
Autotuning for Automatic Parallelization on Heterogeneous Systems

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Philip Pfaffe

Tag der mündlichen Prüfung: 24.07.2019

1. Referent: Prof. Dr. Walter F. Tichy

2. Referent: Prof. Dr. Michael Philippsen

Abstract

To meet the surging demand for high-speed computation in an era of stagnat-
ing increase in performance per processor, systems designers resort to aggregating
many and even heterogeneous processors into single systems. Automatic paral-
lelization tools relieve application developers of the tedious and error prone task of
programming these heterogeneous systems. For these tools, there are two aspects
to maximizing performance: Optimizing the execution on each parallel platform
individually, and executing work on the available platforms cooperatively. To
date, various approaches exist targeting either aspect. Automatic parallelization
for simultaneous cooperative computation with optimized per-platform execution
however remains an unsolved problem.
This thesis presents the APHES framework to close that gap. The framework com-

bines automatic parallelization with a novel technique for input-sensitive online
autotuning. Its first component, a parallelizing polyhedral compiler, transforms
implicitly data-parallel program parts for multiple platforms. Targeted platforms
then automatically cooperate to process the work. During compilation, the code
is instrumented to interact with libtuning, our new autotuner and second com-
ponent of the framework. Tuning the work distribution and per-platform execu-
tion maximizes overall performance. The autotuner enables always-on autotuning
through a novel hybrid tuning method, combining a new efficient search technique
and model-based prediction.
Experiments show that the APHES framework can solve the cooperative heteroge-

neous parallelization problem and that cooperative execution outperforms versions
parallelized for a single platform. On benchmarks from the PolyBench benchmark
suite, the APHES-transformed programs achieve a speedup of up to 6× compared to
program versions generated by state-of-the-art single-platform parallelizers. The
libtuning autotuner reduces the search time by up to 30% compared to state-
of-the-art autotuning while still finding competitive configurations. Additionally,
model-based prediction is is able to reduce 99% of the search overhead.

I

Ich versichere wahrheitsgemäß, dass ich die Dissertationsschrift mit dem Titel
“Autotuning for Automatic Parallelization on Heterogeneous Systems” selbständig
angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel be-
nutzt und die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich
gemacht, sowie die Regeln zur Sicherung guter wissenschaftlicher Praxis am Karl-
sruher Institut für Technologie (KIT) beachtet habe.

Philip Pfaffe Unterschleißheim, 22. Mai, 2020

III

Contents

1 Introduction 1
1.1 Problem Statement . 3
1.2 Thesis Objectives . 5
1.3 Scope . 6
1.4 Structure of this Dissertation . 7

2 Fundamental Concepts 9
2.1 Online and Offline Autotuning . 9

2.1.1 The Tuning Problem . 9
2.1.2 Search Algorithms . 14
2.1.3 Reinforcement Learning . 17

2.2 Program Analysis and Transformation 20
2.2.1 The LLVM Framework . 20
2.2.2 Parallelism Detection, Dependence Graphs, and Interproce-

dural Analyses . 23
2.2.3 The Polyhedral Model . 26

3 An Overview of the APHES Framework 33
3.1 The libtuning Autotuner . 33
3.2 Autotuning with libtuning . 41
3.3 Autotuning and Automatic Parallelization with APHES 42
3.4 Summary . 45

4 Related Work 47
4.1 Autotuning . 49

4.1.1 Tuning Algorithms and Autotuners 49
4.1.2 Machine and Performance Models 54

4.2 Automatic Parallelization for Accelerators 57
4.2.1 Dependence-based Parallelization 58

V

Contents

4.2.2 Parallelization of (Mostly) Affine Programs with the Poly-
hedral Model . 62

4.2.3 Explicitly Parallel DSLs . 65
4.2.4 Pattern-based Detection of Parallelism 67

4.3 Autotuning Languages and Compilers 68
4.3.1 Modeling and Machine Learning for Autotuning Compilers . 69
4.3.2 Search-based Tuning Compilers 71
4.3.3 Languages . 75

4.4 Summary . 80

5 Hybrid Online Autotuning 81
5.1 Hybrid Tuning: Combining Search and Prediction 82

5.1.1 Context Sensitivity in Online Autotuning 84
5.1.2 Approximating and Observing the Context 84
5.1.3 Adapting to Context Changes 85

5.2 The libtuning Architecture . 86
5.2.1 Tuning Parameters . 87
5.2.2 Indicators . 89
5.2.3 Fundamental Search Algorithms 91

5.3 Hierarchical Search . 94
5.4 Model-based Prediction . 103
5.5 Summary . 104

6 Automatic Heterogeneous Parallelization 107
6.1 Polyhedral Parallelization and Partitioning 107

6.1.1 Mapping and Partitioning the Schedule Tree 108
6.1.2 Code Generation . 111

6.2 Dependence Testing for Parallelization and Partitioning 113
6.2.1 Detecting Data Parallelism 114
6.2.2 Target Offloading . 116
6.2.3 Runtime System . 120

6.3 Offloading Heuristics and Runtime Predictors 123
6.4 Summary . 125

7 Experimental Evaluation 127
7.1 Benchmarks . 128

VI

Contents

7.2 Ad-hoc Parallelization . 130
7.3 Polyhedral Parallelization . 135

7.3.1 Performance Results . 135
7.3.2 Detailed Analysis of Hierarchical Search 138
7.3.3 Discussion . 150

7.4 Hybrid Autotuning . 151
7.4.1 Benchmark Selection . 151
7.4.2 Experiment Setup . 152
7.4.3 Results . 153
7.4.4 Discussion . 158

7.5 Summary . 159

8 Conclusion and Outlook 161
8.1 Thesis Objectives . 163
8.2 Outlook . 164

List of Figures 167

List of Tables 171

Bibliography 173

VII

Chapter 1

Introduction

The era of growing processor speed is over. Moore’s law, which promised a dou-
bling in performance every 18 to 24 months, has ended. This is a fact that must
be accepted. But it is not an indicator of doom or deterioration of the industry!
Instead it turns out to be an immense opportunity for system architects. Being
at the end of the line of the development of more and more powerful CPUs has
ignited the strive for developing the architectures of the future. Today, there are
dozens of emerging parallel architectures, often optimized for specific tasks. A re-
cent IEEE Spectrum article1 quotes David Patterson estimating that there are “at
least 45 hardware startups tackling the problem”, making our time a “golden time
for computer architecture”. And these are not dreams of the future: Today’s sys-
tems are highly parallel already, containing multiple general and special purpose
parallel processors. This trend is not limited to the performance-hungry field of
high-performance computing, but has reached low- to high-end consumer comput-
ers, down to the smartphone in everyone’s pocket: Nearly every device is packed
with multiple CPUs, GPUs for both graphics and computation acceleration, and
specialized parallel compute units for various specific tasks.
The hardware landscape available to us within a single system has changed,

and in the wake of this change an enormous challenge for the field of software
engineering has risen. Effectively programming these highly parallel, heteroge-
neous systems is an intricate and time-consuming task even for highly trained and
seasoned developers. Fortunately, various tools are available to ease the design,
evaluation, and verification of parallel software. The list includes profilers, debug-

1Source: https://spectrum.ieee.org/view-from-the-valley/computing/hardware/
david-patterson-says-its-time-for-new-computer-architectures-and-software-languages,
September 2018. Last accessed: December 29th, 2018

1

https://spectrum.ieee.org/view-from-the-valley/computing/hardware/david-patterson-says-its-time-for-new-computer-architectures-and-software-languages
https://spectrum.ieee.org/view-from-the-valley/computing/hardware/david-patterson-says-its-time-for-new-computer-architectures-and-software-languages

Chapter 1 Introduction

gers and race detectors, recommender systems for parallelizable program parts,
and automatic parallelizers. Fully automatic parallelization for heterogeneous sys-
tems is naturally the ultimate goal, because it reduces the required developer effort
to zero.

To date, automatic parallelization approaches are mostly limited to single-
platform targets, e.g., GPUs or CPUs. This is likely because targeting multiple
platforms simultaneously is a notoriously hard problem. Simultaneously refers
here to executing a program on different platforms cooperatively for distinct parts
of the input, and subsequently fusing the results. We refer to this as coopera-
tive heterogeneous parallelization. What makes this problem hard is the need to
find an optimal configuration for the distribution of work among platforms and
for platform-specific parameters at the same time. Examples for platform-specific
parameters are the number of CPU or GPU threads and the mapping of program
variables onto the GPU’s memory hierarchy. The work distribution and the plat-
form parameters are interdependent. Furthermore, the quality of a configuration
for all the parameters is application, hardware, and most importantly input de-
pendent. For example, consider a program performing matrix multiplications. For
matrices with 4000 × 4000 elements, a GPU can offer a substantial acceleration.
For 10 × 10 elements, however, the overhead we incur for GPU execution is sure
to destroy all benefits and drastically slow down the program. While it is sensible
to assume that performance-relevant application and hardware properties remain
static during the lifetime of a program, the inputs must be assumed to be highly
dynamic. For simplicity, we thus focus on input dependence in the following, but
all following arguments can easily be extended to varying performance-relevant
application and hardware properties by simply considering them a part of the
input.

Given that inputs must be considered dynamic, configurations must conse-
quently be selected at application runtime: Configuring a-priori could not account
for varying inputs. This means, however, that the time required for selecting a
configuration must be included in the cost of the parallelization. For example,
if an optimal heterogeneous distribution for a parallelized program accelerates its
execution by a factor of two, but determining that distribution takes as long as
executing the program, we have obviously not gained any benefit. The time re-
quired to choose an optimal configuration thus determines the performance of a
configuring method.

2

1.1 Problem Statement

Fundamentally, for a given application, system, and input, there are two ba-
sic methods to produce an optimal configuration. These methods exhibit distinct
performance characteristics. Obviously, the fastest way to produce a configuration
is using an efficiently computable function that maps inputs to parameter values,
which can be as simple as a precomputed lookup table. We call this method predic-
tive, because it predicts a configuration for a given input based on a-priori knowl-
edge. Knowledge can either be hand-coded, for example in the form of heuristics
designed by the application developer, or learned, for example through machine
learning. Alternatively, configurations can be explored empirically without a-priori
knowledge. Empirical exploration means iteratively picking and observing configu-
rations, which adds an interesting dimension to the performance criterion: On top
of the time required to determine and apply the update to the parameters, we pay
for configurations that are suboptimal. These might even yield program runtimes
worse than in the original, unoptimized application. The extra overhead we incur
from these configurations must be considered in the evaluation of the configuring
method. In other words, we must consider the cumulative time spent sampling
the program in relation to running the original program repeatedly. Assume for
example the program is run ten times for a given input and empirical exploration
determines a configuration which outperforms the original within ten steps. If,
however, the exploration process evaluated configurations with worse performance
than the original along the way, so that the sum of runtimes over the ten iterations
is higher than ten times the original runtime, then it has effectively reduced the
performance of the program. Consequently, when optimizing runtime, empirical
exploration must not only find a configuration better than the original, it also
must amortize quickly enough to provide a net benefit. The accumulated time
spent sampling must be lower than the accumulated time for running the original
program for the same number of sampling iterations. We call the time required to
first reach that point the amortization time.

1.1 Problem Statement

The current state of the art in cooperative heterogeneous parallelization falls short
in at least one of two crucial aspects:

1. Parallelization is usually limited to a given platform: Parallelizable code
regions of a program are identified and then transformed to run on multiple

3

Chapter 1 Introduction

CPU threads, or (multiple) GPUs, or accelerators such as Intel’s Xeon PHI
cards. Although the heterogeneous system offers multiple different parallel
platforms, the parallelized code executes only on a single platform while
others are idle: No work is cooperatively shared across platforms. Only two
approaches exist today that produce cooperatively executing code, but they
are limited: Only the work distribution is optimized, not the per-platform
parameters.

2. Since parallelization is done at compile time, all decisions need to be made
heuristically. Heuristics are suboptimal in general: Multiple compilation
decisions during parallelization are input dependent. Selecting platforms,
determining the share of each platform in the cooperative execution, and
choosing values for platform specific parameters all are key decisions to at-
tain optimal performance. Some existing approaches solve this problem in
similar use-cases with the help of models that are either hand-crafted by the
compiler or application developer, or are learned from sample inputs. Al-
though effective, the model design and training still require developer time
and effort.

Fully automatic parallelization for optimized cooperative execution on heteroge-
neous systems that requires zero developer involvement is currently still an open
problem. This dissertation aims to close that gap.
Based on these observations, we now formulate the requirements for a solution

to the cooperative heterogeneous parallelization problem. Generating code for
multiple platforms and for adaptive distribution of work across platforms requires
a specialized compiler. The compiler may processes both implicitly and explic-
itly parallel languages and use any means to extract parallelism from sequential
applications. In both cases however, it must be able to accurately determine all
dynamic memory accesses made by the individual parallel units. If the heteroge-
neous platforms form a system with distributed memories (as is the case in most
systems containing both CPUs and GPUs), data needs to be moved between the
individual memories. Hazards arise if data movements are performed based on
approximations of the accessed memory ranges.
Because the optimality of a configuration depends on inputs, a runtime compo-

nent is necessary to supplement the parallelizing compiler, and to configure the
transformed application. Parallelizing general applications implies several addi-
tional requirements: No assumptions can be made about program inputs or other

4

1.2 Thesis Objectives

The APHES Framework
Sequential
Application

Parallelized &
Instrumented

Figure 1.1: The APHES framework transforms sequential applications for work sharing
among multiple platforms, e.g., a GPU and a CPU. The transformed ap-
plication is instrumented to interact with a runtime tuning component.

application and hardware properties. This implies that both predictive and em-
pirical configuring must learn from the real hardware and real inputs in the actual
deployment context. Learning from real inputs further means learning at appli-
cation runtime, which requires minimizing the amortization time of the tuning
process. Minimizing the amortization time in turn requires avoiding search if
possible. However, because the deployment context is unknown a-priori, training
the prediction function still needs to obtain training samples during a production
run. Choosing these samples randomly or from predictions of an early imprecise
model bears the danger of increasing the amortization time. If search is used,
optimizing the amortization time of the search is an additional requirement. This
optimization means reducing the overall number of samples required to reach the
(local) optimum and reducing the number of configurations sampled with a run-
time worse than the original program’s runtime. In summary, it is evident that
whichever configuring method is used, great care must be taken to balance the
drawbacks of either method: To be competitive, both must aim to sample as few
poorly performing configurations as possible. For prediction this means selecting
training samples carefully. Search is required to converge as quickly as possible.

1.2 Thesis Objectives

The overarching goal of this thesis is to provide a framework for automatic paral-
lelization for heterogeneous platforms. The framework shall transform programs

5

Chapter 1 Introduction

to simultaneously offload computations to multiple parallel target platforms. We
will define the APHES framework, implementing a compiler for heterogeneous par-
allelization and a runtime component satisfying the requirements outlined above.
The envisioned usage of the framework requires no application developer or user
interaction and is depicted in Figure 1.1: The framework’s compiler component
consumes sequential applications and transforms them for work sharing among
multiple heterogeneous platforms. The applications are instrumented by the com-
piler with the framework’s runtime component, which optimizes the transformed
applications at runtime in the actual deployment context. The core of the runtime
component forms a novel online autotuner. Its primary goal is to provide input
sensitive tuning while simultaneously being attentive to amortization time. Our
key idea to achieve this is to combine predictive and efficient empirical configuring
into a hybrid tuning method that aims to offer the best of both worlds.
We use the APHES framework to examine the following research theses:

Thesis T1 Optimized cooperative parallelization accelerates programs, exceeding
the performance of single platform parallelization.

Thesis T2 The amortization time can be improved in comparison with state of
the art autotuning.

Thesis T3 Predictive configuring achieves input sensitivity without sacrificing
amortization time.

To evaluate these theses experimentally, we implemented the APHES framework
prototypically. At the hand of established benchmarks composed of scientific pro-
grams, we test the theses by investigating the impact of autotuning on the result
of the heterogeneous parallelization.

1.3 Scope

The APHES framework is an architecture for automatic parallelisation of sequen-
tial programs. As inputs, it takes programs in the LLVM intermediate lan-
guage [LA04]. In order to simplify the required analyses, already parallelized
programs are excluded from the scope. As the intermediate representation of com-
pilers, the LLVM intermediate language constitutes a much lower level description
of the program than the programming language it was written in. As such, some

6

1.4 Structure of this Dissertation

information that is present in the high-level frontend language is lost and needs to
be recovered. Information that is lost is for example the structure of arrays, which
is important to analyze memory accesses in the array. We accept these limitations
to enable us to build upon a mature existing infrastructure for program analysis
and transformation.
At the time of writing, parallelism is opaque within the LLVM intermediate

language and only expressed as function calls into parallel libraries such as the
OpenMP or pthreads runtime libraries. There is, however, work underway within
the LLVM project to express parallelism at the language level, at which point the
APHES framework can be easily extended to incorporate this information into its
analysis stage.
We explore fully automatic cooperative parallelization of sequential programs.

We focus the code transformations applied by the framework’s compiler compo-
nent to loop structures such as while and for loop constructs. Loops further
must exhibit static control. This means that the number of loop iterations at run-
time must be loop invariant, i.e., either constant or determined by a variable that
is not modified within the loop body. APHES is targeted primarily at numerical
programs which exhibit static control. The parallelism classes that are detected
by APHES are data parallel loops and parallel reductions, which are the predomi-
nant patterns found in scientific programs. The heterogeneous parallel platforms
APHES is intended to work with are CUDA for the GPU and OpenMP for the CPU.
The primary scientific contribution of this thesis is the hybrid autotuning ap-

proach and its application to cooperative parallelization. It is outside the scope
of this thesis to invent a new method of extracting parallelism from a program:
Decades of research have produced a catalogue of program analysis and paral-
lelization techniques that are adequate to find parallelism and transform it for
cooperative execution. The APHES framework reuses existing algorithms and im-
plementations wherever possible.

1.4 Structure of this Dissertation

In the following chapter we discuss the technical foundations behind the design and
implementation of the APHES framework and introduce terms and definitions. Sub-
sequently we provide an overview of the APHES framework and its components, and
show how application developers may use the tools we developed. In Chapter 4 we

7

Chapter 1 Introduction

explore related prior art and assess existing solutions with respect to requirements
that arise in cooperative parallelization. Then, we discuss the APHES framework in
detail, focussing first on the autotuning component libtuning in Chapter 5 and
the aphes compiler in Chapter 6. Chapter 7 presents an experimental evaluation
of our approach with regard to the theses posed in Section 1.2 on the basis of our
implementation of the APHES framework. In Chapter 8 we summarize the results,
re-examine our theses with respect to the findings of our evaluation, and discuss
possible future directions in research motivated by our findings.

8

Chapter 2

Fundamental Concepts

This chapter introduces the fundamental concepts upon which this thesis builds.
In particular, we present the concepts of autotuning and automatic paralleliza-
tion. We begin by defining the autotuning process, and present state of the art
algorithms and techniques that form the basis for the runtime component of the
APHES framework in Section 2.1. Second, we review compiler techniques and tools
in Section 2.2. This includes an introduction to analyzing programs for paralleliz-
able parts.

2.1 Online and Offline Autotuning

In today’s research and practice the task of configuring program parameters is
referred to as autotuning. In this section we first define the terms and concepts
used in autotuning. Subsequently, we introduce two popular search algorithms for
model- and derivative-free empirical tuning. We lastly provide an introduction to
reinforcement learning, a special form of predictive tuning which forms the basis
of the online learning mechanism used in our hybrid autotuner.

2.1.1 The Tuning Problem

Autotuning has been around since the 1990s, and was popularized by the ATLAS
library [WD98]. The goal of autotuning is to optimize degrees of freedom in a
program for some target function. Usually that target function is program run-
time, but alternatives exist: In recent years, in particular the interest in optimizing

9

Chapter 2 Fundamental Concepts

1 vector <int > add(vector <int > A, vector <int > B,
2 unsigned NUM_THREADS) {
3 vector <int > Result(A.size());
4

5 #pragma omp parallel for num_threads(NUM_THREADS)
6 for (size_t I = 0; i < Result.size(); ++i)
7 Result[I] = A[I] + B[I]
8

9 return Result;
10 }

Figure 2.1: Vector addition using OpenMP

the energy efficiency of programs has grown.1 The degrees of freedom, which are
program variables, are called the tunable parameters of the program. Tunable
parameters are program variables whose values do not influence the result of the
program, but only the tuning objective, e.g., the runtime. Consider for example
the OpenMP code snippet in Figure 2.1 implementing parallel vector addition.
The code is simple and straightforward: Using the omp parallel for annota-
tion, it executes the for loop in parallel using the requested 8 threads, adding
vector elements. The number 8 here is a model example for a tunable parameter.
Changing it does not change the semantics of the function, but clearly affects the
performance. Without autotuning, the number 8 is magic: The program devel-
oper either needs to guess by rule of thumb, or needs to evaluate multiple values
empirically and pick the best. Autotuning is a tool to automate this empirical
process.
An autotuning process using a stylized Tuner tool for the example above might

look like shown in Figure 2.2. Instead of encoding the thread count as a constant,
we make it a global variable. We then repeatedly call the add function, measuring
its execution time for different thread count values. The Tuner tool produces the
sequence of thread count values to be tested, changing with the timing feedback.
Autotuning techniques involve both predictive and empirical approaches. Pre-

dictive tuning can be heuristical, meaning that parameters are configured using

1See for example the work of Jordan et al. [Jor+12], Balaprakash et al. [BGW13], or Bao et
al. [Bao+16].

10

2.1 Online and Offline Autotuning

1 vector <int > add(vector <int > A, vector <int > B,
2 unsigned NUM_THREADS); // As above , unchanged
3

4 void tune_add(vector <int > A, vector <int > B) {
5 Tuner T;
6 while(T.keepTuning ()) {
7 unsigned NUM_THREADS = T.getNumThreads ();
8 // execute add with arguments and measure execution time
9 float Time = time_call(add , A, B, NUM_THREADS);

10 T.feedback(Time);
11 }
12 }

Figure 2.2: Example: Tuning the OpenMP thread count

rules hand-crafted by the application developer. Because manually writing rules is
a time consuming and error-prone task, more sophisticated approaches use model-
based prediction. For these, a model is built, mapping application, hardware, and
input features to configurations. The model can be constructed either manually,
or it can be learned from sample data. The advantage of model-based configuring
is that configuring is a one-shot operation: To pick a parameter configuration, the
application merely needs to query the model for the current application, hardware,
and input. On the flip side, the quality of that configuration is only as good as the
design of the model and its training. When a hand-crafted model is inaccurate or
when the data seen during training does not reflect the real deployment context,
its predictions are non-optimal. Empirical autotuning lifts the burden of model
building and training from the application developer. Instead of providing a one-
shot answer, empirical tuning iteratively samples configurations. The downside
of the iteration is the time spent until a satisfying configuration is found. If the
number of possible configurations is large, as it often is in practice, it can render
an exhaustive exploration of configurations infeasible. Hence, practical applica-
tions of empirical tuning must resort to approximating the global search, which
implies that the produced configuration may only be locally optimal. Therefore,
the quality of the result of empirical tuning depends on the time spent tuning, but
it can nevertheless reduce the necessary effort by the application developer.

11

Chapter 2 Fundamental Concepts

Both forms of tuning can be either white-box or black-box. White-box tuning is
tightly coupled with a specific application, and it decides between configurations
based on application properties. Empirical white-box tuning systematically ex-
plores configurations based on rules defined by the application or tuner developer.
The quality of these rules affects the quality of the optimization as heuristics and
hand-crafted models generally do. Black-box tuning, in turn, only observes pa-
rameters, the measurement function values, and, in case of model-based tuning,
input and application features. Tuning decisions are made purely based on these
observations, which are free of the hazards of developer misconceptions. On the
other hand, a black-box tuner might pick suboptimal configurations which could
have been avoided using domain knowledge.
Independent of the actual application, the autotuning process follows always

the same recurring structure that is shown in the example in Figure 2.2. Within a
loop, which we call the tuning loop, a tuner first configures all tunable parameters
with the next configuration to sample. Then it executes the piece of code that is
to be optimized with the sample configuration. We refer to this piece of code as
the tuning kernel. After executing the kernel, the observed measurements are fed
back into the tuner for it to determine the configuration for the next iteration.
The tuning loop is repeated until a termination criterion is met.
The tuning loop and its termination criterion occur in various forms in prac-

tice. Most often, they are not part of the program being tuned, but the whole
program is executed in an autotuning environment for a set of example inputs.
This approach is called offline tuning. The termination criterion is in that case
most often either time passed or a minimum performance threshold. This means,
tuning continues either for a given time, or until a target program performance
is achieved. Alternatively, the tuning loop can be placed within the program, or
it may even be a natural part of it. Since the tuning kernel is an important and
performance critical part of the program, it will naturally be executed recurringly.2

Autotuning can then piggyback on these naturally occurring tuning loops. In ei-
ther case, this approach is referred to as online tuning since optimization happens
in a production environment on real inputs.
While the tuner functions the same way in both offline and online tuning, the

classes differ in the requirements they impose on the tuner’s tuning overhead. The

2Otherwise, if the tuning kernel were not performance critical or executed only rarely, any form
of performance tuning can offer little meaningful benefit.

12

2.1 Online and Offline Autotuning

tuning overhead comprises the time required to compute and apply a new configu-
ration and the time spent sampling configurations. Offline tuning is an operation
that is performed once, and the resulting configuration is used indefinitely. Thus,
the tuning overhead is rarely of importance, as long as a satisfactory configuration
is found. In online tuning on the other hand, the tuning overhead is visible to the
program user. Thus, the tuner is required to minimize the overhead, potentially
at the cost of the quality of the configuration it finds. While the sensitivity to
tuning overhead puts online tuning at a disadvantage, it is able to work on real
inputs and real hardware in an actual deployment context.
Next, we formalize the autotuning problem, following the formalism we intro-

duced in our 2017 article [Pfa+17]. Formally speaking, autotuning is the task of
optimizing a value function by modifying only tunable parameters of a program.
A tuning parameter τj is a program variable j together with its sets of legal values.
The set of all tuning parameters of a tuning kernel form the tuning kernel’s search
space T :

T = τj1 × τj1 × . . .× τjJ .

Autotuning explores the search space to minimize a measurement function mK :

T → R, searching for its global minimum:

Copt,K = arg min
C∈T

mK(C).

Therein, K defines the current dynamic context. The measurement function mK

maps configurations and the current dynamic context onto a tuning target, such
as tuning kernel runtime or energy efficiency. The context is composed of the ap-
plication context KA and the system context KS: K = (KA, KS). The application
context describes dynamic properties of the tuned application, such as the input
size. The system context quantifies characteristics such as momentary system
load or available hardware features, e.g., number of cores. For a given configu-
ration C ∈ T , mK(C) is, for example, a measurement of the execution time of
tuning kernel under the parameter configuration defined by C.
We categorize the tuning parameters τj according to Steven’s topology [Ste46]

into one of the four classes Nominal, Ordinal, Interval, and Ratio Parameters. This
classification is summarized in Table 2.1. Although a parameter may fit in any one
particular class among these four, the most relevant distinction must be made be-
tween a nominal and a non-nominal parameter. A nominal parameter is one that
selects between labels or categories. These occur frequently when programs may

13

Chapter 2 Fundamental Concepts

Table 2.1: Parameter Classes [Pfa+17].

Class Distinguishing
Property

Example

Nominal Labels Choice of algorithm
Ordinal Order Choice of buffer sizes from a set small,

medium, large
Interval Distance Percentage of a maximum buffer size
Ratio Natural Zero

Equality of Ratios
Number of threads

choose between variants of code, such as between different algorithms, or between
different execution platforms. Boolean parameters also fall into this category. The
key difference between parameters belonging to the nominal class and those that
do not is that within a nominal parameter space, there is no notion of distance or
direction. This notion however is important, because it is mandatory for the vast
majority of search algorithms used in empirical tuning. Reconsider the previous
thread count tuning example in Figure 2.2. We execute the tuning kernel first
with 2 threads and then with 4 threads, and for simplicity assume the 4 thread
version is twice as fast. Based on this observation, a search algorithm may sensibly
assume that more threads are better than fewer threads, and subsequently sample,
e.g., an 8 thread version. While this version might just not be faster, for instance
if there are less than eight hardware threads, the assumption is a valid hypothesis
to test. If, on the other hand, we were not to optimize the thread count, but the
selection between different implementations of add, the tuning parameter is nom-
inal. That means, having measured the runtime of an omp_add and an sse_add,
the search algorithm cannot make any meaningful assumptions about the runtime
of a cuda_add, because there is no means to relate the three with each other3.
Consequently, search on nominal parameters is inherently combinatorial.

2.1.2 Search Algorithms

Having introduced search spaces, tuning parameters, and parameter classes we will
now discuss search algorithms. After decades of research, an enormous catalogue

3Assuming black-box tuning.

14

2.1 Online and Offline Autotuning

reflect

expand

contractreduce

reduce

Best Point

Worst Point

~β

~γ

~α

x1

x2

Figure 2.3: An illustration of the Nelder-Mead algorithm operations reflect, expand,
contract, reduce sampling points starting from the blue 2D simplex. A
reduction operation produces the orange result. The function values of the
points are not shown.

of different search algorithms exists, which we will not review here in breadth.
For a broader overview, we refer to Marthaler [Mar13] for a survey on numerical
optimization methods and to Ashouri et al. [Ash+18] for a recent survey on
machine learning methods, in particular in the context of compiler autotuning. In
this section, we introduce the two algorithms on which the autotuner presented in
this thesis is built upon, namely Nelder-Mead and ε-Greedysearch.
The Nelder-Mead method [NM65] is an extension of the simplex function min-

imization method originally by Spendley et al. [SHH62]. It maintains a simplex
of points in n-dimensional real space, storing the simplex’ n + 1 point in sorted
order with respect to the measurement function. Figure 2.3 illustrates the sam-
pling behavior in the two-dimensional case, in which a simplex is a triangle. The
initial simplex in the example is colored in blue and its worst and best points are
marked. At every time step, the algorithm then executes one of the four operations
reflect, expand, contract, or reduce:

reflect: Mirror the worst simplex point at the centroid of all but the worst point
with mirroring coefficient α > 0. The coefficient determines how far the
new point is moved along the axis through the worst simplex point and the
centroid. In Figure 2.3 this operation moves the “worst” blue point in the
bottom left to the point labelled reflect along the line through the centroid.

15

Chapter 2 Fundamental Concepts

In the 2D case the centroid is halfway between the two right-hand points of
the blue triangle. After evaluating the measurement function for the new
point, if its value lies between those of the best and the worst point, exchange
the worst point for the reflected point and start over. Else, if the reflected
point is a new minimum, perform an expansion, or else, if the reflected point
is at least as bad as the worst tracked point, perform a contraction.

expand: The reflected point is a new minimum. Expand the simplex by moving
the reflected point further along the same axis as in the reflect step using
the expansion coefficient γ > 1. Figure 2.3 illustrates this step moving from
the point labelled reflect to the point labelled expand. Exchange the worst
simplex point for either the expanded or reflected point, whichever is better,
and start over.

contract: The reflected point is at least as bad as the current worst point. Pick
whichever of the two is better, and move it toward the centroid by contraction
coefficient 0 < β < 1. In Figure 2.3 we see this step as the move from the
point labelled reflect to the point labelled contract. If this produces
a better point, exchange it with the worst simplex point and start over.
Otherwise, perform a reduction.

reduce: Move every simplex point halfway towards the current minimum. Every
new point is evaluated to determine the new best and worst points. Figure 2.3
shows this operation moving from the bottom blue points to the bottom
orange points, creating a new simplex shown as the orange triangle.

You et al. [YSD05] extended this original algorithm to better capture the re-
quirements of empirical program optimization. Primarily, they deal with tuning
parameters being discrete, such as the thread count parameter in the example
above in Figure 2.2. They convert from the points in real space produced by
Nelder-Mead to integer by floor rounding. Second, they support boundary and
interior constraints, both of which frequently are necessary in program autotun-
ing: The set of legal values is usually finite and often defined as closed intervals of
values. Additionally, specific combinations of values from within the legal ranges
can also produce illegal configurations. The search must be constrained to the
boundaries of the value intervals and must avoid the illegal interior points. You
et al. handle this through stationary penalty values. That means, if a point p pro-
duced by Nelder-Mead search either lies outside of the application specific bounds,

16

2.1 Online and Offline Autotuning

such as a negative thread number, they simply return mK(p) = ∞. They also
notice the importance of defining how to start the search. If the points of the
starting simplex turn out to lie on a (hyper-)plane, the search is limited to moves
on the plane and can never explore in a direction perpendicular to it. To avoid
this, the You et al. initialize the simplex so that it has a non-empty but random
volume.
The second algorithm we present in this section is called ε-Greedy. The algo-

rithm is frequently used in solutions to multi-armed bandit problems [SB98]. In
this type of problem, an agent must repeatedly choose among a set of options
with an unknown reward, which resembles playing a slot-machine with multiple
arms and unknown payouts. Tuning nominal parameters can be seen as a multi-
armed bandit problem, which motivated the choice of this particular algorithm.
The ε-Greedy algorithm is remarkably simple: With a probability of ε, select a
configuration randomly, otherwise greedily pick the best configuration found so
far. Variants of the algorithm also sometimes decrease the ε over time to force the
search to converge to a value [KLM96].

2.1.3 Reinforcement Learning

Reinforcement Learning (RL) is a class in the field of machine learning for solving
control problems. In this section, we provide an overview of the general problem
formulation, as well as a selection of solution methods. For a more in-depth in-
troduction we refer to Sutton and Barto [SB98]. All definitions in this section are
based on Sutton and Barto unless otherwise noted.
The RL control problem is usually formulated as a Markov Decision Process

(MDP), in which an agent iteratively navigates an unknown environment. In
every iteration, the agent observes its current state in the environment, and selects
and executes an action. It makes this choice based on an action-selection policy.
After carrying out the action, it receives a reward from the environment and
transitions into the next state. The agent attempts to maximize its accumulated
reward over time, and Reinforcement Learning methods are used to determine
policies to achieve that. The state transition after executing an action need not
be deterministic, i.e., an action takes the agent into the next state according to a
probability distribution in general. The sequence of action-transition steps in the
process can be either infinite-horizon or episodic. In the former, iterations go on
forever, indefinitely continuing state transitions. In the latter, iteration happens

17

Chapter 2 Fundamental Concepts

in an episode until some termination state is reached, and is then restarted in an
initial state. This case allows for a delayed distribution of rewards only at the end
of each episode instead of after every action. The typical example for an episodic
MDP with delayed rewards are games. Here, the agent plays a board or computer
game against a human or machine opponent, and receives a score once the game is
complete. TD-Gammon [Tes95] is a well-known instance of this, where a Temporal
Difference learning (an RL method which we further describe below) agent learned
to play Backgammon by training against world-class human players.
Formally, an MDP is the quadruple (Σ, A,Φ, ρ) where Σ and A are the sets of

discrete states and actions, respectively. The action model Φ : Σ×A×Σ→ [0, 1]

gives the probability Φ(s, a, s′) = P (s′|s, a) of transitioning into state s′ when
performing the action a in state s. The reward function ρ : Σ × A × Σ → R
defines the reward received from the environment when going from state s to s′

when performing action a. When applying RL to solve this MDP, Φ is typically
not known, and is learned along the way.
After three decades of research, there is by now a substantial body of RL meth-

ods [Aru+17; SB98]. We focus on the two classical model free variants: Temporal
Difference learning (TD) [Sut88] and Q-Learning [WD92]. Both operate in a sim-
ilar manner, in that they attempt to maximize the expected future reward. Thus,
they assign a value V (s) to every state s. Temporal Difference learning computes
this value as follows. After every step, it updates the value of the previous state s
according to

V (s) = V (s) + α [ρ(s, a, s′) + γV (s′)− V (s)] .

Here, α is called the learning rate, and γ ∈ [0, 1] is a discount factor controlling
the influence of expected future rewards. An agent setting γ = 0 is sometimes
called myopic, in that it makes decisions purely based on immediate rewards and
ignores any possible future gain.
TD is an instance from the class of so-called on-policy methods. On-policy

methods learn a policy by using the policy. An on-policy agent can hence be
considered to be always exploring. In particular this means the agent cannot be
trained using a stochastic policy, e.g., randomly trying actions for a while, and then
switching to a different policy, e.g. one greedily choosing the action most probably
leading to the highest valued state. Learning about one policy (called the target
policy) from data obtained through a different policy (called the behavior policy)
is instead the discriminating feature of off-policy methods.

18

2.1 Online and Offline Autotuning

Watkins’ Q-learning is an off-policy method for online learning. Instead of com-
puting state-values as in TD, Q-learning approximates the optimal value function
through state-action-values. Watkins noticed that the future development of the
expected reward only depends on the current state and the chosen action [Wat89].
Thus, his state-action-value function Q : Σ×A→ R assigns each state and action
pair the expected future reward. A trivial but optimal target policy can then be
πt(s) = arg maxaQ(s, a). To train Q, Watkins defines the update after performing
an action in time point t

Qt+1(s, a) = Qt(s, a) + α
[
ρ(s, a, s′) + γmax

a′
Qt(s′, a′)−Q(s, a)

]
The parameters α and γ are as above in TD learning. The behavior policy used
during training is now another degree of freedom. One popular choice often used
in both literature and practice is ε-Greedy, which chooses a random action with
probability ε, and the best known action otherwise. Interestingly though, because
Q-learning is off-policy, it can also consume data obtained through third party
sources, for example a human controller, or data recorded in previous experiments.
The models and methods discussed so far in this section are subject to a strong

restriction: Both action and state spaces are required to be discrete. This is an
impactful limitation, because it excludes a wide range of control problems which
have continuous states, unless the continuous inputs are proactively discretized.
Particularly relevant examples are all problems that use time as input, which is con-
tinuous. But even if the problem being modeled has discrete states, there arises a
practical difficulty when the state space is large. Tabular RL methods as described
above need to keep the state value function or state-action-value function as a table
in memory. Storing the complete table quickly becomes impractical. An alterna-
tive is to approximate the mapping as a function. Early results have shown this to
be problematic, such as Baird’s well known counterexample for which Q-learning
with function approximation diverges [Bai95]. Recent advances in the theory of
machine learning and stochastic gradient descent in particular have lead to sev-
eral new gradient-based RL algorithms with much stronger convergence guarantees
such as Greedy-GQ [Mae+10]. Greedy-GQ offers several benefits which make it
an interesting candidate for online tuning scenarios: It is online, incremental, and
efficient, involving memory and computation costs linear in the number of features.
It is however limited to linear function approximation. The general framework of
the algorithm is as introduced above for tabular Q-learning. Instead of the tab-
ular Q(., .), however, it computes Qθ(s, a) = θ · ϕ(s, a), where ϕ(s, a) ∈ Rd are

19

Chapter 2 Fundamental Concepts

non-linear features and θ ∈ Rd are the parameters to be learned. Using Sutton’s
weight-doubling technique [SMS08], the iterative update for an ε-Greedy policy is
defined as

θt+1 = θt + αt [δt(θt)ϕt − γ (wt · ϕt) ϕ̂(θt)] ,

wt+1 = wt + βt [δt(θt)− ϕt · wt] .

Here, α and γ are as before, and β is the learning rate for the second weights.
The ϕt are abbreviations for ϕt(st, at). The temporal difference error δt+1(θ)

is analogous to the TD update above. Lastly, ϕ̂ is ϕ̂t+1(θ) = ϕ(st+1, a
′) for

a′ = arg maxaQθ(st+1, a). Maei et al. prove the convergence of their Greedy-
GQ algorithm still under strong conditions, but claim that it shows to be robust
beyond their proof in practice. In particular, Greedy-GQ converges for Baird’s
counterexample.

2.2 Program Analysis and Transformation

In this section we provide an introduction to the compiler construction con-
cepts and tools that form the basis of the cooperative parallelization within the
aphes compiler. In particular, we introduce the LLVM framework and the anal-
yses we used to extract parallelizable parts from a program. The latter includes
both classical dependence testing techniques as well as the more formal polyhedral
model.

2.2.1 The LLVM Framework

We implement aphes on top of the LLVM framework [LA04], an infrastructure
for building compilers and programming language tools. The framework is the
basis for several compilers and multiple languages, such as C++, Java, and Rust.
An LLVM-based compiler is generally a pipeline of three components. The front-
end translates the programming language into an intermediate representation, the
LLVM IR. The middle-end then transforms this IR to optimize the program.
Lastly, the backend first converts this IR to a second intermediate representation
which more accurately reflects properties of the targeted register machine. Second,
this machine IR is further optimized for the selected target platform and then
lowered into binary code. Our compiler reuses both the LLVM frontend for the
C-family of languages as well as the backends for the platforms we target. The

20

2.2 Program Analysis and Transformation

1 @S = private constant [13 x i8] c"Hello␣World\0A\00", align 1
2

3 declare dso_local i32 @printf(i8*, ...)
4

5 define dso_local i32 @main() {
6 entry:
7 %1 = getelementptr [13 x i8], [13 x i8]* @S, i32 0, i32 0
8 %2 = call i32 (i8*, ...) @printf(i8* %1)
9 ret i32 0

10 }

Figure 2.4: LLVM intermediate representation of a “hello world” program.

frontend is part of the clang compiler. Additionally, we use program analyses and
transformations from the LLVM middle-end, and will thus give a more detailed
overview of the middle-end and the intermediate representation in the following.
The LLVM IR represents the source program in a RISC-assembly-like form. Fig-

ure 2.4 shows an example “Hello World” program in LLVM IR. The representation
is Static Single Assignment (SSA) based, meaning that every variable, called an
SSA register and written with a leading % in LLVM IR, is assigned only once
statically. To express multiple assignments to a variable in the source language,
the SSA form contains virtual phi nodes that select operands according to control
flow. The largest unit of IR is the module, which describes a single compilation
unit. The module contains function declarations and definitions, type definitions,
global variables and metadata. In the example, @S is a global variable. Function
declarations, such as for @printf, contain the function name, the return type, and
the argument types. Function definitions, such as for @main, additionally define a
list of basic blocks. Basic blocks are the nodes of the function’s control flow graph,
linked via branch edges, and contain the SSA instructions. The @main function
contains a single basic block, labelled entry, which is terminated by a return
instruction.
Program optimization in the LLVM middle-end is organized into passes, scoped

to the different units of IR. A pass can be either an analysis or a transformation.
An analysis is an operation that only reads IR and computes information, which
is then cached for further use. As an example, consider points-to or alias analysis,

21

Chapter 2 Fundamental Concepts

which for every pair of pointer variables in a function computes whether they
may ever point to the same object or not. A transformation is something that
queries analysis results and mutates the IR, potentially invalidating previously
cached analyses. An example for this is inlining, replacing a call to a function
with a copy of its body. The middle-end applies sequences of transformations
known as pipelines to the IR. As such, it alternates between performing multiple
transformations on a function, or on a module, or on a loop, for instance.

In the remainder of this section, we describe two analyses implemented in LLVM
in closer detail. These analyses, which are AliasAnalysis and ScalarEvolution,
are those which our parallelization compiler relies most strongly on.

Alias analysis computes information to disambiguate memory accesses. When-
ever memory is loaded or stored through two pointer variables, it decides whether
it is possible that the two variables ever refer to the same bytes of memory. In
general, a precise answer to that question is impossible, which follows from the
halting problem. The analysis must make worst-case assumptions in that case.
In all other cases it can respond with a “yes” or “no” answer. For example, dis-
tinct global variables or stack allocations cannot alias, neither can statically known
different array indices on the same array. Beyond this simple reasoning, LLVM
implements more complex, more precise, and more expensive analyses. Examples
for this are the inclusion-based or unification-based analyses based on the context-
free language reachability problem from the works of Zheng et al. and Zhang et
al. [ZR08; Zha+13].

Unlike alias analysis, which attempts to describe the evolution and propaga-
tion of pointers throughout a function or program, ScalarEvolution analyzes the
evolution of scalar variables across the iterations of a loop. It attempts to derive
a closed form for the value contained in a variable, dependent on the iteration
variables of containing loops. In essence, the analysis computes this closed form
through symbolic evaluation of chains of recurrences, which is based on the work
of Van Engelen and Bachmann et al. [Eng00; BWZ94]. With its help, passes can
determine the (symbolic) value stored in a variable at any given loop iteration.

22

2.2 Program Analysis and Transformation

1 if (loadData ()) {
2 data = prepareData ();
3 consumeData(data);
4 }

Figure 2.5: Control Dependences: Execution of the consumeData task is conditional
on the data produced by the loadData task.
Data Dependences: The consumeData task requires data produced by
the loadData task.

2.2.2 Parallelism Detection, Dependence Graphs, and
Interprocedural Analyses

In a parallel program, the fundamental components of parallel execution are tasks
and data. Tasks read, modify, or create data. If there are multiple different tasks
operating concurrently, this mode of execution is called task parallelism. If, on the
other hand, the same task executes concurrently for different data, this is referred
to as data parallelism [MRR12].

Parallelizing a sequential program means transforming it, so that formerly se-
quentially executed tasks now operate in parallel. Both task and data parallelism
can be produced, both in isolation and in combination. A parallelizing compiler
detects the potential to produce a parallel program. This can be done either by
identifying distinct tasks that may run in parallel, or by finding a task that can
be replicated to operate only on parts of the data. The parallel program preserves
the original program semantics, but exhibits a different order of execution. For the
necessary transformation to be sound, the compiler must prove that it does not
violate dependences present in the original program. Dependences can be either
data dependences, or control dependences [HP11]. A control dependence exists be-
tween two tasks, if the execution of the second depends on the result of the first.
In Figure 2.5, e.g., consumeData() is control dependent on loadData() because
of the conditional branch. The consumeData() task may thus only execute once
the loadData() task is completed. A data dependence exists when a task requires
data produced by another task. In the example, the consumeData() task is data
dependent on the prepareData() task because it requires the prepared data.

23

Chapter 2 Fundamental Concepts

There are four types of data dependences [GKT91; HP11]. Assume a program
in which tasks A and B run in sequence, then the four dependence types are:

Input dependence (read-after-read): Task B reads a variable that task A
also reads. This dependence is generally benign, and thus does not prevent
parallel execution.

Output dependence (write-after-write): Task B writes a variable that task
A also writes. In a parallel execution, this would non-deterministically alter
the value any subsequent, non-concurrent tasks observe.

Flow dependence (read-after-write): Task B reads a variable that task A
writes. Task B might see the old value in a parallel execution.

Anti dependence (write-after-read): Task B writes to a variable that task A
reads. Task A thus might see any of the two values in a parallel execution.

Dependent tasks (other than Input dependent) cannot be soundly executed con-
currently. Automatic parallelization thus requires finding tasks which are not
ordered through either control or data dependences. To determine control depen-
dences, compilers compute the post-dominance frontiers for a function [FOW87].
The post-dominance frontier is a function that maps basic blocks to their suc-
cessors which are not post-dominators. A post-dominator of a basic block is an
immediate or indirect successor that is part of every path from the basic block to a
function exit. The post-dominance frontier is a static property of the control flow
graph and is easy to compute. Data dependences, however, are much harder to de-
termine. This is for two reasons. When accessing arrays through pointer variables,
the compiler first must determine for two accessed variables whether these refer
to the same array. Second, it must decide whether the index expressions of the
accessed array elements ever assume an identical value, but the index expression
may be computed from an arbitrarily complicated expression, or it might be loop
variant or even unknown in case the index is loaded indirectly from other variables.
The first problem, whether pointers refer to arrays, is approached by points-

to or alias analyses. Alias analyses make various trade-offs, balancing precision
and speed [Hin01]: A flow-sensitive analysis for example considers control flow
through a function. A context-sensitive analysis considers the calling context of a
function. The precise analysis even has been shown to be NP-hard [LR91; Hor97].

24

2.2 Program Analysis and Transformation

1 for (int i = 1; i < N; ++i) {
2 float a = A[i + N];
3 float b = A[i + 2 * N - 1];
4 A[i + 2 * N] = a + b;
5 }

Figure 2.6: Example: A data dependent computation

Consequently, compilers need to make pessimistic assumptions about which arrays
are accessed by a single instruction.
Having determined which arrays two memory accesses may refer to, dependence

analysis can then be performed to solve the second problem. This analysis often
uses a technique called dependence testing. The algorithm by Goff et al. [GKT91]
is an instance of this technique. The general idea of the algorithm is to first run
a sequence of simple and cheap tests that cover the majority of access patterns
found in practical software. Only if those are inconclusive they defer to more
general and expensive analyses such as Banerjee’s inequalities and the GCD test
[Ban88; Wol82]. To illustrate the algorithm, consider the example in Figure 2.6.
Intuitively, the write in line 4 to A[i+2*N] depends on the value of A[i+N] read
in line 2 in the iteration i. Given the loop bounds, we easily see that this index is
never written in the loop. More general, for this type of index expressions of the
form a∗i+c1, a∗i′+c2 the dependence testing algorithm calculates the dependence
distance as d = i− i′ = c1−c2

a
. The dependence distance is the number of iterations

that lie between the two accesses. For the accesses in lines 2 and 4 of Figure 2.6 to
access the same bytes of memory, there need to be N iterations between first the
write in iteration i and later the read in iteration i + N . Substituting the values
from the example in the dependence distance formula, we indeed get d = N . Since
d > N − 1, the number of loop iterations, we can disprove dependence for these
two accesses. On the other hand, considering the accesses in lines 3 and 4 instead,
we get d = 2 ∗ N − 2 ∗ N + 1 = 1 ≤ N − 1, which means there exists a flow
dependence here.
Given both the control and data dependences, the compiler can now search

for parallelizable tasks. An established data structure facilitating this job is the
program dependence graph (PDG) [FOW87]. The PDG is a graph representing a
function whose nodes are instructions and edges are control or data dependences.

25

Chapter 2 Fundamental Concepts

In this representation, detecting both task and data parallelism is straightforward.
Any two distinct subgraphs where neither one is reachable from the other describe
tasks that can be executed concurrently. Similarly, any task that is not part of a
cycle is a candidate for data parallelism. An unfortunate limitation of the PDG is
that it only analyzes a single function. This means that tasks containing function
calls cannot be considered for parallelization. Interprocedural analysis, i.e., look-
ing at multiple functions at the same time, offers a way around this limitation.
Unfortunately, precise interprocedural analysis is hard [Rep96]. Function sum-
maries as described by Sharir and Pnueli [SP78] however present a technique to
trade precision for speed and represent function calls within a PDG. The general
idea is to produce a summary for functions recursively, starting at the leaves of
the call graph, i.e., those functions which contain no calls. The summary describes
accesses to arrays not defined within the function. Callers of the function build
their own summary by virtually inlining the summaries at call sites. This of course
only works if a function’s accesses are computable, and the function is not part of
a cycle in the call graph, which are present in recursive programs.

2.2.3 The Polyhedral Model

The polyhedral model [FL11] offers a formal approach to reason about programs,
by representing program parts in a compact mathematical abstraction. The pro-
gram parts representable in this model are called static control parts (SCoP) which
are connected single-entry-single-exit subgraphs of the control flow graph. Static
control requires that the only control constructs in the subgraphs are loops with
affine loop bounds, and all memory accesses are either to scalar variables or to
arrays with affine subscripts in the loop counters. Figure 2.7 shows a simple 2D
matrix multiplication code based on the example by Verdoolaege et al. [Ver+13].
This loop nest exhibits static control: all array access index expressions in the
statements S1 and S2 are affine in the loop bounds, and the loop bounds are in-
teger parametric constants, and thus also affine. Parametric constants are loop
invariant program variables. Although the loop upper bound N in the example
is a program variable, it is considered constant with respect to the program part
because it is invariant within it.

26

2.2 Program Analysis and Transformation

1 // Compute N x N matrix product A = B * C
2 for (int i = 0; i < N; i++)
3 for (int j = 0; j < N; j++) {
4 S1: A[i][j] = 0
5 for (int k = 0; k < N; k++)
6 S2: A[i][j] += B[i][k] * C[k][j]
7 }

Figure 2.7: Matrix multiplication: A three-dimensional loop nest with static control
(based on the example by Verdoolaege et al. [Ver+13]). The memory
accesses in the statements S1 and S2 are all affine.

2.2.3.1 Modeling Affine Loop Nests

The core of the mathematical representation of affine loop nests are Presburger sets
and relations [PW94; Ver16]. A Presburger set

{
N(i) | cons(i, p), i ∈ Zn, p ∈ Zk

}
is a vector space over Z. Here, p ∈ Zk is a vector of parametric constants. N is an
optional name, included to aid readability. The constraints cons are Presburger
formulas, which are first-order formulas over integer inequalities of quasi-affine
expressions. Quasi-affine expressions are sums and differences between variables,
parametric constants, integer constants, and quasi-affine products, divisions, or
modulo operations. Products are quasi-affine if one operand is constant, divisions
and modulo operations are quasi-affine if the divisor is constant. A Presburger
relation

{
N(i)→M(j) | cons(i, j, p), i ∈ Zn, j ∈ Zm, p ∈ Zk

}
is defined similarly.

Using these definitions, we can now model the SCoP of the example in Figure 2.7
(cf. [Ver+13]). The iteration space or iteration domain is defined by

D = {S1(i, j) | 0 ≤ i, j < N, S2(i, j, k) | 0 ≤ i, j, k < N} .

The read access relation is

R = {S2(i, j, k)→ A(i, j), S2(i, j, k)→ B(i, k), S2(i, j, k)→ C(k, j)} .

and the write access relation is

W = {S1(i, j)→ A(i, j), S2(i, j, k)→ A(i, j)} .

Lastly, a schedule defines an execution order of statements preserving the data
dependences. Schedules are a relation, mapping statement instances to virtual

27

Chapter 2 Fundamental Concepts

timestamps, which are executed in lexicographic order. The schedule for the ex-
ample is

S = {S1(i, j)→ (i, j, 0, 0), S2(i, j, k)→ (i, j, 1, k)} .

An analysis that the model facilitates is dependence analysis. Using the tech-
niques by Feautrier [Fea91], we obtain

∆ = {S1(i, j)→ S2(i, j, 0), S2(i, j, k)→ S2(i, j, k + 1)} .

This dependence relation expresses that in every iteration (i, j) of the outer two
loops, the statement S2 in iteration k = 0 of the inner loop depends on the
statement S1, and in iteration k + 1 on result of itself from the iteration k.
Another interesting analysis the polyhedral model offers is counting. Because the

model is a bounded integer polyhedron, we can use Barvinok’s algorithm [Bar08],
which counts the number of points in integer polyhedra in polynomial time. The
number of points, which in general is parametric in the parametric constants,
corresponds to the exact number of instructions executed by the SCoP. From this,
we can make accurate predictions of the dynamic runtime of the SCoP, given
that accurate estimates for the runtime of the individual instructions are known.
Restricting the model to specific instructions further allows additional analyses,
such as computing the exact number of bytes read or written in the SCoP.
While the polyhedral model offers a compact and highly versatile abstraction it

is also subject to severe limitations. Modeling a loop nest requires the loop to be
(part of) a SCoP. If the task is only parallelization, for example, this restriction
is stronger than necessary: For instance, an inner loop with non-affine or even
unknown bounds does not prevent outer loop parallelization if the inner loop does
not access memory, or only memory that is provably not accessed by other outer
loop iterations. Further, to date the polyhedral model is applicable only intrapro-
cedurally. Interestingly however, there are techniques to create optimistic models
such as those developed by Doerfert et al. [DGH17], which build the model and
collect assumptions along the way. An example assumption is the non-aliasing
of arrays. The assumptions are then simplified and compiled into runtime checks
which only execute transformed code if the assumptions hold.

2.2.3.2 Polyhedral Scheduling

The power of the polyhedral model is that it allows for applying sequences of
loop transformations purely on the abstraction, and subsequently generating new

28

2.2 Program Analysis and Transformation

code from the transformed representation. Transforming the model means finding
alternative schedules that improve performance while preserving data dependen-
cies. This process is called scheduling. Scheduling can increase locality, or expose
parallelism. For example, minimizing dependence distance improves locality: The
more recent an address was accessed, the more likely it is still in the cache. A
dependence distance of 0 even means that accesses happen within the same it-
eration. Such accesses do not cause loop-carried dependencies, and thus do not
inhibit parallelization.

For the matrix multiplication in Figure 2.7, the dependence distances are the
differences of the timestamps of statement instances involved in the dependence re-
lations ∆. For the schedule S, the dependence distances are SS2(i, j, 0)−SS1(i, j) =

(0, 0, 1, 0) and SS2(i, j, k + 1)− SS2(i, j, k) = (0, 0, 0, 1). In both cases, the entries
for the i and j dimensions are zero, indicating that the i and j loops are parallel.
Furthermore, because all entries are non-negative, this means that the loops in the
example are freely permutable without affecting the program semantics [Aho+07,
pp. 864]. Permuting loops (sometimes also called loop interchange) exchanges in-
ner with outer loops. More importantly, though, permutability guarantees that
loop tiling is legal. Loop tiling, also called blocking in the literature, is a transfor-
mation that decomposes a single loop into two: The inner loop, called the point
loop, iterates over the elements of a tile (or block) of elements of the original loop.
The outer loop iterates over the equally sized tiles of original elements. The tiling
operation is able to increase locality and expose parallelism. We refer to Aho et
al. [Aho+07] for more in depth introduction.

One widely used algorithm for tiling loops and exposing parallelism is the Pluto
algorithm [Bon+08]. Using integer linear programming, it produces a tiling sched-
ule which minimizes the dependence distance. The integer linear program (ILP)
is formulated from scheduling functions constructed successively to produce non-
negative dependence distances. Loop nests can of course not generally be scheduled
to be fully permutable, which Pluto solves by creating a chain of permutable loops.
Each set of permutable loops within this chain is then called a permutable band or
tilable band. The linear program then optimizes the schedule function coefficients
to minimize dependence distance.

Another frequently cited scheduling approach is PPCG [Ver+13], which extends
the Pluto algorithm to apply it to GPU mapping. Mapping is the process of
assigning loops to GPU thread grid and block dimensions. Instead of a chain of

29

Chapter 2 Fundamental Concepts

bands, PPCG builds on top of isl [Ver10], which computes a tree of bands. The
PPCG mapping algorithm then works as follows. First, it finds the outermost
bands (i.e., highest with respect to the tree) containing parallel loops, for each of
which it will create a separate GPU kernel. Every such outermost band is then
tiled. Two parallel outermost tile loops are mapped to the blocks of the grid, three
parallel outermost point loops are mapped to the threads of a thread block. To
maximize locality, the thread mapping occurs inner-dimension first. That means,
the outermost thread block dimension is assigned the iterations of the innermost
loop.
The concept of a tree of bands has since been generalized to the notion of sched-

ule trees [GVC15]. Grosser et al. implemented this scheduling method in isl. The
trees are also used in recent versions of the PPCG mapper. Schedule trees pro-
vide a way to represent piecewise schedules and modulo arithmetic, which greatly
simplifies polyhedral code generation and circumvents limitations of previous code
generators. The tree is composed of eleven types of nodes. The most important
ones will be introduced here:

Domain The domain node is the root of the tree and introduces the scheduled
statement instances.

Context A context node introduces parametric constants not part of the domain.

Filter Filter nodes select subsets of statement instances that have been introduced
and not filtered out by previous Filter nodes. Filters are the only legal
children of set and sequence nodes.

Sequence A sequence node schedules its filter children in sequence.

Set A set node schedules its filter children in arbitrary order.

Band The band node represents a partial schedule.

Figure 2.8 shows the schedule tree for the matrix multiplication example. De-
riving the schedule S = {S1(i, j)→ (i, j, 0, 0), S2(i, j, k)→ (i, j, 1, k)} from this is
straightforward: The outermost band maps the i and j dimensions of both state-
ments to i and j. The sequence node schedules the statements selected by its
filters in sequence. The simplest such schedule thus maps S1 to a constant 0,
S2 to a constant 1. The innermost band lastly maps the k dimension of S2 to k.

30

2.2 Program Analysis and Transformation

domain

D = {S1(i, j) | 0 ≤ i, j < N,

S2(i, j, k) | 0 ≤ i, j, k < N}

band

{S1(i, j)→ (i, j)

S2(i, j, k)→ (i, j)}

sequence

filter
{S1(i, j)}

filter
{S2(i, j, k)}

band
{S2(i, j, k)→ (k)

Figure 2.8: Original schedule tree of the matrix multiplication example in Figure 2.7.

31

Chapter 3

An Overview of the
APHES Framework

The APHES framework is the contribution of this thesis to satisfy the requirements
carved out in Section 1.1. To fulfil the thesis goal it offers a compiler and runtime
system to parallelize sequential applications for heterogeneous platforms and to
autotune the execution. Autotuning operates by using either empirical search to
explore new configurations or prediction to provide configurations for known and
unknown context states. The decision between either configuring method is made
upon every change in the dynamic context.
In this chapter, we provide a high-level overview of the framework and its com-

ponents, and outline how it achieves the thesis goal. The two main components
are the libtuning autotuner and the aphes compiler. In the following, we first
present the autotuning library and show how application developers may use it for
online optimization of their programs. Second, we present the compiler and outline
how it integrates the tuner with the application as part of its runtime system.

3.1 The libtuning Autotuner

The main part of the framework is the libtuning autotuner. We use it within
the APHES framework to optimize the cooperative execution, but it is in fact a
standalone tool. Application developers can use it as a C++ library to auto-
mate the optimization of tunable parameters in an application independent of the
APHES framework. The library implements a versatile, generic, and easily extensi-
ble online autotuner.

33

Chapter 3 An Overview of the APHES Framework

1

2 tuning ::Tuner OMPTuner;
3 int NumThreads = 8; // Initialize to some default.
4

5 vector <int > add(vector <int > A, vector <int > B) {
6 vector <int > Result(A.size());
7

8 // Update NumThreads with the next configuration.
9 OMPTuner.start();

10

11 #pragma omp parallel for num_threads(NumThreads)
12 for (size_t I = 0; I < Result.size(); ++I)
13 Result[I] = A[I] + B[I]
14

15 // Report feedback. The API measures time automatically.
16 OMPTuner.stop();
17

18 return Result;
19 }
20

21 int main() {
22 OMPTuner.addParameter (& NumThreads , /*min=*/1, /*max=*/16);
23

24 // Call add (...) repeatedly
25 }

Figure 3.1: Example: Tuning OpenMP vector addition with libtuning.

34

3.1 The libtuning Autotuner

An application interacts with autotuner iteratively: For a previously registered
set of application parameters, the application requests a new configuration for
these parameters, and reports a performance metric for this configuration back to
the tuner.

Integrating an application with libtuning thus requires two steps: Exposing
and registering tunable parameters, and introducing update and feedback calls. A
tunable application parameter can be of any type and have arbitrary semantics, as
long as it is freely configurable by the autotuner. Updating the application param-
eters with the next configuration and reporting performance feedback about the
configuration back to the tuner encompasses the tuning kernel of the application.
The update-sample-feedback sequence thus is the body of the tuning loop. Most
of the time, the feedback is a runtime measure, although this is not required. The
autotuner attempts to find the parameter configuration that minimizes the metric,
independent of the metric’s meaning.

Figure 3.1 depicts an OpenMP example using libtuning to optimize the number
of threads. The NumThreads parameter is registered by reference with the tuner,
using a range of valid values between 1 and 16. When calling OMPTuner.start()
in line nine in every call to add(...), this automatically updates NumThreads
with a new sample value from this range. Reading from the variable thus uses
the new configuration. Subsequently calling OMPTuner.stop() then takes care of
reporting runtime feedback to the tuner, using the wall clock time passed since
the last call to start(). The start()/stop() API is provided for convenience.
There are alternative APIs for using arbitrary feedback values. Note that this
example is not simplified and shows the actual sequence of calls required to set up
and perform autotuning, although excluding the tuning loop.

The libtuning autotuner is both generic and extensible. Its architecture is
shown in Figure 3.2. The behavior of the tuning process is entirely customizable:
The search algorithms and online learning mechanisms can be altered or replaced
by application-supplied plugins. To be fully generic, the tuner imposes no re-
strictions on the application parameters’ types, ranges, or semantics. At its core,
libtuning provides an abstraction between the application and the search engine.
The search engine is a driver for arbitrary search algorithms such as the Nelder-
Mead algorithm, ε-Greedy search, or genetic algorithms. Application developers
pick an algorithm from a small selection of built-in searches or implement their
own. Searches are isolated from the application through an adaptation layer, which

35

Chapter 3 An Overview of the APHES Framework

libtuning

Memory

Hybrid Tuning

eGse
ar
ch

NNmo
de
l

NMse
ar
ch

Ap
pl
ic
at

io
n

Figure 3.2: The architecture of the libtuning autotuner: Application feedback is the
input to both a tabular memory keeping tracking best known configurations
and to the hybrid tuner. The hybrid tuner combines model-based prediction
and empirical search, both of which are implemented to extensible plugins.
Included by default are Nelder-Mead (NN) and ε-Greedy(eG) search, as
well as nearest-neighbor (NN) prediction.

36

3.1 The libtuning Autotuner

maps between unconstrained real-valued search spaces and the often constrained
and arbitrary-valued application parameter spaces. The library provides sensible
defaults for this mapping for the most common parameter types: Bounded or un-
bounded integer or floating point values, as well as non-numeric values describing
a set of choices. The mapping can be modified by the application developer.
The features outlined so far make libtuning applicable to most tuning scenar-

ios. Besides its usability, libtuning’s key features are mechanisms to improve
amortization. The autotuner reduces both the total number of configurations
tried and the number of extraordinarily bad configurations tried. It achieves this
through three methods:

Hybrid tuning: The performance of the tuning kernel generally not only depends
on the tuning parameter configuration, but also on the system and applica-
tion state. To exploit that fact, libtuning implements a hybrid autotuning
method, combining search, memorization, and model-based prediction. An
application may register arbitrary “indicators” with the tuner which char-
acterize the dynamic state of the application and the system. An example
is an abstract “input size”. Using online learning, libtuning automatically
detects significant changes in the dynamic state and reacts to the change:
Based on a predictor built through online learning, hybrid tuning can imme-
diately switch to a learned configuration. If the exact same dynamic state
was observed in the past, the memorized search result for that state is used.
Otherwise, a trained model is queried for a predictably good configuration.
The application is not required to provide training samples. The predictor is
automatically trained for all observed indicator states from training samples
produced during search.

Parameter constraints: Special application parameters often induce constraints
on large portions of the parameter space. One example is a parameter con-
trolling the choice of an algorithm. Any tuning parameters contained within
one of these algorithms should only be updated if this specific algorithm has
been selected. The algorithmic choice parameter thus controls the relevance
of the algorithm’s parameters. On the other hand, the parameters con-
trolled by the choice parameter are not independent from those that are not,
in general. They cannot be tuned separately. If such relevance constraints
are marked by the application developer, libtuning constructs hierarchical

37

Chapter 3 An Overview of the APHES Framework

1

2 tuning ::Tuner OMPTuner;
3 int NumThreads = 8;
4 // Control parallel execution:
5 bool Parallel = true;
6

7 vector <int > add(vector <int > A, vector <int > B) {
8 vector <int > Result(A.size());
9

10 OMPTuner.start();
11

12 // Only run in parallel if tuning parameter is set:
13 #pragma omp parallel for num_threads(NumThreads) \
14 if (Parallel)
15 for (size_t I = 0; I < Result.size(); ++I)
16 Result[I] = A[I] + B[I]
17

18 OMPTuner.stop();
19

20 return Result;
21 }
22

23 int main() {
24 auto N = OMPTuner.addParameter (&NumThreads , 1, 16);
25 // Parallel is a nominal parameter:
26 auto P = OMPTuner.addParameter (&Parallel , {false , true});
27 // Only tune NumThreads if Parallel is true:
28 OMPTuner.recordConstraint(N, P, true);
29

30 // Call add (...) repeatedly
31 }

Figure 3.3: Example: Record dependences between parameters.

38

3.1 The libtuning Autotuner

search spaces to decrease dimensionality as much as possible while preserving
dependencies. This additionally allows using different search algorithms for
different parts of the search space. Figure 3.3 shows an example of this fea-
ture. Introducing a Parallel parameter allows to also execute the addition
sequentially, in which case the NumThreads parameter becomes irrelevant.
Registering this dependency with the tuner allows it to exploit that fact.

Analytical feedback: In many practical applications, the application developer
has domain knowledge of parameter configurations and can predict whether
or not a configuration is reasonable. In the example of the aphes compiler,
several such predictions are possible. For instance, assigning two iterations
of a parallel loop to a GPU is essentially guaranteed to result in non-optimal
performance. To account for this, applications may reject configurations
without measuring them. This way, libtuning can decrease the number of
sampled bad configurations to improve amortization time.

To motivate hybrid tuning, reconsider the OpenMP vector addition example in
Figure 3.1. The time measurements taken for the execution time of the for-loop
tuning kernel depend not only on the NumThreads parameter, but also on the vector
size. As the example stands, the NumThreads variable is the only thing the tuner
can observe and manipulate. To also make the tuner consider the loop’s iteration
count, we extend the example as shown in Figure 3.4. Now explicitly using the
hybrid autotuner, we add an indicator in line 25 to capture the input size, which
governs the loop’s iteration count. After registering the indicator with the tuner,
the tuner automatically discriminates different input sizes. Configurations are
searched per input size, and once converged will be used when a known input size
is passed. Although in the example we differentiate between inputs that differ only
in a single element, libtuning allows for arbitrary resolutions.
The simplest method to map indicators to configurations is a table. In fact,

that is what the tuner in the example is using. It is obvious though that a tabular
approach is limited: There can be an arbitrary number of different inputs, so
the table would reach an impractical size. If inputs are similar, it might not be
necessary to distinguish between them. For example, a configuration of the thread
count for 2,000 elements will likely be good for 2,001 elements. Additionally,
indicators might reflect continuous quantities, which need to be discretized. An
application developer can solve both cases by choosing the appropriate resolution,

39

Chapter 3 An Overview of the APHES Framework

1

2 tuning :: HybridTuner OMPTuner;
3 tuning ::Indicator <size_t > InputSize;
4 int NumThreads = 8;
5

6 vector <int > add(vector <int > A, vector <int > B) {
7 vector <int > Result(A.size());
8 InputSize = Result.size(); // Update the indicator state
9

10 // Update NumThreads with the next configuration.
11 OMPTuner.start();
12

13 #pragma omp parallel for num_threads(NumThreads)
14 for (size_t I = 0; I < Result.size(); ++I)
15 Result[I] = A[I] + B[I]
16

17 // Report feedback. This API measures time automatically.
18 OMPTuner.stop();
19

20 return Result;
21 }
22

23 int main() {
24 OMPTuner.addParameter(NumThreads , /*min=*/1, /*max=*/16);
25 OMPTuner.addIndicator(InputSize); // Size is set in add()
26

27 // Call add (...) repeatedly
28 }

Figure 3.4: Hybrid, input-sensitive tuning of OpenMP vector addition with libtuning.

40

3.2 Autotuning with libtuning

but what is a good resolution? To relieve the developer of that task, we borrow
from the field of machine learning, using online learning to construct a model of
the indicator-configuration mapping on the fly. However, we will defer an in-depth
discussion of this approach and other libtuning concepts, features, and design
decisions until Chapter 5.

3.2 Autotuning with libtuning

For application developers, the main entry point into the library is the Tuner,
which functions as a controller for both the search algorithms and the search
space. It provides the API which drives the tuning process. Essentially, this API
in its base form consists of two methods, next() and feedback(double). The
former configures all the parameters with the configuration the search algorithms
have requested as the next sample. The feedback method passes an application-
specific feedback measurement to the search algorithms. The search algorithms
immediately return the configuration to be sampled next, but the tuner only ap-
plies it at the next call to next(). By decoupling the parameter update from the
search’s request, applications are able to modify the parameters without confusing
the search: If the parameters were updated upon a call to feedback, any modi-
fication made by the application after the update would carry over into the next
call to next and taint the measurement passed to the tuner.

On top of this basic API, libtuning provides a set of decorators that extend its
core functionality. Application developers may thus compose decorators to create
an autotuner that best fits their needs. In the following, we provide an overview of
the three most important decorators. They are by default enabled in libtuning’s
simplest tuner type, which was shown in the example in Figure 3.1.

Stopwatch Most of the time, applications intend to tune the runtime of some
hot part of the code. The Stopwatch decorator implements the time measure-
ment functionality, and exposes it through an alternative start()/stop() API,
which is implemented in terms of next() and feedback(). The API measures the
time span between calls to the two functions and passes that to the feedback()
function.

41

Chapter 3 An Overview of the APHES Framework

NestedTuners In general, applications may wish to tune the implementation
at different granularities. For example, an implementation of a specific matrix
multiplication algorithm can integrate an autotuner optimizing the parameters
of this algorithm. An application using this algorithm can itself contain another
tuner optimizing all the algorithms’ parameters plus, for instance, the algorithmic
choice. To avoid running these tuners concurrently, the NestedTuners decorator
allows developers to aggregate tuners, so that at any point in time at most one
of them may run. This is particularly important to the aphes compiler, which
might parallelize both a function and its (indirect) caller. To prevent confusing
the effects of parameter configurations, tuning both functions must be mutually
exclusive.

Stabilization The measurements observed during tuning might be noisy. This is
especially the case when optimizing runtime. To account for noisy measurements,
the Stabilizing decorator reduces the effect of noise by repeating configurations
and aggregating measurements. Application developers may request a relative
error margin for a fixed 95% confidence interval. The decorator then repeats
configurations until that error margin (or a maximum sample count) is reached.

3.3 Autotuning and Automatic Parallelization
with APHES

Within the APHES framework, whose overall architecture is illustrated in Figure 3.5,
we use libtuning as part of the runtime system, which is one of the two integral
components of the framework. The other component is the aphes compiler, which
parallelizes sequential applications and integrates them with the runtime system.
Using APHES for an application requires no interaction from the application de-
veloper. A successfully parallelized application will automatically execute on the
targeted platforms. The runtime system, which has been integrated into the ap-
plication by the compiler, uses the autotuner to configure the work distribution
across platforms and platform-specific parameters.
The compile-time component, the aphes compiler, analyzes and transforms se-

quential source programs. It performs two primary tasks. First, it searches for
parallelizable loops, which we call the source regions of the program. The com-
piler then transforms the source regions into per-platform (parallel) target regions.

42

3.3 Autotuning and Automatic Parallelization with APHES

Configurations

Kernel

libtuning
Measurement
Indicators

Code Generation

Instrumentation
Tuning Parameters
Tuning Loop
Indicators

Detect Parallelism

Source

Analysis

Compiletime Runtime

OpenMP
Target
Plugin

Xeon PHI
Target
Plugin

Poly-
hedral
Model

CUDA
Target
Plugin

Figure 3.5: The APHES Framework Architecture: The framework is composed of a com-
piler and a runtime component. The compiler analyzes the program, trans-
forms it for work sharing among multiple platforms, and instruments it to
interact with the runtime system. The platform-specific transformations
are implemented by an extensible collection of plugins. The runtime sys-
tem provides platform management and interfaces with the libtuning au-
totuner.

43

Chapter 3 An Overview of the APHES Framework

Source

int
main(){

}

Create IR

clang -emit-llvm

Transform

aphes -targets=omp,cuda

Binary
0x7f

0x45

0x4c

0x46

GPU

CPU

Figure 3.6: Program parallelization with the aphes compiler.

To identify the parallel source regions, aphes uses both the polyhedral model and
classical dependence testing. Target regions are produced either based on the poly-
hedral model, if applicable, or using ad hoc transformations. The second task of
the aphes compiler is to instrument the transformed program to interoperate with
the runtime component. Instrumentation includes introducing tuning parameters
to control the work distribution between platforms as well as platform specific
parameters, such as thread counts.
The runtime component can be further subdivided into two main parts. The first

part is a small runtime library tightly coupled with the aphes compiler. Its main
purpose is bookkeeping and execution management, handling device memory allo-
cations, data transfers between host and target platforms, and most importantly
the interaction with the autotuner. The libtuning autotuner is the second part
of the runtime component.
The aphes compiler itself is implemented as a plugin system. Compiler develop-

ers can add new target platforms as additional plugins. Code generation for new
platforms then interoperates with existing platform code generators automatically,
and work sharing will happen without additional effort by the developer.
When parallelizing a program, the compiler first runs program analyses to de-

termine parallelizable loops. These loops are then passed to the target plugins
for them to generate platform-specific code. The compiler supplies the plugins
with all necessary dependence information and takes care of the work distribution.
A plugin developer can thus focus on implementing the platform specific parts.
Additionally, the compiler maintains a registry of tuner instances, one instance
per parallelizable loop. Plugins can register arbitrary tuning parameters with the
tuner responsible for the loop currently being transformed. Parameter dependency
constraints are automatically generated.

44

3.4 Summary

All of the inner workings of the parallelization and optimization are entirely
transparent to the application developer, to whom the end-to-end process of par-
allelization looks like shown in Figure 3.6. Running for example the clang compiler
on an input program in a supported programming language emits the LLVM inter-
mediate representation of that program. Then, running the aphes compiler on the
generated IR produces a complete binary, automatically linked with all required
libraries. That includes the APHES runtime library and libtuning, but also any
target specific libraries, such as the OpenMP and CUDA runtimes. The compiler
currently does not take care of translating the high-level frontend language into
the LLVM representation. The application developer thus has to use a frontend
compiler for the high-level language for this task.
We discuss further details of the compiler, its analyses and existing transforma-

tion plugins in Chapter 6.

3.4 Summary

In this chapter we presented an overview of the APHES framework and its com-
ponents. We introduced the libtuning autotuner that is used within APHES to
optimize platform specific tunable parameters the allocation of work to the plat-
forms. Using a hybrid tuning approach combining empirical search, memorization
and online learning, it offers an efficient and effective way to optimize program
configurations while being sensitive to the varying tuning contexts at the same
time.
Second, we introduced the aphes compiler, which searches for parallelism in

input programs and parallelizes them for multiple platforms. Without any ap-
plication developer involvement, the compiler transforms the program to enable
automatic work sharing between heterogeneous platforms and to expose tunable
parameters. To optimize the program at runtime, it is instrumented to interoper-
ate with a runtime library which in turn interfaces with the libtuning autotuner
for optimization.

45

Chapter 4

Related Work

This thesis presents a compiler that automatically parallelizes sequential applica-
tions. Transformed applications are instrumented to adapt to the actual system
and inputs on which they are executed and react to changes therein. This dy-
namism is achieved through empirical online autotuning and machine learning
methods.
To put these contributions into context with prior art, we look at them from two

angles, which are parallelizing compilers for heterogeneous systems and autotuning.
In the field of autotuning, we must further differentiate between general purpose
autotuning systems, machine learning and model-based techniques, and finally the
intersection of compilers and tuning in the form of tunable parallel programming
languages and parallelizing compilers.
Since each of the fields on which this thesis touches has a rich history dating

back at least two decades, the overview we give in this chapter cannot be complete.
We thus focus on the most important or most closely related publications and
cover the broad spectrum of the techniques. We will first look at autotuning
in Section 4.1. In particular we discuss general purpose autotuners, both based
on classical empirical search, and on machine learning and explicit performance
models. In Section 4.2 we examine recent advances in automatic parallelization
for heterogeneous systems. Lastly, in Section 4.3 we introduce approaches that
combine parallelization and tuning through compilers and languages, either by
tuning the compilation process itself or by adjoining the compiled program with a
tuning system.
We close each section of this chapter by summarizing the individual features of

the presented articles and comparing them to the features of APHES and libtuning.
We focus on features that contribute to the goal of tuning automatic cooperative

47

Chapter 4 Related Work

multiplatform execution, which we briefly introduce in the following. The first set
of features refers to the automatic parallelization of programs. It describes whether
the compiler targets data or task parallelism and analyzes the program statically
or dynamically, whether the parallelized program executes heterogeneously tar-
geting a single platform other than the CPU, targeting multiple platforms at the
same time, or cooperatively on multiple platforms. To be considered cooperative,
the heterogeneous multi-platform execution must use all platforms simultaneously,
each working on a part of the problem, and then merge the partial results. If a par-
allelized program executes on multiple platforms but not cooperatively, this means
that only a single platform executes the parallelized region while other platforms
are waiting. Such a program is not using the full capacity of the system. Secondly,
approaches that somehow optimize the generated program (or the hand-written
application in the context of the general purpose autotuners in Section 4.1) can do
so either offline or online. Offline optimization refers to the compiler or autotuner
optimizing the program given sample inputs before any production runs. Online
optimization in turn happens during a production run on inputs observed in pro-
duction, and can also occur within runtime systems or JIT compilation scenarios.
We additionally emphasize whether the tuning is search-based, model-based, or us-
ing simple heuristics. If it is model-based, we distinguish between a learned model
or one that has been hand-implemented by either the application developer or
the compiler developer. Moreover, the model inputs can either be automatically
extracted program features or can be supplied by an application developer. Lastly,
we consider whether an approach is input sensitive, i.e., whether it is able to react
appropriately to varying inputs. Input sensitive approaches are required to react
to new inputs at runtime (i.e., online), but the decision making might be trained
offline on a-priori sample data.

The feature summaries following each section are in tabular form. To ease
readability the tables always include all features listed above. Because each of the
following sections focuses on works dedicated to particular aspects of autotuning
or automatic parallelization, not all features apply in general. In that case, the
irrelevant features are marked in gray.

48

4.1 Autotuning

4.1 Autotuning

In this section, we discuss prior art related to the goals of this thesis in the field
of autotuning. This will cover two major areas:

1. General purpose autotuning approaches and their applications (Sec-
tion 4.1.1).

2. Machine learning and performance models to adapt an application to new
hardware or new inputs (Section 4.1.2).

4.1.1 Tuning Algorithms and Autotuners

At the turn of the century, the high-performance computing community began
to realize that hand-optimizing the same algorithms over and over for every new
upcoming system and accelerator hardware as well as different types of inputs was
not sustainable. Consequently, the interest in automating this tedious task was
spawned.
In 1995, Brewer was the first to address selection of algorithms and data layouts

at runtime [Bre95]. His system composes a library of algorithm implementations
with an autotuner, to automatically select an algorithm and optimize algorithm pa-
rameters for given inputs. The autotuner generates generalized least square models
to predict execution time from a set of input features, such as problem size. This
system achieves portability across platforms through profiling calibration inputs
automatically generated from the algorithms and parameter ranges. Hence, devel-
oper effort is limited to the burden of implementing the different variants of the
algorithms. Brewer reports a success rate of beyond 99% for this prediction on
four different systems. Although his work is not the first to explore performance
prediction, it can be considered the first applicable to online tuning. Considering
the domain of offline tuning, however, it is predated by Alan Sussman’s papers
and doctoral thesis, whose parallelizing compiler will be discussed in Section 4.3.1.
The ATLAS system by Whaley and Dongarra [WD98] is a well-known approach

combining a BLAS library with autotuning capabilities. During installation, the
library automatically self-optimizes loop structures, tiling, cache reuse, and paral-
lelism for the system to which it is being deployed. The tuning is offline, during
installation, and samples a number of benchmark programs shipped with the li-
brary. The optimization itself is based on a hand-crafted model, whose parameters

49

Chapter 4 Related Work

are configured offline during optimization, and which can then pick the fastest lin-
ear algebra algorithm implementation for a given input.

In his doctoral thesis and subsequent research, Richard Vuduc made major con-
tributions to the field of autotuning as a whole and to tuning BLAS algorithms in
particular [VD00; VDB01; Vud03]. In 2001, he was the first to advocate empiri-
cal search in the space of possible implementations [VDB01]. Using the PHiPAC
system (which we discuss here in Section 4.3.1), he demonstrates that approxi-
mative global optimization can produce configurations that are within 5% of the
optimal performance. Approximation is implemented by stopping an exhaustive
search early based on a statistical model. To account for the fact that different
configurations are optimal given different inputs, the system constructs run-time
selection rules using Brewer’s linear regression approach as well as Support Vector
Machines.

The year 2002 marks the publication of ActiveHarmony by Ţăpuş et al.
[ŢCH02], which is to date one of the most prominent general purpose autotuners.
It provides a sophisticated distributed system that integrates with arbitrary client
libraries or programs. The performance monitor that observes execution time in
the client application relays information to a central server, which responds with
tuning decisions. In the central Harmony server, the system employs the Nelder-
Mead downhill simplex algorithm.

In addition to ActiveHarmony, the Nelder-Mead algorithm is also applied to
ATLAS. You et al. [YSD05] make several modifications to the original algorithm.
These are necessary because autotuning differs in several details from the numerical
optimization problems it was designed for. In practice, tuning parameters are often
integer valued and bounded. Besides the bounds, more complex restrictions may
arise from parameter semantics or dependencies between parameters, leading to
some possible configurations becoming invalid. The modified algorithm accounts
for these through stationary penalty values (i.e., setting the function value for
invalid configurations to infinity). The implementation of the algorithm in this
thesis is closely based upon You et al., albeit choosing a different strategy to deal
with boundaries and invalid points.

With AtuneIL, Schaefer et al. [SPT09] do not develop an autotuner or tuning
algorithm, but an annotation language to integrate an autotuner with a C#, C++,
or Java program. By inserting pragma statements into an existing program, devel-
opers define parameters, parameter types, and domains, as well as time measuring

50

4.1 Autotuning

points for the tuner to sample. Additionally, the annotations may contain con-
straints encoding dependencies between parameters. Using constraints, AtuneIL
can drastically reduce the search space that needs to be explored. In a case study
on two applications, Schaefer uses AtuneIL as part of the Atune framework [Sch09]
and evaluates search-based autotuning using hill climbing and random sampling.
Speedups of three and seven are reported, while the search time for hill climbing
was reduced by over 50% due to AtuneIL’s handling of constraints.

With Perpetuum, Karcher and Pankratius [KP11] introduced an always-on on-
line tuner that is integrated into the Linux kernel. Through system calls, client
applications interface with the tuner, registering application level parameters
which Perpetuum manipulates directly. Like ActiveHarmony, Perpetuum uses the
Nelder-Mead search algorithm.

In 2012, Bergstra et al. [BPC12] develop an approach that combines empirical
search with model-based tuning. They identify issues that are closely related to
those explored in this thesis. Model-based tuning on the one hand allows for fast
exploration of the search space, but suffers from inaccuracies caused by incom-
plete knowledge about runtime-characteristics. Examples are varying inputs and
hardware. Empirical tuning on the other hand can evaluate the program with real
inputs and real hardware, but the size and dimensionality of the search space ren-
der this a time-intensive process. This realization concurs with the motivation for
hybrid tuning. As a compromise, Bergstra et al. propose combining a statistically-
derived model with empirical search, albeit in a way that is orthogonal to hybrid
tuning. The key difference between the two techniques is that hybrid tuning uses
empirical search to explore the real search space, whereas Bergstra et al. apply
it on their model. Evaluating their approach on the GPU implementation of a
filterbank correlation kernel demonstrates it to be competitive compared to pure
empirical tuning, but at a fraction of the cost.

Another autotuning technique that pursues very similar goals as this thesis is
SiblingRivalry [Ans+12]. Targeted towards always-on online autotuning, Ansel et
al. devise a scheme to prevent bad configurations to poison the amortization time.
By splitting compute resources into two equal partitions, they are able to evaluate
two configurations at the same time. In one partition, they always execute the
currently best known variant. In the other one, a genetic algorithm samples the
search space. Whichever variant completes first wins the race, the other one is
immediately terminated. Through this strategy, the effect of selecting bad con-

51

Chapter 4 Related Work

figurations is never visible at runtime. However, this property comes at the cost
of half the execution resources, which ultimately disqualifies this technique from
being applicable to the problems investigated in this thesis: we are investigating
optimal resource utilization, so consequently diverting parts of the available re-
sources to different tasks contradicts the goal. Moreover, some platforms such as
GPUs, are always allocated to exactly one task. On such platforms SiblingRivalry
is thus not applicable.

AtuneRT [Til+14] developed by Tillmann et al. is an online autotuner similar to
ActiveHarmony and the successor to the tuning framework Atune. Like ActiveHar-
mony, AtuneRT uses Nelder-Mead search. In the article, the autotuner is applied
to optimizing platform-specific parameters for CUDA applications, that is to say,
thread block sizes. For one benchmark, also an application-specific parameter is
tuned. The authors report speedups of 4-28%.

Currently, the tuner that is most widely used in various applications across the
fields is OpenTuner, also developed by Ansel et al. [Ans+14] in 2014. A simple
interface and a Python implementation make it easy to integrate with most ap-
plications. Its biggest selling point however is that it alleviates the application
developer of the need to select a tuning mechanism. In OpenTuner, this hyper-
parameter is treated as a first class tuning parameter and is controlled by a meta-
tuner. Application developers select a set of search- or model-based techniques
from a builtin library, or implement their own. The meta-tuner then orchestrates
the searches. The AUC Bandit strategy [Pac+12] selects a search technique in ev-
ery iteration, advancing a global knowledge database of the search space. Because
of this meta-technique, OpenTuner does not work well as an online tuner, since
it violates one of the requirements we defined in Section 1.1: Sampling continues
indefinitely and there is no notion of convergence.

The most recent general offline tuning framework is ATF [RHG17] published
in 2017. Like AtuneIL, interaction with the tuner is implemented with the help
of a pragma DSL for C and C++ programs. A key feature of ATF is the ability
to specify arbitrary constraints on parameters. To enforce these constraints, ATF
exhaustively enumerates all points in the search space. While this is an elegant
way to avoid holes in the space that conflict with preconditions of many numerical
optimization algorithms, it is not applicable to floating point parameters, which
cannot be realistically enumerated. The framework is further generic in the sense
that it allows for extension with arbitrary user-provided search algorithms. In

52

4.1 Autotuning

Table 4.1: Comparison of the tuning algorithms and autotuners

D
at
a
P
ar
al
le
liz
at
io
n

Ta
sk

P
ar
al
le
liz
at
io
n

St
at
ic

A
na

ly
si
s

D
yn

am
ic

A
na

ly
si
s

H
et
er
og

en
eo
us

M
ul
ti
pl
at
fo
rm

C
oo

pe
ra
ti
ve

O
nl
in
e
Tu

ni
ng

O
ffl
in
e
Tu

ni
ng

Se
ar
ch
-B

as
ed

M
od

el
-B

as
ed

In
pu

t
Se
ns
it
iv
e

Le
ar
ne
d
M
od

el

A
ut
om

at
ic

Fe
at
ur
es

Brewer X X X

ATLAS X X X

Vuduc X X X

ActiveHarmony X X

You et al. X X

Atune(IL) X X

Perpetuum X X

Bergstra et al. X X X X

SiblingRivalry X X

AtuneRT X X

OpenTuner X X X

ATF X X

libtuning X X X X X

their paper, Rasch et al. provide a simulated annealing implementation as well as
an interface with OpenTuner, giving access to its extensive algorithm library and
meta-tuner technique.
In Table 4.1 we summarize the central aspects of the approaches presented in

this section and compare them to our libtuning: Ours is the only technique
combining search-based and model-based online tuning, learning the model on-
the-fly. Of the other online-autotuners only Brewer combines search and modeling,
which allows him to be sensitive to inputs. Unlike our approach, however, Brewer’s
models is linear and constructed offline, which means it cannot capture non-linear
effects and adapt to changing inputs or hardware. The same argument applies
for the input sensitive and model-based offline tuners. Although SiblingRivalry
is not input sensitive, it pursues a goal similar to ours, since its main focus is

53

Chapter 4 Related Work

to reduce amortization time. The reduction comes, however, at the price of half
the compute resources, which requires the compute resources to be partitionable.
Both are undesired restrictions. The remaining two online tuners we presented,
ActiveHarmony and Perpetuum, both make no attempt to be input sensitive or to
optimize amortization time. Note that AtuneIL is missing from this list, because
it is not itself an autotuner, but a language to interface between a program and a
tuner. Because we are comparing between different autotuners here, we grayed out
the properties that are specific to parallelization and compilation here. Automatic
parallelization will be covered in Section 4.2.

4.1.2 Machine and Performance Models

Although general autotuners and tuning algorithms are powerful and available,
applications often go a different direction to optimize their parameters. Due to
the generality, autotuners need to solve a black box optimization problem. Because
a white box approach promises more precise tuning, with shorter search times and
possibly better results, many applications employ machine or performance models
to optimize themselves. The advantage of white box tuning comes at the cost of
having to implement the model. The quality of the model further strongly affects
the resulting performance. In this section, we examine related work applying
white-box tuning in various forms.
One of the first approaches applying performance models to online tuning was

MATE [Mor+03; Mor+04]. It provides a dynamic distributed tuning environment
for PVM applications. MATE integrates the optimization of messaging parameters
(e.g., aggregation and TCP settings), memory allocation, PVM communication
options, as well as application parallelism settings such as the number of worker
threads. For all of these components, MATE supplies measuring instrumentation
(to detect performance problems), performance models (to detect the problem),
and tuning options (to correct the problem). Based on these means MATE then
adapts the distributed application dynamically.
With StarPU, Augonnet et al. offer a runtime system and API to unify heteroge-

neous tasking [Aug+09]. For a task implementation (e.g., matrix multiplication),
developers explicitly express the task’s data dependencies and access behavior.
The accessed slice of memory is labeled as read, write, or read-write. The runtime
system then takes care of task scheduling onto available platforms according to
data and explicit task dependencies and attempts to find an optimal schedule.

54

4.1 Autotuning

It can thus be considered both an online and offline tuning system. Scheduling
is guided using predefined policies based on task priorities and per task perfor-
mance models. Greedy policies implement a first-come-first-serve behavior, where
a pending task is assigned to the first ready platform. Similarly, a weighted ran-
dom policy chooses a platform at random with user-supplied per-platform weights.
Lastly, performance model policies predict the runtime of a task per platform using
models provided by the developer or automatically generated by StarPU [ATN09].

Another runtime system managing tasks across heterogeneous systems was de-
veloped by Kicherer et al. [Kic+12]. On top of having platform specific implemen-
tations per task, they also support having multiple implementations per platform
that differ in features such as floating point precision or vector instruction set.
Implementations can also require or favor specific input-set characteristics. For
an application, users provide a library of implementations for the different plat-
forms and attributes. At runtime, the management system will then pick the best
implementation whose attribute requirements are satisfied. To find the best im-
plementation, Kicherer et al. employ an online learning scheme [KBK11]. Based
on user-defined features (e.g., “matrix size”), the classification scheme samples
inputs for several feature values. Missing performance values for features and im-
plementations are obtained through linear interpolation, thus assuming a linear
relationship between the features and the observed runtime. Finally, the classifier
picks the best implementation for observed feature values and determines value
ranges for each implementation.

In 2013, Balaprakash et al. [BGW13] proposed surrogate modeling using ac-
tive learning of dynamic trees to automatically derive performance models from
observations. The surrogate model predicts the program runtime for a given con-
figuration. With active learning, their approach is able to refine the performance
model iteratively, determining the unevaluated parameter configuration to sample
next. Balaprakash et al. chose dynamic trees as their surrogate model, which com-
bine classical regression trees with Bayesian inference. They apply this technique
to loop optimizations of numerical kernels, modeling their energy, and optimizing
an MPI topology. With only a few hundred samples, they show that their models
make the correct prediction over 90% of the time.

Much like the work by Kicherer et al., Nitro [Mur+14] is an autotuning system
for picking optimal code variants depending on inputs. Developers define multiple
variants of an algorithm and expose real-valued features that classify the input

55

Chapter 4 Related Work

Table 4.2: Comparison of the model-based tuning approaches

D
at
a
P
ar
al
le
liz
at
io
n

Ta
sk

P
ar
al
le
liz
at
io
n

St
at
ic

A
na

ly
si
s

D
yn

am
ic

A
na

ly
si
s

H
et
er
og

en
eo
us

M
ul
ti
pl
at
fo
rm

C
oo

pe
ra
ti
ve

O
nl
in
e
Tu

ni
ng

O
ffl
in
e
Tu

ni
ng

Se
ar
ch
-B

as
ed

M
od

el
-B

as
ed

In
pu

t
Se
ns
it
iv
e

Le
ar
ne
d
M
od

el

A
ut
om

at
ic

Fe
at
ur
es

MATE X X X X

StarPU X X X X X

Kicherer et al. X X X X

Balaprakash et al. X X X

Nitro X X X X

Bao et al. X X X X X

libtuning X X X X X

data. For example, for a sparse matrix vector product, such a feature is the
average number of non-zero elements per row. Given training inputs provided
by the application developer, Nitro builds an SVM model for the inputs’ feature
vectors and observed runtimes during an offline training phase. At runtime, it will
then classify a new input and thus predict the optimal implementation for this
particular input.
Bao et al. [Bao+16] take a different view on autotuning. Instead of optimizing

performance, they optimize energy efficiency. For a given benchmark, various
CPUs achieve maximal efficiency at different frequencies. Using the polyhedral
model, the approach derives various static properties from the representation, such
as the number of (parametric) loop iterations, the data access behavior, as well as
cache utilization and miss rate estimations. For a given target CPU, they compute
a profile for benchmarks selected to stress individual features. From this profile,
they then construct a decision tree to determine optimal frequency settings at
runtime.
In Table 4.2 we summarize the central aspects of the works presented in this

section, and compare them to our autotuner: libtuning is the only approach
combining online search and online learning. Balaprakash et al.’s surrogate mod-

56

4.2 Automatic Parallelization for Accelerators

els stand out in the comparison because they are the only generic approach. All
others are tied to a specific application and thus solve only white-box tuning prob-
lems. Note further that while we labeled some approaches as “Offline”, the actual
adaptation of these applications happens at runtime, as it must because of the
input sensitivity. The model, however, is learned a-priori on sample benchmarks.
StarPU and Kicherer et al.’s approach are the only two here that are capable of
online learning. Both construct a linear regression model at runtime from obser-
vations, which is a sensible choice in their respective applications. In libtuning,
we support more general models and combine them with search to cope with the
problem of exploring in large search spaces. We marked the properties that are
irrelevant in this comparison because they are specific to parallelization and com-
pilation.

4.2 Automatic Parallelization for Accelerators

With the advent of vector machines and array computers in the 70s, automatic
transformation of sequential codes into parallel programs for high performance
machines became a goal both in research and practice. In more recent years a new
class of parallel machines, namely massively parallel accelerators such as GPUs or
FPGAs, has reignited the hunt for automatic tools to exploit these platforms opti-
mally. The increased complexity of these platforms, exacerbated by the fact that
today’s systems have access to multiple accelerators at the same time, has spawned
a large new body of research of parallelization tools that target individual accel-
erators and, most importantly, simultaneous execution on multiple accelerators.
The critical component of the parallelization process is identifying parallelizable

program parts. Currently, approaches can be characterized into one of four classes:

1. Automatically based on dependences: Computing data and control depen-
dences between memory accesses, either conservatively or optimistically,
yields independent program paths. These paths may be executed in par-
allel.

2. Using the polyhedral model: Although parallelization using this model is
also based on computing data dependencies, it is unique in the way it models
control. As a comprehensive algebraic representation of the code it offers a
unified framework for dependence analysis and code transformations.

57

Chapter 4 Related Work

3. With programmer help: Conservative dependence analysis is often too im-
precise to produce meaningful parallelizable regions, whereas an optimistic
analysis comes with the hazard of introducing bugs. Instead, paralleliza-
tion hints by the programmer in the form of explicitly parallel DSLs lift this
burden from the compiler.

4. Detection of parallel patterns: Where dependence-based parallelization is too
inaccurate and parallel DSLs are too costly in terms of programmer time,
pattern-based parallelization can provide a middle ground. Acknowledg-
ing the fact that programmers tend to build programs from specific build-
ing blocks, parallelizable building blocks can be detected and transformed
into well-known parallel design patterns, e.g., pipeline or master-worker con-
structs.

In the following, we will examine works from either of these categories with goals
related to this thesis. We limit the scope in this section to approaches that man-
age load balancing between platforms and platform-specific configurations either
statically or through simple heuristics. Dynamically adaptive approaches will be
discussed in Section 4.3.

4.2.1 Dependence-based Parallelization

Dependence testing is the fundamental operation in parallelizing loops. To de-
cide parallelizability, memory accesses in a loop are checked for loop-carried data
dependences. That is, a memory location read or written in one loop iteration
must not also be read or written in another. The vast majority of approaches for
automatic parallelization rely on this test. In the following, we give an overview
over the parallelizers from that class published within the last 25 years. We focus
on both heterogeneous as well as classical CPU-only targets and limit the scope
to tools making tuning decisions statically based on simple heuristics.
In 1991, Irigoin et al. [IJT91] published the PIPS framework for paralleliza-

tion using interprocedural dependence analysis. The framework targets data par-
allelism using static analysis. Although a handful compilers predate it, the main
goal of those was vectorization and fine-grained parallelism. PIPS addresses coarse-
grained parallelism by transforming Fortran77 loops into vectorized or DOALL ver-
sions. Based on the findings in 1992 [BE92] on the lacking effectiveness of pre-
vailing auto-vectorizers targeting SMPs, Blume et al. [Blu+96] designed Polaris

58

4.2 Automatic Parallelization for Accelerators

for Fortran programs. Polaris, similarly to PIPS, targets data parallelism using
static analysis. Its key features were privatization of temporary variables and
appropriate handling of induction and reduction variables.

The SUIF compiler [Hal+96] was a long-running effort beginning in the mid-
90s at Stanford University to provide a compiler intermediate representation and
framework. Its authors Hall et al. are likely the first to recognize that with sym-
metric multiprocessors, cache-oblivious parallelization can actually harm overall
performance. SUIF thus explicitly optimizes data layout and accesses to bridge
this gap. To make parallelization applicable to programs beyond simple numeri-
cal kernels, SUIF performs flow- and context-sensitive interprocedural dependence
analysis statically [Hal+05].

Wang et al. [Wan+08] present a fundamentally different approach to
dependence-based parallelization. Instead of finding independent iterations of a
loop, the authors detect independent sets of instructions within loop iterations. To
be precise, they compute backwards slices for instructions within time-intensive
regions of the program. The backwards slice for an instruction is the subset of
instructions from that region that have an effect on this instruction. Individual
slices are executed in parallel. Moreover, slices are built speculatively, meaning
that data dependences are computed dynamically from a profile, which might miss
existing dependences that occur only rarely.

Another approach based on dynamic dependences is by Hammacher et al.
[Ham+09], who determine parallelizability optimistically from Java programs
traces. Optimistic parallelization bears the risk of producing unsound transfor-
mations, leading to bugs. As a consequence, the authors do not automatically
transform the program, but instead present parallelization suggestions to the de-
veloper, relying on their expertise.

Implemented on top of PIPS, Guelton et al. [GAC12] use convex array regions
to compute the extent of the memory region accessed by a parallel or parallelizable
loop. This type of information is required to determine data transfers on paral-
lel NUMA machines, most importantly for targeting GPUs for offloading com-
putations. With Par4All [Ami+12], PIPS and convex array region analysis are
combined for code generation and offloading to CUDA or OpenCL GPU targets.

DiscoPoP [LJW13] is a tool which goes beyond parallelizing loops. It combines
dynamic dependence profiling with an alternative view on data flow. Decompos-
ing the program into read-modify-write sequences of memory locations, the tool

59

Chapter 4 Related Work

obtains a dependence graph of small computational units. If independent, such
units can be executed in parallel. Mapping units onto threads provides control
over the granularity of the parallelization, and allows parallelizing loops, (sub-)
tasks, or entire functions in a uniform fashion. This method can be applied both
to data and task parallelism.

In 2014, Sura et al. [SOB14] presented a hardware-software co-design to exploit a
form of instruction-level parallelism, automatically mapping sequential innermost
loops to multiple cores. They find sequences of instructions independent from
each other with respect to memory and control dependences. These are statically
dispatched to instruction queues attached to the parallel cores. Because that
requires hardware support, performance is evaluated in a simulator.

Streit et al. [Str+12; Str+13] developed a tool called Sambamba, treating task
parallelization as an optimization problem. The dependence graph of the source
program is mapped onto tasks by formulating the mapping as an integer linear
program, a technique the authors named generalized task parallelism [Str+15]. A
landmark feature of Sambamba is the ability to dispatch tasks adaptively based
on heuristics. The runtime system uses a small set of (static) heuristics to decide
whether a new task should be spawned, or whether to select the sequential version.
The heuristics limit the number and nesting depth of tasks based on the number
of cores and the current system load. The sequential version is selected if system
load exceeds 90%, if the number of tasks exceeds twice the number of cores, or if
the parallel nesting level exceeds the logarithm of the number of cores.

Table 4.3 summarizes the properties of the presented dependence-based paral-
lelization techniques, and compares them to the properties of the APHES frame-
work: Except Par4All, all compilers create parallel programs for the CPU plat-
form. While Par4All does target the GPU, it only targets a single platform, and
thus does not address cooperative multiplatform execution. Another distinction
between the aphes compiler and those listed here is that we rely only on static
analysis and data parallelism detection. While dynamic program analysis produces
more precise results, it is valid only for the analyzed inputs. For us this is insuf-
ficient because being able to optimize performance online and for varying inputs
is of little relevance when the transformed program is only valid for a known set
of inputs. We further do not support task parallelism because GPUs generally
offer very little acceleration in that domain, especially since the number of differ-
ent tasks is constant and often small. In the context of our classification criteria,

60

4.2 Automatic Parallelization for Accelerators

Table 4.3: Comparison of the dependence-based parallelization approaches

D
at
a
P
ar
al
le
liz
at
io
n

Ta
sk

P
ar
al
le
liz
at
io
n

St
at
ic

A
na

ly
si
s

D
yn

am
ic

A
na

ly
si
s

H
et
er
og

en
eo
us

M
ul
ti
pl
at
fo
rm

C
oo

pe
ra
ti
ve

O
nl
in
e
Tu

ni
ng

O
ffl
in
e
Tu

ni
ng

Se
ar
ch
-B

as
ed

M
od

el
-B

as
ed

In
pu

t
Se
ns
it
iv
e

Le
ar
ne
d
M
od

el

A
ut
om

at
ic

Fe
at
ur
es

PIPS X X

Polaris X X

SUIF X X

Wang et al. X X

Hammacher et al. X X X

Par4All X X X

DiscoPoP X X X

Sura et al. X X X

Sambamba X X

APHES X X X X X X X X X X X

61

Chapter 4 Related Work

instruction-level parallelism as it is exploited by Sura et al. can be understood as
either data- or task-parallel and thus ticks both columns in the table. We discussed
parallelization approaches in this section that do not use autotuning to make op-
timization decisions and have grayed out the properties in which a comparison
against APHES is thus impossible. The autotuning features of APHES are shown in
the table for completeness.

4.2.2 Parallelization of (Mostly) Affine Programs with the
Polyhedral Model

The polyhedral model, also referred to as the polytope model, is a framework for
loop representation and optimization that goes back as far as the mid-sixties. The
foundations were laid by Karp, Miller, and Winograd [KMW67], who investigated
scheduling of computations based on recurrence equations. Lamport [Lam74] was
the first to apply it to automatic parallelization in the seventies. In the decades
since then, dozens of systems have been developed which perform automatic par-
allelization with the help of the polyhedral model in some form. Because of this,
we will limit ourselves to the most recent advances, and especially those that tar-
get heterogeneous systems. The polyhedral model is a static analysis technique
and helps to maximize data parallelism. Consequently, all approaches we discuss
satisfy the according classification criteria. Probably the first to apply polyhedral
optimization to automatic offloading to GPUs are Baskaran et al. [BRS10]. Be-
cause their technique relies on a form of autotuning however, their work will be
discussed in Section 4.3.2.
In her doctoral thesis, Jimborean [Jim12] developed a framework for specula-

tive parallelization with the polyhedral model. The VMAD (“Virtual Machine
for Advanced Dynamic analysis and transformation”) system generates multiple
OpenMP-parallelized versions of loops at compile time, and patches the running
application dynamically if an applicable parallel version is available. Parallel ver-
sions are selected with the help of instrumented versions that profile the code.
PPCG by Verdoolaege et al. [Ver+13] is a polyhedral source-to-source com-

piler which transforms C to CUDA code. It generates GPU code by applying
multilevel tiling to account for the levels of parallelism and memory hierarchy
of CUDA GPUs. To also parallelize iterative computational kernels that exhibit
an outer “time” loop, Grosser et al. extend PPCG with a split tiling mechanism

62

4.2 Automatic Parallelization for Accelerators

[Gro+13] and a hexagonal tiling scheme [Gro+14]. PPCG uses variants of the
Pluto [Bon+08] algorithm and the CLooG [Bas04] code generator for scheduling
and code generation.

Whereas in PPCG the GPU mapping occurs fully automatically, the Loo.py
[Klö14] programming system gives the developer control over the polyhedral trans-
formations applied to loops. Embedded in Python, it allows the developer to write
computational kernels in an array language, and to apply transformations and in-
spect the results.

The KernelGen tool [Mik+14] is similar in spirit to PPCG. The key difference
between the two is that KernelGen is based on LLVM, thus supporting a more
general range of input languages, and that KernelGen attempts to minimize data
transfers between host and device. Instead of eagerly transferring all data at every
GPU kernel launch, the runtime system provides a segmentation fault handler
which performs the transfers just-in-time.

Another work that emphasizes memory transfers and uses the polyhedral model
to optimize them is Molly [Kru14a]. Molly is an LLVM-based tool implemented on
top of Polly [GGL12], LLVM’s polyhedral loop optimizer. The unique goal of this
tool is to parallelize lattice QCD simulations on a distributed machine [Kru14b],
which requires generating efficient code for the explicit communication between
nodes.

Closely related to Molly is also the work by Damschen et al. [Dam+15]. Using a
just-in-time compiler that is executed as a server on an Intel Xeon Phi accelerator,
a client running an application can dispatch parallelizable loops to this server,
which then compiles and runs the code. The parallelization itself is implemented
again with the help of Polly, which is used to generate OpenMP code.

In 2016, Polly itself gained the ability to also generate code for CUDA GPUs
[GH16]. Under the name Polly-ACC it uses PPCG as a library to perform polyhe-
dral GPU mapping, and then generates CUDA code as well as the necessary data
transfers. Tile sizes, GPU parameters, and memory mappings are decided using
PPCG’s built-in heuristics.

In Table 4.4 we summarize the properties of the polyhedral compilers we pre-
sented, and compare them to the APHES framework. Although many approaches
exist that offload computations to accelerators such as GPUs or Xeon PHIs, none
of them target multiple platforms, neither as alternatives nor for cooperative exe-

63

Chapter 4 Related Work

Table 4.4: Comparison of the polyhedral parallelization approaches

D
at
a
P
ar
al
le
liz
at
io
n

Ta
sk

P
ar
al
le
liz
at
io
n

St
at
ic

A
na

ly
si
s

D
yn

am
ic

A
na

ly
si
s

H
et
er
og

en
eo
us

M
ul
ti
pl
at
fo
rm

C
oo

pe
ra
ti
ve

O
nl
in
e
Tu

ni
ng

O
ffl
in
e
Tu

ni
ng

Se
ar
ch
-B

as
ed

M
od

el
-B

as
ed

In
pu

t
Se
ns
it
iv
e

Le
ar
ne
d
M
od

el

A
ut
om

at
ic

Fe
at
ur
es

Lamport X X

Jimborean X X

PPCG X X X

Loo.py X X X

KernelGen X X X

Molly X X

BAAR X X X

Polly-ACC X X X

APHES X X X X X X X X X X X

64

4.2 Automatic Parallelization for Accelerators

cution. Again, we mark those properties which do not compare in this section and
show the autotuning features of APHES for completeness.

4.2.3 Explicitly Parallel DSLs

In this section we discuss prior art in the field of explicitly parallel programming
languages. Because this thesis deals with multiplatform parallelization, this sec-
tion is scoped to languages that target multiple platforms simultaneously. Many
languages exist that target multiple platforms, but do so explicitly: The devel-
oper has to manually choose a target device and program accordingly. Popular
languages such as OpenMP and OpenCL belong into this category, where device
types and data movements need to be written out. Instead, we focus here on
approaches that make data movement and platform selection implicit.
The Merge framework [Lin+08] is a library approach to programming a het-

erogeneous system based on the mapreduce programming pattern. A mapreduce
program is built from a sequence of map and reduce operations, which are triv-
ially parallelizable. The framework supports execution of the work on a GPU
and a CPU simultaneously, heuristically splitting the workload: The application
developer implements function variants for multiple platforms and annotate them
accordingly. The framework then distributes tasks (called “work units”) from a
work queue among available platforms for which an implementation for the task is
available. Whenever two platforms are available and viable, Merge chooses based
on preferences hand-encoded by the application developer.
Although not specifically a DSL itself, Ocelot [Dia+10] transforms an existing

DSL, namely CUDA, for execution on both GPUs and CPUs. Unlike in this thesis,
however, an Ocelot-transformed program executes only on one platform at a time,
and does not distribute the work. Ocelot is a binary translator, compiling PTX
code, an assembly format for CUDA programs, back to LLVM for offloading to
various platforms. Compilation happens just-in-time, which in principle enables
dynamically adapting to inputs and switching between platforms, although the
authors do not investigate this in depth.
Ocelot bears similarities to another system, named TwinPeaks [Gum+10]. In-

stead of targeting PTX, TwinPeaks is based on OpenCL, and compiles OpenCL
code targeted to GPUs or CPUs. Although OpenCL is a language built to be
target agnostic, optimized programs are often not. This tool hence takes great

65

Chapter 4 Related Work

Table 4.5: Comparison of the languages and parallelizing compilers

D
at
a
P
ar
al
le
liz
at
io
n

Ta
sk

P
ar
al
le
liz
at
io
n

St
at
ic

A
na

ly
si
s

D
yn

am
ic

A
na

ly
si
s

H
et
er
og

en
eo
us

M
ul
ti
pl
at
fo
rm

C
oo

pe
ra
ti
ve

O
nl
in
e
Tu

ni
ng

O
ffl
in
e
Tu

ni
ng

Se
ar
ch
-B

as
ed

M
od

el
-B

as
ed

In
pu

t
Se
ns
it
iv
e

Le
ar
ne
d
M
od

el

A
ut
om

at
ic

Fe
at
ur
es

Merge X X X

Ocelot X X

TwinPeaks X X

OMPSs X X

APHES X X X X X X X X X X X

care of optimizing the GPU-targeted program for CPU memory and cache layouts
as well as vector units.

OpenMP is a well-known domain specific language that greatly simplifies writing
parallel codes by extending sequential code with simple and compact annotations.
In 2010, Ferrer et al. proposed the OMPSs programming model [Fer+10], that ex-
tends OpenMP with the ability to explicitly offload OpenMP-parallelized regions
to accelerators. Originally, OMPSs targeted OpenCL, but has since been incor-
porated in the OpenMP 4.5 standard and now supports NVidia GPUs as well as
accelerators [SKK17].

We summarize the explicitly parallel languages discussed here in Table 4.5.
While all presented languages and compilers generate code for multiple platforms,
only the Merge framework supports cooperative execution. The execution is, how-
ever, limited to task parallelism, which is orthogonal to what we investigate with
APHES. Merge furthermore determines the distribution of work heuristically based
on decisions made by the application developer, whereas we achieve this automat-
ically. Marked in gray are the autotuning properties which are not considered in
this section.

66

4.2 Automatic Parallelization for Accelerators

4.2.4 Pattern-based Detection of Parallelism

To avoid the inaccuracy of dependence-based parallelism detection and the pro-
grammer effort mandated by parallel DSLs, some approaches focus on detecting
recurring parallel patterns in sequential programs instead. These approaches are
discussed in this section. Although the Patty tool by Molitorisz et al. [MMT15]
uses a pattern-based parallelism detector, its discussion is postponed until Sec-
tion 4.3.2 because of its autotuning facilities.
Rul et al. [RVD07] claim the first attempt to identify certain patterns in sequen-

tial programs at a function scope. While existing parallelizers aim to transform
loops in mostly numerical programs, Rul et al. operate at the function level. With
the help of data dependence profiling, they construct an interprocedural data flow
graph, in which they detect pipeline patterns for parallelization.
Another work that extracts pipeline parallelism was presented in 2010 by Tour-

navitis and Franke [TF10]. Starting from a sequential C program, they iteratively
decompose the data dependence graph top-down into pipeline stages. Further, they
also identify pipeline stages that allow replication. In principle, the decomposition
and replication enables optimizing pipeline throughput automatically, however the
authors do not discuss this possibility.
Bones [NC14] by Nugteren et al. is a static pattern-based tool for automatic par-

allelization for CUDA GPUs. It classifies algorithms in C code into “algorithmic
species” based on the memory access pattern, computed from either a polyhe-
dral representation or array reference characterizations. The detected algorithmic
species are mapped onto a predefined catalogue of parallel skeletons.
With few exceptions, the applicability of automatic parallelization is limited

to (multidimensional) array computations, because only in this case it is possible
to derive accurate dependence information. In 2015, Aguston et al. [AAH15]
presented a technique to tackle parallelization for linked data structures. Finding
specific patterns in the source code that correspond to loops traversing linked data
structures, they embed this linked list into arrays and convert the loop to index-
based iteration, a process they call “skeletonization”. The result of this is presented
to the user as a recommendation, providing parallelization hints.
The Distributed Multiloop Language by Brown et al. [Bro+16] is in the nar-

rowest sense of the term not a tool for automatic parallelization. Instead, it poses
as an intermediate language for implicitly or explicitly parallel programming lan-
guages. The intermediate language provides representations for data as well as

67

Chapter 4 Related Work

Table 4.6: Comparison of the pattern-based parallelization approaches

D
at
a
P
ar
al
le
liz
at
io
n

Ta
sk

P
ar
al
le
liz
at
io
n

St
at
ic

A
na

ly
si
s

D
yn

am
ic

A
na

ly
si
s

H
et
er
og

en
eo
us

M
ul
ti
pl
at
fo
rm

C
oo

pe
ra
ti
ve

O
nl
in
e
Tu

ni
ng

O
ffl
in
e
Tu

ni
ng

Se
ar
ch
-B

as
ed

M
od

el
-B

as
ed

In
pu

t
Se
ns
it
iv
e

Le
ar
ne
d
M
od

el

A
ut
om

at
ic

Fe
at
ur
es

Rul et al. X X

Tournavitis and
Franke

X X

Bones X X X

Aguston et al. X X X

DML X X X X

APHES X X X X X X X X X X X

nested parallelism, and supports multicore processors, GPUs, and even distributed,
heterogeneous systems with non-uniform memory accelerators.
We summarize this section in Table 4.6, and compare the presented approaches

to the APHES framework. Most of the pattern-based parallelizers target task par-
allelism, likely because tasks are easily represented as patterns. Of the discussed
works, only Bones and DML target heterogeneous platforms. DML also supports
multiple different platforms, albeit not cooperatively. Cooperative execution is
thus the biggest distinction between the APHES framework and the works we pre-
sented in this section.

4.3 Autotuning Languages and Compilers

In this section we review recent advances in combining the fields of autotuning,
compilers, and automatic parallelization.
In the domain of automatically producing portable application performance,

two flavors have emerged. On the one side, programming languages or DSLs were
developed in which the performance-relevant degrees of freedom are explicit. The

68

4.3 Autotuning Languages and Compilers

language’s compiler or execution environment configures these parameters, either
at compile or execution time.
On the other side, the compiler community has invested time and effort in au-

tomating the tuning of program transformations for general purpose languages.
That includes traditional compiler optimizations, automatic parallelization, or
switching between versions or implementations. Traditionally, compilers make de-
cisions based on heuristics, or cost or performance models. Models and heuristics
must make assumptions about inputs and hardware characteristics. For general
applications, the input domains are unknown, making accurate estimates of their
characteristics hard. Hardware secondly evolves over time, which requires constant
updates to the models and heuristics. Empirical search investigated in addition to
heuristics and models to relieve compiler designers of those two difficulties.
In the following, we first examine related work in the domain of compilers that

automatically parallelize or optimize programs either with the help of performance
models and machine learning, or using empirical search. Subsequently, we explore
the domain of explicitly tunable programming languages and DSLs.

4.3.1 Modeling and Machine Learning for Autotuning
Compilers

Applying execution models to mapping an implicitly data parallel language onto
a parallel machine was pioneered by Alan Sussman in 1992 [Sus92]. He builds a
compiler for the functional Sisal language. Based on predictions of the parallel
runtime obtained from an analytical model, his compiler maps Sisal programs
onto systolic array processors. The model is implemented by the compiler and
thus does not require the application developer to define the relevant features.
Because we focus on compilers in this section, the same holds for all approaches
we discuss here. Similarly, we classify all approaches in this section as offline tuning
techniques, because they build the model offline.
A related approach is taken by Cavazos et al. in 2006 [Cav+06]. Instead of

using a hand-crafted analytical model to predict execution time for sequences of
optimizations in the SUIF compiler, they train a feed-forward neural network on
a set of sample transformations. These probe transformations are applied to the
input program. Observing the resulting speedup provides a training sample for
the model. They show that only a small number of samples (64) is required to

69

Chapter 4 Related Work

achieve an error rate better than 10%. In 2007 [Cav+07], they complement this
approach by learning a logistic regression model instead. In this case, they build
a model not on speedups but directly on dynamic application characteristics. The
features that define these characteristics are hardware performance counters. The
compiler observes the counters for an input program, and with the help of the
model predicts the optimal sequence of optimization transformations.

Wang et al. provide an approach that can be seen as an intersection between
the work of Sussman and Cavazos et al. [WO09]. They build a compiler for
OpenMP programs which optimizes the parallel mapping. In a (simple) OpenMP
program, there are two degrees of freedom: The number of threads active in a
parallel section and the policy of scheduling chunks of data onto threads. On
a set of program features, they train a neural network to predict the optimal
number of threads, and a support vector machine to determine the scheduling
policy. Relevant program features are static properties, such as instruction or
load/store counts, and dynamic features, such as loop iteration counts and cache
hit rates. Subsequently, Tournavitis et al. [Tou+09] extend this technique for
automatic parallelization. They detect parallelism dynamically, and map it onto
OpenMP. SVM training and prediction are applied to optimize the mapping.

The Milepost GCC [Fur+11] compiler complements the Open Source compiler
gcc with machine learning capabilities. From a large set of static program features,
such as the number of basic blocks, the CFG structure, or the number of calls,
they build a model on training programs and use it to select a set of optimization
options for the gcc compiler for an unknown program.

An interesting goal is pursued by Fried et al. [Fri+13]. Instead of hunting for
optimal compiler optimizations or parallel mappings, they use machine learning to
predict which parts of a sequential program should be parallelized. With DiscoPoP
they analyze the target program for dependences and extract features, for instance
dependence graph properties such as dependence counts between instructions. The
paper explores the machine learning algorithms SVM, decision trees, and AdaBoost
for prediction and reports a prediction accuracy of up to 92%.

Building upon the work by Cavazos et al. [Cav+06; Cav+07], Park et al. con-
struct an optimizer for polyhedral compilation [Par+13]. The polyhedral model
provides a unified framework for applying loop transformations. Which transfor-
mations to apply and how to parameterize them is considered a tuning problem
by Park et al. They consider the transformations loop fusion and distribution,

70

4.3 Autotuning Languages and Compilers

Table 4.7: Comparison of the model-based autotuning compilers

D
at
a
P
ar
al
le
liz
at
io
n

Ta
sk

P
ar
al
le
liz
at
io
n

St
at
ic

A
na

ly
si
s

D
yn

am
ic

A
na

ly
si
s

H
et
er
og

en
eo
us

M
ul
ti
pl
at
fo
rm

C
oo

pe
ra
ti
ve

O
nl
in
e
Tu

ni
ng

O
ffl
in
e
Tu

ni
ng

Se
ar
ch
-B

as
ed

M
od

el
-B

as
ed

In
pu

t
Se
ns
it
iv
e

Le
ar
ne
d
M
od

el

A
ut
om

at
ic

Fe
at
ur
es

Sussman X X X X X

Cavazos et al. X X X X X X

Wang & Tourna-
tivits et al.

X X X X X X

Milepost GCC X X X X

Fried et al. X X X X X

Park et al. X X X X X

APHES X X X X X X X X X X X

loop and register tiling, wavefronting, thread-level and SIMD-level parallelization,
and pre-vectorization. They implement the speedup prediction model by Cavazos
et al. with the help of six machine learning algorithms, among them linear regres-
sion, neural networks, and SVM. The selected transformations achieve substantial
speedups on a variety of benchmarks.
Table 4.7 recapitulates the core aspects of the approaches in this section, compar-

ing them to the APHES framework. Neither of the presented compilers targets het-
erogeneous platform. Although all compilers except Sussman’s learn their model
either offline or online based on automatically extracted features, none of these
approaches consider program inputs at runtime. Both of these missing aspects set
the APHES framework apart from the compilers in this section.

4.3.2 Search-based Tuning Compilers

Using machine models and machine learning methods to determine optimization
sequences or parallelization strategies has a long history. The greatest downside of
this approach is that the quality of its prediction is tightly coupled to the quality

71

Chapter 4 Related Work

of the model. A model that does not accurately reflect the hardware or application
characteristics may not provide the compiler with the optimal decisions. Moreover,
the model is inherently tied to applications and hardware properties it was designed
for. These properties are, however, by no means static. Especially hardware
features change at an astonishing pace, and models must adapt at the same rate.
Consequently, there is an interest in the research community to explore decision
making processes based on empirical search as an alternative.

The first compilation framework that explored this path was PHiPAC [Bil+97]
by Bilmes et al. Initially designed as a catalogue of coding guidelines for BLAS
C programs, the authors provide a tunable code generator for GEMM kernels
based on these guidelines. The generator encodes preferences such as prefer local
variables over array reads, or increase locality. To configure tuning parameters
such as tile sizes, they use a simple random search, recompiling and benchmarking
the kernel for every configuration.

Almagor et al. [Alm+04] pursue a similar goal as the Milepost framework. For
their own adaptive compiler they attempt to find alternative optimizer sequences
instead of the predefined O2 or O3 levels provided by most established compilers.
Using a full exploration of the space of compilation sequences they show that
most local minima an empirical search might produce are within an acceptable
range from the global optimum. To find a local minimum, they employ genetic
algorithms, hill climbing, or greedy search.

In 2008, Chen et al. [CCH08] developed the CHiLL framework. CHiLL is a poly-
hedral loop transformation framework whose key idea is to control transformation
sequences via high-level transformation recipes. Sequences of operations such as
permutation, tiling, unrolling, or splitting are defined by a developer. Free param-
eters in these rules such as unroll factors and tile sizes are determined through a
systematic full exploration. In 2009, Tiwari et al. [Tiw+09] extend this to use
a more sophisticated search, Parallel Rank Ordering, which bears similarities to
the Nelder-Mead simplex algorithm and which can be executed in parallel. Tiwari
and Hollingsworth later develop this further into an online tuning scenario [TH11].
Exploiting ActiveHarmony’s online tuning capabilities, they produce an adaptive
compiler, which generates new code on the fly. By extending CHiLL with GPU-
specific loop transformations, Rudy et al. develop CUDA-CHiLL [Rud+10] in 2010.
Using CHiLL’s polyhedral loop transformation engine and transformations such
as tiling, permutation, and data transfers, CUDA-CHiLL generates CUDA code

72

4.3 Autotuning Languages and Compilers

from sequential inputs. While the transformation sequences are still handwritten,
Rudy et al. use autotuning in their evaluation to optimize tile sizes.

The ROSE compilation system by Liao et al. [Lia+09] can be seen as a fron-
tend compiler for CHiLL and ActiveHarmony, although it supports alternative
optimizers and search engines as well. The primary goal of ROSE is to simplify
whole-program tuning. To reduce the complexity of analysing a program entirely,
the compiler first extracts candidate kernels into standalone functions. Candidate
kernels need to be identified by an application developer.

The Cetus automatic parallelizer [Joh+04] is a source-to-source compiler which
translates parallelizable loops in C programs into parallel OpenMP loops. In 2010,
Dave and Eigenmann [DE10] combine it with an offline tuner. Using Combined
Elimination by Pan and Eigenmann [PE06], the tuner provides optimization di-
rectives to Cetus. In each iteration, Cetus generates a program version, which is
again evaluated by the tuner.

Baskaran et al. use the polyhedral model to automatically translate C programs
to CUDA [BRS10]. On top of the polyhedral parallelization and optimization al-
gorithm Pluto, their compiler uses autotuning to pick optimal transformations.
To select tile sizes that optimize the data movements required for GPU offloading,
they formalize the cost of data movement as a constraint non-linear optimiza-
tion problem and solve it with sequential quadratic programming [Bas+08b]. For
tuning the remaining parallelization and transformation process, they employ em-
pirical search. To reduce the complexity of the search space, they drastically prune
it using analytical models, representing among others memory loads and stores,
data transfer costs, and shared memory accesses [Bas+08a].

INSIEME, an autotuning compiler for parallel languages, represents an hybrid
between offline and online tuning [Jor+12]. The compiler component of this ap-
proach lowers parallel C or C++ programs into INSPIRE, an intermediate repre-
sentation able to model the parallel behavior of OpenMP, MPI, or OpenCL. With
help from the autotuner, it optimizes the program according to multiple objectives
concurrently, such as runtime and energy efficiency. In an offline tuning phase, the
tuner determines Pareto optimal configurations using differential evolution. The
resulting different versions of the code are compiled into a single binary program.
At execution time, the runtime component then dynamically dispatches between
versions according to a policy defined by the application developer.

73

Chapter 4 Related Work

Table 4.8: Comparison of the search-based autotuning compilers

D
at
a
P
ar
al
le
liz
at
io
n

Ta
sk

P
ar
al
le
liz
at
io
n

St
at
ic

A
na

ly
si
s

D
yn

am
ic

A
na

ly
si
s

H
et
er
og

en
eo
us

M
ul
ti
pl
at
fo
rm

C
oo

pe
ra
ti
ve

O
nl
in
e
Tu

ni
ng

O
ffl
in
e
Tu

ni
ng

Se
ar
ch
-B

as
ed

M
od

el
-B

as
ed

In
pu

t
Se
ns
it
iv
e

Le
ar
ne
d
M
od

el

A
ut
om

at
ic

Fe
at
ur
es

PHiPAC X X X

Almagor et al. X X X

CHiLL/ROSE X X X X X X

Cetus X X X X

Baskaran et al. X X X X X X

INSIEME X X X

Patty X X X X X

Banerjee & Ranka X X X

APHES X X X X X X X X X X X

The Patty tool by Molitorisz et al. [MMT15] can be seen as an interactive au-
tomatic parallelization tool. Integrated into a C# editor, it detects parallelizable
segments dynamically. Detected segments that match data-parallel loops, master/-
worker patterns, or pipeline patterns are presented to the application developer,
and, if confirmed, automatically parallelized. Patty does not tune the transfor-
mation directly, but generates parallel code annotated with the TADL language,
which is an annotation DSL to define tunable parallel architecture. We describe
TADL further in Section 4.3.3. The TADL program can be optimized by an offline
or online tuner.
Banerjee and Ranka present a specialized tuner generating matrix multiplica-

tions for a spectral element solver [BR15]. Unlike most compilers discussed in this
section, their transformations of the code are based on domain knowledge. Using
a genetic algorithm, they optimize the loop structure with the help of CHiLL.
We compare the APHES framework to the parallelizing compilers using search-

based tuning presented in this section in Table 4.8. There is no support for mul-
tiplatform or cooperative execution in any approach except ours, and only CHiLL

74

4.3 Autotuning Languages and Compilers

and Baskaran et al.’s polyhedral compiler generate GPU code. Unlike APHES, none
of the listed compilers produces input-sensitive optimizations.

4.3.3 Languages

While automatic parallelization is a key area in compiler design and research, the
result is in practice often inadequate. The primary cause is that compilers need
to reason about code statically and thus often must make worst-case assumptions.
Transforming code optimistically on the other hand can introduce errors and is
thus mostly avoided. This bar can be lowered with the help of specialized gen-
eral purpose or domain specific languages. Making a developer explicitly express
the assumptions a compiler has to make enables automatic transformation with
little developer overhead. Prominent examples of this approach are OpenMP or
CUDA. In this thesis, however, we are not primarily concerned with automatic
parallelization, but with combining automatic transformation with runtime au-
totuning. In the following, we thus examine related works from the domain of
tunable languages.
Voss and Eigenmann’s ADAPT system [VE00; VE01] is one of the first ap-

proaches to apply this technique. It can be seen as a meta compiler. Developers
describe loop optimizations in the ADAPT language. The ADAPT system applies
transformations dynamically according to heuristics defined by the developer using
dynamic compilation. It explores the optimization space by exhaustively sampling
the runtime of the variants that are applicable according to the developer defined
heuristics.
The features of the Qilin programming system by Luk et al. [LHK09] are closely

related to the goals of this thesis. Using a C++ API language, developers imple-
ment explicitly parallel kernels, also including descriptions of the data layout.
This language is JIT-compiled into machine code for CPUs and GPUs. As in the
present thesis, the kernel workload is distributed between CPU and GPU dynam-
ically, however using a fundamentally different tuning technique. To estimate the
optimal distribution, Qilin samples several subdivisions of the work. First, the
input is split into two components, one for each platform. Each partition is fur-
ther subdivided, and then sampled on its respective platform. Qilin assumes that
the runtime on each platform is linear in the partition size. It fits linear models
to the observed samples, which model the runtime as a function of portion of the

75

Chapter 4 Related Work

input assigned to a platform. Qilin can then estimate the optimal distribution by
minimizing the sum of the models.

Otto et al. [OPT09] presented XJava, an explicitly parallel programming lan-
guage embedded into Java. Using new language constructs, developers express
parallel patterns such as pipelines or master-worker in a concise and compact way.
In 2010, Otto et al. extended their compiler and runtime system to automatically
tune parameters they infer from the XJava program [Ott+10]. Parameters are
for instance the thread count, thread load balancing, or pipeline stage replication
factors. The runtime system applies white box tuning to these parameters. Otto
et al. provide heuristics for optimal choices of configurations, for example minimiz-
ing the number of idle threads by greedily replicating stateless pipeline stages or
by creating nested parallel tasks until worker threads are saturated. This tuning
approach is similar to the one adopted in Sambamba.

As part of his doctoral thesis [Ans14], Ansel et al., who published OpenTuner in
2014, proposed PetaBricks in 2009 [Ans+09]. The PetaBricks language is implicitly
parallel and features algorithmic choice. With this feature, the authors tackle the
problem of choosing the right implementation of an algorithm for varying inputs.
For example, the optimal choice of a sorting algorithm depends strongly on the
size of the input. To select an algorithm, PetaBricks learns thresholds that define
which algorithm to choose. For this, the PetaBricks autotuner originally used an
evolutionary algorithm [Ans+11], which was later supplemented by OpenTuner.
As an additional tuning mechanism, Ding et al. [Din+15] train PetaBricks to
adapt to inputs with a two-level learning approach. First, inputs are clustered
into a fixed number of input classes, for which it then determines the optimal
algorithmic choice using autotuning. The second level refines the clustering by
training a set of classifiers on the clusters of the first stage.

Concurrently to XJava, Schaefer et al. [SPT10] developed the Tunable Archi-
tecture Description Language in 2010. Like XJava, TADL is a language mecha-
nism to develop architectures from parallel patterns such as pipelines or producer-
consumer. An architecture description embeds the API of a C# program into a
high-level parallel pattern. For example, the description defines the order of stages
in a pipeline, each of which is implemented by a C# method. Algorithmic choice is
also supported, modeled as a nominal n-ary decision between alternatives. The de-
scription compiler deduces tuning parameters from the architectural composition.
As in XJava, example parameters are the number of threads, producer-consumer

76

4.3 Autotuning Languages and Compilers

buffer sizes, or pipeline stage replication behaviour. TADL shares two co-authors
with XJava.

The PATUS code generation and auto-tuning framework by Christen et al.
[CSB11] targets stencil computations on CPU and GPU platforms. It offers a
language to define iterative stencil codes in an array notation. On top of that, the
language can be used to define strategies for parallelization or access optimizations,
such as blocking. In a strategy, parameters may be marked as auto for autotun-
ing. This specification is then mapped onto parallel hardware using OpenMP and
CUDA. The autotuner iterates the mapping process, using Powell search, Nelder-
Mead, or evolutionary algorithms to search for parameter configurations.

Inspired by Ocelot the work by Lee et al. [LRG12] compiles PTX for CPU and
GPU and distributes the workload. The workload is executed cooperatively, which
is why they name their tool Cooperative Heterogeneous Computing (CHC). Most
relevant to this thesis, the authors devise a scheme to determine the workload
distribution automatically. The distribution scheme is largely similar to Qilin,
although CHC does not sample several partitions of the input for every platform.
Instead, it measures the extreme points, i.e., the smallest and largest partition.
Like Qilin, it then estimates a linear interpolation between the extremes. The
work is partitioned according to the intersection of the linear predictions for both
platforms.

The Halide language by Ragan-Kelley et al. [Rag+13] pursues a similar goal
as PATUS, and is another stencil DSL. Unlike PATUS, however, it is primarily
targeted at image processing. Using a functional language, developers can compose
large and complex image processing pipelines. In a second step, developers then
build schedules from building blocks such as tiling, fusion, or sliding window. This
choice is either manual or with the help of an autotuner. Scheduling additionally
includes parallelization or vectorization, and also generates GPU kernels. Using
genetic algorithms, the autotuner attempts to optimize the schedule, iterating
compilation of the stencil pipeline.

With libHawaii [RDP14], Ranft et al. present a library-based approach to co-
operative heterogeneous execution. Like Qilin, libHawaii offers building blocks to
implement parallel programs. However, it is targeted at stream processing ap-
plications and enables developers to implement nested processing pipelines out of
task-parallel and data-parallel building blocks. Both task-parallel and data-parallel
implementations can execute on any platform in the heterogeneous system. For

77

Chapter 4 Related Work

data-parallel execution, the work can be partitioned across platforms and be exe-
cuted cooperatively. The libraries runtime system optimizes the execution of the
pipeline for both energy and runtime efficiency. For that, it exploits the streaming
nature: For the data-parallel execution, the relationship between work partition
and runtime is assumed linear as do Qilin and CHC. To optimize runtime, the
partitioning ratio is updated using a Kalman filter [WB95] after every processed
work item. The key difference to Qilin and CHC is that the optimal ratio is re-
fined progressively without sampling a fixed set of partitionings first. Because the
ratio is perpetually adapted, libHawaii is also able to adjust to changing inputs
automatically by effectively re-tuning its parameters.

PolyMage [MVB15] is another DSL for image processing. Like in Halide, im-
age operators are defined in a functional language. Using a polyhedral compiler,
PolyMage optimizes especially the tiling of the stencil loops. Being model-driven,
its scheduling algorithms have few parameters, which the compiler explores ex-
haustively. Using this technique Mullapudi et al. report significant speedups over
hand-tuned and autotuned Halide schedules.

Although it is not itself a DSL, the LIFT project [SRD17; Hag+18] considers
itself an intermediate representation for DSL compilers. LIFT is itself a functional
data-parallel language for which its compiler generates accelerator code with the
aid of ATF and OpenTuner. Primitives of the language are operations such as map,
reduce, join, or split. Optimizing a LIFT program means applying rewrite-
rules to the functional representation. Low-level operations in LIFT that relate to
OpenCL features lend themselves to tuning by exposing parameters such as device
thread count, tile sizes, or work per thread. These parameters are optimized using
ATF and its OpenTuner search.

The most recent contribution to tunable DSLs was made by Facebook AI Re-
search in the form of Tensor Comprehensions [Vas+18]. The TC language is de-
signed for expressing the complex computations and computational graphs in-
volved in building deep neural networks in a compact and simple way inspired by
the Einstein notation. In this sense, it is comparable to Halide and PATUS. The
key difference is that TC aims to generate GPU code, which in the former two
examples is only possible with complicated, hand-built schedules. Using the poly-
hedral model, the compiler optimizes loop fusion, multi-level parallelism, and the
use of GPU memory hierarchies. A genetic algorithm-based autotuner drives the

78

4.3 Autotuning Languages and Compilers

Table 4.9: Comparison of the autotuning languages

D
at
a
P
ar
al
le
liz
at
io
n

Ta
sk

P
ar
al
le
liz
at
io
n

St
at
ic

A
na

ly
si
s

D
yn

am
ic

A
na

ly
si
s

H
et
er
og

en
eo
us

M
ul
ti
pl
at
fo
rm

C
oo

pe
ra
ti
ve

O
nl
in
e
Tu

ni
ng

O
ffl
in
e
Tu

ni
ng

Se
ar
ch
-B

as
ed

M
od

el
-B

as
ed

In
pu

t
Se
ns
it
iv
e

Le
ar
ne
d
M
od

el

A
ut
om

at
ic

Fe
at
ur
es

ADAPT X X

Qilin X X X X X X

XJava X X X

PetaBricks X X X X X

TADL X X

PATUS X X X

CHC X X X X X X

Halide X X X X

libHawaii X X X X X X

PolyMage X X

Lift X X X X

TC X X X

APHES X X X X X X X X X X X

JIT compiler to optimize the degrees of freedom in e.g., the parallelism mapping
and memory promotion.

Table 4.9 summarizes the languages and compilers presented in this section
and compares them to APHES. Of all publications we reviewed in this chapter,
Qilin, CHC, and libHawaii offer functionality and features most closely related
to our own work. However, because they assume a linear relationship between
platform distribution and performance, they are unable to optimize any additional
parameters besides the distribution.

79

Chapter 4 Related Work

4.4 Summary

In this chapter we revisited prior art in the fields of autotuning and automatic
parallelization, and investigated approaches combining the two techniques. The
works we discussed all fulfil only a subset of the requirements of cooperative het-
erogeneous parallelization. With few exceptions, existing parallelizing compilers
do not approach cooperative execution, because they are lacking the means to
optimize the work distribution and parallelization simultaneously. Both the stan-
dalone autotuners and those integrated with the compilers are unfit to solve that
particular optimization problem, because they either cannot effectively explore the
search space or fail to correlate findings with current inputs. Effectively exploring
the search space requires empirical search. To relate configurations and inputs,
the empirical search must happen online, and the results of the search must addi-
tionally feed a model or lookup table. Although some of the tuning techniques we
saw tick both boxes, they altogether are white box techniques, which ultimately
disqualifies for an application in a multiplatform parallelizing compiler.
The works most closely related to this thesis are Qilin, CHC and libHawaii,

which execute parallel kernels on CPU and GPU cooperatively, splitting the work-
load dynamically. Their approaches, however, are not automatic: Developers are
required to program in a DSL. Moreover, they assume a linear relationship be-
tween workload size and performance and use this assumption to derive the optimal
partitioning analytically. While this assumption is sensible in their use case, we
cannot assume linearity when optimizing additional tunable parameters.

80

Chapter 5

Hybrid Online Autotuning

The libtuning library implements the hybrid online autotuning approach as a
black-box tuner. Hybrid tuning combines online search and model-based prediction
to provide the following three main features:

Context sensitivity: The runtime of the tuning kernel not only depends on con-
figurations of tuning parameters, but also on the dynamic tuning context.
In libtuning, a tabular memory records configurations and tuning context
states. When a previously seen state recurs, the previous configuration for
that state is used. In addition to the tabular memory, a prediction model can
be constructed to predict good configurations for unknown context states.

Effective exploration: To explore the search space and bootstrap the table and
prediction model, the tuner uses online search. The set of implemented
default search algorithms can be extended by application developers.

Efficient exploration: While state of the art online search finds a (locally) op-
timal configuration relatively fast, there is room for improvement. The
libtuning search algorithm called hierarchical search accelerates the search
time substantially by automatically exploiting structure in the search space
and by avoiding known bad configurations.

In this chapter, we present the hybrid tuning approach and libtuning in detail.
We first described the hybrid tuning approach in our publication [Her+19], where it
was applied to tuning parallel ray tracing1. The hybrid tuning approach presented
in this chapter extends the approach described in the publication by introducing

1Hybrid tuning was contributed to the publication by the author of this thesis.

81

Chapter 5 Hybrid Online Autotuning

the underlying formalism, and integrating it with hierarchical search and into our
libtuning autotuner. We investigated early designs of the hybrid approach in
two Master’s theses [Wen16; Kop18], which demonstrated the general feasibility
of the approach. Hierarchical search was presented in our publication [PGT19], in
which we apply it to polyhedral cooperative parallelization2. The introduction to
hierarchical search we give here is based on that article and extends it by describing
the full formalism of the approach.
In the following, we first introduce hybrid tuning in Section 5.1. Subsequently,

Section 5.2 describes the libtuning architecture and its main building blocks. In
Section 5.3 we present hierarchical search. Section 5.4 discusses the prediction
models used in hybrid tuning. We finally summarize the details presented in this
chapter in Section 5.5.

5.1 Hybrid Tuning: Combining Search and
Prediction

Two directions exist in current state of the art autotuning designs: Optimization is
generally either machine-learning or model-based, or search-based. The two alter-
natives offer different benefits and drawbacks. When parameter configurations are
produced by a machine-learning or model-based predictor, an immediate reaction
to a change in the dynamic context is possible: The predictor is queried for the
updated context state and returns a single parameter configuration. With search-
based tuning on the other hand, every change in the context entails overhead: To
find a new configuration, the search is restarted, sampling new configurations until
a new (local) optimum is found. The drawback of using prediction, however, is
that the quality of the configuration depends on the accuracy of the predictor.
If the predictor was hand-crafted, its accuracy is determined by how precisely
its designer modeled the application and the dynamic context. If the predictor
is learned, then its accuracy depends on how well the learned model generalizes
from training data and how well the data reflected reality. While machine-learning
eliminates the need for a meticulous human model designer, it generally requires
large amounts of training samples to be accurate. With offline training, the qual-

2Both hierarchical search and polyhedral cooperative parallelization were contributions of the
author of this thesis to the publication.

82

5.1 Hybrid Tuning: Combining Search and Prediction

explore

exploit

configure

configure

feedback

report new context state

Search

?
Prediction

Memory Application

Hybrid Tuning

Figure 5.1: The hybrid online tuning workflow (figure based on [Her+19]). Feedback
from the application is recorded in the tuning memory and is used to update
the prediction and search states. When the application reports a change in
the dynamic context, hybrid tuning selects between search and prediction
to provide the next configuration.

ity of the learned predictor is governed by how well the provided training data
represents the data that will be observed in production. Online training on the
other hand can learn from data actually occurring in production, but there is a
bootstrapping problem: If the initial model is imprecise, initial predictions are
sub-optimal and performance is decreased. With search-based tuning, there is no
bootstrapping problem and the quality of the found configuration is independent
from any a-priori sample data.

With hybrid tuning, we present a compromise between the two directions. Hy-
brid tuning combines prediction and search, using online search to explore the
search space and to continuously provide training data to update the prediction
model. Because training happens online, prediction is insensitive to any a-priori
sample bias. The hybrid tuning workflow is shown in Figure 5.1: Whenever a
change in the dynamic context is detected, hybrid tuning can choose between ex-
ploration of the search space using search or exploitation of the trained prediction
model. Any performance feedback provided by the application in either mode is
used to refine the prediction model. A configuration table additionally stores the
best known configuration for observed context states.

83

Chapter 5 Hybrid Online Autotuning

To implement hybrid tuning, we model the changing context and the reaction
to changes as a Markov Decision Process (MDP). The model represents context
changes as process state transitions and uses MDP decision making to choose
between exploration and exploitation. In the following section, we briefly introduce
our process model. Subsequently we discuss how we implement detection of context
changes and our approach to balancing exploration and exploitation.

5.1.1 Context Sensitivity in Online Autotuning

To represent the context sensitivity problem in libtuning we construct an infinite-
horizon MDP. As introduced in Chapter 2, an MDP is the quadruple (Σ, A,Φ, ρ).
In this model Σ is the state space, and A is the space of possible actions. The

state space represents the dynamic context in which the tuner operates. In MDP
literature the tuner would be called the “agent”. A change in the context thus
constitutes a change in the state space, causing the agent to pick an action. We
define the action space A = T as the set of possible configurations.
The agent picks a configuration according to a policy, usually called π(s), s ∈ Σ,

which determines actions for every state. The action model Φ : Σ×A×Σ→ [0, 1]

describes the probability Φ(s, a, s′) = p(s′|s, a) when in state s to transition to
the state s′ when performing action a. We cannot define a “on-size-fits-all” action
model, since it is unknown whether a chosen action has any actual influence on
state transitions. Consider again the library parallelization example discussed
previously: Actions affect the runtime of the called library functions, but we cannot
reasonably assume that they have any effect on the context states reported to the
library by its client. The action model thus has to be learned by observing state
transitions.
Finally, the reward function ρ : Σ × A × Σ → [0, 1] determines the reward r =

ρ(s, a, s′) for transitioning from state s to s′ under action a. We set r = −m, i.e.,
the immediate reward achieved after every action selection is just the performance
measurement. The negative sign serves to turn the minimization goal of autotuning
into a maximization objective for the agent.

5.1.2 Approximating and Observing the Context

Before the autotuner can adapt dynamically to a context change, it first has to
detect it. To achieve this, we first have to model and quantify the context. Thus,

84

5.1 Hybrid Tuning: Combining Search and Prediction

we need to determine the momentary state of both the application and the sys-
tem. For this, we introduce context indicators Ic(t) ∈ R as “probes” serving to
monitor various static and dynamic properties of the context at every time point
t. Together, the set of the application context indicators IAcA(t) and the set of the
system context indicators IScS(t) produce a model K̃ = (IA0 , . . . , I

A
a , I

S
0 , . . . , I

S
s) of

the real dynamic context K at a given point in time. In the remainder of this
section we will only ever refer to the approximated context, and will thus use the
terms interchangeably.
Indicators in hybrid tuning may represent both discrete and continuous quanti-

ties. While this is necessary to support general applications, it strongly affects the
MDP model. Since the context forms the state space of the process model, incor-
porating continuous indicators turns it into a continuous Markov decision process.
Such processes have significantly different solutions and convergence guarantees.
The discrete versus continuous indicator distinction also affects change detection.

In a discrete context, detecting change just means watching the indicators for value
changes. The same is possible for continuous indicators of course, but we define two
additional schemes. Continuous quantities often exhibit high frequencies. Consider
a system load indicator for instance once more: Measuring it essentially produces
a different value every time, since the system the application is running on is never
really at rest. Here, smoothing the response function with some low-pass filter can
help, e.g., by averaging multiple indicator samples over time. While the changes
of the indicator values may be high-frequency, they are often low-amplitude at
the same time: When the system is busy, for example, the system load usually
stays in the 100% range. Additionally it is easy to assume that small changes
in the indicator values only effect negligible changes in performance, and thus
in the optimality of the current configuration. For example, if the system load
changes from 98% to 99%, the effect is likely not measurable. Both smoothing
and down-sampling can help with this effect. Alternatively, it is possible to detect
state changes purely by observing the effect of the indicators: Monitoring the
measuring function, we can detect state changes when there are drastic changes in
the function’s value.

5.1.3 Adapting to Context Changes

Having a device to quantify the context and detect changes, the next step is to
react to this change. Within the framework of our model reacting to changes is

85

Chapter 5 Hybrid Online Autotuning

implemented by the policy π. We borrow from the field of reinforcement learning
to develop our policy, which is loosely based on ε-Greedy, a frequently used policy
in the field: With a probability of ε, we explore the search space using hierarchical
search when encountering a state change. With a probability of 1 − ε, we exploit
a predictor which is trained during exploration from the sampled configurations.
Because the application-tuner interaction is iterative, both options are not “atomic”
in the sense that they are a singular reaction to a state change. Instead, the hybrid
tuner can be either in exploration mode or exploitation mode. While in the former,
it will produce configurations as directed by hierarchical search. Hierarchical search
is introduced in Section 5.3. While in the latter, it uses the predictor. We discuss
prediction in more detail in Section 5.4. In particular, being in exploitation mode
implies that there is only a single configuration update, namely when entering
that mode. In exploration mode on the other hand, multiple configurations are
sampled. Consequently, another state change might occur while the search is still
ongoing. In that case, the current search state is saved and the search will be
continued when the previous state recurs.

5.2 The libtuning Architecture

In this section we discuss the main components of the libtuning autotuner. Fig-
ure 5.2 shows its most important logical units and their interaction, both with
each other and with the application. The primary application-facing component is
the HybridTuner which encapsulates the other building blocks and manages their
interactions. In terms of the sequence of operations, the first inner units the appli-
cation will interact with are the ParameterSpace (labeled PS in the figure) and the
IndicatorSpace (labeled IS). The first manages the application’s tunable param-
eters, the second the application and system indicators. The Hybrid Tuning unit
implements the hybrid tuning approach and interoperates with the application
only through the ParameterSpace and IndicatorSpace layers. This component
can be extended through application developer-provided Search and Model imple-
mentations. The former supplement hierarchical search with fundamental search
algorithms it can use. The latter provide prediction models to hybrid tuning’s
prediction component.
In the following sections we introduce the components in more detail. In Sec-

tion 5.2.1 and Section 5.2.2 we discuss the ParameterSpace and IndicatorSpace

86

5.2 The libtuning Architecture

next()

Ci+1

getNext()

Ci+1

feedback(F)

(for Ci)

addParameter(...)

addIndicator(...)

Application
 PS

IS

Hybrid Tuning

HybridTuner

search model

?

Figure 5.2: The ParameterSpace (PS) serves as an adapter between the application
and the search algorithm. Feedback from the application is passed through
the adapter to hybrid tuning, which computes the next configuration for
the ParameterSpace to cache. Cached configurations are passed to the
application upon the next call to next(). The IndicatorSpace (IS) is a
registry for application-defined indicators.

components respectively. Subsequently we describe the Search implementations
already included in libtuningand used by default by hierarchical search. Hier-
archical search itself will be introduced in detail in Section 5.3. We defer the
discussion of the builtin Model implementations until Section 5.4, where we intro-
duce the model-based prediction component of hybrid tuning.

5.2.1 Tuning Parameters

Application developers employ autotuning to optimize parameters according to
some criterion. The nature of these parameters is entirely specific to the particu-
lar application. Black-box autotuners are oblivious to the parameters’ semantics.
More importantly, the parameters have different domains in practice. For example,
some parameters may be integer, other parameters may be floating point or might
not even be numbers at all. Some parameter might assume legal values from an
interval of [0, 10], others from an interval of [0.0, 1.0]. Having to handle different do-
mains is particularly cumbersome for Search and Model implementations. Hence,
libtuning isolates the implementations from these application-specific parame-

87

Chapter 5 Hybrid Online Autotuning

Mirror Axes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Ti
me

C

Figure 5.3: Mirroring Example: For an integer parameter from the range of [1, 6], the
measurement function as observed by search algorithms becomes a periodic
step function.

ter properties. The isolation is provided by the ParameterSpace translation layer,
which is an adapter between the application and its parameters on the one side and
the search and prediction algorithms on the other. The translation allows search
and prediction algorithms to operate on an n-dimensional real-valued unbounded
space called the search domain, where n is the number of parameters. When the
application reports feedback for a parameter configuration to the adaptation layer,
hybrid tuning’s state is updated and it is queried for the next configuration sam-
ple. This sample is a real-valued vector in the search domain. The configuration is
cached within the translation layer. Once the application requests the next param-
eter update from the HybridTuner component, the cached configuration sample is
translated into the application domain and then passed to the application. This
mechanism has two positive effects. Firstly, it allows the development of search
algorithms independent of the application which uses them. Secondly, it prevents
several numerical problems in the search algorithms. For example, we observed
that search algorithms get stuck in non-optimal configurations when trying to op-
timize in integer spaces. The searches never converge but flip-flop between a small
set of configurations due to rounding. Through the ParameterSpace component,
we move the responsibility for, e.g., rounding and boundary treatment away from
the search implementation and into the application domain.

When registering parameters with libtuning, applications may define the
individual domain and boundary mapping behavior as required. Additionally,
libtuning provides a number of sensible default adapters for the parameter types

88

5.2 The libtuning Architecture

used most often. These are integer and float parameters, either unconstrained
or from an interval, and bag-of-labels nominal parameters. The latter are pa-
rameters which may take any value from a set of unordered labels. Through the
default adapter, these are embedded as interval-constrained integer parameters,
effectively numbering the unordered labels. Integer parameters are by default
converted from the real-valued search domain by rounding. To restrict legal con-
figurations to intervals, the adapter virtually mirrors the measurement function at
interval boundaries. Configuration values returned by the search are then mapped
into the interval with respect to the mirroring. Figure 5.3 shows an example of the
procedure for a parameter that accepts integer values from the range [1, 6]. The
figure displays the search space for the single parameter as it appears to the search
algorithms. Even though the parameter can only accept values between one and
six, the search is free to sample any value. For instance, sampling a configura-
tion value of C = 1.3 would through rounding set the application parameter to a
value of one. Sampling a value of C = 10.7 would first apply mirroring and then
rounding, setting the application parameter to a value of three. Negative values
are treated accordingly, but are for simplicity not shown in the example.
This mirroring strategy has a number of interesting properties. Most impor-

tantly, it retains all local and global optima: No newly introduced point can
exceed the global optimum and all previously local optima remain local. Any
local extreme on the boundary of the interval is still local, but its neighborhood
is now symmetric. We cannot expect the mirroring strategy to be valid for every
possible search algorithm. For instance, it is possible to misinform searches that
make assumption based on distance of points in the search space. To the search,
points may appear to be far apart, even though their measurements were obtained
from points mapped to close proximity in the application domain. In this case we
expect the application developers to supply a suitable adaptation mechanism with
their parameter definition.

5.2.2 Indicators

Compared to tuning parameters, managing application and system indicators is
much less complex. The IndicatorSpace component is little more than a reg-
istry containing the set of indicators. Besides registration, the component also
implements change detection. What constitutes a change can be overridden by
an application defining its own indicators. By default, a change happens when-

89

Chapter 5 Hybrid Online Autotuning

1 struct Search {
2 // (Re)start the search and get the first configuration
3 virtual Configuration &start() = 0;
4

5 // Update the measurent and get the next configuration
6 virtual Configuration &getNext(double Measure) = 0;
7

8 // Reject the current configuration. Returns a new
9 // configuration or null if no better one was found.

10 virtual Configuration* reject ();
11 };

Figure 5.4: The Search implementation interface.

ever the numerical value of an indicator changes. Because applications are forced
to express their indicators as numerical values, that is sufficient to realize hybrid
tuning. No domain translations as in the ParameterSpace are necessary.

In libtuning, application and system indicators need to be provided by the
application developer. When used within the APHES framework, the frameworks
compiler assumes the role of the application developer and defines the indica-
tors automatically. Developer-provided indicators may be as simple as arbitrary
application-side variables. Using program or function inputs as indicators is thus
trivial, but arbitrarily complex indicators are possible. For example, an indicator
monitoring system load could be defined, which would require querying operating
system statistics every time its indicator state is queried. Additionally, depending
on the nature of an indicator, observing its values may require down-sampling.
For this purpose, the application developer can add a target resolution. This is
likely useful for instance for an indicator monitoring system load. Wether the load
is 99% or 100% likely has no discernibly different effect on tuning kernel perfor-
mance, but the difference between 10% and 100% is probably noticeable. It is
up to the application developer to define a meaningful sampling resolution, since
libtuning cannot assume any semantics of a particular indicator.

90

5.2 The libtuning Architecture

5.2.3 Fundamental Search Algorithms

Because of the isolation and abstraction provided by the ParameterSpace adapter,
implementations of search algorithms are required to supply only a minimal inter-
face. Figure 5.4 shows the base class. In particular, the search algorithm is not con-
cerned with actually sampling. Instead, it returns to the calling ParameterSpace
layer a sequence of configurations. It is the callers responsibility to obtain the
measurements and pass them back to the search. In the following, we use the
phrase “sampling” to mean a single round-trip of returning a configuration to the
caller and receiving a measurement in the next iteration. The mandatory oper-
ations a search algorithm implementation must provide are start and getNext,
which (re-)start the search and obtain the next configuration, respectively. When
obtaining the next configuration, callers also provide the measurement for the last
configuration as an argument. The search implementation is expected to update
its internal state upon a call to getNext and to return the next configuration it
wants to sample. Additionally, an implementation may support rejecting individ-
ual configurations without measuring them. Callers use this mechanism to filter
out illegal configurations or to ignore configurations they do not wish to sample.
That can be the case if they use performance models and predict that a configu-
ration will be sub-optimal.
When tuning an application, developers can provide their own implementation of

a search algorithm or pick a default from libtuning’s small catalog of implementa-
tions. The library distinguishes between algorithms for nominal and non-nominal
parameters. Unless the application developer requests otherwise, the novel hi-
erarchical search algorithm for search in mixed spaces is used, In this section,
we describe the two default fundamental search techniques used by hierarchical
search. The hierarchical search technique itself will be discussed in Section 5.3.
The tuning library includes as fundamental search algorithms an implementation
of the Nelder-Mead downhill simplex algorithm, an ε-Greedy algorithm, and ran-
dom and full exploration. While the latter two are self-explanatory, the variants
of Nelder-Mead and ε-Greedy will be discussed in the following.

5.2.3.1 The Nelder-Mead Algorithm

In libtuning, the fundamental search strategy for non-nominal parameters is an
implementation of the Nelder-Mead Algorithm [NM65] a heuristical derivative-free

91

Chapter 5 Hybrid Online Autotuning

Sstart

R

I

E

C

_ / X [0];
X := LHS()

mX [i−1] / X [i]

mX [J] / r

mr′ < mX [J−1] / r;
X [J] := r′

mr′ < mX [0] / e

mr′ ≥ mX [J] / c

me / r;
X [J] := argminr′,e(mr′ ,me)

mc < mX [J] / r;
X [J] := c

mc ≥ mX [J] / X [1];
X := reduce(X)

Figure 5.5: The Mealy automaton for the Nelder-Mead algorithm: State transitions are
triples M/C;U , where C is the next configuration and M is the optionally
constrained measurement feedback mC′ for the previous configuration C ′,
and U is an optional update to the Nelder-Mead simplex X .

numerical optimization technique. We introduced the algorithm in Section 2.1.2
and present our implementation here. We implement the algorithm as a small
Mealy automaton, a finite-state machine shown in Figure 5.5. The implementa-
tion maintains a simplex as an array of search space points X along with their
measurement values mx, x ∈ X . The points in X are sorted in ascending order
with respect to mx. The state machine changes its state in every tuning iteration.
A state transition is defined as a triple M/C;U , where C is the next configura-
tion and M is the measurement feedback mC′ for the previous configuration C ′,
optionally including a constraint on the measurement value. Lastly, U defines an
optional update to the simplex X , which is applied before the next configuration
is returned. The state machine is defined by five states with the starting state S.
The transitions implement the Nelder-Mead update rules.

92

5.2 The libtuning Architecture

From the starting state, the automaton transitions into the initialization state
I by initializing the J + 1-dimensional simplex from a Latin Hypercube sample.
The first simplex point is returned as next configuration to the application. Latin
Hypercubes [Par94; MBC79] are a technique to obtain space-spanning configura-
tions and are often applied to seed search algorithms [Cha12]. To obtain a simplex
based on this technique, every dimension of a bounded J-dimensional space is split
into J + 1 equally sized intervals. Then, we draw samples randomly such that no
two samples fall into the same interval in any given dimension. Once the applica-
tion returns the measurement feedback for the last simplex point, the automaton
performs the reflect operation by transitioning into the reflection state R and
returning the reflected point r. The transition into the reflection state’s successor
depends on the measurement feedback m′r for the last reflected point r′. If m′r is
less than mX [0], the measurement value of the best simplex point, the automaton
performs an expand operation, returning the expanded point e and transitioning
into the expansion state E. If m′r lies between the best and worst simplex point,
substitute the worst simplex point X [J] for the previous reflected point r′ and
perform another reflection, producing the next reflected point r. Otherwise, if m′r
s greater than or equal to the measurement value of the worst point, perform a
contract operation and return the contracted point c. The expansion state E
transitions back into the reflection state R after receiving the feedback me for the
expanded point e. The transition substitutes the worst simplex point for the better
one among e and r′ and executes another reflect operation producing the next
r. Similarly, the automaton performs a reflect operation in the contraction state
C if the feedback mc for the contracted point c is better than the value of X [J].
In that case, X [J] is substituted for c. Otherwise, if mc is greater than or equal
to mX [J], a reduce operation is performed. This operation forms a new simplex
by moving every point towards X [0]. Subsequently, every simplex point except
X [0] needs to be sampled, so starting with X [1] the automaton enters the initial-
ization state I. The reflected, contracted, and expanded points r, c, and e are
computed as described in Section 2.1.2 using default parameter values suggested
in the original Nelder-Mead article: α = 1, β = 0.5, γ = 2. Our implementation of
the Nelder-Mead algorithm does not support rejecting individual configurations.

93

Chapter 5 Hybrid Online Autotuning

Table 5.1: Tuning parameters for a simplified heterogeneous mapping example

Parameter Range Semantics

P {CPU,GPU} Binary platform choice
TCPU [1, 48] The number of CPU threads
TGPU {32t, t ∈ [1, 32]} The number of GPU threads
SM {true, false} The flag to enable shared memory
USM {true, false} The flag to unroll shared memory copy loops

5.2.3.2 The ε-Greedy Algorithm

For nominal parameters, libtuning implements an ε-Greedy algorithm, which
achieved the best performance in an exploratory case study [Pfa+17]. The algo-
rithm keeps track of the best known configuration. At every step, it either samples
a random configuration with probability ε or uses the best known configuration
with probability 1 − ε. Compared to the 2017 article, our implementation adds
another hyper-parameter, controlling the decay of ε over time. We call this pa-
rameter γε ∈ (0, 1). The probability to pick a random configuration at step i then
becomes εi = ε · (1− γε)i. Thus, γε offers direct control over the convergence rate.
Setting this hyper-parameter to zero returns to the original ε-Greedy behavior.
When the application rejects a configuration, the algorithm returns a new ran-

dom sample.

5.3 Hierarchical Search

In real-world programs, parameters are not only frequently integer, but also of-
ten nominal. Applying a search algorithm to optimize a mixture of the two
classes is highly problematic, because it limits the choices for apt search algo-
rithms. Although libtuning does not proactively prevent application developers
from picking an unsuitable search algorithm for the parameter mix, it is strongly
discouraged. Search algorithms drawing conclusions based on, e.g., neighborhood
of configurations will derive information that is purely coincidental. Consider as
an illustration tuning the algorithmic choice of a matrix multiplication algorithm.
When the nominal tuning parameter A = {ijk, ikj, strassen} is embedded into
integer space by simply enumerating the algorithms, the hill climbing algorithm

94

5.3 Hierarchical Search

Platform P

Shared memory SM
Unroll Shared Memory Copies USM

CPU threads TCPU

GPU threads TGPU

Figure 5.6: Decompose the global search space of the simplified heterogeneous mapping
according to the parameter classes.

can be applied. If the hill climber now observes m(ijk) = 2 and m(ikj) = 1 it will
conclude that space looks promising in the direction if ikj. Independent of whether
strassen is actually better than ikj this conclusion is already a coincidence. The
order of the algorithms is irrelevant. As we found in our exploratory case study
[Pfa+17], the vast majority of the empirical search algorithms used today are faced
with this problem: They operate on a notion of direction or distance. A promi-
nent exception are genetic algorithms, which, when using appropriate crossover
and mutation operators, works well on combinatorial optimization problems.

In libtuning, we approach search in such mixture spaces in a structured way
that is automatic and transparent to the application developer. As a motivating ex-
ample, consider a simplified version of the heterogeneous parallelization approach:
We generate parametric parallel code for the CPU and the GPU and add a tun-
ing parameter to select the platform. In this example, we tune five application
parameters in total: P , the binary platform choice, TCPU , the number of CPU
threads, TGPU the number of GPU threads, SM , the flag to enable shared mem-
ory, and USM the flag to unroll the memory copy loops moving data into shared
memory. Table 5.1 summarizes these parameters together with their ranges. Tra-
ditional, state-of-the-art tuning solutions embed these parameters into a single
five-dimensional space containing 2 · 48 · 32 · 2 · 2 = 12, 228 valid points. The first
improvement we make is to separate this single space into two smaller spaces by
distinguishing between nominal and non-nominal parameters. Figure 5.6 shows
the effect graphically: The space on the left now contains only nominal parame-
ters, the one on the right only non-nominal parameters. Note that this separation
does not actually reduce dimensionality. There are 2·2·2 = 8 points in the nominal
space and 32 · 48 = 1, 536 points in the non-nominal space. Finding configurations
in the individual spaces independently is however not legal, since the parameters
are not independent: Assume for example that on the GPU the kernel runtime is
defined by mGPU = 0.5 ·TGPU if shared memory is disabled (CSM == false), and

95

Chapter 5 Hybrid Online Autotuning

mGPU = 1
TGPU otherwise. Which value of TGPU is optimal obviously depends on

the selected value of SM . Ignoring the selected value of the nominal parameter
SM when selecting a value of the non-nominal parameter TGPU is hence not a
viable path. Instead, configurations must be sampled from the cross product of
both spaces, which means that the cardinality of the separated space remains un-
changed. Nevertheless, with this first decomposition, we are now able to explore
the spaces with different search algorithms that are appropriate for the respective
parameter class, e.g., the ε-Greedy algorithm on the one hand and the Nelder-
Mead algorithm on the other. To retain the dependence between parameters we
configure parameters hierarchically : We first determine a configuration for the
nominal parameters using the ε-Greedy algorithm and then a configuration for the
non-nominal parameters using the Nelder-Mead algorithm. Because we cannot
select configurations independently, we maintain one instance of the Nelder-Mead
search per nominal configuration. In this example, the memory consumption of
our Nelder-Mead implementation is thus increased by a factor of eight. A Nelder-
Mead instance consumes O(n2) space where n is the dimension of the search space.
The actual increase in memory footprint is however only about 30%, or by a factor
of 8·22

52
to be precise: While the space consumption of Nelder-Mead is increased

eight-fold, the number of parameters goes down from five to two. Although a 30%
space increase appears to be small, the penalty can actually have a drastic impact,
since it is exponential in the dimensions of the nominal search space. On the other
hand, having paid this price we have achieved much simpler search spaces for the
individual search algorithms and have enabled targeting the individual parameter
classes with appropriate algorithms. Additionally, the instantiation of search in-
stances occurs lazily. We thus incur the worst case memory consumption overhead
only if we sample every nominal configuration, which in practice happens only for
small nominal spaces.

Decomposing the search space into nominal and non-nominal subspaces opens
the door for another optimization. In practice, nominal parameters often refer to
algorithmic choices and as a consequence lead to different control flow paths in the
application. In the example, the parameter P controls whether the CPU or the
GPU implementation of the parallel code is to be executed. So transitively, this
parameter also controls the relevance of the parameters TCPU and TGPU : When
running the CPU version of the code, e.g., configuring the GPU thread count has
no effect. Using the application developer’s context knowledge of the application

96

5.3 Hierarchical Search

parameters’ semantics, we can leverage such constraints. In the example above we
can identify two more constraints: The number of GPU threads is tied to the se-
lection of the GPU and unrolling the loop moving data into shared memory is only
relevant when shared memory is enabled. Honoring these constraints produces the
search space decomposition pictured in Figure 5.7. Unlike the first-level decompo-
sition, this second step does reduce the cardinality of the space. We see that for
this example we have achieved the highest degree of dimensionality reduction pos-
sible, having only one-dimensional search spaces. That also reduces the size of the
sample space, because the constraints exclude irrelevant configurations. The total
number of sampleable points is now 48 + 32 + 2 ·32 = 148: There are 48 configura-
tions where CP == CPU , 32 configurations where CP == GPU,CSM == false,
and 2 · 32 configurations where CP == GPU,CSM == true. Although this ex-
ample demonstrates that the constraints reduce the number of sampleable points
significantly, we in general also incur a loss of information. When separating nomi-
nal and non-nominal parameter spaces, we were able to retain hidden dependences
between nominal and non-nominal configurations by replicating the non-nominal
search state. Since nominal configurations are selected first and non-nominal con-
figurations second, replication is practical. For the second-level decomposition,
this approach is infeasible because when two nominal spaces are interdependent,
there is no meaningful way to order them after our decomposition. Early experi-
mentation showed however that the constraint-based decomposition is not notice-
ably sensitive to the impact of missed hidden dependences, unlike the class-based
decomposition.

In summary, even for this small example we managed to reduce the size of the
search space by two orders of magnitude, while at the same time allowing the tuner
to explore parts of the search space using different, appropriate search mechanisms.
The size reduction is due to a decomposition of the search space by characterizing
parameters into their respective classes and based on relevance constraints. In
the following, we formalize the algorithm that implements the decomposition and
search in the decomposed space. The general idea is to compute a decomposition
into the minimal number of subspaces such that the relevance and class constraints
are preserved. The first level of the decomposition is straight forward: We partition
the search space T = TN ∪ TR into the naturally disjoint subspaces TN of the
nominal parameters and TR of the non-nominal parameters.

97

Chapter 5 Hybrid Online Autotuning

Platform P

Shared memory SM

Unroll Shared Memory Copies USM

CPU threads TCPU

GPU threads TGPU

CP == GPU

CSM == true

CP == CPU

CP == GPU

Figure 5.7: Decompose the global search space of the simplified heterogeneous mapping
according to the parameter classes and according to application developer
supplied constraints (based on Pfaffe et al.[PGT19]).

Relevance Constraints. The second level of the decomposition is computed
based on the relevance constraints defined by the application developer. We write
τi

v−→ τj where τi ∈ TN ,τj ∈ T and v ∈ τi to say that the relevance of the
tuning parameter τj depends on the configuration value Cτi = v of the nominal
tuning parameter τi. When a parameter is relevant, the search must provide a
configuration value for it. Otherwise the parameter should not be configured. Note
that only nominal parameters may appear on the left hand side of the constraint.
Naturally, neither circular nor contradicting constraints are allowed.
Local Search Spaces. We call subspaces of both TN and TR local search spaces

when all elements of a subspace are subject to the same relevance constraints. To
be precise, a subspace L ⊆ T is a local search space if and only if either L ⊆ TN

or L ⊆ TR and ∀(τi
v−→ τj), (τi

v′−→ τ ′j), τi ∈ TN , τj, τ ′j ∈ L : v = v′.
Search Space Graph. Together, the local search spaces and the relevance

constraints form a directed acyclic graph, which we call the search space graph
S = (LS , ES). The nodes LS of the graph are the local search spaces induced by
the relevance constraints, which form the edges ES of the graph:

ES = {(Li,Lj) | ∃τi
v−→ τj, τi ∈ Li, τj ∈ Lj, v ∈ τi}.

The roots of the graph are formed by precisely the local search spaces containing
all of the unconstrained parameters.
Before we proceed with the introduction of the hierarchical search procedure, let

us first discuss another more complete example of the search space graph decom-
position. Consider the parameter set T = {A,B,C,D,X, Y, Z,W}, for which A

98

5.3 Hierarchical Search

A, D

B C W

Z

X Y

CA == b CA == c

CB == X CC == y

CD == z

CC == y

Figure 5.8: Example: Search space graph for the parameter set T =

{A,B,C,D,X, Y, Z,W}, where {A,B,C,D} are nominal and {W,X, Y, Z}
are non-nominal. The parameters are subject to the relevance constraints
A

b−→ B, A c−→ C, B x−→ X, C y−→ Y , C y−→ X, and D z−→ Z.

through D are nominal, X through Z are non-nominal. The first-level decomposi-
tion is then TN = {A,B,C,D}, TR = {W,X, Y, Z}. Further, let the dependence
constraints be A b−→ B, A c−→ C, B x−→ X, C y−→ Y , C y−→ X, and D z−→ Z. A valid
search space graph is shown in Figure 5.8. There are two subspaces without incom-
ing constraint edges: The one containing the nominal parameters A and D and the
one containing the non-nominal parameterW . The two spaces are disjoint because
they contain parameters of different classes. Although X and Y both depend on
the same configuration value for C, they are in distinct local spaces because X has
another dependency, on B, which Y does not share. To find a configuration in the
search space graph decomposition, hierarchical search traverses the graph along
edges whose constraints are fulfilled. The process is described in the following.

Local, partial, and maximal partial configurations. Configuring the tun-
ing parameters on the basis of the graph means determining local configurations
for all nodes whose constraints are fulfilled. A local configuration for a local search
space l is a configuration C l for the parameters in that local search space. We call
a set of local configurations for distinct local spaces a partial configuration CS for
the search space graph S when it contains no contradicting local configurations.
Local configurations C l, C l′ contradict if there are two paths including l and to l′

containing contradicting constraints. A partial configuration is called a maximal
partial configuration if there is no possible local configuration that can be added
to the partial configuration without contradicting a local configuration in the set.

As an illustration of contradicting configurations consider the local spaces con-
taining B and C in the example above. The two spaces cannot be part of a partial

99

Chapter 5 Hybrid Online Autotuning

A, D

B C W

Z

X Y

CA == b CA == c

CB == x CC == y

CD == z

CC == y

Nelder-Mead search space
for the partial configuration
CA = c, CC = y, CD = z

Active nodes

Figure 5.9: Example: Hierarchical search in the search space graph for the parameters
{A,B,C,D,X, Y, Z,W}. The active nodes are highlighted in red. The blue-
shaded area marks the non-nominal spaces which are searched together by
a single instance of Nelder-Mead for the partial configuration CA = c, CC =

y, CD = z.

configuration, because that would required A to be configured with the values b
and c simultaneously.
Active nodes. Given a partial configuration CS , we say a node l ∈ LS is

active for CS , if for all edges τi
v−→ τj on all paths p from lR to l, Cτi = v. In

particular, any nodes without incoming edges are always active. There can be two
such nodes of the graph, one containing all unconstrained nominal parameters and
one containing all unconstrained non-nominal parameters. Producing a maximal
partial configuration means producing local configurations for all active nodes
recursively.
Hierarchical search produces maximal partial configurations by successively pro-

ducing local configurations in active nodes until no additional nodes become ac-
tive. After obtaining a local configuration for the current node, the search recurses
into active neighbors of the current node in a deterministic order. Accumulating
the local results into the partial configuration until no active neighbors remain
produces a maximal partial configuration. For nominal spaces, hierarchical search
exploits that finding nominal parameter configurations is a combinatorial optimiza-
tion problem. We exploit that fact to enable using an individual search instance
on a single active nominal node in isolation. Because parameters are interdepen-
dent, the search instance must consider the current partial configuration. For
that reason, hierarchical search maintains concurrent search state for all partial
configurations it produces. For non-nominal spaces on the other hand, this kind
of isolation of the active spaces is not practical. Instead, all active non-nominal

100

5.3 Hierarchical Search

spaces are joined into a single space which is than explored using a Nelder-Mead
instance. To account for the dependencies between nominal and non-nominal con-
figurations, that instance is again maintained per partial nominal configuration.
Because the non-nominal spaces are the leaves of the search space graph, they are
activated last and as a single unit.
Consider Figure 5.8 for a step-by-step example of the activation process. Ini-

tially, all search state is empty. For the {A,D} node, let the ε-Greedy search
select the configuration {b, z}, which according to the constraints activates the
nodes {B} and {Z}. Nominal nodes are processed first, hence let the ε-Greedy in-
stance for the current partial configuration {b, z} pick the configuration {x′} for
the node {B}. That yields the partial configuration {b, z, x′}, which we use to
finally activate the Nelder-Mead instance for the node {Z} to produce a maximal
partial configuration. Let the application return a measurement value of 0.7 for
this configuration, then the search state after this first tuning iteration is:

Space Instance Local Config. mC

{A,D} Ø {b, z} 0.7
{B} {b, z} {x′} 0.7
{Z} {b, z, x′} {. . .} 0.7

In the next tuning iteration, let the search instance for the {A,D} node return
the configuration {c, z′}. This partial configuration activates only the node {C}.
Assume this node’s search instance for this configuration returns {y′} and the
application measures a value of 0.9 for the resulting maximal partial configuration.
Highlighting the updated values, the search state after the second tuning iteration
becomes:

Space Instance Local Config. mC

{A,D} Ø {b, z} 0.7
{c, z′} 0.9

{B} {b, z} {x′} 0.7
{Z} {b, z, x′} {. . .} 0.7
{C} {c, z′} {y′} 0.9

For the third tuning iteration, assume the {A,D} instance returns {c, z}, activating
{C}. Let the ε-Greedy instance for {c, z} return {y}. Then, Figure 5.9 shows the
current activation state for this partial configuration. By applying two steps of

101

Chapter 5 Hybrid Online Autotuning

the ε-Greedy algorithm, hierarchical search has produced the partial configuration
CA = c, CC = y, CD = z and has thus activated the local spaces {A,D}, {C},
{W}, {Y }, and {Z}, all highlighted in the figure. Although {W} was active
concurrently to {A,D} because it has no constraints, it is a non-nominal subspace
and is thus only activated once the partial configuration is maximal with respect
to the nominal parameters. For the given partial configuration the non-nominal
spaces {W}, {Y }, and {Z}, highlighted in blue, are activated together for a single
Nelder-Mead instance. Assuming the application reports a measurement of 0.6
for the resulting maximal partial configuration, the search state after the third
iteration becomes:

Space Instance Local Config. mC

{A,D} Ø {b, z} 0.7
{c, z′} 0.9
{c, z} 0.6

{B} {b, z} {x′} 0.7
{Z} {b, z, x′} {. . .} 0.7
{C} {c, z′} {y′} 0.9

{c, z} {y} 0.6
{Y, Z,W} {c, z, y} {. . .} 0.6

Note that at this point, there are two concurrent search instances for the {C}.
Decomposing the search space in this manner does not only help to reduce the

size of the space effectively, it also allows rejecting configurations more efficiently.
Applications reject configurations when they determine heuristically that a config-
uration would produce poor performance. Often, however, a combination of only
a small number of parameters contributes to this fact. Consider the heterogeneous
offloading example (Figure 5.7, page 98): If the parallelized code is trivial or ex-
ecutes only for a small number of iterations, the application may rightfully judge
that offloading this computation to the GPU is highly likely to actually decrease
performance because of the overhead. The only parameter relevant to this is P , the
one controlling the platform selection. Neither of the remaining ones contributes
to the offloading decision. With the search space graph, we allow applications to
also reject partial configurations. For example, the application is able to reject
as soon as a partial configuration setting CP = GPU is constructed. As a con-
sequence, we enable making rejection decisions early in the configuration process.

102

5.4 Model-based Prediction

Rejecting configurations early further reduces the number of nodes that are ever
activated.

5.4 Model-based Prediction

We explore two types of models for the prediction component of hybrid tuning in
this thesis. The first one is a tabular nearest-neighbor approach. The second one is
using generalized reinforcement learning, using function approximation to model
the relationship between indicators, configurations, and runtime. The tabular
predictor is simple: Every observed state is recorded in a table, alongside the best
known configuration for that state. When the tuner enters a new indicator state,
the table is queried for the geometrically closest known state. Although nearest
neighbor searches can be implemented efficiently, there are two major drawbacks
to this approach. The motivation for nearest-neighbor prediction is of course
that the same configuration is likely good for similar states. When a new state
is however a large distance from all states in the table, the query result can be
arbitrarily bad. This problem can be mitigated by not using the query result if
the distance is too large, but that requires defining a distance threshold. The
second drawback is the table size: Storing information for every possible state is
infeasible, especially when states are not discrete. Of course the table could only
be populated through exploration or its size could be limited. But that would
either disable the possibility to learn during exploitation or it would add another
hyper-parameter to limit the size. In libtuning, we offer size limitation as well
as control over the indicator resolution to the application developer.
A way around the drawbacks of tabular prediction is provided by generalized re-

inforcement learning. Whereas classical RL techniques are table-based themselves,
generalized approaches approximate the tables through functions, as we have dis-
cussed in Section 2.1.3. By approximating the relationship between indicators,
configurations, and runtime as a function, RL eliminates the need to either store
every state or the need to choose which states to store. To predict a good config-
uration for a state, the function is used to find the configuration that maximizes
an estimate of the reward for the state-configuration pair. Unfortunately, function
maximization is expensive, which could bar hybrid tuning from being applicable
to online tuning scenarios. Instead, we therefore keep a record of the best config-
urations found during exploration and consider only those as candidates for the

103

Chapter 5 Hybrid Online Autotuning

prediction. Although this is still potentially large if hybrid tuning explores often
enough, it is generally much smaller than a complete state table.
In libtuning, we implement a version of the Greedy-GQ variant of Q-Learning

as our function approximation predictor. The Greedy-GQ algorithm was intro-
duced in Section 2.1.3. We approximate the table as a function Qθ(s, a) =

θ · ϕ(s, a), where the ϕ are features of the indicators defined by the application
developer. As a default, libtuning uses normalized radial basis functions [KA97]
as features: It defines ϕc(x) = exp(−ωc(x−µc)2)∑

i exp(−ωi(−µi)2)
where x = (s, a) is the concatena-

tion of the indicator state vector s and the configuration (or action) a. Compared
to regular radial basis functions, which are just RBFc(x) = exp(−ωc(x− µc)2),
the normalized variant promises smoother space boundaries as well as smoothed
out “gaps” between the basis functions [KA97]. The center µc and width ωc are
configurable parameters. The standard update equations of the Greedy-GQ algo-
rithm are controlled by three hyper-parameters, α, β, and γ. Both α and β are
learning rates. The third parameter, γ determines the influence of expected future
rewards on the update. For our application, however, we assume that influence
to always be zero: Accounting for future rewards allows propagating information
about future states into the update. However, we assume that there is no corre-
lation between the action we choose now and any subsequent state change. That
assumption is of course only valid for applications in which the context state does
not depend on tuning parameters. Setting γ to zero eliminates β, and simplifies
the update equation to

θt+1 = θt + α(Rt+1 − θt · ϕ(st, at))ϕ(st, at).

5.5 Summary

In this chapter we introduced the design of the general purpose black-box online
autotuner libtuning. At its core the tuner is a hybrid combining memorization,
model-based prediction, and online search to quickly find configurations for known
or unknown application and system states. Relevant aspects of the application and
system state are, for example, the program or tuning kernel inputs and system load,
respectively.
Using tabular memorization and model-based prediction, the autotuner remem-

bers previously seen application and system states and the configuration it found
optimal for those states. To provide a configuration for unknown states, the tuner

104

5.5 Summary

uses online empirical search. The search algorithms in libtuning find (locally) op-
timal configurations, exploiting the structure of the search space and avoiding bad
configurations to accelerate the search. By decomposing the global search space
into a network of dependent subspaces based on parameter properties, our novel
hierarchical search substantially reduces the size of the search space. Recommen-
dations by the application rejecting configurations as “bad” further can reduce the
number of sampled configurations which exhibit exceptionally bad performance.

105

Chapter 6

Automatic Heterogeneous
Parallelization

In this chapter we describe the compiler component of the APHES framework in
detail. The aphes compiler parallelizes loops in the input program for multiple
platforms and instruments the result to interoperate with the libtuning autotuner
through a runtime library. To analyze and transform the program we implement
two techniques. First, the aphes compiler attempts to analyze the program using
the polyhedral model. When this fails due to the constraints the polyhedral model
imposes on representable programs, we fall back to classical dependence testing
and more ad hoc transformations.
In the following, we first introduce the polyhedral model-based parallelization,

and then the ad hoc method. The introduction is based on our publication
[PGT19], that first presented our polyhedral parallelization approach1. Lastly,
we discuss how the compiler and libtuning can interact to also incorporate ana-
lytical information that the compiler can derive into tuning decisions.

6.1 Polyhedral Parallelization and Partitioning

Generating code for cooperative heterogeneous execution from the polyhedral
model is a three stage process. The process starts with computing a schedule
for the SCoP that maximizes data parallelism. The next step is partitioning the
outermost parallelizable loops for the platforms in question, which here are the
CPU and a GPU, and then mapping the partitions onto the platform. Finally,

1The polyhedral parallelization approach was contributed to the publication by the author of
this thesis.

107

Chapter 6 Automatic Heterogeneous Parallelization

the optimized and mapped schedule is translated into actual parallel code for the
platforms. We describe our approach to partitioning and mapping as well as code
generation, and finally the interoperation with the autotuner in the following sec-
tions.

6.1.1 Mapping and Partitioning the Schedule Tree

Our strategy for heterogeneous parallelization with the polyhedral model is based
on Polly-ACC, and thus makes heavy use of the PPCG GPU mapper [Ver+13].
With its help, we first compute a schedule tree optimized for data parallelism
from the SCoP. We describe the optimization algorithm in more detail in Sec-
tion 2.2.3. Before mapping the optimized schedule to the GPU using the PPCG
code generator we transform it in two steps, introducing tunable partitioning first
and inserting tunable platform mapping second.
Fundamentally, partitioning a loop requires duplicating it and then modifying

the boundaries of the copies: One loop copy handles the lower part of the itera-
tions, the other one the higher part. To make that tunable, a tuning parameter
determines the iteration that separates the lower and higher part. Mapping a
partition to platforms is essentially the same operation: produce one instance of
the partition for every platform and add a tuning parameter to select the instance
dynamically. Note that these two steps only parallelize the outermost loop. Re-
peating the process recursively handles all data parallel loops. In the following, we
describe in more detail how we realize this process within the polyhedral frame-
work.
We transform the schedule tree top down recursively, searching for the outermost

data parallel loops in the loop nest. To insert the partitioning, we begin by finding
the outermost band which has leading parallel dimensions. The set of the leading
parallel dimensions corresponds to the set of outermost data parallel loops. Every
loop in this set is split into two parts: One for the high indices and one for the low
indices. Although the number two appears to suggest itself because two platforms
are targeted, the approach supports any number of partitions.
We split the outermost parallel dimension of the band by introducing a set

node between the band and its parent with two filter children which implement the
constraints for the partitions. A newly introduced parameter R0 defines the split of
the outermost parallel dimension of the band. R0 is subject to the same constraints
as the iterator of that dimension. In the partition filters, this parameter becomes

108

6.1 Polyhedral Parallelization and Partitioning

domain

D = {S1(i, j) | 0 ≤ i, j < N,

S2(i, j, k) | 0 ≤ i, j, k < N}

band

{S1(i, j)→ (i, j)

S2(i, j, k)→ (i, j)}

sequence

filter
{S1(i, j)}

filter
{S2(i, j, k)}

band
{S2(i, j, k)→ (k)

Figure 6.1: Original schedule tree of the matrix multiplication example in Figure 2.7.
The figure is identical to Figure 2.8 and is repeated here for the reader’s
convenience.

109

Chapter 6 Automatic Heterogeneous Parallelization

domain
· · ·

set

filter
1 ≤ i < R0

1 ≤ R0 < N

band
· · ·

sequence

...

filter
R0 ≤ i < N

1 ≤ R0 < N

band
· · ·

sequence

...

(a) Partitioning the outermost band node:
First, introduce a new tunable param-
eter R0. Then insert a set node with
two filters before the band that is to be
partitioned. The new nodes are colored
in orange. The filters select the indices
i either less than, or greater or equal
than this parameter, respectively. The
original band node is duplicated.

domain
· · ·

set

...
filter
. . . R0 . . .

set

filter

PHigh
0 = 1

mark
GPU

band
· · ·

sequence

...

filter

PHigh
0 = 0

mark
CPU

band
· · ·

sequence

...

(b) Selecting the platform for the high in-
dex partition: Between the band and
the second partition’s filter, introduce
another set node layer with two filters,
one for each platform. The new nodes
are colored in blue. The filters select
iterations based on the value of a new
tunable parameter, PHigh

0 . The cor-
responding transformation introducing
PLow
0 for the low index partition sub-

tree is omitted here for clarity.

Figure 6.2: Example: Partitioning and platform mapping for the schedule tree in Fig-
ure 6.1. The nodes of the original tree are shown in lighter color.

110

6.1 Polyhedral Parallelization and Partitioning

the new upper and lower bound of that iterator to select high and low indices,
respectively. The original band node is duplicated and attached to the filters.
This process repeats recursively for the remaining leading parallel dimensions of
the band. In summary, when partitioning d dimensions, we insert 2d−1 set nodes
in total, producing 2d copies of the original band.
To implement platform selection, we follow exactly the same path. For every

band node we created, we insert a new sequence node as its immediate parent,
between the band node and the set filter that we created during partitioning. We
introduce new parameters PLow

i and PHigh
i for the platform selection for the i-th

loop, P r
i ∈ {0, 1}, for both the high and low index partitions. The two filters

of the new sequence node implement the constraints P r
i = 0 to select the CPU

and P r
i = 1 to select the GPU. Again duplicating the band node, we finally

parallelize it for the GPU by applying the PPCG mapping algorithm to the band
where P r

i = 1. For its sibling, however, we insert a mark node, which we use
during code generation as the starting point for generating OpenMP code for
CPU parallelization.
Figure 6.2 illustrates this process for the schedule tree of the example in Fig-

ure 2.8, which we repeat here in Figure 6.1 for the reader’s convenience. Partition-
ing the first dimension in the outermost band node of the tree produces the tree
shown in Figure 6.2a. It shows the two newly inserted filters, using the partitioning
parameter R0 as a parametric lower and upper bound of the iterator respectively.
Figure 6.2b then shows the platform mapping for one of the two partitions. Intro-
ducing a new parameter P0, the inserted filters thus produce a GPU and a CPU
path. The PPCG mapping algorithm is then invoked for the GPU path.

6.1.2 Code Generation

After all schedule transformations have been applied, we then convert the schedule
tree back into LLVM IR. This procedure builds on top of the preexisting Polly-
ACC [GH16] code generator. Most of the implementation of generating code for
partitioning and mapping is thus already done.
We extend the Polly-ACC code generator in two major aspects, because it was

designed to deal with GPU offloading only. To incorporate CPU parallelism, we
integrated the code generator with an existing, experimental Polly OpenMP back-
end. This backend emits code for the libgomp OpenMP runtime library. The
second extension is the instrumentation of the parallelized program to interop-

111

Chapter 6 Automatic Heterogeneous Parallelization

erate with the libtuning autotuner. During mapping and code generation we
extract a number of tunable parameters from the parallel program. First and fore-
most those are the partition splits, Ri ∈ [0, 1), as well as the platform mappings2

P r
i ∈ {CPU,GPU} for i ∈ [0, d) and r ∈ {High, Low}, where d is the number of

outer loops being parallelized. For example, when parallelizing two outer loops of
a parallel source region, this yields six tunable parameters: Two partition splits
plus platform mapping deciders for the four partitions. Consequently, multiple
partitions may be offloaded to the same platform at runtime. This is a potential
source of extra overhead, but it is unfortunately unavoidable, because the non-
affine constraints that would circumvent this are not expressible in the polyhedral
framework.
Besides these work distribution parameters, we are able to elicit additional pa-

rameters from the mapping and code generation processes. Code generation for
the CPU exposes the parameters TCPUi,r controlling the number of threads, which
are freely configurable at runtime. Tuning the GPU mapping on the other hand is
unfortunately not as straightforward. Configuration options that affect mapping
must be embedded within the polyhedral framework. An example is the number of
threads per GPU block. Scheduling the threads is a tiling operation, i.e., the band
is tiled into chunks of the number of threads. The point loop of the tiling then
describes the kernel computations per thread, and the tile loop implements the
execution of the distinct thread blocks. Making the number of threads parametric
would turn this into a parametric tiling problem, which to date has no efficient
general solution. Since we are not willing to forfeit tuning the GPU platform pa-
rameters, we are forced to follow an alternate route. To make the thread count
tunable, we enumerate all configurations and generate the corresponding versions
of the target region code statically. We express this directly in the schedule tree
as a set node whose filter children represent the individual configurations. Thus,
we obtain a single large schedule tree. Using the same approach, we also add
parameters to determine the block height (Bi,r), to enable or disable promotion of
local variables to shared memory (SMi,r), and to unroll the loop moving data in
and out of shared or local memory (USM

i,r , UT
i,r). The block height parameters Bi,r

directly control the shape of a block of GPU threads. They thus affect the locality
of accesses to global memory and the ability to coalesce accesses by the threads of

2In the schedule trees, parameters need to be integers. We use the symbols GPU and CPU

here in place of the integer values to aid readability.

112

6.2 Dependence Testing for Parallelization and Partitioning

Table 6.1: Tunable parameters exposed by polyhedral parallelization

T Class Range Semantics

Work distribution
Ri Ratio Ri ∈ [0, 1) ⊂ R, i ∈ [1, d] ⊂ Z Partitioning
P r
i Nominal P r

i ∈ {CPU, GPU}, r ∈ {High, Low} Platform Mapping
GPU Platform Parameters
TGPUi,r Ratio TGPUi,r = 32k, k ∈ [1, 8] ⊂ Z GPU Block Size
Bi,r Ratio B = 2k, k ∈ [0, 5] ⊂ Z GPU Block Height
SMi,r Nominal SMi,r ∈ {true, false} Shared Memory
USM
i,r Nominal USM

i,r ∈ {true, false} Unroll Shared Accesses
UT
i,r Nominal UT

i,r ∈ {true, false} Unroll Tile Accesses
CPU Platform Parameters
TCPUi,r Ratio TCPUi,r ∈ [1, cores] ⊂ Z CPU Threads

a warp. The full list of parameters as well as their default ranges is summarized
in Table 6.1. The value ranges of the block size and height parameters are not
exhaustive. The chosen ranges are a trade-off between covering a sufficiently large
area of the possible space and the number of versions we need to generate.

6.2 Dependence Testing for Parallelization and
Partitioning

The polyhedral model fails to represent parallelizable loops in some cases. By
relaxing its constraints, however, it is sometimes still possible to analyze the loops
and detect data parallelism. Two examples for when that happens are function
calls and inner loops without static control. Function calls are not modeled by the
polyhedral model because the instructions within the function cannot be sched-
uled. Polyhedral compilers usually first inline functions and erase the function
call because of this. For us that would however require speculatively inlining all
function calls just to be able to detect parallelism, which would be incredibly ex-
pensive. Loops without static control on the other hand are not representable in a
polyhedral framework at all. However, when only parallelization is the goal, such
loops might be benign: If such loops contain no memory accesses or only accesses

113

Chapter 6 Automatic Heterogeneous Parallelization

to memory that is provably local, parallelization remains unaffected. Therefore,
when polyhedral modeling fails we fall back onto a second analysis and transfor-
mation pipeline, using classical dependence testing and ad hoc transformations. In
an exploratory Bachelor’s thesis [Bai16], sharing work between CPU and GPU was
shown to be worthwhile. In this section we introduce the pipeline, the analyses
performed by the aphes compiler to detect parallelism, and the platform specific
program transformations.

6.2.1 Detecting Data Parallelism

The first step in parallelizing a given program is to detect the parts of the program
that are parallelizable. In aphes, we focus on finding only data parallel loops dur-
ing this phase. Böhm [Böh18] extended the scope to also support loops containing
reductions, which can be seen as a special case of data parallelism with a relaxed
constraint on data dependences. The detection of reduction parallelism is based
on the work of Scheirle [Sch17]. On top of the restriction to data parallelism, we
impose further constraints on the loops we analyse to simplify the implementation.
Most importantly, we only consider top-level loops as candidates. Secondly, we as-
sume loops have a particular structure in the control flow graph. The expected
structure is illustrated in Figure 6.3: the loop must be defined by a single-entry-
single-exit control flow subgraph, meaning there is a single basic block outside of
the loop whose only successor is the loop header block and vice versa for the exit
block. Further, there must be a unique exiting block, which branches to the exit
and the header blocks. Consequently, the exiting block cannot be the loop header
block. Note that this structural restriction is generally weak, since most loops can
be normalized to take this form. A noteworthy counterexample however is a loop
that has multiple exit blocks, which are basic blocks outside of the loop to which
the loop body may jump. There is no universal way to merge these blocks. Lastly,
we require that the outermost loop exhibits static control : The trip count, i.e., the
number of iterations, must be statically computable. To be precise, this trip count
may be either a constant value, or a provably loop invariant variable.
For all loops that pass these checks, aphes performs its parallelism detection

analysis. This is a classical dependence analysis, attempting to disprove loop-
carried data dependences. The LLVM framework contains various such analyses.
The aphes compiler extends the existing facilities of the LLVM framework to
support interprocedural analysis. It performs dependence analysis in loops which

114

6.2 Dependence Testing for Parallelization and Partitioning

preheader:
· · ·

header:

%i = phi i 64 [0 , %preheader] , [% i . n ex t , %ex i t i n g]

. . .

exiting:

%i . n e x t = add i64 %i , 1
%cond = icmp l t i 64 %i . n ex t , %N
%br i 1 %cond , l a b e l %header , l a b e l %ex i t

exit:
· · ·

loop latch

Figure 6.3: Expected control flow structure of a loop supported by aphes

contain function calls. To describe the effect of a call, we summarize all functions
called within the candidate loop. Function summaries are effectively exhaustive
lists of all memory accesses within the function that affect its pointer arguments
or global variables. These accesses are precisely those that a caller is potentially
able to observe. In general, summarizing requires over-approximating the accessed
ranges since accurate alias analysis is in practice unavailable: When analyzing a
memory access, it is often not exactly clear which argument or variable is read
or written. In the worst case, summaries must assume that a function reads or
writes every byte of memory in the program. That may for instance happen
when accesses occur indirectly, that is, through pointers loaded from arguments
or global variables. With the help of summaries, function calls now are analyzable
by expanding the summary at the call site, thus virtually “inlining” the function.
To disprove the existence of any loop-carried dependences, aphes extends LLVM’s
implementation of the dependence testing algorithm by Goff, Kennedy, and Tseng
[GKT91] to support summaries.

To widen its applicability, aphes was extended to support for a parallelism
scheme that in fact exhibits loop-carried dependences: parallel reductions [Böh18].

115

Chapter 6 Automatic Heterogeneous Parallelization

Parallel reductions differ from simple data parallelism in that they allow for the
presence of specific data dependences, for which the values read and written to
a conflicting memory location are dependent only via associative operations. A
typical example of this is the summation of all elements of an array into an output
variable. The output variable is read every iteration, incremented by an array
element and written back into the same location. If the increment operator is
associative, this operation may be executed in parallel. Because reductions can be
seen as a slightly degenerated form of data parallelism, we support it as well.

6.2.2 Target Offloading

Having detected parallelizable loops, aphes then generates the parallel code. The
code generation is implemented by an extensible collection of target plugins. A
target plugin’s purpose is to produce target platform specific code as well as the
management code required to offload the computation. The aphes compiler then
essentially becomes a driver for the transformations implemented by the plug-
ins. Each plugin must thus emit three pieces of code: the prologue, the target
region, and the epilogue. The interplay between these sections and the targets is
shown in Figure 6.4, which expresses synchronous operations as solid arrows, and
asynchronous operations as dashed arrows. In the prologue, targets are expected
to set up target platform memory and asynchronously execute the target region.
This potentially entails allocating space for the data accessed within the target
region, including both arrays and scalar variables, and initiating data transfers.
If host and target platform share the same physical memory, however, this step
may be omitted. The aphes compiler processes the prologues of the individual
targets in order, followed by all the epilogues. In the epilogue phase, targets await
their target region’s completion and post-process the results, if necessary. Post-
processing can for example be necessary for parallelized reduction. They may do
so asynchronously to overlap compute and all data transfers. When transforming
loops that additionally contain reductions, the epilogues additionally aggregate
the reduction results for the per-target slices of the work.
Currently, we have implemented two primary target plugins, namely for CUDA

and OpenMP targets. To demonstrate that this approach also supports distributed
systems, Lukas Böhm [Böh15] additionally provides a prototypical Xeon PHI tar-
get. In the following, we briefly discuss their design and implementation. Lastly,

116

6.2 Dependence Testing for Parallelization and Partitioning

EpiloguePrologue Kernel

Target 1Target 1 Target 1

...

Target 2Target 2 Target 2

Host
IR

Host
IR

Target nTarget n Target n

synchronous

asynchronous

Figure 6.4: Code sections generated by target plugins. Solid arrows denote syn-
chronous, dashed arrows asynchronous operations.

we describe the target specific tuning parameters the plugins expose, as well as
how we model dynamic workload partitioning.

6.2.2.1 The OpenMP Target Plugin

Targeting OpenMP on the CPU is straightforward. Because of the shared mem-
ory, no complex management of allocations is required. To interoperate with the
OpenMP library API, the plugin needs to outline the target region code into a
separate function which will be called by the OpenMP runtime. Outlining mainly
involves substituting the original boundary checks for checks against the bound-
aries for the chunk of iterations per OpenMP thread, and passing scalar variables
and array pointers into the target region function. Hence, in the prologue, the
target plugin copies scalars and pointers and invokes the OpenMP runtime. The
epilogue merely requires waiting for the threads to finish.

6.2.2.2 The CUDA Target Plugin

In most systems, host and GPU do not share memory. Exceptions are mobile
graphics units and system-on-a-chip platforms, which we at this point do not
consider further in this thesis. Consequently, a major task of the CUDA target
plugin is managing allocations and data transfers between the target platform and
host. Unlike for the OpenMP target, we need to transfer both scalar variables as
well as full arrays to the GPU. The number of scalar variables is statically known,
which makes copying easy. On the other hand, both size and location of arrays are

117

Chapter 6 Automatic Heterogeneous Parallelization

dynamic properties. Worse, both may change at runtime, and although the size of
an array may be constant, the amount of data that needs to be transferred is not.
On the one hand, the required data amount varies because of changing inputs
to the program or parallelized region that affect the size of the array. On the
other hand, changes are also caused by changes in the workload distribution due
to tuning, which means that the changes are frequent. The CUDA target plugin
thus manages memory dynamically through the runtime system further detailed
in Section 6.2.3.
Having allocated and copied all data onto the GPU, the prologue then executes

the target region, which is implemented as a CUDA kernel. Lastly, the prologue
also initializes the transfer of the results back from the GPU device into the host
memory. Besides allocations, all operations performed in the prologue are asyn-
chronous with respect to the host, but strictly in order with respect to each other.
Thus, CUDA API calls for copying to the device, launching the CUDA kernel,
and copying from the device do not wait for the respective operation to complete.
Waiting then happens in the epilogue, which synchronizes the host thread with
the completion of the final copy.

6.2.2.3 The Xeon PHI Target Plugin

As a proof-of-concept, a target plugin for the Intel Xeon PHI parallel coproces-
sor was implemented [Böh15]. The Xeon PHI accelerator is an extension card
mounted in a host system, running an independent instance of Linux. The host
communicates with the Xeon PHI device system through a network stack, e.g., via
low-level APIs or high-level MPI. For the aphes compiler, this has two important
consequences:

1. Offloading computations to this platform requires a binary running on it
natively.

2. Memory transfers and target region invocation require a custom communi-
cation protocol.

Generating the native binary is an involved process, because Xeon PHI support in
open compilers and LLVM in particular is lacking. Böhm follows Damschen et al.
[Dam+15] in their approach to generate C code from the LLVM IR and running
the native Intel compiler. Fortunately, the Xeon PHI runtime framework supports

118

6.2 Dependence Testing for Parallelization and Partitioning

Table 6.2: Tunable parameters exposed by the dependence-based parallelization

T Class Range Semantics

Work distribution
Pi Ratio Pi = [0, Û] Partitioning and Platform Mapping
GPU Platform Parameters
TGPU Ratio TGPU ∈ [1, 32] ⊂ Z Warps per GPU Block
CPU Platform Parameters
TCPU Ratio TCPU ∈ [1, cores] ⊂ Z CPU-Threads

OpenMP, which is used for parallelizing the code. The target plugin reuses our
existing OpenMP parallelizer to do so. Lastly, the parallelized code is linked
with a runtime environment, which handles the communication, and target region
and memory management. The communication protocol is further described in
Section 6.2.3.
Despite these unique requirements, the behavior for emitting code deviates only

slightly from the other two target plugins. Invoking the target region and trans-
ferring the data is a single operation that is performed during the prologue. The
epilogue fetches the result data, which simultaneously synchronizes the execution.
The target region is running asynchronously on the device and is executed imme-
diately once the data arrives.

6.2.2.4 Target-Specific Tuning Parameters

For a given source region, aphes creates a single tuner instance that we refer to as
the tuning context for the region. For this instance, it inserts a special prologue
and epilogue, which are executed before all target plugin prologues and after all
epilogues, respectively. In these sections, the runtime environment invokes the
libtuning tuner. The prologue updates the configuration of all tuning parameters
in this context and starts the time measurement, the epilogue stops the time
measurement and updates the configuration.
The tuning parameters of a context are created either by the aphes driver or the

individual target plugins, which can hook into the context and register arbitrary
target-specific parameters. Examples are TCPU for the number of OpenMP threads
for the OpenMP and Xeon PHI target, or TGPU the number of full warps per block
for the CUDA target. For every target platform Pi, the aphes driver adds a single

119

Chapter 6 Automatic Heterogeneous Parallelization

parameter Pi = [0, Û] for some constant upper bound Û . The full set of extracted
parameters is summarized in Table 6.2.
The parameters Pi simultaneously select the platforms to offload to as well as the

amount of work assigned to each one. This is a trick we resort to to avoid having
to introduce nominal parameters for mapping partitions onto platforms while at
the same time ensuring that the mapping is one-to-one, i.e., a platform is only
assigned at most one slice of the work. The objective of these parameters is, for
each platform i, to assign it a partition of the program part’s loop iteration range
Pi ⊆ [L,U] = R, such that

⋃
j Pj = R and Pj ∩ Pk = ∅,∀j,k : j 6= k. Interaction

with the autotuner requires embedding parameters into a static numerical range,
but L and U are dynamic in general. We solve this problem by defining Pi = [0, Û]

for some arbitrary but fixed Û . Then, every configuration CPi
∈ Pi for the Pi

produces a partitioning of the virtual iteration range R̂ = [0,maxiCPi
]. For every

P̂i ⊆ R̂ we can thus obtain P by simply shifting and rescaling the interval. To
compute P̂i = [li, ui] we first sort the sequence of CPi

in ascending order3. Let σ(i)

denote the index of CPi
in the sorted sequence. Then we set

ui = CPi
,

li =

0 σ(i) = 0

CPj
σ(i) = σ(j) + 1.

Figure 6.5 shows an example of this process. Û is set to 256, and the original
iteration range is R = [0, 32). The tuner has configured the tuning parameters to
(PCUDA, POMP) = (10, 40). This produces the virtual iteration ranges [lPCUDA

, uPCUDA
) =

[0, 10), [lPOMP
, uPOMP

) = [10, 40), and rescaling this by the factor 32
40
, we obtain the

final iteration ranges [0, 8) and [8, 32) for both targets.

6.2.3 Runtime System

The aphes runtime system performs three primary tasks: Managing and asyn-
chronously executing target regions, managing memory allocations and transfers,
and interfacing between the parallelized application and the libtuning tuner. For
the Xeon PHI target [Böh15], the first and second task involve driving the MPI
communication with the device-side target binary. The runtime system is shipped

3If CPj
= CPk

, the elements’ relative order is preserved to break ties deterministically

120

6.2 Dependence Testing for Parallelization and Partitioning

void Add(int *A, int *B) {
for (char i = 0; i < 32; ++i)

A[i] = A[i] + B[i];
}

void AddCUDA(int *A, int *B) {
for (char i = 0; i < 8; ++i)

A[i] = A[i] + B[i];
}
void AddOMP(int *A, int *B) {
for (char i = 8; i < 32; ++i)

A[i] = A[i] + B[i];
}

0 ÛPCUDA = 10 POMP = 40

lPCUDA
= 0

uPCUDA
= 10

lPOMP
= 10

uPOMP
= 40

× 32
40

× 32
40

Figure 6.5: Example: Partitioning the work between an OpenMP and a CUDA target.
The partitioned virtual index range is mapped onto the concrete range in
the input program.

together with aphes as a library. The aphes compiler links it into the generated
binaries automatically.
Target region management on the host side currently only has to deal with

CUDA kernels. The aphes compiler translates the kernel into CUDA PTX, a
CUDA-specific assembly code, and embeds it directly into the parallelized binary.
To launch the kernel, the runtime system loads the assembly code and JIT compiles
it for the CUDA driver. The result is cached for future executions. Once compiled,
the kernel can be launched. For the Xeon PHI target [Böh15], launching the target
region and transferring memory is done in a single, five-step process: The host first
sends a single region identifier to the device-side binary4. Following the identifier,
the host first sends all scalar variables, then all memory ranges read by the region.
Once this transfer is complete, the device-side binary automatically launches the
selected region. Upon completion of the region, the device-side binary returns all
memory ranges written by the region to the host-side runtime.
Both for CUDA GPU and Xeon PHI, device-side memory is managed by a

custom dynamic memory allocator. The allocator is part of the aphes runtime

4Additionally there is a special identifier that, sent here, signals program termination.

121

Chapter 6 Automatic Heterogeneous Parallelization

void Add(char A[32], char *C) {
 int *B = A+4;

 for (char i = 0; i < 16; ++i)
 C[i] = A[i] + B[i];
}

0 8 16 24 32 40

Figure 6.6: Example: Allocation mapping for three arrays.

and maintains a single continuous chunk of memory. In the prologue, in which the
sizes of all required array slices are known dynamically, the allocator is invoked to
remap all arrays accessed in the target region into the managed chunk, growing it
if required. If host pointers point to overlapping regions of memory, the allocator
automatically merges their mappings accordingly.

Figure 6.6 shows an example of this process. The allocator has allocated a
contiguous array of 40 bytes. Mapping the arrays A,B, and C into this memory
occupies only 34 bytes. Even though the size of A is 32 bytes, and the size of C
is unknown, the loop will access only 16 bytes of C, and 20 bytes of A, namely
once 16 bytes through A directly at offset 0, and once 16 bytes indirectly through
B at offset 4. To compute the mapping, the allocator represents every array Ai as
a triple (AddrAi

, SizeAi
, OffsetAi

). OffsetAi
is initially 0. Sorting these triples

in ascending lexicographic order, subsequent tuples for Ai and Aj are merged if
and only if AddrAi

+ SizeAi
> AddrAj

. If the inequality holds, then Ai and Aj
overlap in memory. Upon merging, we set OffsetAj

= AddrAj
− AddrAi

and
AddrAj

= AddrAi
. The merged triples can then be trivially mapped onto the

contiguous space, growing the allocation if necessary.

Lastly, the runtime system’s tuning interface implements interoperation with the
libtuning library. It maintains a registry of instantiated and running tuners, and
provides an interface to that registry to the parallelized program. Finally, it also
implements the algorithm described in Section 6.2.2.4 to compute loop iteration
bounds for the target region execution.

122

6.3 Offloading Heuristics and Runtime Predictors

6.3 Offloading Heuristics and Runtime Predictors

As we highlighted in Chapter 4, the vast majority off approaches to automatic
parallelization or automatic offloading rely on heuristics, cost models, and ma-
chine and performance models to make tuning decisions. Although the goal of this
thesis is to demonstrate the power of black-box online autotuning applied to the
problem, the benefits of the models developed in the past should not be ignored.
With aphes and libtuning we combine both techniques. The libtuning auto-
tuner allows clients to reject configurations without actually measuring them. In
aphes, we use this mechanism to bridge between static performance models and
autotuning. For this purpose, aphes includes a small embedded DSL compiler
developers may use to implement rejection rules. An example for such a rule can
be as simple as

CPi
== 1→ ComputeVolumeC > Threshold.

ComputeVolume here is a performance model predicting the number of dynamic
instructions executed in the source region. Assuming every instruction’s execution
takes the same amount of time, the compute volume is an accurate estimate of the
time required to execute the source region. When the ComputeVolume models the
target region on the other hand, it additionally depends on the tuning parameters.
That allows us to make a-priori runtime predictions for the transformed and tuned
program. The heuristic implemented by the simple rule above can intuitively be
interpreted as “Only execute this region on the GPU if in this configuration it will
perform enough computations”. As a proof-of-concept, we implemented the rule
above in the aphes compiler.
Besides the ComputeVolume, aphes embeds multiple similar analytical models

into the application during transformation. That includes the number of load and
store instructions executed, and the ArithmeticIntensity. The latter describes
the ratio between the ComputeVolume of the source region and the amount of
memory it accesses. The ArithmeticIntensity is thus a metric for the number
of operations performed per byte of memory transferred.
In general, the analytical models are parametric. For example, the number of

load instructions executed by the source region depends on the number of loop
iterations. This number generally depends on the input of the program or the
current region. Consequently, aphes cannot evaluate the models statically and
has to defer that to the program’s execution. For every model, aphes generates

123

Chapter 6 Automatic Heterogeneous Parallelization

code to compute its value at program runtime. The models are then evaluated at
runtime as needed. Additionally, because they are parametric we can exploit the
models for a second important purpose. The ComputeVolume in combination with
the numbers of loads and stores provide an approximation of the runtime of the
parallelized loop. This means that the parameters in these expressions directly
influence the loop runtime. Because the parameters by construction are program
variables, they are perfect candidates to serve as indicators to hybrid autotuning.
Once the models have been computed, aphes thus extracts all their parameters
and registers them with the autotuner accordingly.

Currently, we support two mechanisms for deriving analytical models from the
input program: based on the polyhedral model, or based on classical interproce-
dural data flow analysis if the source region is not representable polyhedrally. In
this case, we count the dynamic instructions of a region recursively. For instance,
the instruction count of a loop is the instruction count of its body multiplied by
the number of loop iterations. Often, however, this number does not satisfy the
static control criterion. That is, it is neither constant nor a provably invariant
variable. In this case, we underestimate the instruction count. As a consequence,
evaluating the model does not yield an exact value, but a lower bound on the
specific count, which is sufficient for our users of the models. We perform this
approximation whenever exact counting is impossible, in particular for for and
while loops with undecidable iteration counts, if conditionals with different in-
struction counts in their branches, and calls to functions that cannot be analyzed
interprocedurally. If, however, the polyhedral model is applicable to the source,
approximating the count is unnecessary and we can determine exact instruction
counts. Using libbarvinok, we directly obtain the analytical models from the
polyhedral description of the source and target regions. This library provides an
implementation of Barvinok’s algorithm, which counts the number of points in an
integer polyhedron efficiently.

Generating code for the analytical model expressions is straightforward. Both
the data flow analysis and the polyhedral model produce piecewise polynomial
expressions, parametric in the program arguments and, if modeling the target
region, also the tuning parameters.

124

6.4 Summary

6.4 Summary

This chapter presented the parallelizing compiler component of the APHES frame-
work. It is implemented as an LLVM-based tool that consumes a program in LLVM
intermediate representation and produces an executable binary. If parallelization
was successful, the resulting program automatically offloads computations to mul-
tiple platforms and distributes the work according to directions by the autotuner
presented in the previous chapter.
The program analysis and transformation is built upon two techniques: Using

the polyhedral model or alternatively using dependence testing and ad hoc trans-
formations. The polyhedral-based transformation first uses the Pluto algorithm in
PPCG to optimize the schedule of the transformed loop to maximize parallelism.
We then modify the schedule to first partition the work and second map each
partition to the target platforms. Partitioning and mapping both are governed by
tunable parameters controlled by the libtuning autotuner. Lastly, using Polly-
ACC we generate code from the transformed schedule. The dependence testing-
based parallelization scheme is applied if the polyhedral model fails to represent
the loop. Using standard techniques we detect data parallelism interprocedurally
and transform parallel loops using multiple platform-specific target plugins. In
addition to the partitioning of the work, both the polyhedral parallelization as
well as the target plugins register additional platform-specific parameters with the
autotuner instance.

125

Chapter 7

Experimental Evaluation

In this chapter we present the experimental evaluation of the APHES framework.
We investigate the validity the theses posed in Chapter 1 in three separate ex-
periments. The validation of thesis T1 comprises two distinct aspects. Thesis T1

states that cooperative parallelization accelerates programs and outperforms the
state of the art. First, we demonstrate that the approach followed by the current
state of the art is insufficient to achieve the project goals. The current state of
the art in cooperative multi-platform execution are Qilin, CHC, and libHawaii.
All three approaches use a linear regression model for the cooperative execution.
Section 7.2 presents benchmarks using APHES’ ad-hoc parallelization to analyze
whether the linear regression can accurately represent the cooperative execution
problem. Second, in Section 7.3 we use polyhedral cooperative parallelization on
Polybench, a widely used scientific benchmark. We present the performance im-
provements achieved with hybrid tuning, in particular using hierarchical search.
We then analyze the behavior of hybrid autotuning in detail to validate thesisT2.

Thesis T2 claims that hybrid autotuning improves on the amortization time of the
state of the art in autotuning. Our tuning approach combines two ways to obtain
a new configuration for a given dynamic context state: Search and prediction. Of
the two alternatives, amortization time is predominantly determined by search.
Although the quality of the predicted configurations certainly has an influence
on amortization time, that particular aspect is covered specifically by thesis T3.
Validating thesis T2 thus requires analyzing the behavior of the search. The
autotuner decides stochastically which of the two alternatives to query. That
means that we can analyze both aspects of hybrid tuning in isolation. In Section 7.3
we investigate the convergence behavior of the tuner and compare it to state-of-
the-art autotuning. To analyze the amortization behavior, both the configurations

127

Chapter 7 Experimental Evaluation

found through search as well as the time required to complete a given number of
search steps is compared.
In Section 7.4 we investigate thesis T3. The thesis states that our tuner suc-

cessfully predicts configurations for unknown context states. For a subset of the
benchmarks used in Section 7.3 we analyze and compare the predictions of our
models for varying tuning contexts. The contexts are varied by using a set of
different tuning kernel inputs generated randomly.
Section 7.5 summarizes the results and reviews the thesis objectives with respect

to our findings. In the following section, we begin by introducing the main set of
benchmarks used throughout this chapter.

7.1 Benchmarks

The benchmarks used in this evaluation were obtained from the PolyBench/C 4.2
benchmark suite1. PolyBench is a collection of small programs for numerical com-
putations with static control flow. Static control is a prerequisite of the polyhedral
model. From this suite we used the blas and kernels sub-packages of the linear
algebra benchmarks. From the 13 benchmark programs in those packages we se-
lected 11, which are summarized in Table 7.1. The symm and trmm were excluded
for reasons discussed further below.
The selected benchmarks perform various vector and matrix operations. Al-

though these operations have a limited variance in the data access patterns, they
cover an interesting range of computational patterns. On the one hand there
are benchmarks with both quadratic computational and spatial complexity. The
benchmarks including general matrix multiplication such as gemm, 2mm, or 3mm
have cubic computational complexity and quadratic spatial complexity. Moreover,
syrk and syr2k are particularly interesting because they have triangular iteration
domains. Consequently the partitions created by the parallelizer become asym-
metrical. It is therefore not only the size of the partition anymore that determines
its computational cost, but also the specific iteration range it covers.
For the polyhedral parallelization evaluation in Section 7.3 we made minor mod-

ifications to the selected benchmarks to account for simplifications made in the
implementation of the APHES prototype. These involve two changes. First, we
modified the memory allocation routines of PolyBench to use page-locked (pinned)

1Available at https://sourceforge.net/projects/polybench/. Last accessed: February 28th, 2019

128

https://sourceforge.net/projects/polybench/

7.1 Benchmarks

Table 7.1: The PolyBench benchmarks used in this evaluation

Benchmark Description

2mm Two matrix multiplications (D = A ·B,E = C ·D)
3mm Three matrix multiplications (E = A ·B,F = C ·D,G = E · F)
atax Matrix transposition and vector multiplication (ATAX)
bicg The BiCG sub-kernel of the BiCGStab solver
doitgen Quantum chemistry multi-resolution analysis kernel
gemm General matrix multiply (C = αA ·B + βC)
gemver Vector Multiplication and Matrix Addition
gesummv Scalar, Vector and Matrix Multiplication
mvt Matrix Vector Product and Transpose
syr2k Symmetric rank-2k operations
syrk Symmetric rank-k operations

memory on the host. This modification drastically simplifies the implementation
of the bookkeeping required in the aphes runtime system. It allows us to use
CUDA’s own asynchronous memory transfer mechanisms without having to man-
age threads for this purpose. Note however that this change affects performance:
Asynchronous transfers from and to page-locked memory enable the device driver
to perform Direct Memory Access (DMA) transfers without having to copy the
data to a page-locked buffer first. Data transfers after our change can thus be
faster, because they eliminate a copy of the data. Nevertheless, all reference com-
pilers compared against in Section 7.3 are applied to the modified benchmark
versions. The potential performance impacts of the change thus do not invalidate
the comparisons and conclusions drawn in this evaluation. The second modifi-
cation makes minor changes to the loop order in the benchmark kernels. The
current prototype implementation only generates a single GPU kernel from a par-
allel region when using polyhedral parallelization. Some kernels’ loop nests involve
data dependences which require creating multiple GPU kernels in sequence. To
account for the limitation of the implementation, we break the loop nests into
multiple regions manually by fusing/fissioning loops and inserting memory fences.
Fusing and fissioning are operations also performed by the Pluto optimizer, and the
memory fences are no-ops removed during compilation. Nevertheless our change
might prevent optimizations that the compiler could apply on the original regions.

129

Chapter 7 Experimental Evaluation

However, no missed optimizations were observed and there was no discernible per-
formance difference for the reference compilers compared against in Section 7.3.
The modification causes the aphes compiler to be unable to find and parallelize a
meaningful loop within the symm kernel. The kernel was therefore excluded from
the evaluation. Finally, we also wrapped the calls to every benchmark’s kernel
into a fixed-length loop to create a tuning loop. This modification forced us to
exclude the trmm kernel, because the repeated application of the kernel operation
on the same inputs causes the floating point values to denormalize, i.e., assume the
special value inf. Denormal floats can have a substantial impact on performance
[DK06] that varies across platforms. Since our change would thus cause a change
in the general behavior of this benchmark, we removed it from our list.
In addition to PolyBench we use two different benchmarks for the analysis in

Section 7.2 of the linear models proposed by Qilin, CHC, and libHawaii. The
benchmarks are BlackScholes and Binomial, which were both used in the orig-
inal articles presenting Qilin and CHC.2 In total, four benchmark programs are
used in both articles, the first of which is gemm, which is also used by libHawaii3

and is already included in the PolyBench benchmarks discussed above. Of the
remaining three, only Binomial and BlackScholes were parallelizable by APHES.
Both benchmarks compute an options pricing model and are available as CUDA
programming examples as part of the CUDA SDK.4. They contain a sequential
reference implementation which we use as input to APHES. The BlackScholes
benchmark already contains a natural tuning loop: The benchmark computes the
Black-Scholes options pricing formula for 4 million options for 512 iterations. The
512 iterations pose the tuning loop. Because the Binomial benchmark does not
contain such a loop, we added one manually.

7.2 Ad-hoc Parallelization

We analyzed the performance of the PolyBench benchmarks parallelized with
APHES’s ad-hoc parallelization. Unfortunately, that experiment exposed a major
limitation of the ad-hoc parallelization approach. Being limited to transform-
ing outer loops only, there is little parallelism the approach can extract from the

2See references [LHK09] and [LRG12]
3See reference [RDP14].
4https://docs.nvidia.com/cuda/cuda-samples/index.html Last accessed: March 19th, 2019

130

https://docs.nvidia.com/cuda/cuda-samples/index.html

7.2 Ad-hoc Parallelization

7

9

11

4 8 12 16
Thread Count

T
im

e
[m

s]

0.04

0.06

0.08

0.10

0.12

0.14

4 8 12 16
Thread Count

T
im

e [m
s]

15

20

25

30

35

4 8 12 16
Thread Count

T
im

e
[m

s]

11.5

12.0

12.5

4 8 12 16
Thread Count

T
im

e [m
s]

Figure 7.1: Relationship between runtime and OpenMP thread configurations for the
four loops of the gemver benchmark.

PolyBench benchmarks. Without exception, single-platform parallelization for the
OpenMP target achieved the best performance. Nevertheless, we can use the re-
sults to investigate the linear modeling approach used by the current state of the
art in cooperative heterogeneous execution. Both Qilin and CHC which we in-
troduced in Chapter 4 use a linear regression model to determine the workload
distribution across the CPU and GPU platforms. Both approaches differ slightly
in how they compute the regression: Qilin samples multiple subsets of the work-
load on both platforms and measures the execution time, whereas CHC measures
only the biggest and smallest possible workload for each platform. The libHawaii
autotuner that was also introduced in Chapter 4 uses a control theory approach
instead of linear regression. Nevertheless, since the underlying assumption is still
a linear model, the following discussion also applies to libHawaii.
Assuming a linear relationship between runtime and workload distribution is sen-

sible when ignoring platform-specific parameters. However, when such parameters
as for example the CPU and GPU thread counts are also considered, the Poly-
Bench experiment showed that the linear model is insufficient. Figure 7.1 shows
runtime results for the PolyBench gemver kernel which has been parallelized for

131

Chapter 7 Experimental Evaluation

OpenMP using APHES. The gemver kernel performs a matrix-vector multiplication
followed by a matrix addition. It is composed of four consecutive parallelizable
loops. Using the ad-hoc parallelization mechanism in APHES, we transform all four
loops, but this time for the OpenMP target only. Then, we measure the runtime
of the individual loops for thread counts ranging from 1 to 16. The first loop to
the top left behaves as one would naively expect: Doubling the number of threads
from one to two to four each time roughly halves the runtime. At four threads, the
performance peaks. The second loop to the top right behaves contrarily: Because
it is so cheap to compute, consuming only a 20th of a millisecond, using more than
one thread slows down the execution by a factor of up to 3×. The third loop to
the bottom left on the other hand shows the most curious progression. The perfor-
mance is maximal at five threads, after which the performance decreases up until
eight threads, after which the runtime is level. There are two important aspects
here: First, both using too many or too few threads hurts performance. Second,
leveling off after a thread count of eight is an effect of the OpenMP implementa-
tion. When exceeding the number of available hardware threads, which is eight on
this machine, the libgomp OpenMP library used by APHES changes its scheduling
behavior. This is however an implementation detail of that particular library and
not standardized. The effect can thus not be relied upon. The fourth gemver loop,
lastly, looks again similar to the third, in that it increases performance up until
three threads and worsens beyond that number.

Consequently, we see that we cannot rely on linear regression to optimize thread
counts alongside the workload distribution. All three cooperative parallelization
approaches use a fixed configuration for the platform-specific parameters. With
Qilin and libHawaii, defining these parameters is up to the application developer,
whereas CHC uses a fixed CPU thread count of C − 1 where C is the number of
hardware threads. As CHC takes a complete CUDA program as input, the GPU
thread configuration is also left to the application developer.

To analyze whether a greedy thread configuration akin to CHC is viable for our
approach, we apply the ad-hoc parallelization mechanism to two of the benchmarks
also used by Qilin and CHC, Binomial and BlackScholes. After parallelizing the
applications with APHES, we measured the runtimes of the resulting tuning kernels
for a set of manually defined configurations. Since we configure parameters man-
ually, it is sufficient to set the number of tuning loop iterations of the Binomial
benchmark to ten, which serves to stabilize our measurements. We ran the bench-

132

7.2 Ad-hoc Parallelization

0.4

0.6
0.8
1.0
1.2
1.4

1,
 3

2
2,

 3
2

3,
 3

2
4,

 3
2

5,
 3

2
6,

 3
2

7,
 3

2
8,

 3
2

1,
 6

4
2,

 6
4

3,
 6

4
4,

 6
4

5,
 6

4
6,

 6
4

7,
 6

4
8,

 6
4

1,
 1

28
2,

 1
28

3,
 1

28
4,

 1
28

5,
 1

28
6,

 1
28

7,
 1

28
8,

 1
28

1,
 2

56
2,

 2
56

3,
 2

56
4,

 2
56

5,
 2

56
6,

 2
56

7,
 2

56
8,

 2
56

1,
 5

12
2,

 5
12

3,
 5

12
4,

 5
12

5,
 5

12
6,

 5
12

7,
 5

12
8,

 5
12

1,
 1

02
4

2,
 1

02
4

3,
 1

02
4

4,
 1

02
4

5,
 1

02
4

6,
 1

02
4

7,
 1

02
4

8,
 1

02
4

Thread Configuration (OMP, CUDA)

Sp
ee

du
p

10% OpenMP, 90% CUDA 90% OpenMP, 10% CUDA
1.38x 1.3x

Figure 7.2: Binomial: Comparison of greedily selected thread configurations. For the
10%:90% distribution, the speedup reference configuration is (5, 32), for
the 90%:10% distribution the reference is (7, 512). The references are the
optimal configurations for the respectively other distribution.

marks on a machine equipped with an Intel Core i7 at 3.5 GHz with four physical
and eight virtual cores and an NVIDIA GTX 970.
We measure the following parameter configurations. For the workload split, we

assign 10% of the loop iterations to OpenMP and 90% to CUDA and vice versa.
Those configurations correspond to CHC’s approach to building the linear model.
On the CPU, the OpenMP thread counts range from one to eight on the CPU.
The CUDA blocks contain 32, 64, 128, 256, 512, or 1024 threads, while there is
one CUDA thread per work-item (i.e., per loop iteration).
Exploring the configurations exhaustively, we find that for the Binomial bench-

mark for the 10%:90% workload distribution, the optimal configuration is (5, 32),
(i.e., 5 OpenMP threads, 32 CUDA threads per block). For the 90%:10% distri-
bution the optimum is at (7, 512) on the other hand. While the second one with
an OpenMP thread count of seven could have been produced by CHC, the first
one could not. Worse, greedily selecting either can have a substantial negative
performance impact on other workload distributions. We show that comparison
in Figure 7.2. For both workload splits, the plot shows the speedup achieved by
all sampled thread configurations over the configuration that was optimal for the
other split. The speedup is computed for the median runtimes of the last five
tuning loop iterations. The plot highlights the two optima: For the 10%:90%
distribution, using the thread configuration (5, 32) over (7, 512) increases perfor-

133

Chapter 7 Experimental Evaluation

0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2

1,
 3

2
2,

 3
2

3,
 3

2
4,

 3
2

5,
 3

2
6,

 3
2

7,
 3

2
8,

 3
2

1,
 6

4
2,

 6
4

3,
 6

4
4,

 6
4

5,
 6

4
6,

 6
4

7,
 6

4
8,

 6
4

1,
 1

28
2,

 1
28

3,
 1

28
4,

 1
28

5,
 1

28
6,

 1
28

7,
 1

28
8,

 1
28

1,
 2

56
2,

 2
56

3,
 2

56
4,

 2
56

5,
 2

56
6,

 2
56

7,
 2

56
8,

 2
56

1,
 5

12
2,

 5
12

3,
 5

12
4,

 5
12

5,
 5

12
6,

 5
12

7,
 5

12
8,

 5
12

1,
 1

02
4

2,
 1

02
4

3,
 1

02
4

4,
 1

02
4

5,
 1

02
4

6,
 1

02
4

7,
 1

02
4

8,
 1

02
4

Thread Configuration (OMP, CUDA)

Sp
ee

du
p

10% OpenMP, 90% CUDA 90% OpenMP, 10% CUDA
1.2x

Figure 7.3: BlackScholes: Comparison of greedily selected thread configurations. For
the 10%:90% distribution, the speedup reference configuration is (7, 64),
for the 90%:10% distribution the reference is (3, 32). The references are the
optimal configurations for the respectively other distribution.

mance by almost 40%. Vice versa, using the configuration (7, 512) over (5, 32) for
the 90%:10% distribution gives us a performance boost of 30%.
We see complementary results for the BlackScholes benchmark. For the

90%:10% distribution, the optimal thread configuration is (7, 64). Interestingly,
for the 10%:90% distribution, there is no single optimum when accounting for
noise. In fact, the majority of configurations using three OpenMP threads or more
have the same performance. The absolutely best configuration was (3, 32) which
we use in the comparison. The speedup results are shown in Figure 7.3. The maxi-
mum speedup for the 90%:10% split is 1.2 over the configuration (3, 32). However,
would we have chosen the reference configuration differently, for example like CHC
using seven CPU threads, we would see a much smaller performance gain. As we
can see in the plot, configurations using seven or eight CPU threads are all within
a 3% range of the optimum.
In summary, we have seen that the performance observed for a specific workload

distribution is sensitive to the configuration of platform specific parameters. Using
exhaustive exploration we found a performance gap of up to 40% that could arise
when using a heuristically or fixed greedily determined thread configuration. We
also see that even if a linear regression model can predict an optimal workload
split when thread configurations are fixed, the result is not globally optimal when
they are not. This insight motivates the use of a more sophisticated optimization

134

7.3 Polyhedral Parallelization

method such as autotuning. Moreover, the results offer evidence towards the
validity of thesis T1, demonstrating that parameter tuning beyond the workload
distribution is necessary to maximize performance.

7.3 Polyhedral Parallelization

In this section we present performance results for a number of scientific bench-
marks. We transform the benchmarks using cooperative parallelization and hy-
brid autotuning. We discuss the performance results in comparison against three
single-platform baselines. Subsequently, we analyze hierarchical search in detail
and compare it against OpenTuner, a state of the art autotuner.

7.3.1 Performance Results

In the following we present the performance improvements we achieved on the Poly-
Bench benchmarks. For this purpose we compiled four versions of each program.
Besides our compiler, we used three reference compilers as baseline: Clang using
the polyhedral optimizer (Polly), using the polyhedral OpenMP parallelization
(Polly-OMP), and using the polyhedral GPU parallelization (Polly-ACC). For the
baselines we use the O3 optimizer level and the default settings for their tunable
parameters, such as the OpenMP thread counts. The input sizes of the benchmark
programs are fixed per default and can be set during compilation. PolyBench pro-
vides five default configurations labeled MINI through EXTRA_LARGE. We chose the
largest configuration for every benchmark. For the gemm kernel for instance this
setting defines input matrices of 2000-by-2300 and 2300-by-2600. To autotune the
programs produced by the aphes compiler we set the fixed length of the tuning
loop to 100. For the reference programs, the tuning loop was set to a length of 10
to allow for device initialization and cache warm-ups. The median observed kernel
runtime is used as the reference result. We ran all benchmarks on a single cluster
node with 24 Intel Xeon CPUs at 2.6 GHz and equipped with an NVIDIA P100
GPU.
In Figure 7.4 we show the observed kernel runtime speedups of our autotuned

program over the three reference versions. As baselines we use the median runtimes
of twenty repetitions of running the reference programs. The runtime samples for
the tuned program are the those of the best configuration found within the 100

135

Chapter 7 Experimental Evaluation

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

2m
m

3m
m

ata
x

bic
g

do
itg

en
gem

m
gem

ver

ges
um

mv
mvt

syr
2k syr

k

Sp
ee

du
p

Polly Polly-ACC Polly-OMP

Figure 7.4: Speedup results for the automatically parallelized and tuned PolyBench
programs over three baseline compilers: Polly, Polly-ACC, and Polly-OMP.

tuning iterations. The box plots were generated from twenty runtime samples
for the tuned program. Both for the tuned and reference versions “runtime” here
means the time required to execute the kernel once. The time is reported by the
PolyBench programs directly, and includes all overhead of the autotuning, data
transfers, and synchronization.

Polly-ACC is outperformed by the solution produced by our approach for all but
two benchmarks, as is visible in the figure. In the remaining two the performance
of the tuned binary is on par, however. Our maximum speedup over Polly-ACC is
5.9× (median) for the 2mm benchmark. For doitgen on the other hand we cause
a minor slowdown of 17%. This is because that benchmark does not benefit from
parallelization in general: The kernel is composed of four nested loops, of which
the outer two are data parallel. At 220 and 250, the iteration counts of those
two loops yield too little parallel work to benefit from GPU offloading: The best
performance of doitgen is achieved by the Polly baseline. The additional decrease
in performance of our approach with respect to Polly-ACC is caused by the extra
overhead added by the multi-platform management.

136

7.3 Polyhedral Parallelization

In all cases except doitgen our approach outperforms Polly substantially. We
achieve a speedup of up to 56× for the syrk kernel. For doitgen, we incur an
18% slowdown, which again is due to the limited amount of parallelism in that
benchmark. Our speedup compared to Polly-OMP is generally the lowest, except
for syr2k and doitgen. We in fact cause slowdowns for five benchmarks. The
highest speedup of 5× (median) over Polly-OMP is achieved for the 2mm kernel.
For the syr2k and doitgen benchmarks, Polly-ACC is able to outperform the
OpenMP parallelization.

In summary, we have seen that our approach is able to improve performance
substantially over single-target compilers. However it is also capable of intro-
ducing large slowdowns. In all cases where this occurred, the reason is that the
benchmarks exhibit a small degree of data parallelism coupled with little work per
parallel loop iteration. That is the case for atax, bicg, gemver, gesummv, and
mvt. The exploitable data parallelism allows Polly-OMP to accelerate the bench-
mark, but since the amount of work per work item is small, the benchmarks do not
profit from GPU execution. Our tuner maps all partitions onto a CPU success-
fully. Nevertheless there are still always multiple partitions being mapped, which
means we incur multiple times the thread management overhead of Polly-OMP.
By setting the partition splits appropriately (i.e., to zero), it is generally possible
for the tuner to reduce the number of partitions. The tuner is unable to find this
particular configuration because there is a discontinuity of the search space at the
boundaries of this parameter’s value range. The parameter assumes values from
the interval [0, 1). Values slightly different from zero however lead to vastly differ-
ent program behavior than a value of zero: The number of platforms executing the
program changes. Effectively, zero is thus a special value that behaves like a nomi-
nal parameters controlling the number of active partitions. Instead, the number of
partitions could be controlled by a dedicated tuning parameter, expressing the ef-
fect more explicitly to the tuner. We expect that this work-around would eliminate
the problematic overhead. A similar problem causes the performance degradation
in the doitgen benchmark compared to the Polly baseline. The benchmark does
not profit from parallelization, but our tuner is unable to execute the original code
because the prototype compiler completely replaced it. This could be repaired
similarly to above: Retain the original code and introduce another parameter to
select between the original and the transformed execution path.

137

Chapter 7 Experimental Evaluation

7.3.2 Detailed Analysis of Hierarchical Search

Having seen that our tuner is able to find adequate configurations in the previous
section, we investigate its effectiveness and efficiency in detail in the following.
Being effective requires that configurations found are as close to the optimum
as possible. Efficiency refers to the time the tuner requires to get to its final
configuration. Unfortunately there is no ground truth we can compare against.
The globally optimal configuration is unknown and exhaustively searching for it
is infeasible. Instead, we use OpenTuner [Ans+14] to provide reference data.
The comparison between hierarchical search and OpenTuner was first presented
in our publication [PGT19], but is presented here in greater detail.5 OpenTuner
is a general purpose autotuning tool written in Python. Application developers
tune their program by providing a MeasurementInterface implementation. The
OpenTuner driver iteratively passes configurations to that interface, for which it
is expected to return a measurement value. Configurations and measurements
are stored in a central database. OpenTuner’s unique feature is its ability to run
multiple search algorithms in cooperation. At every iteration, a search algorithm
is selected to provide the next configuration. Measurement results are then shared
across all algorithms. Instead of a specific search algorithm or implementation the
application developer chooses a set of them or uses the predefined default. The set
can also be generated randomly. Because the tuner is not specifically built as an
online tuner, the search is usually run with a time budget or for a limited number
of iterations.
To compare hierarchical search and OpenTuner, we use OpenTuner to optimize

the PolyBench benchmark programs that were used to produce the performance
results discussed above. Unfortunately, OpenTuner cannot be integrated into the
parallelized programs like libtuning because of its Python implementation that is
designed to act as a driver for the program to be tuned: The intended workflow is
to produce a configuration in every tuning iteration, to run the program with that
configuration, and return a runtime measurement. To optimize the PolyBench
programs, we thus use OpenTuner as a driver for the binaries: We implement a
Python application containing the OpenTuner tuning loop. In each tuning loop
iteration, the application configures and runs the binary produced by our com-
piler. For this purpose we exploit a feature of libtuning that allows loading

5The experimental design and data were contributions to the article by the author of this
dissertation.

138

7.3 Polyhedral Parallelization

parameter configurations from a file whenever the program is started. The loaded
configuration is then kept unchanged for every iteration of the tuning kernel. Us-
ing this mechanism, OpenTuner can evaluate a configuration by writing it to the
file and executing the benchmark program, which then loads the configuration file
and prints out the kernel timings. Three kernel timings are produced by setting
the tuning loop length accordingly. We observed that the first timing is always
substantially worse than the following ones, which we attribute to the necessary
initialization of the GPU device and to cache warming effects. The first timing is
hence discarded. OpenTuner uses the average of the remaining ones as the runtime
result for the sampled configuration.

While we are forced to take these measures to be able to optimize our parallelized
programs with OpenTuner, they cause multiple subtle differences in how configura-
tions are executed and in the performance results the searches can observe for the
same configuration. These differences bias the comparison towards OpenTuner,
with one exception: In half of the PolyBench programs, the aphes compiler gener-
ates multiple parallel regions in sequence, each of which is associated with its own
instance of the libtuning autotuner. When optimizing, each instance observes
only the runtime of its associated region. Since OpenTuner is not integrated into
the application, however, it is forced to optimize all regions together, thus solving a
larger tuning problem. Nevertheless, in the remaining half of the programs there is
only one parallel region, allowing for a one-to-one comparison between OpenTuner
and hierarchical search. The programs with one parallel region are doitgen, gemm,
gesummv, syr2k, and syrk. Furthermore, two additional major differences exist
that strongly favor the OpenTuner search. Firstly, the performance measurements
observed by libtuning always include all overheads of the search and parameter
updates, which for OpenTuner is not included in the timing results. We cannot
avoid any effect this bias potentially has on the experiment. Secondly, OpenTuner
is able to not only avoid penalties of its own overhead, it also avoids some overhead
that is caused by the parallel execution within the optimized programs: Whenever
a GPU kernel is executed for the first time, it is first Just-In-Time compiled for the
GPU device. The cost associated with that is not observed by OpenTuner because
the first runtime measurement containing this cost is discarded. With libtuning,
we do not discard any configurations by default and thus incur the full kernel
initialization overhead. We found the effect of this bias to be substantial, in par-
ticular when the additional cost is large compared to the actual execution time of

139

Chapter 7 Experimental Evaluation

Hierarchical Search OpenTuner

0

1

2

3

4

5

2mm 3mm doitgen gemm syr2k syrk

C
on

fig
. R

un
tim

e
[s]

0.01

0.02

0.03

atax bicg gemver gesummv mvt

Figure 7.5: Comparison between the configurations found by hierarchical search and
OpenTuner after 100 search steps. The plot shows the best runtimes ob-
served during these steps.

the kernel. Therefore, we take steps to prevent this disparity between OpenTuner
and hierarchical search in the experiment we conduct: Using the Stabilization
mechanism in libtuning (see Section 3.2, page 41), we configure the autotuner
to sample each configuration twice and discard the first result. As a consequence,
we also double the length of the tuning loop when tuning with hierarchical search:
For OpenTuner, the PolyBench programs are tuned for 100 iterations, whereas
200 iterations are used for hierarchical search, which corresponds to 100 search
steps. In both cases, the search is repeated ten times. To compare the two search
algorithms, we focus on two aspects: First, we consider the tuning result produced
by either. For either search, we consider as tuning result the best configuration
found during the search. Second, we analyze the total time required to complete
a fixed number of search steps.

We first consider the best configurations found by the search algorithms. Fig-
ure 7.5 depicts the runtimes of the best configurations among the tuning runs of
the respective searches: We see that the two algorithms find configurations that
for half the benchmarks achieve comparable performance. The data further shows
that hierarchical search’s tuning results outperform OpenTuner by a small per-
centage in the atax, bicg, gemver, and mvt benchmarks. What these four have

140

7.3 Polyhedral Parallelization

0.25

0.50

0.75

1.00

1.25

2mm 3mm atax bicg doitgen gemm gemvergesummv mvt syr2k syrk

C
on

fig
. S

pe
ed

up

Hierarchical Search

Figure 7.6: Runtime of the configurations found by hierarchical search normalized to
the best configuration found by OpenTuner across all tuning runs.

in common is that they are both cheap (on the order of milliseconds or tens of
milliseconds) and contain multiple parallel regions in sequence. Because the bench-
marks are cheap, the search space contains many bad configurations, in particular
those using the GPU. Additionally the multiple parallel regions render the search
space more complex for OpenTuner, as discussed above. On the other hand, the
only benchmark where the OpenTuner results are overall ahead is syr2k. For this
benchmark we observed that OpenTuner finds configurations close to its optimum
after the first quarter of the search, whereas hierarchical search takes at least twice
as long, if it finds those configurations at all. This shows that OpenTuner’s more
eager exploration is helpful and necessary to find the optimum in this particular
benchmark. To visualize the worst-case loss in performance we incur with hierar-
chical search, Figure 7.6 shows the performance of the search results relative to
the absolute best configuration found by OpenTuner across all of its tuning runs.
For five benchmarks, namely atax, bicg, doitgen, gemver, and mvt, the perfor-
mance is on par or better by a small margin then the OpenTuner result. For the
remaining benchmarks, the configurations found by OpenTuner outperform those
of hierarchical search. The geometric mean of the relative performance is 0.85 (the
median is 0.96), meaning that in the worst case, hierarchical search results are on
average 15% slower than those of OpenTuner.

141

Chapter 7 Experimental Evaluation

Hierarchical Search OpenTuner

0

200

400

600

2mm 3mm doitgengemm syr2k syrk

C
um

ul
. R

un
tim

e
[s]

0

2

4

6

atax bicg gemver gesummv mvt

Figure 7.7: The time required to complete 100 search steps using OpenTuner or hierar-
chical search. Both search techniques require the same amount of time for
the 2mm, 3mm, gemm, and syr2k benchmarks. Hierarchical search is faster in
the remaining ones.

0.5

1.0

2.0

2mm 3mm atax bicg doitgen gemm gemvergesummv mvt syr2k syrk

Se
ar

ch
 S

pe
ed

up

Hierarchical Search

Figure 7.8: The time required to execute 100 search iterations using hierarchical search
relative to the average time required by OpenTuner. The median speedup
is 1.22.

142

7.3 Polyhedral Parallelization

0

25

50

75

0 25 50 75 100
IterationC

um
ul

. R
un

tim
e

[s] Hierarchical Search OpenTuner

(a) gemm

0

20

40

60

0 25 50 75 100
IterationC

um
ul

. R
un

tim
e

[s] Hierarchical Search OpenTuner

(b) syrk
Figure 7.9: Execution timeline of 100 search steps with OpenTuner and hierarchical

search. Dots are median times required to reach an iteration, the ribbon
boundaries are the minimum and maximum. [PGT19]

The key claim of hierarchical search is that it accelerates the search. To assess
that claim we compare the cumulative runtime of the configurations sampled by
OpenTuner and hierarchical search. Figure 7.7 shows the comparison. The plot
shows the cumulative runtime required to complete 100 search steps. It only
includes kernel runtimes including all data transfers, the thread management, and
for hierarchical search all overhead of the search implementation. The plot shows
that hierarchical search completes 100 iterations faster than OpenTuner for seven
benchmarks. For 2mm, 3mm, gemm, and syr2k, no acceleration is achieved.

For a better visualization of the relative search performance, we refer to Fig-
ure 7.8. This plot shows the speedup of hierarchical search over OpenTuner’s
average search time. As before, the runtime measurements for our tuner all in-
clude all tuning overhead, which is excluded in the OpenTuner measurements.
The best performance is achieved in the syrk benchmark, for which we reach a
median speedup of up to 1.49× and a maximum speedup of 2×. The 2mm, 3mm,
and syr2k benchmarks on the other hand exhibit the worst relative performance
with median speedups between 0.94 and 0.95. Overall, the median speedup of
hierarchical search compared to OpenTuner is 1.22 (the geometric mean is 1.13).
In other words: On average, hierarchical search reduces the search time by over
10% compared to OpenTuner, and by over 30% in the best case.

To illustrate the differences in the search behavior between OpenTuner and hi-
erarchical search, Figure 7.9 shows the cumulative runtimes for two of the bench-
marks in greater detail. The selected benchmarks are gemm, as a representative for
those cases where our search did not accelerate the search, and syrk for which we
achieved the best results. Both benchmarks contain only a single parallel region

143

Chapter 7 Experimental Evaluation

and therefore allow for a direct comparison between hierarchical and OpenTuner
search. The dots in the plots denote the median time required to reach the it-
eration on the abscissa, the ribbon boundaries are the minimum and maximum.
The data points at iteration 100 are hence the basis for the plots in Figure 7.8.
For gemm we see at the lower ribbon boundary OpenTuner searches which quickly
find configurations with excellent performance and then retain those. After about
iteration 16, the lower ribbon boundary is made up of just two search instances,
which trade places in iteration 72. Within both instances we see little variance in
the kernel runtimes, which indicates that the search ensemble behaves greedily for
the majority of the iterations, varying configuration values only slightly, and only
rarely makes larger exploratory steps. Contrasting the two searches in the plot
with each other we furthermore see the difference in the search behavior: While
OpenTuner may take exploratory steps at any iteration, hierarchical search is ex-
plorative in the beginning and then becomes more greedy over time. The latter
effect is directly controlled by the γε parameter, controlling the stepwise decrease
of the ε in the ε-Greedy search. Another interesting effect we see in the hierarchi-
cal search curve is the upward bend the upper ribbon boundary exhibits around
iteration 70. This effect is produced by a search instance that becomes stuck in
a local extremum that it cannot escape, even though that extremum has a worse
performance value than configurations sampled previously. Our implementation
takes no measures to avoid such situations, but the effect can be easily mitigated
in a practical deployment: Once the tuner has converged, the best know configu-
ration can be applied instead of the one sampled last. Comparing gemm with syrk,
we see that the median and lower ribbon boundaries of hierarchical search progress
almost identically. The upper ribbon boundary of syrk is formed by the outlier
visible in Figure 7.8. Here, hierarchical search converges to a local extremum
again. Hierarchical search is unable to escape the local extremum, causing the
poor cumulative runtime. However, unlike above the runtime at the extremum is
not any worse than the configurations sampled before. To mitigate this issue, it is
therefore necessary to re-run the search to improve the configuration, but in the
context of hybrid tuning that already happens automatically: When the hybrid
tuner chooses to explore, a new search is started. Considering the OpenTuner
progression for the syrk highlights OpenTuner’s explorative nature. Although we
see both ribbon boundaries and the median level off briefly at around 25 iterations,
they shortly after all rise steeply. The tuner leaves good configurations behind to

144

7.3 Polyhedral Parallelization

Hierarchical Search Nelder-Mead

0

1

2

3

4

5

2mm 3mm doitgen gemm syr2k syrk

C
on

fig
. R

un
tim

e
[s]

1.00 0.69 0.13 0.67 0.76

0.01

0.02

0.03

0.04

atax bicg gemvergesummv mvt

Figure 7.10: Comparison between the configurations found by hierarchical search and
Nelder-Mead search 100 search steps. The plot shows the best runtimes
observed during these steps.

eagerly explore more of the space, whereas hierarchical tuning more conservatively
zeros in on good configurations.

In addition to OpenTuner, a comparison between hierarchical search and our
own implementation of the Nelder-Mead algorithm is presented. This compar-
ison provides a direct insight into the effect of the search space decomposition:
The Nelder-Mead implementation is also used in the decomposed space in the
non-nominal nodes. We can thus see how the dimensionality reduction and the
mixed search algorithms simplify the search. A search using only Nelder-Mead
corresponds to a hierarchical search where the difference between nominal and
non-nominal parameters as well as parameter dependence constraints are ignored.
In other words, a Nelder-Mead search using our implementation is identical to a
hierarchical search whose search space graph consists of a single non-nominal node.
We include this comparison to directly show the effect of our search space decom-
position. The Nelder-Mead data discussed in the following was obtained from five
tuning runs. Unlike in the performance comparison against OpenTuner, we abstain
from using the double-sampling trick for hierarchical search here. Since Nelder-
Mead is implemented in libtuning, we can use it to optimize the parallelized
regions directly. Hence, it is unnecessary to repeat and discard measurements

145

Chapter 7 Experimental Evaluation

Hierarchical Search Nelder-Mead

0

200

400

600

2mm 3mm doitgengemm syr2k syrk

C
um

ul
. R

un
tim

e
[s]

0.0

2.5

5.0

7.5

10.0

atax bicg gemvergesummv mvt

Figure 7.11: The time required to complete 100 search steps using Nelder-Mead or
hierarchical search. Hierarchical search completes its steps faster than
Nelder-Mead without exception.

during hierarchical searches. Figure 7.10 compares the performance of configura-
tions found by both hierarchical search and Nelder-Mead. Except for four cases,
the performance is on par. The exceptions are 2mm, doitgen, gemm, and syr2k.
This difference is most likely caused by Nelder-Mead being unable to complete its
search within the allotted frame of 100 iterations: We observed that in multiple of
the tuning runs for those benchmarks the Nelder-Mead search has not converged
within 100 steps, and that it takes about twice that number for the search to reach
a stable point with little runtime variance. Having shown that hierarchical search
does not produce configurations worse than the original Nelder-Mead, we also
compare the cumulative runtime of the searches. The runtimes are presented in
Figure 7.11. Without exception, hierarchical search completes faster than Nelder-
Mead. The median speedup over the average Nelder-Mead search time is 1.9 (the
geometric mean is 1.8): Hierarchical search reduces the search time almost by half.
This result shows that by not using Nelder-Mead to optimize nominal parameters
and by reducing the space complexity, the search can be greatly accelerated.

The comparison against OpenTuner revealed that the search space we are facing
in the gemm benchmark is especially interesting, especially since hierarchical search
is unable to accelerate the search. Because of this we used gemm as the basis for a

146

7.3 Polyhedral Parallelization

0

2

4

0 100 200 300

T
im

e
[s]

Default: ε=0.05, γ=0.1

0 100 200 300
Iteration

ε=0.1, γ=0.1

0 100 200 300

ε=0.05, γ=0

Figure 7.12: gemm: Sensitivity of hierarchical search to variation of the hyperparame-
ters: A large ε value encourages exploration at the cost of convergence.
Disabling the ε-decay by setting γε = 0 produces spikes when sub-optimal
configurations are tried more frequently. (Based on [PGT19])

deeper analysis in our publication [PGT19], which we will discuss in the remainder
of this section. The following experiments were executed on hardware effectively
identical to that used for the experiments above, albeit offering a lower clock speed
per core by 100MHz. At the hand of gemm we investigate both the influence of
hyper-parameters in hierarchical search as well as the effect of the rejection rules.

The most impactful hyper-parameters are those of the ε-Greedy algorithm used
in the nominal nodes in the search space graph: The ε which controls its propen-
sity to explore, and the γε which defines the change of ε at every tuning step.
Figure 7.12 demonstrates the effects of setting adverse values on the runtimes ob-
served during tuning. Note that the traces shown in the plot pertain to single
tuning runs. We do not show aggregates of multiple repetitions here, because ag-
gregation smoothes out the spikes and thus hides the performance impact caused
by the ε-Greedy algorithm choosing random configurations. As a consequence, the
shown results and their discussion need to be considered an illustrative example.
The curve on the left shows a tuning curve using our default parameter values
ε = 0.05, γε = 0.1. In the middle, we set the ε parameter to 10%. Although we can
see a macroscopic decreasing trend not unlike in the default case, it is distorted

147

Chapter 7 Experimental Evaluation

0

50

100

150

200

0 100 200 300
Iteration

C
um

ul
at

iv
e

T
im

e
[s]

HS (ε=0.05, γ=0)
HS (ε=0.1, γ=0.1)

HS Default (ε=0.05, γ=0.1)
NM

Polly-ACC
Polly-OMP

Figure 7.13: gemm: Cumulative time traces for the different parametrizations of hier-
archical search (HS) compared with classical Nelder-Mead (NM) and the
two parallelizing reference compilers. (Based on [PGT19])

by frequent spikes. Because of the larger parameter value the ε-Greedy algorithm
is both more likely to choose a random configuration and takes longer to reduce
the ε to turn into a greedy algorithm. Lastly, in the plot on the right, we use the
default ε = 0.05 but set γε to zero. The plot therefore shows the behavior of the
original ε-Greedy algorithm as it is used in Reinforcement Learning for instance.
In essence, we see the same decreasing trend as in the leftmost plot. Unlike the
default configuration however we see spikes on the tail.
In Figure 7.13 we show the effect of the parameter settings with respect to

cumulative search time. The curves show the accumulated kernel runtimes (in-
cluding overhead) of the tuning traces in Figure 7.12 over the progression of the
tuner. As baselines we included the two parallelizing reference compilers used in
Section 7.3.1, as well as our implementation of the classical Nelder-Mead search.
The Nelder-Mead curve was obtained by optimizing the parallelized benchmark
using only that search algorithm by treating nominal parameters as if they were
simple integer intervals. Comparing the Nelder-Mead curve with the hierarchical
search curve using our default configuration, we see that our approach completes

148

7.3 Polyhedral Parallelization

0.00

0.01

0.02

0.03

0 10 20 30 40 50
Iteration

T
im

e
[s]

Hierarchical Search Polly Polly-ACC Without Rules

Figure 7.14: gemm: Search behavior using small matrix sizes using rejection rules, com-
pared to the reference compilers and search without the rules. In the first
iteration, the GPU device is being initialized for both our approach and
Polly-ACC, causing the spike. (Based on [PGT19])

100 iterations in half the time. Moreover, we see that our approach outperforms
Nelder-Mead with less optimal settings, with the exception of the ε = 10% case, for
which the two searches change ranks at around iteration 250. All search algorithms
find configurations that offer speedup over both reference compiler baselines. This
demonstrates that our search space decomposition can be beneficial even with
unfortunate parameter settings, but the hyper parameters still offer room for op-
timization.

Finally, we also use the gemm benchmark to show the effect of the manual rules
which are used to reject tuning configurations in the nominal search space graph
nodes. Because the inputs we used for the PolyBench programs were sufficiently
large in the experiments discussed so far, no configuration was ever rejected. To
enforce rejection, we compiled and ran gemm with a smaller configuration. We used
the SMALL_DATASET default setting. In Figure 7.14 we show the effect the rules
contribute. The plot shows single traces using hierarchical search with and without
rules. Again, we analyze individual traces instead of aggregates to not average out
the negative effects the single traces emphasize. For comparison, we also include
the Polly and Polly-ACC baselines. We see that because of the small input size,

149

Chapter 7 Experimental Evaluation

using the unparallelized kernel version offers the highest performance. Even the
single-platform Polly-ACC baseline is substantially faster than our solution. This
is because our compiler prototype does not implement a fallback to the original
unparallelized kernel. The tuner is forced to always select a parallel version. How-
ever, the rejection rules help mitigate this issue. Because of the input size they
reject configurations that offload computations to a GPU. Without the rules, the
tuner samples configurations which are off the chart here and cause slowdowns of
100× and more. The Polly-ACC curve exposes an interesting detail: The reference
compiler adds a similar rejection rule, and it is triggering for this benchmark as
well. The Polly-ACC rule is much less sophisticated and much easier to compute
than ours. Therefore, the overhead that the Polly-ACC plot shows over the Polly
baseline can be seen as a lower bound on the overhead introduced by our rejection
rules. The upper bound on the overhead is hard to determine. In the second
iteration of the trace in Figure 7.14, which is also off the scale, we identify one
particular problem of the rejection mechanism. When a configuration is rejected,
the search algorithm produces a new one, which for ε-Greedy means drawing a
new random sample. The re-sampling continues until an acceptable configuration
is found, and causes a slowdown of 600× over the Polly baseline.

7.3.3 Discussion

The results presented in this section have shown that the APHES framework is able
to automatically accelerate data parallel programs. Offloading to multiple parallel
platforms outperforms single-platform and non-parallelizing reference compilers.
Moreover, we have shown that hierarchical search is able to accelerate the search
for configurations. The automatic reduction of the search space size and the use of
individual search algorithms for different parameter classes accelerate the search by
a factor of up to two and by 1.13 on average. This acceleration was shown against
OpenTuner, a current state-of-the-art autotuner. The configurations found by our
approach are on par with those found by OpenTuner. Because of that and because
of the acceleration of the search we can conclude that hierarchical search is able
to improve amortization time. The rejection rules which aim to avoid sampling
predictably bad configurations of the nominal parameters have shown to be suc-
cessful. Despite that, the rules introduce a noteworthy overhead when the parallel
workload is insufficient. Being unable to execute the original unparallelized version
of the code poses another limitation of our prototypical implementation. Conse-

150

7.4 Hybrid Autotuning

quently, our compiler can cause degraded performance when the parallel region
operates on too small inputs. For a production deployment our compiler must be
able to both fall back to the original code and to handle rule-based rejection more
intelligently. A possible solution for the latter would be to identify the parameter
values responsible for triggering the rule and exclude the violating values from the
continued search.
We conclude that the findings presented in this section substantiate thesis T2

and the open aspects of thesis T1.

7.4 Hybrid Autotuning

In this section we present experimental results for an analysis of the predictive
component of the hybrid autotuning approach. Because our autotuner is using a
stochastic policy to decide between search and prediction, we are able to analyze
the two components in isolation. The results we present generalize easily to full
hybrid autotuning in production by taking the probabilistic behavior into account.
Since we have analyzed hierarchical search in the previous sections extensively, we
focus on predictive autotuning in this section. We analyze the predictors with
respect to the quality of the prediction, i.e., we compare the performance of the
configurations found by either prediction or search. All experiments were run on
a machine equipped with an Intel Core i7 at 3.5 GHz with four physical and eight
virtual cores and an NVIDIA GTX 970.
In the following sections we first discuss the benchmarks we used as well as our

procedure to generate training and validation data for our predictors. Subsequently
our experiment results are presented and discussed.

7.4.1 Benchmark Selection

This section focuses on the programs of PolyBench that use a single autotuner
instance, namely doitgen, gemm, gesummv, syr2k, and syrk. The remaining pro-
grams all contain at least two parallel regions, each of which is associated with
an individual tuner instance. Since we are looking at the behavior of individual
tuning procedures, the choice simplifies the analysis and the presentation of re-
sults greatly. Moreover, the selected benchmarks are diverse enough to allow for
representative conclusions: For doitgen and gesummv, the heterogeneous paral-

151

Chapter 7 Experimental Evaluation

lelization was unable to improve the performance (cf. Section 7.3.1). For gemm,
syr2k, and syrk the acceleration was excellent on the other hand. In the doitgen
benchmark our tuner was also unable to achieve a substantial speedup over the
OpenTuner search (cf. Section 7.3.2). Therefore, the selected benchmarks capture
the extremes.

7.4.2 Experiment Setup

The aim of hybrid autotuning is to improve online autotuning in the face of a
dynamic tuning context. To create a dynamic context, we subject the PolyBench
benchmarks to different sets of inputs. The input sets further need to contain
both inputs that are similar and inputs that are different. To generate the input
set, we select inputs randomly with the help of Latin Hypercube sampling6: Each
benchmark defines several default inputs ranging from MINI to EXTRA_LARGE. These
span a cuboid, which we subdivide into 20 sub-ranges along every dimension.
For gemm, for instance, the cuboid is three dimensional (for the row and column
numbers of the multiplied matrices). There is only a single input for gesummv.
From the 20 sub-ranges we select five according to Latin Hypercube sampling.
Within each selected sub-range we then select 20 points at random. This scheme
thus produces 100 inputs for each benchmark, out of which twenty at a time are
geometrically close to each other.
Using all benchmarks and inputs we compute search-based tuning baselines to

serve as training and validation data. For every benchmark and input, we use
hierarchical search five times to optimize the parallel execution over 100 tuning
iterations. The baseline data comprises every sampled configuration and its bench-
mark kernel runtime. The best configuration observed during the five tuning rep-
etitions also serves as a virtual performance roofline. Of course that is only an
approximation of the true roofline, which we cannot know without an exhaustive
search.
To be able to analyze the quality of the prediction independent of the imple-

mentation of the predictor, we perform the experiment similar to the OpenTuner
comparison in Section 7.3.2: The predictors are implemented as a Python program
external to libtuning and function as drivers for the benchmark programs. After

6Latin Hypercube sampling [Par94; MBC79] creates space-spanning samples by evenly subdi-
viding every dimension of the sampled space and then placing samples so that there are never
two within the same subdivision along any space axis

152

7.4 Hybrid Autotuning

training based on the baseline training data, the predictors produce configurations
for the test inputs and execute the benchmark programs using those configura-
tions. As in the OpenTuner experiment, the benchmark programs’ tuning loop
lengths are set to a fixed value of five. The first two runtime measurements of the
PolyBench kernels are discarded and the average of the remaining three is used as
the benchmark result.
To train and evaluate the predictors we apply ten-fold cross-validation: The

input set for every benchmark is shuffled and then split into ten equally sized
partitions. Each partition is used as a test sample while the remaining nine are
used for training. We repeat this process five times. In total we thus train and
validate 50 times. Every training iteration is based on 90 inputs, whereas validation
is based on 10 inputs, producing 500 data points per benchmark and predictor.
For validation, we further use the best baseline configuration for each input as
reference.

7.4.3 Results

In this section we compare three different variants of the predictor component of
the hybrid autotuning approach. The first is the tabular Nearest-Neighbor (NN)
predictor. For every benchmark and input its table records the best-performing
configuration. To make a prediction for an unknown input, it returns the table
entry for the known input that is closest to the unknown one with respect to
Euclidean distance. The remaining two predictors are variants of the Greedy-GQ
function approximation algorithm. They differ in the features modeling the inputs
and configurations. The first one, which we henceforth call RBF-Model, uses
Radial Basis Functions (RBF) as features. The second one, called NRBF-Model,
uses the normalized variation of the RBF features.
The first step to construct the function approximation models is to define the

features. Recall the general definition of the RBF: ϕi(x) = −ω||x − µi|| where
x = (s, a) is the concatenation of the input and parameter configuration vectors
(or state and action vectors in RL terminology). The degrees of freedom are the
number of features to use, the centers of the individual basis functions, and their
widths. The NRBF features expose the same degrees of freedom. We set the width
to 1 for all i. For the centers, we resort to Latin Hypercube sampling again to place
the basis functions quasi-randomly in the space. Because the features quantify
the inputs and the parameter configuration the number of features should not be

153

Chapter 7 Experimental Evaluation

0.8
0.9
1.0

2.0

2.5

doit
gen gem

m
gesu

mmv
syr2

k syrk

geo
-mean

Sp
ee

du
p

(g
eo

-m
ea

n)
Feature Multiplier 1x 2x 3x 4x

(a) Speedups of the RBF-Model over searching
for 100 iterations.

0.8
0.9
1.0

2.0

2.5

doit
gen gem

m
gesu

mmv
syr2

k syrk

geo
-mean

Sp
ee

du
p

(g
eo

-m
ea

n)

Feature Multiplier 1x 2x 3x 4x

(b) Speedups of the NRBF-Model over search-
ing for 100 iterations.

Figure 7.15: Performance results for the RBF- and NRBF-Model for varying features
counts.

fixed. We define the number therefore to be a multiple of the number of inputs
and parameters. As multipliers we chose 1×, 2×, 3×, and 4×.
The effect of the different multipliers is shown in Figure 7.15. The plots show

the geo-mean speedups of the predictor over the hierarchical search. Speedup here
is with respect to the time required to complete the 100 iterations of the search
baselines. For the search, that time is the sum of the individual kernel runtimes per
sampled configuration. For the predictor, that time is 100 times the runtime of the
predicted configuration. Interestingly we see that there is no clear winner among
the different feature sets across both models. For the RBF-Model, the feature set
with the best overall average, given by the 1× multiplier, achieves a speedup of
1.46, which is 2 percentage-points ahead of the runner-up. For the NRBF-Model,
the best feature set is created using the 2× multiplier. With a speedup of 1.6 it
outperforms the second best set by a margin of only 0.09 percentage-points. For
the following analyses we use the respective best feature set in both models.
Having determined an appropriate feature set for the function approximation

models, we now compare the different predictors. In Figure 7.16 we show the
speedups of the three predictors over hierarchical search for the 100 iteration frame
of reference. As expected, the NN predictor achieves the highest acceleration of
1.93 over tuning. In comparison, the RBF- and NRBF-Models achieve 1.46 and
1.6 respectively.

154

7.4 Hybrid Autotuning

1.0

2.0

2.5

doitgen gemm gesummv syr2k syrk geo-mean

Sp
ee

du
p

(g
eo

-m
ea

n)

NN NRBF-Model RBF-Model

Figure 7.16: Speedup of using the predicted configuration for 100 iterations over per-
forming search-based tuning

0.0

0.5

1.0

1.5

doitgen gemm gesummv syr2k syrk geo-mean

Sp
ee

du
p

(g
eo

-m
ea

n)

NN NRBF-Model RBF-Model

Figure 7.17: Speedup comparison between the prediction results and the best search
results.

155

Chapter 7 Experimental Evaluation

0.6

0.7

0.8

0.9

1.0

doitgen gemm gesummv syr2k syrk
Benchmark

O
ve

rh
ea

dR
ed

uc
tio

n
NN NRBF-Model RBF-Model

Figure 7.18: Reduction of the search overhead using hybrid tuning.

To assess the quality of the predictors we further compare the prediction results
with the best search results. In Figure 7.17 we show the speedup of the predicted
configurations over the best configuration found during searching. The vast ma-
jority of predicted configurations is slower then what the autotuner found using
the hierarchical search. Interestingly, there is a small number of points greater
than one, which refer to predictions that produced a configuration actually faster
than those found during searching. On average, the NN predictor reaches 71.9%
of the search result’s performance. The RBF- and NRBF-Models fall behind with
54.4% and 59.6%. While this indicates that we can find substantially better con-
figurations using searching instead of prediction, it does not yet show the benefit
of hybrid tuning. The primary goal of our technique is to reduce the overhead
introduced by search-based autotuning. To evaluate this reduction, we define the
overhead as the increase in cumulative runtime compared to using the best known
configuration for 100 iterations. Note that this is a different baseline than the one
used in Figure 7.17, which was selected only from the configurations seen during
the searches, not during prediction. Otherwise, when the predictors find a bet-
ter configuration than what searching produced, the overhead would be negative.
The results we show here are thus slightly biased towards the search, because they
explicitly exclude the predictor’s ability to find better results than the search. Fig-
ure 7.18 shows the overhead reduction metric. We see that even in the worst case

156

7.4 Hybrid Autotuning

0

500

1000

1500

2000

2500

doitgen gemm gesummv syr2k syrk geo-mean

Br
ea

ke
ve

n

NN NRBF-Model RBF-Model

Figure 7.19: The tuning iteration at which the better configuration found by search-
based tuning outweighs the overhead reduction gained by prediction-based
tuning.

(gemm), the overhead reduction is 60%. The geo-mean reduction even is above
98.7% and the median is above 99.6%: Half the time, hybrid autotuning elim-
inates the entire overhead search-based tuning would incur over 100 iterations,
even though search-based tuning finds better configurations.

This conclusion however is only valid for the frame of 100 iterations we looked
at: After 100 iterations the search has converged to a configuration that, as we
have seen, is generally better than that of the predictor. As the number of itera-
tions considered in the frame of reference goes to infinity, the relative overhead of
the search goes to zero. Therefore, there must be a specific number of iterations
after which the overhead reduction becomes negative. That means, at some point
the better performance of the configuration found by the search will outweigh the
benefit of the predictor. If we assume for simplicity that after the 100 iterations
the cumulative runtime grows linearly we can compute that break-even point. The
cumulative runtimes of the search-based tuning and the prediction-based tuning
can then be approximated as linear functions. Define Ttuner(i) = ttuner ·i+Ttuner,100
for all tuning methods, where ttuner is the runtime of the (converged) tuners’ con-
figuration and Ttuner,100 is the cumulative time taken for the first 100 iterations.
Then, the break-even point is the iteration at which the linear functions of the

157

Chapter 7 Experimental Evaluation

search-based tuning and the prediction-based tuning intersect. We show the result
of this analysis in Figure 7.19. The plot includes only roughly 46% of the data the
previous analyses were based upon. The majority (45.3%) was removed because
the break-even point was negative: With the exception of five data points, the con-
figuration found by the search was never able to outweigh the overhead reduction.
For those five however, which stem from the doitgen benchmark search using the
RBF- and NRBF-Models, search was already faster than prediction over the 100
iterations. The remaining 8.6% were removed for presentation purposes, because
their break-even point was in excess of 2500. The median of those 8.6% is at 4933
iterations, the average is at 37930.39 iterations. The 35% of the data shown here
thus pose those data points where hybrid tuning performs worst. The geo-mean
break-even point for NN is at 256 iterations. For the RBF- and NRBF-Model it
is at 164 and 189, respectively. Including also the data points that were removed
for presentation purposes, the geo-mean break-even points are 606, 263, and 306,
respectively.

7.4.4 Discussion

In this section we presented a performance evaluation of our hybrid tuning ap-
proach. The results have shown that the prediction component of the hybrid
tuner can reduce over 99% of the overhead of performing a search for 100 itera-
tions. On average, this means prediction can accelerate these 100 iterations almost
2-fold. The nearest-neighbor predictor has shown to outperform the function ap-
proximation predictor by a large margin in all experiments. Although the results
for the RBF- and NRBF-Models were positive nonetheless, their benefits in space
and runtime complexity do not outweigh the performance difference.
The predictors produce slower configurations than search-based tuning. For NN,

the average slowdown was 28%, for the RBF-Model it was 46%, and 40% for the
NRBF-Model. Therefore, we found that there is a limit to the overhead reduction
that prediction-based tuning can provide. When the tuning kernel is repeated
often enough without any change in the context after the search has converged,
the search overhead and thus the potential for reduction go to zero. At some point,
searching will then provide better overall performance since it is able to find better
configurations. For the benchmarks we analyzed, we saw that this occurs in 54.2%
of the cases. For those, the break-even was on average above 263 iterations. For
the NN predictor it was on average as large as 606 iterations.

158

7.5 Summary

These results substantiate our thesis T3: The predicted configurations are ade-
quate at 72% of the performance achieved by search, but it takes over 600 iterations
on average for the search to amortize against the prediction result.

7.5 Summary

In this chapter we evaluated the performance improvements the APHES framework
offers. The results have shown that our hybrid tuning approach can be used to
optimize automatically parallelized programs for cooperative heterogeneous exe-
cution. Using hierarchical search, hybrid tuning is able to effectively explore the
search space and to exploit a model trained online during the search.
We have shown that autotuning is necessary to enable optimized cooperative

heterogeneous execution. Using the performance model employed by the most
closely related prior research, we have shown that the model is too simple to
provide adequate results. In the presence of additional tunable parameters the
linearity assumptions of the model are violated.
With hybrid tuning, programs parallelized by our aphes compiler have shown to

outperform two state-of-the-art single-platform parallelizers. Compared to current
state-of-the-art autotuners, the hierarchical search algorithm reduces the search
time by over 10% on average, and up to a maximum of 30%.
Exploiting the models which are automatically trained while exploring, hybrid

tuning reduces the impact of the search overhead further. The models produce
a configuration at the first tuning iteration based on indicators that describe the
current application and system state. Known states can thus be recognized. Using
either a tabular nearest-neighbor approach or function approximation, adequate
configurations can be predicted for unknown states.
During the evaluation, however, the function approximation approach has shown

weaker performance compared to the tabular approach. While the tabular predic-
tor is more expensive to store and to query, its predictions exhibit better perfor-
mance by up to 47 percentage points on average.

159

Chapter 8

Conclusion and Outlook

In this dissertation we presented the APHES framework for automatic paralleliza-
tion for heterogeneous systems. To leverage multiple parallel platforms simulta-
neously, parallelized programs automatically distribute data parallel work. The
work distribution as well as platform-specific tunable parameters are controlled
by libtuning, our novel online autotuning library. Parallelized programs are au-
tomatically instrumented to interact with the autotuner by the aphes compiler.
Together, libtuning and the aphes compiler form the APHES framework.

With libtuning, we have designed a general purpose online autotuning library.
It implements our novel tuning technique, hybrid autotuning. Hybrid tuning com-
bines empirical search with online learning. Models constructed while searching
can then be exploited to select configurations for given program inputs and ap-
plication and system states. Inputs and states are quantified through indicators,
which are metrics defined by an application developer or, within the APHES frame-
work, by the compiler. Changing indicators point to a change in the inputs or
in the application or system state. When changes occur, the tuner autonomously
chooses whether to explore the space or to exploit the model.

For exploration, the libtuning autotuner uses a novel search algorithm we call
hierarchical search. Hierarchical search decomposes the search space by exploiting
inter-parameter dependencies and when parameters are nominal. Reducing the
high-dimensional search space to several spaces of smaller dimensions simplifies
the search in each. Moreover, every space can be explored using different search
algorithms. In particular, hierarchical search uses the ε-Greedy algorithm to op-
timize nominal parameter spaces, and Nelder-Mead in the non-nominal ones. For
the nominal spaces, libtuning further supports retrieving the next configuration

161

Chapter 8 Conclusion and Outlook

without measuring the last. That enables avoiding bad configurations that can be
identified based on domain knowledge a-priori.

The aphes compiler is a parallelizing compiler targeting data parallel regions
of input programs. The regions are parallelized for multiple parallel targets such
as OpenMP or CUDA. It implements two transformation pipelines. The main
pipeline is based on the polyhedral model. The polyhedral model is a mature
analysis and transformation framework for loop nests. In particular, it supports
data locality optimization and dependence testing, which enable automatic paral-
lelization. The aphes compiler uses the model to generate code for OpenMP and
CUDA, and to distribute the workload across the platforms. The libtuning au-
totuner is used to optimize the distribution of work as well as platform-specific
parameters such as OpenMP threads, the amount of work per GPU thread, or
whether to use the GPU’s shared memory. The compiler automatically extracts
indicators from the program by identifying variables that influence the amount of
work processed in the parallelized loop. Using the extracted indicators, hybrid
tuning can build the prediction models.

Because the polyhedral model has restrictive requirements on the loops it can
analyze, we have implemented a second fallback pipeline. The second pipeline
provides limited ad-hoc outer-loop parallelization targets based on the program
dependence graph. Interprocedural analyses and less restrictions on the control
flow enable transformation of programs that are not representable in the polyhedral
model. The limitation to outer-loop parallelization however reduces the possible
acceleration.

Our experimental evaluation has shown that with the APHES framework, au-
tomatic multi-platform parallelization is possible. The generated programs out-
perform programs parallelized with two state-of-the-art single-platform compilers.
However, the experiments also exposed the approach’s limitations: Outer-loop-
only ad-hoc parallelization cannot offer significant speedups in general. Multi-
loop parallelization is necessary, but the polyhedral model is subject to restric-
tions which impede its applicability. Hybrid tuning has demonstrated to reduce
the time required for exploration by over 10% on average and to build adequate
models. The best performing model, a tabular nearest-neighbor approach, has
shown to shed at least 98% of the overhead an exploration would incur. Function-
approximation models which are cheaper to store and query, reduce over 84% of
the overhead. These results demonstrate that libtuning provides an autotuner

162

8.1 Thesis Objectives

that enables always-on online tuning. Because of the accelerated search and the
model predictions, it poses a tool that can be deployed with applications into
production environments.
In the following, we revisit the objectives of this dissertation and discuss the

theses we posed in Chapter 1. Lastly, we propose future directions and research
questions that arise from our findings.

8.1 Thesis Objectives

In this dissertation, we evaluated our prototypical implementation of the
APHES framework to investigate the theses posed in Section 1.2.

Thesis T1: Optimized cooperative parallelization accelerates programs,
exceeding the performance of single platform parallelization. Using
polyhedral model-based parallelization, our benchmarks have shown a substantial
increase in performance compared to two state-of-the-art single-platform paralleliz-
ing compilers. We were able to achieve speedups of up to 6× for both references.
However, for benchmarks with a limited amount of computations our transforma-
tions slowed down the execution. The cause of the decrease in performance was
the management overhead for the parallel execution. We did not allow our au-
totuner to execute unparallelized or single-platform code, which would eliminate
this particular problem. The ad-hoc parallelization method was unable to pro-
duce substantial speedups. Because it is restricted to transforming outer loops,
the amount of parallelism the method can exploit is severely limited. With ad-hoc
parallelization, we were able to demonstrate that the performance models used by
current state-of-the-art multi-platform parallelization tools are insufficient when
additional platform specific parameters are taken into account.

Thesis T2: Hybrid autotuning determines configurations of comparable
quality with better amortization time than the state of the art. Our
experiments demonstrated that hybrid tuning and hierarchical search in particu-
lar are able to reduce the search time by up to 30% and by over 10% on average.
Because of the reduced complexity of the search space, hierarchical search finds
an adequate configuration in a shorter time than state-of-the-art autotuning algo-
rithms. The configurations found by hierarchical search are still on par with other

163

Chapter 8 Conclusion and Outlook

autotuners. Although the prediction component of hybrid autotuning produces
worse configurations than the search, it does not require sampling configurations
and avoids that particular overhead. The amortization time is thus improved
compared to the state of the art.

Thesis T3: Hybrid autotuning predicts adequate configurations for given
inputs based without negatively impacting amortization time. The eval-
uation has shown that both the nearest-neighbor and function-approximation pre-
dictors are able to avoid large portions of the overhead that emerges during heuris-
tical searches. The configurations produced by prediction are adequate and they
achieve up to 72% of the performance of configurations found through searching
on average. However, although the performance is worse, it takes up to more than
600 iterations on average for the search to make up the difference. Only after that
break-even point any negative impact of the prediction result on amortization time
becomes apparent.

8.2 Outlook

The positive results we were able to achieve with our approach give rise to addi-
tional research questions worth exploring. In particular, our autotuner has demon-
strated to be usable for always-on tuning scenarios. But to offer the best possible
performance results, great care is still required from the application developer.
That burden on the developer can and should be lightened. Similarly, we have
demonstrated the power of using prediction models along heuristic search in auto-
tuning. Especially in light of the recent interest and advances in machine learning,
we believe that our approach can grow beyond its current abilities.

Automatic Indicator Extraction Currently, indicators need to be manually
registered with the autotuner. When using the aphes compiler to instrument
an application for tuning, this process can be automated because the compiler
has a good understanding of performance-critical program properties. For other
applications, however, there is no automatic solution, which bears the potential for
future research: Using program analysis, can an automatic tool extract indicators
from programs instrumented with the tuner?

164

8.2 Outlook

Automatic Parameter Dependencies Like the indicators, parameter depen-
dencies must be stated explicitly by the application developer. Not only is this
tedious, it can also introduce errors: If a parameter dependency is defined that is
incorrect, the autotuner’s search can produce much worse results. There is room for
automation: The autotuner is able to observe the relationship between parameter
configurations and runtimes. Is it possible to deduce any dependencies automati-
cally from observations, potentially even ones the developer was unaware of? Can
this analysis be realized without sacrificing the benefits parameter dependencies
provide?

Portability of Hybrid Tuning Models Hybrid autotuning produces predic-
tion models for indicators that currently represent only the dynamic application
state. Obviously, indicators can be included that additionally model static and dy-
namic system properties, as well as other static application properties. Potentially,
this opens up the possibility to create portable models. Can models be trained on
one system and then be exploited on a different one? Can models make predictions
across different applications?

165

List of Figures

1.1 The APHES framework. 5

2.1 Vector addition using OpenMP . 10
2.2 Example: Tuning the OpenMP thread count 11
2.3 An illustration of the Nelder-Mead algorithm operations. 15
2.4 LLVM intermediate representation of a “hello world” program. . . . 21
2.5 Example: Control and Data Dependences 23
2.6 Example: A data dependent computation 25
2.7 Matrix multiplication. 27
2.8 Original schedule tree of the matrix multiplication example in Fig-

ure 2.7. 31

3.1 Example: Tuning OpenMP vector addition with libtuning. 34
3.2 The architecture of the libtuning autotuner. 36
3.3 Example: Record dependences between parameters. 38
3.4 Hybrid, input-sensitive tuning of OpenMP vector addition with

libtuning. 40
3.5 The APHES Framework Architecture. 43
3.6 Program parallelization with the aphes compiler. 44

5.1 The hybrid online tuning workflow. 83
5.2 The ParameterSpace. 87
5.3 Mirroring Example. 88
5.4 The Search implementation interface. 90
5.5 The Mealy automaton for the Nelder-Mead algorithm. 92
5.6 Decompose the global search space of the simplified heterogeneous

mapping according to the parameter classes. 95
5.7 Decompose the global search space based on parameter classes and

constraints. 98
5.8 Example: Search space graph. 99

167

List of Figures

5.9 Example: Hierarchical search. 100

6.1 Original schedule tree of the matrix multiplication example in Fig-
ure 2.7. The figure is identical to Figure 2.8 and is repeated here
for the reader’s convenience. 109

6.2 Example: Partitioning and platform mapping for the schedule . . . 110
6.3 Expected control flow structure of a loop supported by aphes . . . 115
6.4 Code sections generated by target plugins. Solid arrows denote

synchronous, dashed arrows asynchronous operations. 117
6.5 Example: Partitioning the work between an OpenMP and a CUDA

target. 121
6.6 Example: Allocation mapping for three arrays. 122

7.1 Relationship between runtime and OpenMP thread configurations
for the four loops of the gemver benchmark. 131

7.2 Binomial: Comparison of greedily selected thread configurations. . 133
7.3 BlackScholes: Comparison of greedily selected thread configurations.134
7.4 Speedup results for the automatically parallelized and tuned Poly-

Bench programs over three baseline compilers: Polly, Polly-ACC,
and Polly-OMP. 136

7.5 Comparison between the configurations found by hierarchical search
and OpenTuner. 140

7.6 Runtime of the configurations found by hierarchical search normal-
ized to the best configuration found by OpenTuner across all tuning
runs. 141

7.7 The time required to complete 100 search steps using OpenTuner
or hierarchical search. 142

7.8 The time required to execute 100 search iterations using hierarchical
search relative to the average time required by OpenTuner. 142

7.9 Execution timeline of 100 search steps with OpenTuner and hierar-
chical search. 143

7.10 Comparison between the configurations found by hierarchical search
and Nelder-Mead search 100 search steps. 145

7.11 The time required to complete 100 search steps using Nelder-Mead
or hierarchical search. 146

168

List of Figures

7.12 gemm: Sensitivity of hierarchical search to variation of the hyperpa-
rameters. 147

7.13 gemm: Cumulative time traces for the different parametrizations of
hierarchical search. 148

7.14 gemm: Search behavior using small matrix sizes using rejection rules. 149
7.15 Performance results for the RBF- and NRBF-Model for varying fea-

tures counts. 154
7.16 Speedup of using the predicted configuration for 100 iterations over

performing search-based tuning . 155
7.17 Speedup comparison between the prediction results and the best

search results. 155
7.18 Reduction of the search overhead using hybrid tuning. 156
7.19 The tuning iteration at which the better configuration found by

search-based tuning outweighs the overhead reduction gained by
prediction-based tuning. 157

169

List of Tables

2.1 Parameter Classes [Pfa+17]. 14

4.1 Comparison of the tuning algorithms and autotuners 53
4.2 Comparison of the model-based tuning approaches 56
4.3 Comparison of the dependence-based parallelization approaches . . 61
4.4 Comparison of the polyhedral parallelization approaches 64
4.5 Comparison of the languages and parallelizing compilers 66
4.6 Comparison of the pattern-based parallelization approaches 68
4.7 Comparison of the model-based autotuning compilers 71
4.8 Comparison of the search-based autotuning compilers 74
4.9 Comparison of the autotuning languages 79

5.1 Tuning parameters for a simplified heterogeneous mapping example 94

6.1 Tunable parameters exposed by polyhedral parallelization 113
6.2 Tunable parameters exposed by the dependence-based parallelization119

7.1 The PolyBench benchmarks used in this evaluation 129

171

Bibliography

[AAH15] Cfir Aguston, Yosi Ben Asher, and Gadi Haber. “Parallelization Hints
via Code Skeletonization”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 26.11 (Nov. 1, 2015). issn: 1558-2183 (cit. on p. 67).

[Aho+07] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman, eds.
Compilers: Principles, Techniques, & Tools. 2nd ed. Pearson, Addison
Wesley, 2007. isbn: 978-0-321-48681-3 (cit. on p. 29).

[Alm+04] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey,
Steven W. Reeves, Devika Subramanian, Linda Torczon, and Todd
Waterman. “Finding Effective Compilation Sequences”. In: Proceed-
ings of the 2004 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems. LCTES ’04. ACM, 2004.
isbn: 1-58113-806-7 (cit. on p. 72).

[Ami+12] Mehdi Amini, Béatrice Creusillet, Stéphanie Even, Ronan Keryell,
Onig Goubier, Serge Guelton, Janice Onanian Mcmahon, François-
Xavier Pasquier, Grégoire Péan, and Pierre Villalon. “Par4All: From
Convex Array Regions to Heterogeneous Computing”. In: Second In-
ternational Workshop on Polyhedral Compilation Techniques 2012.
IMPACT ’12. 2012 (cit. on p. 59).

[Ans+09] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe. “PetaBricks: A Language
and Compiler for Algorithmic Choice”. In: Proceedings of the 2009
ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI ’09. ACM, 2009, pp. 38–49. isbn: 978-1-60558-
392-1 (cit. on p. 76).

[Ans+11] Jason Ansel, Maciej Pacula, Saman Amarasinghe, and Una-May
O’Reilly. “An Efficient Evolutionary Algorithm for Solving Incre-
mentally Structured Problems”. In: Proceedings of the 13th Annual

173

Bibliography

Conference on Genetic and Evolutionary Computation. GECCO ’11.
ACM, 2011, pp. 1699–1706. isbn: 978-1-4503-0557-0 (cit. on p. 76).

[Ans+12] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan, Marek Ol-
szewski, Una-May O’Reilly, and Saman Amarasinghe. “Siblingrivalry:
Online Autotuning Through Local Competitions”. In: Proceedings of
the 2012 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems. CASES ’12. ACM, 2012, pp. 91–
100. isbn: 978-1-4503-1424-4 (cit. on p. 51).

[Ans+14] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan
Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Ama-
rasinghe. “OpenTuner: An Extensible Framework for Program Au-
totuning”. In: Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation Techniques. PACT ’14. ACM,
2014, pp. 303–316. isbn: 978-1-4503-2809-8 (cit. on pp. 52, 138).

[Ans14] Jason Ansel. “Autotuning Programs with Algorithmic Choice”. Dis-
sertation. Massachusetts Institute of Technology, 2014 (cit. on p. 76).

[Aru+17] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil
Anthony Bharath. “A Brief Survey of Deep Reinforcement Learning”.
In: IEEE Signal Processing Magazine 34.6 (Nov. 2017), pp. 26–38.
issn: 1053-5888 (cit. on p. 18).

[Ash+18] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo,
and Cristina Silvano. “A Survey on Compiler Autotuning Using Ma-
chine Learning”. In: ACM Computing Surveys 51.5 (Sept. 2018),
pp. 1–42. issn: 0360-0300 (cit. on p. 15).

[ATN09] Cédric Augonnet, Samuel Thibault, and Raymond Namyst. “Auto-
matic Calibration of Performance Models on Heterogeneous Multicore
Architectures”. In: Euro-Par 2009 – Parallel Processing Workshops.
Ed. by HX. Lin et al. Lecture Notes in Computer Science vol. 6043.
Springer, Berlin, Heidelberg, 2009, pp. 56–65. isbn: 978-3-642-14121-8
(cit. on p. 55).

[Aug+09] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. “StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures”. In: Euro-Par 2009 – Parallel

174

Processing. Ed. by H. Sips, D. Epema, and HX. Lin. Vol. 5704. Lecture
Notes in Computer Science vol. 5704. Springer, Berlin, Heidelberg,
2009. isbn: 978-3-642-03869-3 (cit. on p. 54).

[Bai16] Alexander Baier. “Automatic Loop Partitioning for Heterogeneous
Systems”. Bachelor’s Thesis. Karlsruhe Institute of Technology (KIT)
– IPD Tichy, 2016 (cit. on p. 114).

[Bai95] Leemon Baird. “Residual Algorithms: Reinforcement Learning with
Function Approximation”. In: Proceedings of the Twelfth International
Conference on Machine Learning. Morgan Kaufmann, 1995, pp. 30–
37. isbn: 978-1558603776 (cit. on p. 19).

[Ban88] Utpal K. Banerjee. Dependence Analysis for Supercomputing. Kluwer
Academic Publishers, 1988. isbn: 978-0-89838-289-1 (cit. on p. 25).

[Bao+16] Wenlei Bao, Changwan Hong, Sudheer Chunduri, Sriram Krish-
namoorthy, Louis-Noël Pouchet, Fabrice Rastello, and P. Sadayap-
pan. “Static and Dynamic Frequency Scaling on Multicore CPUs”. In:
ACM Transactions on Architecture and Code Optimization (TACO)
13.4 (Dec. 2016), 51:1–51:26. issn: 1544-3566 (cit. on pp. 10, 56).

[Bar08] Alexander Barvinok. Integer Points in Polyhedra. European Mathe-
matical Society, 2008. isbn: 978-3-03719-052-4 (cit. on p. 28).

[Bas+08a] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krish-
namoorthy, J. Ramanujam, Atanas Rountev, and P. Sadayappan. “A
Compiler Framework for Optimization of Affine Loop Nests for GPG-
PUs”. In: Proceedings of the 22Nd Annual International Conference
on Supercomputing. ICS ’08. ACM, 2008, pp. 225–234. isbn: 978-1-
60558-158-3 (cit. on p. 73).

[Bas+08b] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krish-
namoorthy, J. Ramanujam, Atanas Rountev, and P. Sadayappan.
“Automatic Data Movement and Computation Mapping for Multi-
Level Parallel Architectures with Explicitly Managed Memories”. In:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. PPoPP ’08. ACM, 2008, pp. 1–10.
isbn: 978-1-59593-795-7 (cit. on p. 73).

175

Bibliography

[Bas04] Cedric Bastoul. “Code Generation in the Polyhedral Model Is Easier
Than You Think”. In: Proceedings of the 13th International Confer-
ence on Parallel Architectures and Compilation Techniques. PACT
’04. IEEE Computer Society, 2004, pp. 7–16. isbn: 978-0-7695-2229-6
(cit. on p. 63).

[BE92] William Blume and Rudolf Eigenmann. “Performance Analysis of Par-
allelizing Compilers on the Perfect Benchmarks Programs”. In: IEEE
Transactions on Parallel and Distributed Systems 3.6 (Nov. 1992),
pp. 643–656. issn: 1045-9219 (cit. on p. 58).

[BGW13] Prasanna Balaprakash, Robert B. Gramacy, and Stefan M. Wild.
“Active-Learning-Based Surrogate Models for Empirical Performance
Tuning”. In: Proceedings of the 2013 IEEE International Conference
on Cluster Computing. CLUSTER ’13. IEEE, 2013, pp. 1–8. isbn:
978-1-4799-0898-1 (cit. on pp. 10, 55).

[Bil+97] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel.
“Optimizing Matrix Multiply Using PHiPAC: A Portable, High-
Performance, ANSI C Coding Methodology”. In: Proceedings of the
11th International Conference on Supercomputing. ICS ’97. ACM,
1997, pp. 340–347. isbn: 978-0-89791-902-9 (cit. on p. 72).

[Blu+96] William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay
Hoeflinger, Jaejin Lawrence Thomas Lee, David Padua, Yunheung
Paek, Bill Pottenger, Lawrence Rauchwerger, and Peng Tu. “Parallel
Programming with Polaris”. In: Computer 29.12 (Dec. 1996), pp. 78–
82. issn: 0018-9162 (cit. on p. 58).

[Böh15] Lukas Böhm. “Compile-Time Code Parallelization for Self-Adapting
Acceleration on Intel Xeon Phi”. Bachelor’s Thesis. Karlsruhe Insti-
tute of Technology (KIT) – IPD Tichy, 2015 (cit. on pp. 116, 118,
120, 121).

[Böh18] Lukas Böhm. “Pattern-Based Heterogeneous Parallelization”. Master’s
Thesis. Karlsruhe Institute of Technology (KIT) – IPD Tichy, 2018
(cit. on pp. 114, 115).

176

[Bon+08] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. “A Practical Automatic Polyhedral Parallelizer and Locality Op-
timizer”. In: Proceedings of the 2008 ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’08. ACM,
2008, pp. 101–113. isbn: 978-1-59593-860-2 (cit. on pp. 29, 63).

[BPC12] James Bergstra, Nicolas Pinto, and David Cox. “Machine Learning for
Predictive Auto-Tuning with Boosted Regression Trees”. In: Proceed-
ings of the 2012 Conference on Innovative Parallel Computing. InPar
’12. IEEE, 2012, pp. 1–9. isbn: 978-1-4673-2633-9 (cit. on p. 51).

[BR15] Tania Banerjee and Sanjay Ranka. “A Genetic Algorithm Based Auto-
tuning Approach for Performance and Energy Optimization”. In: Pro-
ceedings of the Sixth International Green and Sustainable Computing
Conference. IGSC ’15. IEEE, 2015, pp. 1–8. isbn: 978-1-5090-0172-9
(cit. on p. 74).

[Bre95] Eric A. Brewer. “High-Level Optimization via Automated Statisti-
cal Modeling”. In: Proceedings of the Fifth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. PPOPP
’95. ACM, 1995, pp. 80–91. isbn: 978-0-89791-700-1 (cit. on p. 49).

[Bro+16] Kevin J. Brown, HyoukJoong Lee, Tiark Romp, Aarvind K. Sujeeth,
Christopher De Sa, Christopher Aberger, and Kunle Olukotun. “Have
Abstraction and Eat Performance, Too: Optimized Heterogeneous
Computing with Parallel Patterns”. In: Proceedings of the 2016 In-
ternational Symposium on Code Generation and Optimization. CGO
’16. ACM, 2016, pp. 194–205. isbn: 978-1-4503-3778-6 (cit. on p. 67).

[BRS10] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan.
“Automatic C-to-CUDA Code Generation for Affine Programs”. In:
International Conference on Compiler Construction. CC ’10. Ed. by
Rajiv Gupta. Lecture Notes in Computer Science vol. 6011. Springer,
Berlin, Heidelberg, 2010, pp. 244–263. isbn: 978-3-642-11969-9 (cit.
on pp. 62, 73).

[BWZ94] Olaf Bachmann, Paul S. Wang, and Eugene V. Zima. “Chains of Re-
currences - a Method to Expedite the Evaluation of Closed-Form
Functions”. In: Proceedings of the International Symposium on Sym-

177

Bibliography

bolic and Algebraic Computing. ISSAC ’94. ACM, 1994, pp. 242–249.
isbn: 0-89791-638-7 (cit. on p. 22).

[Cav+06] John Cavazos, Christophe Dubach, Felix Agakov, Edwin Bonilla,
Michael F. P. O’Boyle, Grigori Fursin, and Olivier Temam. “Auto-
matic Performance Model Construction for the Fast Software Explo-
ration of New Hardware Designs”. In: Proceedings of the 2006 In-
ternational Conference on Compilers, Architecture and Synthesis for
Embedded Systems. CASES ’06. ACM, 2006, pp. 24–34. isbn: 978-1-
59593-543-4 (cit. on pp. 69, 70).

[Cav+07] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael
F. P. O’Boyle, and Olivier Temam. “Rapidly Selecting Good Compiler
Optimizations Using Performance Counters”. In: Proceedings of the
2007 International Symposium on Code Generation and Optimization.
CGO ’07. IEEE, 2007, pp. 185–197. isbn: 978-0-7695-2764-2 (cit. on
p. 70).

[CCH08] Chun Chen, Jacqueline Chame, and Mary Hall. CHiLL: A Framework
for Composing High-Level Loop Transformations. Technical Report.
University of Southern California, 2008 (cit. on p. 72).

[Cha12] Kuo-Hao Chang. “Stochastic Nelder–Mead Simplex Method – A New
Globally Convergent Direct Search Method for Simulation Optimiza-
tion”. In: European Journal of Operational Research 220.3 (Aug. 1,
2012), pp. 684–694. issn: 0377-2217 (cit. on p. 93).

[CSB11] Matthias Christen, Olaf Schenk, and Helmar Burkhart. “PATUS: A
Code Generation and Autotuning Framework for Parallel Iterative
Stencil Computations on Modern Microarchitectures”. In: Proceedings
of the 2011 IEEE International Parallel Distributed Processing Sym-
posium. IPDPS ’11. IEEE, 2011, pp. 676–687. isbn: 978-1-61284-372-8
(cit. on p. 77).

[Dam+15] Marvin Damschen, Heinrich Riebler, Gavin Vaz, and Christian Plessl.
“Transparent Offloading of Computational Hotspots from Binary
Code to Xeon Phi”. In: Proceedings of the 2015 Conference on De-
sign, Automation and Test in Europe. DATE ’15. IEEE, 2015. isbn:
978-3-9815-3705-5 (cit. on pp. 63, 118).

178

[DE10] Chirag Dave and Rudolf Eigenmann. “Automatically Tuning Parallel
and Parallelized Programs”. In: Languages and Compilers for Parallel
Computing. Ed. by Guang R. Gao, Lori L. Pollock, John Cavazos, and
Xiaoming Li. Lecture Notes in Computer Science vol. 5898. Springer,
Berlin, Heidelberg, 2010, pp. 126–139. isbn: 978-3-642-13373-2 (cit.
on p. 73).

[DGH17] Johannes Doerfert, Tobias Grosser, and Sebastian Hack. “Optimistic
Loop Optimization”. In: Proceedings of the 2017 International Sym-
posium on Code Generation and Optimization. CGO’17. IEEE, 2017,
pp. 292–304. isbn: 978-1-5090-4931-8 (cit. on p. 28).

[Dia+10] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalaman-
chili, and Nathan Clark. “Ocelot: A Dynamic Optimization Frame-
work for Bulk-Synchronous Applications in Heterogeneous Systems”.
In: Proceedings of the 19th International Conference on Parallel Archi-
tectures and Compilation Techniques. PACT ’10. ACM, 2010, pp. 353–
364. isbn: 978-1-4503-0178-7 (cit. on p. 65).

[Din+15] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-
May O’Reilly, and Saman Amarasinghe. “Autotuning Algorithmic
Choice for Input Sensitivity”. In: Proceedings of the 36th ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation. PLDI ’15. ACM, 2015, pp. 379–390. isbn: 978-1-4503-3468-6
(cit. on p. 76).

[DK06] Isaac Dooley and Laxmikant Kale. “Quantifying the Interference
Caused by Subnormal Floating-Point Values”. In: Proceedings of the
Workshop on Operating System Interference in High Performance Ap-
plications. OSHIPA ’06. 2006 (cit. on p. 130).

[Eng00] Robert A. Van Engelen. Symbolic Evaluation of Chains of Recurrences
for Loop Optimization. Technical Report. Florida State University,
2000 (cit. on p. 22).

[Fea91] Paul Feautrier. “Dataflow Analysis of Array and Scalar References”.
In: International Journal of Parallel Programming 20.1 (Feb. 1991),
pp. 23–53. issn: 1573-7640 (cit. on p. 28).

179

Bibliography

[Fer+10] Roger Ferrer, Judit Planas, Pieter Bellens, Alejandro Duran, Marc
Gonzalez, Xavier Martorell, Rosa M. Badia, Eduard Ayguade, and
Jesus Labarta. “Optimizing the Exploitation of Multicore Proces-
sors and GPUs with OpenMP and OpenCL”. In: International Work-
shop on Languages and Compilers for Parallel Computing. Ed. by K.
Cooper, J. Mellor-Crummey, and V. Sarkar. Lecture Notes in Com-
puter Science vol. 6548. Springer, Berlin, Heidelberg, 2010, pp. 215–
229. isbn: 978-3-642-19594-5 (cit. on p. 66).

[FL11] Paul Feautrier and Christian Lengauer. “Polyhedron Model”. In:
Encyclopedia of Parallel Computing. Springer, Boston, MA, 2011,
pp. 1581–1592. isbn: 978-0-387-09766-4 (cit. on p. 26).

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Pro-
gram Dependence Graph and Its Use in Optimization”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 9.3
(1987), pp. 319–349 (cit. on pp. 24, 25).

[Fri+13] Daniel Fried, Zhen Li, Ali Jannesari, and Felix Wolf. “Predicting Par-
allelization of Sequential Programs Using Supervised Learning”. In:
Proceedings of the 12th International Conference on Machine Learn-
ing and Applications. ICMLA ’13. IEEE, 2013, pp. 72–77. isbn: 978-
0-7695-5144-9 (cit. on p. 70).

[Fur+11] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew
Chamski, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha
Mendelson, Ayal Zaks, Eric Courtois, Francois Bodin, Phil Barnard,
Elton Ashton, Edwin Bonilla, John Thomson, Christopher K. I.
Williams, and Michael O’Boyle. “Milepost GCC: Machine Learning
Enabled Self-Tuning Compiler”. In: International Journal of Parallel
Programming 39.3 (Jan. 2011), pp. 296–327. issn: 0885-7458 (cit. on
p. 70).

[GAC12] Serge Guelton, Mehdi Amini, and Béatrice Creusillet. “Beyond Do
Loops: Data Transfer Generation with Convex Array Regions”. In: In-
ternational Workshop on Languages and Compilers for Parallel Com-
puting. LCPC ’12. Ed. by H. Kasahara and K. Kimura. Lecture Notes
in Computer Science vol. 7760. Springer, Berlin, Heidelberg, 2012,
pp. 249–263. isbn: 978-3-642-37657-3 (cit. on p. 59).

180

[GGL12] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. “Polly
— Performing Polyhedral Optimizations on a Low-Level Intermedi-
ate Representation”. In: Parallel Processing Letters 22.04 (Dec. 2012).
issn: 0129-6264 (cit. on p. 63).

[GH16] Tobias Grosser and Torsten Hoefler. “Polly-ACC Transparent Compi-
lation to Heterogeneous Hardware”. In: Proceedings of the 2016 Inter-
national Conference on Supercomputing. ICS ’16. ACM, 2016, pp. 1–
13. isbn: 978-1-4503-4361-9 (cit. on pp. 63, 111).

[GKT91] Gina Goff, Ken Kennedy, and Chau-Wen Tseng. “Practical Depen-
dence Testing”. In: Proceedings of the ACM SIGPLAN 1991 Confer-
ence on Programming Language Design and Implementation. PLDI
’91. ACM, 1991, pp. 15–29. isbn: 0-89791-428-7 (cit. on pp. 24, 25,
115).

[Gro+13] Tobias Grosser, Albert Cohen, Paul H. J. Kelly, J. Ramanujam, P.
Sadayappan, and Sven Verdoolaege. “Split Tiling for GPUs: Auto-
matic Parallelization Using Trapezoidal Tiles”. In: Proceedings of the
6th Workshop on General Purpose Processor Using Graphics Process-
ing Units. GPGPU-6. ACM, 2013, pp. 24–31. isbn: 978-1-4503-2017-7
(cit. on p. 63).

[Gro+14] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and
Sven Verdoolaege. “Hybrid Hexagonal/Classical Tiling for GPUs”. In:
Proceedings of the 2014 International Symposium on Code Generation
and Optimization. CGO’14. ACM, 2014, pp. 66–75. isbn: 978-1-4503-
2670-4 (cit. on p. 63).

[Gum+10] Jayanth Gummaraju, Ben Sander, Laurent Morichetti, Benedict R.
Gaster, Micheal Houston, and Bixia Zheng. “Twin Peaks: A Soft-
ware Platform for Heterogeneous Computing on General-Purpose
and Graphics Processors”. In: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques.
PACT’10. IEEE, 2010, pp. 205–215. isbn: 978-1-4503-0178-7 (cit. on
p. 65).

[GVC15] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. “Polyhedral
AST Generation Is More Than Scanning Polyhedra”. In: ACM Trans-

181

Bibliography

actions on Programming Languages and Systems (TOPLAS) 37.4
(July 15, 2015), pp. 1–50. issn: 0164-0925 (cit. on p. 30).

[Hag+18] Bastian Hagedorn, Larisa Stoltzfus, Michel Steuwer, Sergei Gorlatch,
and Christophe Dubach. “High Performance Stencil Code Generation
with Lift”. In: Proceedings of the 2018 International Symposium on
Code Generation and Optimization. CGO ’18. ACM, 2018, pp. 100–
112. isbn: 978-1-4503-5617-6 (cit. on p. 78).

[Hal+05] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei
Liao, and Monica S. Lam. “Interprocedural Parallelization Analysis in
SUIF”. In: ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 27.4 (July 2005), pp. 662–731. issn: 0164-0925 (cit.
on p. 59).

[Hal+96] Mary W. Hall, Jennifer M. Anderson, Saman P. Amarasinghe, Brian
R. Murphy, Shih-Wei Liao, Edouard Bugnion, and Monica S. Lam.
“Maximizing Multiprocessor Performance with the SUIF Compiler”.
In: Computer 29.12 (Dec. 1996), pp. 84–89. issn: 0018-9162 (cit. on
p. 59).

[Ham+09] Clemens Hammacher, Kevin Streit, Sebastian Hack, and Andreas
Zeller. “Profiling Java Programs for Parallelism”. In: Proceedings of
the 2009 ICSE Workshop on Multicore Software Engineering. IWMSE
’09. IEEE, 2009, pp. 49–55. isbn: 978-1-4244-3718-4 (cit. on p. 59).

[Her+19] Killian Herveau, Philip Pfaffe, Martin Tillmann, Walter F. Tichy, and
Carsten Dachsbacher. “Hybrid Online Autotuning for Parallel Ray
Tracing”. In: Proceedings of the Eurographics Symposium on Parallel
Graphics and Visualization. Ed. by Hank Childs and Steffen Frey.
The Eurographics Association, 2019. isbn: 978-3-03868-079-6 (cit. on
pp. 81, 83).

[Hin01] Michael Hind. “Pointer Analysis: Haven’t We Solved This Prob-
lem Yet?” In: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering.
PASTE ’01. ACM, 2001, pp. 54–61. isbn: 1-58113-413-4 (cit. on p. 24).

182

[Hor97] Susan Horwitz. “Precise Flow-Insensitive May-Alias Analysis Is NP-
Hard”. In: ACM Transactions on Programming Languages and Sys-
tems (TOPLAS) 19.1 (Jan. 1997), pp. 1–6. issn: 0164-0925 (cit. on
p. 24).

[HP11] John L. Hennessy and David A. Patterson. Computer Architecture,
Fifth Edition: A Quantitative Approach. Morgan Kaufmann, 2011.
isbn: 978-0-12-383872-8 (cit. on pp. 23, 24).

[IJT91] François Irigoin, Pierre Jouvelot, and Rémi Triolet. “Semantical In-
terprocedural Parallelization: An Overview of the PIPS Project”. In:
Proceedings of the 5th International Conference on Supercomputing.
ICS ’91. ACM, 1991, pp. 244–251. isbn: 978-0-89791-434-5 (cit. on
p. 58).

[Jim12] Alexandra Jimborean. “Adapting the Polytope Model for Dynamic
and Speculative Parallelization”. Dissertation. Université de Stras-
bourg, 2012 (cit. on p. 62).

[Joh+04] Troy A. Johnson, Sang-Ik Lee, Long Fei, Ayon Basumallik, Gautam
Upadhyaya, Rudolf Eigenmann, and Samuel P. Midkiff. “Experiences
in Using Cetus for Source-to-Source Transformations”. In: Languages
and Compilers for High Performance Computing. LCPC ’04. Ed. by
Rudolf Eigenmann, Z. Li, and Samuel P. Midkiff. Lecture Notes in
Computer Science vol. 3602. Springer, Berlin, Heidelberg, 2004, pp. 1–
14. isbn: 978-3-540-28009-5 (cit. on p. 73).

[Jor+12] Herbert Jordan, Peter Thoman, Juan J. Durillo, Simone Pellegrini,
Philipp Gschwandtner, Thomas Fahringer, and Hans Moritsch. “A
Multi-Objective Auto-Tuning Framework for Parallel Codes”. In: Pro-
ceedings of the International Conference on High Performance Com-
puting, Networking, Storage and Analysis. SC ’12. IEEE, 2012, pp. 1–
12. isbn: 978-1-4673-0804-5 (cit. on pp. 10, 73).

[KA97] R. Matthew Kretchmar and Charles W. Anderson. “Comparison of
CMACs and Radial Basis Functions for Local Function Approxima-
tors in Reinforcement Learning”. In: Proceedings of the International
Conference on Neural Networks. ICNN ’97. IEEE, 1997, pp. 834–837.
isbn: 978-0-7803-4122-7 (cit. on p. 104).

183

Bibliography

[KBK11] Mario Kicherer, Rainer Buchty, and Wolfgang Karl. “Cost-Aware
Function Migration in Heterogeneous Systems”. In: Proceedings of
the 6th International Conference on High Performance and Embed-
ded Architectures and Compilers. HiPEAC ’11. ACM, 2011, p. 137.
isbn: 978-1-4503-0241-8 (cit. on p. 55).

[Kic+12] Mario Kicherer, Fabian Nowak, Rainer Buchty, and Wolfgang Karl.
“Seamlessly Portable Applications: Managing the Diversity of Mod-
ern Heterogeneous Systems”. In: ACM Transactions on Architecture
and Code Optimization (TACO) - Special Issue on High-Performance
Embedded Architectures and Compilers 8.4 (Jan. 2012), 42:1–42:20.
issn: 1544-3566 (cit. on p. 55).

[KLM96] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
“Reinforcement Learning: A Survey”. In: Journal of Artificial Intelli-
gence Research 4.1 (May 1996), pp. 237–285. issn: 1076-9757 (cit. on
p. 17).

[Klö14] Andreas Klöckner. “Loo.Py: Transformation-Based Code Generation
for GPUs and CPUs”. In: Proceedings of ACM SIGPLAN Interna-
tional Workshop on Libraries, Languages, and Compilers for Array
Programming. ARRAY ’14. ACM, 2014, 82:82–82:87. isbn: 978-1-
4503-2937-8 (cit. on p. 63).

[KMW67] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. “The
Organization of Computations for Uniform Recurrence Equations”. In:
Journal of the ACM 14.3 (July 1967), pp. 563–590. issn: 0004-5411
(cit. on p. 62).

[Kop18] Timo Kopf. “Adaptives Online-Tuning für kontinuerliche Zustand-
sräume”. Master’s Thesis. Karlsruhe Institute of Technology (KIT)
– IPD Tichy, 2018. 96 pp. (cit. on p. 82).

[KP11] Thomas Karcher and Victor Pankratius. “Run-Time Automatic Per-
formance Tuning for Multicore Applications”. In: Euro-Par 2011 –
Parallel Processing. Ed. by Esmmanuel Jeannot, Raymond Namyst,
and Jean Roman. Lecture Notes in Computer Science vol. 6852.
Springer, Berlin, Heidelberg, 2011, pp. 3–14. isbn: 978-3-642-23399-9
(cit. on p. 51).

184

[Kru14a] Michael Kruse. “Introducing Molly: Distributed Memory Paralleliza-
tion with LLVM”. In: CoRR abs/1409.2088 (2014). arXiv: 1409.2088
[cs] (cit. on p. 63).

[Kru14b] Michael Kruse. “Lattice QCD Optimization and Polytopic Represen-
tations of Distributed Memory”. Dissertation. Université Paris Sud -
Paris XI, 2014 (cit. on p. 63).

[LA04] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation”. In: Proceedings of
the 2004 International Symposium on Code Generation and Optimiza-
tion: Feedback-Directed and Runtime Optimization. CGO ’04. IEEE,
2004. isbn: 0-7695-2102-9 (cit. on pp. 6, 20).

[Lam74] Leslie Lamport. “The Parallel Execution of DO Loops”. In: Commu-
nications of the ACM 17.2 (Feb. 1974), pp. 83–93. issn: 0001-0782
(cit. on p. 62).

[LHK09] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. “Qilin: Exploiting
Parallelism on Heterogeneous Multiprocessors with Adaptive Map-
ping”. In: Proceedings of the 42Nd Annual IEEE/ACM International
Symposium on Microarchitecture. MICRO 42. ACM, 2009, pp. 45–55.
isbn: 978-1-60558-798-1 (cit. on pp. 75, 130).

[Lia+09] Chunhua Liao, Daniel J. Quinlan, Richard Vuduc, and Thomas Panas.
“Effective Source-to-Source Outlining to Support Whole Program Em-
pirical Optimization”. In: Languages and Compilers for Parallel Com-
puting. LCPC ’09. Ed. by Guang R. Gao, John Cavazos, Xiaom-
ing Li, and Lori L. Pollock. Lecture Notes in Computer Science vol.
5898. Springer, Berlin, Heidelberg, 2009, pp. 308–322. isbn: 978-3-
642-13373-2 (cit. on p. 73).

[Lin+08] Michael D. Linderman, Jamison D. Collins, Hong Wang, and Teresa
H. Meng. “Merge: A Programming Model for Heterogeneous Multi-
Core Systems”. In: Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems. ASPLOS XIII. ACM, 2008, pp. 287–296. isbn: 978-1-59593-
958-6 (cit. on p. 65).

185

https://arxiv.org/abs/1409.2088
https://arxiv.org/abs/1409.2088

Bibliography

[LJW13] Zhen Li, Ali Jannesari, and Felix Wolf. “Discovery of Potential Paral-
lelism in Sequential Programs”. In: Proceedings of the 2013 42nd In-
ternational Conference on Parallel Processing. ICPP ’13. IEEE, 2013,
pp. 1004–1013. isbn: 978-0-7695-5117-3 (cit. on p. 59).

[LR91] William Landi and Barbara G. Ryder. “Pointer-Induced Alias-
ing: A Problem Classification”. In: Proceedings of the 18th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL ’91. ACM, 1991, pp. 93–103. isbn: 978-0-89791-419-2
(cit. on p. 24).

[LRG12] Changmin Lee, Won W. Ro, and Jean-Luc Gaudiot. “Cooperative
Heterogeneous Computing for Parallel Processing on CPU/GPU Hy-
brids”. In: Proceedings of the 2012 16th Workshop on Interaction be-
tween Compilers and Computer Architectures. INTERACT ’12. IEEE,
2012, pp. 33–40. isbn: 978-1-4673-2613-1 (cit. on pp. 77, 130).

[Mae+10] Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, and
Richard S. Sutton. “Toward Off-Policy Learning Control with Func-
tion Approximation”. In: Proceedings of the 27th International Con-
ference on International Conference on Machine Learning. ICML’10.
Omnipress, 2010, pp. 719–726. isbn: 978-1-60558-907-7 (cit. on p. 19).

[Mar13] Daniel E. Marthaler. “An Overview of Mathematical Methods for
Numerical Optimization”. In: Numerical Methods for Metamaterial
Design. Ed. by Kenneth Diest. Topics in Applied Physics vol. 127.
Springer, Dordrecht, 2013, pp. 31–53. isbn: 978-94-007-6664-8 (cit.
on p. 15).

[MBC79] M. D. McKay, R. J. Beckman, and W. J. Conover. “A Comparison of
Three Methods for Selecting Values of Input Variables in the Analysis
of Output from a Computer Code”. In: Technometrics 21.2 (1979),
pp. 239–245. issn: 0040-1706. JSTOR: 1268522 (cit. on pp. 93, 152).

[Mik+14] Dmitry Mikushin, Nikolay Likhogrud, Eddy Z. Zhang, and Christo-
pher Bergström. “KernelGen – The Design and Implementation of a
Next Generation Compiler Platform for Accelerating Numerical Mod-
els on GPUs”. In: Proceedings of the 2014 IEEE International Paral-
lel and Distributed Processing Symposium Workshops. IPDPSW ’14.
IEEE, 2014, pp. 1011–1020. isbn: 978-1-4799-4116-2 (cit. on p. 63).

186

http://www.jstor.org/stable/1268522

[MMT15] Korbinian Molitorisz, Tobias Müller, and Walter F. Tichy. “Patty: A
Pattern-Based Parallelization Tool for the Multicore Age”. In: Pro-
ceedings of the Sixth International Workshop on Programming Models
and Applications for Multicores and Manycores. PMAM ’15. ACM,
2015, pp. 153–163. isbn: 978-1-4503-3404-4 (cit. on pp. 67, 74).

[Mor+03] Anna Morajko, Oleg Morajko, Josep Jorba, Tomàs Margalef, and
Emilio Luque. “Dynamic Performance Tuning of Distributed Pro-
gramming Libraries”. In: Computational Science — ICCS 2003. ICCS
2003. Ed. by Peter M. A. Sloot, David Abramson, Alexander V. Bog-
danov, Yuriy E. Gorbachev, Jack J. Dongarra, and Albert Y. Zomaya.
Lecture Notes in Computer Science vol. 2660. Springer, Berlin, Hei-
delberg, 2003, pp. 191–200. isbn: 978-3-540-40197-1 (cit. on p. 54).

[Mor+04] Anna Morajko, Oleg Morajko, Tomàs Margalef, and Emilio Luque.
“MATE: Dynamic Performance Tuning Environment”. In: Euro-Par
2004 – Parallel Processing. Ed. by Marco Danelutto, Marco Van-
neschi, and Domenico Laforenza. Lecture Notes in Computer Science
vol. 3149. Springer, Berlin, Heidelberg, 2004, pp. 98–107. isbn: 978-
3-540-22924-7 (cit. on p. 54).

[MRR12] Michael McCool, Arch D. Robison, and James Reinders. Struc-
tured Parallel Programming. Morgan Kaufmann, 2012. isbn: 978-0-
12-415993-8 (cit. on p. 23).

[Mur+14] Saurav Muralidharan, Manu Shantharam, Mary Hall, Micheal Gar-
land, and Bryan Catanzaro. “Nitro: A Framework for Adaptive Code
Variant Tuning”. In: Proceedings of the 2014 IEEE International Par-
allel and Distributed Processing Symposium. IPDPS ’14. IEEE, 2014,
pp. 501–512. isbn: 978-1-4799-3799-8 (cit. on p. 55).

[MVB15] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. “Poly-
Mage: Automatic Optimization for Image Processing Pipelines”. In:
Proceedings of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating Systems.
ASPLOS ’15. ACM, 2015, pp. 429–443. isbn: 978-1-4503-2835-7 (cit.
on p. 78).

187

Bibliography

[NC14] Cedric Nugteren and Henk Corporaal. “Bones: An Automatic
Skeleton-Based C-to-CUDA Compiler for GPUs”. In: ACM Trans-
actions on Architecture and Code Optimization (TACO) 11.4 (Dec.
2014), pp. 1–25. issn: 1544-3566 (cit. on p. 67).

[NM65] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimiza-
tion”. In: The Computer Journal 7.4 (Jan. 1965). issn: 0010-4620 (cit.
on pp. 15, 91).

[OPT09] Frank Otto, Victor Pankratius, andWalter F. Tichy. “High-Level Mul-
ticore Programming with Xjava”. In: Proceedings of the 2009 31st
International Conference on Software Engineering - Companion Vol-
ume. ICSE ’09. IEEE, 2009, pp. 319–322. isbn: 978-1-4244-3495-4
(cit. on p. 76).

[Ott+10] Frank Otto, Christoph A. Schaefer, Matthias Dempe, and Walter F.
Tichy. “A Language-Based Tuning Mechanism for Task and Pipeline
Parallelism”. In: Euro-Par 2010 – Parallel Processing. Ed. by Pasqua
D’Ambra, Mario Guarracino, and Domenico Talia. Lecture Notes
in Computer Science vol. 6272. Springer, Berlin, Heidelberg, 2010,
pp. 328–340. isbn: 978-3-642-15291-7 (cit. on p. 76).

[Pac+12] Maciej Pacula, Jason Ansel, Saman Amarasinghe, and Una-May
O’Reilly. “Hyperparameter Tuning in Bandit-Based Adaptive Oper-
ator Selection”. In: Applications of Evolutionary Computation. Ed.
by Cecilia Chio et al. Lecture Notes in Computer Science vol. 7248.
Malaga, Spain: Springer, Berlin, Heidelberg, 2012. isbn: 978-3-642-
29178-4 (cit. on p. 52).

[Par+13] Eunjung Park, John Cavazos, Louis-Noël Pouchet, Cédric Bastoul, Al-
bert Cohen, and P. Sadayappan. “Predictive Modeling in a Polyhedral
Optimization Space”. In: International Journal of Parallel Program-
ming 41.5 (Feb. 2013), pp. 704–750. issn: 0885-7458, 1573-7640 (cit.
on p. 70).

[Par94] Jeong-Soo Park. “Optimal Latin-Hypercube Designs for Computer
Experiments”. In: Journal of Statistical Planning and Inference 39.1
(Apr. 1994), pp. 95–111. issn: 0378-3758 (cit. on pp. 93, 152).

188

[PE06] Zhelong Pan and Rudolf Eigenmann. “Fast and Effective Orchestra-
tion of Compiler Optimizations for Automatic Performance Tuning”.
In: Proceedings of the 2006 International Symposium on Code Gener-
ation and Optimization. CGO ’06. IEEE, 2006. isbn: 0-7695-2499-0
(cit. on p. 73).

[Pfa+17] Philip Pfaffe, Martin Tillmann, Sigmar Walter, and Walter F. Tichy.
“Online-Autotuning in the Presence of Algorithmic Choice”. In: Pro-
ceedings of the 2017 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops. IPDPSW ’17. IEEE, 2017, pp. 1379–
1388. isbn: 978-1-5386-3408-0 (cit. on pp. 13, 14, 94, 95).

[PGT19] Philip Pfaffe, Tobias Grosser, and Martin Tillmann. “Efficient Hier-
archical Online-Autotuning: A Case Study on Polyhedral Accelerator
Mapping”. In: Proceedings of the ACM International Conference on
Supercomputing. ICS ’19. ACM, 2019, pp. 354–366. isbn: 978-1-4503-
6079-1 (cit. on pp. 82, 98, 107, 138, 143, 147–149).

[PW94] William Pugh and David Wonnacott. “Static Analysis of Upper and
Lower Bounds on Dependences and Parallelism”. In: ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 16.4 (July
1994), pp. 1248–1278. issn: 0164-0925 (cit. on p. 27).

[Rag+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. “Halide: A Language
and Compiler for Optimizing Parallelism, Locality, and Recomputa-
tion in Image Processing Pipelines”. In: Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI ’13. ACM, 2013, pp. 519–530. isbn: 978-1-4503-
2014-6 (cit. on p. 77).

[RDP14] Benjamin Ranft, Oliver Denninger, and Philip Pfaffe. “A Stream Pro-
cessing Framework for On-Line Optimization of Performance and En-
ergy Efficiency on Heterogeneous Systems”. In: Proceedings of the 2014
IEEE International Parallel and Distributed Processing Symposium
Workshops. IPDPSW ’14. IEEE, 2014. isbn: 978-1-4799-4116-2 (cit.
on pp. 77, 130).

189

Bibliography

[Rep96] Thomas Reps. “On the Sequential Nature of Interprocedural Program-
Analysis Problems”. In: Acta Informatica 33.8 (Nov. 1996), pp. 739–
757. issn: 1432-0525 (cit. on p. 26).

[RHG17] Ari Rasch, Michael Haidl, and Sergei Gorlatch. “ATF: A Generic
Auto-Tuning Framework”. In: Proceedings of the 2017 IEEE 19th In-
ternational Conference on High Performance Computing and Commu-
nications; IEEE 15th International Conference on Smart City; IEEE
3rd International Conference on Data Science and Systems. HPCC/S-
martCity/DSS’17. IEEE, 2017, pp. 64–71. isbn: 978-1-5386-2588-0
(cit. on p. 52).

[Rud+10] Gabe Rudy, Malik Murtaza Khan, Mary Hall, Chun Chen, and
Jacqueline Chame. “A Programming Language Interface to Describe
Transformations and Code Generation”. In: Languages and Compil-
ers for Parallel Computing. Languages and Compilers for Parallel
Computing. Ed. by Keith Cooper, John Mellor-Crummey, and Vivek
Sarkar. Lecture Notes in Computer Science vol. 6548. Springer, Berlin,
Heidelberg, 2010, pp. 136–150. isbn: 978-3-642-19594-5 (cit. on p. 72).

[RVD07] Sean Rul, Hans Vandierendonck, and Koen De Bosschere. “Function
Level Parallelism Driven by Data Dependencies”. In: ACM SIGARCH
Computer Architecture News 35.1 (Mar. 2007), pp. 55–62. issn: 0163-
5964 (cit. on p. 67).

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:
An Introduction. 1st edition. MIT Press, 1998. isbn: 0-262-19398-1
(cit. on pp. 17, 18).

[Sch09] Christoph A. Schaefer. “Reducing Search Space of Auto-Tuners Using
Parallel Patterns”. In: Proceedings of the 2009 ICSE Workshop on
Multicore Software Engineering. IWMSE ’09. IEEE, 2009, pp. 17–24.
isbn: 978-1-4244-3718-4 (cit. on p. 51).

[Sch17] Bernhard Scheirle. “Musterbasierte Analyse zur Detektion von Par-
allelisierungsmöglichkeiten”. Master’s Thesis. Karlsruhe Institute of
Technology (KIT) – IPD Tichy, 2017 (cit. on p. 114).

190

[SHH62] W. Spendley, G. R. Hext, and F. R. Himsworth. “Sequential Applica-
tion of Simplex Designs in Optimisation and Evolutionary Operation”.
In: Technometrics 4.4 (Nov. 1962), pp. 441–461. issn: 0040-1706 (cit.
on p. 15).

[SKK17] Lukas Sommer, Jens Korinth, and Andreas Koch. “OpenMP Device
Offloading to FPGA Accelerators”. In: Proceedings of the 2017 IEEE
28th International Conference on Application-Specific Systems, Archi-
tectures and Processors. ASAP ’17. IEEE, 2017, pp. 201–205. isbn:
978-1-5090-4825-0 (cit. on p. 66).

[SMS08] Richard S. Sutton, Hamid R. Maei, and Csaba Szepesvári. “A Con-
vergent O(n) Temporal-Difference Algorithm for Off-Policy Learning
with Linear Function Approximation”. In: Advances in Neural Infor-
mation Processing Systems 21. Ed. by D. Koller, D. Schuurmans, Y.
Bengio, and L. Bottou. Curran Associates, Inc., 2008, pp. 1609–1616.
isbn: 978-1605609492 (cit. on p. 20).

[SOB14] Zehra Sura, Kevin OBrien, and Jose Brunheroto. “Using Multiple
Threads to Accelerate Single Thread Performance”. In: Proceedings
of the 2014 IEEE International Parallel and Distributed Processing
Symposium. IPDPS ’14. IEEE, 2014, pp. 985–994. isbn: 978-1-4799-
3799-8 (cit. on p. 60).

[SP78] Micha Sharir and Amir Pnueli. Two Approaches to Interprocedural
Data Flow Analysis. Technical Report. New York University, Courant
Institute of Mathematical Sciences, ComputerScience Department,
1978 (cit. on p. 26).

[SPT09] Christoph A. Schaefer, Victor Pankratius, and Walter F. Tichy.
“Atune-IL: An Instrumentation Language for Auto-Tuning Parallel
Applications”. In: Euro-Par 2009 – Parallel Processing. Ed. by Henk
Sips, Dick Epema, and Hai-Xiang Lin. Lecture Notes in Computer
Science vol. 5704. Springer, Berlin, Heidelberg, 2009, pp. 9–20. isbn:
978-3-642-03868-6 (cit. on p. 50).

[SPT10] Christoph A. Schaefer, Victor Pankratius, and Walter F. Tichy. “En-
gineering Parallel Applications with Tunable Architectures”. In: Pro-
ceedings of the 32Nd ACM/IEEE International Conference on Soft-

191

Bibliography

ware Engineering - Volume 1. ICSE ’10. New York, NY, USA: ACM,
2010, pp. 405–414. isbn: 978-1-60558-719-6 (cit. on p. 76).

[SRD17] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “LIFT: A
Functional Data-Parallel IR for High-Performance GPU Code Gener-
ation”. In: Proceedings of the 2017 International Symposium on Code
Generation and Optimization. CGO ’17. IEEE, 2017, pp. 74–85. isbn:
978-1-5090-4931-8 (cit. on p. 78).

[Ste46] Stanley Smith Stevens. “On the Theory of Scales of Measurement”. In:
Science 103.2684 (1946), pp. 677–680. issn: 0036-8075 (cit. on p. 13).

[Str+12] Kevin Streit, Clemens Hammacher, Andreas Zeller, and Sebastian
Hack. “Sambamba: A Runtime System for Online Adaptive Par-
allelization”. In: Compiler Construction. Ed. by Michael O’Boyle.
Lecture Notes in Computer Science vol. 7210. Berlin, Heidelberg:
Springer, Berlin, Heidelberg, 2012, pp. 240–243. isbn: 978-3-642-
28651-3 (cit. on p. 60).

[Str+13] Kevin Streit, Clemens Hammacher, Andreas Zeller, and Sebastian
Hack. “Sambamba: Runtime Adaptive Parallel Execution”. In: Pro-
ceedings of the 3rd International Workshop on Adaptive Self-Tuning
Computing Systems. ADAPT ’13. New York, NY, USA: ACM, 2013,
pp. 1–6. isbn: 978-1-4503-2022-1 (cit. on p. 60).

[Str+15] Kevin Streit, Johannes Doerfert, Clemens Hammacher, Andreas
Zeller, and Sebastian Hack. “Generalized Task Parallelism”. In: ACM
Transactions on Architecture and Code Optimization (TACO) 12.1
(Apr. 2015), 8:1–8:25. issn: 1544-3566 (cit. on p. 60).

[Sus92] Alan Sussman. “Model-Driven Mapping Onto Distributed Memory
Parallel Computers”. In: Proceedings of the 1992 ACM/IEEE Confer-
ence on Supercomputing. Supercomputing ’92. IEEE, 1992, pp. 818–
829. isbn: 0-8186-2630-5 (cit. on p. 69).

[Sut88] Richard S. Sutton. “Learning to Predict by the Methods of Temporal
Differences”. In: Machine Learning 3.1 (Aug. 1988), pp. 9–44. issn:
1573-0565 (cit. on p. 18).

192

[ŢCH02] Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. “Ac-
tive Harmony: Towards Automated Performance Tuning”. In: Pro-
ceedings of the 2002 ACM/IEEE Conference on Supercomputing. SC
’02. IEEE, 2002, pp. 1–11. isbn: 0-7695-1524-X (cit. on p. 50).

[Tes95] Gerald Tesauro. “Temporal Difference Learning and TD-Gammon”.
In: Communications of the ACM 38.3 (Mar. 1995), pp. 58–68. issn:
0001-0782 (cit. on p. 18).

[TF10] Georgios Tournavitis and Björn Franke. “Semi-Automatic Extraction
and Exploitation of Hierarchical Pipeline Parallelism Using Profiling
Information”. In: Proceedings of the 19th International Conference on
Parallel Architectures and Compilation Techniques. PACT ’10. ACM,
2010, pp. 377–388. isbn: 978-1-4503-0178-7 (cit. on p. 67).

[TH11] Ananta Tiwari and Jeffrey K. Hollingsworth. “Online Adaptive Code
Generation and Tuning”. In: Proceedings of the 2011 IEEE Interna-
tional Parallel Distributed Processing Symposium. IPDPS ’11. IEEE,
2011, pp. 879–892. isbn: 978-1-61284-372-8 (cit. on p. 72).

[Til+14] Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, and Walter
F. Tichy. “Application-Independent Autotuning for GPUs.” In: Paral-
lel Computing: Accelerating Computational Science and Engineering
(CSE). Ed. by Michael Bader, Arndt Bode, Hans-Joachim Bungartz,
Michael Gerndt, Gerhard R. Joubert, and Frans J. Peters. Advances
in Parallel Computing 25. IOS Press, 2014, pp. 626–635. isbn: 978-1-
61499-380-3 (cit. on p. 52).

[Tiw+09] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jef-
frey K. Hollingsworth. “A Scalable Auto-Tuning Framework for Com-
piler Optimization”. In: Proceedings of the 2009 IEEE International
Parallel Distributed Processing Symposium. IPDPS ’09. IEEE, 2009,
pp. 1–12. isbn: 978-1-4244-3751-1 (cit. on p. 72).

[Tou+09] Georgios Tournavitis, Zheng Wang, Björn Franke, and Michael FP
O’Boyle. “Towards a Holistic Approach to Auto-Parallelization: In-
tegrating Profile-Driven Parallelism Detection and Machine-Learning
Based Mapping”. In: Proceedings of the 2009 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. PLDI
’09. ACM, 2009, pp. 177–187. isbn: 978-1-60558-392-1 (cit. on p. 70).

193

Bibliography

[Vas+18] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. “Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions”. In:
CoRR abs/1802.04730 (2018). arXiv: 1802.04730 [cs] (cit. on p. 78).

[VD00] Richard Vuduc and James W. Demmel. “Code Generators for Auto-
matic Tuning of Numerical Kernels: Experiences with FFTW Position
Paper”. In: Semantics, Applications, and Implementation of Program
Generation. SAIG ’00. Ed. by Walid Taha. Lecture Notes in Com-
puter Science vol. 1924. Springer, Berlin, Heidelberg, 2000, pp. 190–
211. isbn: 978-3-540-41054-6 (cit. on p. 50).

[VDB01] Richard Vuduc, James W. Demmel, and Jeff Bilmes. “Statistical Mod-
els for Automatic Performance Tuning”. In: Computational Science —
ICCS 2001. Ed. by Vassil N. Alexandrov, Jack J. Dongarra, Benjoe
A. Juliano, René S. Renner, and C. J. Kenneth Tan. Lecture Notes
in Computer Science vol. 2073. Berlin, Heidelberg: Springer, Berlin,
Heidelberg, 2001, pp. 117–126. isbn: 978-3-540-42232-7 (cit. on p. 50).

[VE00] Micheal J. Voss and Rudolf Eigenmann. “ADAPT: Automated
De-Coupled Adaptive Program Transformation”. In: Proceedings of
the 2000 International Conference on Parallel Processing. ICPP’00.
IEEE, 2000, pp. 163–170. isbn: 0-7695-0768-9 (cit. on p. 75).

[VE01] Michael J. Voss and Rudolf Eigemann. “High-Level Adaptive Program
Optimization with ADAPT”. In: Proceedings of the Eighth ACM SIG-
PLAN Symposium on Principles and Practices of Parallel Program-
ming. PPoPP ’01. ACM, 2001, pp. 93–102. isbn: 1-58113-346-4 (cit.
on p. 75).

[Ver+13] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio
Gómez, Christian Tenllado, and Francky Catthoor. “Polyhedral Par-
allel Code Generation for CUDA”. In: ACM Transactions on Ar-
chitecture and Code Optimization (TACO) - Special Issue on High-
Performance Embedded Architectures and Compilers 9.4 (Jan. 2013),
54:1–54:23. issn: 1544-3566 (cit. on pp. 26, 27, 29, 62, 108).

194

https://arxiv.org/abs/1802.04730

[Ver10] Sven Verdoolaege. “Isl: An Integer Set Library for the Polyhedral
Model”. In: Mathematical Software – ICMS 2010. Ed. by Komei
Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama.
Lecture Notes in Computer Science vol. 6326. Springer, Berlin, Hei-
delberg, 2010, pp. 299–302. isbn: 978-3-642-15582-6 (cit. on p. 30).

[Ver16] Sven Verdoolaege. Presburger Formulas and Polyhedral Compilation.
2016. url: https://lirias.kuleuven.be/bitstream/123456789/523109/
3/polycomp-tutorial-v0.02.pdf (visited on 01/11/2020) (cit. on p. 27).

[Vud03] Richard Wilson Vuduc. “Automatic Performance Tuning of Sparse
Matrix Kernels”. Dissertation. University of California, Berkeley, 2003
(cit. on p. 50).

[Wan+08] Cheng Wang, Youfeng Wu, Edson Borin, Shiliang Hu, Wei Liu, Tin-
fook Ngai, and Jesse Fang. “New Slicing Algorithms for Parallelizing
Single-Threaded Programs”. In: Workshop on Parallel Execution of
Sequential Programs on Multi-core Architectures. PESPMA ’08. 2008
(cit. on p. 59).

[Wat89] Christopher Watkins. “Learning From Delayed Rewards”. Disserta-
tion. King’s College, 1989 (cit. on p. 19).

[WB95] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter.
Technical Report. University of North Carolina at Chapel Hill, 1995
(cit. on p. 78).

[WD92] Christopher J. C. H. Watkins and Peter Dayan. “Q-Learning”. In:
Machine Learning 8.3-4 (1992), pp. 279–292. issn: 1573-0565 (cit. on
p. 18).

[WD98] R. C. Whaley and J. J. Dongarra. “Automatically Tuned Linear Alge-
bra Software”. In: Proceedings of the 1998 ACM/IEEE Conference on
Supercomputing. SC ’98. IEEE, 1998, pp. 38–38. isbn: 0-89791-984-X
(cit. on pp. 9, 49).

[Wen16] André Wengert. “Adaptives Auto-Tuning”. Master’s Thesis. Karlsruhe
Institute of Technology (KIT) – IPD Tichy, 2016 (cit. on p. 82).

195

https://lirias.kuleuven.be/bitstream/123456789/523109/3/polycomp-tutorial-v0.02.pdf
https://lirias.kuleuven.be/bitstream/123456789/523109/3/polycomp-tutorial-v0.02.pdf

Bibliography

[WO09] Zheng Wang and Micheal F.P. O’Boyle. “Mapping Parallelism to
Multi-Cores: A Machine Learning Based Approach”. In: Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. PPoPP ’09. ACM, 2009, pp. 75–84. isbn:
978-1-60558-397-6 (cit. on p. 70).

[Wol82] Michael Joseph Wolfe. “Optimizing Supercompilers for Supercomput-
ers”. Dissertation. University of Illinois at Urbana-Champaign, 1982
(cit. on p. 25).

[YSD05] Haihang You, Keith Seymour, and Jack Dongarra. An Effective Em-
pirical Search Method for Automatic Software Tuning. Technical Re-
port. University of Tennessee, Innovative Computing Laboratory, 2005
(cit. on pp. 16, 50).

[Zha+13] Qirun Zhang, Michael R. Lyu, Hao Yuan, and Zhendong Su. “Fast Al-
gorithms for Dyck-CFL-Reachability with Applications to Alias Anal-
ysis”. In: Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’13. ACM,
2013, pp. 435–446. isbn: 978-1-4503-2014-6 (cit. on p. 22).

[ZR08] Xin Zheng and Radu Rugina. “Demand-Driven Alias Analysis for C”.
In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL ’08. ACM,
2008, pp. 197–208. isbn: 978-1-59593-689-9 (cit. on p. 22).

196

	1 Introduction
	1.1 Problem Statement
	1.2 Thesis Objectives
	1.3 Scope
	1.4 Structure of this Dissertation

	2 Fundamental Concepts
	2.1 Online and Offline Autotuning
	2.1.1 The Tuning Problem
	2.1.2 Search Algorithms
	2.1.3 Reinforcement Learning

	2.2 Program Analysis and Transformation
	2.2.1 The LLVM Framework
	2.2.2 Parallelism Detection, Dependence Graphs, and Interprocedural Analyses
	2.2.3 The Polyhedral Model

	3 An Overview of the APHES Framework
	3.1 The libtuning Autotuner
	3.2 Autotuning with libtuning
	3.3 Autotuning and Automatic Parallelization with APHES
	3.4 Summary

	4 Related Work
	4.1 Autotuning
	4.1.1 Tuning Algorithms and Autotuners
	4.1.2 Machine and Performance Models

	4.2 Automatic Parallelization for Accelerators
	4.2.1 Dependence-based Parallelization
	4.2.2 Parallelization of (Mostly) Affine Programs with the Polyhedral Model
	4.2.3 Explicitly Parallel DSLs
	4.2.4 Pattern-based Detection of Parallelism

	4.3 Autotuning Languages and Compilers
	4.3.1 Modeling and Machine Learning for Autotuning Compilers
	4.3.2 Search-based Tuning Compilers
	4.3.3 Languages

	4.4 Summary

	5 Hybrid Online Autotuning
	5.1 Hybrid Tuning: Combining Search and Prediction
	5.1.1 Context Sensitivity in Online Autotuning
	5.1.2 Approximating and Observing the Context
	5.1.3 Adapting to Context Changes

	5.2 The libtuning Architecture
	5.2.1 Tuning Parameters
	5.2.2 Indicators
	5.2.3 Fundamental Search Algorithms

	5.3 Hierarchical Search
	5.4 Model-based Prediction
	5.5 Summary

	6 Automatic Heterogeneous Parallelization
	6.1 Polyhedral Parallelization and Partitioning
	6.1.1 Mapping and Partitioning the Schedule Tree
	6.1.2 Code Generation

	6.2 Dependence Testing for Parallelization and Partitioning
	6.2.1 Detecting Data Parallelism
	6.2.2 Target Offloading
	6.2.3 Runtime System

	6.3 Offloading Heuristics and Runtime Predictors
	6.4 Summary

	7 Experimental Evaluation
	7.1 Benchmarks
	7.2 Ad-hoc Parallelization
	7.3 Polyhedral Parallelization
	7.3.1 Performance Results
	7.3.2 Detailed Analysis of Hierarchical Search
	7.3.3 Discussion

	7.4 Hybrid Autotuning
	7.4.1 Benchmark Selection
	7.4.2 Experiment Setup
	7.4.3 Results
	7.4.4 Discussion

	7.5 Summary

	8 Conclusion and Outlook
	8.1 Thesis Objectives
	8.2 Outlook

	List of Figures
	List of Tables
	Bibliography

