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ABSTRACT

Laminar shear layer instabilities in poststenotic flows are among the first flow 

disturbances to indicate arterial narrowing by atherosclerotic lesions. This makes these 

disturbances particularly useful for the noninvasive diagnosis of extracranial occlusive disease 

by blood velocity measurements. However, the diagnostic value of flow disturbances depends 

crucially on their structural stability in the presence of ambient perturbations such as arterial 

wall vibrations. This caveat applies notably to separated shear layers that are by nature 

excited flows.

The question of structural stability is addressed in a susceptibility study of poststenotic 

flow instabilities in model experiments. Flow velocities are measured non-intrusively with a 

laser Doppler velocimeter, the accuracy of which is assessed both experimentally and 

theoretically by analysis and stochastic modelling of the Doppler demodulation process. 

Separated flow downstream of model stenoses is subjected to artificially generated periodic flow 

perturbations of variable frequency and amplitude. Thus the poststenotic flow mechanics are 

decoupled from the solid mechanics of possible wall motion.

The results show that steady flow is highly susceptible. The separated flow instability 

locks-on to the perturbations over a wide range of frequencies. Pulsatile flow, in contrast, is 

significantly less susceptible to flow perturbations, suggesting that quasi-steady analysis is of 

limited applicability. This finding is substantiated by starting flow experiments. Flow 

visualisation gives further insight into the poststenotic flow and a vortex wave, thought to be 

due to a low Reynolds number instability, is observed in pulsatile flow.

The second part of this study concentrates on the separated shear layer instability. A 

phenomenological model is proposed that interprets the broadband shear layer velocity 

fluctuations as functionally composite self-sustained oscillations. Self- and forced 

synchronisation of a population of nonlinear oscillators serve to model latent order and flow 

regularisation in the (forced) free shear layer. Nonlinear oscillator concepts have not been 

applied before to extrinsic flows whilst intrinsic flows such as wakes or impinging free shear 

layers, characterised by a discrete frequency of flow oscillation, lend themselves readily to this 

approach.
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The phenomenological model suffers from a conceptual difficulty in that it gives an 

Eulerian description of flow oscillations, thus not accounting for the spatial development of the 

instability. This has prompted an investigation of the Ginzburg-Landau equation which 

provides a small-amplitude description of spatially developing weakly nonlinear hydrodynamic 

instability waves. This model open flow system is investigated in respect to its applicability to 

the free shear layer. A modification of the Ginzburg-Landau equation is shown to give rise to a 

subharmonic cascade, typically associated with free shear layer growth. The implications and 

limitations are discussed.
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Preliminary findings of this research were reported at the First IF AC Symposium on 

Modelling and Control in Biomedical Systems, Venice, Italy1. Results of the theoretical and 

experimental analysis of frequency tracking noise in laser Doppler velocimeters have been 

published2 and are included in Chapter III (§ 8). Summaries of the phenomenological model of 

flow synchronisation in the forced free shear layer3, and of a proposed model system of 

subharmonic evolution4 have been accepted for publication.

1Treiber J and Kitney R I (1988). Nonlinear modelling of vortex phenomena downstream of 
a stenosis. IF AC Symp Modelling Contr in Biomed Syst, Venice, Italy.

9
Treiber J and Kitney R I (1987). Influence of dropouts on flow velocity measurements with 

an LDV frequency tracking system. J Phys E: Sci Insirum 20 pp 1404.
3

Treiber J and Kitney R I (1988). Cooperative dynamics of a coupled oscillator system and 
the forced free shear layer. Phys Let A (accepted for publication).

4Treiber J and Kitney R I (1988). Evolution of subharmonics in a modified Ginzburg- 
Landau equation. Phys Let A (accepted for publication).
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PROLOGUE

Cocooned in a Mood of Self-Esteem ?

Technology and values — a seemingly controversial issue1. Biomedical engineering, 

however, would appear to be exempt from such controversy. Judging by what are presumably 

widely held beliefs, biomedical engineers do not consider their activities a form of instrumental 

reason. The ends become the means for establishing a moral hierarchy. Medical computer 

graphics is held to be a highly altruistic undertaking2 and claimed to benefit patients directly3. 

The concept of beneficience serves to demarcate against other engineering specialities4 5. An 

IEEE Harris poll6 conducted some years ago reflects these attitudes fittingly. Biomedical 

electronics was found to rate amongst the most glamorous and highest valued of the electrical 

engineering specialities.

Were it not for more enlightened approaches to the value question on the part of 

professional bodies such as the IFMBE7, the above views could be doing discredit to the 

biomedical engineering profession. For they display a profound lack of critical and contextual

1R J Whelchel. Is technology neutral? IEEE Techn Society Vol 5 No 4 (1986).

2M L Rhodes, Guest Editor. “Special altruistic awards are evident when applying 
computer graphics techniques to medical images. In addition to the visual information delivered 
to our specialty, computer graphics scientists working in medicine have the added pleasure of 
knowing their efforts are targeted for health care - patients will benefit directly.” IEEE Comp 
Graph Appl (Dec 1985).

3l_-S Chen, G T  Herman, R A Reynolds and J K Udupa . Surface shading in the cuberille 
environment. Computed tomography and the cuberille model — an effort to better serve the 
medical profession and its patients. IEEE Comp Graph Appl (Dec 1985).

4A Wald, Editor. “But most of all, I  believe the one additional factor which 
differentiates biomedical engineers from all other engineers is that biomedical engineers truly 
want to dedicate themselves to an activity that they know to be truly humanitarian.” IEEE Eng 
Med Biol Vol 4 No 2 (1985).

5R W Mann. “ What distinguishes biomedical engineering from traditional engineering 
fields (civil, mechanical, electrical etc), and from other application areas (transport, computers, 
sanitary) is that “biomedicaF denotes the application of engineering research and/or design 
practice to questions intrinsically humane. It thus exacts the best in engineering, while being 
motivated by the highest of human aspirations.” Biomedical engineering, a cornucopia of 
challenging engineering tasks — all o f direct human significance, IEEE Eng Med Biol Mag pp 43 
(1985).

6Spectrum Harris poll: EE specialties. IEEE Spectrum (1984) Vol 21 pp 49.

7(1) J Hutton. IFMBE and ISTAHC proposed joint working group on the implications 
and assessment of biomedical innovation, in: Third Annual Meeting Int Soc Tech Assessment 
Health Care, Rotterdam, The Netherlands (M ay 1987). (2) MBEC News No 6 Nov 1987.



-  2 -

thinking. Hardly borne out by the realities of today’s medical technologies, attributes like 

‘altruism’ and ‘benefit’ are wishful thinking. With health expenditure absorbing growing 

percentages of the gross national product — 12% in the United States, 10% in Sweden and 

West Germany — the value of medical technologies is increasingly being questioned. Notions of 

the ‘medical-industrial complex’8 are difficult to reconcile with humanitarian activities. Indeed, 

there is justified concern over impending public policy changes that will lead to indiscriminate 

cuts in health expenditure, enacted by “technologically ignorant barbarians”9.

This calls for a comprehensive technology assessment of new medical technologies that 

not only considers safety and efficacy10, but cost-benefit analysis (quality of life included) and, 

most importantly, the definition of macro-alternatives11. Notably in less developed countries 

there is urgent need for problem- rather than technology-oriented technology assessment12.

However, even on a technology-oriented level of assessment, technologies often fail to 

demonstrate forms of benefit. For example, comparative studies of acute heart attack 

treatment in a hospital coronary care unit and a domiciliary setting found no difference in 

outcome13. Other technologies have been linked to iatrogenic illnesses14, and serious psycho­

social side effects. Renal dialysis patients, for instance, were associated with an unusually high 

occurrence of suicidal behaviour15. The CT scanner, a technology “that epitomises an era oj 

American medicine, in which technological triumphs are confronted with critical questions 

about their worth”16, was criticised strongly by the technology assessment agency of the U.S.

8(1) A Reiman. The new medical industrial complex. New Engl J Med 303 pp 963 
(1980). (2) L C Thurow. Can we afford the new medical technologies?. IEEE Eng Med Biol 
(June 1988).

9(1) J D Bronzino. Health care policy: a role for the engineering professional. IEEE Eng 
Med Biol (June 1988). (2) L C Thurow. op. cit.

10Attinger is very critical of assessments based on efficacy and relative safety. He contends 
that such assessments are often nothing more than a public-relation release ( Transferability of 
health care technology assessment, with particular emphasis on the third world, in: 3rd Ann 
Meeting ISTAHC, see (7 )).

1:LE O Attinger and D R Ajuha. Health and socio-economic change. Trans IEEE Syst Man 
Cybern SMC-10 pp 781 (1980).

1 9E O Attinger. op. cit.

13(1) A L Cochrane. Effectiveness and Efficiency: Random Reflections on Health 
Services. London: Burgess (1972). (2) H G Mather et al. Acute myocardial infarction: a 
comparison between home and hospital care for patients. Brit Med J pp 926 (1976).

14l lllich. Limits to Medicine. London: Boyars (1976).

15H S Abraham, G L Moore and F B Westervelt. Suicidal behaviour in chronic dialysis 
patients. Amer J Psychiatry 127 pp 119 (1971).
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Congress soon after its introduction in 1972, for the lack of proof of its benefit to the health of 

cither individuals or groups in society17. Cynics have since argued that medical technologies 

exist to diagnose, not to cure18.

This is where the problem-oriented technology assessment sets in. To some, the 

recognition that there are non-medical determinants of health, still comes as a revelation19, yet 

this concept has an established history. The socio-economics of health formed part of the credo 

of the French Revolution20, and a first formal investigation was carried out in the 1830s and 

40s 21. Comprehensive studies of the recent past, the Black report22 commissioned by the 

DHSS, and the Britsh Medical Association discussion paper23, have conclusively shown that 

there are social-class determinants of health. At the same myths about diseases of affluence 

were exposed. The commonly held view that coronary heart disease or stomach ulcers are 

‘executive illnesses’ was rejected on the basis of recent investigations, and the BMA commented 

laconically that “within the UK the only major cause of death that is clearly related to higher 

social class is malignant melanoma”. Coronary heart disease is now more prevalent in the 

lower occupational grades24, and shift workers have been shown to be at increased risk of 

ischaemic heart diease25. The social class gradient is thought to be related to the ability to

16 H V Finneberg. Advances and dilemmas in computed tompgraphy. Proc IEEE 67 pp 
1272 (1979).

17U.S. Congress, Office of Technology Assessment. Development of medical technology', 
opportunities for assessment. Washington DC (1976).

18T  P Bleck, book review. IEEE Techn Soc pp 13 (March 1982).

19A Williams. Expensive medical technologies: which can we afford? in: 3rd Ann Meeting 
1STAHC, see (7).

20Lanthenas. “ Who, then, should denounce tyrants to mankind if not doctors, who 
make man the sole study, and who, each day, in the homes of the poor and rich, among 
ordinary citizens and among the highest in the land, in cottage and mansion, contemplate the 
human miseries that have no other origin but tyranny and slavery.” De I'influence de la liberte 
sur la sante. Paris (1792). in: M Foucault. The Birth of the Clinic. An Archeology of Medical 
Perception. Tavistock (1973).

91
E Chadwick. Report on the sanitary conditions of the labouring population of Great 

Britain. (1842).

22Report of the Working Group on Inequalities in Health (the Black Report). DHSS 
London (1980).

23British Medical Association. Deprivation and Ill-Health. Discussion Paper (May 1987).

24M G Marmot. Stress, social and cultural variations in heart disease. Psychosom Res 
27 pp 377 (1983).

25A Knutsson, T  Akerstedt, B G Jonsson and K Orth-Gromer. Increased risk of ischaemic 
heart disease in shift workers. Lancet pp 89 (1986).
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cope with stress and to the degree of control a person believes to have over sources of stress26. 

Infant mortality with unknown main causes during the first year of life (‘cot death’) is more 

than twice as high in the lower social classes , and respiratory disorders, thought to be linked 

to these deaths, have been associated with poor living conditions28. Similarly, lung diseases of 

external causes are markedly concentrated in the less skilled manual occupations29. Asbestos, 

for example, has long been recognised as a high risk material, but the introduction of tighter 

safety regulation merely led to the relocation of asbestos plants to South Africa30, together 

with the occupational hazards.

What confounds and impedes the conscientious use of medical technologies is the 

pervasive character of technology which influences both health care providers and consumers. 

On the part of the patient, the imperative character of available medical technologies has 

reached dimensions where confrontations with the drawbackes of an implemented technology 

are tolerated by “anticipated decision regret”31. The physician’s approach to medical care is 

dominated by a technological imperative32, not least because of the legal safeguards33.

A working group has recently been set up by the IFMBE to explore the social and 

economic implications of biomedical innovation, and the role of the engineer has been 

considered central to the analysis. It is to be hoped that such activities will be a first step 

toward the recognition of qua duties, or professional ethics, based on conscientiousness i.e. an 

awareness of surroundings, others, and one’s self.

26 S Fisher. Stress and Strategy. Lawarence Erlbaum Associates (1986).

27OPCS. Occupational mortality. Childhood supplement. HMSO London (1988).

28D J P Barker and C Osmond. Infant mortality, childhood nutrition and ischaemic 
heart disease in England and Wales. Lancet pp 1077 (1986).

29OPCS. Occupational mortality. The Registrar General's decennial supplement for 
Great Britain, 1979-80, 1982-83. HMSO London (1986).

30(1) Killer asbestos moves south. Africa Now (June 1981). (2) Deadly dust threatens 
workers. Africa Now (Feb 1983).

31T j Tymstra. The imperative character of medical technology and the meaning of 
'anticipated decision regret', in: 3rd Ann Meeting ISTAHC, see (7).

32V R Fuchs. Who shall live? Health, economics, and social choice. New York: Basic 
Books (1974).

33L R Tancredi and J A Barondess. The problem of defensive medicine. Science 200 pp 
879 (1978).
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CHAPTER 0

POSTSTENOTIC FLOW DISTURBANCES

1. Objectives

This study concerns poststenotic flow instabilities — their sensitivity to ambient flow 

perturbations and the phenomenological modelling of the flow ‘locking-on’ process. The 

experimental part of the study is a susceptibility investigation of oscillatory flow velocity 

fluctuations downstream of model stenoses under both steady and pulsatile flow conditions. 

The modelling part aims at applying nonlinear oscillator concepts to the flow regularisation 

phenomena observed experimentally.

1.1 Specific Goals

The aim behind the susceptibility analysis is to ascertain in model experiments the 

applicability of the in vitro existence of, amongst other forms of poststenotic flow velocity 

fluctuations, laminar oscillations originating in the separated shear layer, to flows in vivo. 

Complicating factors there include arterial wall vibrations that are related to poststenotic 

dilatation, an arterial condition occurring just downstream of partial obstructions to arterial 

flow. Both wall vibrations and separated shear layer oscillations are believed to have been 

observed in vivo (Kitney et al 1986). This suggests that not only are in vitro findings 

applicable to poststenotic flows in vivo, but also that the flow characteristics are not 

significantly altered by ambient perturbations. The assumed separability of the two signals 

further implies that in pulsatile flow the separated shear layer is a structurally stable 

phenomenon in the sense that it is insensitive to low level ambient noise. This has possible 

implications for the noninvasive diagnosis of the early stages of arterial deformation and is 

investigated experimentally here.

The aim behind the modelling study is of less instrumental character. This part is an 

investigation into the dynamical systems approach to modelling a time-periodically bifurcated 

flow. Flows exhibiting single-frequency ‘self-sustained’ oscillations have been successfully 

modelled by nonlinear oscillators (Hartlen and Currie 1970, Provansal et al 1987), yet no such 

approaches — apart from speculations — are known for the unstable free shear layer. The 

existence of a spectrally broad band of fluctuations does not lend itself readily to the 

traditional view of ‘self-sustained’ flow oscillations. Here the laminar shear layer fluctuations 

will be regarded as functionally composite nonlinear oscillations. Thus, whilst retaining the
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self-sustained oscillation concept, the spectral character of free shear layer oscillations is 

accounted for. This description provides a phenomenological model of the ‘locking-on’ and the 

suppression of broadband fluctuations in forced poststenotic flows.

1.2 Structure of the Thesis

The remainder of this Chapter is an outline of the pathogenesis of arterial disease, and 

its non-invasive diagnosis based on the analysis of poststenotic flow disturbances. The Chapter 

ends with a discussion of haemodynamically complicating factors like arterial wall vibrations.

In Chapter II the fluid dynamics background of poststenotic separated flows is 

discussed. Emphasis is on the laminar instability of the free shear layer, in particular its high 

sensitivity — caused by the convective instability — to low level ambient noise.

The results of the experimental investigation of the susceptibility of poststenotic 

separated flows, including both steady and pulsatile flow conditions, are presented and 

discussed in Chapter III. The differences in susceptibility between steady and pulsatile flow are 

stressed. Also included are flow visualisations of steady and pulsatile flow past a nonsymmetric 

stenosis model, showing additional flow features that may be of haemodynamic relevance. 

Results of an experimental and theoretical analysis of the frequency tracking noise inherent in 

laser Doppler velocimetry are included in the Appendix.

Chapter IV introduces the second part of this thesis with a comprehensive discussion of 

synchronisation phenomena in simple nonlinear oscillators and populations of interacting 

oscillators. Both interacting identical and non-identical oscillators are considered.

This forms the basis for the phenomenological modelling, in Chapter V, of the 

experimentally observed synchronisation of the separated shear layer with an external 

excitation. The co-operative dynamics of a coupled-oscillator system with non-identical 

oscillators are shown to account for the flow synchronisation, and a number of other aspects of 

forced free shear layers. The limitations of the model are discussed.

A model system of more relevance to hydrodynamic stability theory is investigated in 

Chapter VI. The Ginzburg-Landau equation, the simplest field of identical nonlinear 

oscillators, is a generic amplitude equation for fluid problems where a continuum of 

wavenumbers becomes unstable as a control parameter, such as the Reynolds number, is 

increased above a finite threshold. A modification of this equation is introduced that gives rise 

to a subharmonic cascade, typically associated with the free shear layer growth. The relevance 

to the free shear layer is discussed.



-  7 -

The thesis concludes in Chapter VII with a recapitulation of the various aspects of this 

research, and suggestions for further work are outlined.

2. Atherosclerosis — Pathogenesis and Diagnosis

Atherosclerosis1 is a patchy disease that occurs in the large systemic arteries. There is 

a clear predilection to more severe localised disease at certain selected sites in the arterial tree, 

including the coronary arteries, the branches of the aortic arch and the bifurcations of the 

carotid arteries. Atherosclerotic disease is particularly severe in the latter site — in the carotid 

bulb and the first few diameters of the internal carotid artery — and research has confirmed 

that ischaemic cerebrovascular strokes and transient ischaemic attacks are the result of 

atherosclerosis in the neck or the aortic arch.

A detailed knowledge of the local haemodynamics of preferential arterial sites is of 

importance to an understanding of the pathogenesis of this disease and to its — noninvasive — 

diagnosis at an early stage. Haemodynamic factors are generally thought to be of relevance to 

the initiation of atherosclerosis. On the other hand, the assessment of severity of arterial lesions 

by Doppler ultrasound techniques requires an intimate understanding of the poststenotic flow 

field.

2.1 Atherogenesis

The development of atherosclerotic plaque on the intimal of the artery is usually the 

first recognisable evidence of atherosclerosis and is a frequent finding in young adults (Enos et 

al 1953, McNamara ei al 1971). Causative factors include heredity, high cholesterol levels, 

obesity, smoking and stress states. The preferential distribution of atheromatous plaque has 

several possible explanations. One is related to variations in the arterial wall properties. 

Experiments indicate that the non-uniformity in the permeability of the endothelium to 

lipoproteins — on which cholesterol is transported in the blood plasma — correlates with the 

development of fatty streaks, thought to be the precursors of the atheromatous plaque. Other 

than assuming genetic predisposition for the wall property variations, external influences may 

be sought that control the permeability of the endothelium. In particular, haemodynamic 

factors have been suggested to influence permeability. These include pressure and wall shear 

stress, the latter of which has emerged as the central but, at the same time, controversial issue. 

There is evidence that an elevated mean pressure enhances wall permeability, though not by a

1A note on the terminology — ‘atherosclerosis’ comprises the largest subset (90% ) of the 
generic pathologic description ‘arteriosclerosis’ (Ku 1983).
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pressure-driven filtration mechanism. Indeed, chronic high blood pressure is known to be a 

predisposing factor in the development of atherosclerosis. However, an elevated mean pressure 

affects arterial walls uniformly whereas wall shear stress varies with time, throughout the 

cardiac cycle, and with position in the arterial tree.

Fry (1968) studied the effect of wall shear stress on mass transport at the endothelial 

surface of dog aortas. He showed that the endothelial surface was irreversibly damaged when 

the wall shear stress exceeded — unphysiologically — high levels, and suggested that wall 

permeability increases with increasing shear stress. Fry postulated that atherosclerosis occurs 

preferentially at sites experiencing high wall shear stress. However, it is low permeability to 

large molecules that is expected to lead to fatty streaks.

Another hypothesis has been that lesions develop most readily in areas where the 

mechanical wall shear is relatively low. Caro et al (1969, 1971) suggested that the local wall 

shear stress exercises control over atheroma formation through flow dependent diffusion of lipid 

away from the vessel wall. This leads to an accumulation of lipid in areas of low wall shear 

stress.

The controversy has been superseded as the result of more recent studies. It is now 

generally accepted that physiological shear stress levels are not large enough to erode 

endothelial cells from the wall. Experimental findings suggest that regions of low wall shear, 

such as separation and reattachment points, will be susceptable to atherosclerosis. While this is 

an attractive hypothesis, one of the main problems is in determining which regions experience 

high and low wall shear stress. It has been pointed out recently (Ku et al 1985) that, before 

attempting to relate shear stress to atherosclerosis, a detailed knowledge of both the time- and 

space-dependence of the wall shear stress is required.

2.2 Diagnosis

Despite significant advances in non-invasive diagnostic techniques, contrast 

arteriography is still the standard method for detecting arterial abnormalities and the gold 

standard for assessing the sensitivity and specificity of non-invasive methods. Like any invasive 

technique, contrast arteriography presents a small, but real risk in respect to morbidity and 

mortality. Also, besides the costs, discomfort and other complications of this invasive 

examination, the information provided is strictly anatomical and it is often impossible to 

estimate the haemodynamic significance of a stenosis2, even with films taken in two planes. 

This is because atherosclerosis rarely produces an axisymmetric lesion within an artery. 

Therefore, the use of changes in velocity patterns appears to be promising for long-term studies
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of disease progression.

Ultrasonic duplex scanning, as a non-invasive direct technique, combines pulsed 

Doppler ultrasound with real-time B-mode imaging. With the pulsed Doppler ultrasound it is 

possible to detect blood flow at and near a site of arterial stenosis, and the B-mode images are 

used as a guide for the placement of the sample volume of the pulsed Doppler. Importantly, 

ultrasonic duplex scanning provides a means of screening patients and may help in planning 

the (invasive) arteriographic procedure to be used subsequently. Current experience suggests 

that B-mode imaging is best suited for the detection and classification of early lesions. As the 

plaque becomes more complicated in terms of its constituents, the variations in acoustic 

absorption characteristics become wider and the accuracy of B-mode imaging in predicting the 

degree of arterial narrowing becomes less. However, on the presupposition that arterial stenoses 

at specific sites will produce predictable changes in local flow velocities, Doppler velocity 

waveform analysis permits a broad classification of lesions and the current trend is 

encouraging. In this respect the carotid circulation proves advantageous in that the flow does 

not appear to show the same changes commonly observed in peripheral arteries under a wide 

variety of conditions, for example changes in ambient temperature or variations in sympathetic 

activity (Bernstein et al 1985).

3. Poststenotic Flow Disturbances

The use of successively more sophisticated methods of waveform analysis has resulted 

in a steady increase in the number of disease categories. Early carotid artery velocity waveform 

analysis limited the classification of carotid disease into haemodynamically insignificant and 

significant diameter reduction. With the advent of better instrumentation, it is now possible to 

grade stenoses in six broad categories based on peak Doppler frequency and spectral 

broadening : (1) normal (unoccluded); (2) 1% to 10%; (3) 11% to 49%; (4) 50% to 79%; (5) 

80% to 99% and (6) occlusion. Further advances in disease description may be possible through 

a greater knowledge of the fluid dynamics of poststenotic flows and of signal analysis methods 

capable of extracting relevant information from Doppler velocity measurements.

This has formed the starting point for many a model experiment study of poststenotic 

flows with well defined configurational characteristics. Khalifa and Giddens (1981) identified 

three major types of flow disturbances downstream of contoured symmetric model stenoses in a

2
An atherosclerotic lesion is traditionally considered to be haemodynamically significant if 

the lumen diameter reduction is greater than 50% i.e. if the cross sectional area reduction is greater 
than 75%.
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straight rigid tube :

(1) a start-up structure associated with the start-up process of each cycle;

(2) oscillations originating in the separated shear layer downstream of the model stenosis;

(3) random velocity fluctuations.

The start-up structure has a very repeatable velocity vs. time signature with each pulse and 

propagates at approximately the local flow velocity. This suggests that what is observed is 

some form of starting vortex known from impulsively started separated shear layers. In fact, 

the repeatability of the waveform is a distinguishing feature of the starting vortex generated by 

orifice flow started from rest (c/. CH III § 5.2.1.5).

What was classified as the second type of flow disturbance by Khalifa and Giddens is 

the result of the Kelvin-Helmholtz type instability of the separated shear layer downstream of 

the stenosis. The oscillations are generally amplitude and frequency modulated, and 

approximately scale with the local flow velocity and a characteristic length scale such as the 

reduced lumen diameter. For comparison, in free circular jets, the dominant frequency /0 is 

related to the jet exit velocity U- and the jet diameter D via f0U-/D sa 0.25 to 0.50. The 

scatter of this dimensionless number, the Strouhal number (c/. Ch II § 2), is mostly due to the 

residual noise present in individual flow facilities. It must be emphasised, however, that this 

scaling law applies only if the ratio of jet diameter and initial shear layer momentum thickness 

is above some critical value.

Finally, the random velocity fluctuations are typically initiated not by the start-up 

structure but by the shear layer instability. Again, in free jets the turbulent structure 

represents the small-scale transition behind the end of the potential core. In confined jets, on 

the other hand, the break-up of coherent structures is more probably due to interference with 

the downstream bounding walls. Attempts have been made at scaling turbulence spectra in 

poststenotic flows, calculated from the data of an entire pulse cycle. The energy is non- 

dimensionalised by the peak velocity and the frequency is transformed to a semi-local Strouhal 

number. The results show remarkable similarity between data obtained both in vivo and in 

vitro, over an extensive range of stenosis size, Reynolds number and axial position (Cassanova 

and Giddens 1978). In general, turbulence similarity is best if the degree of occlusion is 

sufficient and the Reynolds number is relatively large.

The flow features that are of possible interest in respect to the early stages of arterial 

disease are the starting structure and oscillatory flow velocity fluctuations of discrete frequency 

because they are the first to be observed as the degree of stenosis increases. As Giddens and 

Kitney (1986) noted, “Lowering the threshold of recognition of localised arterial disease using
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flow disturbance analysis will best be achieved by understanding the role of coherent disturbance 

features, not by measurement of turbulence".

The relevance of the flow disturbance categories to arterial stenotic flows remains to be 

assessed but evidence appears to support the in vivo existence of similar flow disturbances. For 

example, Casty and Giddens (1984) studied several subjects using a pulsed Doppler system and 

observed coherent flow disturbances during peak systole in the common carotid artery of a 

patient with aortic valve failure and a systolic bruit radiated up the artery. In another example 

(Khalifa and Giddens 1978), the analysis of hot-film anemometer measurements of blood 

velocities in the descending aorta of dogs with induced stenoses (figure 1.1) demonstrated flow 

disturbance features that were speculated to represent shed vortices or arterial wall vibrations. 

The subsequent analysis of individual beats by homomorphic filtering (Kitney et al 1986) 

indicated the co-existence of two spectrally distinctive structures during peak systole. This 

investigation is briefly summarised here.

For the purpose of analysing the flow disturbances, superposed on the basic pulsatile 

flow waveform, the two components were separated by low-pass/high-pass filtering (/c=10O 

Hz). The inspection of individual-beat disturbance velocities at various levels of occlusion 

indicated that an amplitude-modulation mechanism was operative (figure 1.2a). It was decided 

to demodulate the signal by homomorphic filtering (Oppenheim and Schafer 1975), a technique 

that is more generally applicable than the Hilbert-transform approach (e.g. Ktonas and Papp 

1980) to decomposing narrowband AM-FM signals. In a homomorphic filter for multiplicative 

signals, the two signal components are separated by a logarithmic operation. Modelling the 

disturbance velocity signal s(tf) as

s(i) =  e(t) v(t) , (1.1)

with e(t) an envelope function always greater than zero, the two components, if spectrally 

distinctive from one another, may be separated by a complex logarithm operation, followed by 

linear filtering of the real part — lowpass filtering for e(i) and highpass filtering for v(t) — and 

finally complex exponentiation :

3(0 = syo + 8 j ( t )

3(0 =  !°g{e(0 =  log{e(0> + log{K0l) +  j  arg{v(i)}

e(0 =  exp {£,[5^(0]} »(0 =  exP U J ^ O ]  +  5/(0}

( 1 . 2 )



1 2

ioor

Z  5C*0)
£  o
u 100

(c) 40°/o occlusion

(d) 5Q°/o occlusion

oO
0)>

50

0
100

50

0
100

50

0

El a (e) 74®/o occlusion .

( f ) 88°/o occlusion

Figure 1.1 Poststenotic flow disturbances in the canine thoracic aorta, for various levels of 

occlusion. Flow velocities are measured with a hot-film probe located at the centre line, 2cm 

distal to the area of maximal constriction (after Giddens ct al 1976, no time scale given).
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Figure 1.2 (a) A single highpass filtered beat (/c=100 Hz) taken from 40% occlusion data. The 

low frequency envelope (6), and the high frequency content (c), obtained by homomorphic 

filtering.
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where Ll and Lh are low- and high-pass filtering operators, respectively. Exemplary results of 

the demodulation are shown for the 40% occlusion level in figure 1.2. The large variations of 

the envelope e(t) were thought to reflect the passage of large scale structures such as shed 

vortices. Indeed, the Strouhal number calculated from the basic frequency of variation of e(t) 

and the peak velocity and constriction diameter was found to be around 0.5, a value 

representative of the vortex shedding in confined and free jets (c/. Ch II § 3.2). With regard to 

the carrier waveform v(i), two somewhat contradictory explanations were offered. On the one 

hand, it was speculated that v(t) represented ilfiner scale 'phenomena within the vortex 

structure’'. This, however, seems difficult to conceptualise. Lau and Fisher’s (1975) analysis of 

hot-film measurements in jets conclusively showed that the signature of a vortex, passing the 

hot-film probe, consists of a single skewed spike. The details of this spike were explained 

physically.

Alternatively, the high-frequency fluctuations v(t) were thought to result from arterial 

wall vibrations, as suggested previously by Khalifa and Giddens (1978). Thus the following 

scenario emerged: arterial wall vibrations are generated distally to the induced stenosis mainly 

during peak systole and cause high-frequency fluctuations. These in turn are modulated by the 

much lower frequency of vortex shedding from the stenosis.

To appreciate the significance of poststenotic vessel wall vibrations it is appropriate at 

this point to give an overview of this phenomenon.

4. Arterial Wall Vibrations and Poststenotic Dilatation

Arterial wall vibrations occur distally to atherosclerotic lesions and have been proposed 

as a noninvasive diagnostic tool for arterial disease (Lees and Dewey 1970). The technique, 

phonoangiography, is now successfully employed for the quantification of arterial deformations. 

The sound that is recognised as arterial bruit is produced by the transmission of vessel wall 

motion, induced by flow disturbances distal to the arterial stenosis, to the skin surface. Arterial 

wall vibrations are closely related to poststenotic dilatation, an enlargement of the artery in 

the low pressure region distal to a stenosis. Paradoxically, it is often the poststenotic dilatation 

that is easier to see radiologically than the stenosis itself. Poststenotic dilatation is a type of 

structural fatigue induced by the (resonant) wall vibrations which in turn are caused by flow 

disorder or turbulence. Correlation between the three has received considerable attention.

Roach (1963a) found from in vivo studies that only those stenoses, artificially induced 

in the femoral and carotid arteries of dogs, caused poststenotic dilatation that produced 

noticeable distal turbulence, indicated by a thrill and a bruit. A poststenotic dilatation
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developed within the first 10 to 12 days of intervention and the dilated artery segments were 

more distensible than normal (Roach 19636). A subsequent study in vitro (Roach and Harvey 

1964) of isolated perfused human iliac arteries produced essentially the same result, viz. a 

degree of flow turbulence distal to the induced stenosis was required that was detectable by 

wall vibrations. Similar results, of somewhat lower accuracy due to different instrumentation, 

were obtained by Foreman and Hutchison (1970).

The obvious correlation between poststenotic arterial wall vibrations and the 

development of poststenotic dilatation led Boughner and Roach (1970) to investigate the effect 

of vibrations alone on the arterial wall. Again, isolated human iliac arteries were used. 

Different arteries were seen to respond, in terms of dilatation, to different frequency ranges, 

though no conclusive evidence of resonant behaviour was found. Resonance, however, was 

clearly observed by Hutchison (1974) in experiments on the frequency response of isolated 

canine carotid arteries, particularly at higher transmural pressures i.e. increased wall stiffness.

In contrast to Roach’s (1972) hypothesis that flow turbulence is the sine qua non for 

poststenotic dilatation through arterial wall vibrations, there were speculations by Bruns et al 

(1959) and, more recently by Hussain (1977), that the vortex shedding from arterial stenoses 

interacts with the distal arterial walls, causing vibrations. Hussain went as far as conjecturing a 

possible link between the starting vortex shed during each cycle at the optimum Strouhal 

number S7 =  0.4, with the resonant frequency of the vessel wall. Unfortunately, as far as flow 

conditions in the human carotid arteries are concerned, this is a rather unlikely situation.

A study that bears stronger on the findings of Khalifa and Giddens (1978), and 

subsequently Kitney et al (1986), is a comparison of model and in vivo experiments on vessel 

wall vibrations due to induced stenoses (Kirkeeide et al 1977). The model study utilised 

axisymmetric constrictions inserted into flexible tubes, with moduli of elasticity comparable to 

the canine femoral artery which was investigated in vivo. The relationships that were found 

between wall-vibration intensity and fluid dynamic parameters, were similar for the two 

experiments. Somewhat surprisingly, however, the amplitude of wall vibrations in the in vivo 

case was increased by a factor of approximately 20 in comparison to the model study. 

Concurrently, the axial position of maximum wall vibrations was consistently upstream of the 

position predicted by the model results. Kirkeeide et al (ibid) concluded that “t/ie unsteady flow 

system may be a more efficient generator of fluid oscillations than the steady flow system under 

similar conditions”.

Returning to the wall vibration measurements in vivo, although no frequency analysis 

was carried out due to the nonstationary character of the wall displacement signal, the in vitro
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recordings showed clear resonance at frequencies of 600 Hz or 800 Hz, independent of flow rate. 

These values may not be physiologically relevant, however. Hutchison’s (1974) findings 

indicated resonances in the range 50 to 150 Hz which is approximately the frequency range 

reported by Kitney et al (1986). As regards the amplitude of the vessel wall vibrations in vivo, 

despite the twenty-fold increase over comparable steady flow conditions, these are well in the 

sub-micron range, a figure that requires qualification. Firstly, the displacement transducer was 

a piezo-electric contact microphone which most probably influenced the vessel vibrations. 

Secondly, no independent calibration was undertaken. The experimental findings of Kirkeeide 

et al (1977) may therefore be taken as in vivo evidence of some form of poststenotic vessel wall 

vibrations, without detailed knowledge about either spectral composition or absolute vibration 

intensity.

5. Conclusions

The eduction of diagnostically meaningful non-turbulent flow disturbances from in vivo 

flow velocity waveforms is a non-trivial task. How much of the flow disturbance classification, 

derived from model experiments, survives in the in vivo context depends greatly on the degree 

of structural stability the particular type of flow disturbance possesses. Of the two coherent 

disturbance features, it is the large scale start-up structure that is very repeatable under a 

variety of flow conditions. This contrasts with the laminar shear layer oscillations which are 

significantly less structurally stable. Very low-level ambient background noise modifies the 

spectral content and the amplitude of these fluctuations. As will be seen in the following 

chapter, even under controlled laboratory conditions the most probable frequency (preferred 

mode) and the spreading rate of an initially laminar shear layer can show up to 100% 

variability in different flow facilities. It is conceivable therefore that resonant vessel vibrations 

feed back to the shear layer origin, modifying the flow evolution.

It is not attempted in this study to investigate such a feedback mechanism. The model 

experiment would entail too many ad hoc assumptions about the vessel geometry and elastic 

wall properties distal to the stenosis. Instead, it has been decided to study the susceptibility of 

the separated poststenotic shear layer per se. This affords control over the frequency content 

and the amplitude of the flow perturbations by artificially exciting the flow.
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CHAPTER DO

FREE SHEAR LAYER INSTABILITY

“I happened to be one of a party of eight persons assembled after tea for the 
purpose of enjoying a private musical entertainment. Three instruments were 
employed in the performance of several of the grand trios of Beethoven, 
namely, the piano, violin, and violincello. Two ‘fish-taiF gas-burners 
projected from the brick wall near the piano. Both of them burnt with 
remarkable steadiness, the windows being closed and the air of the room 
being very calm. Nevertheless it was evident that one of them was under 
pressure nearly sufficient to make it flare.

Soon after the music commenced, I observed that the flame of the 
last-mentioned burner exhibited pulsations in height which were exactly 
synchronous with the audible beats. This phenomenon was very striking to 
everyone in the room, and especially so when strong notes of the violincello 
came in. It was exceedingly interesting to observe how perfectly even the 
trills of this instrument were reflected on the sheet of flame. A deaf man 
might have seen the harmony.”

John Leconte (1858). On the influence of musical sounds on the 
flame of a jet of coal-gas. Phil Mag 15 pp 235.

1. Introduction

Having given further details of his observations, Leconte then concluded “that the 

phenomenon which had fallen under my observation was nothing more than a particular case 

of the effects of sounds on all kinds of fluid je ts”

Leconte’s delightfully vivid account of what is known as ‘sensitive flames’ conveniently 

sets out the theme of this chapter, namely the susceptibility of free shear layers to very low- 

amplitude perturbations. Two mechanisms constitute this susceptibility. Near the shear layer 

origin — in the linear region — the free shear layer acts as a large-gain narrowband amplifier 

of ambient background noise. In the nonlinear region, ‘competition’ between the natural 

broadband fluctuations and a periodic perturbation can lead to the suppression of broadband 

fluctuation levels and concentration of energy at the perturbation frequency. It is the 

combination of these two mechanisms that causes dramatic changes in the spatial development 

of the free shear layer.
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Below, the basic properties of unforced and forced free shear layers are outlined. The 

discussion of more specific aspects of free shear layers is deferred until required (Ch III, V and 

VI). At first, however, the concept of dynamical similarity, of central importance to 

experimental fluid dynamics, is sketched briefly and the definitions for a few important 

dimensionless parameters are given.

2. Dynamical Similarity

Dynamical similarity is the cornerstone of physical modelling. Consider, for example, 

incompressible steady flow without any free surface. The dynamics of this hypothetical flow 

scale exhaustively with a single dimensionless parameter, the Reynolds number. That is, given 

two geometrically similar flows with otherwise different characteristics, they are expected to 

behave dynamically similar so long as the respective Reynolds numbers are the same. Problems 

with the similarity principle arise not because of its limited range of applicability, but because 

the underlying assumptions may break down if, for example, geometrical scales are greatly 

reduced e.g. whole blood is correctly treated as a Newtonian fluid only in the larger arteries (cj 

Ch III § 2.2).

The number of dimensionless parameters on which some physical process scales is 

equal to the difference between the number n of variables that constitute the — necessarily 

abstracted — formal description of the process and the number m of independent dimensions 

involved (Ipsen 1960). In rigid pipe flow, n—m=  1. To demonstrate this, consider steady flow 

of an incompressible fluid in a rigid pipe. The number of variables that describe this flow is 

n = 4 : velocity (or pressure gradient), a length scale pertaining to the conduit, and the density 

and viscosity of the fluid. A typical dimensional base consists of mass, length and time, i.e. 

m — 3. q.e.d.

Dimensionless products obviously have a meaning beyond the grouping of variables in 

dimensionless form. The Reynolds number

R t = h 2  (2. 1)

is the ratio of inertial to viscous forces, where U and D are a representative flow velocity and 

length scale, respectively, and v is the kinematic viscosity t/=  ////?, ratio of dynamic viscosity 

and density. Thus, for any inviscid fluid, R e= oo. When unsteady, or more specifically 

pulsatile, flows are considered another dimensionless product is required to account for the
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added time scale. Depending on the physical meaning, this product can either be the Strouhal 

number

5i = T T U  • <2'2>

or the frequency parameter — also known as the Womersley number, in recognition of 

Womersley’s contribution to the theory of oscillatory flows in rigid and elastic tubes 

(Womersley 1955, 1957),

a  =  §  Jg , (2.3)

or the Stokes layer thickness,

■5 =  ■ (2.4)

Between the Reynolds number, Strouhal number and Womersley number exists the 

relationship

a2 = |  Re Si . (2.5)

The Stokes layer thickness is a measure of the distance that the effect of a boundary wall can 

diffuse away from the wall during one period of the oscillation. The Womersley number simply 

relates the Stokes layer thickness to a length scale such as the pipe radius,

a D/2
8 ( 2 . 6 )

The Strouhal number, on the other hand, relates a system length to the distance the fluid 

travels in one period.

3. Free Shear Layer Instability and Transition

This section considers natural mixing layers and free jets under steady flow conditions, 

for which the relevant scaling parameters are the Reynolds number and the Strouhal number.
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3.1 The Mixing Layer

Consider the plane mixing layer formed by the merging of two parallel streams of 

respective velocities and C/2, separated by a splitter plate. A useful parameter is the 

quantity

r  =  f e S  • >  ^  • <2-7 >

R is a measure of the magnitude of shear and describes various flow configurations. If 0 < R 

< 1, both streams run in the same direction, while for R >  1 they flow in opposite directions. 

In the limiting case where R = 0, there is no shear and when R=  1, only one stream is present, 

as in the initial mixing region of a jet.

The spatially evolving flow downstream of the splitter plate is linearly inviscidly 

unstable to small perturbations via the Kelvin-Helmholtz instability mechanism. If the mixing 

layer is conceptualised as a superposition of interacting instability waves with space-time 

dependence e x p ( / ? a t h a t  propagate and amplify in the downstream direction, the flow 

may be examined in Fourier space. Most calculations for linearly unstable free shear layers 

have been conducted for the one-parameter family of hyperbolic-tangent profiles

U(y,R) = U (1 +  iJ tanh(fe) U=(UX+U2)/2 (2.8)

where y is the cross-stream coordinate and 90 is the initial shear layer momentum thickness.

The spatial growth rate /?r is found to be biggest for a wave with Strouhal number

Stn= n _9—0.032. This normalised frequency of the mixing layer changes by only 5% between 
Z7T U

R = 0 and R=  1. The phase velocity cr = -s2 of the most amplified wave is equal to the average 
— ^  *velocity U of the two streams. Spatial waves are dispersive below Stn and non-dispersive 

above, i. e. the phase velocity becomes independent of the normalised frequency St

The analysis so far has been limited to small perturbations and a region where the 

basic flow is parallel. Both assumptions break down further downstream. As nonlinear effects 

come into play, the exponential growth of the linearly most unstable wave decreases. The 

instability wave evolves into a periodic array of vortices moving at the average velocity, with a 

wavelength An =  ̂ p. At the same time, a  subharmonic wave at half the frequency of the 

fundamental makes its appearance together with the expected higher harmonics. This 

constitutes one of the most striking features in mixing layer dynamics because it initiates
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vortex pairing1 i.e adjacent pairs of vortices begin to roll around each other, finally coalescing 

into a single vortex. The emergence of the subharmonic is the result of a parametric resonance 

mechanism. In its simplest formulation, the row of vortices is modelled by an array of point 

vortices. Linear analysis indicates that this configuration is most unstable to a disturbance of 

wavelength 2 An (Lamb 1932). In a more representative description, the stability of a basic 

space-time periodic flow is investigated (Kelly 1967). It is found that the periodic flow can 

serve as a means by which waves with half the frequency and twice the wavelength i.e. with 

the same phase velocity U, can be reinforced. The instability mechanism is thus one of 

principal parametric resonance (Nayfeh and Mook 1979) whereby the subharmonic can 

reproduce itself via quadratic interaction with the fundamental.

So far the shear layer instability has been a purely two-dimensional process. Following 

the appearance of the subharmonic, however, three-dimensional structure begins to form. The 

mixing layer becomes unstable to cross-stream disturbances and significant spanwise activity 

ensues in the form of longitudinal vortices. Eventually, the flow breaks down into turbulence. 

According to Miksad (1972), the entire process, from linear instability to turbulence, occurs in 

a distance of about five wavelengths of the fundamental instability wave.

3.2 The Free Jet

Jets, like mixing layers, are inviscidly unstable to small perturbations, with viscosity 

acting to stabilise the flow. However, this effect is rather small and jet flows become unstable 

at Reynolds numbers of the order of ten (Andrade 1939). Unlike the mixing layer, a free jet 

possesses two length scales. Apart from the initial shear layer thickness, another length scale is 

the diameter D of the axisymmetric nozzle, or the height H of the two-dimensional nozzle. In 

both kinds of jet, a potential flow issuing from the exit plane comes to an end about 5J9, or 

3H, downstream. As in the mixing layer, instability waves grow, eventually rolling up into 

axisymmetric, or two-dimensional, vortical structures. These large scale structures experience 

successive amalgamations that eventually lead to small-scale transition (figure 2.1). Beyond 

the tip of the potential core the vortices are more difficult to identify.

In accordance with the two lengths in the jet, d0 and D or H, there are two regions of 

scaling laws. Near the nozzle exit, the dominant instability wave is expected to scale with the 

initial shear layer momentum thickness 60. This is the high frequency shear layer mode. As

^■This important point cannot be overemphasised (Ho and Huang 1982). Subharmonics are 
the catalyst of vortex pairing, not its outcome, as mistakenly assumed by Crow and Champagne 
(1971).
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Figure 2.1 Schematic diagram of the development of the preferred mode in a free jet. (a) The 

shear layer oscillates. (6) Fluid becomes entrained — the shear layer rolls up. (c) Vortices form. 

(d) Vortices merge and the shear layer thickness grows (after Moore 1977). The potential core 

comes to an end about 5 D downstream.
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Sato (1960) remarks for the two-dimensional jet :“The shear layer at the one side of a jet does 

not know the existence of the shear layer at the other side” The passage frequency of vortical

structures at the end of the potential core scales with the jet diameter or height, provided the
D Rinitial momentum thickness is small compared to D, or H, 1, or jf- 1. ThisAUq U0

instability is the preferred mode or jet-column mode, and for length scale ratios greater than
u>pD u>pH

about 150, the number ^^pj'i or 2-k U ’1 *s cons ân^ circular jets, the Strouhal number is 
found to vary between 0.25 and 0.5. 'fhe scatter is due the shear layer sensitivity. A similar

Strouhal number range applies to the two-dimensional jet.

Obviously, the existence of the shear layer mode depends on the state of the boundary 

layer shed from the jet nozzle. If the boundary layer is tripped the preferred mode will develop 

directly from the turbulent free jet shear layer. If the boundary layer is laminar, both modes

will exist and, particularly in forced jets, the two modes will interact to produce the necessary 

number of vortex pairings to connect the modes.

4. The Forced Free Shear Layer

To summarise this section, the sensitivity of the free shear layer is such that natural 

free shear layers are by nature excited flows.

4.1 Hyper-Sensitivity and Convective Instability

According to Gutmark and Ho (1983), disturbance levels as low as 10”3 % of the jet 

exit speed, or the average velocity U of the mixing layer, can generate 100% changes in the 

spreading rate, shear layer Strouhal number and jet-column Strouhal number. This hyper­

sensitivity is a direct consequence of the convective instability of the linearly unstable free 

shear layer (Huerre and Monkewitz 1985). Very low-level disturbances are spatially amplified 

exponentially and can have a lasting effect on the downstream development of the flow. The 

hyperbolic-tangent profile (equation 2.8) was found to be convectively unstable even for mildly 

counter-flowing streams, R < 1.315. Cold jets with R < 1 are convectively unstable whilst 

inhomogeneous (hot) jets can be absolutely unstable. Wakes contain both convectively and 

absolutely unstable regions which explains their relative insensitivity.

We shall come back to these two types of instability in connexion with a model open 

flow system (Ch VI).
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4.2 Means of Flow Forcing

It follows from the above discussion that flow excitation is most effective near the 

shear layer origin, he. at the jet nozzle or the trailing edge of the splitter plate. This was 

demonstrated for an acoustically excited jet by Brown (1935). A jet, partially shielded from the 

acoustic field, reverted to basically unforced conditions only when the immediate 

neighbourhood of the nozzle was screened. Often, however, free shear layers undergo a more 

subtle and insidious form of excitation. Facility forcing can cause unexpected flow organisation 

(Beavers and Wilson 1975), and is thought to account for the large scatter in measurements of 

various free shear layer parameters (Gutmark and Ho 1983).

Controlled types of free shear layer excitation include planar surging, azimuthal 

perturbation and mechanical vibrations with a ribbon or an oscillating flap. For the imposed 

excitation to be effective the forcing must be spatially coherent along the circumference or 

span. Planar surging is produced by employing an excitation source located in the supply 

stream (e.g. Crow and Champagne 1971, Moore 1977, Peterson 1978, Acton 1980) or in the 

downstream region (e.g. this study). Note, however, that surging, introduced upstream of the 

trailing edge of a splitter plate (e.g. Miksad 1972, Ho and Huang 1982), produces both 

streamwise and transverse velocity perturbations downstream of the trailing edge. In Kibens1 

(1980) forced jet experiments an azimuthally coherent perturbation was introduced locally at 

the nozzle exit through a thin slit surrounding the nozzle. Often, the excitation is not as well 

defined and the free shear layer is insonated with an acoustic source (Brown 1935, Sato 1960). 

Alternatively, periodic two-dimensional excitation can be applied at the initiation of mixing 

between the parallel streams by a thin oscillating flap mounted at the trailing edge of the 

splitter plate (e.g. Oster and Wygnanski 1982).

The main difference between the various methods of excitation lies in the manner in 

which the excitation source feeds energy into the fluctuating vorticity field. For example, the 

conversion of acoustic excitation into vortical instability waves at the trailing edge is an 

incompletely understood mechanism, whereas mechanical forcing acts in a straightforward way 

by converting a large portion of the input energy into instability waves.

4.3 The Forced Mixing Layer

What, then, is the effect of forcing on the mixing layer dynamics? In principle, low- 

level forcing regulates the spatial development of the mixing layer. The method has therefore 

been used to study the instability and transition of free shear layers (Miksad 1972). Flow 

excitation provides a means of educing the evolution of coherent structures and has been
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instrumental in gaining an understanding of the vortex pairing process.

If the forcing frequency is near the natural instability, the otherwise irregularly 

forming vortices are phaselocked by the excitation and the spread of the mixing layer is 

suppressed. In the energy spectrum of vortex-induced flow velocity fluctuations, this manifests 

itself as a concentration of energy near the forcing frequency and a reduction elsewhere. Control 

over the flow in a distance of up to eight wavelengths is possible. Beyond the region of flow 

control, vortex merging resumes and the mixing layer grows linearly further downstream as in 

the unforced mixing layer.

If the forcing frequency is below a certain limit, the vortex formation frequency 

becomes a multiple of the fundamental forcing frequency and the location of vortex merging is 

localised, taking place over a distance of about one wavelength of the vortex passage frequency 

before merging. The mixing layer spreads very quickly around the merging positions but stays 

almost constant until further merging occurs. Vortex formation at up to four times the forcing 

frequency has been observed (Ho and Huang 1982), resulting in a cascade of three plateaus of 

constant vortex passage frequency, accompanied by two highly localised vortex pairings and 

the approximate doubling of the mixing layer thickness at each pairing location. The flow is 

regulated over a distance of nearly 20 diameters of the initial vortex formation frequency before 

the mixing layer reverts to unforced conditions. If the vortex formation is at an odd multiple of 

the forcing frequency, vortices typically merge in pairs and the new vortex merges with another 

one. At higher forcing levels the sequential vortex merging is bypassed. Vortices intially form 

in a wide band around the natural instability and merge collectively to produce vortices at the 

forcing frequency. The phenomenon is characterised by a large drop in vortex passage 

frequency and a high spreading rate.

The mixing layer is less sensitive to excitation at frequencies above the most probable 

frequency of vortex formation because of the smaller spatial growth rates at these frequencies.

4.4 The Forced Free Jet

The same sensitivity considerations apply to the excitation of the shear layer mode and 

the jet column mode in free jets. The natural instability of the initial shear layer of an 

untripped circular jet is effectively manipulated by forcing levels of the order of 10"5 % (Laufer 

and Zhang 1983) to 10’3 % (Gutmark and Ho 1983) of the jet exit speed. At very low forcing 

frequencies, comparatively higher amplitude levels are required to offset the small amplification 

rates prevailing in the low Strouhal number range. Crow and Champagne (1972) used forcing 

levels of about 2% to manipulate the preferred mode of a tripped axisymmmetric jet, the level
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in Moore’s (1977) experiments on an untripped jet was of the order of 0.1%, and in the 

numerical simulation of Acton (1980) flow regulation was achieved at levels around 2%.

In contrast to the plane mixing layer where subharmonic forcing is necessary to 

manipulate the vortex merging process effectively, long-range control is effected in 

axisymmetric jets by harmonic forcing (Kibens 1980). At forcing frequencies fj near the shear 

layer mode, a vortex pairing cascade f j / 2, f^J4, fj/8 with three localised pairing locations is 

possible. This scenario is most pronounced when the ratio of the shear layer mode and the jet- 

column mode is eight. The two instability modes interact most strongly then and the energy 

transfer to successively lower frequencies is largest.

Provided the forcing amplitude is sufficiently high, the jet-column mode may be 

excited directly. In the case of an untripped jet boundary layer, this amounts to the collective 

merging scenario of the strongly forced plane mixing layer, the main difference being the 

resonant behaviour near the preferred mode.

5. Conclusions

If natural free shear layers are by nature excited flows, then any quantitation of the 

shear layer instability must be treated with some caution. In most circumstances an a priori 

knowledge of possible sources of flow perturbation is essential because the perturbations may 

not be amenable to measurement due to the low perturbation intensity strength.

It must be borne in mind that the above discussion applies to steady separated flows. 

Under pulsatile flow conditions, the free shear layer exhibits qualitatively new behaviour 

including a starting vortex and flow destabilisation during flow deceleration. It is the purpose 

of the experiments described in the following chapter to assess the flow susceptibility of 

poststenotic flows under steady and puslatile flow conditions.



-  29 -

Literature Cited

Acton E (1980). A modelling of large eddies in an axisymmetric jet. J Fluid Mech 98 pp 1.

Andrade E N da C (1939). The velocity distribution in a liquid-to-liquid jet. Part 2. The plane 
jet. Proc Phys Soc 51 pp 784.

Beavers G S and Wilson T A (1970). Vortex growth in jets. J Fluid Mech 44 pp 97.

Brown G B (1935). On vortex motion in gaseous jets and the origin of the sensitivity to sound. 
Proc Phys Soc 47 pp 703.

Crow S C and Champagne F H (1971). Orderly structure in jet turbulence. J Fluid Mech 48 pp 
547.

Gutmark E and Ho C-M (1983). Preferred modes and the spreading rates of jets. Phys Fluids 
26 pp 2932.

Ho C-M and Huang L-S (1982). Subharmonics and vortex merging in mixing layers. J Fluid 
Mech 119 pp 443.

Ho C-M and Huerre P (1984). Perturbed free shear layers. Ann Rev Fluid Mech 16 pp 365.

Huerre P and Monkewitz P A (1985). Absolute and convective instabilities in free shear layers. 
J Fluid Mech 159 pp 151.

Ipsen D C (1960). Units, Dimensions and Dimensionless Numbers (New York: Me Graw Hill).

Kelly R E (1967). On the stability of an in viscid shear layer which is both periodic in space 
and time. J Fluid Mech 27 pp 657.

Kibens V (1980). Discrete noise spectrum generated by an acoustically excited jet. AIAA J 18 
pp 434.

Lamb L (1932). Hydrodynamics (New York: Dover).

Laufer J and Zhang J Q (1983). Unsteady aspects of low Mach number jets. Phys Fluids 26 pp 
1740.

Miksad R W (1972). Experiments on the nonlinear stages of free-shear-layer transition. J  Fluid 
Mech 56 pp 695.

Moore C J (1977). The role of shear layer instability waves in jet exhaust noise. J Fluid Mech 
80 pp 321.

Nayfeh A H and Mook D T (1979). Nonlinear Oscillations (New York: Wiley).

Oster D and Wygnanski I (1982). The forced mixing layer between parallel streams. J Fluid 
Mech 123 pp 91.



-  30 -

Peterson R A (1978). Influence of wave propagation on vortex pairing in a jet. J Fluid Mech 89 
pp 469.

Sato H (1960). The stability and transition of a two-dimensional jet. J Fluid Mech 7 pp 19.

Womersley J R (1955). Method for the calculation of velocity, rate of flow and viscous drag in 
arteries when the pressure gradient is known. J Physiol 127 pp 553.

Womersley J R (1957). An elastic tube theory of pulse transmission and oscillatory flow in 
mammalian arteries. WADC Techn Rep TR 56-614.



-  31 -

CHAPTER ODD

POSTSTENOTIC FLOW EXPERIMENTS 

PART A -  METHODS

Summary

Steady and pulsatile poststenotic flows are subjected to low-level periodic flow 

excitation. Corresponding to poststenotic oscillatory flow disturbances that are larger in 

pulsatile flow than what is predicted by quasi-steady analysis, the separated shear layer is 

found to be less susceptible to perturbations under pulsatile flow conditions. In steady flow, on 

the other hand, complete flow synchronisation, characterised by a suppression of broadband 

fluctuations, is possible.

Starting and stopping flow experiments prove useful for interpreting pulsatile flow 

phenomena and flow visualisations indicate the presence in pulsatile flow of a vortex wave, 

thought to be due to a low Reynolds number instability.

1. “Pulsatile Laminar Flow at Intermediate Reynolds Numbers”

Thus blood flow in the large arteries is described within the framework of classical 

fluid mechanics (Young 1979). The model experiments described here may be summarised as 

the investigation of steady and pulsatile flow of a Newtonian fluid in a rigid locally constricted 

tube. The assumptions entailed by this approach to the study of arterial stenotic flow are 

discussed below.

Interestingly, it was the rigid pipe model of arterial blood flow that stimulated the 

mathematical treatment of important laminar flows viz. steady flow in a circular tube by the 

physician Poiseuille (1840), and oscillatory flow by, amongst others, Womersley (1955).

1.1 Configurational Characteristics

The study described here concerns fluid flow in a rigid straight tube of circular cross 

section with a geometrically well defined local constriction. The implications of these 

restrictions are evident. We exclude, in the order of the above specifications, wall distensibility, 

secondary flow phenomena, more general cross sectional geometries and non-localised 

constrictions of non-simple shape.
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IIovv are these boundary conditions rationalised? In general, arterial walls exhibit 

nonlinear viscoelastic behaviour that is further complicated by anisotropy and inhomogeneities. 

Additionally, arterial wall properties change with age. The wall becomes thicker and less 

distensible due to degenerative histological changes. Yet these properties are less important in 

determining fluid motion. They are important for the propagation of pressure waves1. The net 

effect of distensibility on actual wall movement throughout a cardiac cycle is considered to be 

of the order of about ± 2% in arterial diameter or, in cross sectional area, ±4% (Lighthill 

1972).

Pipe curvature produces secondary flow velocities at right angles to the streamlines of 

a primary flow. For example, given a fully developed laminar flow at the entry of a curved 

tube, transverse secondary fluid motion is set up immediately by the action of centrifugal 

forces as a result of the curvature. The greatest axial velocities occur near the outside wall. In 

contrast, if fluid enters a curved tube from rest, velocities will be greatest near the inside wall 

and secondary motion will not become important until a long way downstream when the flow 

approaches its fully developed form.

Curvature affects both wall shear stress and flow transition. It is obvious that wall 

shear stress is greater at the outside wall for fully developed flow. Somewhat unexpectedly, the 

same behaviour also applies to entry flow. Within about one tube diameter the initial shear 

stress distribution — greater at the inside of the tube — is reversed, effected by the thin 

boundary layer on the walls near the entrance. According to Lighthill (1975), pipe curvature 

suppresses flow transition, increasing the critical Reynolds number from about 2000 to 6000. 

Among the large blood vessels secondary flow phenomena are most prominent in the ascending 

aorta and, of course, in branched arteries.

The cross sectional shape of a blood vessel is ideally circular but depends on the 

magnitude of compressive circumferential stresses. Collapse of a vessel is resisted by the effects 

of stretching, tethering and the thickness of the walls. Some veins and pulmonary arteries 

normally have elliptic cross sections, indicating a degree of collapse associated with the 

compressive stress in their walls However, this is not known for the larger (non-pathologic) 

arteries.

Atherosclerotic lesions can have geometrically ill-defined shape but studies seem to 

indicate that most uncomplicated lesions are mainly eccentric or non-axisymmetric intimal

1This view (Caro e t  a l  (1978)) has been contested by Doo e t  a l  (1984) on the basis of 
preliminary findings. They noted differences in flow distribution of up to 4.9% between rigid wall 
tubes and distensible tubes of appropriate elasiticity.
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deposits with concave lesion surfaces and circular or oval lumen transverse cross section 

(Glagov and Zarins 1983). The transition between arterial wall and the lesion is gradual and 

the lesion edge is wedge-shaped. Atherosclerotic lesions are typically localised in longitudinal 

extent, but multiple arterial stenoses are not uncommon (Vonruden et al 1964).

1.2 Flow Conditions

In the experimental flow facility, industrial water is used as the flow medium and 

steady and oscillatory (sinusoidal) flow components are adjusted independently. The Reynolds 

number, based on flow rate throughout this study, and the frequency parameter are adjustable 

from 200 to 2000 and from 7 to 30, respectively.

Whole blood, however, is not readily equated with a Newtonian fluid. Blood is a 

suspension of some 40% to 50% by volume in the blood plasma of deformable bodies viz. 

erythrocytes, leucocytes and thrombocytes. By far the most numerous are erythrocytes of 

diameter about 8 fim and they completely dominate the mechanical properties of blood. Whilst 

the blood plasma can be regarded as a homogenous Newtonian fluid this is true for whole 

blood only under certain circumstances. In blood vessels of diameter greater than about 100 

jim, the scale of the micro-structures is much smaller than that of the flow and blood becomes 

homogeneous on the larger scale. Typically, whole blood exhibits Newtonian behaviour at low 

shear rates. However, at the higher shear rates commonly found in the larger arteries (above 

approximately 1 mm in diameter), the effective viscosity of blood is largely independent of 

shear rate.

The physiological range of the Reynolds number is from a few hundred to several 

thousand and the frequency parameter is between 1 and 20, respectively (Lighthili 1972). To 

give an example, in the human carotid artery the mean Reynolds number is about 380 with a 

maximum of 830 to 1200 and a frequency parameter2 around 10 (Balasubramanian 1983).

2. The Experimental Flow Facility

The experimental flow rig used in this study is sketched in figure 3.1. This set-up 

allows flow visualisation and the non-intrusive measurement with a laser Doppler velocimeter 

of local flow velocities in steady or pulsatile flow around model stenoses under controlled flow 

conditions.

2
It is tacitly assumed that the relevant time scale is given by the period of the heart beat. 

The effective frequency parameter is possibly higher due to the fast systolic rise of the arterial 
waveform, followed by sustained forward flow.
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2.1 Extraneous Factors

The susceptibility study of poststenotic shear layer instabilities is partly stimulated by 

observations of great flow sensitivity to ambient background vibrations, made during initial 

experimentation with the flow rig. It therefore proved advantageous for the flow facility to be 

set up in a basement hydraulics laboratory where the influence of environmental disturbances 

can be kept to a minimum. Movement about the laboratory itself, or in neighbouring 

laboratories, has no discernible effect on the flow. However, as indicated above, structural 

vibrations induced by wind-tunnel turbine machinery on another floor do influence the flow 

evolution and measurements are carefully avoided during wind-tunnel operation. Fluctuations 

in room temperature are small. The water temperature is found to vary between 16°C and 

17°C over the course of experiments, resulting in a 2.4% variability of the Reynolds number.

2.2 Description of Experimental Apparatus

The experimental flow rig {figure 3.1) provides gravity driven water flow supplied by a 

constant head reservoir of capacity 170 litres. All major components of the flow facility are 

made of transparent material to avoid the uncontrolled formation of air pockets in the flow 

system. The use of industrial water ensures operation of the flow system for a continuous 

number of days without the development of algae.

The fluid enters the upstream pipe of inner diameter 71=2.54 cm and length 66 D 

through a smoothly converging nozzle that was originally designed for starting/stopping flow 

experiments (Parker 1977). Flow measurements are carried out in a perspex3 test section of 

dimensions 70 x 70 x 30 mm. The fluid leaves through a downstream pipe which branches after 

44 D. One branch is connected to a pair of rotameter type flowmeters ( ^  =  0.2—2 1 min"1, 

stainless steel float; Q2 = \ —10 1 min"1, korannite float) with flow control valves. The two 

meters provide low accuracy flow rate measurements. The other branch is attached to a piston- 

cylinder combination that is driven by a scotch-yoke mechanism. This oscillatory flow 

generator is driven by a variable-speed drive and produces highly sinusoidal oscillatory flow of 

variable peak flow rate and oscillation period. Note that the oscillatory flow generator is 

mounted directly to the downstream pipe. Vibrations induced in the test section by the motor 

drive, however, are largely absorbed by the strong aluminium support. Also, the typical 

frequency of vibration is greater by orders of magnitude than the natural flow instabilities. The 

fluid is fed back to a recollection tank from which the water is pumped by a centrifugal pump

polymethylmethacrylate, refraction index n=1.49.3
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into a separate chamber of the constant head reservoir to avoid spurious fluid motion in the 

upper tank.

2.3 Flow Excitation

Controlled planar flow surging is generated by means of a solenoid valve connected in 

parallel to the two main flow control valves. The flow rate through the solenoid valve 

(maximum flow rate Qmax = 0.76 1 min-1) is controlled by a serially connected flow control 

valve. Very low levels of flow excitation are produced at zero net flow rate solely by the 

open/shut mechanism of the solenoid valve, with the control valve shut. The solenoid valve 

responds accurately to frequencies up to about 11 Hz, above which inertial effects become 

noticeable.

3. The Test Section

The test section comprises a perspex block that allows flow measurements and 

visualisation up to approximately 6 D on either side of an exchangeable constriction. Four 

variants of the test section are employed here : (1) a straight tube section for determining LDV 

accuracy and for calibration of the flow meters; (2) a second straight section with a pressure 

transducer mounted flush to the inside wall; (3) a test section with exchangeable orifice plates, 

and (4) a test section for stenosis models of streamwise length 2 D.

3.1 Model Stenosis Geometry

Three different stenosis types are employed in this study with standard geometries that 

have been widely used in similar experiments. The sharp edged orifice plate (Cox 1977, 

Cassanova and Giddens 1978, Djilali 1978, Yongchareon and Young 1979, Bernardinis et al 

1981) provides a fixed locus of flow separation and can thus be thought of as a reference with 

regard to separated flow instabilities for the contoured stenosis models.

A geometry considered to be physiologically more relevant is given by the contoured 

symmetric shape (Lee and Fung 1970, Young and Tsai 1973, Yongchareon and Young 1979, 

Giddens and co-workers)

r/D =  1 -  |  (1 +  cos(27ri/X0)] , |z| < Xa/2 (3.1)

with longitudinal extent X0 and (1 — S2)% area constriction. Its cross-sectional ‘lumen’ is 

circular and the transition from the tube walls is smooth.
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Figure 3.1 Schematic of the experimental apparatus. Flow velocities are measured in the test
section [4] with a laser Doppler velocimeter.
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The third stenosis model represents possible eccentricity of atherosclerotic lesions and 

is formed by an isolated protuberance from one wall (Young and Tsai 1973, Mates et al 1978). 

The geometry of this nonsymmetric stenosis is described by a cylindrical section inserted 

transversely into the circular tube.

A representative area reduction of 50% for all three stenosis geometries is chosen for 

our investigation, a value that separates haemodynamically mild stenoses from the more severe 

stenoses. Preliminary experiments with models of 75% area reduction showed that flow 

disturbances, related to the separated shear layer instability, were much more developed 

whereas for area reductions less than 50% the contoured symmetric stenosis produced only 

minimal flow disturbances. This is in agreement with observations made by Cassanova and 

Giddens (1978). Also, a minimal area reduction is required for simple practical reasons. 

Velocity measurements and flow visualisations in our experiments are only possible in a region 

extending six diameters downstream.

The longitudinal extent for this investigation, XQ=2D, is a widely used value, 

although studies with 4D sized stenosis models exist. With regard to characteristic 

hydrodynamic factors, including pressure drop, separation and turbulence, X Q appears to play a 

subordinate role as compared to the area reduction (Young and Tsai 1973), which is why the 

latter parameter is the commonly used stenosis-specifying geometric characteristic.

4. Instrumentation

Local and global flow field properties of stenotic flows are determined in this study by 

non-intrusive optical techniques. In both laser Doppler velocimetry (LDV) and particle image 

velocimetry (PIV), light is used as an information carrier whereby information is impressed on 

a light beam by the flow. The flow is visualised by micro-particles whose motion is assumed 

representative of the flow. The light scattered by the illuminated particles — the scattering 

angles are 0° and 180° for LDV and 90° for PIV — is collected by an optical receiving unit 

and processed for flow velocity calculation. The requirements for successful application of the 

two techniques are readily apparent from this outline : (1) a known relationship between 

particle motion and flow velocity; (2) sufficient flow seeding; (3) matching of light source 

intensity and particle scattering properties; and (4) a low-noise optical receiver. If these 

conditions are not properly met, flow measurements can be seriously impaired. Some of the 

problems typically encountered are discussed below.
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4.1 Laser Doppler Velocimetry (LDV)

4.1.1 Outline of LDV Theory and Practice

Laser Doppler velocimetry is a flow visualisation technique for the non-intrusive 

measurement of the local, instantaneous velocity of tracer particles suspended in a liquid or 

gaseous flow. The formation of an interference pattern allows the determination of particle 

velocity by measuring the transit time of the particle across a number of interference fringes 

with known spacing. Since it is the particle velocity that is measured, the relationship between 

the particle and fluid velocity must be known if the fluid velocity is to be evaluated.

A basic laser Doppler velocimeter comprises several optical and signal processing 

components and is shown schematically in figure 3.2. Independent of the particular 

arrangement (dual-beam, reference beam, two-scattered beam), the crossing of two coherent 

light beams gives rise to an interference pattern. Part of the volume of interference is observed 

by a light collecting system and imaged on a photodetector. The photodetector current is then 

processed by an appropriate signal-processing arrangement.

A number of features of laser Doppler signals is analysed both qualitatively and 

quantitatively on the basis of an ‘interference fringe’ model proposed by Rudd (1969). For a 

differential or dual-beam Doppler system the measuring volume can be visualised as a set of 

fringe planes occupying an ellipsoidal volume at the beam intersection point. The Doppler 

signal is explained as the superposition of the scattered light intensity distribution from 

randomly arriving particles.

Two practical problems are readily identified by this analysis. First, the signal quality, 

or ‘fringe visibility’, depends strongly on the particle size4. Secondly, the more or less random 

distribution of particles in the flow results in the ‘transit-time broadening’ of the Doppler 

spectrum.

For an in-depth account of the theory and practice of laser Doppler velocimetry the 

reader is referred to the monographs by Durst et al (1976) and Durrani and Greated (1977).

4.1.2 Measurement Accuracy

In this study an LDV system operating in dual-beam forward scattering mode is 

employed. The system comprises a 5 mW He-Ne laser (Model Spectra Physics 120, safety class 

3A) of wavelength 623.8 nm, a 50 mm beam splitter (Model TSI 915), a Bragg cell for acousto-
4

Fringe visibility at the same time exposes the limitations of the fringe model. The fringe 
model predicts that velocity measurements cannot be carried out for large particles. This is in 
disagreement with experimental findings. Rudd’s model is physically incomplete because the 
scattering process itself is not accounted for.
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Figure 3.2 Basic components of a laser Doppler velocimeter (after Durst et al 1976).
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optical frequency shifting, a transmitter-receiver set of lenses of 104 mm focal length and a 

photomultiplier of aperture size 0.254 mm (which had been found experimentally to yield the 

best signal-to-noise ratio). The complete optical set-up rests on a heavy table with traversing 

facilities in the three major axis. The positioning accuracy of the table is ±100/im. The 

photodetector current is demodulated with a Model TSI 1090 frequency tracker. Industrial 

water is used as the flow medium, with no artificial scattering particles added.

The tracker operates at an average tracking rate of 50 %. This somewhat low figure is 

connected to the large amount of optical noise, characteristic of the experimental set-up i.e. 

small measuring volume and a low-power light source. The tracking performance is not 

improved considerably by artificially seeding the flow, for example by adding homogenised 

milk (George and Lumley 1973) but indicates that the LDV system is operating in the many 

particle range (‘continuous LDV’), an assumption we shall make in a theoretical analysis of 

tracking properties (c/§ 8).

In view of the problematic tracking performance it was decided that the influence of 

the tracking process on the accuracy of local flow velocity measurements should be investigated 

in some detail. The results of that investigation are given in the Appendix (§ 8). Below, the 

findings are summarised.

4.1.2.1 Summary and Implications

Confronted with experimental circumstances that may lead to a low tracking 

performance of the LDV frequency tracker, the frequency-tracking study was undertaken with 

the purpose of assessing the quality of LDV measurements of local flow velocity in the presence 

of tracking noise.

Employing a simple Poisson process description of the transitions between lock and 

unlock, two readily available parameters of tracking performance, tracking rate A and unlock 

frequency z/, were used to quantify effects of dropouts on velocity measurements, thereby 

offering a simple tool of assessing the significance of ‘dropout noise’ to be expected in specific 

cases. It was shown that the unlock frequency is of crucial importance in determining the 

degree of signal corruption by intermittent loss of tracking.

Transit time noise measurements were then evaluated by means of a simulation and an 

estimate for the scattering volume was obtained. The dimensions are approximately 0.08mm in 

streamwise direction, and 0.36mm in cross-stream direction. Moreover, the two parameters A 
and v were found to be a convenient means of determining the overall velocity-signal 

bandwidth.
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As a consequence, the unlock frequency is monitored in the LDV experiments described 

below, and non-interference with the spectral bandwidth of those velocity fluctuations that are 

of interest in this study, is ensured. LDV measurements in pulsatile flow typically result in an 

even lower tracking rate, A =  0.45, but present no additional accuracy problems.

4.2 Particle Image Velocimetry (PIV)

PIV allows the quantitative determination of an instantaneous velocity field over a 

complete plane of interest in a flow. Flow velocities are measured by the double (or multiple) 

exposure recording of patterns of scattered light radiation from micro-particles suspended in 

the flow. For PIV the light source need not be coherent so that the particle photography 

reduces to the usual multi-exposure technique of flow visualisation. The main difference to the 

flow visualisation lies in the use of Young’s fringes obtained by illuminating sections of the 

multi-exposure photographic slides with a coherent plane wave e.g. an unexpanded He-Ne laser 

beam. In the back focal plane of a converging lens placed behind the slide, Young’s fringes 

appear whose spacing and orientation is a measure of local flow motion in the illuminated 

section. It is the analysis of the fringe patterns that has been automated (Meynart 1983, Gray 

and Greated 1987), but a preliminary study (Thiriet et al 1988) showed that the complete 

analysis of the specklegram may be accurately carried out by image processing techniques.

The advantages and shortcomings related to PIV are those typical of flow visualisation 

techniques. The main advantage is that flow field information of an entire plane of interest is 

measured instantaneously. This contrasts with a plethora of outstanding problems viz. the need 

for an appropriate light source for flow illumination, adequate flow seeding, fast and high- 

resolution recording material and, importantly, directional ambiguities of the recorded flow 

field. In analogy to LDV, it has been suggested to resolve this ambiguity by subjecting the 

recording material to a defined (translational) movement between successive exposures (Adrian 

1986).

4.2.1 Experimental Apparatus

Originally designed for flow velocity measurements with the hydrogen bubble 

technique (Djilali 1978), the test section is readily adapted to PIV. The light source is a 35mW 

He-Ne laser (safety class 3B — potentially hazardous) whose unexpanded beam is directed at a 

rotating hexagonal mirror, driven by a high-precision dc motor. The reflected beam describes a 

plane illuminating the horizontal centre plane downstream of the constriction over the first few 

diameters. This has the advantage over beam expansion techniques with a cylindrical lens that
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the light intensity necessary for illuminating micro-particles is preserved without the need for 

an extra light pulsing mechanism. Particles are continuously supplied to the upstream reservoir 

near the nozzle exit, carefully avoiding any disturbances of the exit flow. Soluble starch 

(estimated particle size 5 to 50 /rm) is used for flow seeding in the flow visualisation 

experiments reported below, but experimentation with other seeding material showed that 

acrylic beads (ICI) of average diameter 50 ^m and density 1.18 g cm"3are equally well suited. 

The scattered light — note that the scattering angle is 90° which explains the requirement for 

a high intensity light source — is recorded on high resolution photographic film (ASA 400, 

uprated to ASA 1000) with a Minolta X700, /=  2.8, 105 mm focus.

PART B -  RESULTS

5. Results

5.1 Flow Conditions Near the Test Section

In order to establish the pertinent flow conditions and calibrate the flow meters and 

the oscillatory flow generator setting, measurements of axial flow velocity profiles for steady 

and pulsatile flow as well as pressure measurements are carried out 5 D upstream of the 

constriction.

5.1.1 Steady Flow

Axial flow velocity profiles in the centre plane are determined for a range of flow rates. 

The centre plane is traversed in steps of 1 mm. Conveniently, the LDV system need not be 

realigned during a radial traverse, r 6 [0,i)/2]. Near-wall velocity measurements tend to be 

very noisy and are found to be reliable only for wall distances greater than about 1 mm. 

Velocity profiles are found to be near-parabolic for Reynolds numbers from 940 to 1910, with a 

maximum absolute error of 11.2%. This is reasonable in view of an entrance length of xj D— 60 

for a value of #6=2000. Flow rates are calculated from the velocity profiles and used to 

calibrate the rotameters.

5.1.2 Pulsatile Flow

In laminar pulsatile flow the velocity profile is time dependent and not described by a 

parabolic law because inertial effects cause phase variations along the radius. Theoretical
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profiles for pulsatile flow in a straight rigid tube have been derived by a number of workers 

(Witzig 1914, Sexl 1930, Lambossy 1952, Womersley 1955, Uchida 1956). In bio-fluid 

dynamics, probably the most well known derivation is due to Womersley. His results are 

summarised here.

5.1.2.1 Theory

Consider a circular rigid pipe of length l and radius R, filled with a viscous 

incompressible liquid of densitiy p and viscosity p. The liquid is driven by a pulsating pressure 

gradient

. - 2 =  A0 -f A ^ o s ^ t ) (3.2)

The longitudinal velocity u(r,i) at distance r from the pipe axis is then found by superposing 

the Poiseuille solution for steady flow

«o(>V) =  (H2~ r 2) (3.3)

and the solution for. oscillatory flow with frequency parameter, or Womersley number,

a  =  R ,

“i(r>*) =  M0'(r/R) sin(u t+ e0(r/R)) ,
p a

(3.4)

where functions M̂ 0 and e0 are related to the Bessel function of order zero and complex 

argument J0(ax ej3/ 47r) =  MQ(x) e t h r o u g h

M10(z) =  Jl +  /i0(x)2—2h0(x) cos<50(z)

tan e0(a:) h0(x) sim$0(x)
1 — hQ(x) cos<$0(x)

(3.5)

where hQ(x) =  M0(x)/M0(l) and 8Q(x) = 60(l) — 9Q(x). Since the governing equation for 

oscillatory flow is linear, the solution contains no higher harmonic terms. The velocity u^r^t) 

follows the pressure gradient with a given phase lag and amplitude distribution. Note that in 

equation (3.4) the phase and amplitude are functions of the frequency parameter only.
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5.1.2.2 Practice

The oscillatory flow generator is set to operate at an intermediate frequency 

parameter, a =  10, and the steady and oscillatory flow rates are chosen so as to minimise the 

difference between the measured velocity profile and the theoretically predicted one. Figure 

3.3a shows the temporal evolution of experimentally determined axial flow velocities over one 

flow cycle. The pulsatile flow is very close to what is predicted by theory (figure 3.36). The 

parameters A0 and A x of the theoretical profile are optimised with respect to the measured 

profile. The absolute error has an average value of 0.29 cm s”1 and a peak value of 1.1 cm s-1 

which occurs near the wall for flow reversal. Flow rates are calculated from the experimental 

results for calibration purposes.

5.1.3 Flow Excitation

At the smaller forcing amplitudes, the induced periodic veocity fluctuations are buried 

in the LDV system noise and cannot be detected. Determination of specific excitation levels 

therefore requires measurements with a high sensitivity differential pressure transducer 

(0 — 75mbar, PDCR 42, Druck Leicester UK). Simultaneous measurements of pressure and 

velocity at higher forcing amplitudes may then be used to extrapolate values for the small- 

amplitude range. The rms pressure—velocity relationship near the LDV noise level is shown in 

figure 3.4a. The functional dependence is approximately linear, in agreement with the 

linearised Bernoulli equation. The lowest rms forcing level — at zero net flow rate —, 

employed in the steady flow experiments, is established to be u1 P)Tms= 0.042 cm/s. Note that 

this value is for an unobstructed tube and needs to be corrected to represent perturbation 

velocities in the throat of the constriction. In pulsatile flow, higher amplitudes are required to 

influence the poststenotic flow appreciably. These perturbations can be measured directly.

By the same method, the spectral content of the excitation is determined. The result 

for zero net flow is given in figure 3.46. The response of the solenoid valve is highest for 

frequencies near 2 Hz. The 3dB bandwidth is approximately 11 Hz, sufficient to cover the 

range of dominant flow instabilities. At the lower forcing frequencies, the excitation is rich in 

harmonics, but becomes more sinusoidal toward higher values.

5.2 Flow Around Model Stenoses

Having established the appropriate flow conditions, we now proceed to the results of a 

comprehensive investigation of the susceptibility to periodic excitation of steady and pulsatile 

poststenotic flows. The bulk of this analysis is carried out using the laser Doppler velocimeter
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Figure 3.3 Comparison between (a) pulsatile flow velocities measured in the experimental flow 

system, and (b) Womersley’s (1955) solution for fully developed laminar flow. The average 

error is 0.29 cm s The largest error, 1.1 cm s '1, occurs near the wall during flow reversal.
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Figure 3.4 Characteristics of low-level flow excitation (at zero net flow through the solenoid 

valve), (a) The excitation amplitude is calculated from the experimentally determined rms 

pressure —velocity relationship by linear extrapolation. The LDV noise level is approximately 

0.07 cm s"1. (6) Variation of the harmonic content of the flow excitation with forcing frequency 

(I — fundamental, II — 2nd harmonic, III — 3rd harmonic, IV — 4th harmonic, 

V — 5th harmonic).
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but some flow visualisation results of unforced steady and pulsatile flow are given here as well. 

The visualisations indicate the existence of flow phenomena that are not necessarily related to 

the primary separated shear layer instability around which the flow forcing exercise centres.

5.2.1 LDV Measurements

The point measurements of axial flow velocities downstream of three different stenosis 

geometries indicate that flow disturbances can be considerably greater in pulsatile flow than 

what is predicted by assuming quasi-steadiness. This finding is thought to be related to 

transient vortex structures observed in flows started from rest, and has important implications 

for the susceptibility of poststenotic shear layer instabilities.

5.2.1.1 Steady Flow — Without Forcing

5.2.1.1.1 Signal Analysis

Following conventional practice, the Eulerian local flow velocity u(s,f) is decomposed 

into its time average

T
U0 Ju(s , t )  dt (3.6)

0

and its residual ul(s,t) = u(s,t) — UQ. Of the residual we shall require the additional quantity, 

the root-mean-square value

T
n'rm,(s) = - f ( J [“'(i.*)]2 d t ) 1/2 (3.7)

0

Power spectral estimates for u'(s0,t) at measuring location s0 are obtained from averaged 

periodograms (Oppenheim and Schafer 1975). The periodograms are calculated using a 4-term 

Blackman-Harris window (Harris 1978) which gives spectral estimates with greatly suppressed 

side lobe levels (-72 dB), thus increasing spectral resolution.

5.2.1.1.2 Results

Axial flow velocity measurements are taken downstream of the model stenoses over 

distances, limited by the test section geometry, from 1 D (for the orifice plate) and 1,5 9  (for 

the spatially extended stenoses) to 5 D at four different flow rates, Re=940, 1260, 1590 and 

1910. Flow velocities are typically measured at the centre line5, with the exception of the 

nonsymmetric constriction for which radial velocity profiles are determined. This will prove
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useful in explaining anomalies of the axial profile of centreline velocities for the nonsymmetric 

constriction (figure 3.5). In that figure, axial profiles of the mean axial velocity on the centre 

line and of the rms axial fluctuations are given for the three stenosis geometries with Reynolds 

number as parameter. The noise level of the LDV measurements is around 0.07 cm s’1, 

indicated by the hatched regions in the rms graphs. For the orifice plate, as for the contoured 

stenosis, the mean velocities decrease monotonically with distance from the throat section 

suggesting that the vena coniracia region is either located further upstream or, because of the 

mild constrictions, not observable. The peaking of the UQ profiles for the nonsymmetric 

constriction does not indicate vena contracta flow, but rather points to the flow asymmetry 

(.figure 3.6).

Regarding the flow disturbances u*, several phenomena are noted. Again, for the orifice 

plate, at low flow rates (I and II) the fluctuations grow monotonically (nearly linearly or 

faster) with downstream distance. At higher flow rates, however, the spatial growth rate 

decreases either because nonlinear effects come into play or because of wall interference. 

Compared with the orifice plate, the flow behind the smooth constriction evolves on much 

longer length scales. The average velocity decreases gradually and no saturation occurs up to 

x/D=5. In fact, measurements at flow rate I and II are of limited interest because the flow 

disturbances are buried in measurement noise over the first few diameters. Obviously, results 

for the nonsymmetric flow constriction must be treated with some caution. This not only 

applies to the mean velocity but to variations in rms levels as well. Higher fluctuation 

amplitudes may simply signify a change in the distance of the measurement volume from the 

shear layer region. For instance, the distance from the location of steepest velocity gradient 

increases with downstream distance (,figure 3.6).

The flow disturbances are fairly narrowband in character, and exemplary waveforms 

are shown in figure 3.7. Average frequencies for these recordings are readily obtained from the 

power spectral estimates and are summarised in figure 3.8. The frequencies for all three 

stenosis geometries are non-dimensionalised by a representative constriction diameter d=D/42 

and the peak axial velocity downstream of the constriction. The Strouhal number for the 

orifice plate is seen to be relatively independent of flow rate, and is well within the range of the 

preferred mode Strouhal number of free axisymmetric jets. This suggests that wall effects play 

only a minor role. The Strouhal number scaling for the contoured symmetric constriction is less
5With regard to the optimal recording position for identifying vortical structures in jet like 

flows, axial centre line measurements are certainly not the most representative. Acton (1980) found 
that the radial velocity component measured inside the jet shear layer represented vortical structures 
most truthfully.



F ig u r e  3 .5  Axial profiles of the mean centreline axial velocity U(x) and the rms centreline axial 

velocity fluctuations vfrms (all values in [cm s '1]), for Reynolds numbers (I) Re=940, 

(II) Re= 1260, (III) Re=I590 and (IV) Re=1910.
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Figure 3.6 Downstream evolution of the axial velocity behind the non-symmetric model 

stenosis, in the plane of symmetry, (a) #e=1260. (6) i2e=1590.
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convincing, although St is of comparable magnitude, and is obviously related to the quite 

different flow separation. The Strouhal number for the nonsymmetric constriction agrees 

reasonably well with the corresponding values of the orifice plate. The similarity with the 

orifice plate is somewhat unexpected, for the flow conditions are hardly comparable. However, 

forced flow experiments support the similarity between the two flows.

The spatial evolution of disturbance spectra shows an increased broadening, but no 

significant change in average frequency (figure 3.9). Instead, with growing downstream distance 

the definition of an average frequency becomes less meaningful as the spectrum approaches a 

broadband ‘noise’ spectrum. This is evident for the orifice plate even at flow rate I, but the 

broadening is more obvious at higher flow rates. Similar observations are made for the 

nonsymmetric constriction, whereas the downstream evolution of the flow through the 

contoured constriction is rather more gradual, and the break up of vortex structures — if it 

occurs at all — takes place well outside the test section.

The flat portion of these spectra in the higher frequency range represents the 

measurement noise, and is not related to the analogue-to-digital conversion. With 12 bits 

resolution, the noise ‘floor’ is at approximately -72dB, with regard to the largest signal power 

(Oppenheim and Schafer 1975).

5.2.1.2 Steady Flow — With Forcing

Forced flow experiments prove an excellent means for ascertaining the nature of 

poststenotic flow velocity fluctuations and can offer conclusive evidence that the velocity 

fluctuations with Strouhal numbers from 0.2 to 0.5 reflect shear layer instabilities of 

poststenotic separated flows.

The three stenotic flows are subjected to a comprehensive flow excitation investigation, 

covering a range of excitation frequencies and different flow rates. The minimum forcing level 

i.e. closed valve operation, is chosen because of the extreme sensitivity of the flows to 

perturbations. Using a conservative estimate of the excitation level of 2u,P)rm3 =  0.084 cm s"1, 

the forcing is seen to be at most 0.8% of the maximum axial throat velocity, but is typically 

lower. Representative waveforms for all three stenosis models are shown in figure 3.10. It is 

immediately apparent that the separated flow ‘resonates’ at the forcing frequency or higher 

harmonics thereof. This resonance clearly is a nonlinear phenomenon because the forcing signal 

is not simply amplified but, importantly, seems to regulate the flow. For example, the flow 

conditions for the orifice plate (figure 3.10al,a2) are the same as in undisturbed flow (figure 

3.7a). At a forcing frequency /^ =  2.1 Hz near the natural instability fm= 2.3 Hz, the amplitude
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CM

Figure 3.7 Natural (unperturbed) centreline axial flow velocity fluctuations in poststenotic 

steady flow (all velocities in [cm s’1], time in [s]). (a) Orifice plate, x/D=2, /2e=940. 

(6) Orifice plate, x/D=  1, i2e=1590. (c) Contoured symmetric constriction, x/D=A, 1590. 

(d) Nonsymmetric constriction, xjD—2, iJe=1590. (e) Nonsymmetric constriction, xfD— 3, 

Re—1590.



13
.0

 
13

.5
 

L4
-0

 
14

-. 
5 

15
.0

 
14

.4
 

14
-6

 
14

-8
 

15
.0

 
15

-2
« 

. 
. 

1
* 

._
__

._
__

__
_
t - 

-_
__

__
__

_ 
- 

» 
-■

 
/~1

 
--

---
---

 
- 

--
 ■ 

» 
. 

. 
.

-
1

 
. 

---
---

--
 

1
-

 
.

fD
C

L



54

f (a)

Re

Figure 3.8 (a) Variation of the dominant frequency of axial velocity fluctuations with Reynolds 

number, in unforced poststenotic flow (A —orifice plate, □ —contoured symmetric constriction, 

o — nonsymmetric constriction). (6) Dominant frequency, non-dimensionalised by the 

representative constriction diameter 2, and the peak poststenotic axial velocity.
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Figure 3.9 Downstream evolution of the power spectral estimates of centreline axial velocity 

fluctuations in poststenotic flow (frequency in [Hz], spectral power in [dB]). (a) Orifice plate, 

.fte=940. (b) Contoured symmetric constriction, f2e=1590. (c) Nonsymmetric constriction, 

Re= 1590.
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is at least twice as high and there is virtually no amplitude modulation. At a higher forcing 

frequency, fj — 3.6 Hz, the response is less dramatic and a certain degree of amplitude 

modulation is observed. However, as will be seen more clearly from power spectral estimates 

(figure 3.11a), there is some spectral activity at the first subharmonic of fj, an observation that 

is also made for the contoured symmetric constriction. Higher harmonic response, on the other 

hand, is well illustrated for the nonsymmetric constriction (figure 3.10el — e3). The natural 

instability frequency is / m= 3.4 Hz, and for a forcing frequency of fj = l.Q Hz the flow response 

is at the fourth harmonic (figure 3.lOel), for f j=  1.8 Hz at the second harmonic. Finally, for 

fj = 3 Hz the separated shear layer resonates most strongly (figure 3.10e3). It is noted that the 

fourth-harmonic response is accompanied by a significant drop in mean velocity, indicating 

increased entrainment of fluid by the large forced vortex structures.

The flow resonance and regularisation in the presence of forcing is illustrated by 

comparing the power spectral estimates of the natural velocity fluctuations with those of the 

excited flow (figure 3.11). Two sets of power spectra are shown, for the orifice plate (figure 

3.11a) and for the contoured symmetric stenosis (figure 3.116), each set covering forced flow 

measurements at minimal forcing level and different forcing frequencies, fj = 0.8 — 4.3 Hz. In 

view of the fact that no qualitatively different behaviour is observed for the nonsymmetric 

stenosis model, it has been decided to summarise results for this geometry in the form of a 

response diagram 3.12, only.

The broken line indicates the respective undisturbed flow. The mean velocity of the 

undisturbed flow is chosen as 0 dB reference point. Recalling that the minimum forcing level 

used in the steady flow experiments is buried in the measurement noise, it is readily seen that 

the forcing signal is greatly amplified in the region of the dominant natural flow velocity 

fluctuations. Most strikingly, however, the excitation actually suppresses the natural 

broadband fluctuations. This is observed convincingly for the orifice plate at fj = 2.5 Hz, and 

for the symmetric constriction at f^ — 2.1 Hz. It is this property of forced free shear layers that 

suggests some form of nonlinear mode competition between a collection of instability waves. If 

the shear layer acted as a compound amplifier, the flow excitation spectrum would simply be 

superposed on the natural broadband fluctuations. In chapter V we shall attempt to model this 

scenario by multiple-degree-of-freedom oscillations.

Both poststenotic flows show some form of subharmonic response, as mentioned above. 

For the contoured symmetric stenosis, this takes place at a lower forcing frequency, fj = 3.0 Hz, 

in agreement with the lower natural frequency of oscillation, f m —1.9 Hz. Also, for the same 

stenosis model, there is no response above 3.6 Hz, suggestive of the narrowband character of
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Figure 3.10 Forced centreline axial velocity fluctuations in poststenotic steady flow (all 

velocities in [cm s’1], time in [s]). (a) Orifice plate, xj D—2, Re= 1260. (1) fj = 2.1 Hz. 

(2) ff  = 3.6 Hz. (b) Orifice plate, x / D - 1, Re= 1590. (1) /; =  1.5 Hz. (2) ff = 2.5 Hz. 

(c) Contoured symmetric constriction, x /D = 4, /Ee =  1590, f j=  1.8 Hz. (d) Nonsymmetric 

constriction, x/D — 2, /2e= 1590. (1) fj = 0.8 Hz. (2) fj = 3.0 Hz. (e) Nonsymmetric constriction, 

r/Z)=3, Re= 1590. (1) ff = l.O Hz. (2) ff  = 1.8 Hz. (3) ff = 3.0 Hz.
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(a)

Figure 3.11 Power spectral estimates of forced axial flow velocity fluctuations, at the 

centreline, in poststenotic flow (frequency in [Hz], spectral power in [dB]). The broken line 

indicates unforced flow. The forcing frequencies are (from left to right, top to bottom): 0.8, 1.0, 

1.2, 1.5, 1.75, 2.1, 2.5, 3.0, 3.6 and 4.3 Hz. (a) Orifice plate, x/D=2, #e =  940. (6) Contoured 

symmetric constriction x/D—4, fte=1590.
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the spatial amplification.

Figure 3.12 shows response frequency diagrams that relate the dominant frequency of 

flow velocity fluctuations to the forcing frequency. This response is most marked for the 

nonsymmetric constriction where resonance at up to the fifth harmonic of the fundamental 

forcing frequency is observed. As the forcing frequency is increased, the response frequency 

jumps discontinuously between different modes of (higher) harmonic response. Note that no 

third-harmonic response is observed which may simply be due to the step size used for 

sweeping the range of forcing frequencies. As regards the half-harmonic response in the case of 

the orifice plate and the contoured symmetric constriction, this phenomenon is observed clearly 

under pulsatile flow conditions (§ 5.2.1.4), although only in orifice flow.

5.2.1.3 Pulsatile Flow — Without Forcing

Axial flow velocities are measured at successive downstream positions for the three 

different stenosis geometries under pulsatile flow conditions, as described in § 5.1.2.2 with 

a =  10, mean Reynolds number Rem= 1090 and oscillatory Reynolds number f£emw=810. The 

measurements for the symmetrical constrictions are taken on the centreline but for the 

nonsymmetric constriction the measurement position is a short distance off centre (r=0.16Z?/2) 

This allows a better detection of the vortex structures.

5.2.1.3.1 Signal Analysis

As in the steady flow experiments, the emphasis in pulsatile flow is on the velocity 

fluctuations uf superimposed on the time-varying mean velocity U0(t). As to the exact 

definition of ‘mean velocity’ in pulsatile flow, the view taken here is that the two components 

are spectrally separable.

It may be expected that, by assuming a quasi-steady relationship between pulsatile 

and steady flow conditions, the velocity fluctuations will follow the instantaneous flow rate in 

spectral content. It was therefore decided to analyse the temporal evolution by a simple 

autoregressive (AR) tracking method that is used in a variety of applications e.g. biological 

rhythms (Linkens 1979), frequency demodulation (Kitney and Giddnes 1986) and power system 

load prediction (Hartmann and Treiber 1986). On the assumption that, on time scales short 

compared to flow rate variation, the time-varying velocity fluctuations are described by a 

parametric model, AR model parameters are determined successively for a moving data 

window. Importantly, no parametric description of the temporal evolution of the AR 

parameters themselves is assumed. This allows the tracking of rapid changes in the spectral
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Figure 3.12 Dominant response frequency f r vs. forcing frequency fj in poststenotic flow, 

(a) Orifice plate. (6) Contoured symmetric constriction, (c) Nonsymmetric constriction. The 

half-harmonic response (<3) co-exists with response at the harmonic.
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properties of the data, but requires a great deal more calculations than recursive AR estimation 

techniques. The appropriate window size for AR modelling is a compromise between the 

spectral resolution of very low frequencies and the quasi-steadiness of the data. The AR model 

order is usually determined on the basis of empirical rules (Haykin 1979, Linkens 1979), unless 

one is prepared to determine some optimal model order anew at each step.

5.2.1.3.2 Results

Typically, each pulsatile flow recording comprises a batch of 20 to 25 successive flow 

cycles. These are analysed individually by the tracking technique discussed above. Before, the 

flow velocity component v! is extracted by high-pass filtering (/c =  1 Hz). The data window size 

for the signal tracking is 2W=1 s, and a fixed AR model order N/4 is found to be sufficient for 

resolving spectral components in the frequency band of interest. The analysis shows that the 

pulsatile flow velocity variations are reproduced qualitatively in each cycle. Some variability is 

noted in the large disturbances at the beginning and the end of a cycle, but oscillatory activity 

is greatly repeatable with regard to the evolution of the dominant frequency and the rms 

values. In view of the fact that the forcing signal is not locked to the cycle of pulsation (c/§ 

5.2.1.4), no attempts are made at investigating ensemble averaged profiles. The phase 

relationship between the excitation and the flow cycle varies thus initiating the resonant 

response at varying time instants during a cycle.

Representative waveforms for all three stenosis geometries and successive downstream 

locations are shown in figure 3.13. For comparison with the steady flow results, the 

corresponding steady flow values of u1 rms and f m for peak flow rate in pulsatile flow are given 

in the diagrams (3) and (4), respectively. Starting with the orifice plate constriction, the mean 

velocity variation is fairly sinusoidal at x jD — 0.5 and the fluctuation intensity is rather small. 

The measurement noise level is larger than in steady flow — about 0.13 cm s '1 — , a result 

that is confirmed by the decrease in average tracking rate from A=0.5 to A =  0.45.

There is some surprisingly stable low-level activity of about 2 Hz in the acceleration 

phase whose origin is not entirely clear. Two prominent features that are also observed at 

downstream locations x/D—1.0 and 1.5, are a ‘start-up’ structure in mid-acceleration and a 

similar structure in mid-deceleration. Oscillatory activity of greater intensity and better 

understood origin is measured at x/D=  1.0. Low-level activity of about 2 Hz is observed even 

before the start-up structure at 2=3.25 s, suggesting that the 2 Hz activity is related to 

disturbances from previous cycles. Following the large scale structure, high-intensity 

fluctuations build up immediately. The fundamental frequency is about 5.5 Hz and corresponds
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to what is expected in steady flow for peak Reynolds number. However, the intensity of the 

fluctuations in pulsatile flow is greater by a factor of about five. The oscillations become less 

distinct with the onset of the deceleration phase — the frequency estimate behaves rather 

erratically — and a large scale disturbance terminates the oscillatory fluctuations.

Similarly, at x/D=  1.5, large amplitude oscillations are preceded and terminated by 

two large scale structures. The frequency during peak flow is slightly lower than further 

upstream — about 5 Hz — and drifts off again in the deceleration phase. The intensity of the 

oscillations has grown further, to a peak value of 2 cm s"1, compared to its steady flow 

equivalent of 0.65 cm s"1.

Pulsatile flow through the contoured symmetric stenosis behaves rather differently. 

The mean velocity evolves with more triangular shape, i.e. fairly linear acceleration and 

deceleration slopes, and no noticeable structures at the beginning and end of cycle are observed. 

At x/J9=2.0 regular oscillatory fluctuations of frequency about 2.3 Hz are seen to build up 

quickly. They reach highest intensity at peak flow, approximately 0.6 cm s"1, and then fall off 

more gently, accompanied by a decrease in frequency. The behaviour is qualitatively similar at 

x /D = 3.0, but at x/D=4.0 the oscillatory activity sets in later during cycle and there is a 

return to laminar flow, i.e. the fluctuations decrease gradually in intensity and frequency. 

Unlike in pulsatile flow downstream of the orifice plate, the dominant frequency during peak 

flow is somewhat lower than the frequency expected in comparable steady flow. On the other 

hand, the flow velocities show similar differences, suggesting that no fundamentally different 

behaviour is observed. Again, the fluctuation intensity is much greater. Note that in steady 

flow, even at highest Reynolds number, the rms level is always below 0.5 cm s"1.

Not unexpectedly, the mean velocity for pulsatile flow downstream of the 

nonsymmetric constriction bears little resemblance to the upstream sinusoidal waveform. 

Similar to the orifice plate flow, there are large scale disturbances at the beginning and the end 

of the cycle, probably related to previous cycles. In particular the disturbance near the end of 

the cycle is variable, its magnitude changing with each cycle. At xf D= 1.2, oscillatory activity 

of about 4 Hz and rms level 0.6 cm s-1 is seen to be confined to the high velocity plateau 

during peak flow. At x/f>=1.5, the oscillatory fluctuations, though impulsively started at the 

end of the rapid acceleration phase, extend well into the deceleration phase. The intensity is 

somewhat larger and the dominant frequency is reasonably constant. Further downstream, at 

x /D = 2.0, the onset of coherent fluctuations is less abrupt but the fluctuation levels have not 

grown. Finally, at x /D=2.5, a prominent reproducible structure at the beginning of the cycle is 

observed, followed by oscillations that tend to become less distinct in the deceleration phase.
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In summary, the 4 Hz activity is in broad agreement with steady flow fluctuations and 

the rms levels are not dramatically different.

5.2.1.4 Pulsatile Flow With Forcing

It is seen from the above results that both the spectral content and the mean 

fluctuation level of the flow velocity component v! are subject to variations during the pulse 

cycle. This, of course, raises the question of defining an appropriate forcing function. For 

example, it may be expected that a hypothetical source of flow excitation in arterial flow 

exhibits cyclic variations with the basic period of the flow pulsation due to some fundamental 

flow coupling.

In this study, the flow excitation is of fixed frequency and amplitude thus avoiding ad 

hoc assumptions about the phase relationship between a periodically varying forcing signal and 

the pulsatile flow rate, as well as the waveform of the periodic forcing signal variations. The 

view taken is that the most significant flow velocity fluctuations are those with the highest 

mean fluctuation level u1 rms, because they constitute the flow feature most readily detected 

and observed in vivo. In addition, in physiological flows the periodic mean flow variations are 

far from sinusoidal, typically characterised by a short acceleration phase and prolonged 

deceleration. Note also that even for sinusoidally varying pressure gradients the poststenotic 

mean flow velocity can be far from sinusoidal {figure 3.13c) with very short acceleration and 

deceleration phase and a dominant plateau of constant-frequency oscillations.

No attempts are made at quantifying exactly the forcing level at which the dominant 

pulsatile flow fluctuations start to be regulated by the excitation. Rather it is found from 

qualitative analysis of forced pulsatile flow results that at a forcing frequency near the natural 

frequency, forcing levels around 0.2 cm s_1 are required to achieve flow resonance in a 

significant portion of the cycle. Clearly, because the forcing frequency is matched to the natural 

instability, these forcing levels represent a minimum with regard to more general forcing types 

and conditions.

The phase relationship between the forcing function and the waveform of pulsation is 

disregarded here, although it is acknowledged that this may have some influence on the 

separated shear layer response, in particular at the lower forcing frequencies where the phase is 

not negligible.

Representative results are shown in figure 3.14. The pulsatile flow through the sharp 

edged orifice plate is forced at a fundamental frequency of 5 Hz and at a level of about 0.2 

cm/s. At position x /D = 0.5, the poststenotic flow acts as a compound amplifier and resonance
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Figure 3.13 Unforced axial velocities in pulsatile poststenotic flow, with mean Reynolds 

number Rem=1090, and oscillatory Reynolds number Remu)= 830 (all measurements at 

centreline except nonsymmetric constriction, r=0.16D/2). A single pulse (1) is highpass-filtered 

(/c=lH z) to obtain the flow disturbances (2). Rms values (3) and frequency content (4) (peak 

frequency: o, 2nd peak: A, 3rd peak: + ) are determined by AR tracking (window size tw= l  s, 

75% window overlap, AR order: N/4). The horizontal lines in diagrams (3) and (4) indicate the 

corresponding steady flow values for peak Reynolds number, (a) Orifice plate, xf £)=0.5, 1.0 

and 1.5. (b) Contoured symmetric constriction, x/D—2, 3 and 4. (c) Nonsymmetric 

constriction, x/D=  1.2, 1.5, 2.0 and 2.5.
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is observed. The excitation signal, amplified by approximately a factor three, is seen to be 

superimposed on the undisturbed flow velocity fluctuations. The second harmonic of the 

fundamental forcing frequency (c/. § 5.1.3) is clearly visible in the spectral evolution diagram. 

At x/D—1.0, where the unforced flow exhibits distinct fluctuations of about 5 Hz during peak 

flow rate the resonance phenomenon is more pronounced. In the acceleration phase, the 

fluctuations lock onto the half harmonic of the excitation and then switch discontinuously to 

the fundamental in late acceleration. The amplification of the forcing signal has doubled to a 

factor six. In late deceleration, the locking-on is lost and a large scale disturbance is observed 

that also exists in the unforced flow. The excitation is further amplifed at x/D= 1.5, and the 

large vortical structures formed at the forcing frequency appreciably affect the mean flow £7o(0 

— the peak velocity is almost 10% lower. Again, the flow initially responds at half the 

fundamental forcing frequency and switches discontinuously to the fundamental. The spike at 

2 =  5.6 s indicates the passage of a single vortical structure close to the measuring position. 

Beyond x/D—1.5, the flow loses its spectrally distinct character as the large vortical structures 

begin to interact violently with the boundary wall.

In flow through the smooth constriction {figure 3.146), the amplification of the 

excitation is far more gradual. At x/D—2.0, the flow resonates at the fundamental forcing 

frequency fj = 2.5 Hz, but fluctuation levels only amplify from 0.6 to 0.9 cm s '1. At z/D=3.0, 

the decelerating flow resonates more strongly and the mean velocity is somewhat lower. A 

change of phase occurs during late acceleration, together with a sudden increase in fluctuation 

amplitude. In the deceleration phase, gradual loss of tracking is observed. At x/D—4, the 

fluctuations have grown further, and the same phase discontinuity is seen. In addition, the 

dominant spectral response is clearly not at the forcing frequency but below, and in late 

deceleration the ‘quasi-locking’ is lost.

The forcing frequency for the nonsymmetric stenosis geometry is 3 Hz, i.e below the 

dominant natural frequency of the flow instability. Near the constriction, at x/D—1.2, the 

fluctuations are not much greater than in the unforced case, but they are clearly locked to the 

excitation. Again, the second harmonic of the fundamental forcing frequency is present. The 

behaviour is similar at x/ j9=1.5. The fluctuations barely grow with downstream distance. At 

x/D—2.5, flow regulation during peak flow together with the gradual loss of locking are well 

illustrated.

To conclude this section, half-harmonic locking-on, although observed for both the 

smooth symmetric constriction and the orifice plate in steady flow, is only seen for the orifice 

plate in pulsatile flow. This suggests that, because the flow separation point is fixed for the
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orifice plate geometry, the spectral evolution of the flow instability downstream of the orifice 

plate in pulsatile flow is explained to first approximation by quasi-steady analysis. Note, 

however, that this does not apply to the intensity of oscillatory flow velocity fluctuations.

5.2.1.5 Transient Flow

The significance of poststenotic flow velocity fluctuations that are considerably larger 

in pulsatile flow than what is predicted by quasisteady analysis has been stressed repeatedly 

and possible links with ‘starting vortices’ have been hinted at. These vortices are an intrinsic 

feature of jet flows started from rest into an initially irrotational fluid6. The starting vortex 

generated during the start-up flow transients possesses significantly greater vorticity than the 

vortical structures formed by the ensuing shear layer roll-up. Starting vortices have been 

identified as a potential source of error in orifice-type flowmeters under pulsatile flow 

conditions (Bajura and Pellegrin 1975) and were associated with the start-up structures in 

poststenotic flow (Khalifa and Giddens 1978).

Starting flow through a locally constricted tube — as a limiting form of accelerated 

stenotic flow on greatly reduced time scales — can provide valuable information about the 

nature of transients of flow velocity fluctuations in pulsatile poststenotic flows. Considering for 

the moment starting flow in a circular rigid pipe that settles to fully developed Poiseuille flow 

after transients have died out, it is readily appreciated that, given a fast acting flow valve, the 

centre line velocity suffers a discontinuous jump from zero velocity to half its steady state 

value immediately after the valve opening. This scenario is identical, in reversed time, to 

stopping flow (Parker 1977). The pressure wave caused by the valve action sets up a flow of 

uniform velocity which, on a much longer time scale, then develops into the parabolic profile. 

This has been verified experimentally for unobstructed tube flow7 (figure 3.15). The velocity 

signal overshoot observed in starting as well as stopping flow is most probably due to 

mechanical transients of the solenoid valve.

The same scenario applies to impulsively started poststenotic flow. Figure 3.16a gives 

results of centreline axial velocity measurements taken 2 D downstream of the 50% orifice 

plate. The starting vortex is found to be a highly reproducible feature of this transient flow, as 

can be seen from the two exemplary recordings. For times t >  2.7 s, the fluctuations become

C.

An aesthetically very pleasing example of a starting vortex is shown in the excellent flow 
visualisation on the front cover of Batchelor’s An ’Introduction to Fluid Dynamics.

^Interestingly, the velocity discontinuity offers an immediate check of how well developed 
the flow is.
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Figure 3.14 Forced axial velocities in pulsatile poststenotic flow. Flow conditions and 
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symmetric constriction, fj = 2.5 Hz. (c) Nonsymmetric constriction, f j = 3.0 Hz.
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more variable in nature suggesting that the flow behind the starting structure is already 

sensitive to background noise. In figure 3.16al, for example, the starting vortex is followed by 

a series of spiky velocity excursions of similar appearance, and in the interval 4 s > t > 8 s 

by a train of very organised vortical structures. Eventually, the flow settles to the 

characteristic broadband fluctuations. Alternatively, the transient structures immediately 

behind the starting vortex can be much .less developed (figure 3.16a2) and, although 

fluctuations in the time interval 4 s >  i >  8 s are greater compared to what is observed once 

the transients have died out, their appearance is much less organised.

In conclusion, the flow transients that are considered' of potential relevance to pulsatile 

flow phenomena are those succeeding the initial large vortex. This starting vortex must be 

associated with the very short time scale transient i.e. the sudden rise in the mean velocity, 

whereas the following vortex structures, in particular the ones in the interval 4 s > t > 8 s, 

are related to the much longer time scale of transition to fully developed laminar flow. 

Regarding the transient fluctuations of figure 3.16a, one may speculate as to the regulating 

effect of time-varying mean velocities. A steadily increasing mean velocity (‘ramp’) possibly 

provides a phase reference for the shear layer instability via parametric interaction and deserves 

further investigation.

Finally, stopping flow through a locally constricted tube — as a limiting form of 

decelerated stenotic flow on greatly reduced time scales — can give clues about the type of 

stopping structures to be expected in the late deceleration phase of poststenotic pulsatile flow. 

By the same mechanism that underlies impulsively started Poiseuille flow, the centre line axial 

velocity suffers a discontinuity from the steady state value to half that value (figure 3.15), and 

a similar sudden drop is observed in poststenotic flow (figure 3.166). The overshooting is again 

due to the valve shutting transients. Compared to the immediate velocity decay in 

unobstructed laminar flow, the orifice flow is characterised by some distinct acitivity in the 

first 1.5 seconds. Two extreme examples of stopping poststenotic flow are shown in figure 

3.166. In the first case, the stopping structure is very pronounced, whilst in the second example 

the stopping activity is identified by the change in the rate of velocity decay. Typically, the 

stopping structure is confined to approximately the first 1.5s, and will lie between the two 

extremes. The variability in this structure is presumably due to the state of the flow just before 

stopping. Curiously, the core flow reverses slightly before approaching zero velocity. This is 

thought to be related to the stopping vortex shed upstream of the orifice plate.
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Figure 3.15 Impulsively started and stopping flow in a straight tube. The centreline axial 

velocity is shown. The steady flow Reynolds number is Re=780. The large spikes are due to 

valve mechanical transients.
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(a)

Figure 3.16 Examples of (a) starting and (b) stopping flow downstream of the orifice plate. The 

centreline axial velocity 2 D downstream is shown. The steady flow Reynolds number is 

Re = 780.
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The stopping structure is not unlike what is observed in pulsatile flow, particularly 

behind the orifice plate. Similar experiments for the smooth constriction geometries would be 

instrumental in this regard.

5.2.2 Flow Visualisation

Further experimentation with the experimental apparatus is required before the flow 

visualisation technique employed here can produce quantitative results. The successful 

visualisation is marred by, amongst other factors, the inadequacy of the light source and the 

scatterers. The light source is very low power and not matched to the size and scattering 

properties of the seeding particles. The scatterers are highly unevenly distributed in the flow 

and show a tendency to settle out. Flow visualisation results are included here mainly because 

the visualisation shows flow phenomena that are suspected to be largley unrelated to the shear 

layer instabilities investigated so far.

The flow visualisation is by no means comprehensive. Emphasis is on the 

nonsymmetric stenosis geometry for which a complete pulsatile flow cycle was recorded. 

Invariably, the results have a somewhat anecdotal character but they are supported by 

systematic studies of two dimensional flows of comparable geometry (Betram and Pedley 1983, 

Armaly et al 1983).

5.2.2.1 Steady Flow

Flow visualisation results for steady flow through the contoured symmetric and 

nonsymmetric model stenoses are shown in plate 3.1. The Reynolds number is the same for 

both geometries, i?e= 1470. The nonuniform seeding is immediately apparent, and so is the 

inadeqate particle size and the seeding density. Furthermore, the illumination is not uniform 

and only in the far downstream region of the flow past the nonsymmetric stenosis model -  

which protrudes from the upper wall — the multi-exposure character of the technique becomes 

visible. Note finally the artefact caused by reflections at the tube curvature and seen on all 

photographs as a bright line parallel to the upper wall.

The bright elongated patch just downstream of the symmetric constriction (plate 3.1a) 

shows particles that are progressivley deposited in the separated flow region. The flow itself has 

a wavy core flow structure with vortices attached, not symmetrically, to either wall. Visual 

inspection of the steady flow showed that the vortices retain a relatively fixed position at the 

upper and lower wall and, if some form of axisymmetry is assumed, the two prominent vortices 

may in fact be connected through a ring-like structure.



-  90 -

A series of three successive visualisations of nonsymmetric-stenosis flow is shown in 

plate 3.16, c and rf, with the stenosis protruding from the upper wall. The core flow describes a 

sinuous path and large vortices are observed at either wall. Surprisingly, in the immediate flow 

separation region no large ‘primary’ vortex is seen. The vortex further downstream at the 

upper wall seems at times to interact with a neighbouring smaller vortex, and the vortex 

attached to the lower wall is clearly seen to split up into two vortices. The succession of 

photographs suggests that the vortices do not appreciably change their position.

Somewhat unexpectedly, the flow velocity fluctuations associated with the separated 

shear layer instability are virtually absent, compared to the more outstanding flow 

characteristics, the large vortices. Upon closer inspection, some small scale activity is identified 

in the region x/D= 1 to x/D= 2 of the separated shear layer. The scale is very small yet 

comparable to the type of early shear layer roll-up observed in dye-injection flow visualisations 

undertaken at an early stage of the project8. It is to be recalled that flow velocity fluctuations 

induced by the shear layer roll-up are of the order of 3% of the mean velocity for the 

nonsymmetric constriction, and below 1% for the contoured symmetric constrictions. This can 

serve as an explanation for the apparent disparity between flow velocity measurements and the 

visualisation.

5.2.2.2 Pulsatile Flow

Pulsatile flow past the nonsymmetric constriction is shown in plate 3.2. The 

photographs form a complete cycle of pulsation, starting with early acceleration in plate 3.2a, 

t= T /8. The peak flow is reached at t—T/2 in plate 3.2d, and the cycle is completed in plait 

3.2h at 2=T. The flow during acceleration is qualitatively similar to the steady flow but 

already more wavy {plate 3.2c). At peak flow, the wave like nature of the core flow is more 

pronounced but the greatest degree of ‘activity’ is clearly observed in early deceleration, at 

2 =  3 T/4. This particular flow structure is already discernible at 2 =  5 T/S but quickly 

disintegrates shortly after, at 2=7T/8. At the minimum flow rate, apart from a small primary 

vortex little activity is observed and the vortex at the lower wall is scarcely visible. Again, the 

separated shear layer instability is obscured in the visualisation by the large vortices. Note 

also, that the maximum downstream position for LDV measurements is x/D—2.5 only, 

whereas vortex activity extends well beyond xf D—4.

These flow results are of interest for two reasons. Firstly, we are probably observing a 

‘vortex wave’ the genesis of which does not come from the separated shear layer instability.
O

See also Cassanova and Giddens (1978) for a visualisation of the shear layer roll-up.
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Plate 3.1 Flow visualisation of steady poststenotic flow, i2e=1470. The displayed region 

extends from x/D=  1 to approximately xj D—5.3 downstream of the model stenosis. The 

pressure taps visible at the upper and lower walls are at x/D = 2. (a) Contoured symmetric 

constriction. (b), (c) and (d). Nonsymmetric constriction, successive photographs. The

protuberance is from the upper wall.
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Plate 3.2 Flow visualisation of one cycle (T—10 s) of pulsatile flow downstream of the 

nonsymmetric model stenosis, starting with acceleration. The stenosis protrudes from the upper 

wall, (a) i— T/8 . . . ( h )  i=T.











-  93 -

Secondly, the vortices may be important haemodynamically because the magnitude of the wall 

shear beneath a vortex can be very high. Importantly, the location of high wall shear can be 

far from the constriction causing it.

5.2.2.3 Post —Processing

The limitations of the present flow visualisation set-up have been outlined, and it is 

hoped that the quality of the visualisation can be improved sufficiently to allow flow field 

quantitation. In the mean time a preliminary investigation (Thiriet et al 1988) of high quality 

double exposure photographs of waves in channel flow (Greated and co-workers 1987) showed 

that the analysis of the photographs need not involve the two step process of (1) determining 

Young’s fringes, and (2) extracting the planar flow vector, as carried out conventionally (e.g. 

Gray and Greated 1987). Instead, two-dimensional autocorrelation methods applied to a 

digitised version of the flow field photograph provide accurate and speedy velocity vector 

estimates. The image processing of flow field visualisations increases the spatial resolution 

considerably. In contrast to fringe analysis where the spatial correlation region is of fixed size 

and requires the rescaling of the flow field photographs, spatial autocorrelation estimates by 

image processing may be obtained for arbitrarily sized local flow regions, the main limitation 

being the particle density.

PART C -  DISCUSSION

6. Discussion

Poststenotic flows downstream of model stenoses with geometries identical to our 

models have been investigated by a number of researchers and the findings reported herein for 

unforced steady and pulsatile flow are in broad agreement.

6.1 Steady Flow

To begin the discussion with steady unforced flow, the vena contracia flow 

phenomenon is generally observed in orifice plate flows (Bajura and Pellegrin 1975, Djilali 

1978), but less distinct in flow through smooth constrictions, at least for area constrictions of 

up to 75 % (Cassanove and Giddens 1978). For even more severe constrictions (89 %), Young 

and Tsai (1973) reported vena contracia flow behind contoured symmetric constrictions and
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nonsymmetric protuberances, albeit close to the throat of the constriction (at about xf D—0.3).

Effects of the downstream bounding walls on flow development were discussed by 

Cassanova and Giddens {ibid), based on flow visualisation experiments. At low Reynolds 

numbers the presence of the tube walls retarded the formation of vortices (‘image vortex’). In 

contrast, at higher Reynolds numbers the disintegration of vortex patterns occured at a 

downstream location closer to the constriction than in the free jet case.

With regard to the spatial development of flow instabilities (figure 3.5), a stability 

investigation by Yongchareon and Young (1979) indicated that the orifice flow is the least 

stable since the velocity gradient at the separated shear layer is high due to the relatively flat 

velocity profile at the orifice exit. On the other hand, the streamlined symmetric constriction 

provides the most stable flow since the separated shear layer is close to the wall which may 

tend to damp out small disturbances. In this description the behaviour of the nonsymmetric 

constriction is expected to lie between the two extremes. The separation point is downstream of 

the throat but the shear layer distance to the wall is thought to be greater than for the 

symmetric constriction.

This also explains the Strouhal number variability (figure 3.8). The orifice plate flow 

comes closest to a free jet flow with a fairly well defined jet column mode, largely unaffected 

by wall interference. The flow downstream of the contoured symmetric model stenosis scales 

less well because the initial shear layer thickness is not negligible compared to the throat 

diameter (Ho and Huerre 1984). Finally, the flow past the nonsymmetric constriction is least 

representative of a jet flow, and the dominant instability frequency is comparable to the flow 

through the orifice plate mainly because of similar flow conditions.

There is considerably less evidence in support of our findings for the forced poststenotic 

flow experiments under steady flow conditions, and the discussion relies mostly on forced free 

shear layer investigations.

In connection with orifice flow meters, Bajura and Pellegrin (1977) studied the effect of 

flow excitation on high Reynolds number flow (72e=8000 to 24000) through a sharp-edged 

orifice plate in a circular pipe (35%, 50% and 75% area reduction), at high excitation levels 

(5% to 30% of the mean jet exit speed) and for a range of forcing frequencies (St = Q to 

1.8).Their observations included greater flow sensitivity at Strouhal numbers 0.4 to 0.8, 

increased shear layer spreading and a decrease in flow rate.

Studies of free forced jets are more numerous. Observations of rather anecdotal 

character were reported by Beavers and Wilson (1975) for the free circular jet at moderate 

Reynolds numbers (500 to 3000), excited (unintentionally!) by presumably very low level
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building vibrations at Strouhal numbers 0.43, 0.61 and 0.98. In a jet with Re = 470 and 

Re = 770 and vortex shedding frequency St = 0.63, low level excitation at 62=0.43 and 

67=0.98, respectively, resulted in the locking of the vortex shedding frequency onto the 

excitation, accompanied by a dramatic regulation of the flow evolution and a slight decrease in 

mean jet exit velocity.

A more systematic study, at considerably higher Reynolds number of order 105, is that 

of Crow and Champagne (1971). They considered the periodic forcing at intermediate levels 

(2%) of a circular jet with tripped boundary layer. The natural jet column response was at 

62 =  0.30 and the effect of forcing was strongest around this Strouhal number. A mild decrease 

in mean velocity was observed near the jet exit (0 < x/D <  8), the reason being the greater 

entrainment of fluid in the forced jet. What is of particular interest is the effect the forcing had 

on the background turbulence, expressed by the power spectrum of the axial flow velocity 

fluctuations. Importantly, Crow and Champagne’s findings clearly showed that forcing does 

suppress background noise. This phenomenon is considered of central importance and will be 

addressed in chapter V.

A rather different study (Ho and Huang 1982) is of possible relevance to the instability 

of the separated shear layer behind the nonsymmetric stenosis model. The investigation 

concerned the forced laminar mixing layer formed by the merging of two parallel water streams 

of velocities £̂  =  9.5 cm s"1 and U2= 5.0 cm s"1. The natural frequency of the mixing layer 

instability was 5.06 Hz and the spreading was greatly regulated by forcing. It is not entirely 

clear from the description of the experimental apparatus whether the excitation was purely 

monochromatic (dc-motor driven butterfly valves are employed). Nonetheless, the mixing layer 

responded not only at the fundamental but at up to the fourth higher harmonic of the forcing 

frequency, and the response diagram is qualitatively very similar to figure 3.12. In addition, Ho 

and Huang observed hysteresis between the various higher harmonic modes. In contrast to our 

findings, third harmonic resonance was clearly present in the forced mixing layer.

6.2 Pulsatile Flow

Let us turn the discussion to pulsatile flow now. Apart from the consistently observed 

disparity in rms levels of flow velocity fluctuations between pulsatile and steady flow, pulsatile 

unforced flow through the model stenoses exhibits further behaviour worth looking into. For 

example, the large disturbances at the beginning and end of a cycle, most clearly observed in 

the orifice flow, and to some extent in the flow past the nonsymmetric constriction, are most 

probably related to the starting vortex and the stopping structure of the transient flow
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experiments. Both the large vortex in starting flow and the disturbance during the mid­

acceleration in pulsatile flow are characterised by rapid changes in local flow velocity, whilst 

the structure in suddenly stopped flow and the large disturbance during mid-deceleration in 

pulsatile flow are more sluggish in appearance. ‘Start-up’ structures were identified by Khalifa 

and Giddens (1981) as one of three types of flow disturbances typically encountered in 

poststenotic flow. A detailed investigation showed that these structures are very repeatable 

with each pulse and are created anew with the initiation of a cycle.

Other phenomena are related to pulsatile flow stability. The orifice flow seems to be 

the only one that exhibits some form of transition to randomness during the deceleration 

phase, whereas the flow downstream of the contoured symmetric constriction exhibits the 

opposite behaviour viz. a tendency toward relaminarisation. Obviously, the orifice flow is the 

most unstable and transition is therefore most probable for this flow. It is a well documented 

phenomenon that the transition — if it occurs — is first observed in the deceleration phase of 

pulsatile flow. Young and Tsai (1973) reported that for a contoured symmetric stenosis (56% 

area reduction) the initiation of turbulence is retarded by pulsating flow. This observation is in 

agreement with the results of a comprehensive investigation into the effect of pulsatility on 

transition in a straight tube (Sarpkaya 1966)9. More specifically, Gerrard (1971) found that 

the acceleration phase reduces turbulence intensity but the deceleration increases it. This served 

as the rationale for Parker and co-workers (Weinbaum and Parker 1975, Hall and Parker 1976, 

Parker 1977) to concentrate on the instability investigation of the simplest decelerating flow, a 

suddenly stopped steady Poiseuille flow in a pipe or channel. Flow destabilisation by 

deceleration is thought to have been observed in experiments on pulsatile flow through 

contoured symmetric model stenoses (Cassanova and Giddens 1978). For steady flow a 50% 

stenosis was required to cause substantial flow disturbances. However, for pulsatile flow, 

disturbances were created during deceleration by a stenosis of as little as 25% area reduction.

With regard to the oscillatory activity in pulsatile poststenotic flow during peak flow 

and early deceleration, this phenomenon was identified by Khalifa and Giddens (ibid) as the 

second type of flow disturbance. They observed a change in frequency associated with 

corresponding changes in mean flow velocity, and a merging of the start-up structure and the 

oscillations further downstream. Strouhal numbers were found to be about 0.3 for a 50% 

contoured symmetric stenosis. Curiously, explanations for the difference to the free jet number 

S i= 0.5 were sought in the flow pulsatility. Our experiments, on the other hand, indicate that 

the contoured symmetric stenosis does not scale convincingly even in steady flow.
g

For a more recent study see Stettler and Hussain (1987).
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Comparison with other work on the effect of pulsating flow on the intensity levels of 

oscillatory activity is, to say the least, very difficult. For instance, energy spectra of flow 

velocity fluctuations on which a comparison of steady and pulsatile flow by Cassanova and 

Giddens (1978) was based, were calculated for pulsatile flow using an entire cycle! We therefore 

turn to the starting flow results for an explanation. If the vortex transients were related to the 

stability problem of accelerating flow, the opposite behaviour would be expected i.e. a decrease 

in fluctuation levels during the transients due to the stabilising effect of the acceleration. In 

fact, the opposite is true for the impulsively started ‘confined jet’ flow. For want of a more 

detailed investigation into this phenomenon we speculate, as outlined in § 5.2.1.5, on the 

possible relevance of the fluctuations, following the highly repeatable starting structure. It was 

pointed out there that these fluctuations are related to the much longer time scales of the 

transient flow and that they are not fully reproducible due to the assumed sensitivity of the 

instability transient. Of course, impulsively started flow is the simplest form of accelerating 

flow and a continuously varied mean flow such as a steady flow with superimposed oscillatory 

flow certainly has an effect on the formation of vortical structures, possibly in a flow regulating 

form. Finally, what must not be overlooked is the fact that the steady state flow rate in the 

starting flow experiment is only about half the value that applies to peak flow under pulsatile 

flow conditions, and instabilities are expected to develop more intensely.

The results for forced pulsatile flow are very much in accordance with what is observed 

in steady forced flow. As an aside, it is noted that the resonant response of the forced separated 

shear layer in pulsatile flow provides a means of identifying velocity fluctuations that are 

directly related to laminar shear layer instabilities. For instance, it is common practice in 

steady separated flow experiments to exert some control over an otherwise randomly evolving 

separated shear layer by means of forcing, in order to study the details of the flow. In pulsatile 

flow, the detailed understanding of flow velocity fluctuations is further complicated by a 

wealth of nonstationary disturbances, ranging from temporally varying flow separation points 

to disturbances originated in previous flow cycles. It is therefore suggested that, by subjecting 

pulsatile flow to excitation of appropriate frequency and amplitude, oscillatory shear layer 

instabilities may be clearly separated from other forms of flow disturbances.

The half-harmonic frequency locking observed during acceleration in pulsatile orifice 

flow is clearly a consequence of the fixed flow separation locus provided by the sharp edged 

orifice plate. To a first approximation, pulsatile flow through the orfice plate may be thought 

of as simply generating a time-varying version of the steady flow jet shear layer instability. It 

is then perfectly possible that the instability first locks onto the half-harmonic of the
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fundamental forcing frequency, and at higher flow rates switches to harmonic response. 

Complications caused by temporal variations in the separation point and the degree of wall 

interference in flow through the contoured symmetric constriction, let alone the nonsymmetric 

constriction, clearly do not support a forced shear layer response scenario as simple as in orifice 

flow.

A few other points are worth mentioning. The decrease in axial velocity for forced 

pulsatile orifice flow again reflects — as in forced steady flow — the greater degree of fluid 

entrainment accompanied by a faster spreading of the shear layer. The phenomenon is more 

pronounced in pulsatile flow because the vortical structures possess considerably greater 

vorticity. Secondly, again in pulsatile orific flow the forcing seems to suppress the transition to 

randomness in the decleration phase, as is clearly seen at location x/D= 1.0 (figure 3.14). At 

x/D=  1.5, however, the vortical structures have reached such a size that wall interference 

begins to influence the resonant response of the velocity fluctuations.

Another interesting phenomenon is observed in pulsatile flow through the contoured 

symmetric constriction. At downstream position x/D—3.0, the flow is greatly regulated, 

however the resonant fluctuations are not necessarily locked by the forcing frequency. At time 

about t—5 s, a discontinuity occurs after which stable oscillatory activity at a frequency 

noticeably below 2.5 Hz dominates. Apparently the phase reference provided by the flow 

excitation serves to regulate oscillatory flow activity at a frequency not harmonically related to 

the forcing frequency.

6.3 Flow Visualisation

The emphasis in the flow visualisation experiments described in § 5.2.2 has been on the 

nonsymmetric model stenosis because of the possible insight into a poststenotic flow with a 

lesser degree of symmetry than in the case of the axisymmetric stenoses. Implicit in the choice 

of a plane of visualisation through the tube axis is of course the tacit assumption that the flow 

is reasonably symmetric about the plane of visualisation. It is obvious, however, that our flow 

visualisation need neither be an exhaustive description of the main characteristics of the 

poststenotic flow, nor representative at all. Yet remarkably similar observations were made in 

flow through a two-dimensional channel expansion at low Reynolds numbers. In steady flow, 

Re <  640, downstream of a right-angled expansion (backward facing step), Armaly et al 

(1983) observed one or two standing ‘secondary’ vortices attached to the wall downstream of, 

or opposite to, the primary vortex in the lee of the channel expansion. At Reynolds numbers of
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the order of 100, Sobey (1985) observed no actual secondary vortex but a region of significantly 

reduced shear.

The situation changed dramatically if the flow through the channel expansion wâ  

oscillatory. For the same range of Reynolds numbers and a frequency parameter of order 1, 

wavy core flow with eddies alternating on the two walls was observed. Sobey referred to this 

scenario as vortex wave. A strong secondary eddy was present already in early acceleration and 

the vortex wave was most pronounced in the deceleration phase. Similar findings applied to a 

45° channel expansion. Sobey mentioned the splitting of vortices into two in oscillatory flow 

when the Reynolds number was varied and contributed it to the delicate bifurcation 

phenomenon that can exist in separated flows.

Bertram and Pedley (1983) studied impulsively started flow through a right-angled 

expansion. The final Reynolds number was 800 and they observed a distinct vortex street 

during the flow transients which they contributed to “the quasisteady instability of a velocity 

profile with an inflexion point” Sobey (ibid) however conjectured that what was observed in 

their experiment was another example of a vortex wave. The important difference is with 

regard to the type of instability associated with either flow structure. A vortex street is 

essentially the result of a shear layer instability whilst the genesis of a vortex wave is thought 

to relate to a large-amplitude damped Tollmien-Schlichting wave. Sobey believed that he was 

observing a vortex street in oscillatory flow through a symmetric channel expansion, based on 

observations (flow visualisation as well as numerical simulation) of movement of the vortices. 

Once vortices were formed they were convected with a velocity somewhat less than the mean 

flow. In an asymmetric channel, vortices were not convected by the flow once they had formed.

Returning to the flow visualisation of pulsatile flow past the nonsymmetric constriction 

(plate 3.2), the vortices most visible are in photographs (e), (f) and (g). In that flow the 

average upstream velocity is about 7.5 cm s"1 and the time elapsed between two consecutive 

photographs is 1.25 s implying that convective movement of vortices is clearly not observed. In 

fact, between photographs (e) and (f) the vortices seem to have moved upstream some 

distance.

The reason these unsteady flow phenomena are of possible interest to the 

haemodynamics of arterial stenoses is related to the high wall shear beneath a vortex. A recent 

investigation of vortex waves in flow in a channel with a moving indentation (Ralph and 

Pedley 1988) — the moving wall flow reported in (Stephanoff et al 1983) had prompted 

Sobey’s oscillatory channel flow study — showed that wall vorticity can be 5 to 6 times greater 

than what is expected by assuming a quasisteady flow. Also vortex doubling seemed to be a
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regular feature of the vortex waves.

No doubt the flow visualisations of pulsatile poststenotic flow are at best anecdotal 

evidence of flow instabilities unrelated to the Kelvin-Helmholtz type instability of the 

separated shear layer, yet the similarities with two-dimensional flows certainly exist and seem 

very intriguing indeed.

7. Conclusions

With regard to arterial flows the separated shear layer sensitivity appears to be of 

minor importance. With forcing levels between approximately 1% of the peak axial centreline 

velocity for the orific plate and about 1.5% for the contoured symmetric stenosis, the 

poststenotic oscillatory flow disturbances may be considered fairly structurally stable, 

particularly because the above estimates apply to perturbations at frequencies near the natural 

instability. To give an idea of the haemodynamic relevance, at an assumed heart rate of 60 

beats per minute, the peak flow disturbances will fall into a frequency range of ca. 20 to 60 Hz, 

provided the stenosis is moderate and flow rates are high (cf. § 1.2). Assuming arterial wall 

vibrations to be a source of potential flow perturbations, these are generally thought to 

resonate at somewhat higher frequenices. As to the magnitude of these vibrations, the evidence 

is spurious. Considering therefore the flow ‘perturbations’ observed by Kitney et al (1986), even 

such high fluctuations, of amplitude about 5% of the peak flow velocity and frequency 100 Hz 

will not necessarily synchronise the flow instability, because the estimated natural instability 

occurs at approximately one third of the frequency of the perturbation.
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Abstract Dropouts can greatly affect the accuracy of flow 
measurements in the case of Iow-snr  Doppler signals. The 
dependence of the measurement accuracy on easily determined 
dropout parameters has been studied theoretically and 
experimentally.

Based on a gaussian narrowband representation of the 
Doppler signal, the dropout process is characterised by two 
parameters, tracking rate and unlock frequency, and modelled 
as alternating renewal process. It is found that velocity estimates 
are poorest for unlock frequencies of the order o f  the signal 
bandwidth but improve at higher and lower values.

Laminar flow experiments indicate that the transitions 
between lock and unlock are best described by a Poisson 
process. An application o f this finding to the determination o f  
the l d v  scattering volume demonstrates that even under adverse 
tracking conditions useful volume-dimension estimates may be 
obtained.

1. Theoretical investigation

1.1. Introduction
Owing to limits of tracking range and slew rate, in frequency 
tracking systems, tracking flow velocity fluctuations cannot be 
free of error in situations of large frequency variations, which 
may result from local flow velocity variations or, indirectly, 
from the Doppler signal falling below a certain noise level 
thereby causing a sudden change in signal spectral composition. 
Here the level o f noise depends on the contributions of individual 
noise sources, namely, optical, photodetection and electronic 
system noise (Durrani and Greated 1977) with optical noise 
usually dominating.

Whereas the former case of frequency variations can be 
avoided by carefully matching the l d v  parameters to the flow 
conditions, large variations in signal envelope are inherent in 
Doppler signals and express the random interference pattern o f  
large numbers o f light scatterers. Consequently, even for high- 
s n r  signals, destructive interference may cause the envelope to 
fall below the noise level occasionally (figure 1).

The frequency tracker then ceases to function (dropsout) and 
resumes normal tracking operation only when a valid Doppler 
signal is detected. During dropout the tracker output is held 
constant, either at the signal value immediately before dropout 
(e.g. Wilmshurst and Rizzo 1974) or at zero voltage or the 
signal average, depending on the strategy employed.

Systematic studies into the degradation o f the l d v  signal by 
background noise (Durrani and Greated 1974) have elucidated 
the dependence o f dropouts on noise level and tracking filter 
bandwidth. Also a Markov chain model of the dropout process 
has been conjectured (Buchave et a! 1979) and its implications 
have been studied theoretically.

0022-3735/87/111404 + 08 S02.50 ©  1987 IOP Publishing Ltd
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Dropouts in ldvfrequency trackers
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Figure i. Amplitude variations of the photodetector signal (top) and 
their effect on frequency tracking performance (bottom: low signal level 
indicates dropout).

An analysis presented here will show that dropout effects in 
l d v  trackers may be effectively quantified in terms o f tracking 
rate and dropout frequency. Information about these two 
parameters is provided in most commercially available trackers 
by displaying a running-average form of tracking rate defined as 
the percentage time o f locked operation. In addition, a 
synchronisation signal is available giving information (cf § 2.2) 
about the frequency of unlock transitions.

1.2. Calculation o f  the tracking rate a n d  the unlock freq u en cy

1.2.1. Theoretical background. The analysis o f the dropout 
characteristics o f  the l d v  frequency tracker is based on a 
gaussian narrowband process representation o f the photo­
detector current i( t) (e.g. George and Lumley 1973, Durrani 
and Greated 1977),

i(t) =  F (t) cos(K X O )) + G (t) sin(K X O ))

= (F 20 )  + G \ t ) ) ' /2 c o s [ K X 0 ) - ta r \ - '{ G 0 ) /F 0 ) ) ] ,  (

where /(/), f ( 0  and GO) are gaussian random variables, K  
represents a scattering wavenumber for the particular 
velocimeter configuration and X O )  is an effective displacement. 
Furthermore, R ff(t) =  R ggO) and RFC(r) =  0 for all practical 
purposes,

RFF(r) =  R FF(0) exp[ — i(AruF r)J]

and
(2)

R A t) = R ffO )E \co s[ K (X O )~ X O  + r))]} 

R ,( 0 ) = R M 0 ) = o ? .

The instantaneous frequency function / ( / )  of the photodetector 
current is given by the sum o f two uncorrelated signals,

fO )= foO ) + nO)

*/,.( r) = 0
with f o0 )  proportional to the volume-averaged Eulerian velocity 
at the centre of the measuring volume (which, in fact, may be a 
biased estimate o f the mean velocity at the centre of the 
measuring volume due to velocity gradients, e.g. Kreid 1974),

fo O ) =  ~r~ uoO) 
i n

and nO) representing transit-time noise of infinite variance and 
spectral density

„  , % AcuF " 1  f 1 , |
S" <<U)=T 6 ^ £  ^ e x p | - — | (3)

(a result that was first derived by Rice (1948) in his classic paper 
on f m  detection and random noise) with half-power bandwidth 

~2.7A<i/F.

1.2.2. Tracking rate. Dropout parameters are now calculated 
by employing the analytical model introduced in the previous 
section. Defining the tracking rate X as the probability that the 
envelope r{t) = (F 20 )  + G 20 ))m  is above a given level L, A =  
P \r  > L ), we obtain, by noting that r has a Rayleigh density

/ *  ( r ) = ( r/ o 2) exp  ( - r  V  2criI),

A =  e x p ( - 1 / 2 s n r ) SNR =  (<7i/L)J ( 4 )

where the ratio o ,/L  has conveniently been chosen as a measure 
of the signal-to-noise ratio. According to figure 2 the tracking 
rate reaches values of 0 .5  for s n r s  as low as 0 .7 2 ,  whereas rates 
above 0 .9  require much greater s n r s , s n r  > 4 .7 5 .

Figure 2. Functional dependence of (a) tracking rate X and (6) 
normalised unlock frequency v ' =  v/(A(t)f  / y / ln )  on signal-to-noise 
ratio, v ' is compared with results of a simulation of the level crossing 
process. ,>

1 .2 3 . U nlock frequency. An expression for the unlock 
frequency v  may be found by noting that the level crossing 
density qUx o f a stationary differentiable process x 0 )  for a level 
L  is

n u ,= fA L ) E { x 0 ) \ x 0 )  =  L) (5)

with f x(x) the probability density function ( p d f ) of x  (Blanc- 
Lapierre 1963). It is readily appreciated that trying to evaluate 
equation (5) for the envelope function t i t )  is, at best, highly 
involved, if not impossible. However, by assuming a normal 
process xO )  for which dx(f)/d t  and xO ) are orthogonal and 
therefore independent, equation (5) assumes the more tractable 
form

L2
2 R a ( 0 )

(6)

x =  Jt-£{jc(f»  L = L - E \ x O ) \ -

The density f O )  will therefore be approximated by a gaussian 
density centred at the maximum of f ( r )  and of the same 
variance. The autocorrelation (a c f ) o f r(/) is given by (Lawson
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«™(r) =  /?KF(0 ) |2 £ ( p ( r ) ) - ( l  - /> ’(r))tf(/>(r))|

P(t) = R ff(t) /R ff(0)

where E (p) and K (p )  are complete elliptic integrals o f the first 
and second kind, respectively. Expanding the expression 
2 E ( p ) - ( \ - p ' ) K ( p )

/?fr( r )= k /? FF(0)(l + ]p , (r) + kp*(7) + ...). 

Therefore,

which is the desired unlock frequency expressed in terms of 
bandwidth Aa>F and the variance of the photodetcctor current. 
The unlock frequency is proportional to the product o f  the 
envelope bandwidth and a non-linear function o f s n r , 

/ ( s n r ) g  [0 , 1]. As expected, v  is highest for s n r s  around 1.0 
(corresponding to the zero crossing density o f process r(/) — 
E \r { t)|, figure 2). Also given in figure 2 are the results o f a 
simulation o f the level crossing process, which agree very well 
with the analytical form and substantiate the gaussian density 
approximation.

1.3. A m odel o f  the dropout process 
The tracker output will be represented as

f « ) = f ( t ) U ( t ) + f ' ( t ) 0 ( t )

with / ( / )  the instantaneous frequency o f the Doppler signal, U (t) 
a modulating function taking values zero and one during unlock 
and lock, respectively, 0 ( t )  a function taking the negated values 
of U, 0 = 1  — U, and / ' ( / )  a function that depends on the 
strategy employed for handling dropouts.

In an a d  hoc  approach to simplifying the discussion o f the 
statistical properties of f i t ) ,  the functions U (t) and f i t )  are 
assumed to be statistically independent. It should be noted, 
however, that the gaussian narrowband process model implicitly 
assumes a certain degree of correlation between the envelope 
function and the instantaneous frequency, i.e. drops in envelope 
r(/) are accompanied by spiky excursions o f the instantaneous 
frequency. Therefore it is only through experimental validation 
that the above simplification can be justified (cf § 2.5).

Viewing output f ( t )  as an estimate o f / ( / ) ,  it may be shown 
that, on the basis of mean square error P,

P  =  E  { ( /  (/) —f i t ))1}

a strategy o f holding the signal value constant prior to dropout,

f 'O )  = / ( /*  — 0) for /  6 [/*, /* ♦ i J; tk : unlock transitions

is superior to letting / ' ( / )  =  0 or / ' ( / )  =  £ { /( /)} •  It is noted that 
the sample-hold strategy is implemented in the TSI 1090 
tracker, used in this study.

Statistical properties of process U (t) are studied by 
decomposing £/(/) into two random sequences \U U U i, . . . }  and 
\ 0 \ , 0 2, . . . )  comprising interval durations of tracking (( /( /)  =  1) 
and unlock ( t /(/) =  0), respectively, with unlock interval U t 
succeeding lock interval Ui. Theoretical and experimental 
studies on the level-crossing problem of the envelope function of 
a gaussian narrowband process (Rice 1958) and the zero- 
crossings of low-pass gaussian processes (McFadden 1958, 
Blotekjacr 1958) indicate that the up or down crossing interval 
pdf is basically of a unimodal shape. Furthermore, intervals of

duration greater than the average interval duration 
asymptotically follow an exponential distribution and successive 
zero-crossing intervals may be taken to be statistically 
independent in the case of smoothly decaying low-pass spectra. 
The exponential-tail property of the interval pdf is clearly a 
consequence of the chance of a crossing in i t, / + A| being quite 
independent of what happens up to /, for large t.

On this basis, the transition times of U (t)  arc modelled as 
alternating renewal process, i.c. the sequences {U,\ and arc 
mutually independent sequences of independent identically 
distributed random variables of densities f u i U )  and f o i U ) .  
respectively. The autocorrelation of U it) may now becalculatcd 
as

Ruu(r) \mu + mol \
mo

1 + —  R .(r )niu

R  (r) m u + m °  1 (1 -P t/frX U
U  m v m o s 2 1 -Vu(s)<P0(s) I

( 8)

where

m v = I x f u ( x ) d x  m o -  ( x/t>(.v)d.v
Jo Jo

and (Puis) and <po(s) are the Laplace transforms of / t and f o  
(appendix 1).

Employing the sample-hold strategy for estimating f i t )  and 
assuming independence, we obtain

R j j  = R / / R  uu + R f f R  oo + P / f E u o  (9)

Now,

R u0 =  E [U \ — Ruu  

R ou = RuO

R 0o =  l - 2 E \ U \ + R u u .

Calculation of the auto- and cross-correlations R pp, R jp  and 
R f f  is somewhat involved and only the end results will be given 
here (see appendix 2 for complete derivation)

R f f (3 ) =  f  R /fi t)p " iU * )d l
Jo

Rr r i - t )  =  R f .rir)

and

R /f i? )  | R jf U )p'it — r) d*

with p ' and p"  pdfs of the transformed lags r.
Discussion of the estimate R jj  o f R ff  is simplified by 

relating the expectations m v and m o  to the dropout parameters:

A-----=2— !-----  00)
m v + m o m v + m 0

Now, equation (9) assumes the form 

R f f  = X2R /r + i  I - X 2)R / r  + XU - X ) i R f f . + R r f )

+ A(I — A) [R j f  + R f f — i R j p  + R p / ) ] R :  (11)
As is expected, the estimate R jj asymptotically approaches the 
true autocorrelation function for high tracking rates X. 
Independently of this observation, the unlock frequency 
distinctly influences the quality of the estimate. Relating u  to a 
measure of correlation-bandwidth of f i t ) ,  f m  (or correlation­
time icorr, rconoc l//corr), it is found that if u < fco a  then R 9 ~  1, 
R f f  and iR fI. +/?/•/) are approximately constant over the 
significant part o f R fi r ) .  Thus,

R jjix )  = XRf f iz) + constant.
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Figure 3. Power spectrum of ideal low pass signal afTccted by Poisson
type dropout process (at tracking rate 0 .5).----- . r =  oo:------, v  = 2:
• ■ • u= I: • - t> = 1; • • - •

On the other hand, if ut> f con then R ,( z )  may be approximated 
by a delta function and Rr f ~ R f f , (R fp  + /?/•/)=:2R f f . Hence,

/? (̂r) = /?yr(r).
Finally, as v  becomes o f order / COTT the quality o f  the estimate 
R jj greatly deteriorates.

The above discussion has been quantified for a velocity 
signal with an ideal low pass power spectrum (figure 3). 
Assuming a Poisson process formulation of the transitions 
between lock and unlock that allows a complete description o f  
the dropout process in terms of tracking rate and unlock 
frequency (cf § 2.4), power spectra were calculated for various v  
at A =  0.5.

1.4. Im plications f o r  ldv m easurem ents a t  in term edia te  
tracking rates
From the above discussion it is obvious that for low to 
intermediate tracking rates v  will have to be either much greater 
or much smaller than/<*, in order to get useful estimates o f the 
instantaneous frequency. However, this only applies to attempts 
of measuring ‘signal plus noise’. As described in § 1.2.1 the 
transit-time noise is not correlated with the volume-averaged 
velocity fluctuations. It is readily seen that this property holds 
for the modified signals fo ( t )  and n(t)  also. Therefore, influences 
o f v  on the quality o f  estimates f a  and it may be treated 
separately and the estimates may be recovered by some optimal 
noise filter (e.g. Wiener filtering). Subsequently a tracking rate 
A =  0.5 (at snr= 0 .72) will be assumed, implying an unlock 
frequency v zz  $Acuf. Consequently, estimates o f the transit time 
noise, which has a bandwidth o f Aco, ~  2.7Acuf (i.e. AAco, )  
cannot be expected to be reliable (specific cases may have to be 
analysed by simulating the unlock process, cf § 2.5). 
Furthermore, measurements of turbulent or highly disturbed 
flows are not primarily limited by transit time effects (George 
and Lumley 1973), but instead by the requirement for a spectral 
bandwidth o f velocity fluctuations / « * ,<Z JAcof (the case 

/corr > !Awf has no practical value because then the velocity 
signal cannot be distinguished from the noise).

2. Experimental investigation

2.1. Description o f  the experim ental apparatus
ldv experiments were carried out as part o f  a study of transit­

time broadening effects in laminar flow measurements and the 
estimation o f the scattering volum e dimensions.

Axial velocity measurements were taken at the centre line 
position of a 1 in (25.4 mm) ID straight perspex tube in 
developed liquid flow, 66 diameters downstream from a constant 
head reservoir, connected with the tube by a converging nozzle. 
The flow was observed through a test section, consisting of n 
block of perspex of dimensions 63.5 x 63.5 x 254 mm3, to avoid 
refractions at the pipe curvature.

The ldv system, operating in dual beam forward scattering 
mode comprised a 5 mW H e-N e laser (Model Spectra Physics 
120) o f  wavelength 623.8 nm, a 50 mm beam splitter (Model 
TSI 915), a Bragg cell for acousto-optical frequency shifting, a 
transmitter-receiver set of lenses of 104 mm focal length and a 
photomultiplier unit of aperture size 0.254 mm (which has been 
found experimentally to yield the best signal-to-noise ratio). The 
photodetector current was demodulated with a Model TSI 1090 
frequency tracker, operating in open loop condition so as to  
avoid any possible tracking o f noise.

Industrial water was used as the flow medium, with no  
artificial scattering particles added. The tracker operated at an 
average tracking rate o f 0.5. Operation of the ldv system in the 
‘many particle’ range (continuous ldv) -  as implied by the 
gaussian narrowband process model -  was ensured by 
comparing tracking rate and unlock frequency at various 
particle densities (addition o f homogenised milk). The tracking 
parameters were indeed found to be independent of particle 
density. This result also identified the optical system as the 
major source of noise resulting in this somewhat low tracking 
rate.

2.2. R ecovery o f  the unlock signal
Information about the unlock and recapturing behaviour of the 
phase locked loop (pll) was obtained by low-pass filtering the 
synchronisation signal available at the TSI tracker. Because o f  
the signal validation circuitry employed in the particular tracker, 
in the case of perfect tracking this signal is a train of equally 
spaced pulses with a pulse repetition frequency o f A the Doppler 
frequency. Loss of tracking is indicated by pulse spacings 
greater than in the ideal case and the tracker output is held 
constant at the last validated value until the pll has recaptured 
the fm signal. ,,

Low-pass filtering o f the synchronisation signal at a 
bandwidth slightly lower than a tenth of the signal frequency 
thus yields a signal (figure 4) that, after passing through a 
threshold device, represents the unlock process U(t). However, 
information about the very short unlock intervals is lost -  a fact 
that has to be accounted for when analysing statistical 
properties o f (/(/).

f i t )

la)

ib)
^  vi
M

6 10 20 30 to 50
t (ms)

Figure 4. (a) Frequency tracker output f ( t )  and (A) the corresponding 
filtered synchronisation signal.
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Table I. Moments of pdf estimates normalised by the first moment o f the convolved pdfs.

f ( U ) * f ( U ) i f ( U ) * f ( 0 ) n u y f ( O ) n u ^ - u , )

m ,/m * 1.000 1.001 1.000 1.000 1.000 1.000
m ,/(m T)J 1.290 1.300 1.268 1.274 1.489 1.488
m,/(m t)J 2.040 2.067 1.946 1.968 2.956 2.943
m4/(m t)4 3.825 3.862 3.501 3.555 7.327 7.200

2 3 .  Testing the independence o f  lock a nd  unlock in tervals 
Centre line velocity measurements were taken at four different 
Reynolds numbers (Re =  6 5 0 -1100, based on the flow rate) and 
the recorded samples of (/(/) and f ( t )  were digitised for analysis 
on a cdc mainframe computer. From sample records o f U (t)  the 
lock and unlock sequences [U,\ and \U ,\ o f sample sizes 
between N — 1000 and 2000 were then derived and auto- and 
cross-correlation coefficients pu{k), p o (k )  and p u u (k )  were 
estimated for the first few lags k = 0, 1 , . . .  10. Consistently, an 
upper bound o f p = 0 .0 5  for these coefficients was found. 
Although the postulated independence implies a lack of 
correlation, which is indeed supported by the above findings, the 
reverse line o f reasoning only holds for gaussian random 
variables. Therefore, a further test was included, based on 
estimates of the probability density fuctions of {!/,-} and {(?,}.

The independence of two random variables a  and b  o f pdfs 
f , { a)  and f t ( b)  may be determined by comparing f a. b{a + b) 
with the convolved pdfs / . ( a )  •/»(£). The random variables a 
and b  can be considered independent if, within the limitations of 
finite sample size operations and the smoothing property of 
the convolution operator, f ,+ b(a  + b )=  f a( a ) * f b(b). Here, 
equivalence o f / ,* *  a n d /,  • /*  was tested by comparing sample 
moments, a technique that has been successfully employed in 
the testing o f the renewal property o f series of events (Sayers 
1970). (For completeness it should be noted that in general a 
pdf is not fully specified by its moments, unless its moment 
generating function is analytic at the origin.)

In practice, sample moments of a higher order than four are 
dominated by finite sample size effects (Yule and Kendall 1953)

and, therefore, of limited value. Hence, only the first four 
moments were considered. The independence test was carried 
out with samples from experiments of varying Re numbers and 
exemplary results are given in table 1 and figure 5. Clearly the 
convolution-predicted moments agree very well with the 
experimentally determined values. Comparison between the 
distributions further supports the independence hypothesis.

2.4. Investigation o f  the interval-duration distribution  
With the aim of determining simple parametric descriptions of  
the lock- and unlock-interval distributions, sample pdfs were 
tested for the exponential tail property (cf § 1.3). However, the 
results o f least-squares fittings of an exponential density 
fu { U )  =  y c x p ( - y U )  to the data indicated that this function 
could well be used to describe the complete sample pdf, which 
is, of course, a truncated estimate o f the true pdf. Percentage 
mean-squared errors of fitting were consistently below 6% with 
an average value of 3.2% (figure 6). This finding was further 
substantiated by comparing the experimentally determined acfs 
of (J(t) with the predicted acf, which, for pdf estimates 
f u ( U )  =  a c x p (  — a U ), E [ l f \  =  l / a  and / } ( £ / )  =/?exp(-/? { /) , 
E \U )  =  \/p , is (equation (8))

* " " (t) = (a + ffl7 + (a + ^ 'Xp' -(a+WI'11 ( l2 )

with parameters a  and P  related to the dropout parameters by

, P <*PA. = --------- V   --------- .
a + P  a + P

(c) U ,

‘V .

•  Normalised interval duration

Figure 5. Comparison between pdf estimates of random variable Ut + U ,, i{Ui + Uit  i ) and convolution// * fu ( fu  * fo ) ~  dotted 
curves in (b) and (d).
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Figure 6 . Least-squares fit of exponential density function to p d f  
estimates (the very short interval values are ignored because they 
cannot be considered representative).

00 2

0

Specifically, correlation times r ^ .,^  and r„„ =  1 / ( a  + P) were 
compared (table 2). As the measured autocorrelations did not 
show any oscillatory component in their tails, which is a  
potential feature according to equation (8) in the case o f higher 
order pdfs (in terms o f their Laplace transforms), it may be 
assumed that the concept of alternating Poisson process 
satisfactorily describes the unlock process.

Table 2. Lock and unlock durations 1 / a  and l /P  are averages 
of five independent runs at each flow rate (I—IV). Auto­
correlation time l/(a  +(J) is compared with corresponding 
averaged values of measured Tem. All values in ms.

1/a 1 /P !/(«+ /*) Expt

I 1.892 1.843 0.918 0.940
II 1.421 1.479 0.725 0.731
III 1.184 1.373 0.636 0.617
IV 0.993 1.182 0.540 0.553

It should be pointed out that the exponential-density model 
does not contradict the unimodal shape characteristic mentioned 
earlier. Although the sample pdf, as an estimate of the truncated 
form o f the true pdf, is potentially masking a pdf maximum in 
the short interval range, it is the much longer intervals that 
determine the correlation time of R U(J and affect / ( / ) .

2.5. Application to the determ ination o f  the  ldv  sca ttering  
volum e
The analysis of transit-time effects in laminar flow 
measurements provides a means of verifying the calculation o f  
scattering volume dimensions based on the optical 
configuration.

Given the beam crossing angle <p. the focal length /0 of the 
lens, the l /e J intensity beam diameter D and the wavelength AL,

the three characteristic dim ensions o f the scattering volume arc

c ^ a H y / 2  COS  j </>)

a x. = o / ( \ / 2  sin \<p)
13)

with

a, = afsjl

v/2 /ô l 
n D

In laminar flow, if transit-time cfTccts dominate the spectral 
broadening (i.e. negligible curvature of the flow profile across the 
scattering volume),

Acof =  u 2/2 o a i

with flow velocity u and the direction of flow corresponding to  
the x  direction. This bandwidth may be determined either 
directly by spectral analysis o f i(t)  (e.g. Berman and Dunning 
1973) or by studying f i_ U )= f0 + nL(t). The second approach 
was chosen here in an attempt to study the effects o f the unlock 
process in situations Based on scattering-volume

Figure 7. Normalised power spectrum S„(l(to)/(AcoF/4jr, )( I ) and 
simulation 5,„-,-(co)/(4x2/AcuF )S„K (0) (2).

Figure 8. Comparison of theoretically predicted (------ ) and measured
( • )  transit time noise bandwidths. Also given is the scattering volume 
dimension in flow direction a „  as calculated from the optical 
configuration (o(), from noise measurements and simulations (o>) and 
from estimates of A and u (▼) (<jj).
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dimensions according to equation (13) of o , = 2 l.2 //m . a, =  
88.3 /rm and a . =  20.6 p m  and estimates of parameters X and r. 
the spectral density of / ( / )  was calculated (equation (12)) and 
compared with the theoretical curve (figure 7). Half-power 
bandwidths of the calculated spectra were then used to estimate 
the bandwidths of the experimentally measured noise spectra. 
Also included was a calculation of noisc-bandwidths by making 
use of the functional relationship A<oF = f { X . r )  (equations (4) 
and (7)). Results of all three types o f calculations arc given in 
figure 8. In view o f practical limitations to perfect optical 
alignment and the avoidance of stray beams, the actual 
scattering volume is clearly greater than that found from optical 
data. Furthermore, the estimate based on the unlock 
characteristics is surprisingly close to the transit time noise 
estimate, suggesting that the level-crossing model (including the 
U ( t ) - f ( t )  independence assumption) is an adequate description 
of the unlock process.

3. Conclusions
Confronted with experimental circumstances that may lead to a 
low tracking performance of the ldv frequency tracker, this 
study was undertaken with the purpose of assessing the quality 
of ldv measurements of local flow velocity in the presence of  
tracking noise.

Employing a simple Poisson process description o f  the 
transitions between lock and unlock, two readily available 
parameters of tracking performance, tracking rate and unlock 
frequency, were used to quantify the effects of dropouts on 
velocity measurements, thereby ofTering a simple tool o f  
assessing the significance of ‘dropout noise' to be expected in 
specific cases. Transit time noise measurements were then 
evaluated by means of simulation and an estimate for the 
scattering volume was obtained. Moreover, the two parameters 
were found to be a convenient means of determining the overall 
velocity-signal bandwidth.

Here. p"(t, r) is the pdf of the random variable

f r - ( A j — A | )  A 2 £ r

10 A : > r

with A } and A t the backward recurrence times from /=  r and 
/ =  0. respectively (figure 9). As the interval pdf f u {U ‘ ) of 
process f ' { t )  is given by the convolution of the lock- and unlock- 
interval pdfs, the backward recurrence time A has a density

m
with F ( A) the cumulative distribution o f  f v * f c  and m  — 
E \ U i + 0 , ) .  Furthermore, recurrence times Ai and A j arc

r-i; : , a >

— 1 \  Q •

1 1 -a, 1 l  1 t-A? t
t

Appendix 1
The autocorrelation of two-state (‘on’, ‘ofT) process U (t)  is 
found by noting (Cox 1962) that for an alternating renewal 
process the equilibrium probability P E, given that U  is in state 1 
at the (arbitrarily chosen) time origin t0. that UUo + 0  is also in 
state 1 is

P M - * "  (---L-L(1 ~*| M ) ( I )
\ s  m, s l \-<Pi(s)<p!(s) I

with

lim P E(t) = -----------  and Iim />E(0= 1-
l-*oo ttl\  +  f i l l  t—0

Here, <px (s) and ^  (5 ) are the Laplace transforms o f the state 1 
and state 2 pdfs and m x, m 2 are the respective average 
durations. Now,

R u u (x) =  E m ) U { t +  T ) ) = P { U ( t +  r)= 1 ({/(/)= l \ P { U ( t ) =  1}

Figure 9. (a) Derivation of R //- . As f ' ( l )  is a sample-hold version of 
/( /) , lag r of Rjj translates to / = r—(A2 -  A |)o f  R/-p. (b) pdf of t. 
based on backward recurrence times A, and A j.

= Pe( r) -.m,+m2

Appendix 2
The autocorrelation function of the sample-hold signal / ' ( / )  is 
readily seen to be a smoothed version o f  r), namely

R fp ( r ) =  R jr ( t ) p " ( t ,r ) d t  for r > 0

R / r ( - T )  =  R , T (T).
Figure 10. (a) Sketch of f ( l )  and / '( / ) .  Lag r translates to t  = r -  A. 
(b) pdf of modified time shift.
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independent for r > A j. Hence,

p"(/.r) =  P |A J >r)<5(r)+ / Aj. / a, <5(0 =  0 r * 0 .

Similarly, the cross-correlation R /p (z )  is given by

R /r(* ) =  | Rf f ( t ) p ' ( t -  r)d/
* ' -co

with p '(t)  the pdf of backward recurrence time A (figure 10).

- Dropouts in ld v frequency trackers
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CHAPTER IV

ON NONLINEAR OSCILLATIONS IN NONCONSERVATIVE SYSTEMS

[Fifi-75-] “Diebus 4 aut 5 horologiorum duorum novorum 
in quibus catenulae [Fig. 75], miram concordiam 
observaveram, ita ut ne minimo quidem excessu 
alterum ab altero superaretur. sed consonarent 
semper reciprocationes utriusque perpendiculi. 
unde cum parvo spatio inter se horologia 
distarent, sympathiae quandam quasi alterum ab 
altero afficeretur suspicari coepi. ut experimentum 
caperem turbavi alterius penduli reditus ne simul 
incederent sed quadrante horae post vel semihora 
rursus concordare inveni.” 1

Christiaan Huygens, 22nd February 1665.

Summary

Attempts at demarcation through negation are invariably expansive in character and 

require qualification. This chapter provides an overview of what van der Pol termed relaxation 

oscillations, with a single or multiple degrees of freedom. The van der Pol oscillator itself is 

reviewed briefly but is regarded too complex a quantitative model of harmonic 

synchronisation . However, the emphasis here is on weakly perturbed oscillators for which 

important dynamical reductions are possible. These reductions allow the (analytical) treatment

ln For four or five days I had observed wonderful concord between two new clocks on this 
support [Fig. 75], such that neither was ahead by the most minimal difference yet. Instead, the 
reciprocations of the two perpendicle were in perfect harmony. I began to suspect that, because of 
the small distance between the clocks, they affected each other. By way of experiment, I perturbed 
the return of one of the penduli so they did not swing in simultaneously, but after a quarter or half 
an hour, I found them moving in harmony again". Christiaan Huygens, Vol 17, Oeuvres Completes 
de Christiaan Huygens. Societe Hollandaise des Sciences, La Haye, M Nijhoff, 1932.

2
The terminology used here is not strict, in the sense that no distinction is made between 

the terms ‘synchronisation’ and ‘frequency entrainment'. The former term is sometimes reserved for 
phenomena observed in populations of identical oscillators to distinguish them from the interactions 
observed in populations of non-identical oscillators, described by the latter term.
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coupling, congruent with the modelling conventions for spatio-temporal systems with local 

dynamics.

1. Introduction

Huygens seems to have been the first to consciously observe synchronisation in a two- 

oscillator system. However, his accidental discovery of this phenomenon was presumably rather 

premature (Zeitgeist theory, Ogburn and Thomas 1920). In the end, the notion of mutual 

synchronisation had to await rediscovery more than two centuries later. Although cursory 

mention was made by John Ellicott3 in 1739, it was Lord Raleigh (1894), who introduced what 

is referred to as Raleigh’s equation or van der Pol oscillator, when studying the negative­

damping effect of dry friction on a violin string. Eventually, in the early 1920s synchronisation 

was deemed important enough to receive theoretical treatment (Appleton 1922, van der Pol 

1922).

The concept of synchronisation of self-excited oscillations with an external excitation 

found its way into fluid mechanics only much later, although ‘lock-in’ or ‘locking-on’ 

phenomena are known for a number of flow instabilities, e.g. for the Benard - von-Karman 

vortex street, free shear layer instabilities and oscillations of impinging flows. This comes as no 

surprise, as the Navier-Stokes equations cannot be viewed as an assembly of a large number of 

coupled identical systems with local dynamics. Every term on the right-hand side of this 

equation represents ‘interaction’ because a spatial gradient is involved.

Early interest in synchronisation phenomena in fluid flows focused on the vortex 

shedding process from oscillating bluff bodies in moving fluids in which case an analogy with 

nonlinear oscillators was readily suggested by the presence of a fairly discrete frequency 

component, characterising the flow instability.

Observations of harmonic and sub-harmonic entrainment of vortex shedding from an 

oscillating cylinder as well as beating phenomena and hysteretic response led Bishop and 

Hassan (1964) to speculate on the existence of a ‘fluid oscillator’ and they referred to 

Appleton’s work. These experimental findings and conjectures were taken up by Hartlen and 

Currie (1970), who used a simple van der Pol type oscillator to describe typical features of 

oscillating cylinder/wake combinations. Subsequently, Iwan and Blevis (1974) made an 

attempt at rationalising the concept of nonlinear self-sustained oscillations by resorting to basic

3For further historic detail on this subject see “Les horloges sympaihiques de Huygens, les 
ph'enom'enes connexes et les oscillations principales et composees que presentent deux pendules 
fixes a un mecanisme a un seul degre de liberie, par D J Korieweg”,Archives Neerl. des Sciences 
ex. et nat., Serie II, T . XI, la Haye, M Nijhoff, 1906.
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fluid mechanic principles. Further studies of bluff-body dynamics aimed at a more 

comprehensive modelling of observed phenomena (e.g. Berger et al 1979) but, as Bearman 

(1984) notes, nonlinear oscillator models “are unable to reproduce all the observed effects”.

Recently, renewed interest in dynamical systems (Hirsch and Smale 1974) has 

stimulated the use of more realistic ‘fluid oscillator’ models. For example, the various 

instability regimes of a wake downstream of a cylinder have been modelled by a nonlinear 

harmonic oscillator (Provansal et al 1987), known in nonlinear hydrodynamic stability theory 

from a perturbation analysis of the Navier-Stokes equations, and speculations were made as to 

employing a distributed oscillator model.

In contrast to bluff-body wake dynamics, free shear layer instabilities have proved 

more elusive to a modelling by self-sustained oscillation. Wake flows contain absolutely 

unstable flow regions with a fairly discrete frequency component, whereas free shear layers are 

typically convectively unstable and velocity fluctuations are broadband in character. 

Speculations exist as to the use of multiple-degree-of-freedom nonlinear oscillators or, in the 

continuum limit, Fields of oscillators. This will form the central theme of chapter V.

In the subsequent sections the groundwork is laid for the nonlinear-oscillator

treatment of free shear layer instabilities, with a discussion of simple and coupled nonlinear 

oscillator systems.

2. Single-Degree-of-Freedom Oscillations

By way of clarification, the definition of ‘degrees of freedom’, as used in the context of 

oscillations, does not follow the conventions of thermodynamics or statistical mechanics. 

Instead of identifying the number of degrees of freedom with actual state space dimension, the 

relevant space is, for one-degree-of freedom oscillations, the ring S1, and for several-degree-of- 

freedom oscillations the torus Tn. Only when dealing with the simplest oscillators of state 

space dimension two, is this definition consistent with conventions in mechanics (Feynman d 

al 1964).

2.1 The van der Pol Oscillator Revisited

A discussion of nonlinear oscillations would surely be incomplete without mention of 

the van der Pol oscillator, classic example of a second-order system exhibiting relaxation 

oscillations. Not only was this equation the first to be analysed theoretically, but more 

significantly, it was the First nonconservative system4 in which chaotic behaviour was studied
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(Cartwright and Littlewood 1945, Levinson 1949), eventually leading to the development of a 

modern mathematical theory of dynamical systems during the 1960’s (Smale 1967).

2.1.1 Frequency Entrainment

The unforced (autonomous) van-der-Pol equation

utt — e (1 — u2) ut + u =  0 , e >  0 (4.1)

models a simple triode oscillator (figure 4.1 a) with assumed nonlinearity i(u) = — u+u3 and 

possesses a single stable limit cycle, apart from an unstable focus at the origin (figure 4.16). 

For weak nonlinearity e<< 1, the limit cycle is nearly circular and solutions have the form 

u(t)=cos(t+90), but as e, often referred to as waveshape factor, becomes larger, solutions 

approach highly nonlinear relaxation oscillations (figure 4.1c), of frequency l^T Te"' "’

determined by the relaxation time 7-re/=  R C (Stoker 1950).

Adding a forcing term with dc-offset Bcos(ut)+BQ to the right-hand side of equation 

(4.1) and introducing a new variable v=u—B0, yields an alternative form

vtt — /x (1 — (3v— yv2) vt+ v =  B cos(ut) (4.2)

O D -
where p = ( 1 -  B02) e , 0 = -— ^  and 7 =  ’

The dc-component is seen to introduce a quadratic term in the nonlinearity, z(u) =  — v + 

/3v2+ yv3, and must satisfy 5 0<1 if a stable limit cycle is to be maintained.

For weak nonlinearity harmonic, higher-harmonic and sub-harmonic oscillations as 

caused by frequency entrainment, may be investigated by the method of harmonic balance 

(Krylov and Bogoliubov 1947). Solutions for equation (4.2) are assumed to have the form

u(2) =  cos (ut) -(- sin (nut) + b2 cos (nut) . (4.3)
1 — u

4Chaos in conservative, Hamiltonian systems, on the other hand, had been observed much 
earlier in problems concerning the three-body-problem of celestial mechanics. Poincare remarks on 
highly irregular movements of a parametrically excited pendulum : “One is struck by the complexity 
of this figure that I am not even attempting to draw. Nothing can give us a better idea of the 
complexity of the three-body problem...” (Vol 3, Les Methodes Nouvelles de la Mecanique Celeste, 
Gauthier-Villars, Paris, 1899)
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u

Figure 4.1 (a) Electronic circuit diagram of the van der Pol oscillator, (b) Limit cycle attractor 

of the (autonomous) van der Pol oscillator for large c. (c) Relaxation oscillations for various 

values of the waveshape factor e (0.1, 1.0, 10.0) and 5o=0.5. Note the asymmetry of the 

oscillations.
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Here, the integer number n defines higher (n=2,3,...) and sub- harmonics,
D

respectively. The amplitude —— z of the harmonic term is determined by disregarding
l — v

nonlinear terms in equation (4.2), an approximation that is justified even for large 

nonlinearities (Mandelstam and Papalexi 1932).

Substituting into equation (4.2) and equating coefficients of like terms, the amplitude 

and phase of the entrained oscillation are found. Stability of this solution is then analysed by 

solving the variational equation of the Hill type5 (Hayashi 1964), dividing the response curves 

into stable and unstable regions (figure 4.2a).

Numerical results (Hayashi ibid), that agree well with the harmonic-balance analysis — 

apart from a small, but noticeable difference in intrinsic frequency — are shown in figures 4.2 a 

and 4.26. The response curve for harmonic entrainment relates the forcing frequency (or, in
-i 2

normalised form, the ‘detuning’ crl =  1 ^  ) to the amplitude rx of the entrained oscillation, 

for various forcing amplitudes B. For higher and sub-harmonic entrainment only the stable 

regions of attraction are depicted in the (B, v) - plane. As for the harmonic entrainment 

region, the size of the higher and subharmonic regions depends on parameters e and B0. By 

increasing the dc-term, the higher and subharmonic regions of even frequency ratio can be 

increased. Note, however, that the regions of odd integer ratio of frequency entrainment cannot 

be abolished completely, because the cubic term is essential for self-sustained oscillations.

Two points are worth mentioning a t this point. Closer inspection of the response curve 

(,figure 4.2, see also Stoker (1950) for a more detailed diagram), shows that potentially 

‘pathologic’ behaviour may occur near <r=0.5 and {jSa^)2=Tf' due to t îe multi-valued 

character of the graph. Indeed, two harmonic solutions, or a harmonic as well as an almost 

periodic oscillation, are known to co-exist stably in this rather limited region (Cartwright 

1945). The two-solution region is characterised by jumps in amplitude and hysteresis. A recent 

account of the qualitative dynamics of this region can be found in (Guckenheimer and Holmes 

1983), where detailed sketches of the topology of the forced weakly nonlinear van der Pol 

oscillator are given. This has prompted Thompson and Stewart (1986) to suspect mildly chaotic 

behaviour, a property of the weakly nonlinear van der Pol oscillator that generally seems to be 

overlooked (e.g. Kitney 1975).

5
Conventional stability analysis v i a  characteristic equation of the variational form fails to 

resolve instabilities resulting from the variations having different, typically commensurate, 
frequencies.



(a)

0i

(a) Harmonic and higher-harmonic entrainments

Figure 4.2 (a) Response curve of. the van der Pol oscillator for harmonic entrainment. The 

entrained oscillator amplitude is given by (b) Harmonic, super- and sub-harmonic 

entrainment regions, obtained from analog-computer simulation. Note that, for higher and 

subh-harmonic entrainment, the apparent oscillator frequency differs from w0= l ,  as the result 

of the non-sinusoidal waveform of the entrained oscillation. The overlap of the harmonic and 

1/3-harmonic region indicates hysteresis (after Hayashi 1964).
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Hysteresis is also observed in the region of harmonic and 1/3 harmonic entrainment 

overlap, for example when the forcing amplitude B is varied as indicated by the dotted line in 

figure (4.26).

2.1.2 Phase Locking and Asynchronous Quenching

The above analysis of frequency entrainment in the van der Pol oscillator gives no 

indication that the entrainment mechanism for small forcing amplitudes may be essentially 

different from that for large amplitudes. Physically, though, two fundamentally different 

mechanisms are operative, phase locking and asynchronous quenching. Phase locking implies 

synchronisation by either systematic phase retardation or phase advancement of the self- 

sustained oscillation by virtue of the action of the external force on it. Asynchronous 

quenching, on the other hand, corresponds to the case where the effect of the external force is 

to abolish self-sustained oscillations. The system response then is that of a nonlinear resonator 

and the process of quenching the self-sustained oscillation is advantageously analysed by the 

describing function technique (Atherton 1975).

More rigorous forms of analysis were employed by Dewan (1972) to investigate the 

details of the entrainment mechanism. Using topological methods, he gave exact definitions for 

distinguishing between the different types of entrainment. Sketched briefly here, phase locking 

and asynchronous quenching are defined by the type of singularities associated with these forms 

of entrainment in the van der Pol plane. This variant of the two-dimensional phase plane has 

the added property that the dominant rotation at the forcing frequency is eliminated. Possible 

combinations of singularities are: (1 ) a single focus; (2) a saddle and two sinks; (3) a saddle, a 

sink and a source. Phase locking is identified by the existence of three singularities, one of 

which is a saddle point and the system is at rest at the stable node. For asynchronous 

quenching the system equilibrium points are stable foci.

Dewan notes that for the van der Pol oscillator all subharmonic entrainment seems to 

be of the phaselocking type. Other entrainment regions are of this type only for weak forcing.

2.1.3 Chaotic Response

Before entering into a discussion of ‘irregular bahaviour’ observed in certain dynamical 

systems, a few words on the terminology are in order. The attribute chaotic has been used to 

describe the random motion of trajectories on attractors with complicated geometric structures 

in dissipative systems, in distinction to stochastic motion in conservative, Hamiltonian systems 

(Lichtenberg and Lieberman 1983). Often, however, the usage is less stringent, and Mees
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(1981) suggests to call chaotic any system behaviour that is more complicated than almost 

periodic motion.

To begin with, chaotic motion applies to deterministic dynamical systems and an 

essential property of deterministic randomness (sic) was explained eloquently by Henri 

Poincare :

“/I very small cause which escapes our notice determines a considerable effect we cannot fail to 
see, and then we say that the effect is due to chance. If we know exactly the laws of nature and 
the situation of the universe at the initial moment, we could predict exactly the situation of that 
same universe at a succeeding moment. But even if it were the case that the natural laws had 
no longer any secret for us, we could still only know the initial conditions ‘approximately'. If 
that enabled us to predict the succeeding situation with the ‘same approximation’, that is all vie 
require, and we should say that the phenomenon had been predicted, that it is governed by laws. 
But it is not always so; it may happen that small differences in the initial conditions produce 
very great ones in the final phenomena. A small error in the former will produce an enormous 
error in the latter. Prediction becomes impossible, and we have a fortuitous phenomenon 
(Science et Methode, Paris: Flammarion, 1908).

To summarise Poincare’s account, this property is the sensitivity to initial conditions, 

reflected in the exponential divergence of trajectories, starting from a neighbourhood of initial 

conditions. A quantitative measure of divergence is provided by the Lyapunov exponent. For a 

given n-dimensional nonlinear system, the Lyapunov exponents are determined from the 

eigenvalues of the long-time product Jacobian, but non-analytical methods also exist (Wolf 

1986). The other property by which chaotic motion is identified is quasi-recurrence, 

characterised by a power spectrum with broadband background noise, superimposed on which 

are relatively sharp peaks (Parker and Chua 1987).

For chaotic motion to occur, a minimum dynamical system complexity is required. 

According to the Poincare-Bendixson theorem (Hirsch and Smale, 1974), autonomous systems 

of order less than three will always converge to a point or a closed curve. Furthermore, the 

synchronisation property of nonlinear oscillators has recently been associated with the existence 

of chaotic motion (Tang et al 1983).

Recalling that non-autonomous systems are readily transformed to autonomous form 

by defining new state variables for each external input, the forced van der Pol oscillator is seen 

to be a prime candidate for chaotic behaviour.

As mentioned earlier, it was Cartwright and Littlewood who studied a phenomenon 

that van der Pol and van der Mark (1927) had been aware of. The key observation made was 

that, for large e (equation 4.1), there are parameter values for which two different sub­
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harmonic solutions with periods that are odd multiples of the forcing period, co-exist stably. In 
this case, the start-up transients may jump between the two subharmonics for an arbitrarily 

long time before settling to one or the other. This irregular behaviour was analysed again for a 

simplifed van der Pol oscillator with the nonlinearity replaced by a piecewise-linear 

characteristic (Levinson 1949). In fact, Levinson’s paper has been the starting point for the 

construction of prototype chaotic systems leading to a deepened understanding of chaos 

generating mechanisms.

Strangely enough, though, it is a hopeless undertaking to try to find chaotic solutions 

in laboratory experiments (Parker and Chua 1983). Indeed, an analysis shows that in the space 

of initial conditions, chaotic solutions form an infinitely thin set (Levi 1981). Ironically, chaos 

is clearly observable in a forced neon-bulb oscillator employed by van der Pol and van der 

Mark (ibid). For certain parameters they observed “irregular noise”, but dismissed it as a 

subsidiary phenomenon. This noise has since been identified as chaotic behaviour (Kennedy 

and Chua 1986 ).

The hypothesised connection between irregular behaviour and synchronisation in 

nonlinear oscillators (Tang ei al, ibid) becomes apparent now, but requires qualification. It is 

the overlap between different entrainment regions that provides the mechanism for chaotic 

behaviour. Consequently, irregular dynamics are not expected to be observed in simple 

oscillators with a harmonic catchment region of entrainment only. The effects of resonance 

overlap are illustrated rather well in (Tomita 1986) for the Brusselator (a second order 

chemical oscillator proposed by the Brussels school, Glansdorff and Prigogine 1971) (figure 

4.3). We shall come back to the resonance overlap mechanism in § 2.4.

2.1.4 Concluding Remarks

The above comments on irregular behaviour in the forced van-der-Pol oscillator testify 

to the remarkably complex dynamics of this system. As yet the dynamics have not been fully 

understood, and modifications similar to those of Levinson are required to make the oscillator 

dynamics amenable to qualitative analysis (Levi 1981).

The value of the van der Pol oscillator for the quantitative modelling of harmonic 

entrainment seems questionable therefore. Glass et al (1986) remark on the difficulties with the 

van der Pol equation when trying to model cardiac rhythms and have opted for a phase 

description approach instead. In general, the expediency of alternative, averaged forms of the 

van der Pol equation is well established and numerical studies are greatly assisted if the 

oscillator dynamics are given in a more suitable coordinate system (such as polar coordinates).
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Figure 4.3 Entrainment regions of the forced Brusselator x t =  x 2y — B x + A + a c o s u t ;  y t =  B x — x 2y

(>4=0.4, B=1.2). Chaotic response, caused by resonance overlap, is found in the region marked

X- In the shaded regions ‘Q’ almost periodic oscillations exist (after Tomita 1986).
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Indeed, some coupled-oscillator models of the neural control of locomotion have been 

formulated in purely qualitative terms (Cohen and Wallen 1980, Cohen and Harris-Warrick

1984) . Without diminishing the predictive power of these models, the qualitative approach 

avoids implications regarding complex synchronisation mechanisms.

It is the purpose of the following section to introduce and discuss a nonlinear oscillator 

with simple dynamics, closely related to an averaged form of the van der Pol oscillator.

2.2 The X-u Oscillator

Introduced in a paper by Kopell and Howard (19736) to determine analytically certain 

wave patterns occurring in spatially oscillating chemical reactions, the A-u oscillator models 

the simplest, yet generic, form of a nonlinear harmonic oscillator (Kuramoto 1984a). This 

oscillator has found application in the synthesis of nonlinear periodic systems (Chua and Green 

1974, Bardakjian and Sarna 1980) and is an example of a system displaying sub-/super-critical 

Hopf bifurcations which play an important part in hydrodynamic stability theory (Joseph,

1985) . Given by equation

xt
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(4.4)

or, in more ‘natural’ (defining!) polar coordinates,

rt =  r A(r) (4.5)

6t =  w(r) ,

the A-to oscillator possesses solutions for the particular case A(r) =  R2 - r2,

r2(I) _________ R2 r2(0)__________
r2(0) + [R2 — r2(0)] exp( —2R2t) 

t
9(t) = / u/[r(r)] dr + 0o

o

(4.6)

where r(0) and 60 are the initial values. In general, limit cycle solutions of radius r0 are defined 

by the zeros of A(r) and stability is determined from dA (r)/drat r0.

It is worth mentioning that the property of defining limit cycles by zeros of A allows
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for easy mathematical description of multiple-limit-cycle systems such as encountered in 

aeroelastic galloping (eg Parkinson and Smith 1964).

Returning to the Hopf bifurcation property of the A-w system, such bifurcation 

behaviour is at the centre of a theorem of the same name that provides one of the few reliable 

methods of establishing the existence of limit cycles in high-dimensional systems. Briefly 

stated, HopPs theorem says that in a system of ordinary differential equations that depend on 

a real parameter pi, if on linearising about an equilibrium point one finds that pairs of complex 

conjugate eigenvalues of the linearised system cross the imaginary axis as pi varies through 

certain critical values, then for near-critical values pic limit cycles close to the equilibrium point 

exist.

In the case of the X-u> oscillator, so-called supercritical bifurcations with stable limit 

cycles are found for functions A(r) with dependence on a parameter pi as sketched in figure 

4.4.a, whilst subcritical bifurcations together with unstable limit cycles and hysteresis result 

from functions A(r) (figure 4.46).

Due to the generic character of the A-u  system, it is possible to reduce a wide class of 

nonlinear oscillations to this form. For example, to first order the van-der-Pol equation is 

reducible to a system with A(r)= \y r 2 and u;(r) =  l. To demonstrate this, equation (4.2) 

is rewritten in polar coordinates,

rt = pi r (1 — (3 r cos# — 7 r2cos2#) sin2#

9t = l + pt ( 1 — /3 r cos9 — y  r2cos2#) sin# cos#
(4.7)

By first-order averaging techniques (Hale 1969), it can be seen that (4.7) is equivalent to

rt = V r ( § -  s')7'2 ) +  ° ( ^ 2)

9t =  1 +  C7(^2)

(4.8)

Interestingly, the assumed general dependence of instantaneous frequency w on amplitude, 

although not observed in the simple van der Pol system, is known for a self-oscillatory system 

with nonlinear restoring force, vti — /x(l — v2) vt + v3 — B cos(ut) (Hayashi 1964).

More generally, it may be shown (Kuramoto 1984a), how a small-amplitude equation 

valid near a Hopf bifurcation point is derived from a general system of ordinary differential
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Figure 4.4 Hopf bifurcations of the A — u> oscillator. A(r) varies with the control paramter /z as 

indicated. r0 is the steady state amplitude, (a) Supercritical bifurcation — emergence of a 

stable limit cycle. (6) Subcritical bifurcation — loss of stability.
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equations. This equation, called the Stuart-Landau equation, after Landau (1944), who was the 

first to derive this equation form on heuristic grounds, and Stuart (1960), who obtained it 

through an asymptotic method, has the form :

ipt = a ip — c \ip\2ip ip, a, c E C (4.9)

jQ
By letting ip = r c , equation (4.9) is seen to be a X-u> oscillator with defining functions A(r) 

=  ar — crr2 and u>(r) =  a. — c{r2, where the subscripts r and i denote real and imaginary 

parts, respectively. The Stuart-Landau oscillator is of considerable importance in nonlinear 

hydrodynamic stability theory and has recently been employed as a model of the sub- and 

supercritical regimes of the circular cylinder wake (Provansal et al 1987). More importantly, 

the spatial development of nonlinear hydrodynamic stability may be described by a diffusively 

coupled field of Stuart-Landau oscillators, the Ginzburg-Landau equation (c/§ 3.2.3).

2.2.1 Harmonic Entrainment

Entrainment behaviour of the \-u> oscillator is investigated by applying a two- 

dimensional forcing signal (by symmetry considerations) :
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cos (vi) 

sin(W)
(4.10)

Again, in polar coordinates the dynamics of entrainment become more apparent : 

rt =  r A(r) +  B cos(ut — 9)

(4.11)

9t — uj(r) + y  sin(id — 9)

When the rotation of 9 at, or near, the forcing frequency is eliminated by describing the 

temporal evolution of the phase difference <p—v t—uj(r) instead,

rt — r A(r) -1- B cos <p

<j,t = (i/-u (r)] -  f  sin ij> ,
(4.12)
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regions of stable entrainment for the A — u> oscillator may be determined from the stable 

equilibrium points of the second-order system (4.12). It is readily verified that equation (4.12) 

is identical to what is obtained for the van der Pol oscillator by assuming a harmonic solution 

with slowly varying parameters. Consequently, the solutions obtained to first order for 

entrainment in the van der Pol oscillator are exact for the A —a; oscillator with the provision 

for generalised defining functions A(r) and us(r) and linear(!) detuning <r.

For weak forcing compared to the strength of attraction of the limit cycle of the 

autonomous system, the time scales of rt and <f>i are widely different. On the entrainment­

relevant time scale of the phase difference, equation (4.12) becomes effectively one-dimensional, 

<̂< =  <̂<(ro,0(/)), with r0 the steady state value. Stable solutions for the reduced system exist for 

values \<j>\ < ij. and the boundaries of stable entrainment are defined by \u — o/(r0)| =  ̂ .

Curiously, this region has been mistaken for describing entrainment in the A — w 

oscillator at all forcing amplitudes (Provansal et al 1987), but stable entrainment is obviously 

found also for values \<f>\ >  This is illustrated in figure 4.5 which shows the catchment 

region of entrainment in the B—v plane for the example A =  l — r2, u(r) = u Q. The V —shaped 

boundary separates the two regions r0 >  1 , |<$4| <  and r0 <  1 , |<̂ | > | ,  where r0 is the 

entrained oscillation amplitude. The curve r0 =  l/-\l2 is the entrainment boundary for larger 

detuning. The crossing of this boundary is accompanied by a supercritical Hopf bifurcation, 

whereby a stable focus becomes unstable and is surrounded by a stable limit cycle that 

represents almost periodic oscillations. Note that the limit cycle can be rather small in size and 

need not encircle the origin. These smaller limit cycles correspond to quasi-entrainment. The 

average oscillator frequency, although modulated, is the same as the forcing frequency. Finally, 

the region surrounding the intersection of the two boundary curves is topologically complex 

(Holmes and Rand 1983).

2.2.2 Super-/Sub-Harmonic Entrainment and Multi-Frequency Excitation

It has been shown how the van der Pol oscillator reduces to A-w form by applying 

averaging techniques. This connexion between the two systems readily highlights the major 

limitions of A-w oscillators, namely the absence of super-/sub-harmonic entrainment — a 

property that is averaged out, as it were.

However, by exploiting the fact that higher-harmonic entrainment in the van der Pol 

oscillator is equivalent to driving the system at the respective higher harmonic6 instead, one

6ln contrast to sub-harmonic entrainment, a higher harmonic of the forcing term is 
generated at the system nonlinear characteristic via non-phaseshifting frequency multiplication.
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Figure 4.5 Catchment region of harmonic entrainment for a A —a; oscillator with A(r) =  l —r2, 

u;(r) =  w0. The hatched regions indicate quasi-entrainment. On the locus r0= l ,  with ro the 

entrained oscillation amplitude, \4>\ =  ̂ . In the neighbourhood of the intersection of the two 

curves r0= l  and r0=  1/^2 complicated transitions occur.
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arrives at the concept of multi-frequency excitation.

The entrainment diagram of the forced A-u; system

r t =  r  X ( r ) +  B k c o s ( k u F i  + d o k ~  9)
k

9t = w(r) + f  Bk s[n(kujFt +90k-  Q) 
k

(4.13)

shows regions of stable harmonic, sub- and higher-harmonic entrainment in neighbourhoods 

kujp S3 w(r0) for values k=l, jji, |,..., 2, 3,... (figure 4.6). Clearly, this method affords a high 

degree of control over the size of the entrainment regions and the phase difference between 

oscillator and forcing signal. Importantly, resonance competition will not lead to irregular 

behaviour as none of the entrainment regions other than the region of harmonic entrainment 

are an intrinsic part of the oscillator dynamics.

The concept of multi-frequency excitation will prove useful in connexion with the 

modelling of integer-ratio synchronisation in coupled oscillator systems (c/Ch V § 3).

2.3 Phase Description and Perturbation Ideas

It was pointed out in § 2 that trajectory motion in a limit-cycling system is effectively 

one-dimensional, leading to a corresponding definition of degrees of freedom. However, the 

notion of phase, marked off along the limit cycle, does not translate to forced systems in a 

straightforward manner. Intuitively, one may expect the phase concept to carry over to 

synchronisation in weakly forced systems, as exemplified in § 2.2.1 for the A —u; oscillator. 

Below, these ideas are elaborated upon.

A study of phaselocking in the van-der-Pol oscillator led Adler (1946), to the 

formulation of a phase equation for nonlinear oscillators with memory-less nonlinearities, 

describing the temporal evolution of the phase difference <j> between the self-oscillation and the 

forcing signal as a function of detuning Aw and forcing amplitude E :

<f>i =  Aw — J r  sin <f> (4.14)

With the aid of that equation, the transient process of ‘pull-in’ as well as a distorted beat note 

could be described in detail.

Some twenty years later Winfree (1967), in a seminal paper on biological rhythms and 

populations of coupled oscillators, outlined perturbation ideas to reduce generalised relaxation
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Figure 4.6 Entrainment regions of a A —u> oscillator (A(r) =  l —r2, 

frequency excitation (u>j, 2 u)j and 1/2  uy, identical forcing amplitudes), 

simulation. The corresponding regions for single-frequency excitation 

broken lines.

cj(r) =  1 ), with multi- 

obtained by numerical 

are indicated by the



-  132 -

oscillators to oscillator-specific sensitivity functions and a definition of phase, specified on the 

(high dimensional) limit cycle. More recently, these ideas which Winfree (1980) concedes were 

introduced with “merely handwaving arguments”, were explicated physically (Kuramoto 1981) 

and put on a mathematical footing using perturbation techniques (Neu 1979a, 19796, 1980).

Essentially, the limit cycle of an oscillator is supposed to possess stiffness in orbital 

shape against weak perturbations. However, although the trajectory will hardly deviate from 

its natural closed orbit, the phase along the orbit will experience accelerating or decelerating 

effects. The state of the oscillator is thus effectively specified by its phase value which itself is a 

function of the perturbation. A further dynamical reduction is made possible by the 

observation that a weak perturbation produces a long time scale compared to the free oscillator 

dynamics. The two time scales may be separated by averaging methods. What remains is a 

phase evolution equation that depends on slow phase variables only e.g. the phase difference 

between the perturbation and the oscillator.

The orbital stiffness idea was demonstrated for the weakly forced A — u oscillator (c/. § 

2.2.1). The extraction of long time scale perturbations, on the other hand, need not be 

considered in the case of the A — u> oscillator, but is relevant to the van der Pol oscillator, for 

example.

The importance of reducing higher dimensional oscillations to a one-dimensional phase 

description for weak perturbation cannot be overemphasised because it allows the analytical 

treatment of populations of coupled relaxation oscillators, constituting typical complex 

dynamical systems.

As might be expected, the dimensional reduction of a weakly forced nonlinear 

oscillator, using formal methods, leads to phase descriptions very similar to Adler’s equation 

and to the phase evolution of the weakly forced A —u> oscillator. Given an oscillator with 

intrinsic frequency cj0, forcing frequency Up and normalised forcing amplitude e, its phase 

evolves according to :

01 = Wq -f- € r(cojt—#) T 0(e2), (4.15)

or, by considering the temporal evolution of the phase difference —

<t>t =  (u f ~ u 0) -  € r(0) +  0 ( f 2) . (4.L6)
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Figure 4.7 Frequency pulling in a weakly forced oscillator. The dynamics are described by the 

phase-difference evolution equation <pt = (o)j — w0) — € siny>. Au> denotes the time-averaged 

frequency difference <pt . Note that for r=sin<p, Au> = ĵec2 —e2.
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Here, the phase difference function T is a general odd 27r-periodic function of its argument, |r |  

< 1 -

As pointed out earlier, stable phase-locking exists for |0| <  ^, and for \u>j — u>\ > c the 

phase locking cannot be maintained. Long time intervals of slow variations in 0 are punctuated 

by brief intervals of rapid fluctuations, a behaviour that is occasionally referred to as rhythm 

splitting (Neu 1979/>). As the difference between frequency ‘detuning’ and e is increased, 

variations in $ become less abrupt. An analytical solution for this region outside phase-locking 

has been derived by Kuramoto and Yamada (1976) :

tan(<p(t)) = A tan^7r F t + arctan[tan(7T</>(0)//l]^

A =
\(wf — w0) + e|

\l(w/ - wo ) - cl
F =

(4.17)

Concurrent with changes from rhythm splitting to sinusoidal fluctuations, the frequency 

pulling diminishes and the time-averaged oscillator frequency 6t approaches its intrinsic value 

u/0. Kuramoto (1984a) gives details of this frequency-pulling process. Near the critical forcing 

amplitude ec=|o;y — u\ the frequency difference \0t — u>j\ behaves like

l^ - c ^ l  oc 4ec- €  . (4.18)

A numerical simulation illustrates the frequency pulling phenomenon rather well (figure 4.7).

2.4 Sampled Phase Description and Chaos

The phase description of a forced nonlinear oscillator is obtained by greatly abstracting 

from the potentially complex oscillator dynamics, and only the basic properties of harmonic 

synchronisation are retained in the one-dimensional form (4.16). Interestingly though, higher 

dimensions of the oscillator dynamics may be recovered, as it were, by considering a discrete­

time version of equation (4.16). For example, solving equation (4.16) by Euler’s method :

¥»(»+!) =  ^ (n) + T[{Wf-u0) “  e r M n))] > (4-19)

where ip{n) = <j>{nT). Equation (4.19) has been used as a building block for the numerical study 

of large populations of weakly interacting nonlinear oscillators (Daido 1986, Sakaguchi and
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Ivuramoto 1986, Daido 1987), but is more adequately understood in the context of Poincare 

return maps where equation (4.19) is known as the circle map. These iterated maps serve to 

describe dynamical systems (Collet and Eckmann 1980) and have proved very useful in 

classifying choatic behaviour.

Return maps xi+1= F(xi)) xi £ Rn_1 are a means of studying systems of dimension n 

with periodic trajectories e.g. systems with periodically varying coefficients or periodic forcing 

terms. The reduction in dimension by one is the result of observing trajectories in the 

n—dimensional phase space through a surface, the Poincare section, of dimension (n— 1), such 

that the trajectories are everywhere transverse to the surface. The return map then provides a 

mapping from a point on this surface to its first return point. Further reductions in return-map 

dimension are possible if the dynamics are sufficiently simple. For example, the qualitative 

dynamics of one form of the third-order Lorenz equation, the Rossler attractor, are described 

exhaustively by a one-dimensional uni-modal return map by considering the distance of return 

points from the origin (Thompson and Stewart 1986).

Circle maps, defined through

0(n+l) =  9(n) +  +  g(9(n)), g(9(n)) = g(9(n) + 1) , (4.20)

can be thought of as ‘lifts’ of mappings from the circle to itself and have been used to describe 

spontaneously beating chick heart cells (Glass et al 1986), general forced nonlinear oscillators 

(Ding 1986), Josephson junctions in microwave fields and charge-density waves in electric fields 

(Jensen et al 1984, Bohr et al 1984). To study phase locking in circle maps, the frequency of 

the underlying dynamical system is required, described by the winding number

W =  lim
n —►  co

9{n)-9{  0) 
n (4.21)

Note that 9{n) is the n—th iteration of the map 9(n+l)=J{9(n)) for initial value 0(0). For the 

standard sine circle map,

9(n+1) =  9(n) +  Q — ^  sin 27r9(n) , (4.22)

it has been shown that the winding number locks-in at every single rational number P/Q in a 

non-zero interval AQ (Herman 1977). For K  close to zero these phase locking intervals are 

quite small (figure 4.8), but with increasing K  the widths of all phase locked intervals increase



-  136 -

and the total width of quasi-periodic orbits decreases correspondingly. At K— 1, where the sine 

circle map becomes noninvertible, the intervals completely fill up this critical line (Jensen et al, 

ibid). Above I(= \,  the phase-locked intervals, or resonances, start to overlap and chaos occurs. 

The orbit jumps between resonances in an erratic way and the observed chaos is a ‘frustrated’ 

response of the system due to resonance overlap.

This scenario is of course highly reminiscent of the earliest observations of irregular 

start-up transients in the van der Pol oscillator and has thus taken us from complex dynamical 

behaviour in a third-order system to dynamically reduced one-dimensional systems and, to 

complete the circle and recover lost dimensions, return maps.

3. Multiple-Degree-of-Freedom Oscillations

Having discussed basic properties of, and phase description methods for dealing with, 

single-degree-of-freedom oscillations, this section looks at oscillator systems involving several — 

and in the continuum limit an infinite number of — degrees of freedom. Interest here is limited 

to certain qualitative differences produced by the quantitative change. Qualitatively new 

phenomena include self-organisation (mutual synchronisation) of populations of coupled 

oscillators, kinematic and trigger waves, and a form of chaos that requires an infinite number 

of degrees of freedom. Consequently, unidirectionally coupled oscillator systems, such as the 

system used by van der Pol and van der Mark (1928) to describe abnormal functioning of the 

vertebrate heart or an oscillator-chain model of the human small intestine (Diamant et al 

1970), will not be discussed.

Conceptually, self-organisation and kinematic waves on the one hand, and trigger 

waves and turbulence on the other hand, may be identified with populations of oscillators with 

intrinsic frequency distribution and populations of identical oscillators, respectively.7

3.1 Interactions of Non-Identical Oscillators

Synchronisation in populations of mutually coupled oscillators reflects the phase-space 

volume contracting property of dissipative systems (Nicolis and Prigogine 1977), and major 

interest in this phenomenon has come from the study of biological oscillations.

In connexion with the human alpha rythm, Wiener (1958) explored analytically the 

possibility that myriads of individual oscillatory processes mutually synchronise to produce a 

common rhythm. Other examples include chick pacemaker nodes comprising spontaneously

7This classification is only correct approximately. Self-organisation is also observed in 
populations of identical oscillators with random noise disturbances.
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(3

Figure 4.8 Entrainment diagram of the sine circle map 9n+I=6n+Q — K/2tt sin(27T0n). Note 

the symmetry and periodicity in £2. At the forcing amplitude Kc= l  the entrainment regions 

fill up the critical line (after Jensen et al 1984).
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beating cells (Winfree 1967), and the electrical activitiy of the gastro-intestinal system (Nelson 

and Becker 1968, Sarna et al 1971, Robertson-Dunn and Linkens 1974).

3.1.1 A Pair of Oscillators

Pairs of mutually coupled oscillators form the building blocks of larger assemblies of 

mutually interacting oscillators. Much of the behaviour exhibited by these oscillator 

populations is present in embryonic form in a two-oscillator system and can be inferred from 

the two-oscillator dynamics (Linkens 1976). Consider therefore two n-dimensional stably limit­

cycling systems with intrinsic frequencies ujx and cjy,

Zt =  F{z) . h  =  G(y) , x, y € IRn , (4.23)

mutually interacting through weak generalised diffusive coupling,

£t =  F(x) +  e B. [y ~  z] , yt = G(y) + c D[x -  y\ , (4.24)

where 9  G Rn x Rn is a diffusion matrix with self-diffusivities d- and cross-diffusivities d.-. 

The phase equations of the dimensionally reduced coupled oscillator system are

9*  = u x +  e T(^) and 9ty =  Wj +  ( r( — <f>) , where <f)=dy—9x (4.25)

Because of the functional dependence on the phase difference only, the two equations reduce to 

a single phase difference equation :

Cf>t =  (w ,-w .) -  C ( W )  -  r ( - 0 ) )  . (4.26)

It is noted that equation (4.26) fully describes the phase difference evolution in a two-oscillator 

system that consists of A — w oscillators with identical amplitude dynamics A(r) and amplitude- 

independent u>. The simplicity of equation (4.26) allows most of the mutual entrainment 

properties to be studied qualitatively. For instance, if T is an even function of the phase 

difference, T( — <£) =  r($), synchronisation is impossible, because the coupling terms cancel. 

Similarly, if T is odd, T( — <f>)— — T(0), the common frequency of entrainment is the arithmetic 

mean of the intrinsic frequencies. Generally, if T is a non-even function, entrainment at a 

common frequency above or below the intrinsic frequencies is possible. Stability of a solution
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0O is guaranteed by d<^/d<£<0 at 0O. For an oscillator pair with near-identical frequencies u x 

«  toy, so-called in-phase or anti-phase coupling is possible. Phaselocking then implies that the 

second term on the right hand side of equation (4.26) be identical zero. Because 

(r(</>) — T( — <fr)) is odd and 2?r periodic, solutions are either 0o =  O or 0o =  7r> From stability 

analysis it follows that the in-phase solution =  0 is stable for dr(<f>)/d<t> >  0 at 0O. 

Conversely, the anti-phase solution is stable for dT((f>)/d<j) < 0 at </>0.

The coupling T is a function of the diffusion matrix D and has been calculated for 

particular second-order systems, viz. coupled \ -u  oscillators and van der Pol oscillators 

(Ermentrout and Kopell 1984, Kuramoto 1984a). For A-ui systems with normalised A(r) 

dependence A(r) =  l — r2, T has the form :

I 'M  = {u/ ^ 2 2  + } {cos* -  1} +

(4.27)
{ J  d-ir^2i + lu+hz } sin(6

Here u/ denotes the derivative of tu(r) at the stable limit cycle solution r0, u /= d tj(r0)/dr0. 

This gives an indication of the range of applicability of the phase description method. It is 

interesting to note that the frequency dependence on amplitude and the nonsymmetry of B 

may cancel each other to produce a function T which is odd. For van der Pol oscillators, if the 

coupling has resistive, capacitive and inductive components, dr, dc and respectively,

r(<f>) = dr sin<j) +  (dj — dc) (cos<£ — 1 ) (4.28)

Note that for either system T(0) =  0. This reflects the generalised diffusive type of coupling 

(Kuramoto 1984a). Mutual synchronisation is effected in A — uj systems, without u(r) 

dependence, by self-diffusive coupling and for van der Pol oscillators by resistive coupling.8

3.1.2 Populations of Oscillators and Continuum Limit

Differences in the treatment of assemblies of a finite number of interacting oscillators 

and the continuum limit of oscillating fields are mostly technical in nature. Whilst on the 

typical scale of investigation the underlying physical system may safely be taken to be space-

O
The simplicity of the above analysis for a weakly coupled two-oscillator system is in stark 

contrast to the efforts involved in treating a pair of strongly coupled van der Pol oscillators ( e .g . 
Storti and Rand 1982).
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time continuous, analysis is frequently carried out in discrete space in order to avoid phase- or 

amplitude singularities (Kuramoto 19846) or to employ matrix-algebraic methods (Ermentrout 

and Kopell 1984). As will be seen shortly (§ 3.1.2.2), however, the continuum limit of discrete 

space analysis need not be trivial and may entail singular behaviour.

In its most general formulation, a system with local dynamics and linear(!) spatial 

interactions is described by an integro-differential equation :

oo
Sl(s,() =  + e /  JS r -s )  x(r,t) dr «, r e R3 (4.29)

-OO

Here, the kernel K introduces the length scale of spatial interaction into the equation. For 

many physical systems where the spatial interactions are highly localised e.g. hydrodynamic 

systems, or chemical reaction-diffusion system, a kernel of the form K(r— s) = 6(r— s)V2 is 

assumed. However, systems with electromagnetic field interactions such as ferromagnetic 

systems are characterised by distinctly non-local dynamics and have only recently received 

renewed attention (Elmer 1988).

In the subsequent two sections synchronisation properties of oscillator populations with 

long-range and diffusive interactions are discussed exemplarily.

3.1.2.1 Long Range Coupling

A particular form of long-range interaction in populations of limit-cycling oscillators is 

closely related to mean field ideas of thermodynamic phase transitions, as observed e.g. in 

magnetic spin orientation. According to an idealised model called the Husimi-Temperly model, 

each spin is postulated to interact with all the remaining spins with equal strength. If the 

magnetic spins are initially randomly orientated, the gradual lowering of ambient temperature 

will result in a sudden collective organisation. By substituting oscillator for spin the model 

becomes a community of oscillators with uniform interaction. Analytical results for this type of 

long-range coupling have been derived by methods analogous to the thermodynamic transition 

(Kuramoto 1984a). In usual phase description,

dd.
s i  =  E  ^  *.) ■ (4.30)

The analytical treatment of equation (4.30) requires the coupling to be diffusive, r(0-, #,•) = 

sin(0 . —0J-), and the intrinsic frequencies to be randomly distributed according to some density 

function g(w), symmetric about w0. The analysis proceeds by the ansatz
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a e'jn = i > E
J 9i (4.31)

which defines a complex order parameter and is assumed to be time-independent, for large N. 

Equation (4.30) may then be rewritten, using trigonometric identities,

dd.
~dt ~ OJ■l (4.32)

or, expressed in terms of the relative phase ■0 t- =  0j- — f i t— 0,

dip.
—r r  =  —  Q —  € a sirup,

d i  »
(4.33)

This equation is, of course, known from the synchronisation in forced or mutually coupled 

oscillators and its solution is known. Depending on the frequency difference Iuk — i?| ^  e a, 

oscillator i is either entrained to the oscillating field or not. Equation (4.33) is a self-consistent 

equation for the complex order parameter and can be treated analytically for simple frequency 

distributions g(u))- Let this distribution be a Lorentzian,

0(w) 1
7r[(w-w0)2 +  7 2

(4.34)

It may then be shown that

a =
€ > €c 

otherwise.
(4.35)

By symmetry, fi = u)Q and ec = —j-—r. For subcritical coupling the oscillators are effectively
7rfl,(u,o)

independent as a is identically zero (equation 4.35). Near but above criticality the order 

parameter a is highly sensitive to changes of e, dc/de =  oo, thus exhibiting typical threshold 

behaviour. This is demonstrated in figure 4.9 for a population of N=  100 oscillators with non- 

random intrinsic frequency distribution.

3.1.2.2 Diffusive Coupling

Short range interactions in oscillator populations with intrinsic frequency distribution 

have been used to model various physiological systems such as the slow-wave electrical activity
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Figure 4.9 Schematic diagram of the phase transition in a population (#=100) of uniformly 

coupled oscillators (attractive coupling: F =simp). The intrinsic oscillator frequencies are 

uniformly, non-randomly distributed in [w • wmax]. The dependence of the average oscillator 

frequencies on the coupling strength e is shown, determined from numerical simulation.
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of the mammalian small intestine (Robertson-Dunn and Linkens 1974), neural control of 

locomotion (Bay and Hemami 1987), and swimming in fish (Cohen et al 1982). Central 

properties are the formation of locally synchronised clusters and, for spatially organised 

systems, the presence of so called kinematic or pseudo waves (Kopell and Howard 1973a, 

Winfree 1972). Exemplary results are discussed for systems of one-dimensional spatial 

extension, both space-discrete and -continuous.

Ermentrout and Kopell (1984) considered a chain of IV+1 weakly coupled oscillators. 

The intrinsic oscillator frequencies form a linear gradient and the mutual coupling is nearest 

neighbour. Specifically, the coupling is diffusive, isotropic, and weak interactions of magnitude 

e are assumed. A system of phase difference equations was then derived that allowed the 

calculation of the critical coupling strength for global synchronisation :

j  a
"fit =  u \ +  e r ( ^ i )  +  0 ( e 2)

dh  = A u  + e[  r ( t i+l) + r(-«s,.) -  r(*,.) -  r(-* ,,,)] + o (f2) , i=i,...N

(4.36)

r ( - 0 o ) =  ?(<f>n+I) =  0 , Auj = 0Ji+1- 0Ji

The coupling functions are those derived for a pair of oscillators in § 3.1.1. For odd T there is a 

unique stable solution above critical coupling. As the coupling strength falls below ec, a large 

amplitude stable limit cycle emerges which can be interpreted to correspond to the existence of 

a pair of frequency plateaus with different frequency. If the coupling is purely resistive, 

r ( 0)= sin0 , then

, _  ( ^ + i )2 ,u
C C —  g ^ y  i w r n f l l J (4.37)

This implies that for a fixed total change in frequency, the larger the IV, the harder it is to 

phase-lock. This contrasts with a non-odd function T for which ec remains finite as N-* oc  

(Kopell and Ermentrout 1986). Also, for odd T the common frequency is aJ =  (wmar-f u; . )/2, 

whereas for non-odd T the common frequency may lie entirely above or below the intrinsic 

frequencies. The phase differences <pi are smallest at the ends of the chain and largest at the 

point where a single frequency plateau divides into two for subcritical coupling. Consequently, 

kinematic waves are observed along the chain whose phase speed increases toward the break 

point and decreases behind it.
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Some results were also given for anisotropic and non-uniform coupling and for non-odd 

T. For stronger forward coupling than backward coupling, a break in frequency occurs at the 

lower frequency end. If, on the other hand, the coupling is assumed isotropic but with a 

gradient in e then, for increasing e with oscillator index i, the break will be in the high- 

frequency range and for e decreasing the break will be in the low frequency range. Note that 

the frequency of the phaselocked solution is the same as for uniform isotropic coupling.

The space-continuous equivalent was treated by Ermentrout and Troy (1986). They 

considered a one-dimensional continuum of A — u> oscillators in the interval 0 < s< l with self- 

diffusive coupling terms only. Functions A and u> are A =  l —r2 and w =  /is. Interestingly, if

the coupling is of the order of the attraction of the limit cycle, phaselocking is never lost. 

Rather the amplitude of the oscillations decreases with increasing frequency gradient /j until 

the origin is re-established. Conversely, for weak coupling frequency plateaus are formed. The 

upper part of the medium synchronises at a high frequency and the lower part synchronises at 

a low frequency. The emergence of plateaus is accompanied by singularities. The amplitude at 

frequency discontinuities must go to zero in order for the phase to remain continuous.

In either of the oscillator systems, the break of the phase locked solution into a pair of 

frequency plateaus is the scenario near criticality only. Obviously, as the coupling becomes 

weaker, the two-plateau system will break into more plateaus and clusters of locally 

synchronised oscillators are observed.9

3.2 Interactions of Identical Oscillators

The restriction to oscillator populations with identical intrinsic frequencies has been 

considered to be rather serious (Winfree 1980), as synchronisation is brought about by 

infinitesimally small coupling, and studies of the collective temporal phase evolution are few 

(e.g. Neu 1980). However, this is but one aspect of a variety of phenomena observed in 

interacting identical oscillators that include multi-modes oscillations, trigger waves and 

diffusion-induced chaos.

Major developments in this area came in electric circuit theory from the study of 

distributed multimode oscillations (Scott 1970), but research was also motivated by the 

observation of multi-mode rhythms in the large intestine (Linkens et al 1976). Regular and 

irregular wave patterns, on the other hand, are exhibited by spatially interacting chemical

g
Winfree (1980) notes that non-oscillatory, excitable media with a gradient in refractoriness 

show very much the same behaviour as the coupled oscillator systems with intrinsic frequency 
gradient.
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reactions (Kopcll and Howard 1973a) and have triggered considerable interest in populations of 

interacting identical oscillators.

3.2.1 Mode Analysis

Nonlinear mode analysis addresses the existence and stability of simultaneous multi- 

mode oscillations in distributed arrays of nonlinear oscillatory circuits. The subject was 

introduced by van der Pol (1922) who noted that nonresonant double-mode oscillations could 

not occur in a two-degree-of-freedom triode generator with cubic nonlinearity. Double-mode 

oscillations were treated by Linkens (1976) who found that for a particular form of mutually 

(nonlinearly!) coupled van der Pol oscillator, an in-phase and anti-phase mode can co-exist 

stably for some parameter range.

More generally, however, oscillator arrays of several dimensions are considered. Scott 

(1970), using the equivalent linearisation method of Krylov and Bogoliubov (1947), concluded 

that two nonresonant modes — the ratio of the mode frequencies is an irrational number — 

can only be excited stably in arrays of minimum dimension two. Other investigators, 

considering the continuum approximation of oscillator ladder structures, produced essentially 

the same results (Parmentier 1972, Aumann 1974). Endo and Mori (1976) developed a method 

for treating arbitrary numbers of van der Pol oscillators mutually coupled by inductances or 

capacitances in canonical form. First, the possible modes are calculated by analysing the 

equivalent loss-less circuit. Stability is then ascertained by the equivalent linearisation method. 

Complications typically arise when mode frequencies are resonant i.e. the ratio of the two mode 

frequencies is a rational number. Note that the equivalent linearisation method is closely 

related to the describing function technique (cf. § 2.1.2) which loses its appeal of simplicity and 

becomes unwieldy in the case of commensurate frequencies.

3.2.2 Trigger Waves

Kinematic or pseudo-waves in an oscillatory medium are produced by gradients in 

oscillation period and can therefore assume infinite apparent phase velocities. In contrast, 

trigger waves (Zeeman 1972), can be thought of as spreading disturbances that have been 

introduced at some point in the medium. It is this type of travelling spatial structure that can 

arise as the result of interaction of diffusion with an oscillating spatially homogeneous chemical 

reaction. The most widely known example of such a reaction-diffusion system is the Belousov- 

Zhabotinskii reaction (Tyson 1976), and research into oscillating media was motivated by 

Marek and Stuchl’s experiment (1975) on interacting oscillatory cells in this reaction. This has
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led to the introduction of the A — to oscillator concept (Kopell and Howard 19736), as a means 

of analytically studying certain wave patterns in reaction-diffusion systems. The main findings 

are briefly discussed here. The prototypical reaction-diffusion system

rt = r A(r) +  V2r — r |V 0|2

(4.38)

dt = cj(r) + \  V • (r2V0) 
r

consists of diffusively coupled identical A — w oscillators, and the diffusion matrix is assumed 

not too far from a scalar matrix to simplify the mathematical treatment. The reaction- 

diffusion system admits plane wave solution and can therefore be formulated in one dimension,

rt =  r A(r) +  rxx — r 8X2

(4.39)

01 =  w(r) +  2 -jr Qx + 6XX

Wave solutions of equation (4.39) are r = r 0 and 9 = a t—ax and the frequency and wave 

number satisfy o 2=A (r0) and cr =  u;(r0). A necessary condition for stability of plane waves is 

dA(r)/dr < 0 at r = r 0. For given parameters, waves with sufficiently small wave number are 

found to be stable.

3.2.3 Diffusion-Induced Chaos

A generalised form of reaction-diffusion equation with nonscalar diffusion matrix is 

known as the Ginzburg-Landau equation (named after a similar equation in super-conductivity, 

de Gennes 1966) or Stewartson-Stuart equation,

Vq =  a +  b i/>rx — c \^ \2tp a, 6, c, ^  € C . (4.40)

This equation has been shown to result from applying reductive perturbation methods to 

partial-differential systems in the vicinity of a Hopf bifurcation (Kuramoto 1984a). For 

parameters 6, c 6 R, equation (4.40) reduces to the soliton-producing nonlinear Schrodinger 

equation. The Ginzburg-Landau equation is not only known in chemical reactions with 

diffusion (Kuramoto and Tsuzuki 1974) but also in other contexts such as nonlinear 

hydrodynamic stability theory (Stewartson and Stuart 1971), phase transitions in optical
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systems (Graham and Haken 1968), population biology (Lin and Kahn 1982) and neural fields 

(Ermentrout 1982). Equation (4.40) is readily seen to be the spatially extended version of the 

Stuart-Landau equation (§ 2.2) and comprises A —a; oscillators with defining functions 

\(r) = ar — crr2 and u)(r) = â  — c ^ 2. The elements of the diffusion matrix are dll = 0j2 — br and 

du = — d2i~  — b  ̂ It is these last two terms that introduce considerably more complicated 

dynamics than the behaviour exhibited by equation (4.38). Some aspects are discussed 

qualitatively below.

Equation (4.40) clearly possesses plane wave solutions 'ift = Aexpj(kx—u)t) where k and 

u> are real. Solving for A and u  gives

A 2 = ar - k  br and w =  k2b' +  fi (ar- k 2br) -  a{ (4.41)

Linear stability analysis shows that all plane wave solutions are unstable for parameters

b■ c-
=  1 + C 0 ,

U y  C y
(4.42)

suggesting that both cross-diffusive coupling terms as well as the amplitude dependence of the 

frequency ui(r) are necessary for instability to occur. More insight into the instability 

mechanism is gained by considering weak spatial interaction (Kuramoto 1984a). Equation

(4.40) may then be reduced to a phase description that allows the diffusion-induced 

irregularities to be studied in detail. Suffice it to say at this point that the derivative dr(<j>)/d<j) 
at 0 =  0 is identical to a 2. Consequently the onset of diffusion-induced instability results from 

the anti-phase coupling of the A —u; oscillators. Kuramoto (ibid) provides further intuitive 

arguments for this mechanism. Consider an initially uniform oscillation with wave number 

k=Q. The effect of the anti-phase coupling is to rotate the phase along the spatial dimension. 

This leads to changes in oscillator amplitude which in turn affects the frequency. If phase 

rotation and frequency changes have co-operative effects, then instability occurs.

Routes to chaos in the Ginzburg-Landau equation have been studied in detail. For 

instance, Kuramoto observes that for weak diffusion the transition may be described by a one­

dimensional uni-modal return map which shows typical period-doubling bifurcations to chaos 

(Lauwerier 1986). Other routes to chaos are known as well (Sirovich and Newton 1987) but 

further studies are required to arrive at a more complete description of the dynamics of this 

equation.
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Control over successive instabilities in the Ginzburg-Landau equation is most readily 

afforded by considering finite spatial size. It will be recalled that results were derived for 

infinite spatial extension. Given the characteristic length scale of equation (4.40), 1/a, for a 

system size L of the same order the number of unstable modes may be expected to be of order 

one. With growing L, more modes become unstable and the behaviour grows in complexity. 

This scenario is illustrated in figure 4.10. The Ginzburg-Landau equation was solved 

numerically for different system sizes, starting with a value of L of the order of the 

characteristic length scale. The spatial frequency content grows with increasing system size, 

indicating the successive appearance of unstable system modes. The finite system size 

guarantees a finite bandwidth of spatial fluctuations and is important for numerical 

investigations of spatio-temporal chaos.

4. Concluding Remarks

This chapter concludes with two observations. First, the A — w oscillator forms the 

basis for general systems that bifurcate via a Hopf bifurcation. With defining functions A(r) 

and u(r) of the form a—br2, the X—u  oscillator describes the small-amplitude behaviour of a 

system of ordinary differential equations or, with added diffusive term, of a sytems of partial 

differential equations.

Secondly, the behaviour exhibited by populations of interacting oscillators considerably 

transgresses the simple synchronisation phenomena of forced single-degree-of-freedom 

oscillators. When distributed systems of non-identical oscillators are considered, spatially 

localised or global synchronisation is possible. Furthermore, the concept of functionally 

composite nonlinear oscillations offers a potentially useful modelling tool for nonlinear systems 

with oscillatory activity in a wide band of frequencies. Such an approach will find application 

in flow instabilities, as described in the following chapter, but may equally be relevant to 

biological oscillations.

When distributed systems of identical oscillators are considered, spatial pattern 

formation, phase singularities and turbulence arise. In these systems the phase relationship 

between oscillators assumes a central role. An example of such a distributed system, the 

Ginzburg-Landau equation, will be studied in chapter VI.
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Figure 4.10 Successive instabilities of the finite size Ginzburg-Landau equation with boundary

conditions i/>(0) =  t/>(£)=0. The characteristic length scale is l / a  =  10. (a) L—10. (6) L—15. 

(c) £ =  20.



-  150 -

Literature Cited

Adler R (1946). A study of locking phenomena in oscillators. Proc IRE 34 pp 351 (reprinted in 
Proc IEEE Vol 61 pp 1380).

Appleton E V (1922). The automatic synchronisation of triode oscillators. Proc Cambridge Phil 
Soc London 21 pp 231.

Atherton D P (1975). Nonlinear Control Engineering (London: Van Nostrand Reinhold).

Aumann H M (1974). Standing waves on a multimode ladder oscillator. IEEE Trans Circuit 
Theory CT-21 pp 461.

Bardakjian B L and Sarna S K (1980). A computer model of human colonic electrical control 
activity. IEEE Trans Biomed Eng BME-27 pp 193.

Bay J S and Hemami H (1987). Modelling of a neural pattern generator with coupled nonlinear 
oscillators. IEEE Trans Biomed Eng BME-34 pp 297.

Bearman P W (1984). Vortex shedding from oscillating bluff bodies. Ann Rev Fluid Mech 16 
ppl95.

Berger E, Breitschwerdt K and Kobayashi T (1979). Comparison of oscillator-model theory 
with experiments on vortex-excited vibrations. Euro Mech Colloq 119 (London).

Bishop R E D  and Hassan A Y (1964). The lift and drag forces on a circular cylinder 
oscillating in a flowing fluid. Proc Roy Soc A 277 pp 51.

Bohr T, Bak P and Jensen M H (1984). Transition to chaos by interaction of resonances in 
dissipative systems II. Josephson junctions, charge-density waves, and standard maps. Phys 
Rev A 30 pp 1970.

Cartwright M L (1945). Forced oscillations in nearly sinusoidal systems. J IEE 95 pp 88.

Cartwright M L and Littlewood J E (1945). On nonlinear differential equations of the second 
order. J London Math Soc 20 pp 180.

Chua L O and Green D N (1974). Synthesis of nonlinear systems. IEEE Trans Circ Syst CAS-
21 pp 286.

Cohen A H and Wallen P (1980). The neurone correlate of locomotion in fish. Exp Brain Res 
41 pp 11.

Cohen A H, Holmes P J and Rand R H (1982). The nature of coupling between sequential 
oscillators of the lamprey spinal generator. J Math Biol 13 pp 345.

Cohen A H and Harris-Warrick R M (1984). Strychnine eliminates alternating motor ouput 
during fictive locomotion in the lamprey. Brain Res 293 pp 164.



-  151 -

Collet P and Eckmann J P (1980). Iterated Maps on the Interval as Dynamical Systems. 
Progress in Physics Vol 1 (Boston: Birkhauser).

Daido H (1986). Discrete-time population dynamics of interacting self-oscillators. Proqr Theor 
Phys 75 pp 1460.

Daido H (1987). Population dynamics of randomly interacting self-oscillator. I. Tractable 
models without frustration. Progr Theor Phys 77 pp 622.

de Gennes P G (1966). Superconductivity of Metals and Alloys (New York: Benjamin).

Dewan E M (1972). Harmonic entrainment of van der Pol oscillations: phaselocking and 
asynchronous quenching. IEEE Trans Autom Contr AC-17 pp 655.

Diamant N E, Rose T K and Davison E J (1970). Computer simulation of intestinal slow-wave 
frequency gradient. American J Physiol 219 pp 1684.

Ding E J (1986). Analytic treatment of periodic orbit systematics for a nonlinear driven 
oscillator. Phys Rev A 34 pp 3547.

Elmer F J (1988). Nonlinear and non-local dynamics of spatially extended systems: stationary 
states, bifurcations and stability. Physica D 30 pp 321.

Endo T and Mori S (1976). Mode analysis of a multimode ladder oscillator. IEEE Trans 
Circuits Syst CAS-23 pp 100.

Ermentrout G B (1982). Asymptotic behaviour of statistically homogeneous neural nets, in: 
Competition and Cooperation in Neural Nets, eds S Amari and M A Arbib, Lecture Notes in 
Biomathematics Vol 45 (Berlin: Springer-Verlag).

Ermentrout G B and Kopell N (1984). Frequency plateaus in a chain of weakly coupled 
oscillators, I. SIAM J Math Anal 15 pp 215.

Ermentrout G B and Troy W C (1986). Phaselocking in a reaction-diffusion system with a 
linear frequency gradient. SIAM J Appl Math 46 pp 359.

Feynman R P, Leigthon R B, Sands M (1964). Lectures on Physics (Reading, Mass: Addison- 
Wesley).

Glansdorff P and Prigogine I (1971). Thermodynamic Theory of Structure, Stability, and 
Fluctuations (London: Wiley).

Glass L, Shrier A and Belair J (1986). Chaotic cardiac rythms. in: Chaos, ed. A V Holden 
(Manchester: Univ Press).

Graham R and Haken H (1968). Quantum theory of light propagation in a fluctuating laser- 
active medium. Z Phys 213 pp 420.

Guckenheimer J and Holmes P (1983). Nonlinear Oscillations, Dynamical Systems, and 
Bifurcations of Vector Fields (New York: Springer-Verlag).



-  152 -

Hale J K (1969). Ordinary Differential Equations (New York: Wiley).

Hartlen R T and Currie I G (1970). Lift-oscillator model for vortex-induced vibration. Proc 
ASCE J Eng Mech 96 pp 577.

Hayashi C (1964). Nonlinear Oscillations in Physical Systems (New York: McGraw-Hill).

Herman M R (1977). Mesure de Lebesgue et nombre de rotation, in: Geometry and Topology. 
eds J Palis and M deCarmo, Lecture Notes in Mathematics Vol 597 (New York: Springer).

Hirsch M W and Smale S (1974). Differential Equations, Dynamical Systems and Linear 
Algebra (New York: Academic Press).

Holmes P and Rand R H (1983). Bifurcations of the forced van der Pol oscillator. Quart Appl 
Math pp 495.

Iwan W D and Blevis R D (1974). A model for vortex induced oscillations of structures. J Appl 
Mech 41 pp 581.

Jensen M H, Bak P and Bohr T (1984). Transition to chaos by interaction of resonances in 
dissipative systems I. Circle maps. Phys Rev A 30 pp 1960.

Joseph D D (1985). Hydrodynamic stability and bifurcation, in: Hydrodynamic Instabilities 
and the transition to turbulence, eds Swinney H L and Gollub J P, Topics in Applied Physics 
45 (Berlin: Springer-Verlag).

Kennedy M P and Chua L 0  (1986). Van der Pol and Chaos. IEEE Trans Circuits Syst CAS- 
33 pp 974.

Kitney R I (1975). An analysis of the nonlinear behaviour of the human thermal vasomotor 
control system. J Theor Biol 52 pp 231.

Kopell N and Howard L N (1973a). Horizontal bands in the Belousov reaction. Science 180 pp 
1171.

Kopell N and Howard L N (19736). Plane wave solutions to reaction-diffusion systems. Stud 
Appl Math 52 pp 291.

Kopell N and Ermentrout G B (1986). Symmetry and phase-locking in chains of weakly 
coupled oscillators. Comm Pure Appl Math 39 pp 623.

Krylov N M and Bogoliubov N N (1947). Introduction to Nonlinear Mechanics (New Jersey: 
Princeton Univ Press).

Kuramoto Y(1981). Rhythms and turbulence in populations of chemical oscillators. Physica A
106 pp 128.

Kuramoto Y (1984a). Chemical Oscillations, Waves, and Turbulence (Berlin: Springer-Verlag).

Kuramoto Y (19846). Cooperative dynamics of oscillator community. Progr Theor Phys Suppl 
79 pp 223.



-  153 -

Kuramoto Y and Tsuzuki T (1974). Reductive perturbation approach to chemical instabilities. 
Progr Thcor Phys 52 pp 1399.

Kuramoto Y and Yamada T (1976). Pattern formation in oscillatory chemical reactions. Progr 
Theor Phys 56 pp 724.

Landau L D (1944). K npob^eMe TypdyyieHTHocTH. /(oK^a^bi AKa^eMnnHayK CCCP 44 
(On the problem of turbulence. C R Dokl Akad Sci USSR 44 pp 311).

Lauwerier H A (1986). One-dimensional iterative maps, in: Chaos, ed. Holden A V. 
(Manchester: Manchester Univ Press).

Levi M (1981). Qualitative analysis of the periodically forced relaxation oscillations. Mem 
Amer Maih Soc 32 pp 244.

Levinson N (1949). A second order differential equation with singular solutions. Ann Math 50 
pp 127.

Lichtenberg A J and Lieberman M A (1983). Regular and Chaotic Motion (New York: 
Springer-Verlag).

Lin J and Kahn P B (1982). Phase and amplitude instability in delay-diffusion population 
models. J Math Biol 13 pp 383.

Linkens D A (1976). Stability of entrainment conditions for a particular form of mutually 
coupled van der Pol oscillators. IEEE Trans Circuits Syst CAS-23 pp 113.

Linkens D A, Taylor I and Duthie H L (1976). Mathematical modelling of the colorectal 
myoelectrical activity in humans. Trans IEEE BME—23 pp 101.

Linkens D A and Kitney R I (1983). Integer-ratio entrainment in mutually-coupled nonlinear 
oscillators. J Theor Biol 100 pp

Mandelstam L and Papalexi N (1932). Uber Resonanzerscheinungen bei Frequenzteilung. Z 
Phys 73 pp 223.

Marek M and Stuchl I (1975). Synchronisation in two interacting oscillatory systems. Biophys 
Chem 4 pp 241.

Mees A I (1981). Dynamics of Feedback Systems (Chichester: Wiley).

Mees A I and Chua L 0  (1979). The Hopf bifurcation and its applications to nonlinear 
oscillations in circuits and systems. IEEE Trans Circuits Syst CAS-26 pp 235.

Nelson T S and Becker J C (1968). Simulation of the electrical and mechanical gradient of the 
small intestine. Amer J Physiol 214 pp 749.

Neu J C (1979a). Chemical waves and the diffusive coupling of limit cycle oscillators. SIAM I 
Appl Math 36 pp 509.

Neu J C (19796). Coupled chemical oscillators. SIAM J Appl Math 37 pp 307.



-  154 -

Neu J C (1980). Large populations of coupled chemical oscillators. SIAM J Appl Math 38 pp 
305.

Nicolis G and Prigogine I (1977). Self-Organisation in Nonequilibrium Systems — From 
Dissipative Structures to Order through Fluctuations (New York: Wiley).

Ogburn W F and Thomas D S (1922). Are inventions inevitable? A note on social evolution. 
Political Science Quarterly 37 pp 83.

Parker T S and Chua L O (1983). A computer-assisted study of forced relaxation oscillations. 
IEEE Trans Circuits Syst 6715-30 pp 518.

Parker T S and Chua L O (1987). Chaos: A tutorial for engineers. Proc IEEE 75 pp 982.

Parkinson G V and Smith J D (1964). The square prism as an aeroelastic nonlinear oscillator. 
Quart J Mech Appl Math 17 pp 225.

Parmentier R D (1972). Lumped multimode oscillations in the continuum approximation. 
IEEE Trans Circuit Theory CT-19 pp 142.

Provansal M, Mathis C and Boyer L (1987). Benard-von Karman instability : transient and 
forced regimes. J Fluid Mech 182 pp 1.

Rayleigh J W S (1894). The Theory of Sound (London: Macmillan).

Robertson-Dunn B and Linkens D A (1974). A mathematical model of the slow-wave electrical 
activity of the human small intestine. Med Biol Eng 12 pp 750.

Sakaguchi H and Kuramoto Y (1986). A soluble active rotator model showing phase transitions 
via mutual entrainment. Progr Theor Phys 76 pp 576.

Sarna S K, Daniel E E and Kingma Y J (1971). Simulation of slow-wave eletrical activity of 
small intestine. Amer J Physiol 221 pp 166.

Scott Ac (1970). Distributed multimode oscillations of one and two spatial dimensions. IEEE 
Trans Circuit Theory CT-17 pp 55.

Sirovich L and Newton P K (1987). Ginzburg-Landau equation: stability and bifurcations, in: 
Stability of Time-Dependent and Spatially Varying Flows, eds D L Dwoyer and M Y Hussaini 
(New York: Springer-Verlag).

Smale S (1967). Differentiable dynamical systems. Bull Amer Math Soc pp 747.

Stoker J J (1950). Nonlinear Vibrations (New York: Wiley).

Storti D W and Rand R H (1982). Dynamics of two strongly coupled van der Pol oscillators.
Int J Nonlin Mech 17 pp 143.

Stewarston K and Stuart J T (1971). A nonlinear instability theory for a wave system in plane 
Poiseuille flow. J Fluid Mech 48 pp 529.



-  155  -

Stuart J T (1960). On the nonlinear mechanics of wave disturbances in stable and unstable 
parallel flows. J Fluid Mech 9 pp 353.

Stuart J T and Di Prima R C (1978). The Eckhaus and Benjamin-Feir resonance mechanism. 
Proc Roy Soc A 362 pp 27.

Tang Y S, Mees A I and Chua L 0  (1983). Synchronisation and chaos. IEEE Trans Circuits 
Sysi CAS-30 pp 620.

Thompson J M T and Stewart H B (1986). Nonlinear Dynamics and Chaos. (Chichester: 
Wiley).

Tomita I< (1986). Periodically forced nonlinear oscillators, in: Chaos, ed. A V Holden 
(Manchester: Manchester University Press.

Tyson J J (1976). The Belousov-Zhabotinskii Reaction. Lecture Notes in Biomathematics Vol 
10, ed. Levin S (Berlin: Springer-Verlag).

van der Pol B (1922). An oscillation hysteresis in a triode generator with two degrees of 
freedom. Phil Mag 43 pp 700.

van der Pol B and van der Mark J (1927). Frequency demultiplication. Nature 120 pp 363.

van der Pol B and van der Mark J (1928).The heart beat considered as a relaxation oscillation, 
and an electrical model of the heart. Phil Mag (7th ser) 6 pp 763.

Wiener N (1958). Nonlinear Problems in Random Theory. (New York: Wiley).

Winfree A T (1967). Biological rythms and the behaviour of populations of coupled oscillators. 
J Theoret Biol 16 pp 15.

Winfree A T (1972). Spiral waves of chemical activity. Science 175 pp 634.

Winfree A T (1980). The Geometry of Biological Time (New York: Springer-Verlag).

Wolf A (1986). Quantifying chaos with Lyapunov exponents, in: Chaos, ed. A V Holden 
(Manchester: Manchester Univ Press).

Zeeman E C (1972). Differential equations for the heartbeat and nerve impulse, in: Towards a 
Theoretical Biology 4 ed. C H Waddington (Chicago: Aldine).



-  156 -

CHAPTER V

CO-OPERATIVE DYNAMICS OF A COUPLED-OSCILLATOR SYSTEM AND THE

FORCED FREE SHEAR LAYER

Summary

A phenomenological model of nonlinear mode competition between instability waves in 

the forced free shear layer is proposed. The model comprises mutually interacting nonlinear 

oscillators with distribution in intrinsic frequencies and exhibits ‘locking-on’ behaviour, 

reduction in broadband fluctuations under forcing and induced subharmonic oscillations.

The nonlinear oscillator concept is motivated in § 1 and the functionally composite 

oscillator model is introduced, discussed and compared to the free shear layer, in the remainder 

of this chapter.

1. Introduction

Brief mention was made in chapter IV of the modelling of (forced) cylinder wake flows 

by nonlinear oscillators. Although not rigorously justifiable on the basis of fluid dynamic 

principles, the nonlinear oscillator concept is certainly supported by linear flow stability 

considerations and experimental evidence. Wake flows contain regions of absolute instability, 

making these flows relatively insensitive to disturbances (Huerre and Monkewitz 1985). 

Importantly, absolute instability supports the view that the cylinder wake can be treated as a 

Hopf bifurcated flow (Provansal et al 1987, Chomaz et al 1988) with flow oscillations building 

up temporally. Furthermore, the flow velocity fluctuations are characterised by a fairly discrete 

spectral component. This suggests that the pertinent dynamics may be sufficiently described by 

single-degree-of-freedom oscillators.

In contrast, free shear layers behave significantly differently. As evidenced by the 

extreme sensitivity to low-level forcing, these flows are typically convectively unstable.1 Flow 

instabilities therefore cannot build up temporally, but grow spatially. In addition, velocity 

fluctuations are spread over a broad band of frequencies. The free shear layer in its early stages 

of development may therefore be regarded as a narrowband amplifier of upstream low-level 

noise (Kibens 1980).

1There are exceptions. If the velocity ratio R = A U / 2 U  of a mixing layer (c /  Ch II § 3.1) is 
greater than Rc=-1.315 instabilities develop temporally. Jets become absolutely unstable if 
sufficiently hot.
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Nonetheless, observations in forced free shear layers have repeatedly been linked to 

synchronisation phenomena of self-sustained oscillations. As reported by Oster and Wygnanski 

(1982), “with increasing amplitude of the surging one may note a marked increase in energy at 

the forcing frequency and a relative reduction at high frequencies, so that the integral of all 

spectral components of u remains approximately constant’. The suppression of broadband 

fluctuations in the free shear layer under forcing is referred to as “phase locking” (Kibens ibid) 

or “locking on” (Acton 1980, Crighton 1981) and has been associated with self-sustained 

oscillations in a free shear layer impinging on an edge (Rockwell and Naudascher 1979). Forced 

mixing layer phenomena (Ho and Huang 1982) have been likened to frequency locking in 

nonlinear oscillators (Aref 1983). The observations made by Oster and Wygnanski (ibid) were 

identified recently as a form of asynchronous quenching, with the proviso that multiple-degree- 

of-freedom oscillators be considered (Staubli 1985).

Furthermore, the flow organisation in the presence of forcing has been hypothesised to 

reflect latent order or structure (Crow and Champagne 1971) or, in the words of Kibens (ibid), 

“an underlying degree of organisation intensified by the phase locking of the excitation 

process”.

It is proposed here to combine the ‘phase locking’ and ‘latent order’ concepts in a 

phenomenological model of the forced free shear layer that comprises a population of uniformly 

interacting oscillators with intrinsic frequency distribution. On the classical view of 

hydrodynamic stability theory that the unsteady mixing layer is conceptualised as the 

superposition of (nonlinearly) interacting instability waves that propagate in the downstream 

direction, the assembly of interacting oscillators is identified with a collection of single­

frequency instability waves. The oscillator population is therefore not primarily associated with 

a spatially distributed system. Only insofar as characteristic frequencies of the free shear layer 

change with downstream distance, do spatial concepts enter into the model.

The proposed phenomenological model is largely qualitative in nature, but a 

quantitative formulation is introduced here as well to explicate certain characteristic properties.

2. The Basic Coupled Oscillator Model

Consider a population of N relaxation oscillators with essentially quadratic 

nonlinearities and a uniform distribution of intrinsic frequencies over some interval. Let the 

oscillators interact uniformly and assume the mutual coupling to be attractive. Furthermore, 

forcing is incorporated in the form of an external field that uniformly acts on the population.

Such models were studied in embryonic form by Ohsuga et al (1985) who considered a
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two-oscillator system with external forcing, and more recently by Sakaguchi (1988) for large 

numbers of interacting oscillators. Models with external fields are extensions of the earlier 

discussed phase transition models (c/. Ch IV § 3.1.2.1) and additional properties include the 

competing influences of the external field and the oscillator mean field.

2.1 Latent Order and Self-Synchronisation

In the absence of an external field, the well known threshold behaviour is observed. For 

subcritical coupling strength the oscillators exhibit fluctuations in instantaneous frequencies 

but are effectively independent with regard to time averaged behaviour i.e. no frequency 

pulling is observed. Above the threshold of global synchronisation well defined phase 

relationships exist among the oscillators. Now, it will be recalled that the complex order 

parameter cr, defined as the sum over oscillator representative phasors exp0t-, is a measure of 

the self-organisation of the population. If the physically meaningful quantity Re{a] which 

represents the sum over oscillator ‘outputs’ cos^., is measured instead, what is observed 

spectrally is a threshold transition from broadband fluctuations to a single discrete frequency 

component whereby the total spectral power remains approximately constant.

To adopt the forced free shear layer viewpoint for a moment, the oscillator population 

possesses a latent degree of order or structure which is artificially intensified by increasing the 

mutual interaction. Importantly, latent order may also be intensified by an external field. This 

property is discussed below.

2.2 Locking On and Forced Synchronisation

The control of autonomous periodic activity by external stimuli is — not surprisingly 

— well known in biological systems. Myocardial cells with autonomous rhythms are entrained 

by the electrical pulse of the pacemaker (Yamaguchi ei al 1980). Evoked EEG potentials are 

thought to be generated by stimulated populations of auto-rythmic neurones (Wiener 1958). 

Oshuga et al (1985) introduced the term holonic system, to describe the two hierarchical levels 

of self-synchronisation and forced synchronisation. In their two-oscillator model, both co­

operative and competitive effects of the external forcing field were observed. When the two 

oscillators were not mutually entrained, an external field of frequency close to the frequency of 

mutual entrainment produced synchronisation at low forcing amplitudes. When, on the other 

hand, the two oscillators were mutually entrained, considerably larger amplitudes were required 

to synchronise the oscillators with the external forcing.

These ideas were generalised to large numbers of interacting oscillators by Sakaguchi
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(1988) who studied a simple phase description model analytically as well as numerically. For a 

fixed intrinsic frequency distribution and subcritical coupling strength, an increasing number of 

oscillators became entrained to the external field as the forcing amplitude was increased. 

Importantly, the external field strength required to achieve forced synchronisation in the 

presence of mutual (subcritical) coupling, could be significantly lower than without mutual 

coupling. This applied in particular to cases where the forcing frequency and the frequency of 

global self-synchronisation were not too far apart and self- and forced synchronisation co­

operated.

2.3 Numerical Results

Numerical results for forced entrainment of a population of N oscillators with intrinsic 

frequency distribution have been obtained for the following coupled circle-map lattice:

0,-(«+!) =  0,-(n) + w{ +  e Y  T{0;(ft),0,(ft)} *=1, .... wi+l < (5.1)
j

This discrete-time version of the phase description of a system of weakly coupled nonlinear 

oscillators is increasingly being adopted as a convenient means of studying large numbers of 

oscillators with long-range interactions (Daido 1986, Sakaguchi and Kuramoto 1986, Daido 

1987). Note that for disturbances to a sine circle map of order 1/27T or larger, the response is 

potentially chaotic (Ch IV § 2.4). Similar results were obtained for coupled circle map lattices 

(Kaneko 1986).

In the basic coupled oscillator model, the coupling function T is assumed to have the 

form r= sin (0 .—0J-), but a more complicated variant will be employed in § 3. For 

trigonometric coupling functions the summation over all coupling terms in equation (5.1) is 

greatly simplified as it becomes independent of oscillator index i :

0.(n+l) =  <T(n) -f +  e [ (Ts cos9i — crc sin0. ]

(5.2)

aa = Y  sin0j — Y  cosdj
j  j

Results for a population of iV=100 uniformly coupled oscillators under external forcing are 

shown in figure 5.1. The coupling is subcritical and the displayed waveform (figure 5.1a) is a 

weighted average of individual oscillator outputs cos0t-, modelling a spatial-average type 

measurement process with emphasis on a narrow band of frequencies. This implies a scenario



1 6 0

Figure 5.1 Forced synchronisation in the basic coupled-oscillator model (7V= 100; £ [1.0,0.1],

(uniform, non-random distribution); e =  0.005 (sub-threshold); ŵ  =  0.45; ĉ  =  0.0, 0.03, 0.06).

(a) Weighted oscillator Field £  tw-cosQi . (b) Corresponding averaged power spectrum estimate.
i
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where intrinsic oscillator frequencies are associated with spatial coordinates, as suggested with 

reference to the free shear layer (c/§ 4.2). Figure 5.16 shows the corresponding power spectral 

estimate and the concentration of energy at the forcing frequency is clearly visible.

Not surprisingly, the depression in the immediate neighbourhood of the forcing 

frequency is very similar to the characteristic sharp population drop in the number density 

near the frequency of synchronisation (Kuramoto 1984, Sakaguchi 1988). This reflects the 

effective spectral range of forced synchronisation.

3. The Extended Coupled Oscillator Model

In this section the importance of higher- and subharmonic frequency entrainment is 

stressed. As outlined in § 2 the oscillator nonlinearity is assumed quadratic, emphasising the 

existence of regions of even integer ratio of entrainment. The following form of coupling is 

assumed to represent these additional features :

( J2 ak sm(0.(n)-k d^n)) j  < i
r{0;.(n),0t.(n)} =  \ * *=1,2,4,... (5.3)

l £  a* sin(k 9j(n) — d{{n)) j  >  i
k

Equation (5.3) is an extension of the multi-frequency concept introduced in Ch IV § 2.2.1 and 

allows for mutual coupling at integer frequency ratios. The weights ak determine the respective 

size of harmonic and super-/subharmonic catchment regions of entrainment, and the particular 

choice of k reflects the quadratic nonlinearity property of the oscillators. Assumptions regarding 

physically meaningful types of super-/subharmonic entrainment between oscillators of different 

frequencies and the requirement for mutually consistent phase combinations — *th-harmonic 

(l/*th-harmonic) coupling from oscillator j  to i (i to j) — are expressed in the anisotropic form 

of coupling.

A cautionary note is necessary at this point. Formulation (5.3) clearly does not 

describe integer-ratio synchronisation of mutually coupled relaxation oscillators (e.g. Linkens 

and Kitney 1983). As the two mechanisms of super- and subharmonic frequency entrainment in 

relaxation oscillators are fundamentally different, integer-ratio entrainment is strongly 

dependent on the type of coupling and is typically observed for a narrow range of parameters 

only. Contrast this with the multi-harmonic coupling of the extended model which suggests 

that the physical pendant of equation (5.3) involves nonlinear interaction between the 

oscillators. After all, super- and subharmonics of a given fundamental frequency are generatei 

by the coupling mechanism (5.3). This type of mutual coupling must consequently be regarded
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as a greatly simplified form of a frequency demultiplication or subharmonic generation 

mechanism. This approach will find application again in chapter VI in the context of 

subharmonic waves.

3.1 Latent Order and Integer-Ratio Self-Synchronisation

Extrapolating from self-synchronisation in harmonically coupled oscillators, similar 

behaviour is expected in the case of combined harmonic and super-/subharmonic coupling. In 

fact, if the intrinsic frequencies span several octaves, global synchronisation implies the 

formation of locally synchronised oscillator clusters, with the cluster frequencies interrelated by 

integer ratios 2,4 etc. Obviously, the self-synchronisation process is not as distinct as for 

harmonic coupling. ’Spurious’ super- and subharmonics — forcing terms at those frequencies 

other than the entrained oscillator frequency — are a source of noise interfering with the 

synchronisation process. This phenomenon was investigated by Sakaguchi (1988). He noted 

that self-synchronisation in a population of oscillators with external independent random noise 

does not change qualitatively with respect to phase transitions. Macroscopic oscillations emerge 

beyond the critical coupling strength, but there are no oscillators perfectly entrained to it.

Equation (5.1) with the generalised coupling function (5.2) has been solved numerically 

and results are presented in figure 5.2. The number of oscillators is N— 20 and the intrinsic 

frequencies span an interval somewhat larger than two octaves2. Consequently, only three 

entrainment regions are considered (^ = 1 , k= 1,2 and 4). Referring to the figure, the intrinsic 

oscillator frequencies (solid line) are ordered on the abscissa to form a linear frequency 

gradient. For subcritical coupling strength the averaged oscillator frequencies, or winding 

numbers (Ch IV § 2.4),

uj- = lim
* m —► oo

6(n-\-m) — 9(n) 
m—n (5.4)

lie close to their intrinsic values (broken line). Slightly above the critical coupling, three 

clusters have emerged with frequency ratios 2 (or |) . A few oscillators in the transition region 

between the frequency plateaus are not entrained at either cluster frequency but come to lie in 

between. If the coupling is well above the critical value, all oscillators will form part of the 

clusters.
2

The number of oscillators may seem rather small. However, as validated by test runs for 
yv=100, no qualitatively new behaviour is observed for large numbers of oscillators. Secondly, the 
computational load is considerably larger for model (equation 5.3). Note that the simplifications of 
equation (5.2) do not apply here.
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Figure 5.2 Self-synchronisation in the extended coupled-oscillator model (N=20, w|. € 

[0.3,0.05]). The intrinsic frequency distribution is shown by the solid line. The effect of 

subcritical (c =  0.004) and supercritical (e =  0.005) coupling strength on the average oscillator 

frequencies is illustrated by the dashed lines.

Figure 5.3 Response of the extended oscillator model to an external field (fundamental u>j and 

higher harmonics 2Uj, 4oy and 8u>j; identical forcing strengths), at different forcing frequencies 

(W=20, w{ 6 [0.3,0.05], e=0.004; cases 1 -7 : (1) u>/ = 0.325, (2) 0.275, (3) 0.225, (4) 0.175, 

(5) 0.125, (6) 0.075, (7) 0.025; ĉ  =  0.06). The different modes of forced synchronisation are: 

mode I (u[ = ujj): (1), (2) and (3); mode II (UFl = 2uj): (4) and (5); mode IV = (6);

mode VIII (<Jl=8uj): (7).
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Again, the frequency plateau formation above some critical coupling strength may be 

interpreted as an underlying degree of organisation in the oscillator population. And as before, 

this organisation is raised above the critical value, as it were, by the co-operative effect of an 

external field.

3.2 Locking On and Integer-Ratio Forced Synchronisation

The external forcing field is assumed to be a general periodic function of fundamental 

period 2tt/ uj and forcing strength €j :

0{(n+l) =  0{(n) + +  e ^  r{^.(n), 0,-(n)} + ^  bk sin(* “j n -O ^n )) ; (5.5)

’ * *=1,2,4,...

The weights bk determine the relative amplitude of higher harmonics of the forcing function. 

The synchronisation behaviour of the extended model under forcing is obviously much richer 

than that of the basic model. Different harmonics of the external field will entrain different 

oscillators of the population and plateau boundaries will move with forcing frequency. To gain 

some insight into the mechanism of forced synchronisation, equation (5.5) was solved for a 

number of values of Uj and €j. Specifically, in one set of runs the forcing frequency was varied 

over the range of intrinsic oscillator frequencies, with €j as paramter. In a second run the field 

strength was varied, with Uj as independent paramter. The results of the first set of 

experiments are summarised in figure 5.3. The strength of the mutual coupling e is identical to 

the value in figure 5.2 for subcritical coupling. Referring to figure 5.3, the response frequency 

graphs labelled 1 through 7 may be classified according to the ratio of the response frequency 

at the high frequency end to the forcing frequency. Cases (1), (2) and (3) comprise mode I 

synchronisation. Here the high frequency end is entrained by the fundamental forcing frequency 

and the corresponding ratio is one. Furthermore, in the low-frequency region a synchronised 

plateau at half the forcing frequency is observed. As decreases, the response switches 

discontinuously from mode I to mode II or second-harmonic entrainment, as exemplified by 

cases (4) and (5). Interestingly, a stable intermediate plateau of frequency ratio 4/3 exists in 

case (4), connecting the second-harmonic and the harmonic plateau. For forcing frequencies in 

the bottom range of intrinsic frequencies, mode IV (case (6)) and even mode VIII (case (7)), 

entrainment are observed. Note that the frequency-halving positions for a particular mode 

move to the right with decreasing forcing frequency.

In the second set of experiments was varied, keeping u>j fixed at different values
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(mode I, mode II and mode IV). Figure 5.4a shows results for mode I synchronisation and 

variations of the field strength by a factor of three. As €j is increased the fundamental plateau 

grows in size displacing the half-harmonic plateau. In contrast, mode II (figure 5.46) and mode 

IV (figure 5.4c) synchronisation are much less sensitive to changes in forcing field strength. 

The transition regions between the frequency plateaus change by one, or at most two, oscillator 

positions.

Finally, in figure 5.5 the ‘spatio-temporal’ dynamics of the oscillator population are 

visualised for mode I synchronisation. Traces of the oscillator outputs cos0. are plotted at 

consecutive times, vertically displaced3. Without external field, the overall appearance is rather 

irregular and little structure is discernible (_figure 5.5a). Occasionally several ‘fronts’ merge and 

travel in ‘downstream’ direction. This picture changes dramatically in the presence of an 

external field (figure 5.56). Very regular structures are observed that undergo a pairing process 

at position 8. This process is completed around position 12 or 13 and near the low-frequency 

end another pairing process sets in. Thus, although the frequency plateau diagrams (figure 5.3, 

5.4) suggest an abrupt, highly localised frequency-halving, the merging process effectively takes 

place over some non-zero distance.

Important aspects of the above findings are discussed in the next two sections.

3.2.1 Induced Subharmonic Synchronisation

As was briefly referred to when introducing mode I entrainment, clusters or plateaus of 

oscillators entrained at half the fundamental forcing* frequency merit closer inspection because 

they are produced not by the external field. Instead, an induction mechanism is operative. By 

virtue of the coupling (equation 5.3), the oscillator cluster entrained by the fundamental 

forcing frequency generates an organised field of frequency one half the fundamental. This in 

turn acts on oscillators whose intrinsic frequencies are too low for synchronisation at the 

fundamental, but more susceptible to the suhbarmonic. It is these induced frequency plateaus 

that are observed in figure 5.56. As can be seen from the figure and also from figure 5.4 the 

induction process is not confined to the first subharmonic. The induced plateau at half the 

fundamental forcing frequency acts itself on oscillators of lower intrinsic frequency, inducing a 

synchronised cluster at a quarter of the fundamental forcing frequency.

3
A few explanatory words are necessary at this point regarding the term ‘spatio-temporal1. 

The labelling of the abscissa of f i g u r e  5.5 as (discrete) ‘space' is admittedly somewhat premature 
although the correlation between the streamwise coordinate of the free shear layer and the oscillator 
intrinsic frequencies was briefly alluded to in § 1. Further details of this analogy are deferred to § 
4.2.1.1.



Figure 5.4 Susceptibility of plateau formation to variations in forcing strength (Af=20, 

e =0.004; e/ =0.03 (••••), 0.05 (— ), 0.07 (- —), 0.09 (-••-)• (a) Mode I forcing, w/ =0.275. (6) 

Mode II forcing, u»y=0.125. (c) Mode IV forcing, =  0.075.
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Figure 5.5 Visualisation of the ‘spatio-temporal’ dynamics of the extended oscillator model 

(c =  0.004) for mode I forcing {u)j =  0.275). Traces of the system output cosO^n), i= 1,..,20 are 

shown at consecutive times n. (a) e =  0. (b) €̂  =  0.03).
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In summary, the organisation of oscillators in the high frequency region induces 

organisation throughout the population. Obviously, this regularisation process can be initiated 

in any portion of the population because the oscillator interaction in the model is isotropic and 

uniform. The importance of this mechanism for the understanding of the dependence of the 

plateau frequency, size and position on u)j and t j  is discussed in the following section.

3.2.2 Resonance Competition

The main findings of the numerical study of the influence of c a n d  €j on plateau 

formation in the extended coupled-oscillator model are : (1) the discontinuous switching of the 

response frequency; (2) the sensitivity of the harmonic plateau size on field strength under 

mode I forcing; (3) conversely, the relative insensitivity to the field strength under higher mode 

forcing. These observations are explained here on the basis of single-oscillator entrainment and 

the induced subharmonic synchronisation concept.

The discontinuous switching of the response frequency is not peculiar to our long-range 

coupled oscillator model. Any nonlinear system near a supercritical Hopf bifurcation with 

super-/subharmonic resonance properties exhibits frequency jumps as the excitation frequency 

is varied continuously whilst keeping the excitation amplitude fixed. Examples of this are given 

in chapter IV for the multi-frequency excited A — u> oscillator (Ch IV figure 4.6). For large 

enough forcing the transition between different response modes is abrupt. Compare the 

entrainment diagram of the multi-frequency excited A — u> oscillator to single-frequency 

excitation (Ch IV figure 4.5). In the latter system the entrained region grows with increasing 

forcing whereas in the former system entrainment boundaries are much less variable as 

neighbouring resonance regions compete for the dominant system response. Note that in 

example (Ch IV figure 4.6) the amplitudes of all harmonics are identical and changes in the 

balance of resonance competition are readily effected by unequal amplitudes.

The differences between mode I and higher mode synchronisation are readily explained 

now. The absence of resonance competition in mode I forcing makes the response sensitive to 

variations in forcing field strength. With increasing tp  more oscillators are entrained by the 

external field, and the induced subharmonic clusters move to the low frequency region 

correspondingly. In contrast, resonance competition is effective in higher mode synchronisation, 

and boundaries between clusters, entrained by the fundamental and higher harmonics of the 

external field, are relatively insensitive to changes in field strength. The identification of 

induced subharmonic plateaus or clusters is therefore important in explaining sensitivity 

brought about by resonance competition.
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3.2.3 Miscellaneous Aspects of Forced Synchronisation

Two further aspects that are not as readily classified as the previous two, deserve 

mention here. First, the existence of a 4/3 plateau in one of the mode II forcing experiments. 

This kind of super-harmonic synchronisation was also observed by Sakaguchi (1988), and 

appears to be peculiar to populations of one-dimensional oscillators. Sakaguchi offered no 

detailed explanation for this phenomenon but noted that the self- and external field interact to 

produce a stable response at commensurate frequencies. Secondly, the consistent observation 

that the frequency-halving positions in the oscillator model under subharmonic forcing move to 

the low-frequency region when the forcing frequency is decreased. Mention is made of this 

phenomenon because the same observation will be made again in the context of the forced free 

shear layer. As in § 3.2.2, this observation is explained by resorting to the resonance 

mechanism. The intrinsic frequencies form a negative frequency gradient and therefore the 

boundary regions of entrainment move to the lower frequency region when the forcing 

frequency is decreased.

4. A Phenomenological Model

It is the purpose of this section to relate the coupled oscillator model to the free shear 

layer as outlined in § 1. To this end the pertinent shear layer dynamics are reviewed below, 

unless discussed already in chapter II.

4.1 Some Free Shear Layer Phenomenology

There is considerable experimental evidence of forced flow regularisation in free shear 

layers. Also, detailed studies have shown the suppression of broadband velocity fluctuations in 

the presence of forcing in both plane mixing layers and axisymmetric jets. Induced 

subharmonics are most clearly observed in axisymmetric jets but the mechanism has also been 

utilised to study subharmonic evolution in the plane mixing layer. Furthermore, a systematic 

study exists on higher mode forcing in the mixing layer that provides much qualitative 

information. Representative studies for each of these aspects of the forced free shear layer are 

discussed below.

4.1.1 Suppression of Broadband Fluctuations

As mentioned above, increased regularity is observed in both mixing layers and 

axisymmetric jets. The physical mechanism underlying this flow organisation is the same for 

both flow types yet the interest in the latter flow is rather more practical in nature. The
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suppression of broadband fluctuations in jet flows is closely related to the technical problem of 

jet engine exhaust noise suppression. Studies of the forced mixing layer, on the other hand, are 

guided by a more fundamental interest in flow instability and transition. The view taken there 

is that by exerting some control over the flow by means of forcing, investigations of flow 

instability and transition are greatly facilitated, whilst at the same time preserving the basic 

flow structure.

Miksad (1972) gave results of hot-wire measurements of streamwise velocity 

fluctuations in the mixing layer between two parallel air streams (velocity ratio 72=0.72, 

72 =  0.69), excited by sound {figure 5.6). He commented on the much more organised 

appearance of the disturbance field in terms of discrete frequency components. Unfortunately, 

his results for the unforced and forced mixing layer are comparable on a purely qualitative 

level only as the spectral energy measurements are rendered quantitatively meaningless by 

“arbitrary units” scaling.

The more recent study by Oster and Wygnanski (1982) was quoted in § 1 to support 

the nonlinear-oscillator approach. As in Miksad’s experiments, hot-wire anemometry was used 

to investigate the flow evolution of the forced mixing layer, formed by the merging of two 

parallel air streams (velocity ratio 72=0.25). Forcing was introduced at the initiation of the 

mixing layer by a thin flap mounted at the trailing edge of the splitter plate. Energy spectra of 

streamwise velocity fluctuations at some downstream position in the mixing layer are shown in 

figure 5.7 for various forcing amplitudes. These measurements do indeed support the view that 

energy is exchanged between the natural instability and the fundamental forcing frequency. 

This, and the large difference between forcing frequency, and the frequency of the natural 

instability explain Staubli’s (1985) asynchronous quenching hypothesis.

A particularly interesting study is that of Crow and Champagne (1971) because it 

relates rather more to the experimental findings of this study. Crow and Champagne 

considered an air jet at 72e=105 forced a t 52=0.30 near the natural frequency of vortex 

shedding. The jet boundary layer was tripped to destroy short interfacial waves immediately 

downstream of the nozzle and to achieve a measure of jet exit speed independence. The 

acoustic forcing was approximately 2% of the mean exit speed. The measurements (figure 5.8), 

clearly show the reduction in broadband levels of axial velocity fluctuation.

Yet another, again more recent study of the forced free shear layer was by Kibens 

(1980). Specifically interested in jet engine exhaust noise he concentrated on sound pressure 

measurements in the near- and far field of a jet at 72e=50,000. The forcing was introduced
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Figure 5.6 Energy spectra of streamwise flow velocity fluctuations in a plane mixing layer at

consecutive downstream positions x (after Miksad 1972). (a) Natural instability. (6) Sinusoidal 

sound excitation at /=  29.5 Hz.
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Figure 5.7 Energy spectra of streamwise velocity fluctuations in a forced mixing layer (after 

Oster and Wygnanski 1982). Natural broadband fluctuations are observed in the interval 

400—600 Hz. The frequency component at 230 Hz is thought to be a subharmonic of the 

vortex shedding. Excitation is by means of a  thin flap at the trailing edge of the splitter plate 

at /= 6 0 Hz. The forcing amplitude is indicated by the amplitude of oscillation A of the flap.
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Figure 5.8 Flow velocity spectra in a forced axisymmetric jet (iJe=1.06 x 105) at downstream 

position xf D= 4 and radial position (a) r /D = 0, (6) r/D = 0.5, (c) r/D=  0.75 (after Crow and 

Champagne 1971). Also given are the spectra of the unforced jet. The excitation frequency is 

/=185 Hz (5^= 0 .30) and the forcing amplitude is 2% of the mean jet exit speed.
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locally through the nozzle exit as an azimuthally coherent perturbation and the excitation level 

was below the measurement noise level. Unlike Crow and Champagne’s experiments, the jet 

boundary layer was not tripped. Instead the forcing was near the shear layer mode instability 

(52 =  3.54, based on jet diameter) and interaction with the jet column mode instability was 

observed. Centreline hot-wire measurements showed that with excitation as much as 90% of 

the total turbulent energy was contained in coherent structures as opposed to about 60% 

without excitation. Nearfield sound pressure measurements clearly showed the suppression of 

noise levels (figure 5.9a,6). A further aspect of this study is discussed below.

4.1.2 Induced Subharmonic Regularisation

Kibens observed that the shear layer constitutes a narrow band amplifier. When the 

departure of excitation frequency f e from the shear layer instability f 3 was more than 10%, the 

flow essentially reverted to unforced conditions. However, when f e was near the shear layer 

instability, flow regulation could extend well into the region of the jet column instability. 

Downstream of the region of coherent structures phase locked by the fundamental a vortex 

pairing cascade f e/ 2, / c/4 and / c/8 was observed (figure 5.9c). The vortex pairing was most 

pronounced when the cascade frequency f tf  8 (52= 0.44) was near the jet column instability /■. 

This implies that the interaction between the two jet instabilites is strongest if f .  ~  / , /8, a 

condition which is controlled by the thickness of the initial jet boundary layer. When these 

conditions were not properly met the coherent structures decayed soon after the first or at most 

second pairing.

Flow regularisation of the first vortex pairing was also reported by Acton (1980) in a 

numerical modelling of an axisymmetric jet. She considered the inviscid limit Re=oo, arguing 

that large eddy motion is essentially inviscid. The harmonic excitation was applied in the 

Strouhal number range 52=0.1 — 2.0 and the excitation level varied from 0.5% to 10% of the 

mean jet exit speed. Apart from the facility with which system parameters and boundary 

conditions are changed, the numerical modelling has the added advantage that complete 

spatio-temporal descriptions of, amongst other quantities, the velocity fluctuations are 

obtained which allows for comprehensive visualisation4 (figure 5.10). This figure shows the 

temporal evolution of radial velocity traces over the first few diameters, taken in the jet shear 

layer. Results are given for both the unforced and the forced (52=1.5, 10% forcing amplitude) 

jet. The choice of the recording position and the radial velocity component ensures a 

visualisation most representative of the vortical structures in the jet. Referring to figure 5.10a, 

the formation and evolution of eddies is fairly irregular, in particular merging locations are not
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Figure 5.9 Sound pressure spectrum of an acoustically excited axisymmetric jet (Re=5 x 104) 

at downstream position (a) x/D—1.0, radial position r/D=  1.0 and (6) x/D = 50, r/D= 50 

(after Kibens 1980). The spectrum of the non-excited jet is given by the broken line. The 

excitation frequency is Sip =  3.77. The excitation level is below the measurement noise level, 

(c) Evolution of vortex passage frequency in the excited jet. Frequency measurements are taken 

in the jet shear layer (o) and at the jet centre line (□). The solid line denotes the predictions 

by the feedback equation (Laufer and Monkewitz 1980).
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Figure 5.10 (a) The axial distribution of radial velocity at equal time intervals in an unforced

axisymmetric jet (after Acton 1980). (b) Flow excitation at SiD= 1.5 and excitation level

A=2%.
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well defined. When the jet is forced by planar surging at a frequency near the initial eddy 

formation frequency (shear layer mode), this process is greatly regularised (figure 5.106). 

Eddies form very regularly and the first pairing, indicated by the merging of crests, becomes 

highly localised. The organised structure is maintained somewhat beyond the pairing point but 

further downstream control over the flow is lost.

4.1.3 Subharmonic Forcing

The study by Ho and Huang (1982) provides a systematic account of the forced mixing 

layer response to variations in forcing frequency and amplitude. In their experiment the mixing 

layer was formed by the merging of two parallel water streams of velocities U1 = 5.0 cm s-1 and 

U2 = 9.5 cm s"1 (velocity ratio 12=0.31). Forcing was introduced by perturbing the flow rates of 

both streams by means of butterfly valves in the supply section. A hot-film anemometer placed 

in the mixing layer provided the information for the spread of the mixing layer and the vortex 

passage frequency.

Findings of this study that are relevant to our coupled oscillator model are summarised 

in figures 5.11 a and 5.116. The second figure has been adapted from Ho and Huang (ibid) 

because the emphasis of their investigation was placed on the spreading rate of the forced 

mixing layer. To begin with, the response frequency of the forced mixing layer i.e. the 

frequency of vortex formation, switches discontinuously and with noticeable hysteresis between 

modes which are defined by the ratio of the response frequency to the forcing frequency (figure 

5.11a). As the mode diagram shows, except for mode I forcing the response frequency stays 

below f m which is the most probable frequency of vortex formation in the unforced mixing 

layer. With respect to this phenomenon, Ho and Huang (ibid) noted that, although no 

plausible explanation is available at present, the response frequencies are always dispersive, or 

at most equal to the most probable frequency.

Details of the spatial development of the vortex passage frequency in the forced mixing 

layer are given in figure 5.116. Without forcing, vortices are formed on average at / m =  5.06 Hz
4

On the other hand, the disadvantages of numerical modelling schemes potentially outweigh 
the advantages and are not dispensed with easily. Crucial points include the excessive computational 
load, let alone the computing costs, and the problems when large parameter spaces need to be 
scanned quickly to arrive at a qualitative understanding of a complex dynamical system. It is for 
these reasons that the study of interacting oscillator populations has often resorted to 'old- 
fashioned' electronic circuit implementation (Winfree, Linkens and co-workers). In fact, there is a 
certain paradigmatic dimension to the issue o f hardware vs. software implemenation. Robert Shaw 
(The dripping faucet as a model chaotic system. Aerial Press: Santa Cruz CA 1984) reported on 
repeatedly rejected grant applications for the investigation of his model chaotic system, a numerical 
modelling of which would have been prohibitively time- and cost consuming.
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and the vortex passage frequency is constant before merging. When the merging, which is not 

well defined spatially in the unforced mixing layer, begins the vortex passage frequency 

decreases linearly. In mode I forcing the vortex merging can be delayed considerably, but 

behind the merging point the flow essentially reverts to the unforced conditions. When the 

forcing frequency is lowered below some threshold value the response switches to mode II 

forcing. Now two frequency plateaus are observed and the first vortex merging process becomes 

highly localised5. The response frequency is twice the forcing frequency and the merging 

process is strictly one of pairing so that after the merging a plateau of constant vortex passage 

frequency at the forcing frequency exists. Within the mode II, if the forcing frequency is 

lowered the merging points are shifted downstream. No similarly detailed information was 

given on mode III forcing although it was noted that this usually involved the merging of two 

vortices first and the merging of the new vortex with a third one further downstream. Finally, 

the mode IV forced mixing layer is characterised by two localised pairings with three plateaus 

of constant vortex passage frequency.

So far the discussion has been about mixing layers under low forcing levels. At high 

levels of forcing (~  2% of the mean flow velocity), however, the forced mixing layer behaves 

entirely differently and a phenomenon called collective interaction is observed (Ho and Nosseir 

1981). Eddies initially are formed within a wide band near the most probable frequency f m and 

then undergo a collective merging process, bypassing the higher modes of the response 

frequency. This results in the formation of large scale coherent structures at the forcing 

frequency itself. The two phenomena associated with collective interaction are the high 

spreading rate and the large drop in the vortex passage frequency.

The general dependence of the merging locations in the forced mixing layer on 

variations in forcing amplitudes is not well documented. From the flow visualisation in Ho and 

Huang (ibid) it can be inferred that with increasing — low — levels of forcing, the merging 

locations tend to be moved upstream. However, as Ho and Huerre (1984) noted, adjustments in 

forcing level do not provide an efficient way to shift merging locations. An example of a jet, 

forced at f^= /m/2, is given where the forcing amplitude needs to be increased by a factor of 37 

(!) to shift merging locations upstream by one wavelength.

Localisation must be understood relative to the wavelength of the response frequency. The 
distance over which localised merging occurs typically spans one wavelength. This rule has guided in 
deriving the vortex passage frequency diagram (figure 5.116).
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Figure 5.11 (a) Shear layer response frequency vs. forcing frequency in a forced plane mixing 

layer (after Ho and Huang 1982). The natural vortex shedding frequency is / m =  5.06 Hz. The 

forcing level is about 0.1%. (b) The vortex passage frequency in the unforced ( —) mixing layer 

(adapted from Ho and Huang). Mode I forcing at 3.29 Hz ( —). Mode II forcing at 1.92 Hz and 

2.18 Hz (—). Mode IV forcing at 1.21 Hz (----).
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4.2 Enumerating Analogies

Having discussed properties and concepts of both the coupled oscillator model and the 

forced free shear layer, we are now in a position to substantiate and qualify the nonlinear 

oscillator analogy of the forced free shear layer.

4.2.1 The Basic Oscillator Model

Here we elaborate on the parallels between a collection of single-frequency instability 

waves and coupled nonlinear oscillators.

4.2.1.1 Without Forcing

In classic hydrodynamic stability theory, the downstream development of coherent 

structures is viewed as the continuing nonlinear mode competition, taking place in Fourier 

space between a finite number of waves. For example, the emergence of a subharmonic 

component at half the frequency of the fundamental wave is accounted for by considering the 

parametric-resonance form of interaction between a fundamental and subharmonic wave (Kelly 

1967).

It is now proposed to relate a population of linearly interacting nonlinear oscillators 

with uniform coupling, to nonlinearly competing instability waves in the free shear layer. The 

spatially distributed character enters into the coupled oscillator model through the downstream 

change of the free shear layer length scale. In the unforced mixing layer, the vortex merging 

process is random in time and space and the spreading rate of the mixing layer is linear. 

Equally, the average vortex passage frequency decreases linearly (cf figure 5.11). The 

relationship is qualitatively similar for the forced mixing layer. A global feedback model 

(Laufer and Monkewitz 1980) predicts the dominant frequency of the forced mixing layer to 

follow an inverse-distance rule /  oc 1/x. Translated to the coupled oscillator model, a 

distribution in intrinsic frequencies correlates with a streamwise spatial distribution. This, 

however, identifies the uniform coupling as a particular form of long range interaction. It will 

be recalled that uniform coupling is necessary if global as opposed to local synchronisation is to 

be observed in an oscillator population.

Returning to the global feedback model, long range interactions are considered an 

important aspect of free shear layer dynamics. Dimotakis and Brown (1976) argued that the 

free shear layer must be viewed globally because the 1/x decrease of induced velocity expected 

from the Biot-Savart law is exactly compensated by a corresponding linear increase in the 

circulation of vortices. Laufer and Monkewitz (ibid) observed that in a free jet the flaw 

oscillations near the nozzle exit were amplitude modulated by the large scale structures of the
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preferred mode of the jet at the end of the potential core. Finally, the study of Ho and Nosseir 

(1981) on an impinging jet suggested that a global feedback loop mechanism is operative, 

linking downstream conditions to the initial shear layer.

The analogy between the latent order concept of the free shear layer and phase 

transition in a coupled oscillator population has been described in detail (c/§ 2.1, § 3.1).

4.2.1.2 With External Field

The nonlinear oscillator analogy of the forced free shear layer has its root in the 

observation that mode competition between an artificially generated single-frequency wave and 

natural broadband background noise leads to the suppression of the broadband component and 

a very organised train of vortex structures. Needless to say, there is therefore close agreement 

between the experimental findings of this study (Ch III § 5) and the experiments described in §

4.1 on the one hand, and the behaviour of the coupled oscillator model in the presence of an 

external field, on the other hand. The external field represents those instability waves that are 

induced to grow and attain high amplitudes, thence interacting unidirectionally with the other 

waves.

It is worth recalling the parallels drawn by Rockwell and Naudascher (1979) between 

the free shear layer impinging on an edge and the forced free shear layer. In either flow the free 

shear layer contains a discrete frequency component which Ho and Huang (1982) considered an 

essential characteristic of self-sustained flow oscillations. In the forced free shear layer, flow 

regularisation is brought about by the high amplitude instability wave artificially generated by 

the forcing. In the former flow the mechanism responsible for the selection of a particular 

frequency is one of resonance of a feedback loop (c/. § 4.2.1.1). In this context Laufer (1981) 

noted that both the resonance of the impinging shear layer and the global feedback in the free 

shear layer are described by the same feedback equation.

The similarities between these two flows and self- and forced synchronisation in the 

basic oscillator model are intriguing. The feedback of pressure perturbations provided by an 

impingement edge may be thought of as intensifying the long-range coupling present in the free 

shear layer. This in turn results in global organisation. In the forced free shear layer, on the 

other hand, latent order is raised above the background noise level by the co-operative effects 

of the self-field and the external field.
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4.2.2 The Extended Oscillator Model

The distributed character of the coupled oscillator model i.e. its long range coupling, 

becomes particularly important for the extended version with combined harmonic and super- 

/sub-harmonic coupling. In the extended oscillator model, latent order and forced 

synchronisation involve interactions over several octaves of intrinsic frequency.

4.2.2.1 Without Forcing

In model (5.5), the formation of integer-ratio clusters of synchronised oscillators was 

seen to be the result of combined mutual harmonic and super-/sub-harmonic coupling, 

Adopting the viewpoint of the oscillator population as a spatially organised system again, a 

length scale of interaction of the order of the distance spanned by a cascade of frequency­

halving plateaus is necessary to ensure this kind of self-synchronisation or underlying 

organisation. This mechanism of ‘vortex pairing’ is certainly supported by Kibens’ (1980) 

experiment. Indeed, his findings suggest that long range interactions in the jet shear layer are 

of the order of several diameters connecting the two jet instability modes, the initial shear 

layer mode and the jet column mode at the end of the potential core. Importantly, the results 

are in close agreement with what is predicted by the global feedback model (figure 5.9c).

4.2.2.2 With External Field

Resonance competition and induced subharmonic regularity are the two mechanisms 

underlying the observations of the extended oscillator model with external field. Against the 

background of the forced free shear layer phenomena reported in § 4.1, these mechanisms can 

shed further light on the nonlinear oscillator analogy.

In the forced flow experiments of Miksad (1971), Kibens (1980) and Acton (1980), the 

shear layer response frequency as defined in (Ho and Huang 1982) was the same as the forcing 

frequency and downstream flow organisation involved induced subharmonic structures. The 

same mechanism, albeit less distinct, was operative in the mode I forced mixing layer (Ho and 

Huang ibid), and explains the relatively high sensitivity to forcing amplitude.

The comprehensive subharmonic forcing experiments by the same authors provide 

further clues regarding subharmonic induction and resonance competition. The collective 

interaction observed at high forcing levels suggests that the forcing is dominantly harmonic, 

causing entrainment of a large number of oscillators whose intrinsic frequencies are near the 

forcing frequency. The high frequency end, however, is unaffected and not discernibly 

organised. At low forcing levels, the type of forcing must be decided on the basis of the
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sensitivity of the free shear layer response to variations in forcing amplitude. For example, if 

the sensitivity of merging locations is taken to be fairly low then this may be explained by the 

competition between the fundamental forcing frequency and higher harmonics thereof6. If, on 

the other hand, merging locations tend to be susceptible to forcing levels then the higher 

harmonic response of the forced free shear layer may be the result of induced higher harmonics.

The overall picture, if somewhat tentative, is that a clear distinction must be made 

between externally imposed and internally generated spectral components. The importance of 

this distinction lies in its verification by susceptibility analysis.

The above discussion allows a substantiated and qualified interpretation of the 

particular interaction between the forcing field and the self-field (equation 5.5). The external 

field comprises spectral components at the fundamental forcing frequency and possibly higher 

harmonics, but not subharmonics, at least not of comparable amplitude. Instead, subharmonics 

are generated internally by the combined action of oscillators entrained by the forcing field. 

This is in close agreement with the generation of subharmonics in the free shear layer, as 

described by Miksad (1971), and summarised in a phenomenological model (Ho 1982). The 

external field may therefore be thought of as a collection of high-amplitude single-frequency 

instability waves at the fundamental forcing frequency and its higher harmonics. These 

synchronise instability waves in a wide band around the forcing frequency. It is worth restating 

that the subharmonic generation mechanism is independent of the external field action. What 

is important for subharmonic generation is the synchrony of oscillators at the fundamental, not 

the amplitude of instability waves at the forcing frequency.

5. Discussion

An equally appropriate heading for this section might have been “Enumerating 

Limitations” to emphasise shortcomings of the nonlinear oscillator analogy. Before identifying 

these limitations, let us briefly summarise the analogies.

The nonlinear mode competition between instability waves is compared here to the 

linear interaction between nonlinear oscillators7. Secondly, regarding the global feedback model 

of the free shear layer, Laufer (1981) remarked that free shear layer dynamics cannot be 

expressed in terms of a “local gradient diffusion model” but only by a long range force field.

6Again the problem with many forced flow experiments is that the spectral content of the 
forcing function is poorly documented. For instance, one can only speculate as to the 
monochromatic character of the excitation employed in the experiments of Ho and Huang. In our 
experiments where flow perturbations are introduced by periodically shutting a valve the forcing is 
rich in harmonics and the shear layer response is due to multi-harmonic excitation.
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This is of course the view taken in the oscillator model with uniform coupling. Thirdly, what is 

referred to as self-sustained flow oscillations in the impinging shear layer and locking on in the 

forced shear layer, has its analogy in self- and forced synchronisation of the oscillator 

population. Finally, the generation of subharmonics in the free shear layer has its counterpart 

in the subharmonic coupling mechanism of the extended oscillator model.

The major limitation of our phenomenological model is readily highlighted by 

comparison to nonlinear mode competition between instability waves. Based on temporal 

records of point velocity measurements, the oscillator model provides an Eulerian description of 

temporally evolving flow instabilities. In contrast, instability waves in the free shear layer are 

usually considered to be spatially developing. In this respect it should be recalled that, 

whatever spatial distribution is assigned to an oscillator population such as this model, the 

phase difference, conveying information on spatial organisation, will always be a contingent 

quantity. Thus, shear layer aspects relating to the spatial growth of instability waves or the 

transfer of energy between waves are unaccounted for. For instance, it is commonly accepted 

that there is a subharmonic feedback in a free jet (Laufer 1981). However, this does not explain 

how a subharmonic wave is amplified and how it extracts energy from a fundamental wave.

Returning to the significance of the phase difference in coupled oscillator systems, it is 

expected that an assembly of identical oscillators is more relevant to spatially developing 

waves. This naturally takes us to the Ginzburg-Landau equation which constitutes the simplest 

field of nonlinear oscillators. This equation is analysed in the following chapter in respect to its 

possible relevance to the free shear layer.

7Too strong an emphasis must not be placed on the difference between linear and nonlinear 
interaction. The two approaches are conceptually different and therefore comparable on a 
phenomenological level only. What is described as nonlinear interaction between waves is integral 
part of oscillator dynamics by definition.
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CHAPTER VO

EVOLUTION OF SUBHARMONICS IN A MODIFIED GINZBURG-LANDAU EQUATION 

Summary

The time dependent generalised Ginzburg-Landau equation with convective term 

describes certain open flow systems. A modified, spatially discrete form of this equation that 

allows for the inclusion of subharmonics of a driven fundamental wave structure is found to 

give rise to a subharmonic cascade, typically associated with free shear layer growth.

In § 1 and 2, the hydrodynamic context of the Ginzburg-Landau equation is 

established and typical open flow dynamics are discussed. The remainder of the chapter 

concerns the modified Ginzburg-Landau equation and its subharmonic cascade process.

1. Introduction

Debatable though the relevance of the Ginzburg-Landau equation to hydrodynamic 

stability may be — for instance, the cubic term |V’|2'0 was introduced on purely heuristic 

grounds, to account for weak nonlinearity — this equation has received considerable attention 

as a model open flow system. This includes steady and transient shear flows (Deissler 1987a, 

Deissler 19876, Landman 1987), such as boundary layer flows over a flat plate or plane 

Poiseuille flow, as well as wakes and inhomogeneous jets (Chomaz et al 1988). The two 

mechanisms that constitute the relevant open flow behaviour are absolute/convective 

instability and the Benjamin-Feir mechanism of side-band, or modulational, instability. For 

‘boundary layer’ and ‘Poiseuille’ flow, the side-band and convective instability combine to 

produce a spatial transition to turbulence via turbulent bursts. For ‘wake’ flows or 

‘inhomogeneous’ jets, the mechanism of interest is the absolute/convective instability, and the 

Ginzburg-Landau equation is considered linearly stable with respect to modulational 

disturbances. By introducing spatially varying system parameters, regions of absolute and 

convective instability are generated. Near the wake flow origin, the system behaves locally 

absolutely unstable and is thus relatively insensitive to disturbances. Further downstream, the 

character of the instability changes from locally absolute to locally convective instability.

In this chapter, with regard to separated shear flows, global convective instability will 

be assumed and, as for the wake or hot jet, stability to modulational disturbances. In addition, 

a form of subharmonic resonance will have to be incorporated to account for the wave pairing. 

This forms the theme of the present chapter. Below, the Ginzburg-Landau equation in the
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context of open flow systems is reviewed briefly.

2. The Ginzburg-Landau Equation as a Model Open Flow System

Let us recall that in hydrodynamic stability the generalised Ginzburg-Landau equation

= a ip 4- b ipxx — c \ip\2ip -  vGipx (6.1)

is a generic amplitude equation for fluid problems where a continuum of wavenumbers becomes 

unstable as the control parameter is increased above a finite threshold. The control parameter 

may be, for example, the Reynolds number, the Taylor number or the Rayleigh number. For 

plane Poiseuille flow the control parameter is related to parameter a by

ar oc Re — Rec . (6.2)

More specifically, the Ginzburg-Landau equation describes the development of weakly 

nonlinear flow disturbances in space as well as time near a Hopf bifurcation. Bifurcations are 

supercritical if cr > 0, and subcritical if cr <  0.

The first-order spatial-derivative term ipx in equation (6.1) is readily seen to be related 

to the type of reference frame in which the spatio-temporal evolution of ip is observed. If 

equation (6.1) is transformed to a reference frame moving at speed Vg this term vanishes and 

is thus identifed as a ‘mean flow’ generating convective term1.

Fluid systems that have been reduced to a simplified form of equation (6.1) without 

convective term include the Rayleigh-Benard convection (Segel 1969, Newell and Whitehead 

1969), Taylor-Couette flow (Kogelman and Di Prima 1970), plane Poiseuille flow (Stewartson 

and Stuart 1971) and wind-induced water waves (Blennerhassett 1980). Numerical studies of 

the simplified G-L equation have shown that it gives rise to instability, bifurcation, motion on 

low-dimensional tori and chaos (Stuart and Di Prima 1978, Moon, Huerre and Redekopp 1983, 

Nozaki and Bekki 1983, Bretherton and Spiegel 1983, Keefe 1985).

2.1 Convective Instability

Additional phenomena that are otherwise lost as mere transients can be observed in a 

stationary frame of reference and have been studied under conditions when equation (6.1) is

1Obviously, the convective term cannot be removed by a Galilean transformation when 
boundary conditions at fixed spatial positions are imposed.
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convectively unstable (Deissler 1985, Deissler 1987a). Given an initial perturbation 0(r,lo), 

convective instability in the Ginzburg-Landau equation is defined by

lim |i/>(r,i)| —* 0 and lim \ip(x+vr t,t)\ —► oo
t —► co t —>-oo u

(6.3)

That is, in a stationary frame of reference perturbations will decay whereas in a co-moving 

frame they will grow. Following Deissler (1985), convective instability in a system (with 

nonperiodic boundary conditions) is ascertained by first calculating the eigenvalues of the 

system with the given set of boundary conditions and by then calculating the system 

eigenvalues with periodic boundaries imposed instead. If the latter system is unstable and the 

original system is stable then the system under study is convectively unstable. The Ginzburg- 

Landau equation is convectively unstable if the following conditions are met :

ar > 0 and ar —
4|6P

<  0 (6.4)

which simply says that perturbations must be convected downstream faster than they would 

spread in the co-moving frame due to the absolute instability condition ar > 0 and the 

diffusion effects.

Under conditions of convective instability the G-L equation models an open flow 

system with distinct spatial regions. Low-level external noise, applied at the upstream 

boundary, results in spatially growing waves that are subject to a selective amplification 

mechanism — a scenario similar to what is observed in the early stages of boundary layer and 

free shear layer instability. Beyond the linear region the exponential growth of waves decreases 

as nonlinear effects come into play. Wave structures may break up in the transition region due 

to modulational instability, causing intermittent high frequency fluctuations to occur and 

eventually the nonlinear dynamics dominate the flow in the fully developed region.

Analytical and qualitative results for both the linear and nonlinear region of the 

convectively unstable Ginzburg-Landau equation are summarised below.

2.2 Spatial Amplification of Boundary Noise

By definition, perturbations play an important part in the dynamics of the 

convectively unstable Ginzburg-Landau equation. A single local perturbations produces a 

temporary structure whereas continuous perturbations will result in a permanent structure 

referred to as noise sustained structure (Deissler 1985).
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As outlined above, the Ginzburg-Landau equation acts as an amplifier for the 

upstream boundary condition ip(xQ,t) in the linear region where nonlinear effects are negligible. 

Analytical results for this noise amplification region are obtained by considering

ipt = a ip + b Tpxx — vQ ipx (6.5)

A solution of this equation is

Pux -joj.t
ip{x,t) =  Ak e k e (6.6)

k ~-oo

where — juik = a — PkvG + P^b- Solving for Pk gives

0 k =  26  ̂ VG ~  JvG2” 46(fl+JwJfc) 1» (6*7)

from which the growth factor /?r(cu) =  Re{Pk}, the wave number /?.(w) =  Im{Pk} and the

phase speed cr{u>) =  °f~-r of the spatially growing waves are calculated (figure 6.1). Referring
Pi\u )

to the figure, the spatial waves are seen to be amplified selectively. Waves of frequency tok are 

amplified if Pr(u k) > 0 and attenuated if Pr(u>k) <  0. Maximum amplification occurs for the 

frequency

k , m

where

Pr,i

&i,m =

ai +  Pi,mvG (Pr ,m— 0i,m2) 6; -  2 i mbT

hr
2 i &|2 '

4. I

,  I*!'
vo - 4a'T ~

m 2 \ v°  ~  T °  ~ ’ “ r *

( 6.8 )

Furthermore, apart from a discontinuity at (3f=.0, the wave speed cr is approximately constant 

above u k m i.e. spatially growing waves are dispersive below the most amplified frequency and 

non-dispersive above.

The selective amplification of spatially growing waves in the linear region is further 

quantified by considering upstream boundary white noise. An estimate for the spatially 

evolving power spectrum is (Deissler 1987a),
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Figure 6.1 Wave solution of the convectively unstable Ginzburg-Landau equation in the linear 

region (a=(2,0), 6=(2,0), c=(0.5,0.1) and uG=5.0). (a) Spatial growth factor. (b) Wave 

number, (c) Phase speed.
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SO, a:) 2 2/?rO)xOq cr e (6.9)

where cr2 is the variance of the upstream boundary noise. Expression (6.9) shows that the 

linear region may be regarded as the continuum limit of a cascade of narrowband amplifiers 

with gain characteristic (3r(u>). Interestingly, the cascade analogy also serves to describe — at 

least qualitatively — phenomena observed in the nonlinear region of a modified Ginzburg- 

Landau equation (c/. § 3.3).

2.3 Intermittency and Convective Chaos

Beyond the linear region the exponential growth of waves decreases as nonlinear effects 

come into play. The full nonlinear equation (6.1) admits an exact solution — the Stokes 

solution — of the form

r/>(z,f) =  A e
j( kx-ut)

( 6 . 10)

where k and u> are real and are related by ui =  ja+kvg— jk2b — jc\A\2. Solving for k and \A\ 

gives

_  vG±[vG2-4 (b Tci/c r- b i)(ai- c iar/c r + u)] 
~  2(brci/c r- b i)

1/2

( 6. 11)

and

M l
ar — k2br
 ̂ Cj. ( 6 . 12)

Again, the wavenumber is a function of frequency. As to the sign in equation (6.11) that gives 

the correct solution, Deissler (1987a) noted that there is no conclusive answer to this ambiguity 

except that what is observed in numerical simulations is the wave with smaller k. This 

observation is consistent with stability investigations for waves in the Ginzburg-Landau 

equation (Ch IV § 3.2.2). Modulational stability analysis showed that small wavenumber 

solutions are the ones destabilised last.

Note that in general the transition from linear to nonlinear region is characterised by a 

change in wavenumber, as the values obtained from equations (6.7) and (6.11) are usually 

different and can even have different signs. This has the rather curious effect that waves are 

travelling in opposite directions in the linear and nonlinear region, a peculiarity that imposes
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restrictions on physically meaningful system parameters, but finds no mention in (Deisslei 

1985, Deissler 1987a).

Returning to the stability of wave solutions in the nonlinear region, the stability 

investigation of equation (6.1) is equivalent to the corresponding problem for equation (6.1) 

without convective term and periodic boundary conditions. Waves of any wavenumber are 

unstable if (c/. Ch IV § 3.2.3)

1 +  <  0 • (6,13)

Consider now the generalised Ginzburg-Lanau equation with low-level noise applied at the 

upstream boundary, under conditions of convective instability and modulational instability. 

The noise will be amplified spatially and become increasingly narrowband with downstream 

distance. As the nonlinear dynamics become significant these spatially growing waves will 

saturate and break up. Importantly, if the Ginzburg-Landau equation is driven by a single 

frequency the evolving waves will not break up as there are no sideband perturbations to 

initiate the instability2. The break up is characterised by intermittent high frequency 

fluctuations generated by the nonlinear term \ip\2ip. These high frequency bursts occur 

randomly in space and time and are correlated with the fluctuations of the wave structure in 

the linear region.

Beyond the transition region, the nonlinear dynamics dominate and no correlation 

exists between the dynamics of the fully developed region and the linear region. The irregular 

behaviour observed in the fully developed region of the convectively unstable Ginzburg-Landau 

equation suggests the possibility of chaos (not associated with a strange attractor!). However, 

the application of Lyapunov exponents as a measure of chaos (c/. Ch IV § 2.1.3) will lead to 

problems in convectively unstable systems such as the Ginzburg-Landau equation. Two nearby 

trajectories may exponentially converge on the average in a stationary frame of reference, but 

they may diverge on the average in some moving reference frame. Deissler and Kaneko (1987) 

have developed formalisms to decide whether chaos exists in some co-moving reference frame. 

This form of chaos is called convective chaos and has been found to be observed in the 

Ginzburg-Landau equation. Chaos is ascertained in direct analogy to the determination of the 

convective instability property of a (linearised) system. If the largest Lyapunov exponent is

As Deissler (1987a)  pointed out this characteristic is of little consequence as the addition 
of another small nonlinear term to equation (6.1) will immediately cause the regular structure to 
break up. In fact, the Ginzburg-Landau equation with added quintic term |V'|4V' has been studied in 
a more recent paper (Deissler 19876).
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negative for the given (fully nonlinear) system, but is positive for periodic boundary conditions 

imposed instead, then the fully developed region of the flow is convectively chaotic.

2.4 Open Flow Systems

Having outlined the properties of the convectively unstable Ginzburg-Landau equation, 

it is appropriate to inquire into the similarities with open flow systems such as boundary layer 

flow over a flat plate or free shear layer flow — as opposed to closed flow systems e.g. 

Rayleigh-Benard convection or Taylor-Couette flow.

The behaviour seen in the linear region of the Ginzburg-Landau equation is 

qualitatively similar to what is observed in both boundary layers and free shear layers. In the 

former flow, as predicted by the Orr-Sommerfeld equation, Tollmien-Schlichting waves form as 

a result of a spatial and selective amplification of random background fluctuations. Similarly, 

preferred modes emerge in the free shear layer although waves are not selectively attenuated 

there3. Furthermore, in the free shear layer waves are dispersive below the most amplified 

frequency and non-dispersive above (Ho and Huerre 1984).

Secondary flow instabilities, however, are fundamentally different for boundary layers 

and free shear layers, and this is where the similarities between what is observed in the 

transition region of the Ginzburg-Landau equation and the free shear layer end. Intermittent 

turbulent bursts are characteristic of the final stage of breakdown into turbulence in boundary 

layers but have not yet been observed in free shear layers. Instead, a subharmonic at half the 

frequency of the linearly most unstable wave makes its appearance. This secondary flow 

instability initiates the streamwise growth of the free shear layer thickness and has been 

attributed to the parametric resonance mechanism of a basic periodic flow (Kelly 1967). 

Ultimately, three-dimensional flow instabilities develop in both shear flows, a scenario the 

Ginzburg-Landau equation clearly is not capable of modelling.

2.5. Transition from Laminar to Periodic Flow

The discussion so far has been about the dynamics of the Ginzburg-Landau equation in 

a stationary frame of reference because of the interest in phenomena that are transients in a co­

moving frame. By analogy, transients in a stationary reference frame become steady states in 

the co-moving frame and can have similar physical significance. Consider, for example, front­

like solutions (figure 6.2a) to the Ginzburg-Landau equation without convective term, that

3
The difference is that spatial attenuation results in better suppression of broadband levels 

i.e. more regular wave structures.
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connect the zero-amplitude and the constant amplitude plane wave states, or hole-like solutions 

(figure 6.2b) that connect two different plane wave states. These solutions are hypothesised to 

have relevance to describing shear flow transition from laminar to bifurcated periodic flow 

(Landman 1987).

The front-like solutions are of particular interest here because they bear a certain 

similarity to what is observed in separated flows started from rest. Below some of the results of 

Landman’s investigation of solutions of the Ginzburg-Landau equation of interest in shear flow 

transition are discussed briefly.

2.5.1 Front-Like Solutions

Landman (ibid) considered the Ginzburg-Landau equation without convective term as 

a description of plane Poiseuille flow near criticality i.e. near a subcritical bifurcation. 

Quasisteady solutions were assumed to have the simple time dependence

=  e <j)(x—ci) (6-14)

Inserting equation (6.14) into equation (6.1), with uG=0, the function <j) was found to satisfy a 

second order complex Duffing equation. Landman gave a number of analytical results for 

function <£, placing emphasis on zero-amplitude solutions for laminar flow and constant 

amplitude plane wave solutions for space-time periodic flow. The complex Duffing equation 

was then investigated numerically in order to find solitary wave solutions that connect the 

laminar and plane wave states. Front-like solutions were shown to be structurally stable in that 

they are persistent under perturbations in both Q and c. Furthermore, these solutions exist for 

nonzero c implying that fronts will travel faster or slower than waves at the group velocity vG.

An example of a front solution is shown in figure 6.3. This solution connects the steady 

laminar state at the left boundary to the finite amplitude plane wave state at the right 

boundary. Importantly, the transition between the two regimes need not be monotonic but can 

exhibit peaking, as sketched in figure 6.2 a. In Landman’s study peaking was observed for 

subcritical Reynolds numbers, ar < 0, and smooth transitions for supercritical Reynolds 

numbers, ar >  0.

2.6 Concluding Remarks

The Ginzburg-Landau equation describes general systems of partial differential 

equations near a Hopf bifurcation and has consequently found application in a large variety of
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Figure 6.2 Solitary-wave type solutions of the Ginzburg-Landau equation (after Landman 

1987). The modulus r=|i/>| is given, (a) Front solution. (6) Hole solution.

Figure 6.3 Structurally stable front solution to the Ginzburg-Landau equation for subcritical 

Reynolds number, ar < 0, and subcritical bifurcation cr < 0 (after Landman 1987). The 

modulus r=  |t/>| is given.

♦
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contexts ranging from hydrodynamics to population biology and neural networks. Despite its 

simple structure the Ginzburg-Landau equation is exceedingly rich in dynamic behaviour, and 

has been suggested to be of relevance to parallel shear flow instabilities and transition. It must 

be borne in mind, however, that in the fluid dynamic context the Ginzburg-Landau equation is 

a truncation of the Navier-Stokes equations. How much of the behaviour of the Ginzburg- 

Landau equation carries over to the full fluid dynamic problem remains to be assessed yet, and 

the connection is largely speculative.

But there are other viewpoints to this question. A chapter in Drazin and Reid’s (1981) 

monograph on hydrodynamic stability is headed by the following epigram : 11 It is in the nature 

of Applied. Mathematics that one should be concerned not only with the application of existing 

mathematical theories and methods, but also with the stimulation of new mathematical 

problems, through the study of interesting problems in science, and the attempts to solve these 

problems” (C C Lin 1964). It is largely in this context that the study of the Ginzburg-Landau 

equation must be understood.

3. Subharmonic Evolution in a Modified Ginzburg-Landau Equation

In the following sections the possibility is investigated of free shear layer type 

secondary flow instabilities in a modified form of the convectively unstable (but modulationally 

stable!) Ginzburg-Landau equation. No attempts are made at implementing a parametric 

resonance mechanism for the generation of subharmonics. Rather, in an ad hoc approach to 

studying the spatial evolution of successive subharmonic waves, subharmonics of a driven 

fundamental wave structure are generated locally. The spatial evolution of subharmonic waves 

is studied numerically and a possible mechanism for the subharmonic cascade in the modified 

Ginzburg-Landau equation is suggested. Finally, the results are compared to the behaviour 

seen in the vortex pairing region of the free shear layer.

3.1 Subharmonic Generation and Discrete Space

In its simplest formulation, the emergence of subharmonics of a fundamental mode in 

the free shear layer is explained by appealing to the instability of an array of point vortices 

(Lamb 1932). More realistic approaches consider the stability of a bifurcated space-time 

periodic shear flow (Kelly 1967).

Here, a post facto approach is taken that circumvents the subharmonic resonance 

problem. Subharmonics of a given fundamental wavefrom are generally synthesised by 

nonlinear resonance in sub- or supercritical nonlinear oscillators or, if specified combinations of
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super-/sub-harmonics of the fundamental are required, by nonlinear synthesis systems of 

minimum order three (Chua and Green 1974). In this study a simple phase scaling method has 

proved expedient instead. Subharmonics at half the frequency of a driven fundamental wave 

structure in the Ginzburg-Landau equation are synthesised locally by rescaling the phase of
/ jO0 =  r eJ :

*1/2 =
n\e-o<&

e r e (6.15)

Here, the phase difference between fundamental and half-harmonic is defined by 0O and e 

determines the relative magnitude of the subharmonic. Note that equation (6.15) is the direct 

extension to complex waveforms of the multi-frequency concept employed in chapter V.

With regard to the coupling of the half-harmonic term 0 ^  to a fundamental 

propagating wave structure in the Ginzburg-Landau equation, the use of an explicitly space- 

discrete formulation of equation (6.1) — as opposed to an implicitly space-discrete numerical 

scheme — is necessary for two reasons. Firstly, if the subharmonic is to form the fundamental 

itself in some downstream region the implied frequency halving discontinuity will lead to phase 

singularities. As pointed out in chapter IV in the context of the emergence of frequency 

plateaus in a field of mutually interacting A — u> oscillators, the amplitude |0 | must go to zero 

at the plateau boundaries in order for the phase to remain continuous. Such singularity 

problems are avoided in discrete-space formulations. Secondly, the spatial growth of the 

subharmonic becomes finite only if equation (6.1) is treated as a chain of mutually coupled 

A — u> oscillators. More specifically, consider the coupling of 0 ^  terms to neighbouring 

oscillators4 in a spatially discrete version of equation (6.1). For that purpose, equation (6.1) is 

rewritten in polar coordinates,

rt = r A(r) +  br(rxx — r 6X2) — 6.(2 rx0x +  r 8XX) — vQrx

=  a>( r) ^ r ( 2  ~y0x “I" 0 xx) +  —  Ox*) —  v Q®x

(6.16)

where \(r) = ar— crr2 and cj(r) =  aj — cm2. Assuming a central difference scheme of spatial

4 lt has been suggested (referee of Physics Letters A) to incorporate the subharmonic term 
(6.15) by solving the Ginzburg-Landau equation for the modified field 0  =  0 - j - 0 ^ -  The deficiency 
of such an approach is that the two waves are not decoupled properly. Consequently the waves will 
not amplify independently and no pairing is observed. However, such a decoupling is provided by the 
mechanism (6.17).
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differentiation and adding locally synthesised subharmonic terms, equation (6.16) becomes

dr -
=  r k  r k ) +  f i r  —  \ v G )  R C , k — l  "*■ +  ^ C , k + 1  ~

h ( * S , k - l  +  R S , k + l ) “  2 ^

=  w ( r J f c )  +  ^  ( ( 2 ^ g ) R S , k — l  +  (&r +  § 3 G) R S , k + l  +

( R C , k — l  +  R C , k + l )  ~ ~  2 r k  )

where =  r(kA,t) , 9 k =  9(kA,t) , b = ^  and

(6.17)

^C.i+i =  **+/ [ cos( ^ + i - 0jfc) +  € coa( * i + H * * )  ] 

ĉ.jfc—i =  f t - ;  [ ™ < h - r 6k) +  e cos(20i - i - ^ i )  ] 

* S ,*  +  J =  r k  +  l  t S i n ( d k + l - d k )  +  £ s i n ( * * + J - 2 * * )  1
R s , k - 1  =  r k - i  l M o k - i - 0 k )  +  e s [ n ( ¥ k - r 9 k )  1

Now, it will be recalled that convective instability in the Ginzburg-Landau equation is the 

result of the competing influences of convection and diffusion. It is readily appreciated that no 

such mechanism is operative in the case of the subharmonic. Its spatial growth rate is governed 

by an effective gain between neighbouring oscillators and becomes infinite in the continuum 

limit A —>0 of equation (6.17).

3.2 Numerical Study

This section summarises the results of a numerical investigation of subharmonic 

evolution in the convectively unstable Ginzburg-Landau equation.

3.2.1 Parameters and Numerical Scheme

The starting point for the numerical analysis is the Ginzburg-Landau equation as a 

nonlinear amplifier of upstream boundary perturbations and as a nonlinear wave guide he. in 

convectively unstable form. Furthermore, stability to modulational perturbations is stipulated 

in order to avoid boundary layer type secondary instabilities. System parameters that 

guarantee these conditions are a=(2,0), 6= (2,0), c=(0.5,0.1) and u^ =  5.0. Modulational 

stability is readily seen to result from letting Im{6} =  0 (equation 6.13). The system size is 

L =  200 and the Ginzburg-Landau equation is driven by a single frequency input at the 

upstream boundary, xjj(Q,t) = A0 exp(—ju 0t) with frequency wo=1.0 and amplitude Ao = 0.1.
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This rather high amplitude level ensures a short linear region, and the system is dominated by 

nonlinear effects. The downstream boundary condition is xl>(L,t) = 0 and has little effect on the 

evolving wave structure. The spatial discretisation parameter Zl =  1.0 is determined from 

comparison of numerical and analytically predicted results for the nonlinear region and, to 

lower accuracy, for the linear region. This is a compromise between keeping the number of 

spatial points in the spatially discretised formulation (6.17) reasonably small and a linear 

region short compared to the system size.

The numerical scheme itself is a fourth-order Runge-Kutta method (Hall and Watt 

1976) with fixed step size to allow for easy calculation of power spectrum estimates. Initial 

experimentation with various integration schemes had shown that for oscillator-field problems 

in polar coordinate formulation a Gear’s method with variable step size and interpolated 

output readings is generally preferrable in terms of computational speed to a Runge-Kutta 

scheme. However, the working space required for Gear’s method is considerably larger than for 

Runge-Kutta methods5.

3.2.2 Results

Results are presented in figures 6.4 and 6.5. Note that the system size extends beyond 

the displayed region. Hence downstream boundary effects are not visible. Referring to figure 

6.4, in the absence of locally synthesised subharmonics an exponentially growing wave 

structure is observed in the linear region x< 12. This structure saturates further downstream at 

an amplitude level |V’| =  l-92, and propagates at constant speed £ = —0.274 after a small 

change in wavenumber.

In contrast, if a half-harmonic is generated locally (e =  0.1, 0o=O) this picture changes 

dramatically. The effect is best illustrated in figure 6.5. Here the spatio-temporal wave 

dynamics are visualised by plotting traces of Re{^>(x,i)} at consecutive times. The driven wave 

structure is seen to undergo a series of very regular pairings whereby a leading wave crest is 

systematically retarded near the point of coalescence. Further details of the wave pairing and 

spectral evolution process are given in figure 6.4. Near the upstream boundary the wave 

structure evolves as for e =  0. However, the energy of the fundamental mode very soon 

saturates at a low level and decays at the expense of its rapidly growing half-harmonic which, 

upon saturation, becomes itself the fundamental. The change from harmonic to subharmonic
C

To give an idea of the computational load involved in solving equation (6.17), a run for a 
single set of parameters can take up to one hour of CPU time on a CDC Cyber mainframe. Convert 
this to actual processing time and typical times will be up to ten hours — the charges for such a job 
are around £  100.
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mode is accompanied by the evolution of a second subharmonic mode and the exchange of 

energy between modes is repeated further downstream. What is observed therefore is a cascade 

of frequency halving steps with the discontinuities occurring in the saturation region of the 

respective half-harmonic mode. With increasing distance from the upstream boundary this 

scenario becomes less well defined. Fundamental modes tend to amplify again irregularly in the 

region downstream of the coalescence point and spurious subharmonics (not displayed) and a 

zero frequency component emerge. Consequently the frequency halving locations no longer 

coincide with the subharmonic saturation point and the distance between successive coalescence 

points shows some variability.

The wave merging process shows a certain, although not consistent, dependence on the 

phase difference 90. For the present parameters the results are identical for 9o=0 and 0o =  7r/2, 

but for 90 =  71" the first pairing occurs further downstream with wavenumber and amplitude left 

unchanged, relative to the merging positions. For other parameters the dependence on 90 is 

more pronounced and in some cases an overall decrease in amplitude and spectral level is 

observed for nonzero 90.

3.2.3 Comparison with Analytical Results

Both the wavenumber and the amplitude change with downstream distance, but are 

not directly related to individual mode evolution because they represent the mode averaged 

behaviour. However, the changes in wavenumber agree qualitatively with what is predicted by 

the Stokes solution for a single frequency wave of the respective frequency plateau frequency 

(figure 6.4c). This suggests that in each frequency plateau region the mode of the respective 

frequency is dominant.

The evolution of the amplitude is not as easily explained. The depressions around 

merging locations are most probably related to large phase variations near frequency 

discontinuities. Indeed, these amplitude depressions become more pronounced for greater 

spatial resolution as expected from the discussion of § 3.1. The single frequency wave solution 

for our particular parameter set and a four octave change in frequency predicts a corresponding 

increase in amplitude by 3.6%. An increase in amplitude is certainly observed in the numerical 

findings, however, the overall changes are much greater indicating that spectral components 

other than the fundamental contribute to the overall wave.

9
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Figure 6.4 Evolution of subharmonics in the modified Ginzburg-Landau equation for 0o=O, 

and c =  0 (—), e =  0.1 (-*). (a=(2,0), 6=(2,0), c=(0.5,0.1) and uG=5.0). (a) Average local 

frequency 9t(x,t). (6) Corresponding average amplitude r(x,/). (c) Local wave number, (d). 

Spectral evolution of the wave structure in space. The dotted line shows the evolution of the 

dc-component.
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Figure 6.5 Visualisation of the spatio-temporal dynamics of the subharmonic evolution process. 

The profile Re{r/>(r,2t.)} is plotted a t consecutive times i-=iT , T=0.5.
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3.3 Mode Energy Transfer — A Possible Mechanism

The central behaviour of the modified Ginzburg-Landau equation under single­

frequency excitation is summarised in the spectral evolution diagram (figure 6.4d), and all 

other quantities such as the average wave frequency may be deduced qualitatively from that 

behaviour.

The transfer of energy from a fundamental to successive subharmonic modes is not 

immediately apparent, let alone fully understood. Certainly, considering a single frequency 

wave structure (e =  0), the effect of small nonzero e will be one of spatial amplification of a co- 

travelling structure at half the fundamental frequency. Due to the convective term the coupling 

is mostly forward (equation 6.17), and the coupling strength e determines the spatial growth 

rate of the half-harmonic which, incidentally, can be much greater than that of the original 

single frequency wave structure. These differences are noticeable in figure 6.4d from the 

different gradients in the linear region.

As for the intermittent high frequency bursts, the nonlinear term |i/<|2t/> is central to 

the instability mechanism and determines the extraction of energy from the fundamental.

3.3.1 Two-Frequency Excitation of a Subcritical Oscillator

It will be recalled that in the linear region the convectively unstable Ginzburg-Landau 

equation behaves like a cascade of narrowband amplifiers i.e. a chain of forward coupled 

subcritical nonlinear oscillators with positive gain. The convective instability mechanism 

suggests that — qualitatively — the same analogy may apply to the nonlinear region. Given a 

finite-time perturbation at the upstream boundary of equation (6.1), the response of the A — u 

oscillators along the space dimension will eventually return to zero again. Consequently the 

convective instability mechanism may be thought of a s an effective load that acts on each 

oscillator, producing passive resonator like subcritical behaviour. As regards nonlinear effects 

the modified Ginzburg-Landau equation may therefore be conceptualised a s a chain of 

unidirectionally (forward) coupled subcritical A — w oscillators. What is lost in this model is 

primarily the wave guide behaviour. The wave speed becomes infinite a s it were.

Now, a unidirectionally coupled chain may be analysed by successively applying the 

output of an element of the chain to its ‘downstream’ neighbour. This has been done 

numerically for a A — u> oscillator, A(r) =  fi — r2, y, < 0, driven by a two-frequency excitation at 

ujj and ujj . The two frequencies need not be related harmonically, of course. The (complex) 

oscillator output is Fourier analysed to obtain estimates of the oscillator response at the 

respective excitation frequency. Keeping the amplitude Al of the ‘fundamental’ frequency fixed,
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the ‘subharmonic’ amplitude A2 is increased stepwise. The qualitative behaviour of the 

subcritical oscillator with subharmonic amplitude as parameter is sketched in figure 6.6. For 

low amplitude levels A 2, the energy level a t uij is correspondingly low and, apart from low 

level combination frequencies, the dominant response is at the fundamental Expectedly, 

increasing A2 leads to an increase in output energy level at but at the same time a 

decrease in the energy at the fundamental. At a certain forcing level A2) the oscillator response 

switches discontinuously to ujj , but the qualitative dependence of the output energy levels on 

parameter A2 remains unchanged.

Although for this two-frequency excitation model the overall change in output energy 

level is of the order of a few decibels only, this result is important from a qualitative 

viewpoint. The frequency switching phenomenon itself is a subsidiary phenomenon observed 

also in linear systems. Importantly, however, in a linear system there is no interaction between 

the various spectral components of the multi-frequency excitation. For the subcritical \  — u) 

oscillator the nonlinear interaction is very pronounced.

3.3.1.1 Describing Function Analysis

Interestingly, the form of interaction in oscillators with multi-frequency excitation 

described above has received little attention. Most investigations centre around the problem of 

combination resonances (e.g. Nayfeh and Mook 1979).

The mode energy transfer is in fact readily explained by the describing function 

method (Atherton 1975). As pointed out in an earlier chapter, this method is closely related to 

the method of harmonic balance and produces reasonably accurate results for nonlinear systems 

where spurious super-/sub-harmonics are insignificant or have an appropriate phase 

relationship (Treiber 1985).

The observed mode competition is qualitatively similar to the quenching of self- 

sustained nonlinear oscillations by a large amplitude external stimulus. The describing function 

analysis for such a system requires the nonlinear oscillator in feedback loop formulation. Now 

consider a subcritical nonlinear oscillator with a dominant excitation at the fundamental 

frequency. In contrast to self-sustained oscillations in a supercritical oscillator, here the 

insufficient phase shift around the loop is compensated by the excitation. The describing 

function for a two sinusoidal input shows that an additional input at an incommensurate 

frequency (or commensurate frequency, but irrelevant frequency ratio with respect to the 

system nonlinearity) will increase the nonlinear gain of the fundamental. Consequently, 'the 

oscillator output at the fundamental drops.
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Figure 6.6 Mode competition in a subcritical A —w oscillator (A(r)=-0.5—r2, ui(r) =  l) with 

two-frequency excitation and { A 2,uj2). The amplitude A 2 (u>2 = 0 . 5 )  is varied while

keeping A x (w ^ l.O ) constant. The broken lines indicate the variation of the output energy at 

<xil and w2. The oscillator frequency (—) jumps discontinuously from Wj to u>2 at a critical 

amplitude A 2.
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Figure 6.7 The subharmonic evolution model (after Ho 1982). E{f) denotes the streamwise 

energy content, scaled by the shear layer thickness.
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3.3.2 Discussion

The two-frequency excitation model can help explain the energy transfer in the 

modified Ginzburg-Landau equation. From the coupling (6.17) it is clear that the input to an 

element of the X — uj oscillator chain comprises a local fundamental and its subharmonic. As 

outlined before, the coupling also provides the successive amplification of the local subharmonic 

along the chain. Consequently, in a first approximation, diagram (6.6) may be used to describe 

the spatial evolution of a fundamental wave and its subharmonic in the modified Ginzburg- 

Landau equation. This is done by replacing parameter A2 by the spatial coordinate. The 

approximation becomes better if the subharmonic generation mechanism is accounted for 

properly. Note that as soon as the average frequency switches to the local subharmonic, 

another subharmonic is generated. This new subharmonic is amplified spatially and interacts 

with its fundamental thereby limiting and eventually reversing the growth of its fundamental.

In summary, the half-harmonic of figure 6.6 will saturate around the frequency 

discontinuity, completing' the description of the subharmonic evolution mechanism of the 

modified Ginzburg-Landau equation.

4. Comparison with Free Shear Layer Evolution

While it is true that the modified Ginzburg-Landau equation describes a nonlinear 

wave guide with interaction between a fundamental and subharmonic mode, it provides no 

clues as to the type of instability that leads to the emergence of this subharmonic. This forms 

part of the a priori knowledge about the pairing of coherent structures in the free shear layer 

that has been incorporated phenomenologically in the Ginzburg-Landau equation. Nonetheless, 

it may be worth comparing in somewhat greater detail the results of § 3 with the spectral 

evolution, thought to underlie the free shear layer growth.

4.1 A Subharmonic Evolution Model

Experimental findings on the spatial development of subharmonics in a forced free 

shear layer (e.g. Miksad 1972, Ho and Huang 1982) have been generalised in a 

phenomenological subharmonic evolution model (Ho 1982) (figure 6.7), that combines both the 

local instability process and the global feedback mechanism to arrive at a description of the 

free shear layer growth.

Near the shear layer origin vortical structures develop from the initial instability wave 

at the local fundamental frequency. A subharmonic wave is selected by parametric resonance 

(Kelly 1967) and amplifies. The location where the first subharmonic saturates serves as a
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reference location for vortex merging. Importantly, the shear layer thickness doubles around 

the vortex pairing location. This changes the local length scale and initiates another cycle of 

subharmonic evolution. The first subharmonic evolves to the local fundamental and a new 

subharmonic wave is selected.

The merging locations are determined by the global feedback mechanism. This 

mechanism requires the distance to the first merging event to be the same as the distance 

between the first and second merging, merging distances being doubled thereafter.

4.2 Discussion

A comparison of the findings of § 3 and Ho’s phenomenological model is instrumental 

in outlining the limitations of the modified Ginzburg-Landau equation in the context of free 

shear layer evolution. Qualitatively, the spectral evolution observed in the Ginzburg-Landau 

equation (figure 6.4d) and the subharmonic evolution model (figure 6.7) agree in a number of 

points. Both are characterised by a cascade process of substitution of a local subharmonic for 

its fundamental. The vortex merging positions, defined by the saturation region of the local 

subharmonic, agree with the frequency halving transitions of the modified Ginzburg-Landau 

equation. In either description, the generation of subharmonics is considered from a 

phenomenological viewpoint. As pointed out by Ho and Huang (1982), subharmonics must be 

viewed as the catalyst of merging, not as its outcome.

Equally important, fundamental differences exist. These regard the distinctly non-local 

dynamics and the change of length scale in the free shear layer on the one hand, and the 

diffusion-type dynamics and space-invariant parameters of the Ginzburg-Landau equation on 

the other hand. Laufer (1981) concluded his discussion of jet transition and turbulence with the 

remark that “the turbulent transport process is actuated by a long range force field, the 

induced pressure field, and therefore cannot be expressed in terms of a local gradient diffusion 

moder. The global feedback model is the only one that correctly predicts the merging locations 

in the free shear layer. Not surprisingly, therefore, the merging distances in the modified 

Ginzburg-Landau equation bear no physical resemblance. Concurrent with the vortex pairing a 

doubling in shear layer thickness occurs, transforming the local subharmonic into the local 

fundamental. As evidenced by the changes in wavenumber (figure 6.4c) such a length scale 

change is not found in formulation 6.17. Instead, a new cycle of subharmonic evolution is 

initiated by the change in local frequency. Finally, regarding the phase difference 90 between 

the fundamental wave and its subharmonic, from Kelly’s (1967) analysis of the subharmonic 

resonance mechanism in free shear layers it is expected that the larger the phase difference the
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smaller the subharmonic peak. This behaviour is not systematically observed in our 

investigation and the influence of 60 on the subharmonic evolution process clearly needs further 

detailed investigation.

5. Conclusions

The modified Ginzburg-Landau equation exhibits behaviour that is reminiscent of the 

evolution of subharmonics in the free shear layer. Central to the subharmonic cascade process 

are the co-existence of a local fundamental and its subharmonic and the nonlinear interaction 

between the two waves. The former is brought about by the local synthesis of a subharmonic 

whilst the latter results from the local dynamics of the Ginzburg-Landau equation. However, 

the mode energy transfer mechanism is not bound by the particular A — u> dynamics of the 

Ginzburg-Landau equation and may be expected to be observed in any field of nonlinear 

oscillators that is convectively unstable to perturbations. This suggests that the subharmonic 

cascade is structurally stable in the sense that small changes in the local dynamics of the 

oscillator field will not dramatically alter the subharmonic evolution process.

Obviously, the modified Ginzburg-Landau equation provides subharmonic evolution in 

a very rudimentary form. Subharmonics are synthesised locally and new cycles of subharmonic 

growth are initiated by the discontinuous change in local frequency. Yet what appears most 

interesting is the nonlinear interaction between the local fundamental and its subharmonic. 

More work will be required to fully understand this mechanism.

»
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CHAPTER VOfl 

CONCLUSIONS

This chapter concludes the investigation of poststenotic flow instabilities with a 

recapitulation of the reported work and a discussion of implications and future work.

1. Laser Doppler Velocimetry

The inherent limitations of laser Doppler velocimetry — as the result of the random 

distribution of scatterers in the flow and the finite size of the measuring volume — are 

generally acknowledged in LDV studies and have been treated theoretically (George and 

Lumley 1973, Durrani and Greated 1977). In contrast, the demodulation of the Doppler signal 

by e.g. frequency tracking is often tacitly assumed to be free of error (e-g. Deshpande and 

Giddens 1980). In fact, intermittent loss of tracking is an integral part of any form of 

frequency demodulation of the Doppler signal. The infinite variance of the transit-time noise 

implies that the Doppler signal invariably falls below arbitrarily small noise levels occasionally. 

Though a number of sources contribute to the noise viz. optical, photodetection and electronic 

system noise, it is usually the optical noise that dominates.

Our analysis of the dropout process in LDV frequency tracking systems showed that it 

is not only low to intermediate tracking rates that cause a degradation of the instantaneous 

velocity signal by tracking noise, but equally the average frequency of dropouts. When the 

unlock frequency is of the order of the bandwidth of the velocity signal, the incurred 

measurement error can be significant.

The tracking performance is improved by minimising the optical noise. This involves 

carefully matching the power requirements of the coherent light source, the measuring volume 

size and the scattering properties of the flow seeding material. However, a typical LDV set-up 

for small flow geometries — 5mW He-Ne laser and about 120mm lens focal length, as used in 

our experiments or by Deshpande and Giddens (ibid) — is prone to optical noise problems and 

requires an assessment of the influence of tracking noise on flow velocity measurements. It is 

recommended therefore that, particularly when measuring turbulent flow, estimates of the 

average frequency of dropout be obtained. This will give a first approximation of the 

measurement error to be expected from tracking imperfections.
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2. Stenotic Flow Experiments

These experiments aimed at assessing the structural stability of oscillatory flow 

disturbances in poststenotic flows in the presence of ambient noise. With arterial wall 

vibrations a possible source of noise, the approach taken was to decouple the fluid mechanic 

from the solid (wall) mechanic problem. This method is an important prerequisite for the 

understanding of complex flow problems and has been adopted, for example, for the 

investigation of self-excited oscillations in flow through collapsible tubes (Pedley and 

Stephanoff 1985), or in the study of vortex-induced oscillations (Bearman 1984). Because the 

determinants of the ambient noise are largely unknown, well defined perturbations were 

generated artificially. This has the advantage that the number of configurational parameters is 

kept to a minimum and possible resonant interactions between the flow and the distensible 

wall are categorically excluded.

The oscillatory flow disturbances in pulsatile flow were found to be significantly less 

susceptible to perturbations than what was expected from quasisteady analysis, making these 

flow disturbances fairly structurally stable in the sense that they are expected to persist under 

moderate flow perturbations. Possible explanations for this reduced susceptibility were sought 

in the transient behaviour of impulsively started orifice flows.

This brings us to the discussion of future investigations of this phenomenon. Still 

further simplifications of the flow problem will be required i.e. the removal of the downstream 

bounding walls. This allows the separation of the poststenotic separated shear layer instability 

from the retarding effects of the downstream walls. For example, Khalifa and Giddens (1981) 

compared free and confined jet-like flows downstream of a contoured stenosis, and Lieber and 

Giddens (1988) considered flow through a 90% contoured stenosis, thus effectively excluding 

bounding wall effects.

The study of laminar jet flow instabilities under time-varying flow conditions is 

expected to further elucidate the dynamics of the free shear layer instability. From a dynamical 

system viewpoint the importance of a transient analysis is readily appreciated. Whereas steady 

flow experiments are instrumental in gaining an understanding of the selective noise 

amplification mechanism and of the nonlinear mode competition in the (forced) free shear 

layer, additional dynamical properties will be deduced from starting and stopping flows or 

from pulsatile flow rate variations. For instance, it is conceivable that temporal variations in 

flow rate provide a phase reference for the otherwise irregular formation of vortices. This will
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lead to a much more organised flow field, increasing the amplitude of oscillatory flow 

disturbances.

Future experiments should also investigate starting and stopping flows using more 

realistic model stenoses with streamwise extent. The orifice flow had already given some clues 

for the interpretation of the start-up and stopping features of poststenotic flow disturbances. 

Starting flow through the contoured stenosis models is expected to produce weaker start-up 

vortices due to the lower shear and the proximity to the walls.

Finally, we note that the resonant behaviour of the forced separated shear layer aids in 

interpreting flow disturbances downstream of more complicated stenosis geometries. The 

resonance phenomenon proved very useful in a preliminary study of flow past a plasticine 

protusion with ill-defined geometry. The optimal measuring position for detecting coherent 

flow disturbances could best be determined under forced flow conditions.

3. The Free Shear Layer and Co-operative Phenomena

Co-operative phenomena come readily to mind when investigating the forced free shear 

layer. The very concept that the free shear layer possesses an underlying degree of organisation 

that is intensified by applying an artificially introduced phase reference is suggestive of self- 

and forced synchronisation in a population of non-identical oscillators with external field. The 

analogy is further supported by the striking similarities between the effects an impingement 

edge and flow excitation have on a mixing layer (Rockwell and Naudascher 1979). The former 

provides an hydroacoustic feedback of energy — analogous to increased coupling, possibly with 

additional phase shift — and the latter generates a strong instability wave — corresponding to 

an external field.

The characteristics of the oscillator population are derived from the physics of the free 

shear layer. The most amplified frequency in the free shear layer scales with the local 

momentum thickness which grows linearly beyond the first vortex merging, and the vortex- 

induced velocity field has long-range effects. This suggests that the oscillators be non-identical 

and that the interaction between them be non-local.

It was demonstrated that such an oscillator population, with appropriate coupling, can 

serve as a simple model of the ‘locking-on’ phenomena in the forced free shear layer. Without 

external field, the population exhibits no discernible self-organisation due to the weak mutual 

coupling. That there is latent order in this population, however, is shown by increasing the 

coupling strength. The population then clusters into self-synchronised subsets which, when 

arranged spatially, from a frequency-halving cascade. When an external field is applied, the
V
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underlying order is intensified and typical forced synchronisation phenomena are observed, 

concomitant with a concentration of oscillator energy at the forcing frequency. Furthermore, 

the synchronisation is global to the population, with oscillators of lower intrinsic frequency 

forming synchronised clusters at the subharmonics of the fundamental forcing frequency. The 

cluster formation is more sensitive to variations in forcing frequency than forcing amplitude, as 

expected from the intrinsic frequency distribution.

The oscillator population can thus be viewed as a model system of flow 

synchronisation. This is not to suggest, however, that the free shear layer be conceptualised as 

an oscillator continuum with streamwise intrinsic frequency gradient. The oscillator model 

provides an Eulerian description of flow synchronisation phenomena in the forced free shear 

layer and the contingent character of kinematic waves in such oscillator fields must be 

emphasised. To complicate matters, Eulerian concepts of flow synchronisation are difficult to 

reconcile with the Lagrangian concept of the spatially evolving free shear layer. However, it is 

not the purpose here to enter into a discussion of flow synchronisation in terms of spatial 

theory. Our approach to flow organisation in the forced free shear layer is phenomenological 

and consequently the proposed model is greatly removed from fundamental physical principles. 

What makes the oscillator model interesting, in our view, is the extension of nonlinear 

oscillator concepts to extrinsic flows, previously applied to intrinsic flows such as wake flows.

Returning to the transition in the forced free shear layer from irregular spatio-temporal 

dynamics to a very organised state, co-operative effects are observed in a variety of contexts 

including biological oscillations (brain waves, heartbeat), and equilibrium (magnetic spin, 

superconductivity) and non-equilibrium statistical mechanics (lasers), and are associated with 

functionally composite systems. Removed from the particular physical context such systems are 

regarded as synergetic systems (Haken 1978). Central to the synergetic approach is the slaving 

principle which claims the possibility of eliminating a large number of rapidly decaying degrees 

of freedom in nonlinear dissipative systems.

Is it quite possible that an order parameter may be derived from an appropriately 

truncated form of the Navier-Stokes equations, that describes these co-operative phenomena?

4. The Modified Ginzburg-Landau Equation

Although itself an oscillator field, the Ginzburg-Landau equation is conceptually 

different from the phenomenological model of flow synchronisation. Derived in the nonlinear 

theory of hydrodynamic stability, the Ginzburg-Landau equation describes the evolution in 

space as well as time of weakly nonlinear instability waves and is considered a model open flow
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system. Only recently has a Ginzburg-Landau equation with space-dependent control 

parameter ar (cf. Ch VI § 1) been proposed as a model of both the absolutely and convectivcly 

unstable regions of wakes behind bluff bodies (Chomaz et al 1988).

In this study the possibility of a subharmonic cascade of instability waves was 

explored. Without attempting to incorporate a subharmonic resonance mechanism — the 

Ginzburg-Landau equation after all has only the minimum complexity for supporting nonlinear 

waves — artificially generated subharmonic components of a fundamental wave were 

introduced and found to result in a cascade of energy transfer from a local fundamental 

instability wave to its subharmonic. It was suggested that the energy transfer mechanism is 

qualitatively similar to the quenching of self-sustained oscillations by an external excitation. 

Clearly, more work needs to be directed at the evolution of subharmonics in the modified 

Ginzburg-Landau equation in order to arrive at a more complete understanding of the 

underlying mechanism. This will include perturbing the (unmodified!) Ginzburg-Landau 

equation with propagating wave solution by a single-frequency disturbance, injected locally in 

the nonlinear region. It is expected that, with increasing amplitude of the perturbation the 

travelling wave amplitude decreases until at a certain critical point the average wave frequency 

switches to the perturbation frequency. This would support the view that indeed an 

independently amplifying subharmonic quenches its fundamental, thus initiating the wave 

pairing.

Let us compare this tentative scenario of subharmonic evolution in the modified 

Ginzburg-Landau equation with Ho’s (1982) model of the free shear layer that unifies the 

present knowledge of free shear layer evolution. On the presupposition that subharmonics are 

generated by Kelly’s nonlinear subharmonic resonance mechanism, Ho’s model concentrates on 

the doubling of the shear layer thickness around vortex pairing locations. As a result of this 

doubling of length scale the locally most amplified frequency becomes the subharmonic and 

another cycle of vortex pairing is started. This explains the paradox that linear stability theory 

is able to describe a highly nonlinear flow. In the modified Ginzburg-Landau equation, on the 

other hand, it is the change in local frequency around wave pairing positions that initiates new 

pairing cycles. The change from fundamental to subharmonic is a purely nonlinear mechanism 

because the dispersion relation remains unchanged. This defines the limitations of the 

Ginzburg-Landau equation in respect to the free shear layer.

The Ginzburg-Landau equation per se, however, has been receiving ever increasing 

attention over the past few years, both as a model open flow system and because of its complex 

transition sequences to chaos. The recent discovery that the Ginzburg-Landau equation can

*
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combine absolutely and convectively unstable regions which is in qualitative agreement with 

the behaviour of spatially developing flows such as wakes or inhomogeneous jets, is an exciting 

example illustrating the potential of this equation.
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