
Universitat Politècnica de Catalunya

PhD Thesis

A time-predictable many-core processor
design for critical real-time embedded

systems

Author:

Miloš Panić
Supervisors:

Dr. Eduardo Quiñones

Dr. Francisco J. Cazorla

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

Departament dArquitectura de Computadors

Facultat d’Informàtica de Barcelona

February 2018

http://www.upc.edu
http://es.linkedin.com/pub/milos-panic/41/32b/405/
http://personals.ac.upc.edu/equinone/
http://personals.ac.upc.edu/fcazorla/
https://www.ac.upc.edu/)
http://www.fib.upc.edu/)

Declaration of Authorship

I, Miloš Panić, declare that this thesis titled, ’A time-predictable many-core processor design for

critical real-time embedded systems’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree at the

Universitat Politècnica de Catalunya.

� Where any part of this thesis has previously been submitted for a degree or any other

qualification at the Universitat Politècnica de Catalunya or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly attributed.

� Where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

Signed:

Date:

iii

http://www.upc.edu
http://www.upc.edu

“I myself know nothing,

except just a little,

enough to extract an argument

from another man who is wise

and to receive it fairly.“

Socrates

Abstract

Critical Real-Time Embedded Systems (CRTES) are in charge of controlling fundamental parts

of embedded system, e.g. energy harvesting solar panels in satellites, steering and breaking in

cars, or flight management systems in airplanes. To do so, CRTES require strong evidence of

correct functional and timing behavior. The former guarantees that the system operates correctly

in response of its inputs; the latter ensures that its operations are performed within a predefined

time budget.

CRTES aim at increasing the number and complexity of functions. Examples include the

incorporation of “smarter” Advanced Driver Assistance System (ADAS) functionality in modern

cars or advanced collision avoidance systems in Unmanned Aerial Vehicles (UAVs). All these

new features, implemented in software, lead to an exponential growth in both performance

requirements and software development complexity. Furthermore, there is a strong need to

integrate multiple functions into the same computing platform to reduce the number of processing

units, mass and space requirements, etc. Overall, there is a clear need to increase the computing

power of current CRTES in order to support new sophisticated and complex functionality, and

integrate multiple systems into a single platform.

The use of multi- and many-core processor architectures is increasingly seen in the CRTES

industry as the solution to cope with the performance demand and cost constraints of future

CRTES. Many-cores supply higher performance by exploiting the parallelism of applications

while providing a better performance per watt as cores are maintained simpler with respect

to complex single-core processors. Moreover, the parallelization capabilities allow scheduling

multiple functions into the same processor, maximizing the hardware utilization.

However, the use of multi- and many-cores in CRTES also brings a number of challenges related

to provide evidence about the correct operation of the system, especially in the timing domain.

Hence, despite the advantages of many-cores and the fact that they are nowadays a reality in

the embedded domain (e.g. Kalray MPPA, Freescale/NXP P4080, TI Keystone II), their use

in CRTES still requires finding efficient ways of providing reliable evidence about the correct

operation of the system.

This thesis investigates the use of many-core processors in CRTES as a means to satisfy perfor-

mance demands of future complex applications while providing the necessary timing guarantees.

To do so, this thesis contributes to advance the state-of-the-art towards the exploitation of parallel

capabilities of many-cores in CRTES contributing in two different computing domains. From the

hardware domain, this thesis proposes new many-core designs that enable deriving reliable and

tight timing guarantees. From the software domain, we present efficient scheduling and timing

analysis techniques to exploit the parallelization capabilities of many-core architectures and to

derive tight and trustworthy Worst-Case Execution Time (WCET) estimates of CRTES.

Acknowledgements

I would like to express my deep gratitude to Dr. Eduardo Quiñones, Dr. Jaume Abella, Dr.

Carles Hernández, and Dr. Francisco Cazorla, my research supervisors, for their patient guidance,

enthusiastic encouragement and useful critiques of this research work. I would also like to thank

Dr. Theo Ungerer, Dr. Bert Böddeker, Dr. Sebastian Kehr, Dr. Pavel Zaykov and Dr. Antoni

Roca for their valuable and constructive suggestions during the planning and development of this

research work.

My grateful thanks are also extended to the researchers and engineers of the Computer Architecture

/ Operating System Interface research group of the Barcelona Supercomputing center: Dr.

Leonidas Kosmidis, Dr. Javier Jalle and Mr. Mikel Fernández, for their help and contribution in

the development of the simulation framework.

Moreover, I wish to thank my family for their support and encouragement throughout my study.

This work has been funded by the European Commission through the project PARMERASA

(FP7-287519) and by the Spanish Ministry of Science and Innovation (TIN2012-34557, TIN2015-

65316-P). Miloš Panić held the FPU grant FPU12/05966 (Programa Nacional de Formacin de

Profesorado Universitario) of the Ministry of Education, Culture and Sports of Spain.

ix

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

List of Figures xvii

List of Tables xix

Abbreviations xxi

I Introduction 1

1 Introduction 3

1.1 Real-time Systems . 3

1.2 Trends in Critical Real-Time Embedded Systems (CRTES) 5

1.3 Applying multi/many-core technology to CRTES 6

1.3.1 The timing behavior of CRTES in multi/many-core platforms 7

1.3.2 The design of CRTES: Time composability 8

1.4 Thesis Goals and Objectives . 9

1.5 Thesis Contribution . 11

1.5.1 Hardware . 11

1.5.2 Scheduling techniques . 11

1.5.3 Probabilistic timing analysis . 12

1.5.4 Standards . 12

1.5.5 Open source software . 12

1.6 Thesis Organization . 13

2 Experimental Setup 15

2.1 Simulation framework . 15

2.2 Case studies . 17

2.2.1 Avionics domain . 18

2.2.2 Automotive domain . 18

2.2.3 Benchmarks . 19

2.3 Timing analysis . 19

2.3.1 Static timing analysis – OTAWA . 20

2.3.2 Measurement-based timing analysis – RapiTime 21

xi

Contents xii

II Manycore Hardware Design and Analysis 23

3 A Time Predictable Architecture 25

3.1 Introduction . 25

3.2 Integrated Modular Avionics . 27

3.2.1 Interference among processes of a Software Partition (SWP) 28

3.2.2 Interference among SWPs . 28

3.2.3 Similarities between IMA and AUTOSAR frameworks 29

3.3 ARINC 653 and many-cores . 29

3.4 Parallel Software Partitions . 30

3.4.1 Shared Software Resources . 30

3.4.2 Shared Hardware Resources . 31

3.4.3 Methods to control Intra-SWP interferences 31

3.4.3.1 Computation . 32

3.4.3.2 Communication . 32

3.4.4 Methods to Control Inter-SWP interferences 33

3.4.4.1 Impact of intra-SWP activities on Inter-SWP communication
(RIM/LIM → REM/CEM) 33

3.4.4.2 Impact of Inter-SWP communication on intra-SWP activities
(CEM/REM → RIM/LIM) 33

3.4.4.3 Interferences among inter-SWP communication (CEM/REM →
CEM/REM) . 34

3.4.5 WCET and Time composability under Parallel Software Partition (pSWP) 34

3.5 Guaranteed Resource Partitions: GRP . 35

3.5.1 Main timing aspects of Guaranteed Resource Partitions (GRPs) 36

3.5.1.1 Time Predictability . 36

3.5.1.2 Transparent execution . 36

3.5.1.3 Isolation of intra-SWP communication requests among different
GRPs . 37

3.5.2 Implementation aspects of GRPs . 38

3.5.2.1 Network on Chip (NoC) Design: Physical GRPs 38

3.5.2.2 NoC Design: Virtual GRPs . 39

3.5.2.3 Memory Design . 41

3.5.3 From WCTT and MEMWCRT to WCET Computation 43

3.5.3.1 Computing the WCET Estimation in Isolation 43

3.5.3.2 Computing ∆inter: NoC and Memory Impact 44

3.6 Experimental Results . 44

3.6.1 Experimental Setup . 44

3.6.1.1 Hardware Setup . 44

3.6.1.2 Parallel Avionic Applications . 45

3.6.1.3 Compuitation of the WCET estimation of Parallel Avionic Appli-
cation . 46

3.6.2 Impact of intra-SWP Communication on Execution Time 46

3.6.3 Impact of Inter-SWP Communication on Execution Time 46

3.6.4 Executing several SWP into a single GRP 48

3.7 Related Work . 49

3.8 Conclusions . 51

4 Modeling High-Performance Wormhole NoCs for Critical Real-Time Embed-
ded Systems 53

4.1 Introduction . 53

4.2 Background . 55

4.3 Contention Delay: A New Metric to account for the impact of NoC on WCET . 56

Contents xiii

4.3.1 Worst-Contention Delay (WCD) Properties 57

4.3.2 WCD Assumptions . 58

4.4 NoC Parameters Taxonomy . 58

4.4.1 Wormhole mesh NoC fundamentals . 58

4.4.2 Proposed Taxonomy . 60

4.4.2.1 Fixed parameters . 60

4.4.2.2 Parameters to adjust . 61

4.5 Time-Composable WCD bounds . 62

4.5.1 Single-Flit, One Virtual-Channel, Single-entry Queue (FT = 1, nV C =
1, E = 1) . 62

4.5.1.1 Single-router traversal . 63

4.5.1.2 Worst Contention . 63

4.5.1.3 worst-case Destination . 63

4.5.1.4 Computing the time-composable upper bound Worst-Contention
Delay (WCDi) . 64

4.5.2 Single-Flit, Virtual-Channels, Single-entry Queue
(FT = 1, 1 < nV C < cF,E = 1) . 65

4.5.3 Multiple-Flit, Virtual-Channels, Single-entry Queue
(FT > 1, 1 < nV C < cF,E = 1) . 66

4.5.4 Multiple-Flit, Virtual-Channels, Multiple-entry Queue
(FT > 1, 1 < nV C < cF,E > 1 or E < 1) 67

4.5.4.1 Queue size larger than packet size (E > 1) 67

4.5.4.2 Queue size smaller than packet size (E < 1) 67

4.5.5 Impact of variable size packets . 68

4.6 System design considerations . 68

4.6.1 Packet Size . 68

4.6.2 Virtual Channels . 69

4.6.3 Network Size . 69

4.7 Modeling existing NoC designs . 69

4.7.1 WCD accuracy and comparison with Worst-Case Traversal Time (WCTT) 70

4.7.2 Reducing WCD values . 71

4.7.3 Impact of Wormhole-based Network on Chip (wNoC) interference on WCET 72

4.8 Related Work . 73

4.8.1 Quality of Service (QoS) . 73

4.8.2 Real-time Specific NoCs . 73

4.8.3 WCTT in wNoCs . 74

4.9 Conclusions . 75

5 Improving Performance Guarantees in Wormhole Mesh NoC Designs 77

5.1 Introduction . 77

5.2 Reference mesh network . 79

5.3 Wormhole-based mesh NoCs . 80

5.3.1 Assumptions . 80

5.3.2 Factors impacting WCTT estimates . 80

5.4 Computing Worst-case Traversal Time . 81

5.5 Flit-Homogeneous Guarantees in Meshes . 83

5.5.1 WCTT-aware Packetization (WaP) . 83

5.5.2 WCTT-aware Weighted (WaW) . 83

5.5.3 WaW implementation . 85

5.5.4 Hardware modifications . 85

5.6 Evaluation . 85

5.6.1 Reducing WCTT with WaW+WaP . 86

5.6.2 Improving WCET estimates for single threaded applications 86

Contents xiv

5.6.3 Improving WCET estimates for Parallel Applications 87

5.6.4 Average performance . 87

5.7 Related Work . 87

5.8 Conclusions . 88

III Software Support for Exploiting Manycore Potential – Schedul-
ing 89

6 Intra-GRP Scheduling Strategy for Parallelization of Complex Automotive
Applications 91

6.1 Introduction . 91

6.2 Background . 94

6.2.1 AUTOSAR Applications . 94

6.2.2 Multi-cores and WCET estimation . 96

6.3 RunPar Allocation Algorithm . 97

6.3.1 Problem Definition . 97

6.3.2 Mapping Runnables to Cores . 99

6.3.2.1 Runnable classification . 99

6.3.2.2 Sorting criteria . 99

6.3.2.3 Bin packing heuristics . 100

6.3.2.4 Dependent Runnables . 100

6.3.2.5 Independent Runnables . 101

6.3.3 Allocation Algorithm Solution: Φ . 102

6.3.4 Validating the Single-core Task Scheduling 102

6.3.5 Execution of interrupt-driven tasks (CrAn task) 103

6.4 Results . 105

6.4.1 Experimental setup . 105

6.4.1.1 EMS application . 105

6.4.1.2 WCET analysis tool and Processor Setup 105

6.4.1.3 Metrics . 105

6.4.2 Choosing the appropriate heuristics . 106

6.4.3 WCET Speed-up of Engine Management System (EMS) tasks 107

6.4.4 Increasing Overall Available Central Processing Unit (CPU) Capacity . . 108

6.5 Related Work . 109

6.6 Conclusions . 111

7 Inter-GRP Scheduling Strategy for Real-time Applications on Many-cores 113

7.1 Introduction . 113

7.2 Background . 115

7.2.1 CRTES applications . 115

7.3 Allocation Algorithm . 116

7.3.1 Problem Definition . 116

7.3.2 Mapping Applications to GRPs . 117

7.3.3 Example . 119

7.4 Evaluation methodology . 120

7.5 Results . 122

7.5.1 4-GRP many-core . 122

7.5.2 16-GRP many-core . 123

7.5.3 Algorithm complexity . 124

7.6 Related Work . 125

7.7 Conclusions . 126

Contents xv

IV The Thesis and Beyond – Conclusions and Future Work 127

8 Enabling TDMA Arbitration in the Context of MBPTA 129

8.1 Introduction . 129

8.2 Contention analysis for DTA and MBPTA . 131

8.2.1 SDTA and MBDTA . 131

8.2.2 MBPTA . 132

8.3 TDMA impact on execution time . 133

8.3.1 Request Types . 133

8.3.2 TDMA impact on execution time for synchronous request 134

8.3.3 sad for Multiple Asynchronous Requests 135

8.3.4 Multiple TDMA resources . 136

8.3.5 Other considerations . 137

8.4 TDMA in the context of MBPTA . 138

8.4.1 Timing of MBPTA-Compliant Processors 138

8.4.2 TDMA analysis with MBPTA . 139

8.4.3 Full-program padding . 140

8.5 Results . 141

8.5.1 Evaluation Framework . 141

8.5.2 Impact of TDMA sad on Execution Time 142

8.5.3 Performance Comparison . 143

8.6 Related work . 144

8.7 Conclusions . 145

9 Conclusions, Impact and Future Work 147

9.1 Impact and Future Work . 149

List of Publications 151

List of Figures

1.1 Europe embedded system market size, by application (US$ billions). Source: [1] . 4

1.2 Time predictability. Source [2] . 6

1.3 Memory accesses in many-cores . 7

1.4 Time composability . 8

2.1 High-level overview of simulation framework together with system software and
WCET tools . 16

2.2 Workflow of the static timing analysis tool OTAWA. 20

2.3 Workflow of the measurement-based timing analysis tool RapiTime. Source https:

//www.rapitasystems.com/products/rvs/how-does-rvs-work 22

3.1 (a) Time partitioning as defined in ARINC653. (b) 2 pSWP comprising 4 and 2 processes

respectively and their mapping to a 6-core multi-core deploying a mesh NoC. 28

3.2 Different conflicts among two SWPs and how they are handled by pSWP specification. 32

3.3 Example of execution of SWP over time . 34

3.4 Processor architecture comprising 2 GRPs. 35

3.5 (a) Clustered design with four clusters, each with four cores. (b) Regular design
comprised by four GRPs with different number of cores (6, 2, 4 and 4 cores) . . . 37

3.6 Structure of memory request queues. 42

3.7 4 SWPs executed following a software pipelining approach. 45

3.8 Worst-Case Execution Time Bound (WCB) of 3DPP and StereoNav. We assume a
regular (Mesh) and a clustered (Tree+Bus) architectures. We analyze the impact
of activating and deactivating the transparent execution mechanism. 47

3.9 WCB of 3DPP and StereoNav, assuming regular and hierarchical architectures
(Mesh and Tree+Bus respectively) and activating and deactivating the transparent
execution mechanism. 48

3.10 Combining several pSWPs into a single GRP . 50

4.1 Simple router and the impact of atd and etd on traversal time and contention delay. 57

4.2 Mesh basics. (a) Router coordinates in a 4x4 part of a mesh. (b) Canonical
2D-mesh router. 59

4.3 (a) Worst destination; and (b) A flow crossing 2 routers 64

4.4 WCD bounds derived in this thesis and adapted WCTT from [3] 71

4.5 Effect of disabling VC and clustering on WCD for the SCC setup 72

4.6 WCETmc estimates derived with WCD and WCTT w.r.t. OET 73

5.1 (a) Router coordinates in a 4x4-Mesh. (b) Unfair bandwidth allocation in wormhole. 81

5.2 WCET estimates for the 16-core parallel avionics application 87

6.1 Inter-runnable dependencies existing among three of the twelve tasks that com-
pose the EMS (tasks 1, 4 and 8 ms). Nodes represent runnables and lines the
dependencies among them . 92

xvii

https://www.rapitasystems.com/products/rvs/how-does-rvs-work
https://www.rapitasystems.com/products/rvs/how-does-rvs-work

List of Figures xviii

6.2 Part of the runnable flow-graph of an automotive application composed of 3 SWC,
7 runnables and 3 tasks executed in a single-core processor. (a) Structure of the
application; (b) application configuration from an AR-OS point of view; (c) a
possible single-core task scheduling of the three tasks. 94

6.3 Block diagram of our target architectures. 95

6.4 Pseudo-code implementation of the allocation algorithm. 101

6.5 Valid allocation (Φ) of the automotive application presented in Figure 6.2 in a
two-core processor, executing cycle 20. Ci is the WCET estimate of runnable ri. 102

6.6 The CrAn interrupt-triggered task preempting time-triggered one. 103

6.7 WCET speed-ups of EMS tasks in a 2-core processor architecture, in which the
WCET estimation accounts and discards the impact of interferences (labeled as
interferences and no interferences respectively). 107

6.8 WCET speed-ups of EMS tasks in a 4-core processor architecture, in which the
WCET estimation accounts and discards the impact of interferences (labeled as
interferences and no interferences respectively). 108

6.9 Utilization of EMS tasks being allocated on a single-core, 2-core and 4-core
Electronic Control Unit (ECU) labeled as sequential, 2-core and 4-core respectively).109

7.1 Time-predictable many-core architecture with GRPs resembling [4] 114

7.2 Example of the directed acyclic graph for a CRTES comprising 6 applications . . 115

7.3 Pseudo-code implementation of the allocation algorithm. 118

7.4 CAP . 119

7.5 Schedulability success rate - CAP vs. BAWF (Composable 1.5-2.15) on a 4-GRP
many-core . 122

7.6 Schedulability success rate - CAP vs. BAWF (Composable 1.3-1.6) on a 4-GRP
many-core . 123

7.7 Schedulability success rate - CAP vs. BAWF (Composable 1.5-2.15) on a 16-GRP
many-core . 124

7.8 Schedulability success rate - CAP vs. BAWF (Composable 1.3-1.6) on a 16-GRP
many-core . 124

8.1 Example of 3 requests with ∆inj = {−, 4, 1} and their sad. bi are the cycles in
which the request is ready but waiting in the buffer due to sad ; si represents cycle
in which the request gets access to the bus. Finally blanks represent the cycles
with no requests on the bus. 136

8.2 Different combinations – in a two Time Division Multiple Access (TDMA)-window

case – for cycrel,TDMA1
0 and cycrel,TDMA2

0 . 137

8.3 Different probabilistic states in which the processor may be after the execution of
each of the 3 loads in the example. 139

8.4 Full-program padding in the context of MBPTA. 140

8.5 Schematic of the multicore processor considered. 141

8.6 Probabilistic Worst Case Execution Time (pWCET) estimates for a cutoff proba-
bility of 10−15 normalized w.r.t. time-randomized arbitration. 144

List of Tables

1.1 Goals and objectives . 10

2.1 EEMBC Automotive Suite . 19

3.1 WCTT factors (zll + NoCRID) for regular (Mesh) NoC designs assuming pipelined
routers with Drouter = 2 and LZi = 4. The Core Id refers to the location of cores
shown in Figure 3.5(b). 41

4.1 Summary of main symbols used . 58

4.2 List of wNoC main features analyzed . 60

4.3 Setups . 62

4.4 Technical details of the mesh NoC in high-performance chips: 48-core Intel SCC
and 36 core Tilera-Gx36 . 70

5.1 Arbitration weights for a 2x2-mesh router R(1,1) in a regular mesh and with WaW 84

5.2 WCTT values for different Mesh sizes for 1-flit packets. 85

5.3 Normalized WCET per core of EEMBC with WaW+WaP 86

6.1 Average WCET speed-up of EMS’ tasks . 106

6.2 Average WCET speed-up of EMS tasks when combining heuristics 106

7.1 WCET intervals in cycles, assuming 1GHz processor 121

8.1 Random arbitration bus example. 132

8.2 Maximum exec. time variations due to TDMA sad. 142

xix

Abbreviations

ADAS Advanced Driver Assistance System

AUTOSAR AUTomotive Open System ARchitecture

AR-OS AUTOSAR Operating System

CD Contention Delay

CFG Control Flow Graph

COTS Commercial-Off-The-Shelf

CPU Central Processing Unit

CRTES Critical Real-Time Embedded Systems

DAG Directed Acyclic Graph

DMA Direct Memory Access

DTA Deterministic Timing Analysis

ECU Electronic Control Unit

EMS Engine Management System

FPGA Field-Programmable Gate Array

GRP Guaranteed Resource Partition

GS Guaranteed Service

HPC High Performance Computing

IARA Interference Aware Resource Arbiter

IMA Integrated Modular Avionics

ILP Integer Linear Programming

ISA Instruction Set Architecture

IV incremental verification

MBPTA Measurement-Based Probabilistic Timing Analysis

NIC Network Interface Controller

NoC Network on Chip

OET Observed Execution Time

PME Processor/Memory Element

pSWP Parallel Software Partition

PTA Probabilistic Timing Analysis

xxi

Abbreviations xxii

pWCET Probabilistic Worst Case Execution Time

QoS Quality of Service

RAM Random Access Memory

RTOS Real-Time Operating System

SoCLib SoCLib

SMART Specific, Measurable, Achievable, Realistic, Timely

SWaP Size, Weight, and Power

SWC Software Components

SWP Software Partition

TDMA Time Division Multiple Access

UAV Unmanned Aerial Vehicle

UBD Upper-Bound Delay

UoS Unit of Scheduling

VC Virtual Channel

VCI Virtual Component Interface

WaP WCTT-aware Packetization

WaW WCTT-aware Weighted

wNoC Wormhole-based Network on Chip

WCD Worst-Contention Delay

WCET Worst-Case Execution Time

WCB Worst-Case Execution Time Bound

WCRT Worst-Case Response Time

WCTT Worst-Case Traversal Time

zll zero load latency

To Filip and Tijana.

xxiii

Part I

Introduction

1

Chapter 1

Introduction

Embedded systems are ubiquitous nowadays, ranging from mobile phones and medical devices to

airplanes and satellites, with a tendency of growth [1, 5]. According to the report by Transparency

Market Research [1], global spending on embedded systems will reach US$233.13 bn by 2021,

growing from US$152.94 bn in 2014. This growth comes with a significant increment in the

performance requirements for future embedded devices to cope with the newest ”smart” software

functionality. Overall, this tendency is changing the landscape of computer market driving a

true convergence of high-performance and embedded computing systems [6–8].This trend can

be observed as most chip manufacturers are nowadays targeting embedded systems, diversifying

their product portfolio [9, 10]. Furthermore, chip manufacturers are also introducing hardware

techniques commonly used in general purpose and high-performance computing into the next

generation embedded chips to cope the performance requirements of the modern systems. This

thesis advances the current state-of-the-art in this field, boosting the convergence of high-

performance and embedded domain, with the emphasis on embedded systems with real-time

requirements.

1.1 Real-time Systems

Real-time systems represent a significant part of embedded market [1] with further tendencies

of growth [9]. They cover a wide range of applications: from cellphones and routers to medical

devices, automobiles, airplanes, satellites, etc. In those systems, time has an essential role in their

correct execution, as most of the tasks that form the system have to finish before specific time

boundaries – called deadlines – in order to have the system functioning correctly. In order to

ensure that tasks deadlines are met, and by doing so guarantee the system correctness from the

timing perspective, a process called timing analysis is performed. Timing analysis produces upper

bounds on the maximum execution times of a task, called Worst-Case Execution Time (WCET) ,

derived for execution of the task in a specific hardware platform.

Based on the severity of consequences of a task not meeting its associated deadline, we categorize

tasks into four groups:

3

Chapter 1. Introduction 4

Figure 1.1: Europe embedded system market size, by application (US$ billions). Source: [1]

• Hard real-time tasks are controlling the most critical functions of the system, e.g. energy

harvesting solar panels in satellites, steering and breaking in cars, flight management

systems in airplanes, etc. Unexpected deadline misses for these tasks can cause a system

malfunctioning that could lead to a loss of human lives or irreversible damage to the

equipment and environment. Thus, system construction must guarantee that no deadline

is missed, or countermeasures must be provided to ensure system correctness in the case

of a missed deadline. Systems containing hard real-time tasks are also known as Critical

Real-Time Embedded Systems (CRTES) (either safety-critical or mission-critical). CRTES

are the focus of this thesis.

• Firm real-time tasks can tolerate very rare deadline misses as they don’t have catastrophic

consequences. In these systems, the results of tasks are useless after the deadline, leading

to controlled degradation of Quality of Service (QoS), e.g. in software defined radio[11].

• Soft real-time tasks have more relaxed deadline constraints compared to the hard and firm

real-time tasks. Even though the task output can still be useful to the system after the

deadline, missing it can lead to uncontrolled QoS degradation. However, in some cases, a

missed deadline might not be even noticed by the end user, e.g. skipping a frame in video

decoding.

• Non real-time tasks do not associate system correctness to their timing behavior and they

are rare in real-time systems, e.g. a telematics unit of a car sending usage data to a server

of an insurance company.

The High-Performance Embedded Architecture and Compilation (HiPEAC) network [12] rec-

ognizes the importance of CRTES industry in Europe and necessity of its further growth and

development. Figure 1.1 shows compound annual growth rate of embedded systems market in

Europe (courtesy of Global Market Insights [5]), highlighting the importance of automotive and

aerospace CRTES industries, that are in the focus of this thesis.

Chapter 1. Introduction 5

1.2 Trends in Critical Real-Time Embedded Systems (CRTES)

Similar to the embedded systems in general, CRTES industry aims at increasing the number

and complexity of system functions to keep the competitive edge, e.g. in avionics [13] and

automotive [14] domains. Covering the performance needs of the new software functionalities

in CRTES will lead to an increase in safety and comfort of passengers, a better assistance to

pilots and drivers, a reduction of fuel demands and carbon emissions, etc. For instance, modern

cars already incorporate complex Advanced Driver Assistance System (ADAS) functionality,

state-of-the-art Unmanned Aerial Vehicles (UAVs) feature advanced collision avoidance systems,

etc. All these new features are implemented in software, thus leading to an exponential growth

in both performance requirements and software complexity [13, 15].

Along with a growth in complexity of software functions in CRTES, there is a trend towards

integration of multiple systems into the same computing platform. For instance, a modern luxury

car can have up to 100 microprocessor based Electronic Control Units (ECUs), ranging from 8-bit,

16-bit, 32-bit microcontrollers, up to multi-core ECUs [16], each executing different functions.

There is a severe limitation of space and mass in the car for adding new ECUs. Thus, integration

of these multiple functions spread across various ECUs into a single, more powerful computing

platform is a must, since it reduces the number of ECUs, cabling and cooling provision, mass

and space requirements, etc. This leads to reduction in Size, Weight, and Power (SWaP) costs

and keeps the costs of automobiles under constrain imposed by a competitive market.

Overall, in order to support new sophisticated and complex functionality, and integrate multiple

systems into a single platform, CRTES require levels of computing power higher than what

currently used processors can supply.

Until recently, CRTES have featured simple embedded processors, with single core, short pipelines

and in-order execution, suitable for current timing analysis techniques. Even with transistors

technology scaling they cannot sustain projected guaranteed performance demands of future

CRTES. The computational power deficit cannot be overcome by using more complex single-core

processors, i.e. ones with longer pipelines, out-of-order speculative execution of instructions

and higher frequencies, due to two major drawbacks: First, such processors can suffer from

timing anomalies [17], i.e. events that happen when faster execution of a portion of the code

leads to higher execution time in total. This inherently complicates timing analysis that has

to consider much higher number of possible states and scenarios of execution in order to derive

trustworthy WCET estimates. And second, speculative execution and high-frequencies have high

power demands that goes against limited power and cooling budgets in CRTES.

The use of multi- and many-core processor architectures 1 introduced in High Performance

Computing industry more than ten years ago, is seen by the CRTES industry as a solution

to cope with the performance demand and cost constraints of future CRTES. They provide

better performance per watt and maintain simple core design w.r.t. powerful though complex

single-core processors, leading to a better thermal and energy efficiency. Moreover, many-cores

allow developers to use parallelization as a means to improve applications performance. Finally,

1 In this thesis, we consider that multi-core processors have up to 16 cores, while many-core processors have 16
or more cores.

Chapter 1. Introduction 6

Worst-Case Execution Time Problem · 3

worst-case performance

d
is

tr
ib

u
ti
o

n
 o

f
ti
m

e
s

WCETBCET

time

possible execution times

0

Lower
timing
bound

Upper
timing
bound

timing predictability

worst-case guarantee

Minimal
observed
execution

time

Maximal
observed
execution

time

measured execution times

The actual WCET
must be found or
upper bounded

Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset of
measured executions. Its minimum and maximum are the minimal observed execution times and
maximal observed execution times, resp. The darker curve, an envelope of the former, represents
the times of all executions. Its minimum and maximum are the best-case and worst-case execution
times, resp., abbreviated BCET and WCET.

criteria may be used to measure the quality of methods and tools.

The literature on timing analysis has created a confusion by not always making
a distinction between worst-case execution times and estimates for them. We will
avoid this misnomer in this survey.

For brevity, we will call the problem to determine upper bounds for the execution
times the WCET problem. The process of deriving execution-time bounds is called
timing analysis, and a tool that derives upper bounds and sometimes also lower
bounds on the execution times of application tasks is called a timing-analysis tool.
If it only computes upper bounds it is also for short called a WCET tool. We will
concentrate on the determination of upper bounds unless otherwise stated. All
tools described in Section 5 with the exception of SymTA/P offer timing analysis
of tasks in uninterrupted execution. Here, a task may be a unit of scheduling by an
operating system, a subroutine, or some other software unit. This unit is mostly
available as a fully-linked executable. Some tools, however, assume the availability
of source code and of a compiler supporting a subsequent timing analysis.

Organization of the article

Section 2 introduces the problem and its subproblems, describes methods being
used to solve it. Section 3 and 4 present two categories of approaches, static and
measurement-based. Section 5 consists of detailed tool descriptions. Section 6
resumes the state of the art and the deployment and use in industry. Section 7
lists limitations of the described tools. Section 8 gives a condensed overview of
the tools in a tabulated form. Section 9 explains, how timing analysis is or should
be integrated in the development process. Section 10 concludes the paper by pre-
senting open problems and the perspectives of the domain mainly determined by
architectural trends.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Figure 1.2: Time predictability. Source [2]

their use in CRTES allows scheduling multiple applications into the same processor, maximizing

the hardware utilization while meeting SWaP constraints.

However, the use of many-cores in CRTES brings significant challenges. Providing evidence of

the functional and timing correctness of system components is not trivial in the case of multi-core

processors, especially in the timing domain. This effect is exacerbated in many-cores, due to

increment in the number of cores 2. Hence, despite the advantages of many-cores and the fact that

they are nowadays a reality in the embedded system domain (e.g. Tilera [18], Kalray MPPA [4],

Freescale/NXP P4080 [19], TI Keystone II [20]), their use in CRTES environment still requires

finding efficient ways of providing tight and trustworthy WCET estimates.

This thesis investigates the use of many-core processors in CRTES as a means to provide a level

of guaranteed performance required for future complex applications and integration of several

systems into a single platform.

1.3 Applying multi/many-core technology to CRTES

Timing correctness is a mandatory property of CRTES. It is assessed by system designer and it

relies on providing evidence that tasks meet their respective deadlines. However, quantifying the

execution time of a task is not trivial, as it depends on many factors (input data, programming

language, compiler, hardware architecture, etc.). For example, a simple addition of two variables

stored in memory can take between few and dozens of cycles, even when executed on a rudimentary

hardware. Thus, the execution time of a task cannot be represented by a single value, but with a

distribution of execution times (Figure 1.2). As determining exact WCET is mostly infeasible,

the goal of timing analysis is to provide WCET estimates, that satisfy the following constraints:

• Trustworthiness – WCET estimate is always higher than actual WCET

• Tightness – The difference between WCET estimate and actual WCET is finite and as

low as possible, in order to maximize guaranteed system performance.

2 The solutions proposed in this thesis can be applied for both multi- and many-cores orthogonally.

Chapter 1. Introduction 7

M1

M2

M3

M4

Figure 1.3: Memory accesses in many-cores

1.3.1 The timing behavior of CRTES in multi/many-core platforms

Proving timing correctness in multi/many-core processor architectures is challenging due to the

impact that interferences have on the timing behavior of the system when accessing the shared

hardware resource (shared caches, interconnection networks, memory controllers, I/O devices,

chip pins, etc.). Interference occurs when several requests coming from different cores (and

possibly from various tasks of the system) try to access a shared hardware resource at the same

time, requiring some arbitration mechanism in order to handle contention.

As a result, the latency of accessing a shared resource from one core becomes dependent on the

contention created (by a given frequency and an access pattern) from other cores on the same

shared resource. This makes derivation of tight and precise WCET estimates more difficult as

the WCET estimates dependent on the workload. This effect, which occurs in both multi- and

many-core architectures, is exacerbated as the number of cores increases. Additionally, in most

of the many-core architectures, latency in accessing memory controllers is not uniform, as the

requests traverse various distance in the Network on Chip (NoC), making the analysis more

complex (see Figure 1.3).

There are two main ways to account for contention among accesses to shared hardware resources,

when analyzing the timing behavior:

• The contention can be accounted as a part of the WCET estimation process. In order

to do so, for each shared resource we derive an upper-bound on maximum access time

to that shared resource when being affected by interferences. This upper bound is called

Upper-Bound Delay (UBD) [21]. Then, at the analysis time (performed in isolation), each

access to a shared resource is delayed by its UBD, trustworthy upper-bounding the impact

of potential interference.

• The contention a task suffers can be alternatively handled factoring in the schedulability

analysis, which is performed at system integration. At this point, the workload is known,

as well as the individual characteristics of each task forming the system, i.e. their demand

for shared resources. As an input to this process, we use WCET estimates computed

in isolation and contention impact is accounted by adding to the tasks WCET estimate

in isolation the maximum contention that could be generated due to interference by its

co-running tasks.

Chapter 1. Introduction 8

Figure 1.4: Time composability

Each approach has its pros and cons. The former allows making WCET estimates time-

composable, i.e. independent on the workload, at the cost of WCET over-estimation. The

latter enables deriving tighter estimates since it builds upon the knowledge of interference

generated by the tasks in the observed task set. However, obtaining time-composability

property with the latter approach is extremely challenging [22].

Figure 1.4 highlights the differences among two approaches, when obtaining WCET estimates for

the task A. Task A is run together with tasks B and C on an example system. Time-composable

WCET estimates of task A (in orange) do not change, regardless of the workload, while the non

time-composable ones change depending whether task A is run in isolation or co-running with

task B or task C.

1.3.2 The design of CRTES: Time composability

Software complexity in CRTES is rising with each new generations of systems, e.g. F −22 Raptor

fighter jet’s software has 2.2 millions of lines of code compared to around 1 million in F − 16C.

In order to reduce the complexity, facilitate software development, and improve code portability,

maintainability, and interoperability, latest CRTES software is built on top of the standardized

software architectures like ARINC 653 (Avionics Application Standard Software Interface), used

in avionics domain [23], and AUTomotive Open System ARchitecture (AUTOSAR) used in

automotive domain [24].

Along with the growth of software complexity, in CRTES there is a trend towards the integration

of various functions into the same devices, further increasing systems complexity. In Integrated

Modular Avionics (IMA) [23, 25], as well as in AUTOSAR, engineers rely on robust functional

and temporal partitioning, to provide ”freedom from interference” in integrated systems [26].

This thesis focuses on providing temporal partitioning in integrated CRTES, achieved through a

means of time composability.

Time composability is a design principle that requires WCET estimates hold regardless of the

co-running tasks running on the same chip and accessing the shared resources. In CRTES

design, time composability is a pillar that enables incremental development and incremental

verification (IV) of integrated systems [27]. During system development, it allows independent

application/system development, across several vendors. Furthermore, it enables determining

Chapter 1. Introduction 9

whether application fits its timing budget during the development, while it’s easier and cheaper

to make the necessary changes, compared to discovering that during system integration. During

the system integration, the ability to incrementally integrate applications without the need of

regression tests to validate the timing properties of already-integrated applications heavily reduces

integration costs. At system deployment, the ability to update functions and their associated

software, without the need for re-analyzing and re-certifying the system, is vital in domains like

space where systems operate during dozens of years and whose functionality is usually updated

once deployed.

Overall, an increase in functions and systems complexity, combined with the integration of

multiple systems into the same platform, comes at the cost of more complex and expensive

verification and certification processes. This thesis will consider above-mentioned industrial

standards without impacting on system development and integration complexity.

1.4 Thesis Goals and Objectives

This thesis aims at boosting the use of many-core processors in CRTES industry, finding ways of

efficiently exploiting their strengths and mitigating their negative impact on timing analysis. In

order to do so, this thesis defines the following goals:

Goal 1 Investigate hardware and software solutions to boost guaranteed performance of CRTES

applications from avionics and automotive domains through the use of parallel computing.

More guaranteed performance in CRTES domain will not only bring benefits in safety of

land- and air-borne vehicles, but will also reduce air pollution and energy consumption,

with clear positive impact on quality of life and the environment. Furthermore, it would

create a competitive advantage for some of the key European industries.

Goal 2 Compliance of proposed solutions to current industrial practices and standards. As

stated in Section 1.3.2, avionics and automotive software is built and executed on top of

standardized software architectures, namely Integrated Modular Avionics (IMA) [23] and

AUTomotive Open System ARchitecture (AUTOSAR) [24]. On top of that, when building

CRTES applications, developers comply with the domain-specific safety standards, e.g.

DO-178B [28] in the avionics and ISO26262 [29] in the automotive domain. Compliance

with these standards is a requirement for all solutions proposed in the thesis to be relevant

and useful to these CRTES industries. This thesis is focused on ARINC 653 and AUTOSAR

standards.

Goal 3 Re-usability of legacy code of industrial applications and facilitating migration towards

many-core platforms. In CRTES, many applications/systems have been developed, tested,

improved and fine-tuned for several years. Consequently, the CRTES companies already

made significant investments in their legacy applications, ranging from requirements, design,

development and verification processes. Thus, proposals made in this thesis cannot require

from developers to significantly change their well-tested applications, and ideally, the

application should behave the same on the many-core platform as when executed on a

Chapter 1. Introduction 10

Table 1.1: Goals and objectives

O1 O2 O3 O4 O5

Goal 1 X X X X
Goal 2 X X
Goal 3 X X

single-core. Therefore, we must facilitate the reuse of the existing software designs to reduce

the cost of migration to many-core platforms, as well as the reuse of test-cases in order to

minimize verification and certification costs

This thesis addresses its goals by defining the following objectives (Table 1.1 shows the relation

among them):

O1 Providing hardware support for improving guaranteed performance of CRTES applications

on many-core processors. Without novel many-core processors designs, tailored to reduce

WCET estimates of complex applications, CRTES industry might fall short on reaching its

long-term goals. Thus, development of scalable and time-analyzable many-core processor

is a must. Furthermore, our envisioned many-core designs, should be as close as possible

to Commercial-Off-The-Shelf (COTS) processors, to ease their adoption in CRTES and so

that even some low-volume CRTES markets can also exploit their benefits.

O2 Deriving software solutions for enabling parallel execution on many-core platforms. This

thesis investigates providing software mechanisms in order to enable efficient parallel/con-

current execution of CRTES applications in many-core platforms. Furthermore, it devises

new scheduling algorithms for both parallel/concurrent execution of applications and paral-

lel/concurrent execution of functions inside applications, aiming to facilitate parallelization

of complex legacy code.

O3 Improvement of timing analysis methods and techniques. Improvement of guaranteed perfor-

mance of CRTES applications cannot only come from hardware/software solutions. In order

to satisfy the guaranteed performance needs of future CRTES, it is necessary to reduce the

potential overestimation due to multi- and many-core execution, when computing WCET

estimates as much as possible as well as evaluate novel approaches in timing analysis.

O4 Validation of proposals with real industrial applications. This thesis evaluates and validates

the proposed solutions with three industrial case-studies: collision avoidance and stereo

navigation applications from avionics (provided by Honeywell Int.) and Engine Management

System (EMS) from automotive domain (provided by Denso Deutschland GmbH) to assess

their applicability to industry.

O5 Recommendation to standardization authorities for extension of standards to support parallel

execution of applications on many-core platforms. Current CRTES standards are built

and written with single-core processors in mind as the target platform. In order to enable

adoption of many-core platforms by CRTES industries, the standards have to be revised.

This thesis aims at making same recommendations for updating IMA and AUTOSAR

standards, for avionics and automotive respectively.

Chapter 1. Introduction 11

1.5 Thesis Contribution

This thesis contributes to advancing the state-of-the-art toward the convergence of high-performance

and embedded domain. It proposes new many-core hardware designs and efficient software tech-

niques that exploit their parallelization capabilities, targeting CRTES. These contributions are

fully inline with the thesis objectives defined in Section 1.4.

1.5.1 Hardware

We propose time-predictable many-core designs suitable for the CRTES of the future. They aim

at enabling time-predictable parallelization of CRTES applications as well as the time-predictable

parallel execution of them, in line with objective O1. To that end, this thesis proposes two novel

concepts as an extension to ARINC 653 standard (objective O5).

First, aligned with the objective O2, we propose Parallel Software Partitions (pSWPs) which

improves the concept of ARINC Software Partitions (SWPs), providing a means for parallel/con-

current execution of CRTES applications in many-core platforms.

Second, it proposes physical (hardware) counterparts of the pSWPs – called Guaranteed Resource

Partitions (GRPs). For the design of GRPs, we focus on two of the most critical hardware shared

resources: (i) Network on Chip (NoC) and (ii) memory controller, and provide two many-core

architectures that implement GRPs: one implementing hierarchical NoC (tree+bus) and another

featuring mesh-based NoC, and evaluate the proposals with industrial avionics applications

provided by Honeywell International (O4). This work, named ”Parallel many-core avionics

systems”, was presented at the ACM International Conference on Embedded Software, EMSOFT

2014, in New Delhi, India [30].

Third, in line with objectives O1 and O3, we introduce a new metric called Contention Delay (CD)

that captures the impact of interference in NoC on WCET estimates more accurately compared

to currently used metrics. We provide a taxonomy of NoC parameters and an analytical model

for computing our proposed metric. This work was presented in an article named ”Modeling High-

Performance Wormhole NoCs for Critical Real-Time Embedded Systems”, at IEEE Real-Time

and Embedded Technology and Applications Symposium, RTAS 2016, in Vienna, Austria [22].

Finally, we present two mechanisms that improve utilization and guaranteed performance of a

mesh-based many-core processor, by providing fair bandwidth distribution across the chip. This

work was published in the Proceedings of IEEE Design, Automation & Test in Europe, DATE

2016, Dresden, Germany, as an article named ”Improving performance guarantees in wormhole

mesh NoC designs” [31].

1.5.2 Scheduling techniques

We propose a set of scheduling techniques targeting proposed many-core designs, along with

objective O2. First, we present an allocation algorithm RunPar that uses functions (in AUTOSAR

Chapter 1. Introduction 12

called runnable entity or short runnable) as a Unit of Schedulings (UoSs) and maps them into

GRPs. It exploits runnable-level parallelism, while reusing legacy code and maintaining the

application configuration (Goal 3). We apply and evaluate RunPar with a real automotive

application: Engine Management System (EMS) provided by DENSO Deutschland (objective

O4). This work appeared in the ACM International Conference on Hardware/Software Codesign

and System Synthesis, CODES+ISSS 2014, New Delhi, India, as an article name RunPar: An

allocation algorithm for automotive applications exploiting runnable parallelism in multicores [32].

Second, aligned with the objectives O2 and O3, the thesis builds upon the pSWP and GRP

mechanisms and the compositional analysis presented in [30] and provides an algorithm for

allocation of parallel applications (wrapped inside pSWPs) onto a many-core platform featuring

GRPs. We present Communication-aware Allocation algorithm for real-time Parallel applications

on many-cores (CAP) that takes into account communication among applications and tries to

reduce its impact on WCET estimates and overall system throughput. This work named CAP:

Communication-aware Allocation algorithm for real-time Parallel applications on many-cores was

presented in the IEEE Euromicro Conference on Digital System Design, DSD 2015, in Madeira,

Portugal [33].

1.5.3 Probabilistic timing analysis

In this thesis, we show the applicability of novel Probabilistic Timing Analysis (PTA) techniques

to deterministic many-core architectures (objectives O1 and O3). We show that is possible

to use and analyze Time Division Multiple Access (TDMA) arbitration policy in the context

of Measurement-Based Probabilistic Timing Analysis (MBPTA), leading to trustworthy and

tight WCET estimates without introducing any hardware changes, just with padding of observed

execution times. This work was also presented at the IEEE Euromicro Conference on Digital

System Design, DSD 2015, in Madeira, Portugal, as an article named Enabling TDMA Arbitration

in the Context of MBPTA [34]. Extended version of this work appeared as a journal article in

Microprocessors and Microsystems - Embedded Hardware Design, volume 52, 2017 [35].

1.5.4 Standards

This thesis makes recommendations for extension of ARINC 653 with pSWPs and GRPs concepts

to support parallel execution of IMA applications, sent to Honeywell Int. in order to influence

ARINC653 standardization committee (objective O5).

1.5.5 Open source software

The work done in this thesis is a part of European FP7 project named Multi-Core Execution of

Parallelised Hard Real-Time Applications Supporting Analysability – parMERASA [36]. Thus,

the final contribution of the thesis is the open source software that was developed in the scope of

the parMERASA project, and that is publicly available at http://www.parmerasa.eu/index.

php?menu=deliverables.

http://www.parmerasa.eu/index.php?menu=deliverables
http://www.parmerasa.eu/index.php?menu=deliverables

Chapter 1. Introduction 13

1.6 Thesis Organization

This thesis comprises four parts, which are further broken down into chapters:

• Part I introduces the reader to the topic and sets the environment for the rest of the

thesis. After introducing the problem in Chapter 1, Chapter 2 presents our evaluation

framework, including simulation tools SoCLib [37] and gNoCSim [38], WCET analysis

tools RapiTime [39] and OTAWA [40], and industrial applications and benchmarks used to

evaluate the proposals.

• In Part II , we propose a time-predictable many-core hardware design, together with

timing models that improve the analysis. In Chapter 3, we show mechanisms for enabling

concurrent execution of parallel applications on many-core processors, implemented in

two architectures, together with the suitable analysis. Chapter 4 focuses on improving

the modeling of latencies of one of the most important shared resources: Network on

Chip (NoC). Further, in Chapter 5, we propose two mechanisms for improving guaranteed

performance in wormhole NoCs.

• Part III presents software scheduling algorithms designed to exploit the performance

capabilities of the hardware techniques presented in Part II. Chapter 6 presents scheduling

techniques for parallelization of complex automotive applications, while in Chapter 7 we

investigate the ways of scheduling parallel CRTES applications on many-core platforms

supporting GRPs.

• Part IV gives a glimpse into the future of the CRTES. In Chapter 8, we investigate

the use of promising probabilistic timing analysis techniques with deterministic hardware

architectures. Chapter 9 concludes the thesis and considers next barriers and challenges for

bringing many-core processors into CRTES domain.

Chapter 2

Experimental Setup

This chapter covers the tools used for the experiments performed in the scope of this thesis. It

describes simulation framework used to develop hardware platforms and implement the techniques

proposed. Furthermore, it presents case studies and benchmarks for evaluation as well as timing

analysis tools used to obtain Worst-Case Execution Time (WCET) estimates.

2.1 Simulation framework

Simulation is an established technique in both industry and academia for evaluation of novel

techniques and designs. It is even more crucial in the field like computer architecture, where the

cost of building a proposal in a silicon chip is extremely high, in both time and money.

Since the focus of the thesis is the timing behavior of Critical Real-Time Embedded Systems

(CRTES) applications, we chose an execution-driven, cycle-accurate simulation framework named

SoCLib [37, 41] as the basis for our platforms development. As the thesis investigates novel

Network on Chip (NoC) models and designs for CRTES, we integrated a powerful NoC simulator

named gNoCSim, developed in scope of the NaNoC project [38], into the SoCLib framework.

We also implemented a no-overhead tracing mechanism, in order to support a commercial

measurement-based timing analysis tool used in parMERASA project.

It is important to remark that development of the simulation framework is a result of a group effort

from current and past members of the Computer Architecture/Operating System interface (CAOS)

group at Barcelona Supercomputing Center (BSC) and is used in several research projects:

parMERASA, PROARTIS, PROXIMA, etc.

Figure 2.1 gives a high-level overview of the simulation framework and how it integrates with

applications, system software and timing analysis tools used in scope of the thesis.

SoCLib is a framework that enables creation of execution-driven cycle accurate simulators. It

features its own build system and comes with a set of common components (cores, caches,

terminals, memory controllers, buses, NoCs, etc.). Communication among components is carried

15

Chapter 2. Experimental Setup 16

parMERASA | No. 287519 | D5.1 | Hardware Requirements 7 / 13

1 SIMULATION FRAMEWORK INFRASTRUCTURE

The hardware simulation framework infrastructure is the component in charge of executing the

parMERASA target applications and provides the timing information required to compute WCET

estimations. The simulation framework is composed of two components: The architectural hardware

simulator, in charge of executing the binary and providing the timing information necessary to

provide trustworthy WCET estimations, and the compiler, in charge of generating the binary capable

to be executed in the simulation infrastructure.

Figure 1 shows the complete execution stack of the parMERASA tool-chain including the domain-

specific system software, explained in deliverable D4.1, and the WCET tools, explained in deliverable

D3.1. The binary and the domain-specific system software (IMA in case of avionics, AUTOSAR in case

of automotive and ESX-3XL in case of construction machinery), which provides the APIs required to

fulfil industrial requirements (e.g. ARINC 653 in case of avionics), are executed on top of the

architectural hardware simulator. The WCET tools are in charge of analysing the application through

static analysis, or execution time measurements obtaining by code instrumentation.

This deliverable focuses on the architectural hardware simulator and the compiler.

1.1 Architectural Hardware Simulator

Three main criteria have been used to select the component architectural hardware simulator:

- Maturity. The following questions have been considered: How mature is the component? How

many users are using the component? By doing so, our confidence in the quality (i.e., accuracy,

performance, stability, usability) of the tool increases.

Application (.c)

Compiler

Binary

Domain-specific

System Software

Architectural Simulator

WCET

Tools

Execution

Trace

Hardware

Descriptor

Execution Statistics

Figure 1. Simulation framework infrastructure including the system software and WCET tools

Figure 2.1: High-level overview of simulation framework together with system software and
WCET tools

out via Virtual Component Interface (VCI) interfaces. It provides a set of emulators for various

Instruction Set Architecture (ISA), which enables application development for the simulated

platforms, as well as the tools for debugging those applications. Furthermore, it also provides

a significant portion of standard low level system libraries, abstracting the hardware from the

developer and facilitating the development of applications.

In order to accomplish the goals set of this thesis, we made the following improvements to the

SoCLib (SoCLib) framework:

• We added support for PowerPC750 ISA, by extending PowerPC405 emulator provided

by SoCLib. We also added atomic fetch-and-add instructions, to help system software

implement time-predictable synchronization mechanisms.

• In the original SoCLib, emulators were fully integrated into the platform, and there was

no way of providing application developers only functional emulator without the timing

simulator. Thus, we created a layer of separation (called RPIBuffer) between functional

emulator and timing simulator, allowing our platforms to execute without timing simulator

attached.

• The introduction of RPIBuffer allowed us to decouple functionality of the processor core from

the emulator and introduce a means of creating different pipelines. In all of the experiments

done in scope of this thesis, we use 3-stage pipeline (Fetch, Execute/Memory-Operations,

Commit).

• We implement and use VCI interfaces that support multiple VCI requests. That allowed

us to have multiple requests in flight coming from a core, memory controllers handling

multiple requests, split transactions on the buses, etc.

• We also implement new component for caches in order to support multi-level caches, novel

placement and replacement strategies, etc. First level caches are integrated with the

processor core module, in order to speed up simulation (they can be disabled through

configuration). Second and higher level caches can be integrated into the core, or connected

Chapter 2. Experimental Setup 17

to several cores via VCI interface, enabling us to build complex cache hierarchies. In scope

of this thesis, we use only first level caches, due to the limitations of the analysis methods

and to speed up the execution of the simulations.

• We also added support for software controlled cache memories, i.e. scratchpads, as they are

widely used in automotive industry. Platform used in Chapter 6 uses scratchpads instead

of first level instruction caches.

• We created new memory controller component that supports multiple requests in flight. It

allows execution of the applications in the Upper-Bound Delay (UBD) mode and implements

prioritization of certain types of requests, as explained in Chapter 3). It provides support for

atomic fetch-and-add instructions and can be attached to more complex DRAM simulators.

• SoCLib support for NoCs is lackluster. We created a wrapper component with VCI

interfaces around full-blown cycle-accurate flit-level NoC simulator, called gNoCSim [38].

That allowed us to create complex NoC topologies (Chapter 3), implement virtual channels

prioritization (Chapter 3). Further, it enabled us to implement weighted round-robin

arbitration and packetization (Chapter 5) as well as to experiment with synthetic traffic in

gNoCSim standalone mode (Chapter 4 and Chapter 5).

• Alongside gNoCSim, we also added support for buses, both inside the core (between different

cache levels in hierarchy) and outside the core with VCI interfaces. We implemented several

arbitration policies (Time Division Multiple Access (TDMA), round-robin, etc.) and added

support for split-cycle transactions.

• In order to support measurement-based timing analysis (see Section 2.3), we implemented no-

overhead tracing mechanism. Inside of RPIBuffer, we detect execution of certain instructions

(list of labels provided by the tool) and output the traces of application execution with no

calls to instrumentation functions inside the analysed code.

Using this enhanced SoCLib framework, we built a highly-configurable many-core simulation

platform, used in the FP7 project parMERASA, that implements designs presented in Chapter 3,

Chapter 4 and Chapter 5. Along with objective O5, we published this platform as an open-source

software project (see Section 1.5.5).

Note that, even though the author contributed in all enhancements listed above, he was the main

contributor to the development of the configurable platform, no-overhead tracing mechanism,

memory controller, synchronization mechanisms and virtual channel prioritization.

2.2 Case studies

This section presents industrial case studies and benchmarks used in scope of this thesis to

evaluate its proposals. In general, there is a lack of standard multi-threaded benchmarks for

CRTES applications. Thus, aligned with the objective O4, we use 3 industrial applications: 2

from avionics and 1 from automotive domain. We also use a standard suite of single-threaded

automotive benchmarks.

Chapter 2. Experimental Setup 18

2.2.1 Avionics domain

From the avionics domain we use two parallel avionics applications: 3D Path Planning (3DPP)

and Stereo Navigation (StereoNav), used for the navigation of Unmanned Aerial Vehicles (UAVs),

provided by Honeywell Int.

The 3DPP application computes the path between the current UAV position (obtained from a

satellite) and the target position (defined by a user), while avoiding obstacles in a 3D environment.

It employs Laplace’s equation for airborne collision avoidance. It is parallelized based on the

split of the 3D obstacle grid into compartments, i.e., sub-grids. Consequent parallel processing

depends on data dependencies and thus varies on individual operations. The use of the Gauss-

Seidel method [42] in the calculation of the potential matrix creates data dependencies between

compartments. Coarse-grained synchronization is required for establishing a proper sequence to

process the individual compartments, which follows a well-defined software pipeline pattern.

The StereoNav is intended for determining the direction and speed of UAV movement in case

satellite signal is unavailable. The StereoNav application receives as an input two independent

images derived from two cameras pointing at approximately the same direction, and extracts

features common for both images in the 3D-space, i.e., dominant entities in the image invariant

to rotation and translation. Based on the changes in the features position in different pairs of

adjacent images, the absolute translation and rotation of the UAV can be computed.

The parallelization of the StereoNav application is based on the ability to process each of the

images in a pair in parallel. Steps up to and including the matching of features in each of the

images in a pair are currently executed in parallel. The maximum theoretical speed-up achievable

in each of the steps of the application varies significantly.

2.2.2 Automotive domain

From the automotive domain, we use an Engine Management System (EMS) application, provided

by Denso Deutschland to evaluate proposals developed in scope of this thesis. An EMS is a

typical contorl automotive embedded real-time system application. It controls that the amount

of fuel and the fuel injection times which is fundamental in ensuring smooth revolutions of the

engine. The injection time and fuel amount depend on the state and the rotation speed of the

engine, which changes continuously during operation. The EMS requires updates based on tasks

that are time-triggered, with task periods ranging from one millisecond to one second, and a task

that is triggered based on position of the crankshaft.

The EMS comprises around 1 thousand functions, grouped by the trigger to eleven time-triggered

tasks, with periods of 1, 4, 5, 8, 16, 20, 32, 64, 96, 128 and 1024 ms, and a crank-angle interrupt-

triggered task, with a minimum period of 1.25 ms corresponding to the maximum engine rotation

speed (4000 rpm, in our case).

Chapter 2. Experimental Setup 19

Name Short Description

a2time Angle to Time Conversion
basefp Basic Integer and Floating Point
bitmnp Bit Manipulation
cacheb Cache ”Buster”
canrdr CAN Remote Data Request
aifft Fast Fourier Transform (FFT)
aifirf Finite Impulse Response (FIR) Filter
aiifft Inverse Fast Fourier Transform (iFFT)
aiirflt Infinite Impulse Response (IIR) Filter
matrix Matrix Arithmetic
pntrch Pointer Chasing
puwmod Pulse Width Modulation (PWM)
rspeed Road Speed Calculation
tblook Table Lookup and Interpolation
ttsprk Tooth to Spark

Table 2.1: EEMBC Automotive Suite

2.2.3 Benchmarks

In order to asses the impact of our designs on single-threaded applications, we use EEMBC

Automotive Benchmark suite [43], developed by the Embedded Microprocessor Benchmark

Consortium. It captures frequent operations of automotive systems. For instance, a2time

simulates an embedded automotive application where the Central Processing Unit (CPU) tries to

measures the real-time delay in movement of a crankshaft of an engine.

Table 2.1 shows the list of benchmarks contained in this suite. We execute all of the benchmark on

bare-metal system, without any Real-Time Operating System (RTOS) support. Thus, we don’t

have to account for impact of RTOS, as benchmarks run end-to-end and without preemption.

2.3 Timing analysis

In order to verify the timing correctness of CRTES, it is necessary to perform WCET analysis,

i.e. to compute a WCET estimation. To do so, today industries and academias follow two

main approaches for WCET analysis [44]: static analysis and measurements based analysis. The

former, e.g. aiT [45], OTAWA [40], relies on the construction of a specific cycle accurate model

of the computational unit in which the code will run (e.g. the complete processor or a unique

core in a many-core architecture), and the construction of a mathematical representation of the

timing behavior of the application under analysis running on that processor. The mathematical

representation is then processed with Integer Linear Programming (ILP) techniques to determine

a safe upper-bound on the execution time. The latter, e.g. RapiTime [39], relies instead on

thorough testing of the application under analysis on the real processor or a cycle accurate timing

simulator of that processor, with high-coverage stressful input data, and recording the longest

observed execution time.

Chapter 2. Experimental Setup 20

This thesis has considered two WCET analysis tools, one of each type: OTAWA and RapiTime,

static and measurement-based timing analysis tools respectively. Next we provide a very short

introduction to each them.

2.3.1 Static timing analysis – OTAWA

OTAWA is an open-source static timing analysis [40]. In other to determine the WCET estimate

of a program, OTAWA does the following steps:

Figure 2.2: Workflow of the static timing analysis tool OTAWA.

1. The Control Flow Graph (CFG) is derived from the executable code.

2. Based on the CFG, the tool performs 3 types of analyses: (i) value analysis, (ii) loop bound

analysis and (iii) control flow analysis, in order to construct annotated CFG. Value analysis

consists of over-approximating set of values and addresses of memory locations. Loop bound

analysis determines the bounds on number of iterations for all of the loops in the code,

needed to bound the WCET. Control flow analysis eliminates infeasible paths as well as

the target of indirect branches. We can further improve the precision of all of these steps

by adding annotations to the source code.

3. After constructing annotated CFG, low-levell analysis is perform (comprising pipeline and

cache analysis). It is used to determine bound on the execution time for each basic blocks1

1Basis block is a straight sequence of instructions with single point entry (all jumps go to the first instruction
of the block) and only branches out are at the last instruction.

Chapter 2. Experimental Setup 21

in the annotated CFG are computed. This step, derives the execution time of basic blocks

based on the abstract interpretation of each assembly instruction in the corresponding

core. As stated in Section 2.1, we consider a PPC750, in which one instruction is executed

per cycle, except for memory accesses. In case of memory operations, a cache analysis in

which for each memory access (either instruction or data) is classified as AlwaysHit (for

any execution of the program, the instruction or data is in the cache), AlwaysMiss (the

instruction or data misses and must be retrieved from the higher levels of the memory

hierarchy), and NotClassified or Conflict (the analysis is not able to determine a constant

behavior for the access). In this latter case, the analysis will consider the latency of miss.

4. With the information about timing behavior of basic blocks and annotated CFG, OTAWA

determines the longest possible execution time using an ILP solver.

Figure 2.2 gives a high level overview of the four steps presented above.

2.3.2 Measurement-based timing analysis – RapiTime

In this thesis, we use the measurement-based WCET analysis tool RapiTime [39], though all

our solutions can also be used with static-based WCET analysis tools. RapiTime computes the

WCET estimation of a program as a whole probability distribution of the execution time of the

longest path, from which the absolute lower and upper bound (i.e. the WCET estimates) are

obtained. RapiTime derives an upper bound of the Maximum Observed Execution Time (MOET)

for a particular section of code (generally a basic block). It combines MOET with the CFG to

determine an overall estimation for the longest control-flow path through the program.

Control-flow graph is generated through a compiler wrapper, provided by RapiTime (see Fig-

ure 2.3.). Compiler wrapper inserts instrumentation through annotations at the granularity

defined by the user. We analyzed everything at the basic block level, though this can be set

at the level of function as well. In our case, with the support from simulation platform and its

no overhead tracing mechanism, the code was annotated by just adding labels to the code (no

additional instructions).

When the application is run on the target system, our simulation platform in scope of this thesis,

a execution trace is produced. A trace basically comprises a sequence of time-stamped values that

show when the instrumentation code is executed. From this trace, RapiTime shows performance

metrics for each part of executed code and provides boundaries to WCET.

Chapter 2. Experimental Setup 22

Figure 2.3: Workflow of the measurement-based timing analysis tool RapiTime. Source
https://www.rapitasystems.com/products/rvs/how-does-rvs-work

https://www.rapitasystems.com/products/rvs/how-does-rvs-work

Part II

Manycore Hardware Design and

Analysis

23

Chapter 3

A Time Predictable Architecture

Critical Real-Time Embedded Systems (CRTES) rely upon incremental software development

and incremental verification to develop and verify each system component in isolation and

independently from others. As a means to facilitate incremental development and incremental

verification, standardized system software architectures such as Integrated Modular Avionics

(IMA) in the avionics domain and AUTomotive Open System ARchitecture (AUTOSAR) in the

automotive domain, provide robust space and time partitioning mechanisms as a means to isolate

timing behavior of components when executing in single-core processors. These mechanisms

implement the concept of Software Partitions (SWPs) (as defined in ARINC 653 and ISO26262

standards) that enables incremental verification of applications executed on IMA and AUTOSAR

frameworks. The transition towards parallel execution in multi- and many-core processors however,

invalidates the space and time partitioning mechanisms as different system components can access

simultaneously to shared hardware resources. This can influence their timing behavior and violate

the isolation of SWPs.

In this chapter, we introduce two new concepts that enable the parallel execution of multiple

system components in parallel architectures, while maintaining the time and space isolation.

First, we define Parallel Software Partition (pSWP) which extends ARINC 653 and ISO26262

SWP specifications, maintaining the isolation properties of SWPs when running in a many-core.

Second, we introduce Guaranteed Resource Partition (GRP), a new hardware feature that defines

an execution environment in which pSWPs run so that interferences in the accesses to shared

hardware resources among pSWPs can be controlled. Use of these two new concepts allows

incremental verification of many-core avionics systems. increasing the performance while meeting

size, weight and power constraints of future CRTES.

3.1 Introduction

Critical Real-Time Embedded Systems (CRTES) industry aims at increasing the number and

complexity of system functions to keep the competitive edge, e.g. in avionics [13] and automo-

tive [14] domains. In order to support new sophisticated functionality, CRTES require levels

25

Chapter 3. A Time Predictable Architecture 26

of computing power higher than what currently used processors can supply. In this context,

many-core 1 processors stand as the solution to cope with the performance demand and cost

constraints of future CRTES. The use of many-cores in CRTES allows scheduling multiple

applications into the same processor, maximizing the hardware utilization while meeting size,

weight and power constraints. Furthermore, many-cores allow developers to exploit task level

parallelism and improve performance of applications.

However, the use of many-cores in CRTES brings significant challenges. CRTES require evidence

of the functional and timing correctness for all of their system components, which in case of

many-core processors in not trivial, especially in the timing domain, which is the focus of this

thesis. Hence, despite the advantages of many-cores and the fact that they are nowadays a

reality in the embedded system domain (e.g. Tilera [18], Kalray MPPA [4]), their use in CRTES

environment relies on finding efficient ways to deal with timing correctness issues.

A fundamental property of CRTES is incremental verification, that allows each system component

to be subject to formal verification in isolation and independently from other components, with

obvious benefits for cost, time and effort, reducing the products time to market. Current CRTES

enable incremental verification by using standardized system software architectures, such as the

Integrated Modular Avionics (IMA) [23, 27] in the avionics domain and AUTOSAR [46] in the

automotive domain.

Both software architectures enable incremental verification by guaranteeing robust space and

time partitioning that make the functional and timing behavior of each application unaffected by

other applications. To do so, applications are encapsulated into Software Partitions (SWPs) as

defined in the ARINC 653 avionics [23] and ISO 26262 automotive [29] standards. This thesis

focuses on time partitioning and facilitating derivation of time-composable Worst-Case Execution

Time (WCET) estimates of IMA and AUTOSAR applications (i.e. WCET estimates independent

of the co-runners).

SWPs are devised for running in single-core platforms. Each SWP has a dedicated time window

in which it enjoys exclusive access to processor resources (e.g., bus and memory). Unfortunately,

when moving towards parallel execution on many-cores, SWPs do not provide the desired time

isolation properties. The fact that several SWPs can simultaneously access shared processor

resources creates interferences among them. Thus the use of a dedicated time window per SWP

fails in guaranteeing time isolation. This directly impacts certification cost, since when a new

SWP is added or changed the entire system needs to be validated. Therefore, providing isolation

among applications is key to exploit the performance opportunities of many-cores into CRTES

while containing verification and certification costs.

Without loss of generality, this chapter will focus on the avionics domain, considering the

communication and isolation mechanisms of IMA and ARINC653, with the objective to facilitate

the explanation of the proposed time predictable architecture. However, the same principles

presented in this chapter apply to ISO26262 and AUTOSAR. Section 3.2.3 describes the similarities

among avionics and automotive software frameworks.

1We use the term many-core for processors with at least 16 cores . The problems that this chapter addresses,
also arise, to a lesser extent, in multi-core processors.

Chapter 3. A Time Predictable Architecture 27

This chapter comprises the conference paper [30]. It adheres to the thesis goals and objectives

defined in Section 1.4 and makes the following contribution:

• We extend the concept of ARINC 653 SWPs and introduce Parallel Software Partition

(pSWP) in Section 3.4. We specify how interference among pSWPs in the accesses to

hardware resources is controlled to enable incremental verification. pSWPs guarantee time

and space partitioning, enable deriving time-composable WCET estimates and reduce

integration-time effort (objectives O2 and O5).

• We propose the novel concept of Guaranteed Resource Partition (GRP) in Section 3.5. GRP

defines an execution environment comprising a set of processor resources (cores, memory,

etc.) in which a SWP runs, avoiding or bounding interferences among applications(objectives

O1 and O5).

• We evaluate and compare two many-core architectures supporting GRPs: one using hi-

erarchical (tree+bus) Network on Chip (NoC) in Section 3.5.2.1 and another featuring

mesh-based NoC (Section 3.5.2.2); as well as implementation aspects of a required memory

controller (Section 3.5.2.3).

• We propose the compositional timing analysis that benefits from pSWPs and GRPs (Sec-

tion 3.4.5 and Section 3.5.3) and reduces the pessimism in WCET estimates, while main-

taining required property of time-composability (objective O3).

Overall, the combined use of pSWPs and GRPs enables incremental verification in the time domain

for IMA systems running on many-cores and allows the use of compositional timing analysis that

reduces the pessimism in WCET estimates. By doing so, it better exploits performance benefits

of many-cores in avionics systems.

We evaluate our proposal with a system comprising two real ARINC 653-compliant parallel

avionics applications provided by Honeywell International (Section 2.2.1): 3D Path Planning

(3DPP) and Stereo Navigation (SteroNav) in Section 3.6 (objective O4). We demonstrate that

pSWP and GRP fully isolate intra-SWP activities among different SWPs, while inter-SWP effect

is reduced to less than 1%. Furthermore, in Section 3.6.4 we show benefits of folding of several

pSWPs into a single GRP and flexibility of mesh-based GRPs implementation in improving

overall system performance up to 4.9x.

3.2 Integrated Modular Avionics

Integrated Modular Avionics (IMA) enables incremental verification by providing robust space

and time partitioning to avionics applications [23]. The functional and the timing behavior

of each application is isolated from the other applications. This makes applications’ behavior

composable i.e. not affected when the other applications of the system are added or updated.

Functional isolation prevents any unauthorized service to access and corrupt the private data

of other applications. Time isolation guarantees that the timing behavior, and so the Worst-

Case Execution Time (WCET) estimate of an application, is not affected by the presence of

Chapter 3. A Time Predictable Architecture 28

pSWP1

process1 process2 process3 process4

pSWP2

process1 process2

c

1

c

4

c

0

c

3

c

2

c

5

Single core

SWP1 = Application1

(time window1)

 process1

(deadline1)

process2

(deadline2)

process3

(deadline3)

SWP2 =App2

(time window2)

process1

(deadline1)

a) b)

Figure 3.1: (a) Time partitioning as defined in ARINC653. (b) 2 pSWP comprising 4 and 2
processes respectively and their mapping to a 6-core multi-core deploying a mesh NoC.

other applications. Time isolation in IMA is mainly driven by the ARINC 653 standard, which

encapsulates each avionics application into a SWP as shown in Figure 3.1(a). A SWP comprises

one or several processes that share the same memory address space. The interference among

processes of the same and different SWPs, in a single core system, is subject to the several ARINC

653 principles, as presented in Section 3.2.2 and Section 3.2.1, to preserve time isolation.

3.2.1 Interference among processes of a SWP

The processes belonging to the same SWP require no time partitioning, hence it is possible that,

within a SWP, processes interfere with each other.

Communication. Intra-SWP communication, i.e. communication among the processes belonging

to the same SWP, uses buffers, commonly implemented with global variables. ARINC653 provides

mutual exclusion and synchronization mechanisms for accessing to those communication buffers.

Computation. Each of the processes comprising the SWP has an associated deadline. Scheduling

a process in a given SWP occurs exclusively during its time window. ARINC does not specify

how processes are scheduled in SWP.

3.2.2 Interference among SWPs

ARINC 653 imposes time and space isolation among SWPs, i.e. among processes associated with

different SWPs. Isolation covers both communication and computation activities.

Communication. For communication among SWPs ARINC 653 defines inter-SWP communication

means that use queues and messages to exchange data among SWPs. The destination of an

inter-SWP communication is a SWP, not a process within it. The source, destination, size and

deadline for inter-SWP communications is contained in the configuration tables developed and

maintained by the system integrator. Inter-SWP communication among SWPs imposes the order

in which SWPs are executed. This makes the scheduling of SWPs fixed and pre-defined at system

integration time. As guaranteed by ARINC 653, the data coming from other SWPs is available

before the execution of their SWP. This is fundamental to ensure that the timing behavior of

the destination SWP is independent of the source SWP producing its input data.

Computation. For each SWP, ARINC 653 assigns a CPU capacity, implemented in the form of

a time window. Each SWP is allocated one time window during which the system exclusively

executes processes belonging to that SWP, with no interferences from processes of other SWPs.

Chapter 3. A Time Predictable Architecture 29

3.2.3 Similarities between IMA and AUTOSAR frameworks

The AUTOSAR software framework implements a similar communication and computation

mechanisms to guarantee space and time partition.

The structural elements of an AUTOSAR application are Software Componentss (SWCs), each

containing a set of runnable entities (which we call runnables for short) that implement the

functionality of the SWC, similar to IMA partitions and processes in case of avionics. SWC are

forced to be executed in the same single-core processor and runnables are executed as predefined

in the AUTOSAR scheduling tables. The tables include a release time and a deadline for each

runnable.

Regarding communication, AUTOSAR provides two communication methods among runnables:

sender-receiver and client-server ports. The former uses a global shared memory for commu-

nication and it is used to communicate runnables belonging to the same SWC. The latter

allows runnables to invoke services from other runnables belonging to different SWC. In case

of sender-receiver, runnables read all input data before starting the execution and results are

written back after finishing the execution, and so synchronization mechanisms are not required.

No limitations on the number of ports or complexity of components are imposed by the model.

All SWC, ports and runnables are known at application configuration time.

3.3 ARINC 653 and many-cores

In single-core execution, the use of time partitioning mechanisms (named time capacity in ARINC

653 nomenclature) provide time isolation to SWPs. This is so because shared hardware resources

such as the communication bus, memory controller or peripherals are accessed by only one given

SWP during its assigned time window. Serialization also simplifies the access to shared software

resources like buffers.

Unfortunately, this is not the case in many-core execution models in which the simultaneous

execution of SWPs makes software and hardware resources to be shared at the same time by

multiple processes belonging to different SWPs (see Figure 3.1(b)). This makes that the timing

behavior of one SWP can be affected by other SWPs due to interferences accessing shared

resources named inter-SWP interferences, hence breaking time partitioning provided by ARINC

653.

Providing full timing isolation among SWPs in many-core systems is complex if at all possible.

Although, some hardware resources can be replicated so that interferences among SWPs do not

arise, this principle cannot be extended to other resources such as chip pins – one of the most

expensive resources in a processor–, hence inevitably other mechanisms are required to deal with

inter-SWP interferences.

In order to contain verification and certification costs in many-core environments, our approach

provides time composability (1) to handle the local activities among the processes of a given SWP;

Chapter 3. A Time Predictable Architecture 30

and time compositionality (2) to account for the effect among global activities from different

SWPs.

As already introduced in Chapter 1, time composability is a fundamental design pillar for

CRTES as it enables incremental development and incremental verification of integrated systems.

Moreover, time composability enables to update functions and their associated software without

the need for re-analyzing and re-certifying the system.

Time compositionality is a concept orthogonal to time composability. It enables the decoupled

analysis of the timing contributions for selected sources of interference [47]. Furthermore, it allows

combining the results of individual analysis to a trustworthy upperbound. Thus, leveraging time

compositionality, we can separate the analysis of the impact of the global activities of a SWP on

the local activities of others SWPs, and account for it when integrating the system.

To that end we introduce two novel concepts: Parallel Software Partition (pSWP) and Guaranteed

Resource Partition (GRP) that are described in the following sections.

3.4 Parallel Software Partitions

pSWP is the extension of ARINC 653 Software Partition, designed for use in many-core systems,

in which applications are encapsulated to provide the desirable time isolation properties imposed

by the standards. Concretely, pSWP specifies the properties required in the timing behavior

of SWPs and their processes when executed in many-core architectures. pSWP ensures that

a WCET estimate for each process can be derived disregarding the time impact of inter-SWP

interferences, i.e., interferences among SWP. pSWP covers the impact of accessing to shared

software (e.g. buffers and queues) and hardware resources (e.g. bus).

Next we illustrate how SWP interference in shared hardware and software is controlled under

pSWP specification.

3.4.1 Shared Software Resources

We distinguish two scenarios: shared software resources within SWP and among different SWP:

Regarding shared software resources within SWP, ARINC653 allows processes of the same SWP to

interfere with each other. In that respect, pSWP add no extra constraints. Hence, if the processes

of a given pSWP share a software resource, their accesses have to be controlled by using ARINC

653 synchronization mechanisms, e.g. semaphores. The implementation of these synchronization

mechanisms must be predictable, like in [48, 49] so timing bounds of the application execution

can be derived. The use of synchronization mechanisms in parallel execution must be taken into

account by the WCET estimation analysis [50].

Regarding shared software resources among SWP, the communication across SWPs occurs

through shared queues. Compliance with ARINC 653 standard ensures that by the time the

consumer SWP starts, its producer SWP has ended, preventing any conflict in the accesses to

Chapter 3. A Time Predictable Architecture 31

the software resources. It may be the case that a given SWPi receives input messages from

two SWPs running in parallel, SWPj and SWPk. The fact that there is a separate queue for

each pair of communicating SWPs, prevents all conflicts in accesses to shared software resources

among SWPs.

3.4.2 Shared Hardware Resources

For shared hardware resources, pSWP specify that inter-SWP impact must have an additive

nature such that the application WCET in isolation can be easily augmented at integration time

with such inter-SWP effect, ∆inter.

The interference among processes from the same and different SWPs can occur on computation

(P) resources or communication (M) resources. To that end, pSWP specify the impact of intra-

SWP (I) and inter-SWP (E) communication and computation activities have on processes, i.e.,

how processes of the same and different SWP affect each other when running in a manycore.

Figure 3.2(a) shows two SWPs (SWPi and SWPj) that are executed in parallel, from which SWPi

is taken as reference SWP. Both SWPs comprise two processes: Pi1 and Pi2 from SWPi, and Pj1

and Pj2 from SWPj . Process Pi1 is taken as reference process. In Figure 3.2(b) columns show the

activity carried out in the reference process Pi1, which includes local intra-SWP communication

(LIM) and local processing (LP); and locally generated inter-SWP communication (LEM).

The first two rows show the activities carried out by the other processes in the reference SWP

(Pi2 in the example). The remaining rows show the activity carried out in the other SWP

(SWPj), which includes remote processing (RP), remote intra-SWP communication (RIM) and

remote inter-SWP communication, which includes two scenarios: the first scenario may need

some resources of SWPi to be carried out and it is called crossing inter-SWP communication

(CEM); the second scenario that does not require any resources assigned to SWPi is called

remote inter-SWP communication (REM).

Next section considers Figure 3.2 to illustrate the impact of hardware intra-SWP and inter-SWP

interferemces.

3.4.3 Methods to control Intra-SWP interferences

The ARINC 653 standard does not impose any constraint on the interference in the access to

hardware resources among processes of the same SWP. Since only one process can execute at

time in single-core processors, the interference among processes is reduced to run-after effects

i.e a process Pi1 depends on the state left by preceding task Pi2 in the stateful resources. In a

many-core processor, the processes of a given SWP execute in parallel sharing hardware resources

and hence causing more interference on each other.

pSWP extends ARINC 653 by controlling the interference in terms of communication and

computation of processes of the SWPs.

Chapter 3. A Time Predictable Architecture 32

 Reference Process (Pi1) 
Offending process/SWP ↓

Computation
(LP)

Intra-SWP
Comm (LIM)

Inter-SWP
Comm (LEM)

Computation (LP) Bound or carry out parallel WCET estimation Local Intra-SWP Comm. (LIM)
Remote Intra-SW Comp. (RP) Remove Bound

Remote Intra-SWP Comm. (RIM)
Crossing Inter-SWP Comm (REM) Bound Bound or

prevent by
schedule

Remote Inter-SWP Comm (CEM) Remove

 Computation
(LP)

Intra-SWP
Comm (LIM)

Inter-SWP
Comm (LEM)

Computation (LP) Bound or carry out parallel WCET estimation Local Intra-SWP Comm. (LIM)
Remote Intra-SW Comp. (RP) Remove Remove Bound

Remote Intra-SWP Comm. (RIM) Remove Remove Bound
Crossing Inter-SWP Comm (REM) Remove Remove Bound
Remote Inter-SWP Comm (CEM) Make additive Additive Bound

 Reference proc. (Pi1)
offending proc./SWP↓

Computation
(LP)

Intra-SWP
Comm (LIM)

Inter-SWP
Comm (LEM)

Computation (LP) Bound or carry out parallel
WCET estimation

Remove
 Local Intra-SWP Comm. (LIM)
Remote Intra-SW Comp. (RP)

Remove Remote Intra-SWP Comm. (RIM)
Remote Inter-SWP Comm (REM) Bound Crossing Inter-SWP Comm (CEM) Make additive

(a) (b)

Figure 3.2: Different conflicts among two SWPs and how they are handled by pSWP
specification.

3.4.3.1 Computation

On the one hand, the computation that processes Pj1 and Pj2 carry out is considered remote

computation (RP) for SWPi. pSWPs specify that RP must not introduce any impact (i.e. must

be removed) on local processing (LP) and (local) intra-SWP communication (LIM) of Pi1 and

Pi2.

On the other hand, pSWP specifies how the interference among processes in a given SWP is

controlled (LP effect on LP). The problem arises in the access to shared hardware resources

(e.g. a shared bus) since the slowdown that a process suffers due to contention on that resource

depends on the load the other processes put on that resource. As a result, the WCET estimate

that may be derived for a process becomes dependent (non time composable) of the behavior of

the other processes.

A set of hardware techniques [21, 51, 52] already exist to bound the maximum delay each request

of a task (process in our case) may suffer from other tasks in the access to each shared resource.

When deriving the WCET estimate for a task this delay is assumed for each request, hence

making the WCET of the process independent of the load the others put on each resource.

Alternatively, combined, a.k.a. multi-process, WCET analysis [53, 54] can be carried out. This

requires analysing all processes to be run in parallel in the different cores tracking their accesses

to the different shared resources to determine whether the accesses from each process would

interfere with others. In theory, this analysis leads to tighter WCET estimates but it is more

complex and WCET estimates for a process depend on the other processes, so if a process in the

SWP changes, all of its processes have to be re-analyzed.

It is important to remark that pSWP enables that WCET bounds are derived taking into

account only intra-SWP interferences (Figure 3.2(b)), without requiring any mechanism to control

interference among processes of the same pSWP, making them time composable.

3.4.3.2 Communication

Communication among two processes Pj1 and Pj2 in a different SWPj is considered remote

intra-SWP communication (RIM) for SWPi. pSWPs specify that RIM must not introduce

any impact (i.e. it must be removed) on local processes (i.e. Pi1 and Pi2) communication and

computation. That is, RIM is restricted to SWP boundaries so interference with other SWPs

is avoided and time isolation is guaranteed at SWP level. Restricting the effect of intra-SWP

Chapter 3. A Time Predictable Architecture 33

communication on other SWP enables scalability and facilitates incremental development and

incremental verification.

Communication among processes belonging to the same SWP (i.e. local communication) is

performed through shared memory. The accesses to communication resources are controlled

similarly to computation resources, i.e. by upper-bounding the effect of inter-process interference

(Figure 3.2(b)) or carrying out a multi-process WCET analysis.

3.4.4 Methods to Control Inter-SWP interferences

pSWP specify that inter-SWP impact must have an additive nature such that the application

WCET in isolation can be easily augmented at integration time with such inter-SWP effect,

∆inter, and so providing time compositionality.

Communication among SWPs is performed through inter-SWP communication methods such

as message passing. While intra-SWP activities can be kept local, inter-SWP activities involve

at least 2 SWPs: the sender and the receiver. Moreover, the communication among them may

require using communication resources assigned to other SWPs.

For instance, let us assume 4 SWP (SWP1, SWP2, SWP3 and SWP4), with SWP1 communi-

cating with SWP4 and SWP2 executing after SWP1, and SWP4 executing after SWP3 (see

Figure 3.3). Under this scenario, the inter-SWP communication between SWP1 and SWP4 is

a CEM for SWP3 since it uses resources assigned to SWP3, e.g. NoC and memory. Next we

present three interference scenarios.

3.4.4.1 Impact of intra-SWP activities on Inter-SWP communication (RIM/LIM →
REM/CEM)

Inter-SWP communication uses both, the resources assigned to other processes in its own SWP

and in other SWPs. In other words, the communication request must traverse the SWP in which

it was generated, as well as others SWPs to reach its destination.

pSWP specifies that inter-SWP communication does not suffer interference from the processing

and intra-SWP communication along traversal of its path to reach the destination memory.

This is achieved at hardware level by a new concept called transparent execution provided by

GRPs. One way to achieve transparent execution is by giving priority to crossing inter-SWP

communication over intra-SWP communication (Figure 3.2(b)). Section 3.5 explains in detail

transparent execution as implemented in GRPs.

3.4.4.2 Impact of Inter-SWP communication on intra-SWP activities (CEM/REM →
RIM/LIM)

Enabling incremental verification in the timing domain requires the ability to derive WCET

estimates for the processes of one SWP such that those estimates: (i) do not depend on

Chapter 3. A Time Predictable Architecture 34

Figure 3.3: Example of execution of SWP over time

remote (REM) inter-SWP communication; and (ii) the dependence on crossing inter-SWP

communication CEM is limited. Failing to do so would imply that WCET estimates would

depend on the particular processes running in other SWPs, thus breaking timing composability.

The main idea to achieve this is letting CEM proceed with higher priority without changing the

state of shared hardware resources so that intra-SWP activities are simply delayed by the duration

of inter-SWP communication and then resumed. The additive delay intra-SWP activities suffer

can be easily accounted at integration time when inter-SWP communication characteristics

are known (Figure 3.2(b)) as required by IMA systems.

3.4.4.3 Interferences among inter-SWP communication (CEM/REM → CEM/REM)

Eventually, several inter-SWP communications can occur simultaneously and compete for shared

resources. pSWPs impose that the timing effect that one inter-SWP communication may have on

other inter-SWP communications is bounded by a means of time-predictable hardware arbitration

policies so that interferences can be bounded (Figure 3.2(b)). For instance, by using round robin

and accounting for the maximum arbitration delay at analysis time[21]. Similarly, Time Division

Multiple Access (TDMA) arbitration policies serve the purpose of covering this constraint of

pSWP[55].

3.4.5 WCET and Time composability under pSWP

To sum up, there are four pillars of pSWP specification that make intra-SWP effect on execution

time composable and inter-SWP effect on execution time compositonal:

• The effect of intra-SWP activities of different SWPs are isolated from each other.

• Inter-SWP activities are prioritized over intra-SWP activities making the former to suffer

no impact due to the latter (transparent execution).

• The effect that intra-SWP activities suffer from inter-SWP communications is additive and

can accounted for at integration time. This is the consequence of the transparent execution

to be provided by GRPs.

• The effect of the inter-SWP communication of one SWP over the inter-SWP communication

of another SWP is bounded.

Chapter 3. A Time Predictable Architecture 35

Figure 3.4: Processor architecture comprising 2 GRPs.

Overall, transparent execution makes that the computed WCET estimate of an application in

isolation can be simply augmented by an additive factor that bounds the increment on the WCET

estimate due to system integration, i.e. due to inter-SWP communication when the application

is integrated into the system. This is shown in Equation 3.1.

WCETintegration = WCETisolation + ∆inter (3.1)

WCETintegration is the final WCET estimate of the application after system integration, WCETisolation

the WCET estimate of the application computed in isolation, while ∆inter bounds inter-SWP

interference. The benefits at system integration are that pSWP specification allows computing

the WCET estimation for each application in isolation. Then, each process allocates an interval

∆interi to enable crossing inter-SWP communications. The fact that the information of the

inter-SWP communications is known at integration time (as requested by IMA) and the fact

that pSWP make the effect of inter-SWP communication additive on the WCET computed in

isolation, simplifies validating the timing behavior at integration time.

At deployment time, when a given SWPj is updated leading to SWP ′j , if the effect of SWP ′j ’ on

any other SWP SWPi, ∆inter(j′→i), is smaller than the effect generated by SWPj , ∆inter(j→i),

then SWP ′j can be integrated (composed) in the system without requiring reanalyzing any

existing SWP. Analogously, SWP ′j should also be able to allocate at least the same time as

SWPj for crossing communications.

Interestingly, transparent execution makes SWP timing behavior independent of the particular

pattern of inter-SWP communication of other crossing SWPs. Instead, once a SWP has a ∆inter

computed, it is time composable with any other SWP that incurs on the former less than that

∆inter.

Next section describes the hardware support required by pSWP to guarantee the timing properties

presented in this section and summarized in Figure 3.2(b).

3.5 Guaranteed Resource Partitions: GRP

In this chapter, we propose that many-core processor architectures tailored for use in CRTES

introduce a new hardware feature called Guaranteed Resource Partition (GRP). GRP, which is

the hardware counterpart of the pSWPs, defines an execution environment composed of a set

of processor resources, including cores, NoC resources, memory, etc., that provides to pSWP

Chapter 3. A Time Predictable Architecture 36

the desirable time composability properties as defined in Section 3.4. In other words, GRPs

provide islands of execution at hardware level to execute pSWPs and so provide the required

time isolation guarantees at the hardware level.

Concretely, GRPs guarantee that interferences among intra-SWP requests are not allowed,

while the interference among inter-SWP requests in different islands is limited, to facilitate the

estimation of their WCET. Hence, GRPs remove the need to control interferences among all

running SWPs when computing the WCET of each SWP. In the following sections, we show

that the concept of GRP can be implemented in two common many-core designs: one based on

hierarchical organization and another featuring mesh-based NoC.

3.5.1 Main timing aspects of GRPs

GRPs maintain the timing characteristics imposed by pSWPs. To that end, GRPs rest on

the following main principles: time predictability in the access to shared hardware resources,

transparent execution between intra-SWP and inter-SWP communication and isolation of intra-

SWP communication requests among different GRPs. At core level, we assume a design free of

timing anomalies [56]. Extending GRPs for cores that exhibit timing anomalies is outside of the

scope of thesis, and remains future work.

3.5.1.1 Time Predictability

In order to be able to derive WCET estimates, all the shared hardware resources have to be

time predictable. A shared hardware resource is said to be time predictable if (i) the time a

request has to wait to have the access granted is bounded; and (ii) the time a request takes to be

serviced by that resource, once it has been granted access to it, is also bounded. For instance,

consider a shared bus deploying round-robin access policy. The service time of the bus is fixed by

design. Further, the longest time a request has to wait to get access to the bus can be derived [21],

making the bus time predictable resource.

3.5.1.2 Transparent execution

One way to consider the impact of inter-SWP communications on intra-SWP ones (and vice-versa)

is assuming that they interfere with each other. This would require assuming that, at analysis

time, for every intra-SWP communication a potential conflict with an inter-SWP communication

may occur (and vice-versa), which would lead to pessimistic WCET estimates (quantitative

figures about pessimism are provided in Section 3.6). Instead, we propose transparent execution

of inter- and intra-SWP communications where intra-SWP communications are assumed not

to compete with any inter-SWP one for WCET estimation. Inter-SWP communication effect

is later accounted for at integration time. This can be done because IMA systems impose that

inter-SWP communication is statically known and so the impact of inter-SWP requests is known

at system integration time, when the different SWPs are mapped into the many-core.

Chapter 3. A Time Predictable Architecture 37

2 1 4 3

GRP1

M1

M3

M2

M4

2 1 4 3

GRP2

2 1 4 3 2 1 4 3

GRP3 GRP4

GRP1

M1

M2

GRP2

GRP1

M1

M2

GRP2

M1

M2

GRP1

GRP2

(a) (b)

pSWP1

process1 process2

Parallel App1

process3 process4

pSWP2

process1 process2

Parallel App2

A653 Process3

(deadline3)

MAF

MIF2
... MIF1 MIFN

A653 Process2

(deadline2)

Partition2

(time window2)

Partition1

(time window1)

A653 Process1

(deadline1)

5

3

3

4

2

1

2

1

2

1

2

1

6

4

3

4

M1

M2

M3

M4

GRP1 GRP2

GRP3 GRP4

2 1 4 3

GRP1

M1

M3

M2

M4

2 1 4 3

GRP2

2 1 4 3 2 1 4 3

GRP3 GRP4

Single

core

SWP1

(time window1)

Application1

process1

(deadline1)

process2

(deadline2)

process3

(deadline3)

SWP2

(time window2)

Application1

process1

(deadline1)

Figure 3.5: (a) Clustered design with four clusters, each with four cores. (b) Regular design
comprised by four GRPs with different number of cores (6, 2, 4 and 4 cores)

In order to implement transparent execution we propose the memory device and the NoC to

provide mechanisms to freeze local GRP communications, i.e. intra-SWP requests, instruction

requests and process’ private data accesses. On the event of an inter-SWP communication, GRP

resources are ‘frozen’ for local requests letting the inter-SWP communication requests to proceed.

That is, inter-SWP communications are prioritized over intra-SWP activities. This, on the one

hand, makes that inter-SWP communications suffer no slowdown due to interferences in the use

of resources. On the other hand, since inter-SWP communication is known statically at system

integration and GRP components are time predictable, the impact of inter-SWP communication

requests when traversing the NoC and the memory device can be easily determined [21, 51, 52, 57].

Those shared processor resources implementing the freeze mechanism to provide transparent

execution must guarantee that the resource state is not affected by the execution of inter-SWP

communication requests, so the contribution of intra-SWP communication requests to the WCET

estimate remains the same when running the application in isolation and in conjunction with others

applications. This is not the case, for instance, for shared caches, in which the access of inter-SWP

communication requests may change the cache state, making intra-SWP communication requests

vary its timing behavior with respect to running the application in isolation. In this case, the

resource would require implementing cache partitioning techniques [21] to isolate inter-SWP

communication from intra-SWP.

3.5.1.3 Isolation of intra-SWP communication requests among different GRPs

The requests generated among processes belonging to the same SWP, i.e. intra-SWP communi-

cation requests, as well as instruction fetch memory requests or process private data accesses, are

not allowed to exceed GRP boundaries. This effectively avoids remote intra-SWP activities to

interfere with local intra-SWP activities, and thus simplifies deriving time-composable WCET

estimates. To that end, each GRP has a private memory region that is accessed by intra-SWP

requests without interference from/to other GRPs. Moreover, the NoC design must guarantee

that there is no path from cores to memory that exits GRP boundaries.

Chapter 3. A Time Predictable Architecture 38

3.5.2 Implementation aspects of GRPs

The timing properties of GRPs can be attained by deploying clustered architectures [4, 58], which

organize processor resources into islands such that accesses to local resources are faster than

to remote resources, see Figure 3.5(a). Alternatively, certain physically monolithic (regular)

architectures can be also deployed by creating virtual islands of execution (virtual clusters), see

Figure 3.5(b) if certain properties are fulfilled. That is, communication between cores and memory

has to be performed in such a way that the interference among virtual clusters is controlled.

The most critical hardware shared resources of a many-core are the NoC and the memory

controller. This section analyzes NoC design in the context of physically clustered architec-

tures(Section 3.5.2.1) and following the same principles we extend the analysis to virtually

clustered architecture (Section 3.5.2.2). Furthermore, we analyze the memory design in Sec-

tion 3.5.2.3.

3.5.2.1 NoC Design: Physical GRPs

Clustered architectures usually deploy hierarchical NoCs: a first-level NoC connects cores that

compose a cluster and one or several NoC levels connect clusters. Figure 3.5(a) shows an example

of a clustered design considered in this chapter. It features a two-level NoC: a first-level composed

of a tree, and a second-level composed of a bus.

A hierarchical NoC design provides isolated communication islands in which different communi-

cation requests, i.e. intra- and inter-SWP, use different NoC levels that do not interfere among

them. In our hierarchical design shown in Figure 3.5(a) the memory address space of the SWPs

executed in GRPi resides in memory Mi and so intra-SWP requests will only use its corresponding

first-level NoC, i.e. a tree, without interfering with intra-SWP requests of other GRPs. When a

SWP wants to communicate with another SWP, the requests traverse the second-level NoC, i.e.

a bus, and the message is directly stored in the memory resource corresponding to the GRP in

which the destination SWP will run in the future without affecting other clusters. Note, however,

that both communication requests (i.e. intra-SWP and inter-SWP) may conflict in the memory

device. Section 3.5.2.3 discusses the memory design in the context of GRPs.

The different NoC levels must also provide time predictability. In particular, the latency of each

request to cross the NoC must be have a Worst-Case Traversal Time (WCTT) bound. The WCTT

is the sum of two factors: The zero load latency (zll) [59] and the NoC Request Interference Delay

(NoCRID). The former provides the traversal time of a NoC request assuming zero interferences.

The latter provides the maximum time a packet can be delayed due to contending flows in the

network when accessing the main memory. Moreover, we consider that requests and responses

use different networks (as in [18, 60]) so an independent analysis can be applied to requests and

responses.

In NoCs each flow comprises a set of packets, which are further split into flits whose size depends

on the NoC implementation. A flit is the minimum flow control unit in the NoC load request to

memory is a packet of 64 bytes that can be divided into four 16-byte flits. We define L as the

Chapter 3. A Time Predictable Architecture 39

number of flits of the packet. The maximum number of flows contending for resources in a given

router at a given time instant is called Zc [3]. A given flow Zi has LZi flits.

Our first-level NoC design, in which both intra-SWP and inter-SWP communications occur,

considers a wormhole-based tree implementing N − 1 simple pipelined 2-to-1 routers, with a

traversal time of Drouter cycles, to connect N cores [61], so each core requires log2(N) hops to

reach the memory or the second-level NoC. In a such NoC design Zc equals 1, so the maximum

time a message is blocked at each hop is determined by the number of flits of the contending

message (LZi). Equation 3.5.2.1 provides a means to calculate the WCTT of a tree:

WCTTtree = NoCtreeRID + zlltree

NoCtreeRID =

log2(N)∑
i=1

LZi (3.2)

zlltree = (log2(N)×Drouter) + (L− 1)

For our 4-core cluster assuming Drouter = 2 and L = 4 we have zlltree = (2× 1) + (4− 1) = 5

and NoCtreeRID =
∑log2(4)
x=1 4 = 8.

The second-level NoC is exclusively used for inter-SWP communications, since intra-SWP commu-

nications are not allowed to leave each cluster. For the second-level NoC we use a non-pipelined

bus with a latency Dbus implementing a round robin arbitration policy [21]. Inter-SWP com-

munications coming from a different cluster are serialized by their access to the bus. In a bus,

the maximum time a message is blocked is set by the latency of the bus (Dbus), the number

of flits of each contending message (LZi) and Zc that equals the number of GRPs minus one

(Zc = Ncl − 1). Equation 3.5.2.1 shows how to derive the WCTT for a bus. In [55] authors

show how round-robin arbitration achieves comparable results to TDMA in terms of average and

guaranteed performance. In our setup from Figure 3.5(a), we have zllbus = 8 and NoCbusRID = 24,

assuming Dbus = 2 and L = 4.

WCTTbus = NoCbusRID + zllbus

NoCbusRID =

Zc∑
i=1

Dbus × LZi (3.3)

zllbus = Dbus × L

3.5.2.2 NoC Design: Virtual GRPs

In regular NoC designs, e.g. mesh networks, cores are organized in a regular 2-dimensional

grid. These networks are very common in current processor designs due to their regular physical

arrangement and short wire connection allowing high-speed operations among neighbor nodes.

Chapter 3. A Time Predictable Architecture 40

Meshes also allow defining GRPs such that local intra-SWPties does not affect remote intra-SWP

activities. To that end we define virtual clusters by grouping adjacent cores in rectangular shapes

(i.e. organizing cores in groups of 2, 4, 6, 8, 9) with a memory device connecting to one of the

cores. By using XY (or YX routing) 2 policy [59], we create isolated communication islands with

properties similar to those of clustered architectures.

Figure 3.5(b) shows a processor implementing a mesh in which four GRPs are defined: GRP1

composed of 6 cores, GRP2 composed of 2 cores and GRP3 and GRP4 composed of 4 cores each.

By using XY (or YX) routing we can guarantee that requests to nodes within the GRPexceed its

boundaries if the memory device resides within the virtual cluster as shown in Figure 3.5(b). In

that Figure, packets from node6 in GRP1 to memory are routed through nodes 5-2 (X dimension)

and then through node 1 (Y) dimension.

Inter-SWP communication can affect other SWPs when it accesses to the memory devices of

other GRPs. In order to account for this interference in the WCET estimate of the SWP, we

propose the use of Virtual Channels (VCs), one per each communication type, providing higher

priority to the inter-SWP communication. Such a design forces local GRP communication, i.e.

intra-SWP requests, instruction requests and process’ local data accesses, to be stalled until the

inter-SWP communication finishes as imposed by the GRP definition.

Note that the use of virtual channels accomplishes the property that the state of the NoC does not

change after inter-SWP communication requests are executed. However, in general case, virtual

channel prioritization could lead to starvation of intra-SWP requests. In order to avoid it, we can

leverage the fact that ARINC 653 imposes that the amount of inter-SWP communication and its

impact are known at the system integration. To do so, in Chapter 7, we present a scheduler that

takes into account inter-SWP communication and prevents starvation of intra-SWP requests.

Meshes also allow deriving the WCTT as the sum of zll and NoCRID in the same way we did

for the hierarchical NoCs. We consider a mesh network design where requests and responses use

different virtual networks as in [18, 60] and routers are pipelined. Additionally, the proposed

mesh implements 2 VCs: one for requests of intra-SWP communication and one for requests of

inter-SWP communication. Equation 3.4 computes the WCTT factors of a mesh.

NoCmeshRID =

hops∑
j=1

Zc∑
i=1

U jZi

zllmesh = (hops×Drouter) + (L− 1) (3.4)

Where U jZi is the time required for a message of contending flow Zi to go from the output buffer

of the router in hop j to the input buffer of router in the next hop (j + 1), and hops is the total

number of hops to the target node. Similarly to the tree, U jZi is a function of the number of

flits of the contending message (LZi). For instance, in Figure 3.5(b) up to 6 communication

2With XY routing packets are forced to use the X dimension first. In the X dimension the position of the
target node with respect to the source node determines whether to go right or left for the X dimension or up or
down for Y dimension.

Chapter 3. A Time Predictable Architecture 41

Table 3.1: WCTT factors (zll + NoCRID) for regular (Mesh) NoC designs assuming
pipelined routers with Drouter = 2 and LZi = 4. The Core Id refers to the location of cores

shown in Figure 3.5(b).

6-Mesh GRP 4-Mesh GRP 2-Mesh GRP
Core RID zll RID zll RID zll

1 8 5 8 5 4 5
2 20 7 8 7 4 7
3 20 7 20 9 - -
4 20 9 20 7 - -
5 36 9 - - - -
6 36 11 - - - -

flows of GRP1 can reach the memory controller (the ones originated at nodes 2, 3, 4, 5, and 6)

crossing node1’s router. However, only Zc = 2 flows contend in node1 of GRP1 at the same time.

Therefore, we have zllmesh = (2× 1) + (4− 1) = 5 and NoCmeshRID =
∑1
j=1

∑2
i=1 4 = 8. Note that

in the last hop the time a contending flow requires to leave the router is equal to LZi = 4. We

refer the reader to [3] for a detailed explanation of the Equation 3.4. It is important to remark

that, because the number of hops required to reach the memory depends on the core in which the

request is issued, different cores have different WCTT . Alternatively, the worst WCTT could be

considered, being a pessimistic solution though.

Table 3.1 shows the zll and NoCRID of each core that form the four GRPs shown in Figure 3.5(b)

(labeled as 2-Mesh GRP, 4-Mesh GRP and 6-Mesh GRP respectively), assuming Drouter = 2

and LZi = 4. The Core Id refers to the location of cores shown in Figure 3.5(b).

Overall, despite physically clustered architectures lead to tighter WCTT, in a clustered archi-

tecture the number of cores per GRP is fixed, and this determines the maximum parallelization

level that the SWP can exploit. Increasing the number of cores would require SWPs to use

multiple GRPs, which would force intra-SWP communication requests to traverse the second

level of NoC, and so conflicting with inter-SWP communication requests. Instead, meshes allow

defining virtual clusters in which the number of cores is not fixed by the hardware, providing

higher flexibility than hierarchical NoCs, at the price of increasing the WCTT and complicating

the estimation of the WCET as the WCTT depends on the core in which processes run.

3.5.2.3 Memory Design

ARINC 653 communication methods are implemented through memory, so that memory requests

generated by inter-SWP communication and intra-SWP (local-GRP) memory accesses, may

potentially conflict in the access to memory affecting each other behavior.

In order to support transparent execution, we propose a memory controller in which intra-SWP

and inter-SWP requests are put in different queues, giving higher priority to inter-SWP requests

and freezing intra-SWP requests until pending inter-SWP requests are serviced.

Our memory controller enables bounding the impact that inter-SWP requests have on other

inter-SWP requests, as well as the impact that intra-SWP requests generated by a process may

also have on the requests of another process of the same SWP. In the case of intra-SWP requests,

Chapter 3. A Time Predictable Architecture 42

GRP1

M1

M2

GRP2

M1

M2

GRP1

GRP2

(b) (c)

Round-robin

intra-SWP

Round-robin

inter-SWP

Priority inter over intra

Figure 3.6: Structure of memory request queues.

this is achieved by having one request queue per core – which in fact are the intra-SWP requesters

– and using a time-predictable arbitration policy, such as round robin [21]. Similarly, by having

one request queue by each potential generator of inter-SWP requests, i.e. clusters, together with

the use of a predictable arbitration it is enough to bound the effect of inter-SWP memory requests

on other inter-SWP memory requests.

As a result, we propose a structure of requests as shown in Figure 3.6. Requests coming from

intra-SWPs are organized per core and arbitrated using round-robin. Similarly, inter-SWP coming

from other clusters are split per cluster and arbitrated using round robin. Finally, to implement

transparent execution, inter-SWP requests are prioritized over intra-SWP ones, which are frozen

if needed to favor the former. Using separate queues among inter- and intra-SWP requests ensures

that, inter-SWP memory requests do not change hardware state visible to intra-SWP requests

when they are frozen and resumed. This allows bounding effect from one inter-SWP request to

another and from intra-SWP requests generated by one process on the request of others.

These multiqueue structures can be implemented with a single physical queue and the proper use

of pointers [62]. In fact, current processors already implement multiqueues with a single queue

operated by multiple pointers. For instance, this is the case of the Global Completion Table in

each core of the IBM POWER7 [63], that is a queue shared by all 4 running threads in the core.

Similarly to the NoC design, the memory controller must be time predictable, i.e. the WCET

estimate accounts for the memory worst case response time (MemWCRT), which expresses the

maximum time a memory request can take due to interferences, in our case interference among

intra-SWP communication requests from the same SWP and among inter-SWP communication

request from different SWP.

The MemWCRT is composed of the sum of two factors [51]: (1) The request execution time

(MemRET) and (2) the Memory request interference delay (MemRID). The former provides the

amount of time a request takes to be completed assuming no interferences. The latter provides

the maximum time a request may be delayed due to other memory requests. In this thesis, we

use a notation similar to the one used in [51]. The memory request interference delay is given by

MemRID =
∑NumQ
x=1 tLID where tLID is the longest issue delay that a memory request may suffer

considering the generic timing constraints described in the JEDEC standard [64] and NumQ

the number of request queues. In case of intra-SWP communication requests, NumQ will be

determined by the number of processes in a GRP that can simultaneously issue a request, which

is bounded by the number of cores in the GRP; in case of inter-SWP communication requests,

NumQ will be determined by the number of SWPs that can simultaneously issue a request.

Chapter 3. A Time Predictable Architecture 43

MemRET depends on timing constraints of memory device operations (e.g. row buffer activation,

read, write, precharge). We refer the reader to [51] for a detailed explanation of MemRET .

3.5.3 From WCTT and MEMWCRT to WCET Computation

3.5.3.1 Computing the WCET Estimation in Isolation

GRPs enable deriving an Upper-Bound Delay (UBD) bounds for every intra- and inter-SWP

communication request accessing the NoC and memory. These bounds cam be incorporated in

the timing analysis in order to consider the contention in the hardware shared resources with

requiring changes in the timing analysis tools. contention that the processes can suffer during

deployment time [21].

For communication requests UBD represents the maximum delay a request to NoC and memory

resources can suffer due to interferences. The UBD of intra-SWP requests (UBDintra) depends

on the WCTT internal to the GRP and MemWCRT . Equation 3.5 and Equation 3.6 shows the

UBDintra for clustered and regular designs. Note that in the case of the mesh, WCTT varies

depending on the core, thus UBD also depends on the core.

UBDcluster
intra = WCTTtree +MemWCRT (3.5)

UBDregular
intracore id

= WCTTmeshcore id +MemWCRT (3.6)

Inter-SWP requests instead, are not only affected by intra- and inter-SWP requests belonging

to the same application, but also by inter-SWP requests belonging to other applications. Thus,

the UBD of inter-SWP requests (UBDinter) depends on both, the WCTT internal and external

of the GRP and MemWCRT . Equation 3.7 shows the UBDinter for the clustered NoC design,

while Equation 3.8 shows it for regular NoC design. It is important to remark that in case of a

mesh, inter-SWP requests target the destination SWP whose mapping is unknown and UBD has

to take a conservative assumption: the worst-case destination (farthest possible).

UBDcluster
inter = WCTTtree +WCTTbus +MemWCRT (3.7)

UBDregular
intercore id

= WCTT farthest destmeshcore id
+MemWCRT (3.8)

For static timing analysis, the access latency of each request to the NoC and memory is augmented

by UBD. If measurement-based timing analysis tools are used, during the testing phase the

process under study is run in isolation. Every time an intra-SWP request to memory is ready

it is artificially delayed by the architecture so it suffers UBDintra, which can be carried out

with a technique called worst-case mode [21]. From the traces obtained during this execution

in isolation, a WCET estimate for the task is obtained. At deployment time, the hardware is

Chapter 3. A Time Predictable Architecture 44

instructed not to introduce any artificial delay. The key point of this solution is that the artificial

delay introduced during testing upper-bounds the delay a request might suffer.

3.5.3.2 Computing ∆inter: NoC and Memory Impact

At system integration time, the WCET estimate of one application computed in isolation

(WCETisolation) can be affected by inter-SWP communication as expressed in Equation 3.1.

Concretely, transparent execution mechanism makes inter-SWP requests to delay intra-SWP

requests because of their higher priority in NoC and memory. Note that the impact that inter-SWP

requests may have on other inter-SWP requests coming from other SWP is already considered in

the WCTT used to compute the WCETisolation.

As described in Section 3.2, IMA systems impose that the amount of data transferred in an

inter-SWP communication from the source to the destination SWP is known at system integration

time, so the application development becomes independent from the system integration. This

allows computing the WCET increment (∆inter) of an application due to interferences that

intra-SWP requests may suffer in NoC and memory due to inter-SWP communication requests.

∆inter is computed using Equation 3.9 and Equation 3.10, for the clustered and regular architecture

designs respectively. In these equations, P is the set of SWPs that can simultaneously send

inter-SWP communication requests to the GRP in which the destination SWP runs and Ninteri

is the number of inter-SWP communication requests of the source SWPi. Note that in the

clustered architecture intra-SWP requests do not use the bus (see Figure 3.5(a)) so we address

only the interference in the memory (∆clustered
inter).

∆clustered
inter =

∑
i∈P

Ninteri ·MemWCRT (3.9)

∆regular
inter =

∑
i∈P

Ninteri · (WCTTmesh +MemWCRT) (3.10)

3.6 Experimental Results

3.6.1 Experimental Setup

3.6.1.1 Hardware Setup

All experiments presented in this section are executed on a cycle-accurate simulator compatible

with PowerPC ISA binaries and based on the SoCLib simulation infrastructure [37] and the

gNoCSim cycle-accurate flit-level NoC simulator [38], as described in Section 2.1. In our simulation

framework we model the two 16-core processor architectures presented in Figure 3.5, a clustered

and a regular architecture, both implementing 4 GRPs with 4 cores each.

Chapter 3. A Time Predictable Architecture 454 GRPs executing simultaneously

CamImage1

3DObsMap1

StereoNav2

3DPP2

CamImage2

3DObsMap2 GRP 1

GRP 2

GRP 3

GRP 4

CamImage3

3DObsMap3
Comp

Dir1

StereoNav3

3DPP3

Comp

Dir2

StereoNav1

3DPP1

CamImage4

3DObsMap4

Figure 3.7: 4 SWPs executed following a software pipelining approach.

The clustered architecture (see Figure 3.5(a)) comprises a hierarchical NoC, with a tree and a bus

as first and second level NoCs. We assume Drouter = 1 and Dbus = 2. The NoC design fulfills

the WCTT shown in Section 3.5.2.1 (zlltree = 5; NoCtreeRID = 8; zllbus = 8; NoCbusRID = 24). The

regular architecture models a 4x4 mesh NoC with two virtual channels (one for each communication

type) giving higher priority to the virtual channel used by inter-SWP communication requests.

In our experiments, virtual clusters comprise 4 cores each rather than 6, 4, 4, and 2 as presented

in Figure 3.5(b) for sake of fair comparison versus regular architecture. Moreover, the mesh

implements a wormhole switching policy and stop-and-go flow control. Overall, the two NoC

designs fulfill the WCTT computed in Table 3.1.

Finally, the our experimental platform also models separated instruction cache and data write-

through cache of 64 KB each in each core and four 256MBx16 DDR2 SDRAM 400B memory

controllers, one per GRP, implementing two queues each (one per communication type). Higher

priority is given to the queue used by inter-SWP requests. We assume that CPU frequency

doubles memory frequency. This configuration provides a MemWCRT = 42 processor cycles [51].

3.6.1.2 Parallel Avionic Applications

pSWPs and GRPs are evaluated using a real A653-compliant avionic system provided by Honey-

well International. It comprises two parallel avionics applications: 3D Path Planning (3DPP)

and Stereo Navigation (StereoNav), used for the navigation of Unmanned Aerial Vehicles (UAVs).

These applications are described in Section 2.2.1.

Moreover, the system also includes two applications for data generation: 3DObsMap and CamIm-

age. The former provides the 3D grid obstacle map required by 3DPP; the latter provides the

two images (maps) required by StereoNav. Finally, 3DPP and StereoNav outcomes are compared

in CompDir application. The communication among applications is performed using inter-SWP

communication requests. If there is a mismatch in the computed direction and velocity, the

StereoNav application output is the one trusted.

Figure 3.7 shows how all five applications are executed in parallel in a software pipelined manner.

The data generated by 3DObsMap and CamImage applications at stage n is stored in the memory

of the GRP in which 3DPP and StereoNav execute at the next stage n+ 1. Then, the output

of 3DPP and StereoNav is compared by CompDir at stage n+ 2 (CompDir is executed within

the same GRP of 3DObsMap due to its short execution time; the application simply compares

Chapter 3. A Time Predictable Architecture 46

the outcome of 3DPP and StereoNav). Under this scenario, 3DPP is only affected by inter-SWP

requests sent by 3DObsMap and StereoNav is only affected by inter-SWP requests sent by

CamImage. 3DObsMap and CamImage transmit the data that 3DPP and StereoNav will require

in the next pipeline iteration.

The implementation of the five avionic applications fulfills the ARINC 653 APEX API specifica-

tion [23]. Concretely, parallel tasks are managed as A653 processes (i.e. CREATE PROCESS,

START API); intra-SWP communication uses A653 buffers (i.e. CREATE BUFFER, SEND BUFFER,

RECEIVE BUFFER); inter-SWP communication uses A653 queuing ports (i.e. CREATE QUEUING PORT,

SEND QUEUING MESSAGE,

RECEIVE QUEUING MESSAGE); and finally, synchronization mechanisms to share data among

processes within a SWP use A653 semaphores (i.e. CREATE SEMAPHORE,

WAIT SEMAPHORE, SIGNAL SEMAPHORE).

3.6.1.3 Compuitation of the WCET estimation of Parallel Avionic Application

WCET estimates of applications are derived with measurement-based techniques. Concretely,

the architecture introduces the WCET computation mode [21], in which at analysis time intra-

SWP and inter-SWP requests are artificially delayed by an UBD as defined in Equation 3.5,

Equation 3.6, Equation 3.7 and Equation 3.8 respectively. By doing so, the resultant execution

time can be considered as an Worst-Case Execution Time Bound (WCB). At deployment time,

the WCET computation mode is deactivated so a request suffers only actual delays which are

bounded by UBD.

3.6.2 Impact of intra-SWP Communication on Execution Time

GRPs prevent intra-SWP activities from being affected by the intra-SWP activities generated by

other SWP executed on different GRPs. To illustrate this, we run each application in isolation,

i.e. no other application is executed in other GRPs, and we measure its execution time. In

a second experiment we run all applications simultaneously as shown in Figure 3.7 with each

application mapped into a different GRP. In this second experiment we collect execution times

and discount the effect of inter-SWP communications. In both cases the execution times were

exactly the same, evidencing that the integration of several SWPs can be done without any impact

of their intra-SWP activities on other SWPs.

3.6.3 Impact of Inter-SWP Communication on Execution Time

One of the central elements of pSWP specification is transparent execution, which allows con-

sidering as an additive factor (∆inter) the impact that inter-SWP requests have on intra-SWP

requests at system integration (see Equation 3.1). This section illustrates that this considerably

reduces the WCB on execution times of applications. To that end, we compute the WCB of

3DPP and StereoNav assuming two different strategies:

Chapter 3. A Time Predictable Architecture 47

0,2

0,4

0,6

0,8

1

1,2

1,4

Mesh Tree+Bus Mesh Tree+Bus Mesh Tree+Bus Mesh Tree+Bus

TE_OFF TE_ON TE_OFF TE_ON

3DPP StereoNavigation

System Integration

Timing Analysis

N
or

m
al

iz
ed

W
C

B

Figure 3.8: WCB of 3DPP and StereoNav. We assume a regular (Mesh) and a clustered
(Tree+Bus) architectures. We analyze the impact of activating and deactivating the

transparent execution mechanism.

• Assuming that no transparent execution mechanism is implemented and so the WCB includes

the effect that inter-SWP communications have on intra-SWP ones and vice-versa [65].

That is, at analysis time, that for every intra-SWP communication it is considered that a

potential interference may occur with an inter-SWP communication, and vice-versa.

• Assuming transparent execution in which intra-SWP requests do not compete with inter-

SWP requests when computing the WCB. The impact of inter-SWP interference is ac-

counted later at integration time using Equation 3.1.

Figure 3.8 shows the WCB of 3DPP and StereoNav assuming the two strategies presented above,

i.e. with and without transparent execution (labeled as TE ON and TE OFF respectively),

for the two modeled processor architectures shown in Figure 3.5, i.e. clustered (Tree+Bus) and

regular (Mesh). All values are normalized with respect to the sequential execution time of 3DPP

and StereoNav in which no interference among intra-SWP and inter-SWP requests occurs. In this

case, the complete system executes sequentially in a single core. Figure 3.8 also shows the WCB

portion of each application coming from the timing analysis, i.e. WCETisolation, (in stripped

blue) and the portion of the additive factor (∆inter) coming from the system integration (in red)

when the transparent execution mechanism is used.

We observe that the use of the transparent execution mechanisms reduces considerably the WCB

of both applications being executed in both processor architectures. Assuming at analysis time

that every intra-SWP request is affected by an inter-SWP request leads to a pessimistic WCET

estimate. It is of special interest the 3DPP case, in which not using the mechanism makes the

WCB of the parallel version being worse than the sequential version, increasing the WCB by 33%

and 13% when executing on a regular and a clustered architecture respectively. This is not the

case of StereoNav, in which the WCB of the parallel version is better than the sequential one,

reducing it by 59% and 62% when executing on a regular and a clustered architecture respectively.

When applying the transparent execution mechanism, the WCB of both applications is reduced

with respect to the sequential execution. In case of 3DPP, the WCB is reduced by 43% and 48%

Chapter 3. A Time Predictable Architecture 48

0,2

0,4

0,6

0,8

1

1,2

1,4

Mesh Tree+Bus Mesh Tree+Bus Mesh Tree+Bus Mesh Tree+Bus

TE_OFF TE_ON TE_OFF TE_ON

3DPP StereoNavigation

System Integration

Timing Analysis

N
or

m
al

iz
ed

W
C

B

Figure 3.9: WCB of 3DPP and StereoNav, assuming regular and hierarchical architectures
(Mesh and Tree+Bus respectively) and activating and deactivating the transparent execution

mechanism.

considering a regular and a clustered architecture respectively. In the case of StereoNav the WCB

is further reduced by 73% and 74% on a regular and a clustered architecture respectively.

We also observe that the resultant WCB of both applications is tighter for the clustered architecture

than for the regular one. The reason is because the WCTT of the hierarchical NoC in the clustered

architecture (a tree and a bus) is lower than the WCTT of the regular one (a mesh) as shown in

Table 3.1.

The portion of the WCB coming from the additive factor ∆inter represents less than 1% in both

applications. This is due to the fact that the number inter-SWP requests that affects 3DPP

and StereoNav (coming from 3DObsMap and CamImage respectively) at system integration is

relatively small with respect to intra-SWP requests.

With the aim of showing the impact of inter-SWP requests, we repeat the same experiment

presented in Figure 3.8 but we artificially increase the number of inter-SWP requests suffered

by 3DPP and StereoNav by 100x. The results are shown in Figure 3.9. We observe that the

WCB with no transparent execution mechanism (TE OFF) remains exactly the same. This is so

because WCB already accounts for the impact of inter-SWP interferences on intra-SWP requests.

In case of using the transparent execution mechanism (TE ON), the portion of the additive factor

in the WCB of both applications increases as well, 10% in case of the 3DPP and 6% in case of

StereoNav. However, despite the spectacular increment of inter-SWP requests, the WCB is still

significantly lower than when not using the mechanism.

Therefore, we can conclude that accounting for inter-SWP request impact at system integration

reduces considerably the WCB estimates of applications.

3.6.4 Executing several SWP into a single GRP

As presented in Section 3.5, GRPs enforce the pSWP specification by, among others, isolating

intra-SWP activities from different SWPs. This is obtained by executing one SWP per GRP.

However, it may be the case that the application encapsulated in the GRP does not have enough

Chapter 3. A Time Predictable Architecture 49

task level parallelism to exploit all cores in the GRP. This can lead to under-utilization of

resources.

In order to improve GRP occupancy in clustered architectures, it is possible to simultaneously

run several SWPs in one GRP with certain considerations. In order to maintain pSWP principles,

it is required to bound the impact that intra-SWP activities from different SWP may suffer

when sharing GRP shared processor resources. Some hardware techniques naturally control

this [21, 51, 52] since the WCET for a task is made independent of the load that other tasks

(processes) put on the shared resources. That is, the resultant WCET estimate of each SWP is

not affected by intra-SWP activities from other SWPs, despite being executed within the same

GRP. This of course comes at the cost of more pessimistic WCET estimates. On the other hand,

the number of queues for inter-SWP requests in the memory controller has to be increased to

the maximum number of SWPs that may be active at any point in time in the architecture. It

is worth noting that inter-SWP impact still has an additive nature that can be factored in at

analysis time due to the highest priority of inter-SWP requests over intra-SWP requests, despite

being within the same GRP.

The SWPs shown in Figure 3.7 benefit from this SWP folding into GRPs. Figure 3.10 shows

WCB of four applications under three different execution scenarios in regular architecture.

In Scenario 1, SWPs use all 4 GRP, and the performance bottleneck is StereoNav. It takes longer

to execute than the other applications, which leads to underutilization of the GRPs in which

the other applications run as well as suboptimal performance of our software-pipelined system.

As shown in Figure 3.8, StereoNav reduces its WCB approximately by 75% (from 1.53s to 0.4s)

when it executes in parallel mode enjoying 4 cores in its GRP, with respect to its single-core

execution, representing a speed-up of 3.85x. Given that it is the bottleneck application, the speed

up of the whole software-pipelined system is 3.85x as well. This does not seems a convenient

speed-up for a 16-core architecture.

In Scenario 2, we run StereoNav into one GRP and fold all the other SWP into a second GRP,

which hence time share the GRP. In this case, the same WCB speed-up of 3.85x is observed.

Note that in this case, only 8 cores are used, leaving 2 extra GRPs for executing other parallel

applications.

Virtual GRPs naturally provide capability to adapt to the task level parallelism of the SWP.

To illustrate this point, in Scenario 3, on the regular (mesh-based) architecture, we increase the

number of cores assigned to a GRP from 4 to 6 to StereoNav, and so leaving only 2 cores for the

virtual GRP executing the other 3 applications. In this case, we observed a WCB speed-up of

4.9x of theStereoNav w.r.t its single-core version.

3.7 Related Work

For current Commercial-Off-The-Shelf (COTS) multicores, it is difficult to provide time com-

posable WCET by default. In this regard, authors in [66][67] quantify the delay suffered due

to interferences in shared processor resources of a COTS multicore. Fuchsen [68] performed a

Chapter 3. A Time Predictable Architecture 50

0.0E+00 1.0E+08 2.0E+08 3.0E+08 4.0E+08 5.0E+08

GRP1

GRP2

GRP3

GRP4

GRP1

GRP2

GRP1

GRP2
Sc

en
ar

io
 1

Sc
en

ar
io

2
Sc

en
ar

io
3

WCB (cycles)

StereoNav

3DPP

3DObsMap

CamImage

Figure 3.10: Combining several pSWPs into a single GRP

similar analysis, but focusing on the hardware and software related interference channels between

SWPs in multi-core based IMA platforms.

The literature in the area of analysis of hardware shared resource contention in multicore is vast.

At system level, several analysis frameworks have been developed to compute worst-case access

time bounds [69–72]. These frameworks model one off-chip shared resource that can process only

one request at a time and in which requests cannot be split. It is assumed that on-chip shared

resources (e.g. core-to-cache bus, caches, ...) are replicated or partitioned across tasks. This

makes that tasks suffer no contention accessing on-chip resources. Further it is assumed that the

accesses to the off-chip shared resource are synchronous (i.e. the accessing task is stalled while

the access is performed). The focus is on a specific task model in which tasks are divided into

superblocks for which maximum and minimum access bounds and execution time bounds can be

derived.

Under this scenario, the access to the shared resource is assumed to be arbitrated by either a

TDMA bus [69], a dynamic arbitration bus [70] or an adaptive bus arbiter [71]. For those cases

in which the arbiter is dynamic, the load that a task puts on the shared resource affects other

tasks access time. Other authors [70, 72] propose different approaches to derive per-task bounds

to the number of accesses in a period of time. While the number of accesses that a task generates

to the resource can be considered intrinsic to the task (i.e independent of the co-runners) as

long as caches are partitioned, its frequency of access depends on how often the co-runners

delay the task requests, dependence that is captured by the presented models. With dynamic

arbiters time-composability cannot be guaranteed since the WCET derived for a task depends

on its co-runner tasks. Time-composability is of paramount importance to enable incremental

verification as required by ARINC 653, and hence it is the objective of our designs, preventing

us from using dynamic arbiters. Further, we focus on shared on-chip resources and the main

memory, which handle multiple requests and naturally split cache misses (the requests) into

several memory commands that are parallelized across requests, preventing us from using the

Chapter 3. A Time Predictable Architecture 51

analysis frameworks presented above. Finally, we use real unmodified avionics applications, which

do not follow the superblock model.

Several efforts coming from the WCET community have focused on providing combined (i.e.

multitask) WCET estimates for tasks sharing a bus and a cache [53, 54]. This can be used at the

process level (i.e. among the processes of a given application) as shown in Figure 3.2(b). Applying

it across applications would break time composability and hence incremental verification.

At hardware level, we identified two main approaches to deal with contention [73]. The first

approach relies on designing a custom platform targeting a specific application with timing

constraints, as it is the case for the time-triggered [74], the PRET [75], and the CompSOC [76]

architectures. The second approach, although it still requires hardware changes, focuses on

adapting general-purpose platforms to allow the execution of those applications with timing

constraints. This is the case of the MERASA [65] approach. We note that some special features

included in the application-specific architectures like scratchpads require modifications in the

application’s code, challenging portability of legacy applications. Further, the growing cost of

developing and manufacturing chips makes the use of application-specific architectures only

relevant for high volume products [73], which is not typically the case for the avionics domain.

Therefore, we have used as baseline the MERASA architecture, on top of which we implemented

the novel concept of transparent execution.

3.8 Conclusions

Current ARINC 653 time partitioning techniques are not suitable for many-cores as they fail in

isolating IMA Software Partitions (SWPs): the execution of multiple traditional SWPs in the

many-core affects the timing behavior of each other due to uncontrolled simultaneous access to

shared hardware resources.

In this chapter, we have introduced the concept of Parallel Software Partitions (pSWPs) as an

extension to ARINC 653 standard(objectives O2 and O5). pSWPs specify how intra-SWP and

inter-SWP interferences are controlled to isolate the timing behavior of SWPs. In particular,

pSWPs prevent local intra-SWP activities from affecting (or being affected by) remote intra-SWP

activity. pSWPs require hardware support so that the impact of inter-SWP activities is made

additive. By doing so at integration time different SWPs can be independently developed, time

analyzed and brought together to form a system with minimum effort. pSWPs rely on a new

hardware feature called Guaranteed Resource Partitions (GRPs) (objective O1). GRP defines an

execution environment composed of a cluster of processor resources in which SWPs run, providing

the desirable timing isolation and time predictability properties among intra-SWP activities and

making inter-SWP activities to have an additive nature. This is done by implementing transparent

execution mechanism that freezes intra-SWP and local GRP requests to let inter-SWP requests

proceed, allowing to consider the impact of inter-SWP communication at system integration time

as required by pSWP (∆inter addend).

We evaluate two many-core processor architectures that implement GRPs with a hierarchical and

a regular NoC designs with a real avionic system composed of two parallel applications provided

Chapter 3. A Time Predictable Architecture 52

by Honeywell, 3D path planning and stereo navigation (objective O4). We show that transparent

execution enables compositional timing analysis improving application performance by 43% and

48% in case of 3DPP for hierarchical and regular architectures respectively (objective O3). In

case of StereoNav, the performance improvements go up to 74%. The time overhead due to

inter-SWP communications is reduced to less than 1% for both applications. Furthermore, we

show the benefit of flexibility in defining GRPs in mesh-based architectures, and speed-up the

entire system by 4.9x.

Chapter 4

Modeling High-Performance

Wormhole NoCs for Critical

Real-Time Embedded Systems

Manycore chips are a promising computing platform to cope with the increasing performance

needs of Critical Real-Time Embedded Systems (CRTES). As highlighted in the previous chapter,

manycores adoption by CRTES industry requires understanding task’s timing behavior when

their requests use manycore’s Network on Chip (NoC) to access hardware shared resources.

As thesis focuses on closing the gap among high-performance and CRTES domain, this chapter

analyzes the contention in Wormhole-based Network on Chip (wNoC) designs – widely imple-

mented in the high-performance domain – for which we introduce a new metric: Worst-Contention

Delay (WCD) that captures wNoC impact on Worst-Case Execution Time (WCET) in a tighter

manner than the existing metric, Worst-Case Traversal Time (WCTT). Moreover, we provide an

analytical model of the WCD that requests can suffer in a wNoC and we validate it against wNoC

designs resembling those in the Tilera-Gx36 and the Intel-SCC 48-core processors (objectives

O1 and O3). Building on top of our WCD analytical model, we analyze the impact on WCD

that different design parameters such as the number of virtual channels, and we make a set of

recommendations on which wNoC setups to use in the context of CRTES (objective O1).

4.1 Introduction

Manycore chips can accommodate high task counts in a single hardware device which helps

reducing size, weight and power costs in CRTES. The deployment of manycores as baseline

computing platform in CRTES requires a means for the safe consolidation of multiple CRTES

applications on the same chip. In that respect, one of the stumbling blocks in the manycore

adoption in CRTES is understanding how manycore internal complexity affects tasks’ timing

behavior. The interconnection network is, arguably, one of the manycore shared resources with

53

Chapter 4. Modeling High-Performance wNoCs for CRTES 54

highest impact on timing. Unlike multicores, which use a centralized interconnect (e.g. a bus)

to access hardware shared resources, manycores implement Network on Chip (NoC). In NoCs,

requests are arbitrated in a distributed manner at various routers severely complicating timing

analysis.

In the high-performance domain, Wormhole-based Network on Chips (wNoCs) are well under-

stood [77][78] and used in several Commercial-Off-The-Shelf (COTS) products [60][18][79]. The

high-throughput and low-hardware cost features of wNoCs make them attractive for CRTES

as an alternative to real-time customized networks whose adoption in commercial products is

harder to achieve. In this respect, we address the problem of whether high-performance wNoC

designs can be used to consolidate, in a trustworthy manner, multiple CRTES applications into a

single manycore. This requires providing high-performance and isolation among tasks so that

time composable WCET estimates [17] (independent of the load that co-running tasks put on

the NoC) can be derived.

We take time composability as a premise in CRTES design since it enables two fundamental

properties to reduce system development and deployment costs: incremental development and

incremental verification of integrated systems (e.g. Integrated Modular Avionics (IMA) [25, 27],

AUTomotive Open System ARchitecture (AUTOSAR) [24]). During system development, the

ability to incrementally integrate applications without the need of regression tests to validate the

timing properties of already-integrated applications heavily reduces integration costs. At system

deployment, the ability to update functions and their associated software, without the need for

re-analyzing and re-certifying the system, is vital in domains like space where systems operate

during dozens of years and whose functionality is usually updated once deployed.

In this chapter we propose an analytical model that captures the impact of the different wNoC

design choices and parameters on WCET estimates. Our goal is to adhere to existing COTS

wNoC designs without the need of adding extra hardware support. In particular, we make the

following contributions:

• We introduce Worst-Contention Delay (WCD) as a new metric to accurately capture the

impact of wNoC inter-task interferences on WCET estimates (Section 4.3). WCD takes into

account the pipelined behavior of wNoCs, leading to tighter WCET estimates compared to

the ones obtained with the Worst-Case Traversal Time (WCTT) [3][80][81][82] (objective

O3).

• We provide a taxonomy of wNoC design parameters (Section 4.4), identifying those that

have to be fixed in order to provide trustworthy and composable WCD bounds; and those

where some flexibility is allowed. We show that the default values for some of the latter

set of parameters are configured to improve average performance, increasing WCD bounds

(objective O1).

• We derive an analytical model for time-composable WCD bounds in a wNoC (Section 4.5),

covering a vast set of parameters including flits-per-packet, number of virtual channels

Chapter 4. Modeling High-Performance wNoCs for CRTES 55

and queue size in the router1. Our model achieves high coverage of existing COTS high-

performance wNoC designs. We discuss static virtual channel allocation and show that

it has to be applied smartly to reduce WCD bounds. Otherwise, it can result in an

increase in WCD bounds, e.g, using virtual channels to separate the traffic generated by

applications under different criticality levels increases WCD bounds and hence WCET

estimates. Further, in Section 4.6, we discuss the impact of various wNoC parameters on

system design.

• We assess the accuracy of our analytical model on two wNoC setups resembling the ones

deployed in real processors (objective O1): the Tilera-Gx36 [18] and the 48-core Intel

SCC [60] (Section 4.7). In all cases, our WCD estimates tightly upperbound the measured

contention delay values with up to 5% over-estimation on average. Further, we show that

on average, WCD bounds are 2.7x and 2.94x lower than WCTT bounds for the Tilera-Gx36

and the Intel SCC setup respectively.

Overall, our analysis shows that simple but effective design and configuration choices make

efficient use of wNoCs in CRTES possible.

4.2 Background

In CRTES, there are two main ways to handle contention among accesses to shared hardware

resources, including NoCs, as explained in Section 1.3.1. First, the NoC contention is accounted

as part of the WCET estimation process by deriving a time composable bound of the Worst-

Case Traversal Time (WCTT). WCTT defines the longest time a request could take since

the moment it is injected in the NoC by a source node until it is delivered to the destination

node. Alternatively, NoC contention delay that a task suffers can be handled as part of the

Worst-Case Response Time (WCRT) analysis by adding to the task’s execution time in isolation

the contention generated by the flows of its co-running tasks – which are assumed known at this

stage.

Each approach has its own pros and cons: while the latter enables deriving tighter estimates,

since it builds upon the knowledge of interference generated by the tasks in the observed task set,

it violates time composability. The former, which is the focus of this chapter, maintains time

composability at the expense of higher WCET estimates.

In Section 4.3 we propose the use of Worst-Contention Delay (WCD) instead of WCTT as a

means to provide tighter WCET estimates for the tasks running in the wNoC based manycore

processor.

1We consider arbitration, routing and virtual-channel allocation policies, to be configurable from software
similarly to the way cache replacement is currently adjustable in high-performance architectures. This is in
contrast to hardware proposals that require global changes like, new signals among routers and nodes, different
flow-control, global clocks or the like.

Chapter 4. Modeling High-Performance wNoCs for CRTES 56

4.3 Contention Delay: A New Metric to account for the

impact of NoC on WCET

Given a task under analysis, we call Contention Delay (CD) the delay caused by the other

co-running tasks in the access to the shared NoC. As an alternative to WCTT we introduce a

new metric, called Worst-Contention Delay (WCD), that captures in a tight manner the impact

that accesses to the NoC have on programs’ execution time and WCET. WCD stands for the

highest impact that a request may have on WCET due to contention in the NoC. It stems from

the appreciation that requests can suffer two types of delays: intra-task delay (atd) that is caused

among requests coming from the same core; and inter-task delay (etd) that covers the delay that

one request from a core causes on the request of a different core.

We illustrate the difference between WCD and WCTT with the example in Figure 4.1. Fig-

ure 4.1 (a) shows a simple NoC connecting three cores, out of which one is the destination core

(c2). Our focus is determining the delays suffered by the requests from core c0 when accessing

the NoC. An arbiter, which implements round-robin policy, handles requests coming from c0 and

c1, with separate buffers to handle the requests of c0 and c1.

The time diagram in Figure 4.1 (b) shows the actual traversal time and the actual contention

delay suffered by subsequent requests r0
0 - r4

0 sent from c0 (upper time diagram) and r0
1 - r4

1 sent

from c1 (lower time diagram with grey background) when cores inject packets at the maximum

rate. In absence of interference, we assume that a request takes 1 cycle to traverse the router,

and that buffers can store up to 2 requests. In the time diagram, I stands for the cycle when the

request is transferred from c0 to the buffer and CX the cycle when the request is sent from the

router (eXits) to the target node c2. Ba corresponds to cycles when the request is in the buffer

but not at the top, hence suffering atd. Likewise, Be corresponds to cycles when the request is at

the top of the buffer and hence suffering etd since the arbiter grants access to c1.

We assume that first request of c0 lost the arbitration in Cycle 1 so that it is delayed by a request

of c1 in traversing the router. We observe that request r0
0 only suffers etd. r1

0 enters in the second

entry of the buffer in cycle 1 (cyc1), in cyc2 it suffers atd and reaches the top of the buffer in

cyc3 where it suffers a cycle of etd. We observe a similar behavior for other requests, with the

difference that when there are two requests in the buffer, c0 has to wait until one is released

before sending another request.

The two columns on the right of the time diagram show the interference cycles for traversal

time (cTT) and for contention delay (cCD) metrics. For the traversal time the interference

cycles suffered by r0
0 - r4

0 are 2, 3, 4, 4, 4 respectively. Meanwhile for the contention delay they are

1, 1, 1, 1, 1. The key appreciation is that with traversal time the interference accounted for each

request covers both atd (Ba) and etd (Be). However, the impact of Ba for one request is already

accounted as part of the Be of another request. For instance, the atd suffered by r2
0 in cyc3 is

the etd suffered by r1
0. Overall, the main problem with traversal time is that it doesn’t capture

well the pipelined behavior of the NoC and that the same cycle can be accounted several times

as contention, either intra- or inter-task, in different requests. Contention Delay instead, only

focuses on inter-task contention and does not over-account atd and etd cycles.

Chapter 4. Modeling High-Performance wNoCs for CRTES 57

C
o
re

 0

Core 1

C
o
re

 2

Arbit.

a) b) c)

Req. 0 1 2 3 4 5 6 7 8 9 10 cTT cCD Req. 0 1 2 3 4 5 6 7 8 9 10 cTT cCD

r
0

0 I Be Cx 2 1 r
0

0 I Be Cx 2 1

r
1

0 I Ba Be Cx 3 1 r
1

0 I Ba Be Cx 3 1

r
2

0 I Ba Ba Be Cx 4 1 r
2

0 I Ba Ba Be Cx 4 1

r
3

0 I Ba Ba Be Cx 4 1 r
3

0 I Ba Ba Ba Be Cx 5 1

r
4

0 I Ba Ba Be Cx 4 1 r
4

0 I Ba Ba Ba Ba Be Cx 6 1

Req. 0 1 2 3 4 5 6 7 8 9 10 cTT cCD Req. 0 1 2 3 4 5 6 7 8 9 10 cTT cCD

r
0

1 I Cx 1 0 r
0

1 I Cx 1 0

r
1

1 I Be Cx 2 1 r
1

1 I Be Cx 2 1

r
2

1 I Ba Be Cx 3 1 r
2

1 I Ba Be Cx 3 1

r
3

1 I Ba Ba Be Cx 4 1 r
3

1 I Ba Ba Be Cx 4 1

r
4

1 I Ba Ba Be Cx 4 1 r
4

1 I Ba Ba Ba Be Cx 5 1

C
o

re
 1

Buffer size = 2 Buffer size = 3

C
o

re
 0

C
o

re
 0

C
o

re
 1

Figure 4.1: Simple router and the impact of atd and etd on traversal time and contention
delay.

Therefore, considering WCTT as the extra delay that each request suffers due to contention in

the NoC can be (very) pessimistic. Instead, WCD provides tighter estimates since it prevents

requests to account for multiple atd interference delays as shown in Figure 4.1. Our results in

Section 4.7 show that for a wide range of NoCs WCD tightly and trustfully upperbounds the

impact of inter-task interferences in wNoCs.

4.3.1 WCD Properties

WCD shows a few interesting properties:

• Larger buffers increase the atd since a request is potentially delayed by higher number of

requests coming from the same core. This translates on the fact that larger buffers lead

to higher WCTT. This is counterintuitive since the more the resources of the wNoC, in

the form of larger buffers, the worse the WCTT is. Since WCD is not affected by atd the

impact of buffer size on WCD is reduced, which enables use of wNoCs with larger buffers

in real-time domain with benefits for average performance of the wNoC.

Time diagrams in Figure 4.1 (c) show the behavior or previously discussed sequences of

requests from cores c0 and c1, if we increase the sizes of input buffers in the router to 3.

This change doesn’t affect execution time of the sequence nor contention delay. However, it

shows an increase in traversal time for some requests, e.g. for r4
0 it grows from 4 to 6.

• Solutions based on limiting the injection rate at hardware [80] or software-level [83] effectively

reduce atd since requests are injected into the wNoC at a lower rate and so fewer conflicts

occurs. In the extreme case, these technique can prevent flows from having more than

one packet in any single router, completely removing the atd but jeopardizing the wNoC

utilization. While this reduces the problem of atd accounting for WCTT, WCD completely

removes atd providing tighter bounds, without any impact on average performance.

• WCD leads to tighter WCET estimates than WCTT since the atd a request suffers occurs

in parallel to the etd for other requests, which is already captured by WCD.

Chapter 4. Modeling High-Performance wNoCs for CRTES 58

Table 4.1: Summary of main symbols used

Symbol Description
V C Virtual Channel

WCD Time-composable upper bound to contention delay
Fi Packet stream traversing the same source-destination

route and requiring the same grade of service along the
path.

Hi Number of hops in a flow Fi
Rji Router (hop) j in a flow Fi (see Figure 4.2 (a))

rki Packet (request) k in a flow Fi
Lflits Number of flits of a packet

P ji Number of ports in router Rji
NRji Number of queues that can potentially contend for an out-

put port that Fi is targeting at Rji
ω(i, j) Function that returns the index x of the worst-case desti-

nation flow Fx that starts at the hop Rj+1
i and reaches

the worst-case destination in terms of indirect blocking of
packets of flow Fi

4.3.2 WCD Assumptions

WCD applies to processors free of timing anomalies such that increasing the local delay suffered

by any request leads to an increase in execution time by at most the magnitude of the local delay.

In particular, by increasing contention delay by d cycles, execution time grows by up to d cycles.

Further, WCD applies to network designs implementing back pressure flow-control policies i.e.

NoC designs with no packet loss such as wormhole and virtual cut-through [77]. WCD works for

work-conserving policies such as round-robin so that links are never left idle if there are pending

requests.

4.4 NoC Parameters Taxonomy

This section presents a taxonomy of wNoC parameters. We consider a mesh network topology as

it is the most common topology used in wNoCs, though the analytical model presented in this

chapter also applies to other network topologies (e.g. torus) by simply varying some parameters

such as the number of ports per node. Table 4.1 lists the symbols and the corresponding

description used in the rest of the chapter. We distinguish between the WCD, which corresponds

to the actual worst contention delay a NoC request may suffer due to interferences with other

requests, and the WCD, which corresponds to an upper-bound of the actual WCD derived by

our analytical model.

4.4.1 Wormhole mesh NoC fundamentals

In our reference NxM mesh wNoC configuration, depicted in Figure 4.2 (a), each node comprises

a Processor/Memory Element (PME) and a router that communicates with the rest of nodes.

The PME can be either a processor core, a cache memory, main memory, I/O, etc. In the network

several traffic flows (Fi) may be active at the same time. Each node can be identified using (x, y)

coordinates. The router located at coordinates (x, y) is referred to as R(x, y).

Routing decides the path that a packet follows within the network, and consequently, the number

of routers or hops (h), a given flow requires to move from a source to a destination node. Hence,

Chapter 4. Modeling High-Performance wNoCs for CRTES 59

R(0,3) R(1,3) R(2,3) R(3,3)

R(0,2) R(1,2) R(2,2) R(3,2)

R(0,1) R(1,1) R(2,1) R(3,1)

R(0,0) R(1,0) R(2,0) R(3,0)

R1
1

R2
1

F1

F2

R2
2 R2

3 R2
4

R2
5

R1
2 R1

3

R1
4

R1
5

Output
arbitration

X+ X-

Y-

Y+

Routing

Virtual
channel

arbitration

Crossbar
Switch

Input buffers

(a) (b)

Figure 4.2: Mesh basics. (a) Router coordinates in a 4x4 part of a mesh. (b) Canonical
2D-mesh router.

a router can also be identified as Rji , in which j represents the hop j of flow Fi, when moving to

its destination.

Communication flows comprise multiple NoC packets or requests. We refer to the k-th packet

generated by flow Fi as rki . A packet is the minimum arbitration unit in the network and it can

be split into one or several flits (short of control flow units). Flits can be further decomposed into

smaller units called phits when available link wires cannot accommodate an entire flit. For the

sake of clarity in the equations we consider equal phit and flit sizes. The first flit of a packet is

called header flit and contains the information required to forward the packet to the destination.

We consider a canonical 5-port2 2D mesh router architecture in which input ports have a queue

to store packet flits (see Figure 4.2(b)). In order to alleviate the contention caused by flows

going to different destinations, high performance NoCs multiplex physical channels using Virtual

Channel (VC). To do so, an input queue resource per port is assigned to a Virtual Channel. In

a canonical wormhole router with Virtual Channels, two rounds of arbitration are performed.

The first selects the input port that is granted access to a given output port and the second one

selects the Virtual Channel (queue) that is selected in a given input port. In the case of a router

without Virtual Channels the latter arbitration is not required.

Routers are usually pipelined in multiple stages, e.g. the Intel SCC [60] comprises routers with

an input buffer, routing of the header flit, switch allocation and link traversal stages. The header

flit is the only one arbitrated from a packet and once it is granted access to a given output port

this connection remains established until the entire packet leaves the router.

When a header flit arrives at an input port of Rji , this flit is stored in the corresponding queue.

Next, the routing determines the next hop router, Rj+1
i , and the router allocates an entry queue

in Rj+1
i . Once the router in the next hop can accept the header flit, it competes for an output

2In order to simplify our formulation we assume that all routers, including those at the edges, have the same
number of ports, which in our case is 5. We could consider that some routers (e.g. those at the edges) may have
fewer ports, which would decrease the WCD. However, for the sake of clarity and due to space limitations to
extend equations we stick to 5-port routers for meshes as the ones used in Tilera chip [18].

Chapter 4. Modeling High-Performance wNoCs for CRTES 60

Table 4.2: List of wNoC main features analyzed

ID Feature Comment

- Routing
Fixed to achieve time analyzability.
Static (e.g. XY routing)

- Flow control No impact. Credit-based or stall-and-go.
- Arbitration Fixed to achieve time analyzability
- Switching Fixed to wormhole (widely implemented).

cF Number of flows Limited by static routing.
nVC No. of queues per input port nV C = 1 or (1 < nV C < cF)

E Entries per queue < 1 packet, = 1 packet or > 1 packet
S Packet size Single or Multiple

FT Flits per Packet = 1 or > 1

port and traverses the router crossbar. Once a header flit is granted access to a given output

port, the remaining flits of the packet are forwarded to this port without any further arbitration.

However, contention may cause the header flit to be stalled. When this happens, the remaining

flits of the packet are also stalled. One of the causes of stalls is the finite size of queues in input

ports. In wNoCs, the minimum allowable queue size is one flit. In any case, queues are typically

sized with enough space to avoid bubbles in the packet transmission. For instance, if the time

required to know if there is enough space in the next router queue is equal to one cycle, the queue

needs to have a minimum size of two flits to avoid bubbles. The latency experienced by a packet

to traverse the network from source to destination in the absence of contention is usually referred

to as zero load latency (zll).

4.4.2 Proposed Taxonomy

The main properties the wNoC needs to provide in order to be used in real-time systems are (i)

time analyzability, i.e. enabling the derivation of as tight as possible contention delay bounds,

and (ii) time composability, i.e. making contention delay bounds independent of the load that

co-runners put on the wNoC. This translates into deriving the trustworthy upper-bound to the

highest possible contention delay (WCDi) a communication flow Fi of a given task can suffer

due to conflicts with other task’s flows. In the following we show how different wNoC parameters

impact WCDi. Table 4.2 summarizes the wNoC features we analyze.

4.4.2.1 Fixed parameters

Some wNoC parameters are usually constrained to enable time analyzability and composability:

• Routing determines the flows that potentially contend with Fi at a given router. Determin-

istic routing is shown to provide time analyzability [3]. Hence, for our mesh analysis we use

XY as it is the preferred solution for routing in regular NoCs due to its low implementation

cost. With XY routing packets are forced to use the X dimension first: In the X dimension

the position of the target node with respect to the source node determines whether to go

right (X+) or left (X-) direction. The same approach is used for the Y dimension. Once a

packet is routed using the Y dimension, it cannot be forwarded back to the X dimension.

These routing restrictions determine the maximum number of flows contending with Fi at a

Chapter 4. Modeling High-Performance wNoCs for CRTES 61

given router for an output port. Note that the opposite port of a given input/output port

is represented as Ȳ and X̄.

Note that our analysis can be extended for any other deterministic routing policy. In order

to do so, one should recompute the maximum number of flows contending with Fi at a

given router for an output port according to that particular routing policy.

• Flow control determines how packets traverse the routers. In the context of wormhole

switching, back pressure flow control can be based either on the use of credits or stall-&-go

signals. In this thesis, we provide expressions assuming the most common case that the

flow control mechanism is designed in such a way that no bubbles occur in the packet

transmission. However, the impact of bubbles on contention delay can be easily accounted

for by considering that a bubble in the transmission is equivalent to increasing packet size

by one flit.

• Active nodes. In order to achieve time composable contention delay bounds, no assumptions

can be made on the particular active flows in the wNoC. That is, it is assumed that any

node in the network is entitled to send and receive packets from any other node.

• Active flows. Similarly, when computing the contention delay for a packet, we assume

that, by the time it is injected in the network, any other potential contending flow is also

active at that moment, transmitting its packets in a way that it produces the worst-case

contention scenario. In order to reproduce the worst-case contention scenario we need to

consider the worst direct contention and the worst indirect contention [84]. The former can

be easily reproduced by considering that for a packet rki of Fi at every hop, all possible

contenders (i.e. all queues that can forward a packet to the requested output port) are

also requesting the same output port. The latter is caused by packets of flows not sharing

the path with Fi but blocking at least one flow that does share at least one link in the

path with Fi. In the following sections we derive expressions that account for worst-case

contention considering the impact of both indirect and direct contention.

• Output port arbitration. Likewise, packets contending in a router for a given output port are

arbitrated using a time-analyzable policy. Regular wormhole-based mesh designs like the

ones in [18][60] use round-robin arbitration. The use of round-robin arbitration enables the

computation of timing guarantees[85][86]. In the case of wNoCs with virtual channels an

additional round-robin arbitration is also implemented to select the channel that contends

for the output port resources.

4.4.2.2 Parameters to adjust

Other wNoC parameters have some flexibility in the values they can take, though each set of

parameters (network parameter configuration) leads to different contention delay. We study the

following set of parameters: buffer capabilities and number of flits per packet.

The buffering capabilities of the wNoC are further shaped by two parameters:

Chapter 4. Modeling High-Performance wNoCs for CRTES 62

Table 4.3: Setups

Setup Description
(FT = 1, nV C = 1, E = 1) 1 queue per input port, 1-

flit packets and input queue
holds 1 packet

Impact
of VC

(FT = 1, 1 < nV C <
cF,E = 1)

nVC queues per input port,
1-flit packets and input
queue holds 1 packet

(FT > 1, 1 < nV C <
cF,E = 1)

Input queue holds 1 packet
that is multi flit

Impact
of FT
and E

(FT > 1, 1 < nV C <
cF,E > 1)

Input queue holds more
more than 1 packet that is
multi flit

(FT > 1, 1 < nV C <
cF,E < 1)

Input queues cannot store
entire an entire packet that
is multi flit

• The number of queues per input port – which matches the number of virtual channels –

(nV C). nV C leads to two scenarios: First, when there is a single queue per input port,

i.e. no virtual channel is implemented, which is referred to as nV C = 1; second, there

are several queues each of which can – statically or dynamically – hold different flows

(1 < nV C < cF).

• The number of entries per queue (E) that can get three values: it can have the exact size

of a packet, given by its number of flits (E = 1), be smaller than packet size (E < 1) and

be larger than packet size (E > 1).

For the number of flits per packet we consider two cases: Each packet comprises a single flit

(FT = 1) and each packet comprises several flits (FT > 1).

4.5 Time-Composable WCD bounds

This section provides an analytical model for time-composable bounds to WCD with the ultimate

goal of deriving time-composable bounds to tasks execution time. Table 4.3 presents the different

scenarios we analyze in coming sections. In doing so, we proceed incrementally analyzing the

contention delay affecting packets in the NoC, going from simple scenarios to more complex and

realistic ones.

4.5.1 Single-Flit, One Virtual-Channel, Single-entry Queue (FT = 1, nV C =

1, E = 1)

In this scenario, packets are composed of one single flit and every router input port has a

single-entry queue (no virtual channel is implemented). The queue stores the requests coming

from all flows sharing it.

Chapter 4. Modeling High-Performance wNoCs for CRTES 63

4.5.1.1 Single-router traversal

Let us assume a request r1
i from a flow Fi going from a source node R1

i to a destination node R2
i

that are adjacent in the direction of Fi. In this wNoC setup, traversing one router is similar to

traversing a bus with round robin arbitration policy [85]. The worst contention delay that r1
i can

experience is:

WCDi = (NR1
i − 1)× Lrouter (4.1)

NRji is the number of queues contending for an output port that Fi is targeting at router Rji .

With XY routing if the destination port is X+ or X−, the number of contending queues is 2

(PME and X̄). If the destination port is Y+ or Y− (or the PME) the contending queues are 4:

X+, X−, Ȳ and PME (or X+, X−, Y+ and Y−). Lrouter represents the time a packet requires

to cross a non-pipelined router. In the case of pipelined routers, the pipeline mitigates the impact

of Lrouter and it can be safely assumed Lrouter = 1. In the rest of the chapter, we make this

assumption for the sake of clarity and readability.

4.5.1.2 Worst Contention

Contention is caused by packets of any flow partially sharing the path with Fi. Let’s assume

Fi traverses R1
i -R

2
i -R

3
i . When r1

i is issued from the PME it enters the arbitration in R1
i . In

the highest contention scenario NR1
i − 1 requests with higher priority than r1

i are ready in R1
i

per-input-port queue targeting the same output port. For any of these requests to go through

R1
i the corresponding input queue in R2

i input port has to be free. In the worst-case situation,

the target input port already contains a packet (rkj) from a different flow, Fj , and rkj shares the

same path as r1
i . Further, all packets in different input ports in R2

i can target the same output

port as rkj and have higher priority than rkj . Overall, we observe that rkj causes contention on r1
i

despite not contending within the router R1
i as they share at least one link in the path (direct

contention). Additionally, requests not sharing the path with r1
i can be blocking rkj which in

turns causes contention in r1
1. This contention is usually regarded as indirect contention [84].

4.5.1.3 worst-case Destination

From the previous discussion it follows that the route followed by rkj determines the contention it

suffers, so the more hops rkj traverses the more the contention it may suffer, which in turns affects

the contention on r1
i . In order to account for the worst contention, considering both indirect

and direct contention that any Fi can suffer at hop Rji , we introduce the concept of worst-case

destination flow, Fω(i,j). Fω(i,j) considers the next hop’s input port that a packet of flow Fi

targets from current hop Rji . The destination of flow Fω(i,j) is chosen in such a way that causes

worst indirect contention to the packets of flow Fi, i.e. it prevents packets of Fi cross the hop Rji

for the longest time possible.

Chapter 4. Modeling High-Performance wNoCs for CRTES 64

Fi

Ri
5

Ri
4Ri

3Ri
2Ri

1

Fω(i,1)

Fω(i,4)

R(0,1) R(1,1)

R(3,3)

R(3,0)

R(3,1)R(2,1)

R(3,2)

R(0,0)

Fi
Ri
2Ri

1

Fω(i,1)

R3ω(i,1)

R2ω(i,1)

(a) (b)

Figure 4.3: (a) Worst destination; and (b) A flow crossing 2 routers

The choice of Fω(i,j) depends on the routing algorithm used. In the wNoC mesh considered in

this thesis, with XY routing, the worst destination of flow Fω(i,j) corresponds to the farthest node

that can be reached from the next Fi hop’s input port3, depending on the traversing direction:

• When the packets of flow Fi traverse the Y dimension, the farthest reachable node is the

one with highest hop count in the same direction, since once a packet starts using the Y

direction, it cannot be routed on the X direction again.

• When the packets of flow Fi traverse the X dimension, the farthest node is the one with

highest hop count in X and then in Y dimension.

Let’s consider the case from Figure 4.3(a) in which a packet ri of flow Fi is transmitted from

router R(0, 1) to router R(3, 0) (represented with a solid arrow in the figure). When the packet

enters in R1
i , it waits for an input port to become ready in R2

i . r
1
i suffers the longest contention

when the packets in the west input port of R2
i target their worst-case destination, i.e router R(3, 3)

(represented with a flow Fω(i,1), dotted arrow in the figure). The same worst-case destination

is maintained as the packet traverses R(1, 1) and R(2, 1). However, when ri reaches router

R(3, 1) as the packet requests the north input port in router R(3, 0), the worst-case destination

changes. The reason is because Fω(i,1) considers Y+ but ri goes Y-. As a result, a new worst-case

destination flow is computed, i.e. Fω(i,4), marked with a dashed arrow in Figure 4.3(a).

4.5.1.4 Computing the time-composable upper bound Worst-Contention Delay (WCDi)

In order to derive the general WCDi expression, we first focus on the case of a flow crossing only

two routers as shown in Figure 4.3(b). Flow Fi targets next hop’s (R2
i) PME. In order to cross

router R1
i , it has to win the arbitration for the east output port of R1

i . To keep time composability

we assume that it has the lowest priority in that arbitration, as shown in Equation 4.1. We

further assume that each of its contenders in R1
i suffers the worst contention from Fω(i,1) (marked

3This assumption is only valid in the case all routers have the same number of ports. In other cases the
worst-case destination is computed iterating contending flows to the possible destination and selecting the one
causing the highest contention.

Chapter 4. Modeling High-Performance wNoCs for CRTES 65

with a dotted arrow in the figure), which determines the delay suffered by each contender in the

arbitration.

In order to compute the impact that Fω(i,1) has on contenders of Fi, we follow an iterative process,

assuming that Fω(i,1) also suffers the worst contention at each hop until reaching its destination

R3
ω(i,1). Thus, the worst contention for every request going from R2

ω(i,1) to R3
ω(i,1) is NR3

ω(i,1).

Likewise, the contention when going from R1
ω(i,1) to R2

ω(i,1), is NR3
ω(i,1) ×NR2

ω(i,1) as it includes

the contention of R2
ω(i,1) when going to R3

ω(i,1).

Overall, the worst contention that Fω(i,1) causes on Fi contenders at router R1
i , includes the

arbitration of Fω(i,1) at router R1
ω(i,1) and is equal to NR3

ω(i,1) × NR2
ω(i,1) × NR1

ω(i,1). As in

the previous case, it includes the contention of R1
ω(i,1) when going to R2

ω(i,1) and R3
ω(i,1). Once

the impact of Fω(i,1) is computed, we derive from Figure 4.1 the contention that Fi suffers for

crossing from R1
i to R2

i . As a result, the WCDi expression when crossing two routers is:

WCDi = NR3
ω(i,1) ×NR2

ω(i,1) ×NR1
ω(i,1) × (NR1

i − 1)

+(NR2
i − 1) (4.2)

In the general case, for a packet of an arbitrary flow Fi injected in an arbitrary node R1
i and that

it has to cross Hi other routers (R1, R2, ... RHi) to get to its destination, the general expression

for computing WCDi of Fi is given by:

WCDi =

Hi∑
j=1

(NRji − 1)×
Hω(i,j)∏
m=1

NRmω(i,j)

 (4.3)

whereHω(i,j) is the number of hops in the worst-case destination flow Fω(i,j). The first multiplicand

(NRji − 1) corresponds to the contention introduced by the round robin arbitration in each of the

routers that the flow Fi traverses. The second multiplicand
∏Hω(i,j)

m=1 NRmω(i,j) corresponds to the

indirect contention delay in each hop due to the worst-case destination flow Fω(i,j). In the rest of

the chapter, we refer to the first multiplicand as rrcont, and to the second as indcont,

Interestingly, whether or not a node has several requests in flight has no impact on WCD, since

this only affects atd and WCD metric is insensitive to atd.

4.5.2 Single-Flit, Virtual-Channels, Single-entry Queue

(FT = 1, 1 < nV C < cF,E = 1)

Virtual channels are allocated to flows in a wNoC either statically or dynamically. With dynamic

allocation, virtual channels are assigned to flows at run-time based on their availability with

the overall goal of maximizing buffer occupation and consequently, average network throughput.

With static allocation instead, virtual channels are statically assigned to a given set of flows, such

that any of these flows uses the same virtual channel until reaching the destination, in order to

Chapter 4. Modeling High-Performance wNoCs for CRTES 66

reduce head-of-line blocking [77]. The way in which each of the two allocation schemes impacts

wNoC contention is as follows:

For dynamic allocation, at analysis time no assumption can be made about the particular flows

contending at a given router with Fi. The only safe assumption that can be made is that all

flows can be potentially contending for virtual channel resources at every router. Hence, dynamic

virtual channel allocation does not help reducing contention delay.

The impact of static virtual channel allocation is more complex to ascertain. Hence, if we consider

terms rrcont and indcont from Equation 4.3:

• An increase in nV C translates into a increase of rrcont. This occurs because every arbitration

round covers the selection of a contending port (e.g. for the Y+ output port the contending

input ports are X+, X−, Y and PME) and a specific virtual channel of that port. Hence,

the number of contenders within a router, NRji , in the presence of nV C virtual channels

per input port, is defined depending on the destination port as follows:

NRji =

nV C × 2 if destination is X+ or X−
nV C × 4 if destination is Y+, Y − or PME

Note that the expression above generalizes the definition of NRji presented in Equation 4.3,

which considers no virtual channels are implemented (nV C = 1).

• Having more than one virtual channel, if they are smartly allocated, offers a solution to

reduce indcont. The achieved reduction factor, referred to as ∆ind (with ∆ind ≤ 1), depends

on the particular static allocation used. For instance, let us assume a wNoC with two virtual

channels, one of which is assigned to packets sent from a given node R(x, y) while the other

nodes share the second virtual channel. In this scenario the packets from R(x, y) suffer no

indirect contention, i.e. rrcont ×∆ind = 1, hence reducing WCD since the reduction is

expected to be higher than the increase caused on rrcont. It is noted that the requests sent

from the other nodes suffer a higher WCD since their indcont is not affected while rrcont

increases. Investigating smart static allocation virtual channel policies is out of the scope of

this thesis and remains a part of our future work, in terms of the WCD model presented in

this chapter we use the terms NRji and ∆ind to factor in these effects into WCD. Overall,

the general expression for WCDi is as follows:

vcWCDi = WCDi × nV C ×∆ind (4.4)

4.5.3 Multiple-Flit, Virtual-Channels, Single-entry Queue

(FT > 1, 1 < nV C < cF,E = 1)

In this section we model wNoC contention when packets can have more than one flit, which are

transmitted in a pipelined fashion. In order to account for the contention delay introduced by

multi-flit packets, we consider Lfliti as the maximum number of flits a packet of flow Fi can have.

Chapter 4. Modeling High-Performance wNoCs for CRTES 67

In a pipelined router, the time that a packet rki is blocked in Rji is given by the number of queues

that can potentially contend with rki (NRji − 1) and the maximum number of flits (Lfliti) of

the contending requests: (NRji − 1)× Lfliti . As a result, in order to provide a contention delay

bound (WCDi), it is required to know the maximum packet length of every flow in the wNoC

as in [87]. However, the latter breaks time-composability. In order to retain time composable

behavior while supporting any bounded length packets, we define LflitMAX as the maximum length

that packets in the wNoC can have. In this context, the general expression for ftvcWCDi can

be formulated as follows, based on Equation 4.3:

ftvcWCDi = LflitMAX × vcWCDi (4.5)

Note that typically LflitMAX is determined by the communication protocol (e.g. [88]) on top of the

wNoC. Also, it can be limited at network interfaces by performing packetization [89].

4.5.4 Multiple-Flit, Virtual-Channels, Multiple-entry Queue

(FT > 1, 1 < nV C < cF,E > 1 or E < 1)

For WCD equations so far, we have considered that queue size is equal to packet size. In this

section, we consider the impact of having queues not matching the packet size.

4.5.4.1 Queue size larger than packet size (E > 1)

When queues have enough space to store more than one packet, the number of in-flight packets in

the network increases. However, this affects the worst-case latency experienced by packets in the

wNoC but not necessarily its contention delay. This is because packets in a given virtual channel

queue are served using a first-in first out policy and therefore fairly arbitrated by round-robin

arbiters across router ports. In fact, the maximum number of packets that rki is contending

with at a given router Rji is given by NRji and is the same regardless the number of contending

packets that can be stalled in a given router port. In this case Equation 4.5 is a valid expression

for this case (ftvcWCDi).

4.5.4.2 Queue size smaller than packet size (E < 1)

When a packet cannot be completely buffered in a router, its flits are spread across several of the

router queues the packet traverses until reaching its destination node. The number of effective

contenders in a network with buffers smaller than packet size is reduced since a given packet

cannot be requesting an output port at two routers at the same time [3]. With this in mind it can

be concluded that the resultant WCD is equal or smaller than the one derived in Equation 4.5

(ftvcWCDi). However, composability requirements make almost impossible determining the

number of effective contenders as this would require knowing the exact length for all packets of

all flows in the network. Therefore, in this scenario a safe upper bound is ftvcWCDi.

Chapter 4. Modeling High-Performance wNoCs for CRTES 68

4.5.5 Impact of variable size packets

The effect of message length in the maximum contention a request can suffer is huge and if the

NoCs are not carefully designed this could lead to an unbounded WCTT. For wormhole NoCs

the arbitration slot duration is exactly the message size, so the larger the message is the longer

the time slot will be (from the arbitration point of view). In a regular wormhole NoC there is no

mechanism that prevents a given source to inject messages of an undefined length in the network

but is the protocol on top of the NoC the one that should set the sizes of the different messages

in the NoC.

Typically, networks have messages of different lengths. Messages of different sizes are used

because the payload is different based on the message type. The higher message length variability

comes when different components like cores, sensors, or Direct Memory Accesss (DMAs) are

interconnected using the same network. Having large and small messages is common practice in

regular NoCs as this has no significant impact in the average performance of the network. However,

in the context of time composable bounds mixing messages in the same network severely penalizes

time composable network bounds as this implies that a given request is contending always with

messages of the maximum possible length (this should be limited in the communication protocol

if no special hardware mechanism is used).

4.6 System design considerations

Incremental verification calls for composable WCET estimates that are not affected by other

applications. At the NoC level this translates into each request to account for a time-composable

upperbound to the contention delay (WCD) it can suffer. From Equation 4.5 it follows that

Worst-Contention Delay (WCD) depends on three main factors: (1) the highest packet size a

flow may have (LflitMAX), (2) the number of VC (nV C), and (3) the network size. This section

discusses about these three effects when designing a CRTES and reviews some existing techniques

that can be employed to minimize their impact.

4.6.1 Packet Size

Interestingly some NoC designs limit the maximum packet size by hardware and on others this

responsibility is left to the software layer. In the former case, the hardware enables LflitMAX to be

factored in WCD, which in turn enables bounding the impact that other flows on the WCD.

However, in the latter case, a low priority task may send long (or even unbounded) packets over

the network, thus increasing – potentially in a unbounded manner – the WCD of high-priority

tasks. In this context, it is required a suitable mechanism allowing high-priority tasks to be

isolated from flows having unbounded packet size.

Chapter 4. Modeling High-Performance wNoCs for CRTES 69

4.6.2 Virtual Channels

The use of virtual channels, which need to be allocated in a static manner, helps reducing WCD

under the conditions presented in Section 4.5.2. Interestingly, in a mixed-criticality system,

allocating each criticality level an independent VC does not help reducing WCD. First, VCs

increase rrcont since it is multiplied by nV C. Further, if no constraint is put on the number

of cores that in a given point in time can send requests under a criticality level, indcont is not

reduced, i.e. ∆ind = 1. Moreover, LflitMAX , which captures the impact that the longest packet

transmitted by any flow causes on WCD, is independent of the particular VC in which that

packet is allocated (see Section 4.5.3).

The dual-criticality systems, for instance, in the space domain, it is well accepted that on-board

systems comprise two criticality levels [90]: one for control applications requiring real-time

execution, and another for payload applications that are high-performance driven and have some

(soft) real-time requirements. In such dual-criticality systems having one virtual-channel per

criticality level may help reducing the WCD suffered by requests of high-criticality tasks due

to low-criticality ones. This requires prioritizing high-criticality requests over low-criticality

ones. Flit-level preemption can also be used to further reduce this impact. However, this comes

at the cost of providing no WCD guarantees to the low-criticality tasks’, since their requests’

WCD depends on the load high-criticality tasks put on the NoC. In other domains, such as

avionics or automotive, comprising more than two criticality levels, with several of them requiring

time guarantees, the dual-criticality approach does not apply. Investigating static VC allocation

policies for these domains is a fertile area of research and part of our future work.

4.6.3 Network Size

WCD directly depends on the mesh size. Clustered designs like those proposed in Chapter 3

allow creating independent islands of communication (i.e. clusters) within the wNoC by properly

routing packets, which in turn reduces the WCD. However, in this case a mechanism is needed

to allow inter-cluster communication without jeopardizing the WCD of the affected clusters

if they are intended to run real-time tasks. In [30] inter-cluster communication is allowed by

using multiple VCs. This approach proposes the use of two VC: one for intra-cluster (inside a

Guaranteed Resource Partition (GRP)) and another one for inter-cluster communication (among

the GRPs) assuming the amount of inter-cluster communication is a known parameter at system

integration. While this holds for the case of communication requirements defined in avionics

applications [25], this would jeopardize time-composability in other domain applications.

4.7 Modeling existing NoC designs

In this section we first assess the accuracy of the WCD model presented in Section 4.4 with special

emphasis on the accuracy of WCD in the case of the most complex wNoC designs (ftvcWCDi).

We also compare WCET estimates obtained when both WCD and WCTT are used to capture

Chapter 4. Modeling High-Performance wNoCs for CRTES 70

Table 4.4: Technical details of the mesh NoC in high-performance chips: 48-core Intel SCC
and 36 core Tilera-Gx36

size routing Lrouter nVC wNoCs Link width Lmaxflits

Intel SCC 6x4 XY 4 cyc 8 1 128 bit 4
Tilera-Gx36 6x6 XY 1 cyc 1 5 32 bit 16

the impact of the wNoC contention on application’s WCET. Finally, we evaluate the impact

that different network parameters have on the contention.

Our experimental setup comprises gNoCsim [38], a powerful cycle-accurate simulator of wormhole

networks developed in the context of the NaNoC project, which we connect to an enhanced version

of the SoClib simulator [37] to model a complete manycore processor (see Section 2.1). With

this framework, we model two network setups resembling the ones deployed in real processors:

the TileraGx36 [18] and the 48-core Intel SCC (ISCC) [60] manycore designs, based on publicly

available data. Table 4.4 shows the relevant parameters of the two different wNoC setups. The

main difference between these two network setups is on the usage of virtual channels. The ISCC

implements a wNoC with eight virtual channels and the Tilera-Gx36 chip uses five independent

networks that are used to completely isolate different types of traffic.

4.7.1 WCD accuracy and comparison with WCTT

We assess the accuracy of our WCD model in upperbounding the actual contention caused in

the wNoC by creating a high-congestion scenario. To that end, we simulate the traffic generated

by a memory-intensive scenario in which all cores in the network send packets to memory

continuously. Note that such traffic can be produced in real scenarios by programs writing to

memory continuously. In fact, we have noticed that similar congestion scenarios can be reproduced

even when each node only sends packets sporadically if they share the same destination node.

In this experiment, for all the network setups we analytically compute bounds to WCTT [3] and

WCD (Equation 4.5) and compare them with the measured contention delay and worst-case

traversal time obtained with the simulator under highest congestion scenario. It is noteworthy

to mention that the model in [3] computes bounds provided the existing flows in the system

at deployment time are known and thus, precluding incremental verification. To enable a fair

comparison of our metric WCD) with the WCTT metric we have adapted the expressions in [3]

to achieve composable WCTT bounds by considering an all-to-all communication scenario. Note

that it would also be possible to adapt WCD expressions to compute bounds for a particular

application. However, in this chapter we study the benefits of WCD over WCTT in a time-

composable scenario. In the modeled high-congestion scenario, the measured contention delay and

traversal time closely match actual WCD and WCTT respectively. To ensure a steady congestion

state is reached, measurements do not start until at least 1,000 packets per node have been

injected and are performed until all nodes have sent at least 2 million requests.

Figure 4.4 shows a comparison of the measured and computed metrics in both Tilera and ISCC-like

networks. We assume that buffers have capacity to store two packets to avoid bubbles in the

Chapter 4. Modeling High-Performance wNoCs for CRTES 71

0

0.5

1

1.5

2

2.5

3

WCD WCTT WCD WCTT

Intel SCC Tilera

N
o

rm
al

iz
e

d
 t

o
 m

e
as

u
re

d
 C

D

measured

computed

Figure 4.4: WCD bounds derived in this thesis and adapted WCTT from [3]

network. The results in each bar show the geometric mean (gmean) of WCD (and WCTT) for all

the communication flows in the wNoC (i.e. for the packets of all nodes). This provides a measure

of the WCD (WCTT) each packet suffers on average. All values are normalized to the measured

(observed) contention delay.

We make the following observations.

• The derived WCD bounds are always higher than the measured contention delays confirming

they upperbound the contention in the wNoC. Moreover, the difference between measured

and predicted contention with our model is very small: 5% on average and 7% in the worst

case.

• Likewise, measured WCTT values are close to the predicted ones [3]. The difference

between WCD and WCTT (which is roughly the same for measured and predicted values) is

significant, evidencing that WCTT can be a pessimistic metric to account for the interference

of co-running tasks in the network. In particular, for the ISCC WCTT is 2.94x higher than

the WCD and 2.7x higher for the Tilera.

It is worth mentioning, although it is not presented in any chart, that we have observed that, unlike

WCD, WCTT grows with buffer size which in turns makes this metric even more pessimistic

when using wNoCs with larger buffer sizes.

4.7.2 Reducing WCD values

Another parameter with high impact in wNoC contention is the number of VCs and how they

are allocated. In Figure 4.5 (in logarithmic scale) we show the effect of reducing in the ISCC-

like wNoC the number of VCs from 8 to 1. We observe a reduction in terms of WCD (both

observed and predicted) of more than 7 times. Further, a smart deployment of the wNoC by,

for example, using regions of execution (clusters) as presented in Chapter 3 and Section 4.6 and

properly mapping applications to cores [30] produces reduced contention delays. If we further

create clusters of size 3x4 or 3x2 contention delay is additionally reduced. Note that all those

adjustments can be done from the software without any change at hardware level in the wNoC

Chapter 4. Modeling High-Performance wNoCs for CRTES 72

10

100

1000

10000

100000

WCD WCTT WCD WCTT WCD WCTT WCD WCTT

8 VCs 1 VC 1VC - 3x4 1VC - 3x2

P
ro

ce
ss

o
r

cy
cl

es

measured

computed

Figure 4.5: Effect of disabling VC and clustering on WCD for the SCC setup

design. For instance, islands can be implemented by mapping application so that communication

doesn’t not exceed defined island [30]. Likewise, the number of VCs is a parameter that can

be easily changed from software. Researching on the convenient wNoC configurations (regions,

static VC allocation) is part of our future work, building on the contention delay model developed

in this thesis. Finally, it is worth noting that in all scenarios in Figure 4.4, our WCD model

tightly captures the impact of these parameter variations.

4.7.3 Impact of wNoC interference on WCET

For the experiments in this section we use EEMBC Autobench benchmarks [43]. We execute

benchmarks in 3 different scenarios: 2-hop where the memory is 2 hops away (1 in X and 1 in Y

dimension) from the core where the benchmark runs; Y-only where the benchmark is executed

on the node farthest away from the memory in the Y-axis and farthest in which the benchmark

is placed most hops away from the memory.

We compare Observed Execution Time (OET) against WCET estimates. The former is computed,

by running the application under a high-congestion scenario (as explained in previous section) in

order to provide fair comparison to time-composable WCET estimates. For the latter, we first

compute the worst case execution time of the application using zero-load latency (WCETzll) and

increment it with the predicted impact of the wNoC (∆wNoC). As a result, the WCET estimate

for manycore (WCETmc) is computed as follows:

WCETmc = WCETzll + ∆wNoC (4.6)

∆wNoC = nreq ×

ftvcWCDi

WCTT − zll

where nreq is the number of requests the application makes to the wNoC along the worst-case path.

Note that WCTT already includes zero-load latency and in order to provide a fair comparison,

we have to deduct zll from WCTT, as it is already included in WCETzll.

Chapter 4. Modeling High-Performance wNoCs for CRTES 73

1.12 1.12 1.11 1.07 1.07 1.07

2.34 2.43 2.49 2.48

3.12 3.07

1

1.5

2

2.5

3

ISCC TILERA ISCC TILERA ISCC TILERA

2-hop Y-only Farthest

W
C

ET
 w

.r
.t

. O
ET

WCD WCTT

Figure 4.6: WCETmc estimates derived with WCD and WCTT w.r.t. OET

Figure 4.6 shows the gmean of WCETmc estimates of EEMBC benchmarks obtained with both

WCD and WCTT. We observe that WCETmc estimates obtained with WCD are between 7%

and 12% higher than OET. The maximum difference for any benchmark is around 16% in the

2-hop scenario. Meanwhile, in the case of WCETmc estimates obtained with WCTT there is

a significant difference w.r.t. OET. They are between 2.3x and 3.1x higher, with a maximum

difference of 3.2x across benchmarks.

4.8 Related Work

Several network designs targeting soft and hard real-time systems have been proposed. This

section makes a short summary of them.

4.8.1 Quality of Service (QoS)

In the high-performance and high-end embedded domain, Quality of Service (QoS) is used as

a metric to measure time predictability. Several proposals exist to improve predictability on

wNoCs, e.g. [91]. These QoS techniques are specially suitable, for multimedia applications since

QoS can be offered under severe network load conditions. Unfortunately, these techniques make

difficult deriving tight contention-delay bounds to each request to the wNoC, which challenges

deriving guarantees on that tasks running in a wormhole-based manycore will meet their deadlines.

Authors in [92] proposed the QNoC architecture, which offers several degrees of guarantee at low

hardware cost. However, despite that achieving real-time traffic guarantees is one of the targeted

services in QNoC, latency bounds provided in this study do not actually bound contention delay

experienced in the wNoC, preventing the derivation of time-composable WCET bounds.

4.8.2 Real-time Specific NoCs

While there are several proposal of real-time aware NoC designs – some of which have implemented

in Field-Programmable Gate Array (FPGA) or implemented in real products (e.g. in the

multimedia domain) –, exploring to which extend high-performance (COTS) NoC designs can be

Chapter 4. Modeling High-Performance wNoCs for CRTES 74

used in the real-time domain is of paramount importance. It is well accepted that the hard real-

time domain is a relative small market in comparison with other domains such as mobile. Hence,

customized NoCs tailored for real-time such as Time Division Multiple Access (TDMA)-based

or time-triggered ones will naturally find difficulties in being adopted by real-time industry [73]

since their implementation incur high non-recurrent costs. On the other hand, the big majority

of the proposed manycore designs across all computing domains use high-performance wNoCs to

perform the interconnection of cores and shared resources within the chip. This makes wNoC

accessible (at low cost) by the CRTES as they are implemented in a vast set of chips. This thesis

makes an effort in the direction of understanding the limitations and challenges in adoption of

wNoCs in real time systems.

Although it is not the topic of this chapter, in the field of real-time specific NoCs we highlight

TDMA-based NoCs [93–95] approaches that satisfactorily provide time composable behavior.

While this TDMA-based NoCs that deal with contention at transaction level (e.g. read and

write memory operations), time-triggered architectures [96] increase the abstraction level by

introducing the notion of a micro-component, which is a self-contained computational unit.

In time-triggered architectures micro-components exchange messages in contention-free slots.

However, event-triggered transactions, such as cache misses that access main memory through

the NoC, may suffer contention delay which also must be upper-bounded.

Several hard real-time wormhole-based designs use of flit-level virtual-channel preemption mecha-

nisms for dual-criticality systems [97, 98] to control contention in the network in order to reduce

network latency. In these approaches high-priority virtual-channels can preempt packets from

low-priority virtual channels so that contention delay high-priority channels is reduced at the

cost of removing time-composable contention delay guarantees to low-priority channels. They

require a virtual channel per communication flow, which limits their scalability. This limitation

is addressed in [99] by proposing a priority share policy where contending flows can share a

given priority. Along this line, a recent work [87] proposes an enhanced priority-shared flit-level

virtual-channel preemption NoC to support two criticality operation modes. This design fulfills

isolation requirements across criticality levels without incurring in hardware resource wasting.

Further, in [100], authors build on top of [97, 99] and provide response time analysis which

considers impact of pipelining in the NoC. However, this analysis considers communication

among tasks and do not consider memory accesses inside a task.

In general, flit-level virtual-channel preemption mechanisms offer tight contention delay estimates.

However, these approaches consider the impact of contention delay at the schedulability and

response time analysis and require knowing the exact set of tasks using the wNoC and their

communication flows, which negatively affects time composability and incremental verification,

as discussed in Section 1.3.1 and in Section 4.2.

4.8.3 WCTT in wNoCs

Several works focus on deriving an upperbound of WCTT adapting network calculus [101]

to model wNoCs [81]. Network calculus relies on the determination of arrival curves of the

applications running in the system to determine an actual upperbound of WCTT. While these

Chapter 4. Modeling High-Performance wNoCs for CRTES 75

approaches allow providing tight WCTT estimates, as WCTT is adapted to the exact network

load conditions, using per-application arrival curves reduces time composability, since WCTT

estimates depend on the load corrunners put on the NoC. Another set of works focuses on

determining wNoC packets WCTT by considering worst-case conditions, first with assuming

limitations on the packet-injection rate [80]. However, the bounds provided in [80] required

assuming packet injection is limited. In later works [3, 102] this limitation is removed.

In this line of work, Dasari et. al [82] achieve tighter WCTT bounds – than those derived

with [3, 102] – based on the following two observations: (1) flows injection rate is inherently

limited by the speed at which the processor pipeline can process request-generating instructions

(e.g load or stores); and (2) packets of a given flow do not always contend with the flow under

analysis due to the existing release time of their request of a flow/core. Regarding observation

(1) we have shown that while limiting the injection effectively reduces WCTT values the actual

contention that packets in the NoC suffer remains unaltered, hence producing no effect on WCD.

Regarding observation (2) knowing what is the actual interval between consecutive requests in

every flow in the network breaks the time composability requirement.

4.9 Conclusions

This chapter analyzes the suitability of applying wNoCs in the real-time embedded domain. To

do so, we propose a new metric to account for the impact that NoC interferences coming from

different requesters have on the WCET estimates: the Worst-Contention Delay (WCD), which

replaces the traditional metric, the Worst-Case Traversal Time (WCTT). Moreover, we derive

an analytical model that computes time-composable WCD bounds (WCD) based on common

wNoC design parameters including flits-per-packet, number of virtual channels and queue size

in the router. WCD is computed based on a wNoC parameter taxonomy that identifies those

parameters that must be fixed in order to provide trustworthy and composable WCD bounds;

and those allowing certain flexibility (objectives O1 and O3).

Our WCD model allows evaluating a wide range of existing COTS high-performance wNoCs.

To that end, we apply the model considering the design parameters of two wNoCs deployed in

real processors: the Tilera-Gx36 and the 48-core Intel SCC (objective O1). Our analysis shows

that considering WCD rather than WCTT reduces WCET estimates by around 2.5x for Tilera

and ISCC on average (objective O3).

Chapter 5

Improving Performance

Guarantees in Wormhole Mesh

NoC Designs

Wormhole-based Network on Chips (wNoCs) are deployed in high-performance many-core pro-

cessors due to their physical scalability and low-cost. Delivering tight and time composable

Worst-Case Execution Time (WCET) estimates for applications as needed in safety-critical

real-time embedded systems is challenged by wNoCs due to their distributed nature. In this

chapter we propose a bandwidth control mechanism for wNoCs that enables the computation

of tight time-composable WCET estimates with low average performance degradation and high

scalability. Our evaluation with the EEMBC automotive suite and an industrial real-time parallel

avionics application confirms so.

5.1 Introduction

Critical Real-Time Embedded Systems (CRTES) industry is gradually shifting towards multi- and

manycore processors to satisfy the performance needs of complex safety-related functions. This

transition challenges the derivation of time-composable WCET estimates, i.e. tasks’ execution

time bounds that are independent of the load that co-running tasks put on shared resources.

Time-composable WCET estimates enable incremental verification [103] by allowing each system

component to be subject to formal timing verification in isolation and independently from other

components.

From an end-user perspective, the deployment of manycores in CRTES, as stated in Section 1.3

requires following properties:

• UserReq1 : Manycores should facilitate deriving tight WCET estimate so that high (guar-

anteed) performance is provided (objectives O1 and O3);

77

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 78

• UserReq2 : Manycores must facilitate deriving time composable WCET estimates (objective

O1);

• UserReq3 : Manycores should also provide high average performance for some applications

(objective O1);

• UserReq4 : Manycores for real-time should use technology as close as possible to Commercial-

Off-The-Shelf (COTS) (high-performance) technology to ease their adoption (objective

O1). The low manycore demand of safety-critical real-time systems, w.r.t. the mainstream

market, calls for reducing the need for customized real-time technology.

This chapter tackles the fulfillment of the above requirements on Network on Chip (NoC) designs,

as it is one of the manycore shared resources with the highest impact on average performance

and WCET. Concretely, we consider wNoC mesh as a candidate NoC solution as it is widely

accepted in the high-performance market due to its physical scalability and low cost [18][60].

The high-performance requirements (UserReq3) are already fulfilled by wNoCs as they are designed

for high-performance systems. UserReq2 for real-time applications requires time-composable

Worst-Case Traversal Time (WCTT), i.e. WCTT not affected by the load contender tasks put

on the wNoC. Typically, latency bounds for wNoCs are reffered as WCTT. wNoCs can also meet

this by using time-analyzable arbitration policies [86][85] and applying the model in [3].

This chapter makes the following contribution:

• We show that current wNoCs fail to achieve tight WCTT (UserReq1), which negates their

benefits. In particular we show that (i) WCTT values derived for current wNoCs poorly

scale with network size – even for small networks; and (ii) the WCTT derived for a task

depends on the maximum allowed packet size and poorly scales with it. Further, current

wNoCs do not necessarily impose a limit on the packet size and leave that to the protocol

on top of the network (e.g. AMBA [88]).

• We propose a new time-composable wNoC design relying on concepts developed for high-

performance wNoCs, hence achieving UserReq4 and objective O1. Our design focuses on

controlling the network bandwidth (the main factor affecting WCTT) to provide a fair

guaranteed bandwidth distribution across the different communication flows. Bandwidth

control is exercised at two levels. At local level, we ensure fairness by providing a WCTT-

aware Packetization (WaP) that makes real-time guarantees independent of contenders

packet size. At global level, we provide fairness across contenders by performing a WCTT-

aware Weighted (WaW) round-robin arbitration.

• We evaluate WaW+WaP on a 64-core manycore architecture with cores accessing memory

controllers through a wNoC. We use EEMBC [43] autobench and an avionics real-time

parallel application provided by Honeywell [30] (objective O4). We show that our design

significantly decreases WCET estimates for the parallel application by a factor of 4.8× to

9.5× depending on the number of flits per packet. For single-threaded applications WCET

decreases by 230× on average across all cores and by 1.4× w.r.t 25% of the best cores of

the baseline NoC.

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 79

Note that proposals made in this chapter can be orthogonally applied to Worst-Contention

Delay (WCD) metric proposed in Chapter 4. We opt for comparison to the WCTT and state-

of-the art wNoC proposals[58], as the main benefit of the proposed WaW+WaP is the fairness

and it is affecting both approaches in the same manner, but comparison using WCTT better

highlights the effectiveness of the solution.

5.2 Reference mesh network

We model a canonical 2D wormhole mesh router comprising five input ports that have queues to

store packet flits. The router arbiter grants an output port to a given input flow. To be able

to have time-composable WCTT estimates, no prioritization mechanism is used in the router,

and arbitration decisions to select the flow accessing the requested output port are taken using a

time-analyzable arbitration policy, e.g. round-robin.

We consider a NxM mesh NoC configuration as depicted in Figure 5.1(a), in which each node

can be identified using (x,y) coordinates. The router located at coordinates (x,y) is referred

to as R(x, y). Each node comprises the router that communicates the node to the mesh and a

Processor/Memory Element (PME) The PME can be either a processor core, a cache memory,

main memory, I/O, etc. In the network several traffic flows may exist. A traffic-flow (Fi) is a

packet stream that traverses the same H -node route from a source to a destination node and

requires the same grade of service along the path.

We use deterministic XY routing, which is time analyzable [3] and has low implementation costs.

It enables identifying routers in a given path as Rj where j is the hop number of the path (e.g.

R1 is the source node). With XY routing packets are forced to use the X dimension first. In the

X dimension the position of the target node with respect to the source node determines whether

to go right (X+) or left (X-) direction. The same approach is used for the Y dimension. Once

packets are routed using the Y dimension they cannot be forwarded to the X dimension. Note

that the opposite port is represented as Ȳ and X̄. For instance the opposite port of Y+ is Y−.

Routing restrictions help determining the number of requests (P ji) that might contend at router

Rj for the same output port as Fiin the worst-case. P ji values can be determined as follows:

P ji =

2 if destination is X + or X−
4 if destination is Y+, Y − or PME

Wormhole switching is the most adopted approach in NoCs due to its low buffering requirements.

In a wormhole NoC every core request translates into a packet, which is the minimum arbitration

unit and that can be split into one or several flits. The header flit of a packet contains the

destination information required to forward the packet to the corresponding router output port.

Once the header flit is granted access to a given output port, the remaining packet flits are

forwarded to this port without any further arbitration.

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 80

5.3 Wormhole-based mesh NoCs

Deriving WCET estimates in manycores relies on bounding access times to shared hardware

resources [36][104]. In the case of NoCs this traditionally translates into i) bounded WCTT such

that every request sent to the NoC has a service time, i.e. traversal time, boundable at analysis;

and ii) time-composable WCTT such that the bound to the traversal time derived for the request

of a task does not depend on the load put by other co-running tasks on the NoC. Low WCTT

translates into tighter WCET estimates, which allows increasing the guaranteed performance

that the manycore chip can provide.

5.3.1 Assumptions

We assume a canonical 2D-mesh [77] with wormhole switching and XY routing policies (Fig-

ure 5.1(a)). The need for time-composable WCTT prevents making assumptions about the

number and load of crossing flows. Time-composable WCET estimates provide a drastic re-

duction of development costs as each subsystem can be independently developed, verified and

incrementally integrated. These benefits pay off the increase in WCET caused by achieving time

composability. Instead, we assume the worst-case of the wNoC state and load:

1. Every node in the network is able to send and receive packets to/from any other node in

the network.

2. Every time we inject a packet in the NoC, any possible contending flow is also sending

packets creating a worst-case contention scenario, i.e. for a packet of a given flow at every

hop all possible contenders (i.e. all possible flows partially sharing the path) are also

requesting the same output port (see Section 4.4).

3. Packets contending for an output port are arbitrated using a time-analyzable policy –

round-robin in our case [85], which is already used in some existing mesh wNoCs [18][60].

4. Maximum allowed packet size in the network is known. We assume that packets of

contending requests have maximum size when deriving WCTT bounds.

5. Finally, it is also required assuming that the network is congested by the time packets are

injected in the network.

5.3.2 Factors impacting WCTT estimates

There are two main aspects affecting real-time guarantees that we address with our design:

• Message size impact on arbitration slot duration: In wNoCs only the header flit of a packet

is arbitrated. This implies that the time that requests in a given router wait to be arbitrated

depends on the size of the particular requests contending for the same output port. Hence,

deriving time-composable WCTT values requires considering that all possible requests (i.e.

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 81

R(0,3) R(1,3) R(2,3) R(3,3)

R(0,2) R(1,2) R(2,2) R(3,2)

R(0,1) R(1,1) R(2,1) R(3,1)

R(0,0) R(1,0) R(2,0) R(3,0)

(a) (b)

Figure 5.1: (a) Router coordinates in a 4x4-Mesh. (b) Unfair bandwidth allocation in
wormhole.

the number of router ports minus one) can contend for the same output port and the size of

all requests is the maximum allowed size. However, some wNoCs do not impose any limit

on packet size, enabling undefined-length requests [88]. Even with the maximum packet

size limited, different lengths of packets penalize real-time guarantees, since we have to

consider that contending requests have the maximum size.

• Unfair bandwidth allocation: In a network where all flows may contend for the same resource,

WCTT mainly depends on the flow’s allocated bandwidth. The latency in a congested

system can be approximated as 1/(bandwidth) [77]. Despite round-robin arbitration ensures

a fair distribution of resources when it is used in a centralized way, round-robin fails to

fairly share the bandwidth in distributed networks. For example, when round-robin is used

in an on-chip bus, it distributes the bandwidth amongst the cores accessing the bus fairly.

However, when a request passes through several chained routers to reach a given node,

the bandwidth allocated to this request is not the same as the one allocated to a closer or

farther request. In Section 5.6 we show how the unfair bandwidth allocation translates into

bad (high) WCTT values.

5.4 Computing Worst-case Traversal Time

Worst-Case Traversal Time (WCTT) values can be derived for regular wNoC designs following

the expressions given in [3]. However, for those bounds to be time-composable the assumptions

described in Section 5.3.1 need to be enforced when computing NoC latency bounds. Moreover,

expressions given in [3] are only suitable for wormhole NoC designs that consider a regular

round-robin arbitration policy.

In this section, we provide novel expressions to compute time-composable WCTT bounds that

are also suitable for NoCs using weighted round-robin arbitration. Expressions given in this

section are based on the concept of worst-case ejection rate (ERji). We define ERji as the rate

at which flits of flow Fi can be ejected from router Rj to the corresponding port when the next

router (Rj+1) is accepting incoming packets (i.e. it is not stalling Rj packet transmission). We

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 82

also extend the concept of worst-case network ejection rate to model the rate at which flits can

be ejected from a given router port when the network is fully congested. To do so, we define

propagated worst-case ejection rate PERwc as the minimum rate at which flits of Fi can be

ejected from Rj in the worst-case situation. ERji values can be computed by considering the

maximum number of flows P ji contending at Rji for the same output port as Fi : ERji = 1/P ji .

PERi(R
j) is computed by multiplying ERji factors from the current router Rji to the target

router RHi as presented next:

PERji =

H∏
k=j

1

P ki
(5.1)

Let Dj
i be the time that a packet of flow Fi requires to go from the input port of Rj to its

destination node. Dj
i can be computed recursively by considering the time required to reach Rj+1

(1/PERjfx{i}) plus the time required to reach its destination once at Rj+1. fx{i} represents the

index of the flow that causes the worst-case blocking in Fi. Note that a Ffx{i} packet stalled in a

subsequent router of the path followed by Fi might cause Fi to suffer worst contention than one

following exactly the same path. In the same way PERjfx{i} represents the worst ejection rate

for Fi packets. To determine the flow causing the worst contention, PER values for all routers

and all flows have to be computed in advance, and for any particular flow and router we choose

the worst PERjfx{i}. Equation 5.2 shows the recursive definition of Dj
i .

Dj
i =

1

PERjfx{i}
+Dj+1

i (5.2)

The WCTT for flow Fi, given by D0
i , is the time required to reach its destination (j = h) from

the source node (j = 0).

We illustrate how to compute WCTT using Equations above with the example presented in

Figure 5.1(b). We aim at computing F1 WCTT, i.e. WCTT of packets with source node 1 and

destination node 4. First, we compute PERji as the product of the ERji coefficients (shown in

brackets in Figure 5.1(b)) of all the routers that F1 traverses. Later, we start from the last hop

(j = 3) and compute all Dj
i values shown below.

D3
i =

1

1/2
= 2

D2
i =

1

1/4
+D3

i = 6

D1
i =

1

1/4
+D2

i = 10

D0
i =

1

1/4
+D1

i = 14 (5.3)

Note that the expressions above can also be employed to compute WCD in the context of a

weighted arbitration. To do so, in the context of the modeled mesh wNoC, we just have to

remove the interference coming from packets of the same flow (intra-task interference) from the

Dj
i expression. Since internal interference is only exclusively accounted for at the source node.

This translates into iterating Dj
i from j=1 to j=h instead of from j=0 to j=h.

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 83

5.5 Flit-Homogeneous Guarantees in Meshes

We present a new wNoC design that performs a flit-level fair distribution of guaranteed bandwidth

to achieve time-composable and tight WCTT. Our proposal requires minimum modifications

to regular mesh designs in the packet generation (local fairness) and in the packet arbitration

(global fairness).

5.5.1 WCTT-aware Packetization (WaP)

Packet length has high impact on the maximum contention a request can suffer. If the wNoC is

not carefully designed this could lead to an unbounded WCTT. For wNoCs the arbitration slot

duration is equal to the packet size, the larger the packet is, the longer the time slot is. To avoid

arbitration slots of different duration we use WaP that forces all packets to have the size of the

smallest packet in the system. This is achieved by slicing a request into one or more minimum

size packets at the Network Interface Controller (NIC).

When a request (Reqi) arrives at the NIC a regular packetization scheme creates a single packet

that is injected in the network. With WaP the request payload is sliced in minimum sized packets

and header info is replicated. WaP improves NoC WCTT as the size of contending packets is

bounded to the minimum size packet. For instance, with a regular packetization scheme, the

worst-case latency for a S-flit packet for reaching an output port to which 4 different input ports

are contending is 3 ∗ L + S where L is the maximum allowed size of packets in the network.

Instead, with WaP, for a minimum packet size of m, the worst-case latency is 3 ∗m+m. Note

that maximum allowed packet size in the network (L) is much larger than minimum size packets

(m) that commonly consist of one-flit.

WaP penalizes the effective bandwidth due to the overhead of the required routing and control

information (that can be significant in a manycore). In Section 5.6 we evaluate WaP in terms of

both average and worst-case performance.

5.5.2 WCTT-aware Weighted (WaW)

WaW relies on a weighted round-robin arbitration scheme [105] to enable a globally fair link

bandwidth distribution that balances the WCTT off all nodes in the NoC. Weighted round-robin

uses weights to assign the rotating priorities to contending input ports. WaW uses arbitration

weights per router input port that balance WCTT in all nodes of the router. It set weights by

accounting for the number of contending flows coming through a given input port and the total

number of flows traversing the requested output port. These numbers are determined by the

routing algorithm [77].

Let Idiri(i, j) be the number of communication flows traversing the diri input port of router

R(i, j) – diri can be any of the possible mesh router port directions X+,X−, Y+, Y−, or PME

(signs + or − refer to the direction of travel within a dimension). Let Odiro(i, j) be the number

of flows traversing the diro output port of R(i, j). WaW per-input/output port pair arbitration

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 84

Table 5.1: Arbitration weights for a 2x2-mesh router R(1,1) in a regular mesh and with WaW

Regular Mesh Weighted Mesh
W (PME,X-) 1 1
W (PME,Y-) 0.5 0.5
W (X-,PME) 0.5 0.33
W (X-,Y-) 0.5 0.5
W (Y-,PME) 0.5 0.66

weights W (Idiri , Odiro) can be computed for any of the possible input/output port combinations

at R(i, j) using the following equations:

IX+ = x

IX− = N − x
IY+ = N ∗ y

IY− = N ∗ (M − y − 1)

IPME = 1

OX+ = x+ 1

OX− = N − x+ 1

OY+ = N ∗ (y + 1) (5.4)

OY− = N ∗ (M − y)

OPME = N ∗M − 1

N and M are the horizontal and vertical dimensions of the network, respectively, while x and y

stand for the horizontal and vertical coordinates of the node under analysis. For the X+ input

port the number of flows coming through it corresponds to the x coordinate i.e. the number of

nodes that precede the actual node in the same row. Note that with XY routing, packets in the

Y direction cannot be forwarded to the X direction. Therefore, the flows accessing an X port

are only the ones in the same row. On the contrary, flows crossing Y -direction ports may be

originated at any of the preceding nodes in any row. Per direction router weights are derived

using Equation 5.5.

W (Idiri , Odiro) = Idiri/Odiro (5.5)

Let us illustrate how WaW works with the example from Figure 5.1(b). Let us consider all flows

with destination node 4. At R(1, 1) only X+ and Y+ input ports can access the PME output

port. OPME = 3 as the flows originated at the 3 remaining nodes access node 4 using OPME .

For the input ports we have IX+ = 1 and IY+ = 2. We consider that in this example N = 2

and M = 2 so IY+ = |2 ∗ (1)| = 2 and IX+ = x = 1. Table 5.1 shows R(1, 1) weights required

to perform the weighted arbitration in the 2x2 mesh NoC and compares them with the default

weights of the round-robin arbitration. The weight values range from 0 to 1 and represent the

bandwidth that is allocated to a given input/output pair. For example, for the input ports

requesting the PME output port the weighted arbitration assigns 1/3 of the bandwidth to the

flows coming from X- and 2/3 of the bandwidth to the flows from Y-. Note that X- only serves

one flow from node 3 to node 4 while Y- serves 2 flows (from nodes 1 and 2 to node 4). Instead,

round-robin arbitration assigns always the same bandwidth (0.5) to any of the 2 input ports

requesting a given output port, regardless of the number of potential flows using these input

ports.

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 85

Table 5.2: WCTT values for different Mesh sizes for 1-flit packets.

Regular Mesh WaW + WaP
NxM max mean min max mean min

2x2 14 10 6 11 9 8
3x3 123 39.16 9 32 24 17
4x4 1071 145.68 9 64 45 31
5x5 8895 568.14 9 108 72 49
6x6 72447 2375.85 9 163 105 71
7x7 584703 10632.53 9 230 144 97
8x8 4698111 50516.79 9 310 189 127

5.5.3 WaW implementation

XY routing allows precomputing the weights and assigning them to input ports statically, as

needed for WCET estimation. In our implementation, input port weight is measured as the

number of flits it can transmit to an output port. When several input ports contend for an output

port, the input port with the largest flit count wins, and decrements its flit count by one. If

more than one contender has the largest flit count, a conventional round robin policy is used to

arbitrate amongst them. Instead, when no input ports demand an output port, each input port

flit count is incremented (if it is not larger than its weight). When an input port is the unique

candidate to access an output port, its flit count is unaltered.

5.5.4 Hardware modifications

In order to increase compliance with COTS wNoC designs (objective O1), WaW and WaP incur

minimum local changes. Those changes can be implemented in regular wNoCs which could

provide a feature to enable/disable them depending on the average and guaranteed requirements

of the wNoC. This departs from other designs that might require changes in buffering, switches

architecture, synchronization, etc., that would decrease the chance of adoption of our proposal.

NICs are already equipped with the logic to perform packetization of processor requests. Hence,

WaP only requires the size of packets to be parametrizable from the software. Meanwhile WaW

requires per-input port counters (no more complex than the ones required for regular round-robin

arbitration) and an additional arbitration policy. Our results – obtained from the NoC area

decomposition given in [106] – show that the area increase incurred in the NoC is below 5%.

5.6 Evaluation

We use a cycle-accurate simulator based on SoCLib [37] with gNoCSim [38] integrated (see

Section 2.1). We model a 64-core mesh-based processor (routers range from R(0, 0) to R(7, 7)).

In our manycore, load (and write-miss) requests comprise a one-flit message from the core to

memory. Given that cache line size is 64-bytes and we need 16-bits for control data (512+16 bits),

memory answers with 4-flit messages over 132-bit wide links. Evicted line requests require a 4-flit

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 86

Table 5.3: Normalized WCET per core of EEMBC with WaW+WaP

0 1 2 3 4 5 6 7

0 1.4841 1.4841 1.4920 1.4387 1.3046 1.0850 0.8131 0.7292

1 1.3609 1.3806 1.2843 1.0899 0.8262 0.5575 0.3427 0.3260

2 1.2454 1.0856 0.8441 0.5777 0.3553 0.2027 0.1112 0.1226

3 0.9855 0.6078 0.3739 0.2123 0.1150 0.0609 0.0321 0.0428

4 0.6024 0.2304 0.1219 0.0634 0.0328 0.0169 0.0088 0.0145

5 0.2779 0.0692 0.0345 0.0174 0.0089 0.0046 0.0024 0.0049

6 0.1063 0.0189 0.0093 0.0046 0.0024 0.0012 0.0004 0.0016

7 0.0528 0.0067 0.0033 0.0016 0.0008 0.0004 0.0002 0.0008

Y-
ax

is
 p

os
it

io
n

X-axis position

message and a one-flit answer. WaW+WaP adds control data to each flit, therefore requiring an

extra flit, so 5 instead of 4 (512+5*16 bits over a 132-bit wide channel), leading to 25% overhead.

5.6.1 Reducing WCTT with WaW+WaP

Table 5.2 shows average, max, and min WCTT values for the regular wNoC and WaW+WaP

across several network sizes. While regular mesh designs obtain always the lowest WCTT values

(for the nodes that are directly attached to destination) our proposal achieves significantly better

WCTT values for the majority of the network flows (as shown by the average WCTT results).

For instance, for the 64-node NoC the minimum WCTT with regular meshes is 9 and with

WaW+WaP is 127 cycles, while the maximum value decreases from above 4 million cycles to

310 (a decrease of 4 orders of magnitude). On average the WCTT for the original NoC is above

50,000 cycles (largely above our design, 189).

5.6.2 Improving WCET estimates for single threaded applications

Our simulation architecture supports the WCET computation mode [86], in which at analysis time,

requests accessing the NoC are artificially delayed by an Upper-Bound Delay (UBD). During

operation, WCET computation mode is disabled and NoC requests suffer only actual delays,

which are safely upper-bounded by UBD.

In Table 5.3 each cell represents a node of a 8x8 wNoC. All nodes communicate to the memory

connected to the top-left node R(0, 0). Each cell shows the WCETs of WaW+WaP normalized

w.r.t. a regular wNoC. In particular we show the average reduction across all (single-threaded)

EEMBC Automotive benchmarks. Values above 1 show that WaW+WaP provides higher WCET

estimates than a regular wNoC and vice versa. We observe that WCET values for nodes close

to R(0, 0) are slightly higher than for the regular wNoC. In particular 11 nodes present WCET

values worse than the ones provided by a regular wNoC with a maximum slowdown of up to

1.5× for the best situated node. However, on the other 53 nodes, average WCET estimates are

significantly higher (worse) with the regular wNoC than with WaW+WaP. In some cases, as

shown in Table 5.3, the difference is 3-4 orders of magnitude, i.e. the WCET obtained with

WaW+WaP is only 0.002 of that with the regular wNoC.

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 87

0

20

40

60

80

L1 L4 L8

W
C

ET
 e

st
im

at
e

 (
m

s)
 regular wNoC

WaW+WaP

0

20

40

60

80

P0 P1 P2 P3

W
C

ET
 e

st
im

at
e

 (
m

s)
 regular wNoC

WaW+WaP

(a) Regular wNoC vs. WaW+WaP (b) Impact of Allocation

Figure 5.2: WCET estimates for the 16-core parallel avionics application

5.6.3 Improving WCET estimates for Parallel Applications

We also evaluate WaW+WaP using 3D path planning (3DPP), an industrial avionics parallel

application provided by Honeywell [30] (see Section 2.2.1). 3DPP uses 16 cores to guide an

aircraft through the obstacle map represented as a 3D matrix. In the 8x8 wNoC we run 3DPP

under four different placements (see Figure 5.2(b)).

With focus on P0, Figure 5.2(a) shows the WCET estimates for the regular and WaW+WaP

wNoC considering that the maximum packet size in the network is 1, 4 and 8 flits (labeled L1, L4

and L8 respectively). We observe the significant impact of WaW+WaP. Overall, it outperforms

the regular wNoC for all packet sizes considered, with improvements ranging from 1.4X for L1 to

3.9x for L8.

For the L1 setup Figure 5.2(b) shows the impact of placement of the application. WaW+WaP

benefits are two-fold. It achieves lower WCET estimates (from 1.4x to 7x) than the regular wNoC

and leads to smaller variability across placements (around 20% in our setup compared to over

6x with the regular NoC). This is of paramount importance in real-time systems to control the

impact of placement, which has been shown as a first-order factor in the WCET [107].

5.6.4 Average performance

We have as well evaluated WaW+WaP and regular wNoC in terms of average performance.

Results show that WaW+WaP incurs negligible average performance degradation (less than 1%)

for both single-threaded and parallel applications. The origin of the degradation resides in the

overhead introduced by packetization that is minimized as it only affects those packets having

more than one flit.

5.7 Related Work

Customized NoCs for real-time such as Time Division Multiple Access (TDMA)-based or time-

triggered ones will find difficulties in being adopted by the real-time industry [73] since their

implementation incurs high non-recurrent costs (see Section 4.8) This is the case for [93, 95, 96,

108].

Chapter 5. Improving Performance Guarantees in Wormhole Mesh NoC Designs 88

In best-effort wNoCs the use of virtual channel prioritization has been proposed as an effective

way to provide tight latency bounds [97] and [109]. The same logic applies to [110], where authors

provide bandwidth guarantees for Guaranteed Service (GS) connections per port. However

provided guarantees require a detailed knowledge of the applications/tasks that will run in the

final system and thus, fail to satisfy incremental verification requirements.

In [3, 80] authors provide realistic bounds for wNoCs without using flit-level virtual channel

preemption. The model in [3] requires knowing all communication flows integrated in the system

to derive safe upper-bounds, making those bounds not time-composable. Interference-free NoC

designs using wormhole-based NoC designs have been recently proposed in [111] and [112].

While [111] shows lower best-effort traffic degradation than [112] by smartly multiplexing virtual

channels, the degradation of best-effort traffic performance is significant.

We follow a different approach to fulfill hard-real time requirements by deriving time-composable

WCTT bounds in wNoCs without sacrificing average performance. Further, we address the

scalability problems of latency bounds in wNoC by proposing a mesh design that significantly

improves default mesh WCTT values with low hardware complexity.

5.8 Conclusions

The use of wormhole-based NoCs in the context of CRTES applications complicates the timing

analysis of applications, making the WCET estimates of those applications rapidly increase with

the network size. The latency bounds achieved by our design are scalable. Our proposal enables

a fair sharing of the available bandwidth across the different flows in the network. This makes

time-composable WCET estimates less affected by the core count in manycore (objective O3).

Our results with benchmarks and a real application (objective O4) confirm that the proposed

mesh achieves tight and uniform scalable WCET values with negligible average performance

degradation. Furthermore, hardware modifications required for the proposed design w.r.t. regular

mesh designs are few, easing its adoption (objective O1).

Part III

Software Support for Exploiting

Manycore Potential – Scheduling

89

Chapter 6

Intra-GRP Scheduling Strategy

for Parallelization of Complex

Automotive Applications

This chapter tackles improvement of guaranteed performance for complex legacy applications

by parallelizing and allocating them to a many-core processor designs described in Chapter 3.

We focus on control applications from automotive domain, as they were built with single-core

architectures in mind and they are good candidates for parallelization due to their complexity

and minimizing efforts in parallelization and avoiding re-validation of the applications stands as

an imperative.

6.1 Introduction

Modern road vehicles carry up to 100 single-core Electronic Control Units (ECUs) performing

various functions, from opening a window to controlling the engine. This makes automotive

industry to pay special attention to minimize Size, Weight, and Power (SWaP) costs, while

increasing the services delivered per ECU. Multi- and many-core processor architectures, which

are nowadays a reality in other embedded domains [4, 19, 113], are considered as a promising

solution to cope with such performance and cost constraints.

Many-core ECUs aim at providing the performance required to run a high number of complex

functions by:

• Integrating distributed applications into a single ECU;

• Parallelizing the computation of complex systems, such as the Engine Management System

(EMS) or Advanced Driver Assistance System (ADAS);

• Combination of both.

91

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 92

Figure 6.1: Inter-runnable dependencies existing among three of the twelve tasks that
compose the EMS (tasks 1, 4 and 8 ms). Nodes represent runnables and lines the

dependencies among them

We focus on the parallelization of complex applications, i.e. improving the performance of an

automotive legacy application by effectively parallelizing it over several cores (Objective O2) of

a single Guaranteed Resource Partition (GRP), considering EMS as a case study (Objective O4).

In this respect, it is important to remark the relevance of this problem given that a significant

part of automotive software is composed of legacy code (Goal 3).

Automotive applications increasingly rely on the AUTomotive Open System ARchitecture

(AUTOSAR) [24], a standardized system software architecture upon which applications are

built and executed. In AUTOSAR, applications comprise a set of functions, named runnables,

that are either executed periodically or triggered by an interrupt. When developing an AUTOSAR

application, runnables are grouped into AUTOSAR tasks1, which are the Unit of Scheduling (UoS)

of the AUTOSAR Operating System (AR-OS). The runnable-to-task mapping and the single-core

task scheduling of an application is known as application configuration and it is static and known

at system integration time. Development of application configuration has high cost of validation

its functional and timing correctness [29], and it is done infrequently (only once for most of the

applications, exceptions are e.g. Formula 1 engine control applications, where you have several

application configurations).

The current strategy of using tasks as UoS works well on applications running on single-core

ECUs, because it facilitates scheduling runnables with the same timing properties by grouping

runnables with the same release period or interrupt into the same task.

A single GRP is an equivalent a multi-core ECU in terms of scheduling. Current approaches

targeting multi-core ECUs also consider tasks as UoS [114][115], allocating them to different cores.

To do so, all dependent runnables are grouped into a single task, minimizing or even removing all

inter-task communications, and so scheduling independently the different tasks to the processor

cores. This approach, which is in-line with the latest AUTOSAR guide for developing and

configuring AUTOSAR-compliant software for multi-core systems [24], works well for integrating

multiple applications into a single ECU or for parallelizing applications with little inter-runnable

communication. However, the use of tasks as UoS on many-core processors to extract parallelism

of applications with highly-connected runnables is inefficient, as most runnables are allocated to

a single task and thus executed sequentially in one core. This is the case for the EMS application,

in which almost all runnables depend on each other. Figure 6.1 provides an intuition on the level

of communication existing in the EMS, showing the inter-runnable dependencies of three of the

1In this chapter, we refer to an AUTOSAR task simply as task.

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 93

twelve tasks that compose the EMS (concretely time-triggered tasks with periods of 1, 4 and 8

ms; see Section 6.4.1 for further details).

Moreover, current approaches require changing the runnable-to-task mapping and/or the single-

core task scheduling to execute tasks in parallel as a means to improve application performance.

This, in turn, implies changing the application configuration, resulting in extra effort to verify and

validate the new configuration [116]. This is due to the fact that the sequential execution model

of tasks abstracts and may hide mutual exclusion constraints when accessing shared resources,

critical sections, etc. The parallel execution of tasks can then break this mutual exclusion relations

present in applications configured for execution in single-core processors [116].

In this chapter, we propose exploiting the performance opportunities of multi-core ECUs by

proposing a new allocation strategy in which legacy automotive applications (objective O2)

with runnables highly connected are parallelized while maintaining the single-core application

configuration (Goal 3). We present RunPar, a new allocation algorithm that considers runnables,

and not tasks, as the UoS. RunPar assigns runnables of the same task to different cores respecting

inter-runnable dependencies and forces tasks to execute sequentially following the task ordering

of the application’s single-core task scheduling. To do so, RunPar does not allow runnables from

different tasks to be executed in parallel. This approach significantly improves the state-of-the-art

techniques under which runnables cannot be executed in parallel.

This runnable scheduling strategy, i.e. the allocation of tasks, guarantees that the composition

of tasks and the order in which they are executed in the single-core and in the multi-core ECU

remains the same. Therefore the same functional behavior is guaranteed in both platforms.

We evaluate the benefits of RunPar on an EMS, a real automotive application (Objective O4)

that controls the injection time and amount of fuel in a diesel engine and composed of more

than one thousand highly connected runnables grouped into twelve tasks (see Section 2.2.2). Our

results confirm that RunPar effectively increases the performance of EMS tasks by providing

an increment of the Central Processing Unit (CPU) capacity of 31% and 42% for the two-core

and four-core ECU respectively. This extra capacity can be then exploited for executing new

application functionality or other automotive applications, which ultimately contributes allocating

more functionality per ECU, reducing size, weight and power costs.

We consider RunPar a necessary step towards porting current legacy software to many-cores, for

exploiting the many-core performance potential while containing verification effort (Objective O5).

The use of runnables as UoS implies minimum modifications at AR-OS level: The scheduling

tables used in the AR-OS to execute tasks are extended to incorporate the core, the order and

the time in which runnables are executed, so inter-runnable dependencies are respected.

How to better exploit multi-core ECU and GRP capabilities for new AUTOSAR applications to

minimize inter-runnable communications, and so increase parallelism, is a challenging problem

that is out of the scope of this thesis and part of our future work.

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 94

1ms

Cycle 1

…
1ms 4ms 1ms 4ms

…
1ms 5ms 5ms

Cycle 20 Cycle 4 Cycle 5

(a) (b)

r1

r2 r4

r5

r3 r6

SWC1 SWC2 SWC3

r7

r1 r3 r4

task 1ms

r2 r5 r6

task 4ms

r7

task 5ms

(c)

Figure 6.2: Part of the runnable flow-graph of an automotive application composed of 3
SWC, 7 runnables and 3 tasks executed in a single-core processor. (a) Structure of the
application; (b) application configuration from an AR-OS point of view; (c) a possible

single-core task scheduling of the three tasks.

6.2 Background

6.2.1 AUTOSAR Applications

The structural elements of an AUTOSAR application are Software Componentss (SWCs), each

containing a set of runnable entities (which we call runnables for short) that implement the

functionality of the SWC. AUTOSAR provides two inter-runnable communication methods:

sender-receiver and client-server ports. The former uses a global shared memory for commu-

nication while the latter allows runnables to invoke services from other runnables. In case of

sender-receiver, runnables read all input data before starting the execution and results are written

back after finishing the execution. No limitations on the number of ports or complexity of

components are imposed by the model. All SWC, ports and runnables are known at application

configuration time.

During the application configuration phase, runnables are assigned to tasks, which are the UoSs

of the AR-OS [117]. The execution of runnables follows a model in which they are periodically

executed in a recurring cycle or triggered by an interrupt. To that end, in legacy applications

running on single-core systems, runnables with the same period or interrupt invocation are

grouped into the same task, so each task is executed based on either a fixed period or an interrupt.

As a result, from an AR-OS point of view, an automotive application can also be defined as a set

of tasks with a period or interrupt invocation equal to the period or interrupt invocation of the

runnables that compose those tasks.

Figure 6.2 shows the relationship between SWC, runnables and time-triggered tasks for an

automotive application composed of three SWC and seven runnables with a period associated

to each runnable: r1, r3 and r4 have a 1 ms period, r2, r5 and r6 a 4 ms period and r7 a 5 ms

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 95

GRP1

M1

M3

M2

M4

GRP2

GRP3 GRP4

Memory

Core1

R R

R Instruction
Scratchpad

Core2 Core3 Core4

Memory Controller

On-chip SDRAM

NoC

Data
Cache

Pipeline

Core

Chip

(a) Many-core with GRPs (b) Multi-core ECU

Figure 6.3: Block diagram of our target architectures.

period. The arrows represent the communication ports, and so run-after dependencies, among

them. Figure 6.2(b) shows the structure of the application from the AR-OS point of view after

the configuration phase. The runnables are grouped into three tasks based on their periods:

Tasks 1ms, 4ms and 5ms contain runnables whose period is 1, 4 and 5 ms respectively. Moreover,

the order in which runnables are executed within tasks must respect run-after dependencies. In

this case runnable r1 executes before r3 in task 1ms. Finally, Figure 6.2(c) shows a possible

single-core scheduling of the three tasks. Again, the order in which runnables and tasks are

executed must respect the run-after dependencies. Hence, task 1ms must execute before task

4ms to respect the dependencies between runnables r4 and r5 executed in tasks 1ms and 4ms

respectively. When a runnable consumes data produced by the runnables from other tasks or

by past instances of the same task it belongs to, the sequential execution of tasks guarantees

that, when a new task instance starts, all previous tasks instances (including itself) have already

finished, and so the data dependence is not violated. This is the case of runnable r7 in Figure 6.2.

It is important to remark that a different sequence of execution of runnables and tasks, defined in

the application configuration, could be defined as well, and still respecting dependencies among

runnables. In fact, a different application configuration could result in a more efficient execution

in multi-core platforms. However this would imply re-validating completely the new application

configuration, which would go against one of the main goals of our proposal, i.e. to contain the

cost of validation when migrating from single-core to a multi-core ECU by maintaining same the

application configuration. Generating more a efficient application configuration for multi-core

ECUs remains as a future work.

Although the structure of the application in Figure 6.2(a) is relatively simple, real automotive

applications are composed of a high number of highly connected runnables. This is the case for

the our EMS case study, which is composed of more than one thousand runnables highly

connected among them. Figure 6.1 shows a part of the inter-runnable dependencies existing in

three of the twelve tasks that compose the EMS (concretely tasks 1, 4 and 8 ms; see Section 6.4.1

for further details).

Schedule tables are used in AUTOSAR to implement statically defined task activation. A schedule

table comprises a set of expiry points, which are characterized by one or more actions that must

occur (activate a task) and an offset in ticks from the start of the table. The AR-OS iterates

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 96

through the schedule table and processes an expiry point at the specified tick. The schedule can

either be executed repeated or only once as a single-shot.

6.2.2 Multi-cores and Worst-Case Execution Time (WCET) estima-

tion

Timing analysis of the runnables in a multi-core has to handle contention of accesses to shared

resources. Given a runnable under analysis, the contention it suffers can be handled as part of the

worst-case response time analysis by factoring in the contention of its co-running runnables which

are known at this stage. Alternatively, the contention can be accounted as part of the WCET

estimation process by deriving time composable WCET estimates which are made independent

of the particular load of co-running runnables. Each approach has its own pros and cons. The

former enables deriving tighter estimates, since it builds upon the knowledge of interference,

it defies time composability. The latter maintains time composability [17] and the advantages

it brings in reducing overall incremental development and verification cost at the expense of

higher WCET estimates. We focus on the latter approach for its ability to enable incremental

verification.

We consider multi-core architecture resembling single GRP of the processor architecture described

in Chapter 3 (see Figure 6.3(a)). It can also be applied to multi-core architecture described in

[21, 51, 118] as the target processor in which runnables are allocated. In these architectures the

maximum delay a request can suffer when accessing hardware shared resources is bounded by a

pre-computed Upper-Bound Delay (UBD) [21]. Architectures based on UBD have been shown

to provide competitive results in terms of average and guaranteed-performance (i.e. WCET

estimates) with respect to other time-predictable approaches such as Time Division Multiple

Access (TDMA) [55](see Section 2.3).

We consider multi-core ECU with 2 or 4 cores, in which each core has a private instruction

scratchpad and a data cache. The core is assumed to exhibit no timing anomalies [56] and it

is connected to an on-chip SDRAM memory device through a tree Network on Chip (NoC),

see Figure 6.3(b). The tree is a wormhole-based topology implementing 3 simple pipelined 2-to-1

routers, so each core requires 2 hops to reach the memory [61]. Such an architecture is similar to

the one used in current multi-core ECUs [16].

Under this architecture, there are two sources of interferences that can increase the WCET

estimate of runnables, and so tasks: NoC and memory interferences. The maximum delay a

request to both resources can suffer due to interferences is shown in Equation 6.1. Ltree is the

tree traversal time. Lmem is the memory latency and it is high enough to hide the delay of a

round-robin arbitration policy in our tree router, making Ltree independent of the number of

cores, ncores. More details on how Ltree and Lmem are computed for the setups considered in

this chapter are provided in Section 6.4.1.2. Note that, in the worst-case, a memory request is

stalled by the rest of cores when accessing the memory.

UBD = Ltree + (ncores− 1) ∗ Lmem (6.1)

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 97

In order to estimate the WCET for runnables, we use OTAWA static timing analysis tool set [40].

OTAWA is supports analyzing multi-cores and parallel execution [119]. To do so, it considers that

the maximum delay a request to both NoC and memory resources can suffer due to interferences

is bounded by UBD defined above, so runnables are subject to the worst-case delay they can

suffer due to interferences. As a result, the WCET estimates of runnables computed considering

UBD are time-composable, i.e. their timing behavior is independent of the runnables executed

simultaneously on other cores and insensitive to allocation to the core and independent of the

sharing the state of caches with other runnables.

It is important to remark that the approach presented in this chapter is independent of the

processor architecture and timing analysis tool considered. Therefore, any particular core count,

NoC topology and timing analysis tool, as long as it is possible to derive time composable WCET

estimates for runnables.

6.3 RunPar Allocation Algorithm

This section covers the main contribution of this chapter: the RunPar allocation algorithm that

allows the parallelization of AUTOSAR legacy applications, while maintaining the single-core

application configuration, and so allowing reducing the effort of validating applications when

migrating from single-core to multi-core ECUs.We consider a partitioned multi-core scheduling

approach as it better fits current AUTOSAR standard prescriptions. The use of static cyclic

scheduling of runnables is common in AUTOSAR, making the static partition approach very

likely to be adopted in a first step when moving towards multi-core ECUs [120].

6.3.1 Problem Definition

AUTOSAR allows describing a wide range of applications to cover most of the functionality

required within a car. We focus on applications with the following properties:

• Runnables exchange data through sender-receiver ports using a shared global memory.

• Client-Server communication is always synchronous, i.e. the execution of the server blocks

the client until the server finishes.

• Each runnable is assigned to exactly one task.

• Tasks are triggered based on either a fixed period or an interrupt. In case of interrupt-driven

tasks, the period for schedulability purposes is defined as the minimum distance between

2 consecutive interrupts. By doing so, it is guaranteed that interrupt-driven tasks can be

scheduled in the worst case.

• Time-triggered tasks are not preempted by other time-triggered tasks, and follow the same

ordering like in a single-core platform. Interrupt-driven tasks may preempt time-triggered

tasks in order to serve the event that generated the interrupt.

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 98

These application properties cover a significant range of AUTOSAR applications, including the

one considered in this thesis, the EMS. It remains as future work to extend RunPar to support

applications with other properties, specially task preemption among time-triggered tasks.

Overall, we focus on the allocation problem of runnables of an AUTOSAR application in homo-

geneous multi-core processors, considering a partitioned scheduling approach in which once a

runnable has been assigned to one core it is not allowed to migrate.

We define an AUTOSAR automotive application as a set of tasks T = {τ1, · · · , τk} executed

sequentially as defined by the single-core task scheduling. Each task τp is represented by a

direct acyclic graph δp = (Rp, Ep). The nodes in Rp = {r1, · · · , rn} represent the runnables that

comprise the task. Each runnable ri is characterized by a WCET estimate Ci, a period P (the

same for all runnables in a task) and a deadline D, assuming implicit deadlines, i.e. D = P .

The utilization ui of runnable ri is defined as Ci
P , where 0 ≤ ui ≤ 1. The edges in Ep represent

communications between runnables: An edge ei→j ∈ Ep represents any communication method

implemented from runnable ri to runnable rj , so rj cannot start until ri finishes. The period of

τp is equal to the period of all of its runnables in Rp.

An application configuration Ψ is defined as the single-core task scheduling T and the runnable-to-

task mapping per each task τp = (Rp, Ep). RunPar assigns the n runnables in Rp from a task to a

set of m identical cores sc = (c1, · · · , cm) respecting the run-after dependencies defined in Ep and

the application configuration Ψ. Concretely, the allocation algorithm generates a static partition

Φp = (ϕ1, · · · , ϕm) in which a subset of Rp is assigned to each core. Thus, ϕk = Rkp ⊆ Rp assigns

Rkp to core ck with a cumulative utilization defined as uksum =
∑
ri∈Rkp

ui ≤ 1. Each runnable

can be assigned to only one core. Moreover, given any two runnables ri ∈ Rp and rj ∈ Rp,
RunPar guarantees that rj is allocated after ri finishes if exists ei→j ∈ Ep. Furthermore, in case

a runnable consumes data from two or more runnables, it must be allocated after all of them are

guaranteed to complete.

The utilization of a task τp, given by the longest dependent runnable chain, is the maximum

cumulative utilization of all cores in Φp, and it is defined as uτp = max(∀ϕk ∈ Φp | uksum).

Similarly, the WCET estimate of a task τp is the maximum sum of Ci allocated to a core in Φp,

and it is defined as WCETτp = max(∀ϕk ∈ Φp |
∑
ri∈Rkp

Ci).

In a partitioned scheduling scheme, once runnables are allocated to cores, an on-line uniprocessor

scheduling algorithm is used. In our case, the on-line scheduler must guarantee that, when

a runnable starts executing all its predecessor runnables upon which it depends have already

finished.

RunPar is compatible with static time-triggered schedulers, like in AR-OS. AR-OS implements

scheduling tables [117] that define the starting point and the order in which tasks are activated.

Section 6.3.3 describes the changes required at AR-OS level to schedule, not only tasks but

runnables as defined by RunPar in Φ so the starting point of runnables guarantees the fulfillment of

inter-runnable dependencies. Extension of RunPar to support dynamic priority-based schedulers

(e.g. rate monotonic) remains as future work.

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 99

6.3.2 Mapping Runnables to Cores

RunPar considers the set of tasks T = (τ1, · · · , τk) that form the application, and allocates the

runnables of each task τp into m cores. Runnables from different tasks are not allowed to be

executed in parallel, forcing tasks to be executed sequentially and so respecting the single-core

task scheduling. This section presents our runnable-to-core allocation algorithm, which is called

for each of the tasks defined by the application developer in T .

Figure 6.4 shows the pseudo-code implementation. The algorithm takes as input the task

τp = (Rp, Ep) (i.e. Figure 6.1) and a set of m cores sc = (c1, · · · , cm). As output it provides a

valid allocation Φp.

6.3.2.1 Runnable classification

RunPar starts classifying runnables into two different types: dependent runnables (dR) and

independent runnables (iR), lines 2 and 3 in the algorithm. A runnable ri in Rp is dependent

if there exists a runnable rj in Rp and the edge ei→j or ej→i in Ep. In other words, the

runnable ri produces (or consumes) data that is consumed (or produced) by rj , creating a

run-after dependence among them. Similarly, runnable ri is independent if for all runnables in

Rp, neither exist edges ei→j nor ej→i in Ep. In Figure 6.2, runnables r4 and r7 from tasks 1ms

and 5ms respectively, are classified as independent runnables. The remaining ones are classified

as dependent.

It is important to recall that runnables can also consume data produced by other tasks or by

past instances of the same task they belong to. Such a dependence is not taken into account

because the sequential execution of tasks guarantees that when a new task instance starts, all

previous tasks instances (including itself) have already finished, and so the data dependence is

not violated. This is the case of runnable r7 in Figure 6.2.

6.3.2.2 Sorting criteria

After the classification of runnables, dR and iR are sorted. There are several criteria that can be

used for sorting: deadline, period, utilization, density. Since all runnables of a task share the same

deadline and the same period, utilization (u) remains the criterion to use. Moreover, we introduce

a new sorting criterion: the combined utilization (cU) of a runnable, which is computed as the

highest sum of utilization across the chains of dependencies starting from the observed runnable.

For instance, in case of runnable r2 from task 4ms of Figure 6.2, the combined utilization cU2 is

equal to max(u2 + u5, u2 + u6), while the cU1 of runnable r1 from task 1ms, is u1 + u3. The use

of cU guarantees that the longest chain of dependent runnables is allocated first.

The function in line 5, sorts dR and iR runnables based on the sorting criteria, i.e. u or cU . Note

that for independent runnables cU equals to u. In Section 6.4, we discuss the impact of sorting

criterion on the effectiveness of the algorithm.

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 100

6.3.2.3 Bin packing heuristics

The search for optimal allocation of runnables to cores is an NP-hard problem [121] which

introduces the need for using non-optimal heuristics in order to do the allocation. We evaluate

worst-fit and first-fit decreasing heuristics2 [122–124]. In case of the worst-fit decreasing heuristic,

runnables are allocated to the least-occupied cores, i.e. cores in which uksum is smallest; first-fit

heuristic allocates runnables in the first core they fit, i.e. uksum remains smaller or equal than

1. Moreover, runnables are sorted in decreasing order by their utilization/combined utilization,

which prioritizes runnables with higher utilization to be allocated first. Section 6.4 provides a

quantitative comparison of applying different heuristics. Our proposed algorithm is compatible

with any bin-packing heuristic as long as run-after runnable dependencies are fulfilled.

After creating Sorted dependent Runnable (SdR) and Sorted independent Runnable (SiR) sets,

RunPar spawns into two different subphases: allocation of dependent and independent runnables.

6.3.2.4 Dependent Runnables

The algorithm works as follows. The first runnables to be allocated are those that produce

data, but do not consume data from any other runnable from the same task (line 9). Runnables

are allocated to cores using the bin-packing heuristic (lines 10 and 11). In Figure 6.2, the first

allocated runnables when processing tasks 1ms and 2ms are r1 and r2 respectively.

In the subsequent step, the rest of consumer/producer runnables are allocated respecting run-after

dependencies, i.e. the runnable is not allocated until all its precedence dependent runnables are

allocated (lines 13-14). Moreover, the time at which a runnable starts executing must be after

all runnables producing its input data finish. Therefore, given a runnable ri and its producer

runnable finishing the latest rj , ri is allocated after rj finishes its execution, considering its

WCET estimate (Cj) to guarantee that the data will be available. To do so, the algorithm

searches for the largest cumulative utilization among the cores in which the dependent runnables

are allocated (lines 13-21). Function allocated cUtil returns the values of uksum, after allocating

runnable rj to that core. Then, with function binpack startdef (line 22) we select the core in

which ri fits best according to the chosen heuristics, starting its execution after rlargest finishes,

i.e. at maxdep (lines 18 and 19).

In case the cumulative utilization of the core c in which ri will be allocated (ucsum) is smaller

than maxdep – i.e. the cumulative utilization of the core where is rlargest allocated is higher

than ucsum after allocation of rlargest – an idle runnable (ridle) is inserted (lines 23-26) with

its corresponding utilization (uidle)(line 24). In other words, idle runnables delay the start of

runnables until all their input data are guaranteed to be available. Idle regions will then be used

to allocate independent runnables as explained in the next section.

2Other bin-packing heuristics such as best-fit and next-fit are a variant of the two heuristics considered,
producing similar results.

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 101

RunPar Allocation Algorithm
Input τp = (Rp, Ep): A task of the application,

sc = (c1, · · · , cm): total number of cores
Output Φp = (ϕ1, · · · , ϕm): A valid allocation of Rp into sc

1 Φp = ∅
2 dR = ∀ri ∈ Rp | ∃rj ∈ Rp, ∃ei→j ∨ ej→i ∈ Ep
3 iR = ∀ri ∈ Rp | ∀rj ∈ Rp, 6 ∃ei→j ∧ ej→i ∈ Ep
4
5 <sdR, siR>=sort_runnables(dR, iR, criterion)
6
7 // First -phase: Allocation of dependent
8 // runnables
9 forall (ri ∈ sdR | ri /∈ Φp and 6 ∃rj ∈ sdR, ej→i ∈ Ep) do

10 c = binpack(ri, heur1)
11 Φp += allocate(c,ri)
12 endfor
13 forall (ri ∈ sdR | ri /∈ Φp and ∃rj ∈ Φp | ej→i ∈ Ep
14 and 6 ∃rk ∈ Φp | ek→i ∈ Ep) do
15 maxdep = 0
16 forall rj ∈ ϕk do
17 if(maxdep < allocated_cUtil(rj)) then
18 maxdep = allocated_cUtil(rj)
19 rlargest = rj
20 endif
21 endfor
22 c = binpack_startdef(ri,maxdep , heur1)
23 if(maxdep− ucsum > 0) then
24 uidle = maxdep− ucsum
25 Φp += allocate (c,ridle)
26 endif
27 Φp += allocate (c,ri)
28 endfor
29
30 // Second -phase: Allocation of independent
31 // runnables
32 forall(ri ∈ siR | ri /∈ Φp) do
33 if(∃ridle ∈ Φp and ui ≤ uidle) then
34 c = core(ridle)
35 Φp += allocate(c,ri)
36 if(uidle − ui = 0) then
37 remove(ridle,Φp)
38 else
39 uidle = uidle − ui
40 endif
41 else
42 c = binpack (ri)
43 Φp += allocate(c,ri)
44 endif
45 endfor
46
47 return Φp;

Figure 6.4: Pseudo-code implementation of the allocation algorithm.

6.3.2.5 Independent Runnables

The allocation of independent runnables occurs once all dependent runnables have been allocated

(lines 30 to 45). The reason is that independent runnables have the freedom to be allocated at

any point in time within its corresponding period. As already pointed above, it is important to

remark that independent runnables are in fact dependent runnables that consume data produced

by other tasks or by past instances of the same task they belong to. The EMS does not contain

any purely independent runnable.

RunPar uses the set of independent runnables sorted by their utilization (which equals to

combined utilization), so independent runnables with higher utilization are allocated first. The

algorithm first checks if a runnable fits within any idle region (line 33). If it fits, the runnable is

allocated within the same core and time slot assigned to the idle runnable (lines 34 and 35), and

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 102

1

4 ms 1 ms
…

1 4 1 4 20 8 16

…
1 4

…
5

16 ms 20 ms
…

C2 Core 0

Core 1

C1 C3 C5

C6 Cidle2

Task 1ms Task 4ms

time

C4

C7

Cidle1

Task 5ms

(cycle 20)

C2

Core 0

Core 1

C1 C3

C4 C7 C5

C6

time

Supertask 1ms+4ms+5ms

Cidle

(cycle 20)

Figure 6.5: Valid allocation (Φ) of the automotive application presented in Figure 6.2 in a
two-core processor, executing cycle 20. Ci is the WCET estimate of runnable ri.

the utilization of the idle runnable is reduced (line 39) or even eliminated (line 37). If it does not

fit, the runnable is allocated using a bin-packing heuristic (lines 42 and 43).

6.3.3 Allocation Algorithm Solution: Φ

If a valid allocation Φp of task τp is found, each runnable (including idle regions) is assigned to

a core (line 47) and executes within its corresponding period. Figure 6.5 shows the resultant

Φ1ms, Φ4ms and Φ5ms of 1ms, 4ms and 5ms tasks respectively, when applying RunPar to the

application presented in Figure 6.2, executing in a two-core processor. Ci is the WCET estimate

of runnable ri; Cidle is the time slot in which the core executes an idle runnable.

In order to support RunPar, AR-OS scheduling tables have to be extended to schedule the

runnables from task τp as defined by Φp. To that end, each task entry in the scheduling table is

extended with a new runnable scheduling table that defines the starting point, the order and the

core of each of the runnables that form the task. It is important to remark that runnables are

scheduled based on their WCET estimates (C), guaranteeing that no race conditions can occur,

i.e. consumer runnables do not start executing until all their dependent producer runnables finish,

even if they execute for their WCET estimates. In order to ensure that runnables do not start

until the WCET estimate of runnable allocated before it expired, an idling function as proposed

in PharOS [125] can be used.

6.3.4 Validating the Single-core Task Scheduling

Our allocation strategy reduces the WCET estimate of tasks, by exploiting runnable-level

parallelism of application’s task, but does not necessarily reduce the response time of the overall

application. The reason is that our strategy maintains the single-core task scheduling, and so the

starting point and order in which tasks are executed remains the same. However, the overall time

the processor is used by the application is reduced because tasks execute faster, providing extra

computational space in the task scheduling to allocate new application functionality, allocate

other tasks from different applications or even to reduce the clock frequency and so reduce the

energy consumption of the ECU [126].

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 103•

C2

Core 0

Core 1

C1 C3

C4 C5

C6

time

Cidle

Widle

Widle

CrAnInt Preempt Resume

C7

C8 C9

C10 Cidle

CrAn task

Figure 6.6: The CrAn interrupt-triggered task preempting time-triggered one.

The single-core task scheduling remains valid in the multi-core ECU if the resultant task utilization

after parallelizing runnables (uτp), is smaller than or equal to the task utilization when executing

runnables sequentially (useqτp).

It could be the case, however, that the WCET estimate reduction obtained by executing runnables

of a task in parallel is not enough to hide the overhead introduced due to interferences when

accessing the hardware shared resources [21, 51], making uτp be higher than useqτp . In this case,

it is required to validate that the single-core task scheduling, and the increment of the utilization

of a task can be compensated by the utilization reduction of the other tasks.

If uτp is higher than useqτp , the system can emulate the single core execution. All runnables

of the tasks are executed sequentially in one core while other cores are idle and do not execute

anything. Since we know that there will be no interference from other cores, we can safely

use WCET estimates obtained for single core execution (assuming UBD = 0) and by doing so

decrease the WCET estimate of the task.

6.3.5 Execution of interrupt-driven tasks (CrAn task)

It is common in AUTOSAR applications that interrupt-triggered tasks, i.e. triggered by an

external event, are served as soon as possible. An example is the crank-angle task (CrAn) in the

EMS, which is activated based on the position (angle) of the camshaft of the engine. Since the

occurrence of this task depends on the engine rotation speed, which is not constant but has a

maximum value (in our case 4000 rpm), we derive that the minimum time between 2 arrivals of

CrAn task is 1.25ms, making this task sporadic [127].

Sporadic tasks in table driven schedulers are supported with use of acceptance tests, checking

whether there is sufficient slack time in the frames to follow before tasks deadline. In our case,

since we cannot allow acceptance test to fail and our time-frames are of 1ms, in each of the frames

needs to be enough slack to allow the execution of CrAn.

Moreover, in order to guarantee that the CrAn task is served as soon as possible, it can preempt

other time-triggered tasks being executed at the time the interrupt arrives. In order to provide

support to time-triggered task preemption, we need to do the following:

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 104

• Preempt at the end of execution of runnables, preserving time composability of runnable

WCET estimates and so the allocation provided by RunPar, as the timing analysis is

performed at runnable level.

• Wait for all currently executed runnables to finish, before starting CrAn and prevent

subsequent runnables of interrupted tasks to start. This guarantees that the sequentially

execution of time-triggered tasks is maintained.

• When CrAn starts executing all cores must be available, as RunPar allocation assumes

that all cores are available to schedule runnables from a new task. We guarantee this is by

applying the mechanism presented in [128].

• For the same reason of previous point, the preempted task is not resumed until all cores have

finished executing runnables of CrAn task. At this point it is guaranteed that producers of

remaining runnables have completed due to the second point.

• When the preempted task is resumed, the runnables blocked after the interrupt arrived

must be resumed. In order to maintain the sequence of execution as defined by RunPar

idle slots may be required to guarantee the same runnable scheduling. The size of those

idle slots is equal to the difference between the ending time of the last executed runnable

before the preemption, and the ending time of the first runnable that got stopped due to

the interrupt.

Figure 6.6 shows how CrAn task is handled if it arrives at the same time-frame as a task executes.

The interrupt that triggers CrAn task arrives at CrAnInt. In this case, our system lets runnables

being executed to complete, i.e. runnables C1 and C4, preventing further execution of runnables

from current task, i.e. runnable C7. When runnables finish their execution, it starts executing

runnables from CrAn as defined by RunPar. When CrAn task finishes, it restores the previous

context, adding necessary idle slots (labeled as Widle), in order to make execution of CrAn

invisible to the preempted task and respect dependencies of the preempted task. The runnable

C7 is resumed first in core 1, introducing an idle slot of C1 ending time minus C4 ending time

cycles in core 0. By doing so the execution of the task can be resumed at runnables C3 and

C4 transparently to the execution of CrAn. The introduction of the idle slot is controlled by

the AR-OS, by measuring the ending points of the different runnables at the point the interrupt

arrives.

Overall, the overhead introduced due to preemption equals to the WCET estimate of 2 task

context switches (i.e. the starting of the interrupt-triggered task and the resume of the preeempted

time-triggered task) plus WCET estimate of the longest runnable scheduled to that frame (due

to waiting for all cores to finish currently executed runnables).

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 105

6.4 Results

6.4.1 Experimental setup

6.4.1.1 EMS application

Our allocation algorithm has been evaluated with a real automotive application, an EMS (see

Section 2.2.2). An EMS is a typical automotive embedded real-time system in which the amount

of fuel and the injection time are fundamental for smooth revolutions of the engine. The injection

time and fuel amount depend on the state and the rotation speed of the engine, which changes

continuously during operation. EMS is composed of eleven time-triggered tasks, with periods of

1, 4, 5, 8, 16, 20, 32, 64, 96, 128 and 1024 ms, and a crank-angle interrupt-triggered task, with a

minimum period of 1.25 ms corresponding to the maximum engine rotation speed (i.e. 4000 rpm,

see Section 6.3.5).

6.4.1.2 WCET analysis tool and Processor Setup

In order to compute time composable WCET estimates (C) of runnables, we use the static timing

analysis tool OTAWA (see Section 2.3). OTAWA models the multi-core processor architecture

presented in Chapter 3 and Section 6.2.2 in which every request that accesses the NoC and the

on-chip memory is delayed by UBD, so the runnable is subject to the worst-case delay that

it can suffer due to interferences, and so WCET estimates are time composable. We consider

2-core and 4-core processor configurations, with private per-core scratchpads for instructions

and write-through data caches. For both processor configurations cores are connected through a

tree NoC to the on-chip Random Access Memory (RAM) memory. We consider Ltree = 1 cycles

for a 2-core processor, Ltree = 2 for a 4-core processor (i.e. each core has to traverse 1 and 2

routers for 2- and 4-core processors respectively) and 1-cycle routers. The memory latency is set

to Lmem = 10 cycles. This configuration provides a UBD = 11 cycles for the 2-core architecture

and UBD = 32 cycles for the 4-core architecture (see Section 6.2.2 for further details).

The approach presented is independent of the processor architecture and the timing analysis

method, so other architectures and tools can be used to compute time composable WCET

estimates of runnables.

6.4.1.3 Metrics

In order to evaluate our allocation algorithm, we consider the WCETτ speed-up metric, defined as
seqWCETτ
parWCETτ

, where seqWCETτ is the WCET estimate of task τ executing runnables sequentially,

and parWCETτ is the WCET estimate of task τ executing runnables in parallel as defined in

Φ by RunPar. seqWCETτ is given by the sum of C of all runnables that compose τ , assuming

UBD = 0 in the computation of C of each runnable, , i.e. runnables do not suffer any delay

due to interferences. parWCETτ is given by the sum of C of the longest chain of dependent

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 106

runnables as defined by RunPar, assuming UBD = 11 and UBD = 32 for the 2-core and 4-core

processor configurations respectively in the computation of C.

Moreover, in order to evaluate the maximum runnable-level parallelism that our algorithm is able

to exploit, we use the no interference WCETτ speed-up metric, in which the effect of interferences

is assumed 0. To do so, the parWCETτ of the 2-core and the 4-core processor architectures

are computed assuming no interferences, i.e. UBD = 0. Considering WCET estimates in which

interferences are not accounted, allows discounting the pessimism introduced by the timing

analysis tool because of sharing processor resources such as the NoC and the memory as well as

the actual contention in shared resources.

6.4.2 Choosing the appropriate heuristics

Table 6.1 shows average WCET speedup of EMS tasks when applying worst-fit and first-fit bin-

packing decreasing heuristic (labeled as WF and FF respectively), and applying utilization and

combined utilization sorting criteria (labeled as U and cU respectively). The same heuristics are

applied for allocating both dependent and independent runnables. The results show that worst-fit

guarantees a better runnable-to-core load balance, which in turn provides more parallelism among

runnables, outperforming first-fit. This is so because data dependencies among runnables reduce

considerably the possibilities in which runnables can be allocated, and so worst-fit allows selecting

the less loaded core, increasing the scheduling opportunities. We can also notice that when using

combined utilization as the sorting criterion, we can obtain an extra bit of improvement in almost

all of the cases apart from the case of worst-fit heuristics with 4-core processors, where the results

are roughly the same for both criteria.

Table 6.1: Average WCET speed-up of EMS’ tasks

FF+U WF+U FF+cU WF+cU

2-core 1,04 1,32 1,06 1,35
4-core 1,04 1,42 1,06 1,43

Table 6.2 shows the average WCET speedup of EMS tasks when we use different bin-packing

heuristics for allocating dependent and independent runnables. Concretely, the table denotes

(W+F) as the combination of applying worst-fit for allocating dependent runnables and first-fit

for allocating independent; (F+W) denotes the opposite. As expected, applying worst-fit to

dependent runnables results in a better performance than applying to independent. Overall,

the combination of heuristics cannot match worst-fit in terms of WCET speed-up of EMS tasks.

Similarly, the use of combined utilization allows obtaining an extra bit of improvement in almost

all of the cases apart from the 4-core processor W+F strategy.

Table 6.2: Average WCET speed-up of EMS tasks when combining heuristics

(F+W)+U (W+F)+U (F+W)+cU (W+F)+cU

2-core 1,12 1,25 1,14 1,26
4-core 1,13 1,38 1,16 1,35

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 107

0,5

1

1,5

2

W
C

ET
 S

p
e

e
d

-u
p

Interference No interference

Figure 6.7: WCET speed-ups of EMS tasks in a 2-core processor architecture, in which the
WCET estimation accounts and discards the impact of interferences (labeled as interferences

and no interferences respectively).

In the rest of this section, we present detailed results when using RunPar algorithm with worst-fit

heuristics and using combined utilization as the sorting criterion.

6.4.3 WCET Speed-up of EMS tasks

Figure 6.7 and Figure 6.8 show the WCET speed-ups of EMS tasks obtained with RunPar in

2-core and 4-core processor architectures respectively (the higher the better). In both cases,

RunPar is used with (1) WCET estimates that consider the effect of interferences (labeled as

interferences) and (2) WCET estimates assuming no interferences (labeled as no interferences).

In the 2-core processor architecture (Figure 6.7), and assuming the impact of interferences,

RunPar is capable of exploiting the performance opportunities of the multi-core ECU, improving

the WCET performance of almost all tasks with respect to a single-core ECU. The speed-up of

the 8 ms task achieves a significant 1.8x, being close to the ideal speed-up in a 2-core processor

architecture, i.e. 2x. Tasks 16, 20, 96 and 1024 ms, and the CrAn task also exhibit high speed-ups,

around 1.5x. Such a WCET speed-up represents a WCET reduction of 45% in case of 8ms task,

and around 33% for tasks 16, 20, 96 and 1024 ms.

When we compare the speed-ups obtained without accounting for the impact of interferences on

the computation of the WCET estimates, we observe the performance degradation of multi-core

execution due to sharing the NoC and the memory processor resources. Such a degradation

is further augmented by the pessimism introduced by the timing analysis tools. In our case,

OTAWA assumes that each memory request is delayed by UBD cycles. Hence, if no interferences

are assumed, the 8 ms task achieves the maximum speed-up, i.e. 2x, and CrAn and 4, 16 and 32

ms tasks increase the speed-up close to 1.8X for the 2-core processor.

In any case, achieving maximum levels of parallelism not only depends on the effect of interferences

and quality of the allocation algorithm, but also on the characteristics of the task, e.g. number of

runnables, inter-runnable dependencies. This is the case of tasks 1, 20, 64, 96, 128 and 1024 ms

tasks, in which the WCET estimates are not affected much by interferences. The 5 ms task is

composed of a single runnable which is executed in a single core, and so does not benefit at all of

parallel execution.

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 108

0,5

1

1,5

2

2,5

3

3,5

4

W
C

ET
 S

p
e

e
d

-u
p

Interference No interference

Figure 6.8: WCET speed-ups of EMS tasks in a 4-core processor architecture, in which the
WCET estimation accounts and discards the impact of interferences (labeled as interferences

and no interferences respectively).

In the 4-core processor architecture (Figure 6.8), the impact of interferences on the WCET

estimates increases significantly (OTAWA assumes UBD equal to 32 cycles), which makes the

performance benefits brought by multi-core execution being higher than those for the 2-core

processor but their scalability is poorer with respect to the number of cores, as the WCET

degradation due to interferences grows noticeably. As a result, the speed-up of EMS tasks slightly

increases when moving from a 2-core to a 4-core processor architecture, achieving speed-ups of

2.1x in case of 8 ms and CrAn tasks, and 1.7x in case of 20 ms task. Such speed-up represents a

WCET reduction of 53% in case of 8 ms and CrAn tasks, and 41% for 20 ms task.

When discarding the effect of interferences in WCET estimates, the speed-up of 8, 16, 96 ms and

CrAn tasks increases significantly, with speed-ups of 3.8x, 3.5x, 2.8x and 2.7x respectively. In

the case of 1, 64 and 1024 ms tasks the WCET speed-up is not affected much by interferences.

In fact, if we compare the WCET speed-up of these three tasks obtained in the 2-core and the

4-core processor architectures, we observe the exact same performance.

We conclude that RunPar effectively exploits the maximum runnable-level parallelism exposed

in EMS tasks in a multi-core ECU. Unfortunately, the impact of interferences due to shared

resources reduces a bit the benefits brought by multi-core execution. Such negative effect is

increased as the number of cores in the ECU increases. Results could be improved by using a

timing analysis tool delivering less pessimistic WCET estimates or a processor architecture where

the maximum effect of interferences (UBD) is lower. Investigating new timing analysis techniques

and processor architectures to reduce the impact of interferences is part of the future work.

6.4.4 Increasing Overall Available CPU Capacity

The parallel execution of runnables reduces the WCET estimates of tasks, reducing the task

utilization (uτ) and so reduces the CPU capacity required by the EMS application with respect to

the single-core execution. This extra capacity can be then exploited for executing new application

functionality, other automotive applications or even reducing the CPU frequency to reduce the

energy consumption.

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 109

0

0,05

0,1

0,15

0,2

0,25

1ms 4ms 5ms 8ms 16ms 20ms 32ms 64ms 96ms 128ms 1024ms CrAn

U
ti

liz
at

io
n

Sequential 2-cores 4-cores

Figure 6.9: Utilization of EMS tasks being allocated on a single-core, 2-core and 4-core ECU
labeled as sequential, 2-core and 4-core respectively).

Figure 6.9 shows the utilization of EMS tasks when being allocated on a single core ECU (labeled

as sequential) and on a 2-core and 4-core ECU using the RunPar. Note that in all processor

configurations, the task scheduling is the same as our allocation strategy maintains the single-core

task scheduling.

The utilization (uτ) of all EMS tasks (except 5ms task because it contains one single runnable)

is reduced. It is of special interest the tasks with highest utilization i.e. those whose WCET

estimate is higher with respect to their period. This is the case of tasks 16 and 32 ms and CrAn

with utilization reductions of 8, 6 and 6 percentage points (pp) respectively in case of the 2-core

ECU (a reduction of the utilization of, for instance, 8 pp in case of 16 ms task means that the

utilization goes from 0.20 to 0.12) . In the case of 4-core ECU, these 3 tasks have utilization

reduced by 10, 7 and 9 pp respectively. These three tasks are, in fact, the longest tasks of the

EMS application with respect to their period, and so are the tasks that benefits the most of a

reduction to their WCET estimates. This is not the case of 8 ms task, which despite being the

task that achieves the highest WCET speed-up (see Figure 6.7 and Figure 6.8), this is translated

in an utilization reduction of only 3 pp.

Overall, the reduction on EMS tasks utilization represents an increment of the CPU capacity of

31% and 42% for the two-core and four-core ECUs respectively. Such an extra capacity can be

then re-used for executing new application functionality or scheduling other applications using

AUTOSAR recommendations for executing in a multi-core ECU environment [24]. Alternatively,

it can be used for applying dynamic voltage and frequency scaling techniques, so the energy

consumed by ECU can be reduced [129].

6.5 Related Work

There are two main strands of research in multi-core scheduling [130], reflecting the ways in which

processes are allocated to cores. Partitioned approaches allocate each process to a single core,

dividing the problem into one of process allocation (bin-packing) followed by single processor

scheduling. In contrast, global approaches allow processes to migrate from one core to another

at run-time. Following AUTOSAR standard prescriptions, we have considered partitioning

approach.

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 110

In partitioned approaches, finding an optimal allocation is an NP-hard problem in the strong

sense [121] and so non-optimal solutions derived from the use of bin-packing heuristics are

typically used [122–124]. In [131], authors evaluate the impact of different bin-packing heuristics

on mixed-criticality systems. They show that first-fit heuristics achieve better results when

allocating low-criticality tasks [131] after the allocation of high-criticality tasks with worst-fit

heuristics. However, in the case of EMS application, the use of worst-fit heuristics outperforms

both first-fit and the combination of the two heuristics.

Stochastic approaches such as genetic algorithms [132] and simulated annealing [133] have been

used with different degrees of success in different domains. These search algorithms are general

enough to be adapted to many different problems to look for the best solution. However, adapting

them is not a trivial task. For instance, in the case of genetic algorithms one needs to define the

fitness function to quantify how good each solution is, the alphabet used to encode solutions,

population size, crossover function across individuals, mutation probability and convergence

criteria. To the best of our knowledge stochastic solutions have not been devised yet for our

problem.

Most scheduling works proposed in the Critical Real-Time Embedded Systems (CRTES) domain

consider independent processes that do not communicate among them. Along this line, Monot et

al. [114] presented recently a scheduling algorithm for multi-source AUTOSAR applications on

multi-core ECUs. Their approach groups all runnables with inter-runnable dependencies into a

single task, allowing tasks to be scheduled independently. In the next step, a runnable scheduling

is build on each core independently of other cores. Overall, one of the main objectives of the

approach is obtaining uniform utilization of the cores during the application execution. The

scheduling algorithm presented in [114] has two main differences with our allocation strategy.

First, it requires changing the application configuration, i.e. it reassigns runnables to tasks,

creating a new runnable and task scheduling, which causes the need for re-validating legacy

applications. Second, it assumes little dependencies among runnables so a sufficient number of

tasks can be created to exploit parallelism in multi-core ECUs. This is not the case of the EMS

in which almost all runnables have inter-runnable dependencies (see Figure 6.1). In fact, applying

this approach to the EMS would lead to schedule all runnables into a single core.

Faragardi et al. [115] presented a scheduler for AUTOSAR applications on multi-core ECUs

having as scheduling criterion the minimization of the worst-case communication delays among

runnables scheduled in different cores. This solution assumes that the runnable-to-task mapping

that minimizes the communication among cores is already given, and so it focuses only on the

task scheduling. This approach requires changing the application configuration, causing the need

for re-validating legacy applications.

Wieder and Brandenburg [134] target a real-time partitioned scheduling of independent tasks (not

AUTOSAR related) in which accesses to the shared resources are protected with spin locks. They

provide an ILP formulation for computing optimal partitioning w.r.t. to schedulability analysis

of the MSRP protocol [135] and resource-aware partitioning heuristics called GreedySlacker.

GreedySlacker tries to allocate a task in such a way that it maximizes the minimum slack left in

the cores after the allocation of that task, and by doing so evenly spreads the workload across

the cores. Such an approach cannot be applied to allocate runnables, as they have run-after data

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 111

dependencies. Applying it to the task scheduler would imply an effort in changing the application

to implement the supported synchronization mechanism (spin-locks), resulting in the need for

re-validation.

An interesting work to mention is the one presented by Sinnen et al. [136] targeting general

purpose processor architectures. In [136] a task scheduling approach is proposed to make the

scheduler aware of the cost of inter-processor communication in a general purpose architecture.

The scheduler is a variant of the list scheduling in which tasks are allocated in two phases following

a similar approach to the one used by RunPar, i.e. allocating first dependent tasks and then

independent tasks. The main difference with RunPar is that the purpose of [136] is to improve

the execution time of a parallel application in a general purpose architecture by minimizing the

communication delay.

To the best of our knowledge, this is the first allocation algorithm that exploits runnable-level

parallelism instead of task-level parallelism and maintains the application configuration. Schneider

et al. [116] pointed that the parallel execution of tasks can break the mutual exclusion relations

between the critical sections present in applications configured to be executed in single-core

processors, leading to race conditions. Therefore, considering runnables as the UoS is the best

approach to avoid race conditions.

6.6 Conclusions

This chapter presents a new allocation strategy in which the single-core configuration of

AUTOSAR applications (objective O2), i.e. its runnable-to-task mapping and single-core task

scheduling, is maintained when migrating from single-core to multi-core ECUs, so the effort of

re-validating the applications is minimized (Goal 3).

To do so, we present RunPar, a new allocation algorithm for AUTOSAR automotive applications

with runnables highly connected among them, which considers runnables, and not tasks, as the

UoS. RunPar maintains the single-core task scheduling applying the following allocation strategy:

Only runnables from the same task are allowed to execute in parallel,.This allocation strategy

requires minimum modifications at AR-OS level.

RunPar is independent on the heuristics used for allocation of runnables to cores, though in the

case of EMS application, it shows the best results when using the worst-fit decreasing heuristic

which prioritizes runnables with higher combined utilization, so the longest chains of dependent

runnables are allocated first.

The allocation has been evaluated with a real automotive application, an Engine Management

System (EMS) (objective O4), which controls the injection time and amount of fuel in a diesel

engine and is composed of more than one thousand highly connected runnables, grouped into

twelve tasks.

Results show that RunPar algorithm reduces on average, WCET estimates of the EMS tasks

by approximately 26% and 30% in the case of 2-core and 4-core architectures respectively,

Chapter 6. Intra-GRP Scheduling Strategy for Parallelization of Complex Applications 112

representing a WCET speed-up of 1.35x an 1.43x. Such a WCET speed-up translates into an

increment of the CPU capacity of 31% and 42% for the two-core and four-core ECUs respectively.

Therefore, RunPar stands as a necessary step for porting AUTOSAR automotive applications

from single-core ECUs and exploiting the potential performance of multi-core ECUs (objective

O5).

Chapter 7

Inter-GRP Scheduling Strategy

for Real-time Applications on

Many-cores

This chapter devises a scheduling strategy for allocation of Parallel Software Partitions (pSWPs)

to an architecture implementing Guaranteed Resource Partitions (GRPs). It builds upon the fact

that account communication among pSWPs is known at system integration time, and tries to

reduce its impact on Worst-Case Execution Time (WCET) estimates of applications encapsulated

in pSWPs. We show that our algorithm increases the number of applications that can be scheduled

on the many-core platform thus facilitating system integration (Objective O3).

7.1 Introduction

Many-core processors stand out as a potential means for Critical Real-Time Embedded Systems

(CRTES) industry to satisfy growing performance demands. However, deriving time-composable

WCET estimates in many-cores is challenging and it can lead to pessimism in WCET, slowing

adoption of many-cores in CRTES.

One way to reduce the pessimism of WCET analysis of CRTES applications running on many-

cores is performing compositional timing analysis [47], i.e. analyzing the impact of certain

components independently and combining them to obtain WCET estimates. This thesis provides

two many-core architectures based on GRPs together with time-compositional analysis (details in

Chapter 3) that exploits the fact that the amount of data sent from one application to another is

known at system integration time [23] and thus, its impact on WCET estimates can be accounted

for at system integration time.

However, determining the most convenient scheduling of applications onto a many-core platform

so that the impact of communication among applications on WCET estimates at integration

113

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 114

2 1 4 3

C1

M
1

M
3

M
2

M
4

2 1 4 3

C2

2 1 4 3 2 1 4 3

C3 C4

M
1

M
3

M
2

M

Figure 7.1: Time-predictable many-core architecture with GRPs resembling [4]

time is kept low is still a challenge. Therefore, it is of prominent importance devising algorithms

tackling this challenge so that an efficient use of the hardware resources is obtained, thus allowing

more applications to be integrated onto the same many-core platform, thus reducing procurement,

maintenance and power costs as well as size and weight of the CRTES. To the best of our

knowledge no specific scheduling algorithm has been proposed for this problem.

We propose CAP : C ommunication-aware Allocation Algorithm for Real-Time Parallel Appli-

cations on Many-cores implementing GRPs. CAP reduces the impact of communication on

guaranteed performance of parallel CRTES applications (encapsulated within pSWPs while

facilitating system integration. CAP is based on worst-fit heuristics used in combination with a

non-preemptive time-triggered online scheduler (Objective O2).).

CAP constructs the schedule starting from the consumer applications, selecting the ones with

highest consumer weight metric first. The consumer weight metric sums up computational

requirements as well as the amount of communication among applications across the producer-

consumer chains of dependencies that reach this application. CAP schedules applications

considering the impact of their communications on already scheduled applications iteratively

until all applications are scheduled.

We illustrate the concept of CAP by applying it to many-core processor architectures with GRPs

(e.g. one in Figure 7.1), and evaluate CAP with a set of randomly generated workloads, which

is the common practice in the area of scheduling, emulating future CRTES with more than 10

parallel applications. Overall, we show that the use of CAP allows us to schedule up to 29% more

workloads on average compared to basic worst-fit heuristic allocation algorithms while facilitating

system integration.

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 115

A1=5 A3=5

A5=10 A4=15

A2=16

A6=20

Δ1->6=3 Δ2->4=6
Δ3->4=2 Δ3->5=3

Figure 7.2: Example of the directed acyclic graph for a CRTES comprising 6 applications

7.2 Background

7.2.1 CRTES applications

CRTES consist of several applications exchanging data. We focus on parallel CRTES appli-

cations [137], encapsulated within pSWPs, that comprise several processes that communicate

among them as well as with other applications, similar to the ones described in Section 2.2.1.

Understanding the impact of communication on the timing behavior of the system is one of the

main obstacles for the use of many-core processors in CRTES.

In order to facilitate system integration, AUTomotive Open System ARchitecture (AUTOSAR) [24]

and ARINC653 [23] standards differentiate 2 types of communication: (i) communication that

occurs among the processes of the same Software Partition (SWP) (intra-SWP communication)

and (ii) communication that occurs among the processes of different SWP (inter-SWP communi-

cation). Each type of communication is implemented through a specific API, e.g. in the avionics

domain intra-application communication is done through software structures called buffers and

inter-SWP communication is done through software structures called queues. Those standards

also require that the amount of inter-SWP communication is known at system integration time.

This requirement allows us to perform a compositional timing analysis and account for the impact

of inter–SWP communication during system integration.

We can exploit the asymmetry among these 2 types of communication in order to obtain tighter

WCET estimates and analyze their impact separately. During timing analysis we consider only the

impact of intra-application communication and the impact of sending inter–SWP communication.

We defer the analysis of the impact of inter–SWP communication on the other applications

executed concurrently in other clusters until the system integration phase. More details can be

found in Chapter 3.

Figure 7.2 shows an example system comprising 6 applications encapsulated in pSWPs. Each

application has a WCET estimate and few of them communicate using inter-SWP communication

mechanisms. (Section 7.3.1 provides details on ∆i→j , which represents the impact that each

inter–SWP communication has on the timing behavior of the system).

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 116

7.3 Allocation Algorithm

This section presents the main contribution of this chapter: CAP, a C ommunication-aware

Allocation Algorithm for Real-Time Parallel Applications on Many-cores, whose purpose is

reducing the impact of communication on WCET estimates of applications while facilitating

system integration. We focus on the allocation of parallel CRTES applications in many-core

processor architectures like the ones presented in Section 3.5.

7.3.1 Problem Definition

We focus on those CRTES with the following properties:

• Applications are encapsulated within pSWPs

• Applications are periodic with period Pi and have implicit deadline (Di = Pi).

• The amount of inter-SWP communication is known at system integration time, when the

scheduling tables are created, and the maximum impact of communication on applications

running concurrently in the destination GRP – ∆i→j – can be determined.

• Applications do not assume any specific communication pattern (e.g. point-to-point,

broadcast, etc.).

• Data coming from other applications must be available before application starts.

• pSWPs are not preempted and they run until completion.

• Intra-SWP communication and inter-SWP communication are explicitly separated in line

with AUTOSAR [24] and ARINC653 [23] standards.

Our system can be represented as a Directed Acyclic Graph (DAG) σ = (A,D). The nodes in

A = {A1, ..., An} represent the applications that compose the system. Each application Ai is

characterized with a WCET estimate Ci obtained in isolation, running in a GRP. The utilization

ui of application Ai is defined as Ci
Pi

, where 0 ≤ ui ≤ 1. The edges in D represent inter-SWP

communication, in which ∆i→j ∈ D represents the precedence constrains among the nodes in

A, such that Aj cannot start executing until Ai finishes. It is important to remark that the use

of DAGs allows representing a wide range of communication patterns, including point-to-point,

broadcasting, etc.

The weight of an edge ∆i→j ∈ D represents the maximum impact of inter-SWP communication

between Ai and Aj on the WCET of any arbitrary affected application Am running concurrently

with Ai and allocated to the same GRP as Aj . An inter-SWP communication request (from

Ai to Aj) delays intra-SWP requests increasing the WCET estimate of the affected application

Am by a value Ik. Ik is upper-bounded by inter-SWP communication request Upper-Bound

Delay (UBD) (see Section 3.5).

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 117

Therefore, the maximum impact that inter-SWP communication among applications Ai and Aj

can have on application Am running in the destination GRP, marked as ∆i→j , is the addition of

the impact of each Ik, as shown in Equation 7.1:

∆m
i→j =

Nreq∑
k=1

Ik (7.1)

where Nreq is the number of requests of inter-SWP communication among applications i and

j. Then, during system integration, when the allocation of applications is known, the WCET

estimate of the affected application Am must be increased by the corresponding ∆i→j values.

For the sake of clarity and to ease the explanation, we assume that all applications have the same

deadline. If this was not the case, the DAG of our system would comprise all instances of the

applications during one hyper-period of the system (least common multiple of application periods)

and we would have to slice it into time slots and apply CAP to each time slot independently,

following a similar approach to the ones shown in [32, 114].

CAP assigns the n parallel applications in A to a set of m identical GRPs sc = {c1, · · · , cm},
respecting precedence constraints in D. GRPs isolate intra-SWP communication and bound

inter-SWP communication (see Section 3.5). CAP generates a static partition Φ = (ϕ1, · · · , ϕm)

in which a subset of A is assigned to a GRP ci. Each application can be assigned to only 1 GRP.

In order to guarantee that precedence constraints are respected, CAP has to allocate application

Aj after every application Ai ∈ A finishes if there is inter-SWP communication from Ai to Aj

(∃∆i→j ∈ D). Application Ai is called producer application if there is an application Aj that

uses the results produced by Ai. Aj is then called consumer application.

7.3.2 Mapping Applications to GRPs

Figure 7.3 shows a pseudo-code implementation of CAP. The algorithm takes a DAG σ = (A,D)

and a set of m GRPs sc = {c1, ..., cm} as the input and provides a valid allocation Φ as the

output.

CAP allocates a set of application inside a given time slot (in this case equal to the deadline of

applications). It constructs the schedule by assigning offsets from the end of the given time slot to

application. It starts the allocation with consumer application first. This facilitates accounting for

inter-SWP communication impact ∆i→j . At the moment when producer application is allocated,

its consumer is already allocated and CAP can detect whether ∆i→j impacts other applications.

Note that once CAP produces the schedule, the whole schedule can be shifted to the the beginning

of the time slot, if the system integrator prefers having slack at the end of the time slot, instead

of at the beginning.

CAP starts by assigning consumer weights to all applications in A (line 3). Consumer weight of

application Al (cwl) is initially computed as the highest sum of all Ck and ∆i→j across all chains

of dependencies that have application Al as the consumer. For example in Figure 7.2, initial

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 118

CAP allocation algorithm
Input σ = (A,D): A DAG of the system ,

sc = (c1, · · · , cm): a set of GRPs

Output Φ = (ϕ1, · · · , ϕm): A valid allocation of σ into sc

1 Φ = ∅
2 d e l t a s = ∅
3 se t consumer we ight s (σ)
4 f o ra l l (Ai ∈ A|Ai /∈ Φ; 6 ∃Aj ∈ A; ∆i→j ∈ D;Aj /∈ Φ)
5
6 select Ai with highest cwi from A
7 update predece s so r s consumer we ight (Ai)
8 Ai . s t a r t t i m e = Ai . end time = 0
9 Ai . end time = l a t s t a r t t i m e (Ai . s u c c e s s o r s ())

10
11 i f (∃ i d l e s l o t ∈ ϕj | i d l e s l o t . s i z e > Ci + d e l t a s (i d l e s l o t) and i d l e s l o t .

end time ≥ Ai . end time)
12 Ai . end time = i d l e s l o t . end time
13 Ai . s t a r t t i m e = Ai . end time + Ci + d e l t a s (i d l e s l o t)
14 Φ += a l l o c a t e (cj , Ai)
15 else
16 cj = w o r s t f i t (Ai)
17 a p p l y d e l t a s (cj , Ai)
18 Φ += a l l o c a t e (cj , Ai)
19 endif
20 f o ra l l (Ak ∈ Φ and Ak /∈ ϕj)
21 d e l t a s += ∆i→k

22 endfor
23 re turn Φ ;

Figure 7.3: Pseudo-code implementation of the allocation algorithm.

consumer weight of A4 is computed as cw4 = max(16 + 6 + 15, 5 + 2 + 15) = 37, while the rest of

them are cw1 = 5, cw2 = 16, cw3 = 5, cw5 = 18, cw6 = 28. We use the consumer weight metric to

identify consumers that belong to the longest chains of dependencies and create highest pressure

on the allocation algorithm possibly containing ∆i→j with high impact.

CAP does all allocations in a single loop. Before each iteration of the main loop (line 4), CAP

updates the list of applications that are ready for allocation. It puts the following types of

applications into the list: (i) independent applications, (ii) consumer only applications and (iii)

producers with all of their consumers already allocated. Among them it selects the one with

highest consumer weight metric (line 6) for allocation. In the example in Figure 7.2, applications

A4, A5 and A6 are ready for allocation and CAP selects A4 since it has the highest consumer

weight.

Once the application is allocated, CAP updates consumer weight metric for all of its predecessors

(line 7). In this step, we add the ∆j→i to consumers weight of Ai predecessor for each communi-

cation in which Ai is consumer. It helps us keeping track of high ∆j→i values when choosing the

next application to allocate. In the example, selecting A4 leads to updating consumer weights of

A2 and A3: cw2 = cw2 + ∆2→4 = 22; cw3 = cw3 + ∆3→4 = 7.

In order to allocate the application, we compute its starting and ending time in the schedule

(expressed as the offset from the end of the time slot). Since we start from the end of the time

slot, we try to allocate applications as late as possible in the schedule. We determine the latest

ending time of the application Ai by examining the earliest starting time of its successors in σ

(line 9) to guarantee that all producer applications will finish before any consumer starts, e.g. A3

has to finish before A4 and A5 start.

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 119

Figure 7.4: Allocation of the example applications from Figure 7.2

CAP uses starting and ending times of an application Ai in order to delimit the interval of

the time slot when the applications affected by ∆j→i have to be given additional resources to

compensate for the impact of ∆j→i (see Section 7.3.3 and Figure 7.4(e)). Also those applications

that could be potentially affected by inter-SWP communication will have their starting time

shifted and therefore the difference between its start time and end time will be greater than their

respective WCET estimates.

After computing the latest ending time of an application, CAP assigns the application to a GRP.

In order to do this allocation in a single loop and maintain low complexity, CAP looks for idle

bubbles in the schedule and tries to fit the current application there (lines 11-14) respecting the

dependencies and WCET constraints. Idle bubbles in the schedule exist if the application cannot

start as late as it could in the assigned GRP but has to start earlier due to dependencies. This

step is designed for small chains of dependencies and independent applications that are allocated

late in the algorithm and tries to maximize utilization of the processor.

If CAP cannot find a suitable idle bubble in the schedule, it uses worst-fit heuristics to choose

the GRP where Ai is allocated (line 16). We check if there are existing ∆k→j in the interval

between start and ending time of Ai in the GRP cj . If there is any inter-SWP communication

targeting the GRP cj during that interval, we update the starting time of Ai to accommodate a

∆k→j that could affect the application (line 17). For example, when allocating A1 to c1, we have

to shift A1 start time to accommodate for ∆3→4 (see Section 7.3.3 and Figure 7.4(e)). Then we

allocate the application to the GRP cj (line 18).

The last step of the loop consists of adding all ∆j→k to the list of inter-SWP communications

that cross GRP boundaries and creating zones of communication impact in the schedule as well

as updating existing ones (lines 20-21).

7.3.3 Example

Figure 7.4 illustrates how CAP allocates the example in Figure 7.2 into a 2-GRP many-core. In

the first 2 steps, CAP selects applications with highest consumer weights A4 = 37 and A6 = 28,

allocates them to GRPs c1 and c2 respectively (Figure 7.4(a)). It updates consumer weights of

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 120

their predecessors by adding ∆2−>4 = 6 to consumer weight of A2 making it cw2 = 22, as well as

consumer weights of A1 and A3.

After this, A2 has the highest consumer weight, and CAP allocates it to c1 (Figure 7.4(b)). There

is communication between applications A2 and A4, but they are allocated to the same GRP c1.

Thus, this communication has no impact on any other application (its impact is included in the

WCET estimate of A2 and it does not use resources of any other application). Since there are no

predecessors of A2 in the DAG, CAP does not update any consumer weights and it selects the

application with highest consumer weight, i.e. A5 and allocates it to the GRP c2 (Figure 7.4(c)).

The next application for allocation is A3. Based on worst-fit heuristics, CAP allocates it to GRP

c2. Since ∆3→4 exists and applications A3 and A4 are allocated to different GRPs, CAP creates

an interval of communication impact in GRP c1. This interval (marked purple in Figure 7.4(d))

makes CAP shift the start of the applications affected by the amount of interference that can

be created inside it (∆3→4 - marked yellow). A2 was already allocated inside this interval and

its start has to be shifted by ∆3→4 = 2 time units to compensate for the impact inter-SWP

communication between A3 and A4.

Finally, CAP allocates A1 to c1 (see Figure 7.4(e)). A1 communicates with A6 allocated to c2.

Again, CAP, same as before, treats ∆1→6 creating another zone of communication impact in

GRP c2. This zone causes the shift of the start time of A3 and CAP must ensure that the zone

of communication impact created by A3 is also updated accordingly. Figure 7.4(f) represents the

final allocation of the example.

In this example ∆3→4 affects multiple applications, A1 and A2. In order to avoid ”double

accounting” of communication impact (once per each application) as well as to prevent starting

A2 application while A1 has not finished, CAP requires simple support from the operating system

(online scheduler). CAP has to detect cases where 2 (or more) applications are affected by 1 zone

of communication impact, e.g. A1 and A2 in f7.4(e). Starting times of applications have to be

shifted by ∆3→4 and the operating system must start A2 only if: (i) the start time of A2 has

passed and (ii) application A1 has finished.

7.4 Evaluation methodology

CAP targets future CRTES comprising several parallel applications. To evaluate its effectiveness

we use randomly generated application-sets and allocate them to the many-core processors

supporting GRPs presented in Section 3.5.

In order to better resemble the communication requirements of real systems, the randomly

generated application-sets are based on the avionics system presented in Chapter 2 and Chapter 3

comprising 3D obstacle and stereo camera image generators, that create input for 2 collision

avoidance parallel applications. An additional application checks the results of collision avoidance

applications and compares them.

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 121

WCET(cycles) ∆i−>j

Compositional 500,000-3,000,000 100,000-3,000,000
Composable (1.5-2.15) 750,000-6,450,000 N/A
Composable (1.3-1.6) 650,000-4,800,000 N/A

Table 7.1: WCET intervals in cycles, assuming 1GHz processor

In order to emulate a more complex system with higher workload, we consider two different

scenarios: (i) randomly-generated application-sets comprising between 11 and 16 parallel applica-

tions allocated onto a 16-core, 4-GRP many-core; and (ii) randomly-generated application-sets

comprising between 43 and 64 parallel applications allocated to a 256-core, 16-GRP many-core

processor. In both scenarios, the targeted many-core architecture is similar to the one presented

in Figure 7.1.

Our random application-set generator creates DAG representing application-sets with a given

utilization level assuming that applications fully utilize GRPs resources assigned to them. This

means that a parallel application utilizes all the cores available in the GRP where it is assigned

and that GRPs execute only one application at a time. WCET estimates of applications are

random values from an interval. Impact of communication among applications is also a random

value with the following constraint: randomly created communication edges cannot form loops in

the graph.

CAP allows the use of compositional timing analysis and much tighter WCET estimates w.r.t.

traditional time-composable WCET. In order to fairly evaluate CAP, we create a time-composable

copy of randomly created DAGs.

Table 7.1 shows the intervals used by our random generator to choose WCET estimates of the

applications and ∆i−>j . As shown in Table 7.1, we assume a significant amount of inter-SWP

communication, in order to create more pressure on CAP. In the case of the time-composable

approach, we consider 2 scenarios: row 2 of Table 7.1 represents the case from Chapter 3, where

time-composable WCET estimates of two industrial parallel avionics applications presented in [30]

are 1.5x and 2.15x higher w.r.t. to compositional ones, while row 3 represents an optimistic case

where it is possible to conduct an improved composable timing analysis so that time-composable

WCET estimates are only between 1.3x and 1.6x higher than compositional ones. In case of

the time-composable approach, the weight of the communication impact edges is set to 0, since

the WCET estimates already account for all possible program interactions, but the edges are

maintained to keep the precedence constraints.

Then we allocate the initial DAG with CAP and its time-composable counterpart with a basic

allocation algorithm based on worst-f it heuristics (BAWF).

BAWF works similarly to the algorithm presented in Chapter 6. It allocates applications to

GRPs based on their time-composable WCET estimates (rows 2 and 3 of Table 7.1). For each

application it selects the GRP with lowest scheduled utilization respecting preceding constraints.

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 122

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1,92 2,32 2,72 3,12

Sc
h

e
d

u
la

b
ili

ty
 s

u
cc

e
ss

 r
at

e

Utilization

CAP BAWF

Figure 7.5: Schedulability success rate - CAP vs. BAWF (Composable 1.5-2.15) on a 4-GRP
many-core

7.5 Results

We evaluate CAP by applying it to randomly generated application-sets allocating them to a

many-core processor with 4 GRPs as presented in Section 3.5. We also apply it to a larger version

of this processor, comprising 16-GRPs with 16 cores each. A currently used processor with these

number of cores and GRPs is Kalray MPPA [4].

7.5.1 4-GRP many-core

In the case of 4-GRP many-core, CAP is used with a series of randomly generated application-sets.

For each utilization value in [1.92, 4), with an utilization increment of 0.08, we create 1,000

application-sets, 30,000 in total. Each application-set comprises between 11 and 16 applications

and between 7 and 12 inter-application communication dependencies. Utilization of 1.92 means

that 48% of the GRPs are used by an application-set, and utilization of 4 means that all 4 GRPs

are fully utilized during the time-slot.

We compare CAP against a time-composable approach using worst-fit heuristics - BAWF.

Figure 7.5 compares the schedulability success rates1 of application-sets using CAP (labeled as

CAP) and the basic worst fit algorithm (labeled as BAWF) considering the scenario in row 2 of

Table 7.1 when allocating tasks to a 4-GRP many-core. Utilization increases from 1.92 up to

3.2. We observe that CAP is superior to BAWF in this scenario, being able to allocate most of

the application sets (95.7%) at utilization 2, while BAWF is able to allocate only 6.7% of the

application sets. CAP schedulability success rate decreases as we increase the utilization, but it

is still able to allocate around 50% of the application sets at utilization 2.56.

1Schedulability success rate represents the percentage of the application sets that an algorithm is able to
allocate at a given utilization level.

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 123

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1,92 2,32 2,72 3,12

Sc
h

e
d

u
la

b
ili

ty
 s

u
cc

e
ss

 r
at

e

Utillization

CAP BAWF

Figure 7.6: Schedulability success rate - CAP vs. BAWF (Composable 1.3-1.6) on a 4-GRP
many-core

Figure 7.6 compares CAP and BAWF in an optimistic scenario (row 3 of Table 7.1). CAP still

outperforms BAWF by allocating 28.9% additional application-sets on average. In the case of

an utilization around 2.64, CAP is able to allocate around 40% of the application-sets, whereas

BAWF can hardly allocate few of them.

7.5.2 16-GRP many-core

In the case of 16-GRP many-core, CAP is used with a series of randomly generated application-

sets. For each utilization value in [4.8, 12.8), with an utilization increment of 0.32, we create 1,000

application-sets. Each application-set comprises between 43 and 64 applications and between 40

and 60 inter-application communication dependencies. Utilization of 4.8 means that 30% of the

CPU capacity is used by an application-set, and utilization of 12.8 represents 70% of the CPU

capacity.

Figure 7.7 shows the schedulability success rates of application-sets using CAP and BAWF

considering the scenario in row 2 of Table 7.1 when allocating applications to a 16-GRP many-

core. Utilization increases from 4.8 up to 12.8. We observe that CAP outperforms BAWF in this

scenario, being able to allocate most of the application sets (97.8%) at utilization 4.8, while BAWF

is able to allocate only 46.7% of the application sets. Even though, both algorithms under-utilize

many-core resources in this case, CAP can still allocate around 50% of the application sets at

utilization of 7.04.

Figure 7.8 shows the more optimistic scenario (row 3 of Table 7.1) for BAWF algorithm, when

it works with tighter time-composable WCET estimates. CAP again has higher schedulability

success rates w.r.t. BAWF, being able to allocate 26.8% more application sets on average.

In the case of 16-GRP many-cores, the difference between time-composable and time-compositional

WCET estimates could be higher than the values we extracted from [30] due to the higher core

count and higher interference. If that was the case, the advantage of CAP would become even

more obvious.

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 124

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4,8 6,4 8 9,6 11,2

Sc
h

ed
u

la
b

ili
ty

 s
u

cc
es

s
ra

te

Utilization

CAP BAWF

Figure 7.7: Schedulability success rate - CAP vs. BAWF (Composable 1.5-2.15) on a
16-GRP many-core

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4,8 6,4 8 9,6 11,2

Sc
h

e
d

u
la

b
ili

ty
 s

u
cc

es
s

ra
te

Utilization

CAP BAWF

Figure 7.8: Schedulability success rate - CAP vs. BAWF (Composable 1.3-1.6) on a 16-GRP
many-core

We can observe that utilization of a 16-GRP many-core is low (Figure 7.7 and Figure 7.8). This

is an inherited limitation of partitioned time-triggered non-preemptive scheduling, required by

the time-compositional analysis from Chapter 3. Extending the analysis and CAP to support

preemption as well as other techniques for improving utilization [138] remains as future work and

one of the obstacles for using high core-/GRP- number many-cores in CRTES.

7.5.3 Algorithm complexity

Even though CAP is an offline allocation algorithm, and its performance is not crucial for the

performance of the system, it is a light-weight allocation algorithm. Allocating a 60+ application

set from previous section to a 16-GRP many core takes less than 10 seconds in a typical laptop.

All allocations are done in a single loop (line 4 in the algorithm Figure 7.4). At the beginning

of the loop, there is a search through a list of applications for the one with highest consumer

weight metrics (line 6). These 2 operations define algorithm’s complexity as O(N2), where N is

the number of applications in the application set. Note that there is another loop (lines 20-21),

but since k < N , it does not affect algorithm complexity.

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 125

7.6 Related Work

Scheduling of parallel CRTES applications to clustered many-core processors relates to scheduling

of processes to multi-core processors. We can split research on multi-core scheduling [130], into 2

categories w.r.t. allocation of processes to cores: (i) partitioned approaches that allocate each

process to a single core and later use single processor scheduling for each core and (ii) global

approaches that allow processes to migrate from one core to another at run-time.

We opted for a partitioned approach to benefit from predictability of inter-application communica-

tion and to improve WCET estimates of applications and throughput of the system. Finding an

optimal allocation using partitioned approaches is an NP-hard problem [121] and so sub-optimal

solutions are derived using, for instance, bin-packing heuristics [122–124].

Most scheduling works proposed in the CRTES domain consider independent processes that do

not communicate among them. Lakshaman et al. [138] presented a preemptive fixed-priority

partitioned scheduling for multi-cores that relies on task-splitting to improve utilization bounds.

However, this approach requires using time-composable WCET estimates and has additional

costs of preemption and task migration, mitigating the benefits of the compositional analysis

from [30].

Paolieri et al. [139] present an interference-aware allocation algorithm that uses multiple WCET

estimates per application when constructing the schedule. The WCET estimate value is chosen

from a structure called WCET-matrix that contains a set of WCET estimates obtained under

different execution scenarios. CAP requires only 1 WCET estimate per application and takes

into account only the interference of inter-application communication when creating the schedule.

Wieder and Brandenburg [134] propose a real-time partitioned scheduling of independent tasks

in which accesses to the shared resources are protected with spin locks. They provide an ILP

formulation for finding optimal partitioning w.r.t. schedulability analysis of the MSRP protocol

[135]. Their approach cannot be applied to these application-sets, as they have run-after data

dependencies and would require use of synchronization mechanisms across applications, with

which the analysis presented in [30] is incompatible.

Along this line, in [140, 141] authors propose scheduling and mapping of mixed-criticality

applications on multi-core platforms. They present the global time-triggered scheduling algorithm

that uses barriers for synchronization. However, they allow concurrent execution of applications

from only 1 criticality level, in order to derive timing guarantees. CAP does not impose such a

restriction, since it is only required to know the amount of communication among applications,

regardless of the criticality level.

In the automotive domain, there are few recent multi-core scheduling proposals [32, 114, 115].

Monot et al. [114] present a scheduling algorithm for multi-source AUTOSAR applications

that allows communication only for functions executing on the same core, so each core can be

scheduled independently. Faragardi et al. [115] present a scheduler that reduces communication

delays for AUTOSAR applications on multi-cores and Panic et al. [32] present an allocation

algorithm that parallelizes legacy single-core AUTOSAR applications. All those solutions consider

Chapter 7. Inter-GRP Scheduling Strategy for Real-Time Applications on Many-cores 126

time-composable WCET estimates, and do not consider the impact of communication on the

affected applications, limiting the performance potential of many-core processors. Sinnen et al.

[136] propose a task scheduling mechanism similar to [32], that targets general purpose processor

architectures where the task scheduler is aware of the cost of inter-processor communication,

addressing the system throughput instead of the WCET of applications.

In the avionics domain, Kim et al. [142] propose a scheduler for multiple Integrated Modular

Avionics (IMA) applications on a multi-core. This proposal considers inter-application communi-

cation, but imposes a severe constraint: while inter-application communication executes nothing

else is executed in other cores.

7.7 Conclusions

In this chapter, we present CAP, a C ommunication-aware Allocation Algorithm for Real-Time

Parallel Applications on Many-cores, that significantly reduces the impact of communication

on guaranteed performance of parallel CRTES applications while facilitating system integration

(Objective O2).

CAP exploits the fact that inter-application communication is known at system integration time

enabling the use of tight WCET estimates. It constructs the schedule starting from consumer

applications first giving higher priority to those belonging to the chains of dependencies with

longest utilization. For each inter-application communication that crosses the cluster boundaries,

CAP creates a zone of communication impact inside which applications allocated to the destination

cluster are given additional computational resources.

We evaluate CAP with sets of randomly-generated application-sets, based on the case studies pre-

sented in [30] that represent future complex CRTES targeting many-core processors implementing

GRPs (Chapter 3). We compare CAP with a baseline state-of-the-art allocation algorithm that

uses time-composable WCET estimates. CAP is able to allocate up to 29% more workloads on

average to many-core processors with 4-clusters compared to the baseline algorithm.

Therefore, CAP stands as an important step towards the efficient use of many-core processors in

CRTES so that their performance potential can be fully exploited.

Part IV

The Thesis and Beyond –

Conclusions and Future Work

127

Chapter 8

Enabling TDMA Arbitration in

the Context of MBPTA

Current timing analysis techniques can be broadly classified into two families: Deterministic

Timing Analysis (DTA) and Probabilistic Timing Analysis (PTA). Each family defines a set

of properties to be provided (enforced) by the hardware and software platform so that valid

Worst-Case Execution Time (Worst-Case Execution Time (WCET)) estimates can be derived

for programs running on that platform. However, the fact that each family relies on each own

set of hardware designs limits their applicability and reduces the chances of those designs being

adopted by hardware vendors.

In this chapter, we show that deterministic architectures that are the focus of this thesis, can

be analyzed in the context of PTA. We focus on Time Division Multiple Access (TDMA)

arbitration policy, one of the most common arbitration policies in Critical Real-Time Embedded

Systems (CRTES). We show that even though TDMA is suits DTA well, it also can be made PTA-

compliant with little effort. To that end, we analyze TDMA in the context of Measurement-Based

Probabilistic Timing Analysis (MBPTA) and show that padding execution time observations

conveniently leads to trustworthy and tight WCET estimates with MBPTA without introducing

any hardware change. In fact, TDMA outperforms round-robin and time-randomized policies in

terms of WCET in the context of MBPTA.

8.1 Introduction

Developing CRTES requires validating its timing behavior. This can be done by deriving WCET

estimates to the execution time of each task, which are passed as input to the scheduler that

combines them with other task information such as deadline, period and priority to validate

that the budgets provided to each task are sufficient to satisfy the tasks’ execution time needs.

DTA techniques [143], both static and measurement-based (SDTA and MBDTA), advocate

for time-deterministic architectures. The goal is that the access time to each resource can be

129

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 130

upper-bounded so that (1) with SDTA, bounds can be incorporated in the analysis and (2)

with MBDTA, bounds can be enforced in the measurements taken during the analysis phase.

PTA [144–148] supports architectures in which some resources are time-deterministic whereas

others are time-randomized [149]. The goal is that resources’ impact on execution time can

be bounded either with a fixed value (deterministic upper-bounding) or a distribution function

(probabilistic upper-bounding) [149].

Mixed-criticality applications running in multi- and many-cores challenge both timing analysis

families, DTA and PTA, because the time it takes a request from a given task to be granted

access to a resource depends on the load other co-running tasks put in that resource. Under DTA,

specially SDTA, this dependence is in general controlled by advocating for hardware support that

isolates tasks against each other, e.g. using TDMA arbitration [54], or allows upper-bounding the

maximum impact of contention, e.g. round robin arbitration. Such isolation is a key enabler for

mixed-criticality systems by preventing interferences across criticality levels. Under MBPTA it is

required that the impact of contention captured in the measurements taken during the analysis

phase of the system upper-bounds, deterministically or probabilistically [149], the impact of

contention that can occur during the deployment of the system. While round-robin arbitrated

shared resources used in the context of DTA have also been shown analyzable with MBPTA [150],

this is not the case for TDMA arbitrated shared resources.

This chapter analyzes in detail TDMA in the context of MBPTA (Objective O3) and provides

means to allow TDMA resources to be used together with MBPTA. Furthermore, we show that

TDMA allows obtaining tighter WCET estimates than round-robin by padding execution time

once instead of padding the latency of each request. To reach these objectives:

• We analyze the timing characteristics of TDMA in the context of MBPTA from a theoretical

perspective. We show that TDMA cannot be directly analyzed with MBPTA. The difficulty

lies in the variable (i.e. jittery) nature of the delay that a request incurs to get access to

the arbitrated resource and that a probability cannot be assigned to each specific delay

value, thus failing to attain the properties required by PTA [149].

• We show that the effect of TDMA on execution time is limited to the duration of a single

TDMA window when there is a single TDMA-arbitrated resource for asynchronous requests,

as already proven for synchronous ones in [54]. Also, we show that the effect of TDMA for

several chained arbitrations is limited to the least-common-multiple of the TDMA windows.

• We apply a simple modification to the application of MBPTA as a means to enable the

analysis of TDMA. In particular, we augment the execution time observations collected

when running the task of interest in the target system, which are used as input to MBPTA.

Our analysis not only advances the limits on the arbitration policies that can be analyzed

with MBPTA without requiring MBPTA-customized designs [150], but also helps promoting

one-design-fits-all for arbitration policies (Objective O1). The latter makes that different timing

analysis techniques are enabled on the same hardware. This increases the impact that the research

on time-analyzable hardware may have on chip vendors to adopt such hardware in actual processor

designs, hence, reaching the goal of having time-analyzable multicores. Our solution based on

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 131

padding produces 9% lower WCET estimates on average than round-robin and MBPTA-specific

arbitration policies.

8.2 Contention analysis for DTA and MBPTA

The access latency to a hardware shared resource includes the arbitration delay and the service

latency. The former is the time a request spends to get access to the resource. The latter is

the time that the request takes to be processed once it is granted access. Both of them may

be impacted by contention, specially the arbitration delay. Several proposals have shown how

to handle contention in the access to hardware shared resources so that trustworthy WCET

estimates can be provided. For on-chip resources, the goal is providing time composability in

the access latency for WCET estimation. This means that access latency can be upper-bounded

such that the load that other tasks put on that resource does not exceed the access latency used

for WCET estimation purposes for the task under analysis, thus avoiding interferences across

tasks with mixed criticalities.

8.2.1 SDTA and MBDTA

SDTA [143, 151] abstracts a model of the hardware which is fed by a representation of the

application code to derive a single WCET estimate. On the contrary, MBDTA makes (extensive)

testing on the target system with stressful, high-coverage input data. From all tests it is recorded

the longest observed execution time and an engineering margin is added to make safety allowances

for the unknown. This margin is extremely difficult to determine in the general case. Under SDTA

trustworthy WCET estimates are attained in the presence of contention by different means:

• At analysis time requests are assumed to experience always the worst-case latency in the

access to the shared resource [152]. For instance, with round-robin, SDTA assumes that

whenever the request becomes ready, it has the lowest arbitration priority so it is delayed

by all other cores before getting access. As analysis-time latencies upper-bound deployment

ones, the execution time derived at analysis time for the program upper-bounds the impact

of the shared resource. Note that with MBDTA it is not assumed that requests suffer

an upper-bound contention latency but, instead, this is enforced by a specific hardware

mechanism [86] making each request be delayed as if it was experiencing the highest

contention possible1.

• Alternatively at analysis time each request is assumed to suffer a fixed impact on its

duration. This approach is used by SDTA when applied to TDMA-arbitrated resources, by

determining the alignment of each request w.r.t. the TDMA window and hence, the delay

it suffers until its next available slot.

• It is also possible to carry out a combined timing analysis of all the tasks simultaneously

running in the multicore [153]. While this may reduce the impact of contention on WCET

1If no hardware support is in place measurements need to capture high contention scenarios, but trustworthiness
of the WCET estimates is hard to support with evidence.

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 132

Table 8.1: Random arbitration bus example.

(a) Probability of getting (b) Accumulated prob. of getting

the bus in a given round X the bus in the first X rounds

estimates, since only the actual contention generated by the co-running tasks is considered,

it comes at the cost of losing time composability, since any change in the tasks in the

workload requires reanalyzing all the tasks in it.

8.2.2 MBPTA

MBPTA derives a distribution, called Probabilistic Worst Case Execution Time (pWCET), that

associates a probability of exceedance to each WCET value. The exceedance probability, which

upper-bounds the probability that a single run of the task exceeds its WCET budget, can be

set arbitrarily low in accordance with the requirements of the corresponding safety standard.

For instance DO-178B/C [28] for avionics sets the maximum allowed failure rate of a system

component to 10−9 per hour of operation for its highest integrity level. This translates into

10−15 exceedance probability for tasks triggered every 10ms [154].

MBPTA, builds on end-to-end measurements taken on the platform to derive a WCET distribution,

rather than a single WCET estimate per task, as it is the case for SDTA. MBPTA requires

understanding and controlling the nature of the different contributors to the execution time of a

program [155]. These contributors, also known as sources of execution time variability (setv),

include (i) the initial conditions of hardware and software (e.g., cache state), (ii) those functional

units with input-dependent latency (e.g., integer divider), (iii) the particular addresses where

memory objects are placed, (iv) the number of contenders in the access to shared resources,

and (v) the execution paths of the program. MBPTA requires that the jitter, i.e. execution

time variability, of all setv captured in the end-to-end execution times collected at analysis time

upper-bound the jitter of each setv when the system is deployed (deployment phase). In [149] it

is explained how upper-bounding these setv enables collecting execution time observations that

can be regarded as independent and identically distributed, as required by MBPTA [146].

Jitter can be upper-bounded deterministically [149] by forcing setv to experience a single latency at

analysis time latandet that upper-bounds any latency that the setv may take at deployment, latdep,idet .

That is, ∀i : latandet ≥ latdep,idet . For instance, enforcing functional units with input-dependent

latencies to operate at their highest latency during the analysis phase leads to deterministic

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 133

upper-bounding as their latency at analysis time is constant. At deployment, real latencies will

be equal or lower than those at analysis time.

Jitter can also be upper-bounded probabilistically [149] by forcing the latencies of a setv to have

a probabilistic distribution at analysis time such that for any exceedance probability (e.g., 10−3),

the latency at analysis time is equal or higher than that of the distribution at deployment. For

instance, let us assume random-permutations arbitrated bus [150] shared by Nc cores. Further

assume that at deployment the bus is arbitrated only across all cores with pending requests, which

are a subset of all Nc cores. In this scenario, the analysis-time delay distribution experienced

due to contention upper-bounds that at deployment if at analysis time arbitration always occurs

across Nc cores. This upper-bounding is probabilistic since such delay is not a fixed value but

a distribution. Table 8.1(a) shows the probability of getting the bus in a given round under

different contender (core) counts, while Table 8.1(b) shows the accumulated probability, that is

the probability of getting the bus in any of the first X rounds2. We observe that when all Nc = 4

cores are assumed active, as it is the case at analysis time, the accumulated probability of getting

the bus is smaller than when the number of cores is 3 or 2. Hence, given that at deployment time

the number of active cores is at most 4, the analysis time contention distribution upper-bounds

that obtained at deployment time rendering this arbitration policy as MBPTA analyzable.

8.3 TDMA impact on execution time

TDMA ensures that the load a task puts on a shared resources does not affect the WCET of its

co-runners [152], thus isolating tasks with different criticality levels. In this section we make a

detailed analysis of TDMA impact on the timing behavior of the application. Without loss of

generality we focus on a bus as the resource arbitrated with TDMA.

We assume canonical TDMA so that it splits time into windows of size w cycles, each of which is

further divided into slots of size s. Each bus contender (cores in our case) is assigned one such

slot in a cyclic fashion. During a given slot only its owner can send requests. When a contender

has no pending requests, the bus remains idle for that slot even if there are pending requests from

other contenders (non-work-conserving approach). We call tdma-relative cycle or simply relative

cycle (cycreli) to the cycle in which a request, ri, becomes ready within the TDMA window. It

can be computed as shown in Equation 8.1, where cycabsi stands for the absolute execution cycle.

cycreli = cycabsi mod w (8.1)

8.3.1 Request Types

We consider a timing-anomaly free architecture [156–159]. A number of definitions have been

devised for timing anomalies. In our case, a processor architecture free of timing anomalies refers

2Note that random permutations works similarly to TDMA but sorting slots randomly within each window.
Thus, the maximum arbitration delay is always below two TDMA windows.

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 134

to an architecture where an increase in the access latency of a request to any resource (e.g., due

to contention) can only lead to an equal or higher execution time.

We consider both synchronous and asynchronous requests. Synchronous requests are blocking.

This means that they stall the corresponding pipeline stage until served. In our reference

architecture this is the case of load operations that miss in first level (L1) caches and access the

second level cache (L2).

Asynchronous requests, instead, are kept in a buffer until served not stalling any pipeline stage

unless the buffer is full. This is the case, for instance, of those processors that do not stall the

pipeline on a store (write) operation. Since no instruction in the core has to wait for the results

of such write operation, the store operation is put in a store-buffer, which sends the request to

the data cache afterwards. The store operation is considered as committed (serviced) when it

is sent to the store-buffer. However, the write request may take a variable number of cycles to

access the bus. This creates asynchronous accesses to the bus.

Split transactions are used when the target resource for the request, L2 in our case, takes long

to answer (e.g. ARM AMBA bus [88] implements them). Instead of holding the bus for tens of

cycles, the L2 answers the request with a ‘split transaction’ command allowing the other requester

use the bus while L2 processes the request in background.

8.3.2 TDMA impact on execution time for synchronous request

The slot alignment delay (sad) for each request defines the time the request has to wait for its

slot in a TDMA window so it can be granted access. In the worst case a request becomes ready

one cycle after its slot expires making it wait sadtdma cycles that is defined in Equation 8.2.

sadtdma = (Nc− 1)× s (8.2)

Note that, without loss of generality and for the sake of simplifying formulation, we have assumed

that the access time of a request is one cycle. In the general case, assuming a request latency

latr, the worst scenario occurs when it becomes ready during its slot latr − 1 cycles before it

elapses, making the request wait sadtdma−gen cycles as defined in 8.3.

sadtdma−gen = (Nc− 1)× s+ latr − 1 (8.3)

As shown in Equation 8.2, the particular sad of a request may make it be served right away (so 0

delay) or delayed by up to (Nc− 1)× s cycles, or in other words, w − 1 cycles. Therefore, given

a program with a single synchronous request ri, the execution time of the program can vary up

to w − 1 cycles depending on how ri aligns with the TDMA window as already shown in [54].

Further, if multiple synchronous requests exist in the program, the execution time variation that

the TDMA resource can introduce is still up to w − 1 cycles as proven in [54]. The intuition

behind this effect lies on the fact that a particular sad achieves the fastest execution time across

the w different sad (w different alignments w.r.t. the TDMA window). Under any other sad the

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 135

program only needs to be stalled by up to w − 1 cycles to align with the TDMA window as the

fastest sad, and execute identically from that point onwards. We refer the interested reader to

the work by Kelter et al. [54] for a formal proof.

8.3.3 sad for Multiple Asynchronous Requests

In the case of synchronous requests the time between requests accessing the bus is fixed, regardless

of the particular sad each of them suffers. However, this is not the case for asynchronous requests

(e.g., stores). Let δinji be the injection delay between a preceding instruction generating request

ri−1 and the instruction generating request ri. The injection delay can be measured as the time

elapsed since ri−1 is fetched into the processor until ri is fetched.

Hence, a program P with n+ 1 requests can be represented as ∆inj
P = {−, δinj1 , ..., δinjn }. If the

injection delay is fixed ∆inj
P for the store operations in P , the access time of those requests to

the bus, and hence the time among them ∆bus
P may vary depending on the sad scenario.

In order to illustrate this scenario we assume a program with ∆inj
P = {−, 4, 1} in which all

operations are stores. Stores are sent to a 2-entry store buffer from where they access a TDMA-

arbitrated bus. Figure 8.1 shows the timing of the different requests depending on the relative

ready cycle of r0. Note that requests are considered as completed once they are sent to the store

buffer. For instance, in the first scenario (cycrel0 = 1, so the first shaded row) r0 becomes ready in

cycle 0 in which it is buffered (b0) and it is served in cycle 1 (s0). r1 becomes ready 4 cycles after

that, and it is put in the buffer b1 until the next slot for the core starts in cycle 8. Once r1 is in

the buffer in cycle 4, it is considered completed, so in cycle 5 r2 is processed, i.e. also sent to the

buffer b2. Once the slot for this core starts in the second TDMA window, r1 and r2 are served

consecutively in cycles 8 and 9. Thus, it takes 10 cycles to send all requests (from cycle 0 till 9).

In the second scenario (cycrel0 = 2) r0 enters the store buffer in cycle 1 and cannot be sent to the

bus in cycle 2 because the S0 slot has elapsed. r1 is queued in cycle 5 and the store buffer is full.

Thus, although r2 gets ready in cycle 6, it cannot enter the buffer until an entry is released, which

occurs in cycle 8 when r0 is sent to the bus. Then r1 is sent in cycle 9 and r2 has to wait until

cycle 16 to be granted access to the bus. Thus, it takes 16 cycles to send all requests (from cycle

1 till 16). Overall, each different sad takes 10, 16, 15, 14, 13, 13, 12 and 11 cycles respectively.

In Figure 8.1 we observe that the number of different sad scenarios, impacting both the sad of

the different requests and the program execution time, is limited to w − 1. This leads to the

following observation.

Observation 1: The impact of sad on a program with different asynchronous requests is

determined by cycrel0 . Under each different cycrel0 scenario the sad for each request – and hence

the impact on the program’s execution time – may vary.

As with synchronous requests, the execution time difference between different sad can only

be up to w − 1 cycles. To illustrate it, let us take as a reference the scenario executing the

fastest (e.g., first scenario in Figure 8.1) and any other arbitrary sad scenario. Let shiftsad be

the cycle count difference between both scenarios – sadfastest and sadslow – such that sadslow

synchronizes with sadfastest as described in Section 8.3.2. By construction, shiftsad < w given

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 136

Figure 8.1: Example of 3 requests with ∆inj = {−, 4, 1} and their sad. bi are the cycles in
which the request is ready but waiting in the buffer due to sad ; si represents cycle in which the
request gets access to the bus. Finally blanks represent the cycles with no requests on the bus.

that there are w different sad where the shiftsad for the w − 1 slowest ones w.r.t. the fastest

one is 1, 2,... w − 1 cycles respectively. Eventually, in sadslow requests can wait shiftsad cycles

and execute identically as in sadfastest, or it may be the case that they execute faster because

during those shiftsad cycles some requests find an available slot. This reasoning applies to each

request individually given that, although they are injected synchronously (e.g., instructions are

fetched synchronously), they access the bus asynchronously due to some buffering mechanism

(e.g., requests are buffered in the store buffer without stalling the fetch stage). Thus, given

that all requests can be served as in the fastest case if they get delayed by shiftsad cycles, the

execution time would be increased by shiftsad at most, where shiftsad < w. If any request is

served earlier, this cannot increase the execution time further because we rely on a processor

free of timing anomalies. Hence, sadslow can only take up to shiftsad < w more cycles than

sadfastest.

Observation 2: The maximum execution time impact between the different sad that a program

with asynchronous requests may suffer is smaller than a TDMA window (w cycles). The execution

time difference among two particular r0 TDMA alignments, i.e. cycrel0 , is up to w − 1 cycles.

8.3.4 Multiple TDMA resources

When several TDMA-arbitrated resources are used in the system (e.g., k TDMA resources), at

most lcm(w1, w2, ..., wk) different sad scenarios across all k TDMA resources exist, where lcm

stands for the least common multiple.

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 137

Figure 8.2: Different combinations – in a two TDMA-window case – for cycrel,TDMA1
0 and

cycrel,TDMA2
0 .

The key factor in determining the impact of crossing k TDMA resources is the relative cycle in

which the first request, r0, becomes ready across all TDMA windows. Hence, for the case of two

TDMA windows there are a total of lcm(w1, w2) combinations of cycrel,tdma1
0 and cycrel,tdma2

0 .

For instance, in Figure 8.2 we have an example with two TDMA resources each one with two slots.

Slots in the first and second TDMA resource have 3 and 2 cycles respectively. Thus, wtdma1 = 6

and wtdma2 = 4. This leads to a total of lcm(wtdma1, wtdma2) = 12 different sad, shown in the

last row. In this case, we consider all those 12 sad scenarios. Based on the arguments given

before, the execution time in the worst sad scenario is at most 11 cycles worse (slower) than in

the best sad as this is the longest time needed to align the slots across both TDMA resources.

Thus, the same rationale used for a single TDMA resource can be applied in this case.

Observation 3: When multiple TDMA resources are used, those TDMA resources can create

execution time variations of up to lcm(w1, w2, ..., wk)− 1 cycles due to sad.

8.3.5 Other considerations

Split Requests. As explained before, some requests to the bus are split. For example a L1

cache miss may require a split request to access first the L2 cache, get a response indicating

it misses in L2, and some time later get the data back with the second part of the request

that has been split. In any case these two requests originated by the split mechanism are

either synchronous or asynchronous and the same observations presented in previous sections for

independent synchronous and asynchronous requests apply in this case.

Variable injection rate. Let fc(Iri) be the cycle in which the instruction generating a request

to the bus is fetched. So far in our discussion we have assumed a fixed injection rate across sad

scenarios. That is, δinji = fc(Iri)− fc(Iri−1) is the same for any consecutive pair of instructions

under any two sad scenarios. In reality, however, if under some scenarios the instructions between

Iri and Iri−1 , after the execution of Iri−1 block the pipeline such that Iri cannot be fetched then

δinji varies across sad scenarios. However, δinji is determined by a combination of synchronous

and asynchronous events: pipeline stalls bring the synchronous component whereas buffering

capabilities of the pipeline bring the asynchronous component. Hence, delaying timing events by

at most the cycles between the current sad and the one leading to the fastest execution is enough

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 138

to have the same execution behavior from that point onwards. Anything occurring with a delay

shorter than that cannot lead to a longer execution time in a processor free of timing anomalies.

Overall, the maximum impact on execution time of TDMA is limited to lcm(w1, w2, ..., wk)− 1

cycles.

8.4 TDMA in the context of MBPTA

In this section we show how TDMA affects WCET estimation under MBPTA. We start by

introducing the particular timing characteristics of MBPTA-compliant processors.

8.4.1 Timing of MBPTA-Compliant Processors

DTA-compliant processors experience deterministic latencies in the different resources and hence,

execution time can be regarded as deterministic given a set of initial conditions. This occurs

because each event leads to a single (deterministic) outcome and so, a single processor state can

be reached. This is not the case for MBPTA-compliant processors, in which a number of random

events may alter the execution time, thus leading to a different number of states, each of which

is reached with a given probability as shown in [160]. We refer to those states as probabilistic

processor states.

We illustrate through a synthetic example how those different states influence the latency between

different bus requests. We consider a processor in which instructions take a fixed latency and where

memory operations are all loads. Load operations access a time-randomized data cache [161],

which is the only source of execution time variability (the instruction cache is assumed perfect)3.

The total latency of a load that misses in cache, in the absence of any contention, is 100 cycles:

1 cycle to access cache, 1 cycle to traverse the bus and 98 cycles to fetch data. Note that in

this simple example we assume no contention to send data from memory to the core. In this

first experiment we also consider that, whenever a load misses in cache, main memory is reached

through a bus that creates no contention. Let us assume that the program under analysis has the

following sequence of instructions I = {ld0, i0, i1, ld1, i2, ld2, i3, i4, i5, i6, i7, ld3}. Further assume

that ld0 always misses in cache and the other three load operations — ld1, ld2 and ld3 — have

an associated hit probability of 75%, although the actual value of those probabilities is irrelevant

for the example. Other core instructions — i0, i1,... i7 — do not access the data cache and have

a fixed 1-cycle latency.

In this architecture, load operations generate a new probabilistic state in the execution as shown

in Figure 8.3. Every access leads to two possible probabilistic states (hit or miss), each with

an associated probability. In that respect, there is a probability for each of the 8 possible

combinations of hit-miss outcomes of the 3 load instructions (hhh, hhm, hmm, ...,mmm), which

can be easily derived (e.g., 0.75 · 0.25 · 0.75 = 0.140625 for the hmh case). Interestingly, any

execution of the program can only lead to one of those 8 probabilistic processor states, and for

3These assumptions simplify the discussion in this section. In Section 8.5 we consider a multicore processor
with time-randomized data and instruction caches.

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 139

Figure 8.3: Different probabilistic states in which the processor may be after the execution of
each of the 3 loads in the example.

each of them the delay among requests is fixed. Moreover, each such state (and set of delays

among requests) occurs with a given probability. For instance, for the sequence mhm, which

occurs with a probability of 0.046875, ∆inj = {−, 3, 8} since 3 cycles elapse between ld0 and ld1,

in which i0 and i1 are executed and ld1 requires an extra cycle to access cache. Analogously, 8

cycles elapse between ld1 and ld3 to execute 7 1-cycle instructions before ld3 accesses cache.

In a second experiment, instead of assuming a no-contention bus, we use assume TDMA arbitration

for the bus that is shared among 4 cores. For TDMA the slot for each core is s = 2 cycles with

windows of w = 8 cycles. The execution time of the program under each probabilistic state is

affected by the bus contention. Hence, the observations made in Section 8.3 for the impact of

TDMA on execution time are to be considered for each probabilistic state in a MBPTA-compliant

processor.

8.4.2 TDMA analysis with MBPTA

As explained in Section 8.3.2, a shared resource implementing a TDMA arbitration policy may

introduce execution time variations of up to w − 1 cycles, where w is the window size. From the

point of view of MBPTA, the sad suffered by each request is indeed a setv. Hence, sad for TDMA

is ruled by the same principles as other setv : its jitter has to be upper-bounded deterministically

or probabilistically.

Observation 4: In the absence of MBPTA-specific support, TDMA is not by default analyzable

with MBPTA because one cannot prove that the delay experienced by each request (and hence

the whole program) at analysis time due to the alignment with the TDMA slots upper-bounds the

impact of TDMA at deployment.

In the case of MBPTA, we have shown that each probabilistic state leads to a different ∆inj ,

thus making the impact of the TDMA slot alignment different for each such states. Intuitively,

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 140

Figure 8.4: Full-program padding in the context of MBPTA.

one should consider the TDMA sad alignment individually for each probabilistic state to account

for TDMA impact in execution time. However, this may be overly expensive since the number of

probabilistic states grows exponentially with the number of probabilistic events [148, 160]. A

different approach is needed to account MBPTA impact on execution time and pWCET estimates.

8.4.3 Full-program padding

We rely on the knowledge acquired in Section 8.3 on the maximum impact that TDMA can incur

in the execution time of a program to propose a solution that has minimum impact on pWCET

estimates. In particular, we show that the maximum impact that the alignment with respect

to the TDMA window that a program can suffer is limited to w, so the maximum difference in

execution time (i.e. jitter) between two runs of the same program due to TDMA is limited to

w− 1 cycles when one TDMA-arbitrated resource is used and lcm(w1, w2, ..., wk)− 1 when k > 1

TDMA resources are used.

Hence, we could increase the execution time observations obtained at analysis time by w − 1

cycles without breaking MBPTA compliance and trustworthily upper-bound the effect of TDMA

alignment in the execution time. The process is as depicted in Figure 8.4.

MBPTA [146, 147] performs several runs of the program under analysis on the target platform

for a set of input vectors, labeled as ivj in Figure 8.4. These runs are done under a setup in which

the seeds for the hardware random generators as well as other setup parameters are properly

initialized by the system software. As a result of this step, several execution time observations

(eti) are obtained. With the full-program padding approach, there is no need to control the sad

for each run. Each of eti is augmented leading to a set of augmented execution time observations

as shown in Equation 8.4, where k is the number of TDMA-arbitrated resources.

aeti =

eti + w − 1 if k = 1

eti + lcm(w1, w2, ..., wk)− 1 if k > 1
(8.4)

The augmented observations, which deterministically upper-bound the maximum impact of TDMA

sad alignment, are passed as input to MBPTA that obtains a pWCET estimate trustworthily

upper-bounding the impact of TDMA sad. Note that augmenting all observations may be

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 141

Figure 8.5: Schematic of the multicore processor considered.

pessimistic since the actual sad experienced might not be the fastest one. However, as shown

later in our evaluation, such pessimism is irrelevant in practice.

8.5 Results

In this section we first introduce the evaluation framework. Next, we examine how TDMA

sad impacts execution time. Finally, we compare 3 arbitration policies: TDMA, Interference

Aware Resource Arbiter (IARA) based on round-robin [86] and a MBPTA-specific randomized

arbitration policy called random permutations [150].

8.5.1 Evaluation Framework

Processor setup. We use a cycle-accurate modified version of the SoCLib [37] framework modeling

a multicore processor as the one shown in Figure 8.5 (see Section 2.1). We use 3-stage in-order

execution cores. Caches implement random placement and random replacement4. First level data

(DL1) and instruction (IL1) caches are 8KB, 4-way with 32-byte lines. DL1 is write-through.

The L2 is 128KB, 8-way with 32-byte lines. The L2 deploys cache partitioning, in particular

way-partitioning as implemented in real processor like ARM A9 or Aeroflex NGMP, so that each

core has exclusive access to 2 ways. This prevents contention in the cache as it is hard to model.

These cache designs have been shown to be MBPTA compliant [154, 161, 162]. Cache latencies

are 1 cycle for DL1/IL1 and 2 cycles for L2. Note that L2 turnaround time can be typically

around 10 cycles due to 2 bus traversals to send the request and receive its corresponding answer.

4Time-randomized caches have been shown effective in conjunction with MBPTA [161, 162]. It is worth
mentioning that their use in the context of MBPTA has been regarded as risky in [163]. However, authors in
[164, 165] provide detailed arguments about those concerns and why time-randomized caches can be used safely.

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 142

Table 8.2: Maximum exec. time variations due to TDMA sad.

TDMA TDMA bus TDMA TDMA bus
Bench. bus only and mem.ctrl. Bench. bus only and mem.ctrl.
a2time 7 215 idctrn 7 215
aifftr 7 215 iirflt 7 111
aifirf 7 111 matrix 7 215
aiifft 7 215 pntrch 7 111
basefp 7 215 puwmod 7 111
bitmnp 7 215 rspeed 7 111
cacheb 7 111 tblook 7 111
canrdr 7 111 ttsprk 7 111

There are two independent buses to send requests from cores to L2 and to send answers from L2

back to the cores. Both buses have a 2-cycle latency once access is granted.

We use a time-analyzable memory controller [166] with per-request queues. We assume a

Central Processing Unit (CPU) frequency of 800MHz and DDR2-800E SDRAM with the memory

controller implementing close-page and interleaved-bank policies, which delivers 16-cycles access

latency and 27-cycles inter-access latency [64]. Thus, an access completes in 16 cycles once it is

granted access to memory, but the next access has to wait 11 extra cycles to start to allow the

page accessed to be closed. This typically leads to memory latencies around 100 cycles due to

contention and access delay.

In our experiments, to control the access to both the bus and memory controller, we deploy three

different arbitration policies: random permutations [150], IARA based on round-robin [86, 152]

and TDMA. The particular policy used in each experiment is indicated conveniently.

Benchmarks. We consider the EEMBC Autobench benchmarks [43], which is a well-known suite

reflecting the current real-world demand of some automotive embedded systems (see Section 2.2.3).

When computing pWCET estimates, we collected 1,000 execution times for each benchmark,

which proved to be enough for MBPTA [146]. The observations collected in all the experiments

passed the independence and identical distribution tests as required by MBPTA [146].

8.5.2 Impact of TDMA sad on Execution Time

In this section we empirically confirm that the impact of TDMA resources is at most w cycles

when a single TDMA resource is used and lcm(w1, w2, ..., wk) cycles for k TDMA resources.

Single TDMA resource. For this experiment we use a TDMA-arbitrated bus to access L2.

Bus latency is 2 cycles and wbus = 8 (4 slots for the 4 cores, each slot of s = 2 cycles). The

responses from the L2, which is assumed perfect (i.e. all accesses hit) arrive in a fixed latency of

2 cycles. DL1/IL1 cache memories are always initialized with the same seeds so that the random

events produced are exactly the same across all experiments. This way the only setv is the sad

for the bus. We run 8 experiments with the 8 different sad for each benchmark. The “TDMA

bus only” columns in Table 8.2 show the maximum execution time variation observed for each

benchmark. As shown, all benchmarks observe exactly a maximum difference of wbus − 1 = 7

cycles. In fact, we have corroborated that execution times for the 7 slowest sad of each benchmark

are exactly 1, 2, 3, 4, 5, 6 and 7 cycles higher than that of the fastest sad. This means that in

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 143

all runs at some point requests get delayed until they align (synchronize) with TDMA as in the

fastest case, and then execution continues identically.

Multiple TDMA resources. For this experiment we use the original processor setup. We

have 3 TDMA resources: the buses to reach L2 and get answers from it, and the memory

controller. Both buses have wbus = 8, 2-cycle slots. The memory controller has 27-cycle slots, so

wmemctrl = 108 cycles due to the 4 contender cores. Thus, lcm(8, 8, 108) = 216. Experiments are

run as before fixing seeds for caches so that execution time variations are produced only due to

the alignment with TDMA resources. We have run 216 experiments for each benchmark with the

216 different sad. The “TDMA bus and mem. ctrl.” columns in Table 8.2 show the maximum

execution time variation observed for each benchmark. As shown, such difference is at most

lcm(8, 8, 108)− 1 = 215 cycles, thus further corroborating our hypothesis. In fact, in 7 out of the

16 benchmarks such difference is exactly 215 cycles. In the other 9 cases it is 111 cycles. Those

111 cycles come from the fact that the memory controller window is much larger than the bus

one, and in some cases it is enough to align with such window to get identical or near identical

timing behavior as in the fastest case. This explains wmemctrl − 1 = 107 cycles. The other 4

cycles correspond to the misalignment of the TDMA bus windows after wmemctrl = 108 cycles.

8.5.3 Performance Comparison

We evaluate arbitration policies in terms of worst-case performance, which is measured with

the probabilistic WCET estimates provided by MBPTA. In all experiments, we use the same

arbitration policy in the buses and in the memory controller. Seeds for the caches are initialized

randomly on each run. We use the following setup for each policy:

• Time-randomized. We use random permutations arbitration, with which on every

arbitration window a random permutation of the slots is created so that in every window

the contenders access the bus in a random fashion [150].

• IARA. Bus latency is always 8 cycles (4 cores x 2-cycle latency). Memory latency is always

97 cycles due to the 3 slots for the other cores (3 x 27) and the 16-cycle access of the current

request.

• TDMA. With TDMA experiments are run assuming always an arbitrary sad. We use

full-program padding increasing the observations passed to MBPTA by 215 cycles.

Since we use non-work-conserving versions of all arbitration policies, the task under analysis

can only access the resources in its slot (time-randomized and TDMA). Those slots in which it

is not granted access, the task cannot access the shared resource even if it is idle. This makes

irrelevant what is run in the other cores or whether they are idle. Thus, pWCET estimates

are time-composable (do not depend on the co-runners as needed to isolate across different

criticalities), and results can be obtained keeping the other cores idle.

pWCET estimates. Figure 8.6 shows the pWCET estimates for each benchmark. We use a

cutoff probability of 10−15 per activation as it has been shown appropriate to use in some domains

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 144

Figure 8.6: pWCET estimates for a cutoff probability of 10−15 normalized w.r.t.
time-randomized arbitration.

as avionics [154]. Results have been normalized with respect to the time-randomized bus. IARA

is 15% worse than random permutations on average. IARA is the worst policy since it assumes

each request to experience its worst-case latency. TDMA is 9% better on average than random

permutations because TDMA slots for a given core are homogeneously distributed in time, thus

leaving some time between consecutive slots. Conversely, random permutations may lead with

relatively high probability to consecutive slots assigned for a given core in the memory controller

because it is granted last in one permutation and first in the next one. However, some cycles

elapse since the data reach the core for a load request until the next request (either a load or

a store) from this core reaches the memory controller. This is enough to miss its opportunity

and wait for a later slot that will not show up until the next permutation. Overall, although

the average time between slots for random permutations and TDMA is the same, under random

permutations some slots cannot be used and performance (and so WCET estimates) is affected.

Differences for individual benchmarks w.r.t. the average case occur due to the random variations

that affect measurements, which may lead to higher or lower tightness in some cases [167]. Still,

results are quite consistent across benchmarks.

8.6 Related work

Several works analyze, from a SDTA point of view, the impact of on-chip bus arbitration policies,

specially TDMA [54, 168] and round-robin [86], on WCET. In [54] an analysis and evaluation of

a TDMA arbitrated bus under the context of SDTA, considering both architectures with and

without timing anomalies is performed. In [86] an analysis of the delay that every request can

suffer when accessing a round-robin arbitrated resource is carried out.

More complex inter-connection architectures such as meshes [169] or rings [170] based on the use

of TDMA and round-robin have also been shown to be analyzable with SDTA techniques. For

the TDMA case the Time-Triggered Architecture [171] (TTA) implements timing-predictable

communication by means of customized TDMA schedules. Other approaches like T-CREST [169]

Chapter 8. Enabling TDMA Arbitration in the Context of MBPTA 145

deliver low complexity TDMA-based Network on Chips (NoCs) with global schedule that enable

straightforward WCET analysis. For round-robin several studies [172, 173] propose offering

several levels of round-robin arbitration for asymmetric upper-bound delay (ubd) so that high

priority tasks may enjoy lower ubd. In [152, 153] authors present a comparison of TDMA and

round-robin for SDTA and MBDTA considering different metrics.

For MBPTA several specific arbitration policies have been proposed which includes random

lottery access [174] and random permutations [150], both based on the idea of introducing some

type of randomization when granting access to the different contenders. With the lottery bus on

every (slot) round the grant is given randomly to one of the resource contenders. With random

permutations, on every window a random permutation of the slots is assigned so that in every

window the contenders access the bus in a random fashion. To the best of our knowledge this is

the first attempt to analyze the benefits of TDMA, a DTA-amenable arbitration policy, in the

context of MBPTA.

8.7 Conclusions

Different types of timing analyses impose heterogeneous constraints on hardware designs, so chip

vendors have to face the challenge of deciding which timing analysis to support (if any). Hence,

proving that the same hardware design can be used to obtain trustworthy and tight WCET

estimates with different families of timing analyses is of prominent importance to increase the

chance of those hardware designs being realized (Objective O1).

We have shown that shared resources implementing TDMA arbitration, which meet mixed-

criticality systems requirements, can be analyzed in the context of MBPTA (Objective O3). We

introduce small changes to the application of MBPTA with which WCET estimates obtained are

9% lower on average than those obtained with MBPTA-friendly designs.

Chapter 9

Conclusions, Impact and Future

Work

There is a strong requirement to increase the computation capabilities of CRTES to cope with

the necessity of increasing the functional value of systems and so stay competitive in the market.

Many-core processor architectures are increasingly seen as the solution to safisty this performance

requirement. On one side, many-core architectures significantly increase system’s performance by

exploiting the parallelisms exhibited by applications while providing a better performance per

watt ratio due to its simpler core design compared to single-core architectures. On the other side,

many-cores allow scheduling multiple functionalities within the same computing unit, leading to

a reduction in SWaP costs.

However, the use of many-core architectures complicate significantly the extraction of timing

guarantees, a fundamental requirement of CRTES. Concretely, the interferences generated when

multiple applications access simultaneously shared hardware resource (e.g., interconnection

networks, memory controllers) impacts on the timing behavior of the system, as it becomes

dependent on application’s workload, breaking a fundamental design pillar in CRTES: time

composability. Time composability enables incremental development and incremental verification

of integrated systems, and so allows independent application/system development, across several

vendors.

This thesis has advanced one step towards the adoption of many-core processor architectures

in current and future CRTES designs from the hardware and software perspective. From the

hardware perspective:

• This thesis has proposed a new hardware feature called Guaranteed Resource Partition

(GRP) that defines an execution environment composed of a cluster of processor resources

in which parallel applications run, providing the required timing isolation properties among

systems’ components. This is done by implementing a transparent execution mechanism

that freezes internal GRP requests in favour to communications among GRPs, allowing

to account for the impact of communications at system integration time. GRPs are the

147

Chapter 9. Conclusions, Impact and Future Work 148

basis to provide the timing isolation properties of Parallel Software Partitions (pSWPs), an

extension of the software partition concept defined in the ARINC 653 and the AUTOSAR

standards.

• This thesis has analyzed the suitability of applying wormhole NoC (wNoC) designs in

many-core processor design targeting CRTES. To do so, this thesis has proposed a new

metric, named Worst-Contention Delay (WCD), that enables accounting for the impact of

NoC interferences coming from different requestors on the WCET estimates. The WCD

allows to derive an analytical model that computes time-composable WCD bounds based

on common wNoC design parameters, covering a wide range of existing wNoCs. To that

end, we apply the model considering the design parameters of two wNoCs deployed in real

processors: the Tilera-Gx36 and the 48-core Intel SCC. Moreover, this thesis has proposed

a minimal set of hardware modifications on the wNoC design that enables a fair sharing of

the available bandwidth across the different flows in the network, making time-composable

WCET estimates less affected by the core count in many-core designs.

From the software perspective, this thesis has proposed new allocation strategies that assigns

processor resources within GRPs and across them, that takes full benefit of the proposed many-core

hardware architecture:

• The allocation strategy within GRPs (named RunPar), suitable for the AUTOSAR frame-

work (and similar ones), enables to maintain the same configuration of AUTOSAR applica-

tions, i.e. its runnable-to-task mapping and single-core task scheduling, when migrating

from single-core to many-core processor designs, so the effort of re-validating the applications

is minimized. To do so, RunPar maintains the single-core task scheduler by exploiting

only the parallelism of the units of scheduling (named runnables in case of AUTOSAR)

belonging to the same task.

• The allocation strategy across GRPs (named CAP) minimizes the impact that communica-

tion across GRPs has on the WCET of applications, while facilitating system integration.

To do so, it constructs the schedule starting from consumer applications first giving higher

priority to those belonging to the chains of dependencies with longest utilization. Then, for

each inter-application communication that crosses the cluster boundaries, CAP creates a

zone of communication impact inside which applications allocated to the destination cluster

are given additional computational resources.

Finally, this thesis also explores the use of probabilistic timing analyses techniques when consid-

ering TDMA arbitration policy to have access to shared hardware resources, proving that the

same hardware design can be used to obtain trustworthy WCET estimates with different families

of timing analyses.

Chapter 9. Conclusions, Impact and Future Work 149

9.1 Impact and Future Work

The work done in this thesis has opened several research lines targeting new challenges in CRTES

some of which are already covered by other PhD students in the Universitat Politecnica de

Catalunya (UPC).

Based on the proposals described in this thesis, which in our humble opinion has been one of

the first attempts to design a time composable many-core processor architecture, the European

FP7 project PROXIMA [175] has explored extensions to the NoC designs proposed in this

thesis to support probabilistic timing analysis techniques, extending the work introduced in

Chapter 8. It is also worth mentioning the collaboration with DENSO, a Japanese automotive

company interested in exploiting the RunPar scheduling strategy presented in Chapter 6 into

the AUTOSAR execution framework. Finally, the many-core designs and the static scheduling

strategies have been the baseline for the PhD thesis entitled ”Parallelization of Automotive

Control Software” [176].

A research line initiated upon the results of this thesis is the use of parallel programming models

to facilitate the programmability of many-core architectures. In that regard, several PhD theses

at the UPC have started tackling this challenge. It is worth mentioning the research conducted

within the European FP7 project P-SOCRATES [177], that explored the time predictability

properties of the OpenMP parallel programming model. The project investigated the use

of OpenMP to develop CRTES on top of clustered-based many-core processor architectures

supporting guaranteed resource particitions (GRPs) presented in Chapter 3. Concretely, the

project considered the MPPA 256 processor from Kalray [4] featuring a many-core fabric composed

of 256-cores, organized in 16 clusters with 16-cores each. Similarly, a project supported by the

European Space Agency (ESA) [178] investigated the use of OpenMP in the space domain.

Finally, the OpenMP Advisory Review Board (ARB), the organization in charge of the evolution

of this parallel programming model, is currently considering introducing changes on the standard

to enable the development of CRTES with OpenMP.

There are still a number of challenges to be investigated with respect to the allocation strategies

implemented at operating system level to properly schedule the units of parallelism defined by

the parallel programming model, and its impact on time predictability. Here, the NoC plays a

fundamental role, as the communication characteristics among the differtent units of parallelism

impacts of the timing behavior of the system. In that regard, the proper definition of the weights

used in the wNoC design presented in Chapter 4 by means of new allocation scheduling strategies

can minimize the impact of NoC interferences on the different units of parallelism. Some work

on this line has been initiated recently at UPC as part of a Master thesis where those weighted

wNoCs are used together with parallel applications in CRTES to optimize their WCET by

combining weight assignment and thread-to-core mapping.

Clearly, as already identified in Chapters 3 to 5, the NoC and the memory are hardware components

that dramatically impacts on the time predictability of the system. The increasing adoption of

accelerators in CRTES, such as GPUs in automotive systems for autonomous driving, require the

proper design and verification of NoCs and GPU-to-memory interconnects. While the organization

of those architectures and the data traffic may differ from those in the many-cores proposed

Chapter 9. Conclusions, Impact and Future Work 150

and studied in this thesis, concepts such as complex NoCs, contention, time-composability and

time-predictability need to be accounted for similarly. Hence, part of the future work is leveraging

the know-how developed in this thesis to design and optimize those newer architectures so that

reliable and tight timing guarantees can be obtained while making an efficient use of their

resources.

List of Publications 151

List of Publications
Publication included in this thesis (in chronological order):

• Milos Panic, Eduardo Quiñones, Pavel G. Zaykov, Carles Hernández, Jaume Abella,

Francisco J. Cazorla: Parallel many-core avionics systems. EMSOFT 2014

• Milos Panic, Sebastian Kehr, Eduardo Quiñones, Bert Boddeker, Jaume Abella, Fran-

cisco J. Cazorla: RunPar: An allocation algorithm for automotive applications

exploiting runnable parallelism in multicores. CODES+ISSS 2014

• Milos Panic, Eduardo Quiñones, Carles Hernández, Jaume Abella, Francisco J. Cazorla:

CAP: Communication-Aware Allocation Algorithm for Real-Time Parallel Ap-

plications on Many-Cores. DSD 2015

• Milos Panic, Jaume Abella, Carles Hernández, Eduardo Quiñones, Theo Ungerer, Francisco

J. Cazorla: Enabling TDMA Arbitration in the Context of MBPTA. DSD 2015

• Milos Panic, Carles Hernández, Eduardo Quiñones, Jaume Abella, Francisco J. Cazorla:

Modeling High-Performance Wormhole NoCs for Critical Real-Time Embed-

ded Systems. RTAS 2016

• Milos Panic, Carles Hernández, Jaume Abella, Antoni Roca, Eduardo Quiñones, Francisco

J. Cazorla: Improving performance guarantees in wormhole mesh NoC designs.

DATE 2016

Other publications:

• Milos Panic, Germàn Rodr̀ıguez, Eduardo Quiñones, Jaume Abella, Francisco J. Cazorla:

On-chip ring network designs for hard-real time systems. RTNS 2013

• Theo Ungerer, Christian Bradatsch, Mike Gerdes, Florian Kluge, Ralf Jahr, Jörg Mische, J.

Fernandes, Pavel G. Zaykov, Zlatko Petrov, Bert Böddeker, Sebastian Kehr, Hans Regler,

Andreas Hugl, Christine Rochange, Haluk Ozaktas, Hugues Cassé, Armelle Bonenfant,

Pascal Sainrat, Ian Broster, Nick Lay, David George, Eduardo Quiñones, Milos Panic, Jaume

Abella, Francisco J. Cazorla, Sascha Uhrig, Mathias Rohde, Arthur Pyka: parMERASA -

Multi-core Execution of Parallelised Hard Real-Time Applications Supporting

Analysability. DSD 2013

• Sebastian Kehr, Milos Panic, Eduardo Quiñones, Bert Böddeker, Jorge Becerril Sandoval,

Jaume Abella, Francisco J. Cazorla, Günter Schäfer: Supertask: Maximizing runnable-

level parallelism in AUTOSAR applications. DATE 2016

• Theo Ungerer, Christian Bradatsch, Martin Frieb, Florian Kluge, Jörg Mische, Alexander

Stegmeier, Ralf Jahr, Mike Gerdes, Pavel G. Zaykov, Lucie Matusova, Zai Jian Jia Li, Zlatko

Petrov, Bert Böddeker, Sebastian Kehr, Hans Regler, Andreas Hugl, Christine Rochange,

Haluk Ozaktas, Hugues Cassé, Armelle Bonenfant, Pascal Sainrat, Nick Lay, David George,

Ian Broster, Eduardo Quiñones, Milos Panic, Jaume Abella, Carles Hernández, Francisco

List of Publications 152

J. Cazorla, Sascha Uhrig, Mathias Rohde, Arthur Pyka: Parallelizing Industrial Hard

Real-Time Applications for the parMERASA Multicore. ACM Trans. Embedded

Comput. Syst. 15(3): 53:1-53:27

• Milos Panic, Jaume Abella, Eduardo Quiñones, Carles Hernández, Theo Ungerer, Francisco

J. Cazorla: Adapting TDMA arbitration for measurement-based probabilistic

timing analysis. Microprocessors and Microsystems - Embedded Hardware Design 52

Bibliography

[1] Transparency Market Research. Embedded System Market - Global Industry Analy-

sis, Size, Share, Growth, Trends and Forecast 2015 - 2021, 2015. URL http://www.

transparencymarketresearch.com/embedded-system.html.

[2] Reinhard et al Wilhelm. The Worst-Case Execution-Time Problem Overview of Methods

and Survey of Tools. ACM Transactions on Embedded Computing Systems (TECS), 7(3):

36, 2008.

[3] D. Rahmati, et al. Computing accurate performance bounds for best effort networks-on-chip.

IEEE Transactions on Computers, 62(3), 2013. doi: http://doi.ieeecomputersociety.org/10.

1109/TC.2011.240.

[4] Kalray MPPA 256 Many-Core Processor, http://www.kalray.eu/ products/mppa-manycore,.

[5] Global Market Insight. Embedded System Market Size By Application (Automotive, Indus-

trial, Consumer Electronics, Telecommunication, Healthcare, Military & Aerospace), By

Product (Software, Hardware) Industry Outlook Report, Regional Analysis, Application De-

velopment Potential, Price Trends, Competitive Market Share & Forecast, 2016 2023, 2016.

URL https://www.gminsights.com/industry-analysis/embedded-system-market.

[6] Lúıs Miguel Pinho, Vincent Nélis, Patrick Meumeu Yomsi, Eduardo Quiñones, Marko

Bertogna, Paolo Burgio, Andrea Marongiu, Claudio Scordino, Paolo Gai, Michele Ramponi,

and Michal Mardiak. P-SOCRATES: A parallel software framework for time-critical many-

core systems. Microprocessors and Microsystems - Embedded Hardware Design, 39(8):

1190–1203, 2015. doi: 10.1016/j.micpro.2015.06.004. URL http://dx.doi.org/10.1016/

j.micpro.2015.06.004.

[7] Forbes. Weak Desktop Sales Impact Intel’s Q1’15 Earnings, Data Center, IoT; NAND See

Double Digit Growth, 2015. URL http://onforb.es/1mXq5yW.

[8] Financial Times. Internet of things drives Intel revenues, 2015. URL http://on.ft.com/

1oH1QXI.

[9] Financial Times. Arm profits and sales up as shift away from mobile gains pace, 2016. URL

http://on.ft.com/1T6I8Bi.

[10] Intel. Next-Generation Transportation, 2017. URL http://www.intel.com/content/www/

us/en/automotive/automotive-overview.html.

153

http://www.transparencymarketresearch.com/embedded-system.html
http://www.transparencymarketresearch.com/embedded-system.html
https://www.gminsights.com/industry-analysis/embedded-system-market
http://dx.doi.org/10.1016/j.micpro.2015.06.004
http://dx.doi.org/10.1016/j.micpro.2015.06.004
http://onforb.es/1mXq5yW
http://on.ft.com/1oH1QXI
http://on.ft.com/1oH1QXI
http://on.ft.com/1T6I8Bi
http://www.intel.com/content/www/us/en/automotive/automotive-overview.html
http://www.intel.com/content/www/us/en/automotive/automotive-overview.html

Bibliography 154

[11] Markus Dillinger, Kambiz Madani, and Nancy Alonistioti. Software Defined Radio: Archi-

tectures, Systems and Functions. 2003. ISBN 9780470851647.

[12] Marc Duranton, Koen De Bosschere, Albert Cohen, Jonas Maebe, and Harm Munk. The

hipeac vision 2015, 2015.

[13] G. Edelin. Embedded systems at thales: the artemis challenges for an industrial group. In

ARTIST, 2009.

[14] Silabs. http://www.silabs.com/Marcom%20Documents/Resources/

automotive-applications-guide.pdf, 2013.

[15] R.N. Charette. This car runs on code. In IEEE Spectrum online, 2009.

[16] Infineon. AURIX Safety joins Performance. http://www.infineon.com/cms/en/product/

promopages/32-bit-microcontroller-for-automotive/index.html?intc=0140013.

[17] Peter Puschner, Raimund Kirner, and Robert G. Pettit. Towards composable timing for

real-time software. In 1st International Workshop on Software Technologies for Future

Dependable Distributed Systems. 2009.

[18] Tilera. TILE-Gx Processors Family http://www.tilera.com/products/TILE-Gx.php.

[19] P4080 QorIQ Integrated Processor Hardware Specifications, Rev. 0, 02/2011, Doc. Num.

P4080EC. Freescale, 2011.

[20] Texas Instruments. C6000 Multicore DSP + ARM SoC, 2016. URL http://www.ti.com/

lsds/ti/processors/dsp/c6000_dsp-arm/overview.page?paramCriteria=no.

[21] M. Paolieri, E. Quinones, F.J. Cazorla, G. Bernat, and M. Valero. Hardware support

for WCET analysis of hard real-time multicore systems. In International Symposium on

Computer Architecture (ISCA), 2009.

[22] Milos Panic, Carles Hernández, Eduardo Quiñones, Jaume Abella, and Francisco J. Cazorla.

Modeling high-performance wormhole nocs for critical real-time embedded systems. In

2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),

Vienna, Austria, April 11-14, 2016, pages 267–278, 2016. doi: 10.1109/RTAS.2016.7461342.

URL http://dx.doi.org/10.1109/RTAS.2016.7461342.

[23] ARINC Specification 653: Avionics Application Software Standard Standard Interface, Part

1 and 4, Subset Services. ARINC Inc., June 2012.

[24] AUTOSAR consortium. AUTomotive Open System ARchitecture (AUTOSAR). Standard

v4.1, 2014. URL www.autosar.org.

[25] ARINC Report 651-1: Design Guidance for Integrated Modular Avionics. ARINC Inc.,

November 1997.

[26] David Haworth, Tobias Jordan, Alexander Mattausch, and Alexander Much. Freedom from

interference for autosar-based ecus: a partitioned AUTOSAR stack. In Automotive - Safety

& Security 2012, Sicherheit und Zuverlässigkeit für automobile Informationstechnik, 14.-15.

November 2012, Karlsruhe, Proceedings, pages 85–98, 2012. URL http://subs.emis.de/

LNI/Proceedings/Proceedings210/article6842.html.

http://www.silabs.com/Marcom%20Documents/Resources/automotive-applications-guide.pdf
http://www.silabs.com/Marcom%20Documents/Resources/automotive-applications-guide.pdf
http://www.infineon.com/cms/en/product/promopages/32-bit-microcontroller-for-automotive/index.html?intc=0140013
http://www.infineon.com/cms/en/product/promopages/32-bit-microcontroller-for-automotive/index.html?intc=0140013
http://www.ti.com/lsds/ti/processors/dsp/c6000_dsp-arm/overview.page?paramCriteria=no
http://www.ti.com/lsds/ti/processors/dsp/c6000_dsp-arm/overview.page?paramCriteria=no
http://dx.doi.org/10.1109/RTAS.2016.7461342
www.autosar.org
http://subs.emis.de/LNI/Proceedings/Proceedings210/article6842.html
http://subs.emis.de/LNI/Proceedings/Proceedings210/article6842.html

Bibliography 155

[27] A. Wilson and T. Preyssler. Incremental certification and Integrated Modular Avionics. In

DACS, 2008.

[28] RTCA and EUROCAE. DO-178C / ED-12C, Software Considerations in Airborne Systems

and Equipment Certification, 2011.

[29] Road vehicles – Functional safety – Part 6: Product development at the software level, Ref.

num. ISO 26262-6:2011(E). ISO, 2011.

[30] M. Panic, et. al. Parallel many-core avionics systems. EMSOFT, 2014.

[31] Milos Panic, Carles Hernández, Jaume Abella, Antoni Roca, Eduardo Quiñones, and

Francisco J. Cazorla. Improving performance guarantees in wormhole mesh noc designs. In

2016 Design, Automation & Test in Europe Conference & Exhibition, DATE 2016, Dresden,

Germany, March 14-18, 2016, pages 1485–1488, 2016. URL http://ieeexplore.ieee.

org/xpl/freeabs_all.jsp?arnumber=7459546.

[32] M. Panic, et. al. Runpar: An allocation algorithm for automotive applications exploiting

runnable parallelism in multicores. CODES+ISSS, 2014. doi: 10.1145/2656075.2656096.

[33] Milos Panic, Eduardo Quiñones, Carles Hernández, Jaume Abella, and Francisco J. Cazorla.

CAP: communication-aware allocation algorithm for real-time parallel applications on

many-cores. In 2015 Euromicro Conference on Digital System Design, DSD 2015, Madeira,

Portugal, August 26-28, 2015, pages 685–692, 2015. doi: 10.1109/DSD.2015.71. URL

http://dx.doi.org/10.1109/DSD.2015.71.

[34] Milos Panic, Jaume Abella, Carles Hernández, Eduardo Quiñones, Theo Ungerer, and

Francisco J. Cazorla. Enabling TDMA arbitration in the context of MBPTA. In 2015

Euromicro Conference on Digital System Design, DSD 2015, Madeira, Portugal, August

26-28, 2015, pages 462–469, 2015. doi: 10.1109/DSD.2015.68. URL http://dx.doi.org/

10.1109/DSD.2015.68.

[35] Milos Panic, Jaume Abella, Eduardo Quiñones, Carles Hernández, Theo Ungerer, and

Francisco J. Cazorla. Adapting TDMA arbitration for measurement-based probabilistic

timing analysis. Microprocessors and Microsystems - Embedded Hardware Design, 52:

188–201, 2017. doi: 10.1016/j.micpro.2017.06.006. URL https://doi.org/10.1016/j.

micpro.2017.06.006.

[36] parMERASA. EU-FP7 Project: http://www.parmerasa.eu/.

[37] Soclib, http://www.soclib.fr/trac/dev, 2012.

[38] NanoC: http://www.nanoc-project.eu.

[39] RapiTime. www.rapitasystems.com, 2008.

[40] Clement Ballabriga, Hugues Casse, Christine Rochange, and Pascal Sainrat. Otawa: an

open toolbox for adaptive wcet analysis. In SEUS 2010.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459546
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459546
http://dx.doi.org/10.1109/DSD.2015.71
http://dx.doi.org/10.1109/DSD.2015.68
http://dx.doi.org/10.1109/DSD.2015.68
https://doi.org/10.1016/j.micpro.2017.06.006
https://doi.org/10.1016/j.micpro.2017.06.006

Bibliography 156

[41] Nicolas Pouillon, Alexandre Bécoulet, Aline Vieira de Mello, François Pêcheux, and Alain

Greiner. A generic instruction set simulator API for timed and untimed simulation and

debug of mp2-socs. In Proceedings of the Twentienth IEEE/IFIP International Symposium

on Rapid System Prototyping, Shortening the Path from Specification to Prototype, RSP

2009, Paris, France, 23-26 June 2009, pages 116–122, 2009. doi: 10.1109/RSP.2009.11.

URL https://doi.org/10.1109/RSP.2009.11.

[42] H. Jeffreys and B. S. Jeffreys. Methods of Mathematical Physics, 3rd ed. Cambridge

University Press, 1988.

[43] Jason Poovey. Characterization of the EEMBC Benchmark Suite. North Carolina State

University, 2007.

[44] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,

David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mi-

tra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström.

The worst-case execution-time problem overview of methods and survey of tools. ACM

Transactions on Embedded Computing Systems, 7:1–53, May 2008.

[45] R. Heckmann and R. Ferdinand. Worst-case execution time prediction by static program

analysis. In AbsInt White paper, 2009.

[46] AUTOSAR. AUTomotive Open System ARchitecture, 2012. http://www.autosar.org.

[47] Sebastian Hahn, Jan Reineke, and Reinhard Wilhelm. Towards compositionality in execution

time analysis: definition and challenges. SIGBED Review, 12(1):28–36, 2015.

[48] M. Gerdes, et. al. Time analysable synchronisation techniques for parallelised hard real-time

applications. In DATE, 2012.

[49] M. Gerdes, et. al. The split-phase synchronisation technique: Reducing the pessimism in

the WCET analysis of parallelised hard real-time programs. In RTCSA, 2012.

[50] C. Rochange, et. al. WCET analysis of a parallel 3D multigrid solver executed on the

MERASA multi-core. In WCET workshop, 2010.

[51] M. Paolieri, E. Quinones, and F. J. Cazorla. Timing effects of the memory system in

real-time multicore integrated architectures: Problems and solutions. In Transactions on

Embedded Computing Systems, 2012.

[52] B. Akesson, et. al. Predator: a predictable sdram memory controller. In CODES+ISSS,

2007.

[53] Yan Li, et. al. Timing analysis of concurrent programs running on shared cache multi-cores.

In RTSS, 2009.

[54] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik Roychoud-

hury. Static analysis of multi-core TDMA resource arbitration delays. Real-Time Systems,

50(2):185–229, 2014.

https://doi.org/10.1109/RSP.2009.11
http://www.autosar.org

Bibliography 157

[55] Javier Jalle, Jaume Abella, Eduardo Quiñones, Luca Fossati, Marco Zulianello, and

Francisco J. Cazorla. Deconstructing bus access control policies for real-time multicores. In

SIES, pages 31–38, 2013.

[56] Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and

Christian Ferdinand. Memory hierarchies, pipelines, and buses for future architectures in

time-critical embedded systems. IEEE Transactions on CAD of Integrated Circuits and

Systems, 28(7):966–978, 2009.

[57] Zheng Shi, et. al. Schedulability analysis for real time on-chip communication with wormhole

switching. In IJERTCS, 2010.

[58] L. Benini, et. al. P2012: Building an ecosystem for a scalable, modular and high-efficiency

embedded computing accelerator. In DATE, 2012.

[59] W. Dally and B. Towles. Principles and Practices of Interconnection Networks. Elsevier,

May 2004.

[60] J. Rattner. Single-chip cloud computer: An experimental many-core proces-

sor from Intel Labs. URL http://download.intel.com/pressroom/pdf/rockcreek/

SCCAnnouncement.

[61] A. Roca, C. Hernandez, J. Flich, F. Silla, and J. Duato. Enabling high-performance

crossbars through a floorplan-aware design. In Intl. Conf.Parallel Processing (ICPP), pages

269–278, 2012.

[62] Y. Tamir and G. L. Frazier. High-performance multiqueue buffers for VLSI communication

switches. In ISCA, 1988.

[63] B. Sinharoy, et. al. IBM POWER7 multicore server processor. IBM Journal of Research

and Development, 55(3), May 2011. doi: 10.1147/JRD.2011.2127330.

[64] JEDEC. DDR2 SDRAM Specification JEDEC Standard No. JESD79-2E, April 2008.

[65] MERASA. EU-FP7 Project: www.merasa.org.

[66] P. Radojkovic, et. al. On the evaluation of the impact of shared resources in multithreaded

cots processors in time-critical environments. In HiPEAC, 2012.

[67] Jan Nowotsch and Michael Paulitsch. Leveraging multi-core computing architectures in

avionics. In EDCC, 2012.

[68] R. Fuchsen. How to address certification for multi-core based IMA platforms: Current

status and potential solutions. In DACS, 2010.

[69] A. Schranzhofer, et. al. Timing analysis for TDMA arbitration in resource sharing systems.

In RTAS, 2010.

[70] S. Schliecker, et. al. Bounding the shared resource load for the performance analysis of

multiprocessor systems. In DATE, 2010.

http://download.intel.com/pressroom/pdf/rockcreek/SCCAnnouncement.
http://download.intel.com/pressroom/pdf/rockcreek/SCCAnnouncement.

Bibliography 158

[71] A. Schranzhofer, et. al. Timing analysis for resource access interference on adaptive resource

arbiters. In RTAS, 2011.

[72] D. Dasari and V. Nelis. An analysis of the impact of bus contention on the wcet in multicores.

In HPCC-ICESS, 2012.

[73] J. Sparsoe. Design of networks-on-chip for real-time multi-processor systems-on-chip. In

Application of Concurrency to System Design (ACSD), 2012 12th International Conference

on, pages 1–5, 2012. doi: 10.1109/ACSD.2012.27.

[74] H. Kopetz and G. Bauer. The time-triggered architecture. Proc. of the IEEE, 91(1):112–126,

2003. ISSN 0018-9219. doi: 10.1109/JPROC.2002.805821.

[75] Precision Timed Machines. http://chess.eecs.berkeley.edu/pret.

[76] K. Goossens, et. al. Virtual execution platforms for mixed-time-criticality systems: The

compsoc architecture and design flow. SIGBED Rev., 10(3):23–34, October 2013. ISSN

1551-3688. doi: 10.1145/2544350.2544353. URL http://doi.acm.org/10.1145/2544350.

2544353.

[77] J. Duato, et al. Interconnection Networks: An Engineering Approach. Morgan Kaufmann,

2002. ISBN 1558608524.

[78] Jos Flich and Davide Bertozzi, editors. Designing network on-chip architectures in the

nanoscale era. Chapman & Hall/CRC computational science series. Chapman and Hall/CRC,

2011.

[79] S. Ramos and T. Hoefler. Capability models for manycore memory systems: A case-

study with xeon phi knl. In 2017 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 297–306, May 2017. doi: 10.1109/IPDPS.2017.30.

[80] Sunggu Lee. Real-time wormhole channels. Journal Of Parallel And Distributed Computing,

63:299–311, 2003.

[81] Y. Qian, Z. Lu, and W. Dou. Analysis of worst-case delay bounds for best-effort communi-

cation in wormhole networks on chip. In IEEE/ACM NoCS, 2009.

[82] D. Dasari, et al. Noc contention analysis using a branch-and-prune algorithm. ACM Trans.

Embed. Comput. Syst., 13(3s), March 2014. ISSN 1539-9087. doi: 10.1145/2567937. URL

http://doi.acm.org/10.1145/2567937.

[83] P. Munk, et al. Dynamic guaranteed service communication on best-effort networks-on-chip.

In PDP, 2015. URL http://dx.doi.org/10.1109/PDP.2015.47.

[84] B. Kim et al. A real-time communication method for wormhole switching networks. In

ICPP, 1998.

[85] J. Jalle, et al. Deconstructing bus access control policies for real-time multicores. In SIES

2013, 2013.

[86] Marco Paolieri, Eduardo Quinones, Francisco J. Cazorla, Guillem Bernat, and Mateo Valero.

Hardware support for WCET analysis of hard real-time multicore systems. In ISCA, 2009.

http://chess.eecs.berkeley.edu/pret
http://doi.acm.org/10.1145/2544350.2544353
http://doi.acm.org/10.1145/2544350.2544353
http://doi.acm.org/10.1145/2567937
http://dx.doi.org/10.1109/PDP.2015.47

Bibliography 159

[87] A. Burns, et al. A wormhole noc protocol for mixed criticality systems. In RTSS, 2014.

[88] AMBA Bus Specification. http://www.arm.com/products/system-ip/amba/amba-open-

specifications.php.

[89] A. Roca, et al. VCTlite: Towards an efficient implementation of virtual cut-through

switching in on-chip networks. In HiPC 2010, 2010.

[90] Mathieu Patte and Vincent Lefftz. System impact of distributed multi core systems.

Technical Report ESTEC Contract 4200023100, ESA, 2011.

[91] José Duato, Sudhakar Yalamanchili, Blanca Caminero, Damon S. Love, and Francisco J.

Quiles. Mmr: A high-performance multimedia router - architecture and design trade-offs.

In HPCA, pages 300–309, 1999.

[92] E. Bolotin, et al. Qnoc: Qos architecture and design process for network on chip. JOURNAL

OF SYSTEMS ARCHITECTURE, 2004.

[93] M. Schoeberl, et. al. A statically scheduled time-division-multiplexed network-on-chip for

real-time systems. In IEEE/ACM NoCS, 2012.

[94] M. D. Gomony, et al. A generic, scalable and globally arbitrated memory tree for shared

DRAM access in real-time systems. In DATE, 2015. URL http://dl.acm.org/citation.

cfm?id=2755795.

[95] K. Goossens, et al. Aethereal network on chip: concepts, architectures, and implementations.

Design Test of Computers, IEEE, 2005. ISSN 0740-7475. doi: 10.1109/MDT.2005.99.

[96] R. Obermaisser, et al. The time-triggered system-on-a-chip architecture. In ISIE, 2008.

[97] Zheng Shi and A. Burns. Real-time communication analysis for on-chip networks with

wormhole switching. In NoCS, 2008. doi: 10.1109/NOCS.2008.4492735.

[98] B. Nikolic, et al. Worst-case communication delay analysis for many-cores using a limited

migrative model. In RTCSA, 2014.

[99] Zheng Shi and Alan Burns. Real-time communication analysis with a priority share policy

in on-chip networks. ECRTS, 2009.

[100] H. Kashif, et al. ORTAP: an offset-based response time analysis for a pipelined commu-

nication resource model. In RTAS, 2013. URL http://dx.doi.org/10.1109/RTAS.2013.

6531097.

[101] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic queuing systems

for the internet. Springer-Verlag, 2001. ISBN 3-540-42184-X.

[102] T. Ferrandiz, et al. A sensitivity analysis of two worst-case delay computation methods for

spacewire networks. In ECRTS, 2012. doi: 10.1109/ECRTS.2012.35.

[103] RTCA Inc. RTCA DO-297 integrated modular avionics (IMA) development guidance and

certification considerations. 2005.

[104] GENESYS. GENeric Embedded SYStem Platform. http://www.genesys-platform.eu.

http://dl.acm.org/citation.cfm?id=2755795
http://dl.acm.org/citation.cfm?id=2755795
http://dx.doi.org/10.1109/RTAS.2013.6531097
http://dx.doi.org/10.1109/RTAS.2013.6531097

Bibliography 160

[105] Hanmin Park and Kiyoung Choi. Position-based weighted round-robin arbitration for equal-

ity of service in many-core network-on-chips. NoCArc ’12. ACM, 2012. ISBN 978-1-4503-

1540-1. doi: 10.1145/2401716.2401728. URL http://doi.acm.org/10.1145/2401716.

2401728.

[106] Antoni Roca. Floorplan-Aware High Performance NoC Design. PhD thesis, Universitat

Politecnica de Valencia, 2012.

[107] Jörg Mische and Theo Ungerer. Guaranteed service independent of the task placement

in nocs with torus topology. In 22nd International Conference on Real-Time Networks

and Systems, RTNS ’14, Versaille, France, October 8-10, 2014, page 151, 2014. doi:

10.1145/2659787.2659804. URL http://doi.acm.org/10.1145/2659787.2659804.

[108] M. Millberg, et al. The nostrum backbone-a communication protocol stack for networks on

chip. In IEEE VLSI Design, 2004. doi: 10.1109/ICVD.2004.1261005.

[109] E. A. Rambo and R. Ernst. Worst-case communication time analysis of networks-on-chip

with shared virtual channels. DATE, 2015.

[110] T. Kranich and M. Berekovic. Noc switch with credit based guaranteed service support

qualified for GALS systems. In DSD, 2010. URL http://dx.doi.org/10.1109/DSD.2010.

30.

[111] A.Psarras, et al. Phase-noc: Tdm scheduling at the virtual-channel level for efficient

network traffic isolation. DATE 2015.

[112] H. M. G. Wassel, et al. Surfnoc: A low latency and provably non-interfering approach to

secure networks-on-chip. SIGARCH Comput. Archit. News, 41(3):583–594, June 2013. ISSN

0163-5964. doi: 10.1145/2508148.2485972. URL http://doi.acm.org/10.1145/2508148.

2485972.

[113] Aeroflex Gaisler. Quad Core (LEON4 SPARC V8) Processor - (LEON4-NGMP-DRAFT) -

Data Sheet and Users Manual, 2011.

[114] Aurelien Monot, Nicolas Navet, Bernard Bavoux, and Françoise Simonot-Lion. Multisource

software on multicore automotive ecus - combining runnable sequencing with task scheduling.

IEEE Transactions on Industrial Electronics, 59(10):3934–3942, 2012.

[115] Hamid Reza Faragardi, Björn Lisper, and Thomas Nolte. Towards a communication-efficient

mapping of AUTOSAR runnables on multi-cores. In Emerging Technologies and Factory

Automation (ETFA)f, pages 1–5, 2013.

[116] Jorn Schneider, Michael Bohn, and Robert Robger. Migration of automotive real-time

software to multicore systems: First steps towards an automated solution. In ECRTS, WIP

Session, 2010.

[117] AUTOSAR consortium. Specification of Operating System. Standard 4.1, 2014. URL

www.autosar.org.

http://doi.acm.org/10.1145/2401716.2401728
http://doi.acm.org/10.1145/2401716.2401728
http://doi.acm.org/10.1145/2659787.2659804
http://dx.doi.org/10.1109/DSD.2010.30
http://dx.doi.org/10.1109/DSD.2010.30
http://doi.acm.org/10.1145/2508148.2485972
http://doi.acm.org/10.1145/2508148.2485972
www.autosar.org

Bibliography 161

[118] Theo Ungerer, Francisco Cazorla, Pascal Sainrat, Guillem Bernat, Zlatko Petrov, Christine

Rochange, Eduardo Quinones, Mike Gerdes, Marco Paolieri, Julian Wolf, Hugues Casse,

Sascha Uhrig, Irakli Guliashvili, Michael Houston, Floria Kluge, Stefan Metzlaff, and Jorg

Mische. Merasa: Multicore execution of hard real-time applications supporting analyzability.

IEEE Micro, 30(5):66–75, 2010. ISSN 0272-1732.

[119] Haluk Ozaktas, Christine Rochange, and Pascal Sainrat. Automatic WCET analysis of

real-time parallel applications. In WCET, 2013.

[120] Licong Zhang, Reinhard Schneider, Alejandro Masrur, Martin Becker, Martin Geier, and

Samarjit Chakraborty. Timing challenges in automotive software architectures. In ICSE

Companion, pages 606–607, 2014.

[121] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. 1990. ISBN 0716710455.

[122] Jörg Liebeherr, Almut Burchard, Yingfeng Oh, and Sang H. Son. New strategies for

assigning real-time tasks to multiprocessor systems. IEEE Transactions on Computers, 44

(12):1429–1442, 1995. ISSN 0018-9340. doi: http://dx.doi.org/10.1109/12.477248.

[123] S.K. Dhall and C. L. Liu. On a real-time scheduling problem. In Operation Research, pages

127–140, 1978.

[124] Yingfeng Oh and Sang H. Son. Allocating fixed-priority periodic tasks on multiprocessor

systems. Real-Time Systems, 9(3):207–239, 1995. ISSN 0922-6443. doi: http://dx.doi.org/

10.1007/BF01088806.

[125] C Aussagues, D Chabrol, V David, D Roux, N Willey, A Tournadre, and M Graniou.

Pharos, a multicore OS ready for safety-related automotive systems: results and future

prospects. Proc. of The Embedded Real-Time Software and Systems (ERTS2), 2010.

[126] T. Sakurai, H. Kawaguchi, and T. Kuroda. Low-power CMOS design through Vth control

and low-swing circuits. In ISLPED ’97, 1997.

[127] Giorgio C. Buttazzo. Hard Real-Time Computing Systems; Predictable Scheduling Algo-

rithms and Applications. 2011. ISBN 971-1-4614-0675-4.

[128] Christian Bradatsch, Florian Kluge, and Theo Ungerer. Synchronous Execution of a

Parallelised Interrupt Handler. In RTAS, WiP session, apr 2014.

[129] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage scaling for low-power

embedded operating systems. In SOSP, pages 89–102, 2001.

[130] Rob Davis and Alan Burns. A survey of hard real-time scheduling for multiprocessor systems.

ACM Computing Surveys, available from http://www-users.cs.york.ac.uk/ robdavis/, 2010.

[131] Irina Iulia Lupu, Pierre Courbin, Laurent George, and Joël Goossens. Multi-criteria

evaluation of partitioning schemes for real-time systems. In ETFA, 2010. doi: 10.1109/

ETFA.2010.5641218. URL http://doi.ieeecomputersociety.org/10.1109/ETFA.2010.

5641218.

http://doi.ieeecomputersociety.org/10.1109/ETFA.2010.5641218
http://doi.ieeecomputersociety.org/10.1109/ETFA.2010.5641218

Bibliography 162

[132] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

ISBN 0201157675.

[133] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

SCIENCE, 220(4598):671–680, 1983.

[134] Alexander Wieder and Björn B. Brandenburg. Efficient partitioning of sporadic real-time

tasks with shared resources and spin locks. In SIES, 2013. doi: 10.1109/SIES.2013.6601470.

[135] Paolo Gai, Giuseppe Lipari, and Marco Di Natale. Minimizing memory utilization of real-

time task sets in single and multi-processor systems-on-a-chip. In RTSS, pages 73–83, 2001.

doi: 10.1109/REAL.2001.990598. URL http://dx.doi.org/10.1109/REAL.2001.990598.

[136] O. Sinnen, L.A. Sousa, and F.-E. Sandnes. Toward a realistic task scheduling model.

Parallel and Distributed Systems, IEEE Transactions on, 17(3):263–275, 2006.

[137] H. Ozaktas, et. al. Automatic WCET analysis of real-time parallel applications. In WCET,

2013. doi: 10.4230/OASIcs.WCET.2013.11.

[138] K. Lakshmanan, et. al. Partitioned fixed-priority preemptive scheduling for multi-core

processors. In ECRTS, 2009. doi: 10.1109/ECRTS.2009.33.

[139] M. Paolieri, E. Quinones, F. J. Cazorla, R. I. Davis, and M. Valero. Ia3: An interference

aware allocation algorithm for multicore hard real-time systems. In 17th IEEE Real-Time

and Embedded Technology and Applications Symposium, RTAS 2011, Chicago, Illinois,

USA, 11-14 April 2011, pages 280–290, 2011.

[140] G. Giannopoulou, et. al. Scheduling of mixed-criticality applications on resource-sharing

multicore systems. In EMSOFT, 2013. doi: 10.1109/EMSOFT.2013.6658595.

[141] G. Giannopoulou, et. al. Mapping mixed-criticality applications on multi-core architectures.

In DATE, 2014. doi: 10.7873/DATE.2014.111.

[142] J.-E. Kim, et. al. Optimized scheduling of multi-ima partitions with exclusive region for

synchronized real-time multi-core systems. In DATE, 2013.

[143] R. Wilhelm et al. The worst-case execution-time problem overview of methods and survey

of tools. ACM Transactions on Embedded Computing Systems, 7:1–53, May 2008.

[144] G. Bernat, A. Colin, and S.M. Petters. WCET analysis of probabilistic hard real-time

systems. In RTSS, 2002.

[145] F.J. Cazorla et al. Proartis: Probabilistically analysable real-time systems. ACM TECS,

2012.

[146] L. Cucu-Grosjean et al. Measurement-based probabilistic timing analysis for multi-path

programs. In ECRTS, 2012.

[147] L. Kosmidis et al. PUB: Path upper-bounding for measurement-based probabilistic timing

analysis. In ECRTS, 2014.

http://dx.doi.org/10.1109/REAL.2001.990598

Bibliography 163

[148] S. Altmeyer and R.I. Davis. On the correctness, optimality and precision of static proba-

bilistic timing analysis. In DATE, 2014.

[149] L. Kosmidis et al. Probabilistic timing analysis and its impact on processor architecture.

In Euromicro DSD, 2014.

[150] J. Jalle et al. Bus designs for time-probabilistic multicore processors. In DATE, 2014.

[151] Enrico Mezzetti and Tullio Vardanega. On the industrial fitness of wcet analysis. In WCET

Workshop, 2011.

[152] J. Jalle et al. Deconstructing bus access control policies for real-time multicores. In SIES,

2013.

[153] Timon Kelter, Heiko Falk, Peter Marwedel, Sudipta Chattopadhyay, and Abhik Roychoud-

hury. Bus-aware multicore wcet analysis through tdma offset bounds. ECRTS, 2011.

[154] F. Wartel et al. Measurement-based probabilistic timing analysis: Lessons from an

integrated-modular avionics case study. In SIES, 2013.

[155] F.J. Cazorla et al. Upper-bounding program execution time with extreme value theory. In

WCET workshop, 2013.

[156] T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled microprocessors.

In RTSS, 1999.

[157] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anomalies in

superscalar processors. In ICQS, 2005.

[158] J. Reineke et al. A definition and classification of timing anomalies. In WCET, 2006.

[159] Peter P. Puschner. Albrecht Kadlec, Raimund Kirner. Avoiding timing anomalies using

code transformations. In ISORC, 2010.

[160] L. Kosmidis et al. Applying measurement-based probabilistic timing analysis to buffer

resources. In WCET workshop, 2013.

[161] L. Kosmidis et al. A cache design for probabilistically analysable real-time systems. In

DATE, 2013.

[162] L. Kosmidis et al. Multi-level unified caches for probabilistically time analysable real-time

systems. In RTSS, 2013.

[163] J. Reineke. Randomized caches considered harmful in hard real-time systems. LITES, 1(1):

03:1–03:13, 2014.

[164] J. Abella et al. Heart of gold: Making the improbable happen to extend coverage in

probabilistic timing analysis. In ECRTS, 2014.

[165] E. Mezzetti et al. Randomized caches can be pretty useful to hard real-time systems.

LITES, 2(1), 2015.

Bibliography 164

[166] Marco Paolieri, Eduardo Quinones, Francisco J. Cazorla, and Mateo Valero. An Analyzable

Memory Controller for Hard Real-Time CMPs. IEEE Embedded Systems Letters, 2009.

[167] M. Slijepcevic, et al. Dtm: Degraded test mode for fault-aware probabilistic timing analysis.

In ECRTS, 2013.

[168] Jakob Rosen, Alexandru Andrei, Petru Eles, and Zebo Peng. Bus access optimization for

predictable implementation of real-time applications on multiprocessor systems-on-chip. In

RTSS, 2007.

[169] M. Schoeberl et al. A statically scheduled time-division-multiplexed network-on-chip for

real-time systems. In NOCS, 2012.

[170] M. Panic et al. On-chip ring network designs for hard-real time systems. In RTNS, 2013.

[171] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE, 91(1),

2003.

[172] R. Bourgade et al. MBBA: a multi-bandwidth bus arbiter for hard real-time. In EMC,

2010.

[173] R. Bourgade et al. Predictable bus arbitration schemes for heterogeneous time-critical

workloads running on multicore processors. In ETFA, 2011.

[174] K. Lahiri, A. Raghunathan, and G. Lakshminarayana. LOTTERYBUS: a new high-

performance communication architecture for system-on-chip designs. In Proceedings of

the 38th annual Design Automation Conference, DAC ’01, pages 15–20, 2001. ISBN

1-58113-297-2.

[175] PROXIMA. EU-FP7 Project: www.proxima-project.eu.

[176] Sebastian Kehr. Parallelization of Automotive Control Software. Cuvillier Verlag Gottingen,

Technische Universitat Ilmenau.

[177] P-SOCRATES. EU-FP7 Project: www.p-socrates.eu.

[178] BSC and Evidence. Parallel Programming Models for Space Systems. ESA contract

4000114391 15 NL Cbi GM.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	I Introduction
	1 Introduction
	1.1 Real-time Systems
	1.2 Trends in Critical Real-Time Embedded Systems (CRTES)
	1.3 Applying multi/many-core technology to CRTES
	1.3.1 The timing behavior of CRTES in multi/many-core platforms
	1.3.2 The design of CRTES: Time composability

	1.4 Thesis Goals and Objectives
	1.5 Thesis Contribution
	1.5.1 Hardware
	1.5.2 Scheduling techniques
	1.5.3 Probabilistic timing analysis
	1.5.4 Standards
	1.5.5 Open source software

	1.6 Thesis Organization

	2 Experimental Setup
	2.1 Simulation framework
	2.2 Case studies
	2.2.1 Avionics domain
	2.2.2 Automotive domain
	2.2.3 Benchmarks

	2.3 Timing analysis
	2.3.1 Static timing analysis – OTAWA
	2.3.2 Measurement-based timing analysis – RapiTime

	II Manycore Hardware Design and Analysis
	3 A Time Predictable Architecture
	3.1 Introduction
	3.2 Integrated Modular Avionics
	3.2.1 Interference among processes of a SWP
	3.2.2 Interference among SWPs
	3.2.3 Similarities between IMA and AUTOSAR frameworks

	3.3 ARINC 653 and many-cores
	3.4 Parallel Software Partitions
	3.4.1 Shared Software Resources
	3.4.2 Shared Hardware Resources
	3.4.3 Methods to control Intra-SWP interferences
	3.4.3.1 Computation
	3.4.3.2 Communication

	3.4.4 Methods to Control Inter-SWP interferences
	3.4.4.1 Impact of intra-SWP activities on Inter-SWP communication (RIM/LIM REM/CEM)
	3.4.4.2 Impact of Inter-SWP communication on intra-SWP activities (CEM/REM RIM/LIM)
	3.4.4.3 Interferences among inter-SWP communication (CEM/REMCEM/REM)

	3.4.5 WCET and Time composability under pSWP

	3.5 Guaranteed Resource Partitions: GRP
	3.5.1 Main timing aspects of GRPs
	3.5.1.1 Time Predictability
	3.5.1.2 Transparent execution
	3.5.1.3 Isolation of intra-SWP communication requests among different GRPs

	3.5.2 Implementation aspects of GRPs
	3.5.2.1 NoC Design: Physical GRPs
	3.5.2.2 NoC Design: Virtual GRPs
	3.5.2.3 Memory Design

	3.5.3 From WCTT and MEMWCRT to WCET Computation
	3.5.3.1 Computing the WCET Estimation in Isolation
	3.5.3.2 Computing inter: NoC and Memory Impact

	3.6 Experimental Results
	3.6.1 Experimental Setup
	3.6.1.1 Hardware Setup
	3.6.1.2 Parallel Avionic Applications
	3.6.1.3 Compuitation of the WCET estimation of Parallel Avionic Application

	3.6.2 Impact of intra-SWP Communication on Execution Time
	3.6.3 Impact of Inter-SWP Communication on Execution Time
	3.6.4 Executing several SWP into a single GRP

	3.7 Related Work
	3.8 Conclusions

	4 Modeling High-Performance Wormhole NoCs for Critical Real-Time Embedded Systems
	4.1 Introduction
	4.2 Background
	4.3 Contention Delay: A New Metric to account for the impact of NoC on WCET
	4.3.1 WCD Properties
	4.3.2 WCD Assumptions

	4.4 NoC Parameters Taxonomy
	4.4.1 Wormhole mesh NoC fundamentals
	4.4.2 Proposed Taxonomy
	4.4.2.1 Fixed parameters
	4.4.2.2 Parameters to adjust

	4.5 Time-Composable WCD bounds
	4.5.1 Single-Flit, One Virtual-Channel, Single-entry Queue (FT=1,nVC=1,E=1)
	4.5.1.1 Single-router traversal
	4.5.1.2 Worst Contention
	4.5.1.3 worst-case Destination
	4.5.1.4 Computing the time-composable upper bound Worst-Contention Delay (WCDi)

	4.5.2 Single-Flit, Virtual-Channels, Single-entry Queue (FT=1,1<nVC<cF,E=1)
	4.5.3 Multiple-Flit, Virtual-Channels, Single-entry Queue (FT>1,1<nVC<cF,E=1)
	4.5.4 Multiple-Flit, Virtual-Channels, Multiple-entry Queue (FT>1,1<nVC<cF,E>1 or E<1)
	4.5.4.1 Queue size larger than packet size (E>1)
	4.5.4.2 Queue size smaller than packet size (E<1)

	4.5.5 Impact of variable size packets

	4.6 System design considerations
	4.6.1 Packet Size
	4.6.2 Virtual Channels
	4.6.3 Network Size

	4.7 Modeling existing NoC designs
	4.7.1 WCD accuracy and comparison with WCTT
	4.7.2 Reducing WCD values
	4.7.3 Impact of wNoC interference on WCET

	4.8 Related Work
	4.8.1 Quality of Service (QoS)
	4.8.2 Real-time Specific NoCs
	4.8.3 WCTT in wNoCs

	4.9 Conclusions

	5 Improving Performance Guarantees in Wormhole Mesh NoC Designs
	5.1 Introduction
	5.2 Reference mesh network
	5.3 Wormhole-based mesh NoCs
	5.3.1 Assumptions
	5.3.2 Factors impacting WCTT estimates

	5.4 Computing Worst-case Traversal Time
	5.5 Flit-Homogeneous Guarantees in Meshes
	5.5.1 WCTT-aware Packetization (WaP)
	5.5.2 WCTT-aware Weighted (WaW)
	5.5.3 WaW implementation
	5.5.4 Hardware modifications

	5.6 Evaluation
	5.6.1 Reducing WCTT with WaW+WaP
	5.6.2 Improving WCET estimates for single threaded applications
	5.6.3 Improving WCET estimates for Parallel Applications
	5.6.4 Average performance

	5.7 Related Work
	5.8 Conclusions

	III Software Support for Exploiting Manycore Potential – Scheduling
	6 Intra-GRP Scheduling Strategy for Parallelization of Complex Automotive Applications
	6.1 Introduction
	6.2 Background
	6.2.1 AUTOSAR Applications
	6.2.2 Multi-cores and WCET estimation

	6.3 RunPar Allocation Algorithm
	6.3.1 Problem Definition
	6.3.2 Mapping Runnables to Cores
	6.3.2.1 Runnable classification
	6.3.2.2 Sorting criteria
	6.3.2.3 Bin packing heuristics
	6.3.2.4 Dependent Runnables
	6.3.2.5 Independent Runnables

	6.3.3 Allocation Algorithm Solution:
	6.3.4 Validating the Single-core Task Scheduling
	6.3.5 Execution of interrupt-driven tasks (CrAn task)

	6.4 Results
	6.4.1 Experimental setup
	6.4.1.1 EMS application
	6.4.1.2 WCET analysis tool and Processor Setup
	6.4.1.3 Metrics

	6.4.2 Choosing the appropriate heuristics
	6.4.3 WCET Speed-up of EMS tasks
	6.4.4 Increasing Overall Available CPU Capacity

	6.5 Related Work
	6.6 Conclusions

	7 Inter-GRP Scheduling Strategy for Real-time Applications on Many-cores
	7.1 Introduction
	7.2 Background
	7.2.1 CRTES applications

	7.3 Allocation Algorithm
	7.3.1 Problem Definition
	7.3.2 Mapping Applications to GRPs
	7.3.3 Example

	7.4 Evaluation methodology
	7.5 Results
	7.5.1 4-GRP many-core
	7.5.2 16-GRP many-core
	7.5.3 Algorithm complexity

	7.6 Related Work
	7.7 Conclusions

	IV The Thesis and Beyond – Conclusions and Future Work
	8 Enabling TDMA Arbitration in the Context of MBPTA
	8.1 Introduction
	8.2 Contention analysis for DTA and MBPTA
	8.2.1 SDTA and MBDTA
	8.2.2 MBPTA

	8.3 TDMA impact on execution time
	8.3.1 Request Types
	8.3.2 TDMA impact on execution time for synchronous request
	8.3.3 sad for Multiple Asynchronous Requests
	8.3.4 Multiple TDMA resources
	8.3.5 Other considerations

	8.4 TDMA in the context of MBPTA
	8.4.1 Timing of MBPTA-Compliant Processors
	8.4.2 TDMA analysis with MBPTA
	8.4.3 Full-program padding

	8.5 Results
	8.5.1 Evaluation Framework
	8.5.2 Impact of TDMA sad on Execution Time
	8.5.3 Performance Comparison

	8.6 Related work
	8.7 Conclusions

	9 Conclusions, Impact and Future Work
	9.1 Impact and Future Work

	List of Publications

