1,558 research outputs found

    Dynamics of delay induced composite multi-scroll attractor and its application in encryption

    Get PDF
    This work was supported in part by NSFC (60804040, 61172070), Key Program of Nature Science Foundation of Shaanxi Province (2016ZDJC-01), Innovative Research Team of Shaanxi Province(2013KCT-04), Fok Ying Tong Education Foundation Young Teacher Foundation(111065), Chao Bai was supported by Excellent Ph.D. research fund (310-252071603) at XAUT.Peer reviewedPostprin

    Physics and Applications of Laser Diode Chaos

    Full text link
    An overview of chaos in laser diodes is provided which surveys experimental achievements in the area and explains the theory behind the phenomenon. The fundamental physics underpinning this behaviour and also the opportunities for harnessing laser diode chaos for potential applications are discussed. The availability and ease of operation of laser diodes, in a wide range of configurations, make them a convenient test-bed for exploring basic aspects of nonlinear and chaotic dynamics. It also makes them attractive for practical tasks, such as chaos-based secure communications and random number generation. Avenues for future research and development of chaotic laser diodes are also identified.Comment: Published in Nature Photonic

    DSP Prototype of a Chaos-Based Multi-User Communication System: Design and Performance Analysis

    Full text link
    This paper presents the implementation of a multi-user chaos-based communication system in DSP (digital signal processor) technology. The system is based on the chaotic phase shift keying (CPSK) digital modulation scheme, where chaotic signals are used as the spreading sequences of a CDMA (code division multiple access) system. Using chaotic signals offers the advantages of increased security and higher system capacity compared with conventional sequences. The aim of this hardware implementation was to enable a comparison against analytical performance results for CPSK. The transceiver prototype was implemented on a 32-bit floating-point TigerSHARC DSP. Its bit error rate (BER) characteristics were measured in the presence of additive white Gaussian noise. The prototype achieves excellent BER performance, matching that of theoretical CPSK. The effects of the limited number precision of the hardware platform are thus negligible. However, due to the limited concurrency of DSP, the multi-user system only supports low data rates. Despite this, the prototype demonstrates that the CPSK scheme is a promising and viable CDMA option for the future

    Performance Analysis of a Chaos-Based Multi-User Communication System Implemented in DSP Technology

    Full text link
    This paper presents the implementation of a multi-user chaos-based communication system in DSP. The system is based on the chaotic phase shift keying (CPSK) digital modulation scheme, where chaotic signals are used as the spreading sequences of a CDMA system. Using chaotic signals offers the advantages of increased security and higher system capacity compared with conventional sequences. The aim of this hardware implementation was to enable a comparison against analytical performance results for CPSK. The transceiver prototype was implemented on a 32-bit floating-point TigerSHARC DSP. Its bit error rate (BER) characteristics were measured in the presence of additive white Gaussian noise. The prototype achieves excellent BER performance, matching that of theoretical CPSK. The effects of the limited number precision of the hardware platform are thus negligible. However, due to the limited concurrency of DSP, the multi-user system only supports low data rates

    Rikitake dynamo system, its circuit simulation and chaotic synchronization via quasi-sliding mode control

    Get PDF
    Rikitake dynamo system (1958) is a famous two-disk dynamo model that is capable of executing nonlinear chaotic oscillations similar to the chaotic oscillations as revealed by palaeomagnetic study. First, we detail the Rikitake dynamo system, its signal plots and important dynamic properties. Then a circuit design using Multisim is carried out for the Rikitake dynamo system. New synchronous quasi-sliding mode control (QSMC) for Rikitake chaotic system is studied in this paper. Furthermore, the selection on switching surface and the existence of QSMC scheme is also designed in this paper. The efficiency of the QSMC scheme is illustrated with MATLAB plots

    Chaotic dynamics in a storage-ring Free Electron Laser

    Full text link
    The temporal dynamics of a storage-ring Free Electron Laser is here investigated with particular attention to the case in which an external modulation is applied to the laser-electron beam detuning. The system is shown to produce bifurcations, multi-furcations as well as chaotic regimes. The peculiarities of this phenomenon with respect to the analogous behavior displayed by conventional laser sources are pointed out. Theoretical results, obtained by means of a phenomenological model reproducing the evolution of the main statistical parameters of the system, are shown to be in a good agreement with experiments carried out on the Super-ACO Free Electron Laser.Comment: submitted to Europ Phys. Journ.

    Nonlinear Dynamical Systems for Theory And Research In Ergonomics

    Get PDF
    Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system

    A study of poststenotic shear layer instabilities

    Get PDF
    Imperial Users onl

    A Journey Through the Dynamical World of Coupled Laser Oscillators

    Get PDF
    The focus of this thesis is the dynamical behaviour of linear arrays of laser oscillators with nearest-neighbour coupling. In particular, we study how laser dynamics are influenced by laser-coupling strength, κ\kappa, the natural frequencies of the uncoupled lasers, Ω~j\tilde{\Omega}_j, and the coupling between the magnitude and phase of each lasers electric field, α\alpha. Equivariant bifurcation analysis, combined with Lyapunov exponent calculations, is used to study different aspects of the laser dynamics. Firstly, codimension-one and -two bifurcations of relative equilibria determine the laser coupling conditions required to achieve stable phase locking. Furthermore, we find that global bifurcations and their associated infinite cascades of local bifurcations are responsible for interesting locking-unlocking transitions. Secondly, for large α\alpha, vast regions of the parameter space are found to support chaotic dynamics. We explain this phenomenon through simulations of α\alpha-induced stretching-and-folding of the phase space that is responsible for the creation of horseshoes. A comparison between the results of a simple {\it coupled-laser model} and a more accurate {\it composite-cavity mode model} reveals a good agreement, which further supports the use of the simpler model to study coupling-induced instabilities in laser arrays. Finally, synchronisation properties of the laser array are studied. Laser coupling conditions are derived that guarantee the existence of synchronised solutions where all the lasers emit light with the same frequency and intensity. Analytical stability conditions are obtained for two special cases of such laser synchronisation: (i) where all the lasers oscillate in-phase with each other and (ii) where each laser oscillates in anti-phase with its direct neighbours. Transitions from complete synchronisation (where all the lasers synchronise) to optical turbulence (where no lasers synchronise and each laser is chaotic in time) are studied and explained through symmetry breaking bifurcations. Lastly, the effect of increasing the number of lasers in the array is discussed in relation to persistent optical turbulence
    corecore