-Sensitive Embedded Designs. Tech. rep. 2017.

[22] Gerald Hempel and Christian Hochberger. “A resource optimized Processor Core for FPGA based
SoCs”. In: 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools
(DSD). Aug. 2007, pp. 51–58.

[23] David Castells-Rufas, Albert Saá-Garriga, and Jordi Carrabina. “Energy Efficiency of Many-Soft-
Core Processors”. In: CoRR abs/1601.07133 (2016).

[24] M. Thompson et al. “A framework for rapid system-level exploration, synthesis, and program-
ming of multimedia MP-SoCs”. In: 5th IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS). Sept. 2007, pp. 9–14.

[25] E. F. Deprettere et al. “Affine Nested Loop Programs and their Binary Parameterized Dataflow
Graph Counterparts”. In: IEEE 17th International Conference on Application-specific Systems, Ar-
chitectures and Processors (ASAP’06). Sept. 2006, pp. 186–190.

[26] Chunhua Liao et al. “Semantic-Aware Automatic Parallelization of Modern Applications Using
High-Level Abstractions”. In: International Journal of Parallel Programming (2010).

[27] Ian Buck et al. “Brook for GPUs: Stream Computing on Graphics Hardware”. In: ACM Trans.
Graph. 23.3 (Aug. 2004), pp. 777–786.

[28] Pieter Bellens et al. “CellSs: a Programming Model for the Cell BE Architecture”. In: ACM/IEEE
Conference on Supercomputing. 2006, p. 86.

[29] Robert D. Blumofe et al. “Cilk: An Efficient Multithreaded Runtime System”. In: SIGPLAN Not.
30.8 (Aug. 1995), pp. 207–216.

[30] C. E. Leiserson. “The Cilk++ concurrency platform”. In: 2009 46th ACM/IEEE Design Automation
Conference. July 2009, pp. 522–527.

[31] Matteo Frigo et al. “Reducers and Other Cilk++ Hyperobjects”. In: Proceedings of the Twenty-first
Annual Symposium on Parallelism in Algorithms and Architectures. SPAA. Calgary, AB, Canada:
ACM, 2009, pp. 79–90.

[32] John Nickolls et al. “Scalable Parallel Programming with CUDA”. In: Queue 6.2 (Mar. 2008),
pp. 40–53.

[33] H. Nikolov et al. “Daedalus: Toward composable multimedia MP-SoC design”. In: 45th ACM/IEEE
Design Automation Conference. June 2008, pp. 574–579.

[34] H. Nikolov, T. Stefanov, and E. Deprettere. “Systematic and Automated Multiprocessor System
Design, Programming, and Implementation”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27.3 (Mar. 2008), pp. 542–555.

[35] Chao-Tung Yang and Kuan-Chou Lai. “A Directive-based MPI Code Generator for Linux PC Clus-
ters”. In: J. Supercomputer 50.2 (Nov. 2009), pp. 177–207.

[36] Tobias Schüle. “Embedded Multicore Building Blocks - Parallel Programming Made Easy”. In:
Embedded World Conference. 2015.

140

[37] D. Cordes, P. Marwedel, and A. Mallik. “Automatic parallelization of embedded software us-
ing hierarchical task graphs and integer linear programming”. In: International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS). 2010.

[38] Roger Ferrer et al. “Optimizing the Exploitation of Multicore Processors and GPUs with OpenMP
and OpenCL”. In: Languages and Compilers for Parallel Computing: 23rd International Workshop.
Springer Berlin Heidelberg, 2011, pp. 215–229.

[39] M. Y. Wu and D. D. Gajski. “Hypertool: a programming aid for message-passing systems”. In:
IEEE Transactions on Parallel and Distributed Systems 1.3 (July 1990), pp. 330–343.

[40] Levent Akyil et al. Intel Guide for Developing Multithreaded Application. Tech. rep. Intel, 2011.

[41] Alexey Kukanov and Michael J. Voss. “The Foundations for Scalable Multicore Software in Intel
Threading Building Blocks”. In: 2007.

[42] J. Ceng et al. “MAPS: An integrated framework for MPSoC application parallelization”. In: 2008
45th ACM/IEEE Design Automation Conference. June 2008, pp. 754–759.

[43] R. Leupers and J. Castrillon. “MPSoC programming using the MAPS compiler”. In: 2010 15th
Asia and South Pacific Design Automation Conference (ASP-DAC). Jan. 2010, pp. 897–902.

[44] Weihua Sheng et al. “A Compiler Infrastructure for Embedded Heterogeneous MPSoCs”. In: In-
ternational Workshop on Programming Models and Applications for Multicores and Manycores.
PMAM. Shenzhen, Guangdong, China: ACM, 2013, pp. 1–10.

[45] Rogier Baert et al. “Exploring Parallelizations of Applications for MPSoC Platforms Using MPA”.
In: Proceedings of the Conference on Design, Automation and Test in Europe. DATE. Nice, France:
European Design and Automation Association, 2009, pp. 1148–1153.

[46] P. Sun, S. Chandrasekaran, and B. Chapman. “OpenMP-MCA: Leveraging Multiprocessor Embed-
ded Systems Using Industry Standards”. In: IEEE International Parallel and Distributed Processing
Symposium Workshop. May 2015, pp. 679–688.

[47] Eduard Ayguadé et al. “Extending OpenMP to Survive the Heterogeneous Multi-Core Era”. In:
International Journal of Parallel Programming 38.5 (Oct. 2010), pp. 440–459.

[48] J. E. Stone, D. Gohara, and G. Shi. “OpenCL: A Parallel Programming Standard for Hetero-
geneous Computing Systems”. In: Computing in Science Engineering 12.3 (May 2010), pp. 66–
73.

[49] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using OpenMP. Mit University Press
Group Ltd, 2007.

[50] Antoniu Pop and Albert Cohen. “OpenStream: Expressiveness and Data-flow Compilation of
OpenMP Streaming Programs”. In: ACM Trans. Archit. Code Optim. 9.4 (Jan. 2013), 53:1–53:25.

[51] Antoniu Pop and Albert Cohen. “A Stream-computing Extension to OpenMP”. In: Proceedings of
the 6th International Conference on High Performance and Embedded Architectures and Compilers.
HiPEAC. Heraklion, Greece: ACM, 2011, pp. 5–14.

[52] Mehdi Amini et al. “Par4All: From Convex Array Regions to Heterogeneous Computing”. In:
(May 2012).

[53] Uday Bondhugula, Aravind Acharya, and Albert Cohen. “The Pluto+ Algorithm: A Practical
Approach for Parallelization and Locality Optimization of Affine Loop Nests”. In: ACM Trans.
Program. Lang. Syst. 38.3 (Apr. 2016), 12:1–12:32.

[54] Uday Bondhugula et al. “Automatic Transformations for Communication-Minimized Paralleliza-
tion and Locality Optimization in the Polyhedral Model”. In: International Conference on Compiler
Construction (ETAPS CC). Apr. 2008.

141

[55] Uday Bondhugula et al. “A Practical Automatic Polyhedral Program Optimization System”. In:
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI). June
2008.

[56] Uday Bondhugula. “Automatic Distributed-Memory Parallelization and Code Generation using
the Polyhedral Framework”. In: 2012.

[57] Martin Frieb et al. “A Parallelization Approach for Hard Real-Time Systems and Its Application
on Two Industrial Programs”. In: International Journal of Parallel Programming 44.6 (Dec. 2016),
pp. 1296–1336.

[58] Theo Ungerer et al. “Parallelizing Industrial Hard Real-Time Applications for the parMERASA
Multicore”. In: ACM Trans. Embed. Comput. Syst. 15.3 (May 2016), 53:1–53:27.

[59] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley Professional, 1997.

[60] Ronan Keryell et al. “Pips: a Workbench for Building Interprocedural Parallelizers, Compilers and
Optimizers Technical paper”. In: (Apr. 1994).

[61] N. Lossing, C. Ancourt, and F. Irigoin. “Automatic Code Generation of Distributed Parallel Tasks”.
In: IEEE Intl Conference on Computational Science and Engineering (CSE) and IEEE Intl Conference
on Embedded and Ubiquitous Computing (EUC) and 15th Intl Symposium on Distributed Computing
and Applications for Business Engineering (DCABES). Aug. 2016, pp. 234–241.

[62] Dounia Khaldi, Pierre Jouvelot, and Corinne Ancourt. “Parallelizing with BDSC, a resource-
constrained scheduling algorithm for shared and distributed memory systems”. In: Parallel Com-
puting 41 (2015), pp. 66–89.

[63] Tao Yang and Apostolos Gerasoulis. “PYRROS: Static Task Scheduling and Code Generation for
Message Passing Multiprocessors”. In: Proceedings of the 6th International Conference on Super-
computing. ICS ’92. Washington, D. C., USA: ACM, 1992, pp. 428–437.

[64] Raphael Poss. “SL: a ’quick and dirty’ but working intermediate language for SVP systems”. In:
CoRR (2012).

[65] R. Poss et al. “Apple-CORE: Microgrids of SVP Cores – Flexible, General-Purpose, Fine-Grained
Hardware Concurrency Management”. In: (Sept. 2012), pp. 501–508.

[66] R. Poss et al. “Apple-CORE: Harnessing General-purpose Many-cores with Hardware Concur-
rency Management”. In: Microprocess. Microsyst. (Nov. 2013), pp. 1090–1101.

[67] M. W. Hall et al. “Maximizing multiprocessor performance with the SUIF compiler”. In: Computer
29.12 (Dec. 1996), pp. 84–89.

[68] Sungdo Moon, Byoungro So, and M. W. Hall. “Evaluating automatic parallelization in SUIF”. In:
IEEE Transactions on Parallel and Distributed Systems 11.1 (Jan. 2000), pp. 36–49.

[69] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. “StreamIt: A Language for
Streaming Applications”. In: Proceedings of the 11th International Conference on Compiler Con-
struction. 2002, pp. 179–196.

[70] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. “The Design of a Task Parallel Library”.
In: SIGPLAN Not. 44.10 (Oct. 2009), pp. 227–242.

[71] K. Stavrou et al. “TFlux: A Portable Platform for Data-Driven Multithreading on Commodity
Multicore Systems”. In: 37th International Conference on Parallel Processing. Sept. 2008, pp. 25–
34.

[72] Pedro Trancoso, Kyriakos Stavrou, and Paraskevas Evripidou. “DDMCPP : The Data-Driven Mul-
tithreading C PreProcessor”. In: 2007.

142

[73] G. Contreras and M. Martonosi. “Characterizing and improving the performance of Intel Thread-
ing Building Blocks”. In: IEEE International Symposium on Workload Characterization. Sept. 2008,
pp. 57–66.

[74] Donald G. Bailey. “The Advantages and Limitations of High Level Synthesis for FPGA Based Im-
age Processing”. In: Proceedings of the 9th International Conference on Distributed Smart Cameras.
ICDSC ’15. Seville, Spain: ACM, 2015, pp. 134–139.

[75] E. Waingold et al. “Baring it all to software: Raw machines”. In: Computer 30.9 (Sept. 1997),
pp. 86–93.

[76] J. Leskela, J. Nikula, and M. Salmela. “OpenCL embedded profile prototype in mobile device”.
In: IEEE Workshop on Signal Processing Systems. Oct. 2009, pp. 279–284.

[77] J. Rohde, M. Martinez-Peiro, and R. Gadea-Girones. “SOCAO: Source-to-Source OpenCL Com-
piler for Intel-Altera FPGAs”. In: FSP 2017; Fourth International Workshop on FPGAs for Software
Programmers. Sept. 2017, pp. 1–7.

[78] Markus Levy Urs Gleim. MTAPI: Parallel Programming for Embedded Multicore Systems. Tech. rep.

[79] Costa JJ et al. “Running OpenMP applications efficiently on an everything-shared SDSM”. In:
18th International Parallel and Distributed Processing Symposium. Apr. 2004, pp. 35–.

[80] A. Basumallik, S. J. Min, and R. Eigenmann. “Programming Distributed Memory Sytems Using
OpenMP”. In: IEEE International Parallel and Distributed Processing Symposium. Mar. 2007, pp. 1–
8.

[81] L. Huang et al. “Parallelizing ultrasound image processing using OpenMP on multicore embedded
systems”. In: IEEE Global High Tech Congress on Electronics. Nov. 2012, pp. 131–138.

[82] R. Prokesch. “Evaluation of parallelization of an image processing algorithm for an embedded
multicore platform using manual parallelization and the OpenMP parallel framework”. In: 39th
Annual Conference of the IEEE Industrial Electronics Society (IECON). Nov. 2013, pp. 2256–2260.

[83] J. M. Perez, R. M. Badia, and J. Labarta. “A dependency-aware task-based programming environ-
ment for multi-core architectures”. In: IEEE International Conference on Cluster Computing. Sept.
2008, pp. 142–151.

[84] Mohammad Zalfany Urfianto et al. “A Multiprocessor SoC Architecture with Efficient Commu-
nication Infrastructure and Advanced Compiler Support for Easy Application Development”. In:
IEICE Transactions 91-A (2008), pp. 1185–1196.

[85] Frederic Jacob. “Automatische Aufteilung und Parallelisierung von Embedded Software mit
µStreams”. Bachelor’s thesis. TU Darmstadt, FG Rechnersysteme, 2017.

[86] Sebastian Herber. “Entwurf und Implementierung eines Kohärenz Mechanismus für globale Vari-
ablen in SpartanMC Many-Core Systemen”. Master’s thesis. TU Darmstadt, FG Rechnersysteme,
2017.

[87] Markus Noll. “Implementierung einer Dispatcher- und Konzentratorschaltung für den Spar-
tanMC”. Bachelor’s thesis. TU Darmstadt, FG Rechnersysteme, 2015.

[88] Laurenz Kamp. “Erweiterung des SpartanMC um einen Performance-Counter”. Bachelor’s thesis.
TU Darmstadt, FG Rechnersysteme, 2016.

[89] Tobias Schladt. “Portierung der Many-Core-fähigen SpartanMC-Firewall auf Xilinx MicroBlaze”.
Master’s thesis. TU Darmstadt, FG Rechnersysteme, 2018.

[90] Lukas Schild. “Integration des Xilinx MicroBlaze in µStreams”. Bachelor’s thesis. TU Darmstadt,
FG Rechnersysteme, 2018.

[91] Christian Bienia. “Benchmarking Modern Multiprocessors”. PhD thesis. Princeton University, Jan.
2011.

143

[92] Yuko Hara et al. “Proposal and Quantitative Analysis of the CHStone Benchmark Program Suite
for Practical C-based High-level Synthesis”. In: JIP 17 (Jan. 2009), pp. 242–254.

[93] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. “MediaBench: a tool for evaluating and syn-
thesizing multimedia and communications systems”. In: Proceedings of 30th Annual International
Symposium on Microarchitecture. Dec. 1997, pp. 330–335.

[94] Reinhold P. Weicker. “Dhrystone: A Synthetic Systems Programming Benchmark”. In: Commun.
ACM 27.10 (Oct. 1984), pp. 1013–1030.

[95] Kris Heid, Ramon Wirsch, and Christian Hochberger. “Automated Inference of SoC Configuration
through Firmware Source Code Analysis”. In: FSP 2016; Third International Workshop on FPGAs
for Software Programmers. Aug. 2016, pp. 1–9.

[96] D. Bafumba-Lokilo, Y. Savaria, and J. David. “Generic crossbar network on chip for FPGA MP-
SoCs”. In: 2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and
TAISA Conference. June 2008, pp. 269–272.

[97] Dominik Lorych. “Usage of Replication Pipelines with Soft-Cores and µStreams”. Project seminar.
TU Darmstadt, FG Rechnersysteme, 2018.

[98] C. Dave et al. “Cetus: A Source-to-Source Compiler Infrastructure for Multicores”. In: Computer
42.12 (Dec. 2009), pp. 36–42.

[99] Kris Heid and Christian Hochberger. “AutoStreams: Fully Automatic parallelization of Legacy
Embedded Applications with Soft-Core MPSoCs”. In: International Conference on Reconfigurable
Computing and FPGAs (ReConFig). Dec. 2018, pp. 1–8.

[100] Kris Heid, Jakob Wenzel, and Christian Hochberger. “Fast DSE for Automated Parallelization of
Embedded Legacy Applications”. In: Applied Reconfigurable Computing. Architectures, Tools, and
Applications. Springer International Publishing, 2018, pp. 471–484.

[101] Kris Heid, Jan Weber, and Christian Hochberger. “µStreams: A Tool for Automated Streaming
Pipeline Generation on Soft-core Processors”. In: International Conference on FPGA Reconfigura-
tion for General-Purpose Computing (FPGA4GPC). May 2016, pp. 25–30.

[102] Geoffrey Phipps. “Comparing Observed Bug and Productivity Rates for Java and C++”. In: Softw.
Pract. Exper. 29.4 (Apr. 1999), pp. 345–358.

[103] Rajendra Patel and Arvind Rajawat. “A Survey of Embedded Software Profiling Methodologies”.
In: International Journal of Embedded Systems and Applications (IJESA) (2011).

[104] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. “Gprof: A Call Graph Execution
Profiler”. In: Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction. SIGPLAN
’82. Boston, Massachusetts, USA: ACM, 1982, pp. 120–126.

[105] Nathan Froyd, John Mellor-Crummey, and Robert J. Fowler. “Low-overhead call path profiling
of unmodified, optimized code”. In: Jan. 2005, pp. 81–90.

[106] Kris Heid, Jakob Wenzel, and Christian Hochberger. “Improved Parallelization of Legacy Embed-
ded Software on Soft-Core MPSoCs through Automatic Loop Transformations”. In: Fifth Interna-
tional Workshop on FPGAs for Software Programmers (FSP). Aug. 2018, pp. 1–8.

[107] John Allen and Ken Kennedy. Optimizing Compilers for Modern Architectures: A Dependence-based
Approach. Morgan Kaufmann Publishers Inc., 2002.

[108] J. Liu, J. Wickerson, and G. A. Constantinides. “Loop Splitting for Efficient Pipelining in High-
Level Synthesis”. In: FCCM 2016. 2016, pp. 72–79.

[109] Kris Heid and Christian Hochberger. “Generating Optimized FPGA-Based MPSoCs to Parallelize
Legacy Embedded Software with Customizable Throughput”. In: Workshop Parallel -Algorithmen,
-Rechnerstrukturen und -Systemsoftware (PARS). 2019.

144

[110] M. R. Guthaus et al. “MiBench: A free, commercially representative embedded benchmark suite”.
In: Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization.
WWC-4 (Cat. No.01EX538). Dec. 2001, pp. 3–14.

[111] Jeff Scott et al. Designing the Low-Power M*CORE Architecture. Tech. rep. 1998.

[112] Khalid Sayood. Introduction to Data Compression. Morgan Kaufmann Publishers Inc., 2000.

[113] Honeywell Technology Center. Versatility Stressmark. Benchmark Specification Document Version
0.8 CDRL A001. Honeywell Technology Center, 1997.

[114] Steven Leduc. “Many-Core Firewall Application for SpartanMC”. Master’s thesis. TU Darmstadt,
FG Rechnersysteme, 2016.

[115] Daniel Hartmeier. “Design and Performance of the OpenBSD Stateful Packet Filter (Pf)”. In:
USENIX Annual Technical Conference. USENIX Association, 2002, pp. 171–180.

[116] David Murray and Terry Koziniec. “The State of Enterprise Network Traffic in 2012”. In: 18th
Asia-Pacific Conference on Communications (APCC). 2012.

[117] David Murray et al. “An Analysis of Changing Enterprise Network Traffic Characteristics”. In:
23rd Asia-Pacific Conference on Communications (APCC). 2017.

[118] Shunhao Lin et al. “A Design of the Ethernet Firewall Based on FPGA”. In: 10th International
Congress on Image and Signal Processing, BioMedical Engineering and Informatics. 2017.

[119] Gajanan S. Jedhe, Arun Ramamoorthy, and Kuruvilla Varghese. “A Scalable High Throughput
Firewall in FPGA”. In: 16th International Symposium on Field-Programmable Custom Computing
Machines. 2008.

[120] Sven Hager, Björn Scheuermann, and Frank Winkler. “MPFC: Massively Parallel Firewall Cir-
cuits”. In: 39th Annual IEEE Conference on Local Computer Networks. 2014.

[121] Zubair Nabi. “A 35 Dollar Firewall for the Developing World”. In: Cornell University Computing
Research Repository (2014).

145

Supervised Students’ Theses

[85] Frederic Jacob. “Automatische Aufteilung und Parallelisierung von Embedded Software mit
µStreams”. Bachelor’s thesis. TU Darmstadt, FG Rechnersysteme, 2017.

[86] Sebastian Herber. “Entwurf und Implementierung eines Kohärenz Mechanismus für globale Vari-
ablen in SpartanMC Many-Core Systemen”. Master’s thesis. TU Darmstadt, FG Rechnersysteme,
2017.

[87] Markus Noll. “Implementierung einer Dispatcher- und Konzentratorschaltung für den Spar-
tanMC”. Bachelor’s thesis. TU Darmstadt, FG Rechnersysteme, 2015.

[88] Laurenz Kamp. “Erweiterung des SpartanMC um einen Performance-Counter”. Bachelor’s thesis.
TU Darmstadt, FG Rechnersysteme, 2016.

[89] Tobias Schladt. “Portierung der Many-Core-fähigen SpartanMC-Firewall auf Xilinx MicroBlaze”.
Master’s thesis. TU Darmstadt, FG Rechnersysteme, 2018.

[90] Lukas Schild. “Integration des Xilinx MicroBlaze in µStreams”. Bachelor’s thesis. TU Darmstadt,
FG Rechnersysteme, 2018.

[97] Dominik Lorych. “Usage of Replication Pipelines with Soft-Cores and µStreams”. Project seminar.
TU Darmstadt, FG Rechnersysteme, 2018.

[114] Steven Leduc. “Many-Core Firewall Application for SpartanMC”. Master’s thesis. TU Darmstadt,
FG Rechnersysteme, 2016.

146

Own Publications

[95] Kris Heid, Ramon Wirsch, and Christian Hochberger. “Automated Inference of SoC Configuration
through Firmware Source Code Analysis”. In: FSP 2016; Third International Workshop on FPGAs
for Software Programmers. Aug. 2016, pp. 1–9.

[99] Kris Heid and Christian Hochberger. “AutoStreams: Fully Automatic parallelization of Legacy
Embedded Applications with Soft-Core MPSoCs”. In: International Conference on Reconfigurable
Computing and FPGAs (ReConFig). Dec. 2018, pp. 1–8.

[100] Kris Heid, Jakob Wenzel, and Christian Hochberger. “Fast DSE for Automated Parallelization of
Embedded Legacy Applications”. In: Applied Reconfigurable Computing. Architectures, Tools, and
Applications. Springer International Publishing, 2018, pp. 471–484.

[101] Kris Heid, Jan Weber, and Christian Hochberger. “µStreams: A Tool for Automated Streaming
Pipeline Generation on Soft-core Processors”. In: International Conference on FPGA Reconfigura-
tion for General-Purpose Computing (FPGA4GPC). May 2016, pp. 25–30.

[106] Kris Heid, Jakob Wenzel, and Christian Hochberger. “Improved Parallelization of Legacy Embed-
ded Software on Soft-Core MPSoCs through Automatic Loop Transformations”. In: Fifth Interna-
tional Workshop on FPGAs for Software Programmers (FSP). Aug. 2018, pp. 1–8.

[109] Kris Heid and Christian Hochberger. “Generating Optimized FPGA-Based MPSoCs to Parallelize
Legacy Embedded Software with Customizable Throughput”. In: Workshop Parallel -Algorithmen,
-Rechnerstrukturen und -Systemsoftware (PARS). 2019.

147

	Abbreviations
	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Motivation
	Problems & Goals
	Work plan

	State-of-the-Art
	Multi-/Many-Core SoC Platforms
	Embedded Multi-Core Architectures
	Embedded Many-Core Architectures
	Soft-core multi-/many-cores
	Conclusion

	Extracting Parallelism from Applications: Design Choices
	Programming Paradigms
	Types of Parallelism
	Partitioning Level
	Memory Architecture
	Task Scheduling
	Conclusion and Scope

	Parallelization Tools
	Tools out of Scope
	DSLs/Language Extensions
	APIs/Libraries
	Annotations
	Automatic
	Summary

	Target Platforms
	SpartanMC
	Inter-Core Communication
	Performance-Counter

	MicroBlaze
	Inter-Core Communication
	Timer - Performance Counter

	Inter-Core Communication performance evaluation
	1-to-1 Communication
	1-to-N and N-to-1 Communication

	Global Memory

	Used Multi-Core Architectures and Execution Concepts
	Required Application Structure
	Pipeline
	Pipeline Hardware Limitations

	Pipeline with Replication
	Replicated Pipeline Hardware Limitations

	Shared Global Memory
	Communication Overhead
	Latency

	Automatic Parallelization
	Overall toolflow
	AutoPerf: Application Profiling
	AutoStreams: Automatic Annotations
	Streams: Annotated Source-Code Transformation
	Refine Timing Constraints

	Common Software Infrastructure
	Cetus
	Common Transformation Infrastructure

	AutoPerf
	Traditional Approaches
	Implementation
	Credibility of Measured Results

	LoopOptimizer
	Loop Parallelization Techniques

	AutoStreams
	Optimization Points
	Implementation

	Streams
	Usable Pragmas
	Unsupported Constructs
	Implementation

	PeripheralDetector
	Workflow
	Implementation
	Sources of False Detection
	Automatic Peripheral Detection on Multi-Core Systems

	Evaluation
	Test Applications
	ADPCM
	MJPEG2000
	IIR Butterworth Filter
	Firewall

	Application Profiles
	Benchmark Characteristics

	Possible Parallelization & Performance Gain
	Parallelization without Optimizations
	Parallelization with Replication
	Parallelization with DMA Interconnects
	Parallelization with LoopOptimizer

	AutoStreams Estimation Accuracy
	Hardware Estimation
	Application Runtime Estimation

	Parallelization with Peripheral In-&Output
	Firewall
	ADPCM with IO

	Manual vs. Automatic Parallelization
	Maximum Frequency Multi-Core Designs
	Speedup vs. Performance Loss through Lower Frequency

	Latency in the Generated Pipelines
	Dynamic Verification: System Tests
	Comparison with Related Work
	Best Practice Proposals

	Conclusion & Future Work
	References
	Supervised Students' Theses
	Own Publications

