19 research outputs found

    Interoperable manufacturing knowledge systems

    Get PDF
    For many years now, the importance of semantic technologies, that provide a formal, logic based route to sharing meaning, has been recognized as offering the potential to support interoperability across multiple related applications and hence drive manufacturing competitiveness in the digital manufacturing age. However, progress in support of manufacturing enterprise interoperability has tended to be limited to fairly narrow domains of applicability. This paper presents a progression of research and understanding, culminating in the work undertaken in the recent EU FLEXINET project, to develop a comprehensive manufacturing reference ontology that can (a) support the clarification of understanding across domains, (b) support the ability to flexibly share information across interacting software systems and (c) provide the ability to readily configure company knowledge bases to support interoperable manufacturing systems

    Open Innovation for Ideating and Designing New Product Service Systems

    Get PDF
    Abstract For modern manufacturing companies, the combination of physical products and intangible services (called Product-Service Systems or PSS) has been proved by time to be useful to enhance the product features by adding value throughout new functionalities, and bringing competitive advantages in a specific target market. Through PSS, companies create new business opportunities, extend the market share, differentiate the product portfolio, and improve sustainability. The PSS approach shifts the company attention from producing physical products to offering integrated systems. However, ideating and designing a PSS is a complex and multifaceted process, which requires multiple competences and cross-functions cooperation within the manufacturing company. In fact, the design phase requires to simultaneous dal with the characteristics of the physical product and of the intangible services, the last ones being by their nature fuzzy and difficult to define. Furthermore, the two entities have to be synergistically delivered and strategically managed thanks to the adoption of a PSS lifecycle management methodology and tools, in particular for the creation of a proper PSS infrastructure to delivery and maintain all the components from the design to the end of life phases. Several methodologies to design PSS can be found in literature. Most of them focus on technical development stages, while some of them face also the innovation aspects and sustainability. However, traditional product-centered approaches are not able to fully support the processes that manufacturing companies have to put in place for creating PSSs. This paper presents a new approach, based on the combination of the Open innovation method with IT solutions supporting information sharing and intra-team cooperation, in that any manufacturing company could adopt to manage the design process of a PSS. In particular, the methodology and the tools are focused on the early stages of the PSS design process, as Ideation and Concept definition that have been developed within the European FP7 project FLEXINET

    Next Generation Middleware Technology for Mobile Computing

    Get PDF
    Current advances in portable devices, wireless technologies, and distributed systems have created a mobile computing environment that is characterized by a large scale of dynamism. Diversities in network connectivity, platform capability, and resource availability can significantly affect the application performance. Traditional middleware systems are not prepared to offer proper support for addressing the dynamic aspects of mobile systems. Modern distributed applications need a middleware that is capable of adapting to environment changes and that supports the required level of quality of service. This paper represents the experience of several research projects related to next generation middleware systems. We first indicate the major challenges in mobile computing systems and try to identify the main requirements for mobile middleware systems. The different categories of mobile middleware technologies are reviewed and their strength and weakness are analyzed

    A fuzzy dynamic inoperability input-output model for strategic risk management in global production networks

    Get PDF
    Strategic decision making in Global Production Networks (GPNs) is quite challenging, especially due to the unavailability of precise quantitative knowledge, variety of relevant risk factors that need to be considered and the interdependencies that can exist between multiple partners across the globe. In this paper, a risk evaluation method for GPNs based on a novel Fuzzy Dynamic Inoperability Input Output Model (Fuzzy DIIM) is proposed. A fuzzy multi-criteria approach is developed to determine interdependencies between nodes in a GPN using experts’ knowledge. An efficient and accurate method based on fuzzy interval calculus in the Fuzzy DIIM is proposed. The risk evaluation method takes into account various risk scenarios relevant to the GPN and likelihoods of their occurrences. A case of beverage production from food industry is used to showcase the application of the proposed risk evaluation method. It is demonstrated how it can be used for GPN strategic decision making. The impact of risk on inoperability of alternative GPN configurations considering different risk scenarios is analysed

    a tco model for supporting the configuration of industrial plants

    Get PDF
    Abstract In the current industrial context, where processes are extremely flexible to meet the changes of the market demand, the traditional strategies for managing the design and investment of industrial assets are too restrictive. Indeed, such strategies just consider the procurement price of an asset rather than its lifecycle cost. In this framework, the paper proposes a Total Cost of Ownership (TCO) model that can be adopted in B2B context for establishing the best asset configuration and procurement strategy by considering its CAPEX and OPEX. Such a TCO model has been implemented into an Enterprise Application Software for supporting the TCO evaluation. The presented model and software tool have been applied within an Italian food company for supporting the assets investment management

    Veröffentlichungen und VortrĂ€ge 2003 der Mitgleider der FakultĂ€t fĂŒr Informatik

    Get PDF

    An Autonomic Cross-Platform Operating Environment for On-Demand Internet Computing

    Get PDF
    The Internet has evolved into a global and ubiquitous communication medium interconnecting powerful application servers, diverse desktop computers and mobile notebooks. Along with recent developments in computer technology, such as the convergence of computing and communication devices, the way how people use computers and the Internet has changed peopleÂŽs working habits and has led to new application scenarios. On the one hand, pervasive computing, ubiquitous computing and nomadic computing become more and more important since different computing devices like PDAs and notebooks may be used concurrently and alternately, e.g. while the user is on the move. On the other hand, the ubiquitous availability and pervasive interconnection of computing systems have fostered various trends towards the dynamic utilization and spontaneous collaboration of available remote computing resources, which are addressed by approaches like utility computing, grid computing, cloud computing and public computing. From a general point of view, the common objective of this development is the use of Internet applications on demand, i.e. applications that are not installed in advance by a platform administrator but are dynamically deployed and run as they are requested by the application user. The heterogeneous and unmanaged nature of the Internet represents a major challenge for the on demand use of custom Internet applications across heterogeneous hardware platforms, operating systems and network environments. Promising remedies are autonomic computing systems that are supposed to maintain themselves without particular user or application intervention. In this thesis, an Autonomic Cross-Platform Operating Environment (ACOE) is presented that supports On Demand Internet Computing (ODIC), such as dynamic application composition and ad hoc execution migration. The approach is based on an integration middleware called crossware that does not replace existing middleware but operates as a self-managing mediator between diverse application requirements and heterogeneous platform configurations. A Java implementation of the Crossware Development Kit (XDK) is presented, followed by the description of the On Demand Internet Computing System (ODIX). The feasibility of the approach is shown by the implementation of an Internet Application Workbench, an Internet Application Factory and an Internet Peer Federation. They illustrate the use of ODIX to support local, remote and distributed ODIC, respectively. Finally, the suitability of the approach is discussed with respect to the support of ODIC
    corecore