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Abstract 

Strategic decision making in Global Production Networks (GPNs) is quite challenging, especially due 

to the unavailability of precise quantitative knowledge, variety of relevant risk factors that need to 

be considered and the interdependencies that can exist between multiple partners across the globe. 

In this paper, a risk evaluation method for GPNs based on a novel Fuzzy Dynamic Inoperability Input 

Output Model (Fuzzy DIIM) is proposed. A fuzzy multi-criteria approach is developed to determine 

interdependencies between nodes in a GPN using experts’ knowledge. An efficient and accurate 

method based on fuzzy interval calculus in the Fuzzy DIIM is proposed. The risk evaluation method 

takes into account various risk scenarios relevant to the GPN and likelihoods of their occurrences. A 

case of beverage production from food industry is used to showcase the application of the proposed 

risk evaluation method. It is demonstrated how it can be used for GPN strategic decision making. 
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The impact of risk on inoperability of alternative GPN configurations considering different risk 

scenarios is analysed. 
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1 Introduction 

A Global Production Network (GPN) is the set of globally interconnected actors (e.g. companies, 

groups, organisations, etc.) that enable the process of production or service provision from sourcing 

of the materials and labour to the consumption of the final products or provision of service (Coe et 

al., 2008). The actors within the GPN can include suppliers, production facilities, intermediaries, 

customers, service providers and consumer groups.  

A few distinguishing features of GPNs which are of interest to strategic risk management are: 

1) Global relationships; GPNs are facing unique challenges due to the involvement of trans-national 

actors and are especially affected by risks that can arise as a result of geo-political factors in a 

country or region. 2) Complexity of dependencies; interdependencies between actors are affected 

by various parameters related to GPN coordination among the actors and control procedures. 

3) Complexity of networks; GPNs involves complex, often non-linear, relationships between the 

network partners, for example, they involve alternative suppliers for a particular material (Coe et al., 

2008). All of these features can potentially contribute to the influence of risk on GPNs. 

Risks in GPNs can be categorised, based on their cause, into  different categories:  (1) internal to the 

actors and are due to the specific characteristics of the actor such as reliability of equipment, safety 

inventory levels, quality issues, etc., (2) related to the network partners such as availability of raw 

material, suppliers’ reliability, etc. from the supplier side, or risks related to customers, for example, 

uncertain demand, problem with order processing, payments, etc., and (3) external to the network, 



for example, various regulations, severe weather conditions or accidents, and geopolitical factors 

(Jüttner et al., 2003). We will consider all of these risk factors, in the context of GPNs at the strategic 

level and analyse interdependencies among risk factors and their propagation. 

Decision making at the strategic level of GPNs is particularly challenging. While different information 

about potential actors and their regional characteristics are needed to make a strategic decision, 

such information is not necessarily available, at least not precisely. However, fuzzy set theory can be 

used to model the knowledge-related or epistemic uncertainties. Epistemic uncertainties refer to the 

reducible uncertainties that is caused by lack of knowledge about the subject, as opposed to 

aleatory uncertainties that are the irreducible uncertainties due to the random and stochastic nature 

of events (Kiureghian and Ditlevsen, 2009). In this paper, subjective knowledge, with inherent 

epistemic uncertainties is input by the experts in the form of linguistic labels such as Low demand in 

a certain region, Medium reliability of a certain supplier or High substitutability of a certain 

component and modelled as fuzzy parameters. Furthermore, fuzzy set theory is used to track 

epistemic uncertainties in the results obtained and to better understand the relationship between 

the uncertainties in the results and input parameters. 

This paper is arranged as follows. Section 2 will introduce the relevant literature on risk management 

in GPNs, including propagation of risks, Inoperability Input Output models (IIM), Dynamic IIM (DIIM) 

and Fuzzy IIM. In Section 3, inoperability and risks in GPNs are considered and various aspects of the 

proposed method are discussed, including GPN configurations, regional and node specific risk 

factors, node interdependencies and their calculation using a multi criteria method, risk scenarios, 

discrete Fuzzy DIIM and economic loss of risk. Following this discussion, in Section 4, an example 

from the food industry is provided and used as an illustration of the proposed approach. Finally, the 

paper is concluded by discussing the outcomes and possible future directions in Section 5. 



2 Literature Review 

Risk management in GPNs is an important subject in the literature (Heckmann et al., 2015). We will 

focus on the propagation of risks in GPNs, and, in particular, the use of inoperability models to 

analyse propagation, dynamism in inoperability models, and, the application of fuzzy arithmetic to 

model uncertainty within the inoperability models. 

2.1 Propagation of Risks in GPNs 

A number of quantitative models have been proposed to observe and analyse consequences of risks 

and their dynamic propagation within a network, and, optimal decision making under risks. For this 

purpose, approaches such as simulation models, network theory and mathematical optimisation 

have been utilised.  

Decision making under risks has been tackled using mathematical optimisation approaches. Gaonkar 

& Viswanadham (2007) investigated the propagation of events due to supplier non-performance and 

proposed two supplier selection models, one based on the Markowitz model for strategic level 

deviation management and the other based on a credit risk minimisation model which was 

introduced for disruptions management. Furthermore, Azaron et al. (2008) proposed a multi-

objective stochastic programming approach for supply network design with the cost and risk 

objectives.  

A bottleneck identification problem in supply networks is investigated by Mizgier, Jüttner & Wagner 

(2013) who utilised two methods based on network theory and Monte Carlo simulation, 

respectively. In the simulation model, systematic risks that affected all nodes of the supply network 

and the propagation of risk between the nodes are considered. Also, Taquechel (2010) applied 

network theory and fault trees to represent risk propagation and optimise the budget spending by 

minimising the risk in a US maritime supply network. 



Bayesian Belief Networks (BBNs) are probabilistic models based on directed acyclic graphs where 

nodes have conditional dependencies that are represented using probabilities. Shin et al. (2012a) 

used BBNs to analyse supply network risks and both their interdependency and propagation 

throughout the supply network to determine a dynamic alternative path. Each node of the supply 

network was modelled by a BBN which represented interrelated risk indicators. All the BBNs 

influenced each other and in that way propagation of risk in the supply network was modelled. In a 

similar study, Shin et al. (2012b) considered risk based dynamic back order replenishment plans for 

multi echelon supply chains network stock-out and inventory costs. A heuristic method based on 

Reverse Dijkstra algorithm was proposed. 

Simulation models are valuable tools to understand the behaviour of supply networks and they have 

been also used to model propagation of risk in the supply networks. For example, Bueno-Solano & 

Cedillo-Campos (2014) analysed the propagation of disruptions in supply neworks produced by 

terrorist acts using System Dynamics. Additionally, Sun, Xu & Hua (2012) applied agent-based 

simulation to bankruptcy propagation problems. Effects of a few contractual incentives, such as 

revenue sharing, price discount and quantity flexibility on bankruptcy propagation mitigation in 

multi manufacturer-multi retailer supply networks were examined. Also, Mizgier et al. (2015) 

investigated the diversification in global supply networks and analysed disruption propagation using 

Monte Carlo Simulation.  

Furthermore, Wei, Dong & Sun (2010) utilised IIM to model propagation of risks in supply networks. 

The IIM considered the propagation effects of inoperability throughout the supply network and 

calculated the overall risk of inoperability of each node. Increasing the number of suppliers was 

suggested as a mitigation method and both the IIM and the mitigation method were validated using 

a Monte Carlo simulation model. In this paper, we will explore and propose a novel inoperability 

model. 



2.2 Inoperability Models 

The Input Output Model (Leontief, 1986) is a well-established economics model that is used to 

determine the relationship between interconnected sectors of economy. Each sector relies on 

products/services provided by other sectors, which creates interdependencies. Part of the necessary 

products/services is entered from outside, for example, from foreign markets, and it constitutes the 

input to the system. Also, part of the provided products/services is consumed by the final customers 

and/or exported, and this constitutes the output of the model. 

The IIM is a risk model based on the Input Output model (Santos and Haimes, 2004). Similar to the 

Input Output Model, the IIM assumes interconnected nodes in a network. Risk is represented via 

independent “perturbations” caused by external events which have direct impact on some nodes in 

the network. A key concept behind the propagation of disruptions within networks is the 

interdependencies that exist between nodes. Interdependency between two nodes implies that the 

dependent node relies on the supporting node to function and, as a result, a disruption in the 

supporting node will affect the dependent node in proportion to the nodes’ interdependency. The 

model calculates inoperability values for all nodes by considering the propagation of perturbations 

throughout the network. Inoperability shows the rate at which the actual activity level at the node 

deviates from the planned activity level and acts as a measure of risk materialisation of each node.  

The model is formulated in a vector format as follows: 

          (1) 

where   is the vector of nodes’ inoperabilities,    is the interdependency matrix, where each 

coefficient represents a degree of dependency and coupling of one node to the other, and    is the 

vector of input perturbations, modelled as normalised levels of disruptions which are directly 

induced by external events.  

Santos & Haimes (2004) introduced a demand-reduction model that analysed the effects the 

inoperability of the sectors had on the demand of other sectors and also proposed a regional 



analysis within the IIM. Some of the important developments of IIMs include the consideration of 

inventories and their effect on the dynamic IIM (DIIM) (Barker and Santos, 2010) and agent-based 

IIM (Oliva et al., 2010). We will consider DIIM and Fuzzy IIM in more detail. 

2.3 DIIM 

DIIM extends the IIM by including time varying features of the network behaviour and operability. 

These models incorporate changes in perturbation values over time. A discrete-time DIIM which 

considers the resilience of a node to the change in inoperability caused by perturbation can be 

formulated in a vector format as follows (Haimes and Horowitz, 2005): 

  (   )      ( )     ( )  (   ) ( ) (2) 

where  ( ) is the inoperability vector of the nodes at time period  ,   is the diagonal resilience 

matrix of nodes,    is the matrix of interdependencies between the nodes,   ( ) is the external 

perturbation of nodes at time period   and   is the identity matrix. 

Haimes & Horowitz (2005) introduced DIIM, where time-varying effects were considered, using 

demand-reduction and regional models. A case study of HEMP attack was investigated using both 

BEA and RIMS-II datasets. Lian & Haimes (2006) expanded the DIIM, formulating a continuous 

version and included uncertainty in the form of stochastic – Brownian motion. Both the demand 

reduction and dynamic recovery scenarios were investigated based on a case study of terrorist 

attacks using the above mentioned datasets. Additionally, Baghersad and Zobel (2015) considered 

the product and service allocation preferences of different sectors and proposed a linear 

programming model. 

The resilience factor is included in the dynamic IIM to represent the speed of individual node’s 

response to changes in inoperability. For example, when recovering from a disruption, this factor 

shows the rate at which the node recovers. Its value is between 0 and 1, where 1 represents the 

fastest possible response and 0 represents no response at all.  



Resilience depends on risk management practices applied at a node. The better the risk 

management implemented and the better its procedures, the higher the rate of recovery for the 

node.  

The resilience factor   of a node can be determined by analysing the node’s history of managing 

disruptions and the speed of recovery. The following formula can be used (Haimes and Horowitz, 

2005):  

 

  
   [

  ( )
  ( )

]

 
 

(3) 

where   is a scalar specifying the resilience of the node,   represents a scenario where the node is 

recovering from a disruption,   is the number of periods that is needed for the node to reach 99% 

recovery from the disruption,   ( ) is the level of inoperability at time   and   ( ) is the initial level 

of inoperability caused by the disruption.  

2.4 Fuzzy IIM 

In the original inoperability models that are considering economic sectors, it is possible to determine 

the interdependencies based on statistical data that have been gathered nationally or regionally for 

the corresponding sectors. In a GPN, however, such information is not necessarily available. 

Especially at the early stages of GPN design, some of the partners can be new to the company and, 

hence, with no record to rely on for the statistical analysis. A manager often needs to make a 

strategic decision and relies on subjective judgement and expertise, which can be conveniently 

expressed using linguistic terms. Fuzzy numbers and arithmetic provide an appropriate framework 

for modelling these type of data and carrying out corresponding arithmetic operations in absence of 

empirical and historical data.  

There are a few relevant papers on IIM that have used fuzzy sets to model uncertainty. Panzieri & 

Setola (2008) and Oliva, Panzieri, & Setola (2011) used triangular fuzzy numbers to represent 

interdependency and perturbation values in IIMs. Setola, De Porcellinis & Sforna (2009) used 



triangular fuzzy numbers with experts’ reliability to assess interdependencies. Additionally, Oliva et 

al. (2014) examined the use of fuzzy difference inclusions for general discrete-time linear systems of 

the form x(k+1) = H x(k). 

In this paper, we will examine fuzzy time-varying perturbations in the DIIM with fuzzy resilience, 

which to the best of our knowledge has not been considered in the literature. A novel fuzzy DIIM 

that accommodates fuzziness in all the model parameters and uses interval calculations to 

determine inoperabilities in GPNs is introduced. A multi-criteria method is proposed for determining 

interdependencies among GPN nodes. The application of the fuzzy DIIM model is illustrated using a 

real world GPN in the food manufacturing sector which operates in the presence of risk. The impact 

of risks described in a risk scenario is measured using the fuzzy DIIM model proposed and applied in 

the evaluation of alternative GPNs.  

3 Inoperability in GPNs 

As discussed in the literature review, the concept of inoperability has been used frequently to 

represent the deviation of sectors of economy from their intended operation levels. In this paper, 

the same concept is adapted to GPNs, representing reduction in the activities of an individual 

network node in a GPN from its intended level. This can, for example, refer to a decrease in 

production levels from the expected values or reduction in demand in a customer segment. In this 

context, perturbation can be a direct disruption caused either by events that are external to the 

network, such as political or economic issues, or independent internal event at a network node, such 

as machine breakdown, insolvency, etc.  

The GPN configuration is analysed to determine the interdependencies between network nodes and 

they are represented in the interdependency matrix. However, as statistical information is not 

necessarily available for these relationships, we rely on linguistic data which are collected from the 

experts and then are translated into fuzzy values. The interdependencies are determined using a 



multi criteria approach. We identified risks that can cause perturbation of the GPNs and defined risk 

scenarios which specify the timing, likelihood and impact of one or multiple risk factors that are 

likely to affect the network.  

3.1 GPN Configuration  

A GPN configuration is a particular arrangement of the company’s production facilities with the 

relevant partners including suppliers, customers and service providers, with the target of providing a 

particular product or service. Various partners across the GPN can be represented as nodes such as 

supplier, producer, intermediary (e.g. logistics provider), customer, consumer or service provider. 

These nodes are connected with each other to form a network that represents the interdependency 

relationships between the nodes.  

Multiple potential GPN configurations can be under consideration that can differ, for example, in the 

way suppliers, production facilities or customers are arranged or simply by the partner that is chosen 

to be the supplier. The main objective of the proposed risk analysis is to determine the relative 

suitability of potential GPN configurations with respect to risk and facilitate choosing the right GPN 

configuration.  

3.2 Risk Factors 

Disruptions can arise in the GPN due to many different risk factors. To analyse the risk in GPNs, it is 

necessary to identify and understand these factors and analyse their impact. We classify risk factors 

into two main groups: 1) regional risk factors caused externally to the GPN and 2) node specific risk 

factors. 

3.2.1 Regional Risk Factors 

To include global aspects of the GPNs, it is necessary to include region specific differences that exist 

around the globe. Distinct regions can be defined, depending on the desirable level of granularity, 



for example at city, country or continental levels. GPN nodes are assigned to the relevant region, and 

all risks that are relevant to a specific region can affect nodes within that region.  

Regional risk factors can include a variety of risks including political, economic, social, technological, 

legal and environmental risks. These factors play an important aspect of GPNs as they account for 

differences in regions around the globe. In this paper, we consider two types of regional risk factors 

which can influence the nodes within the region: 

1) Political instability due to war, political conflict, unrest, etc. 

2) Economic issues caused by problems with currency fluctuations, inflation, etc. 

3.2.2 Node Specific Risk Factors 

Another type of risk factor can directly affect the nodes within GPN. This type of risk is a result of 

problems that are specific to the node and are analysed for each node separately. We analyse the 

following two examples: 

1) Machine Malfunction where problems arise as a result of a defective machinery.   

2) Insolvency where a financial situation of the node is in danger and insolvency and 

bankruptcy can arise. 

3.3 Node Interdependencies 

We propose a fuzzy multi-criteria method to estimate the interdependency among partners using 

experts’ judgements. A list of nine dependency criteria is suggested to determine the 

interdependency between two nodes, dependent and supporting nodes:  

1) Trade volume: the expected level of trade between two nodes. Interdependency has a direct 

relationship with trade volume; the higher the trade volume, the higher the inter 

dependency. 

2) Inventory: the expected level of inventory kept between the nodes, either at the dependent 

node or the supporting node, a 3rd party or a combination of these. Interdependency has an 

inverse relationship with this criterion; the higher the stock, the lower the interdependency. 



3) Substitutability of the product or service: considers if the product or service that is being 

delivered to the dependent node is replaceable. It can be replaced with a similar product 

that has higher availability in the market. There is an inverse relationship with 

interdependency; the higher the substitutability, the lower the interdependency. 

4) Substitutability of the supplier/customer: if the supporting node, for example, a supplier or 

customer, can be replaced by another partner. The relationship is inverse; the higher the 

substitutability, the lower the interdependency. 

5) Lead-time: the time it takes to receive an order from placing it. Interdependency has a direct 

relationship with lead-time; the higher the lead-time, the higher the interdependency, as it 

is most likely to need more time to react to any disruption. 

6) Distance: the physical distance between the nodes. Interdependency has a direct 

relationship with the distance; the higher the distance, the higher the interdependency. 

7) Information transparency: the amount of information that is being shared by the supporting 

node with the dependent node. Interdependency has a direct relationship with information 

transparency; the higher the information transparency, the lower the interdependency, as 

more information gives more chance to the dependent node to react to possible disruptions. 

8) Collaboration agreement: considers how well the collaboration agreement is prepared and if 

it gives enough flexibility to the dependent node. Interdependency has a direct relationship 

with collaboration agreement; the more flexible the collaboration agreement, the lower the 

interdependency.  

9) Compatibility of IT systems: considers if IT systems of the partners are compatible. 

Compatible IT systems allow for better and faster information sharing that improves 

responses to disruptions and hence, interdependency has an indirect relationship with 

compatibility of IT systems; the higher compatibility, the lower the interdependency. 

The experts need to describe each link between two nodes considering two aspects: an estimated 

value of interdependency and the expert’s confidence in the estimate. The estimated value can be 

described as either very low, low, fairly low, medium, fairly high, high or very high. The confidence is 

used to determine the corresponding uncertainty in the result obtained and can also be one of the 

mentioned linguistic labels. 

The corresponding crisp values for the linguistic labels are assigned as shown in Table 1. 



Table 1- Crisp values corresponding to the linguistic labels for both estimated value and confidence 

Linguistic Label Very Low  Low Fairly Low  Medium  Fairly High  High   Very High 

Crisp Value 0 0.167 0.333 0.5 0.667 0.833 1 

 

Once the estimated value and the corresponding confidence are determined, a fuzzy 

interdependency weight for each link between the nodes and each interdependency criterion is 

expressed as a triangular membership function with a modal value equal to the corresponding crisp 

value. The triangular fuzzy number is defined in Appendix A. The left and right boundaries of the 

membership function are getting closer to the modal value, when confidence is increasing, and 

further away from the modal value, when confidence is decreasing.  

The following formula for determining a triangular membership function for direct interdependency 

is used: 

    ̃  (   (     (      )  )         (     (      )  )) (4) 

where     ̃  is the fuzzy interdependency weight of link   for criterion  ,            is the crisp value 

corresponding to the estimated linguistic value of the link   for criterion   if link   is direct and 

           is the crisp value of the corresponding confidence value. For example, if confidence is 

very low, i.e.       , then     ̃  (        ), or when confidence is very high, i.e.       , 

then     ̃  (              ), i.e., it is a crisp number     . 

The formula for inverse interdependency is formulated in a similar way. The modal value of the 

triangular membership function is calculated as 1 –     , while the left and right boundaries are again 

getting closer to (further away from) the modal value when the confidence is increasing 

(decreasing). 

To aggregate the interdependencies based on the fuzzy weights of all criteria, we use an Ordered 

Weighted Averaging (OWA) method, in line with Wei, Dong, & Sun (2010). This method aggregates 



the fuzzy weights, giving more importance to the criteria with higher weights. The advantage of 

using the OWA method is that criteria with higher weights, which suggest higher interdependency of 

a link with respect to these criteria, will have a higher effect than the criteria that have lower 

weights. For example, if a link is considered to have high dependency due to a low substitutability of 

the supplier and a high trade volume, but it is considered less dependent due to other criteria such 

as lead-time and distance, it will still be considered as a high interdependency link, as the two 

criteria with high weights will be considered more important than the ones with lower weights. 

The following formula for the OWA aggregation is proposed: 

 
  

 ̃  (∑    

 

   

    ̃ )  ⁄  (5) 

where   
 ̃ is fuzzy interdependency of link   on all criteria relative to number L of links to the node,   

is the total number of criteria that has been rated,      is the importance assigned to the criterion  , 

and,   is the total number of dependency links of dependent node  . The calculation requires 

summation and scalar multiplication of fuzzy numbers described in Appendix A. 

The following formula for determining the criteria importance      is proposed: 

 
     

 (   ( )   )

 (   )
         (6) 

where  ( ) gives the position of criterion   in the sorted vector of interdependency criteria weights. 

It is determined by sorting the criteria in a descending order based on the modal of their fuzzy 

weights     ̃ , and, then ranking them consecutively from 1 to R. For example, if the total number of 

criteria of link   is R = 3 and the modals of interdependencies of link       ̃ ,     ̃  and     ̃  are 0.5, 0.1 

and 0.2, respectively, then  ( ),  ( ) and  ( ) are 1, 3 and 2, respectively. As a result, criteria 

importances     ,      and      will become 
 

 
, 
 

 
 and 

 

 
, respectively. 

Assuming that empirical data is available for any of the criteria, the fuzzy number of 

interdependency can be conveniently replaced with a normalised value of the collected data. The 



normalisation should be carried out with regard to the minimum and maximum values that are 

historically established for the criterion. For example, in the case of trade volume, one needs to look 

at the historical information about the dependents relationships with the same or similar 

suppliers/customers and determine the minimum and maximum trade volumes. The normalisation 

method to be used depends on whether the relationship with the interdependency is direct or 

inverse. Higher normalised value, as with the fuzzy rating approach, should always be associated 

with higher interdependency. 

3.4 Risk Scenario 

To evaluate different GPN configurations with respect to their susceptibility to various risks, 

different risk scenarios need to be considered. A definition of a risk scenario includes a fixed time 

horizon for analysis, a sequence of the types of risk that causes perturbations of a node in the GPN 

of the considered configurations, level of perturbations, starting perturbations’ time and end time. 

These scenarios can be defined based on historical data and/or experts’ judgements.  

Perturbation level is represented by a triangular fuzzy number in the range of 0 to 1, 0 representing 

no perturbation and 1 representing a total disruption of the node activities. Each scenario is assigned 

a likelihood of occurrence. 

Causal links between risk factors are explicitly considered in a risk scenario. For example, knowing 

that the political issues are causing economic risks, implies that a risk scenario will define two 

perturbations, possibly with different levels and the corresponding starting and ending times.  

The experts are expected to describe the likelihood of a scenario and perturbation level by 

considering two aspects: the estimated value and the expert’s confidence in the estimate. Both are 

either specified directly as triangular fuzzy numbers or by using the linguistic labels, described in 

Table 1, and combined to form a fuzzy number using Formula (4).  

 



   

In this paper, we assume that the estimates are based on the estimates of a single expert. However, 

it is possible to extend the method to multiple experts by considering a weighted average of their 

opinion as proposed by Setola et al. (2009). 

3.5 Discrete Fuzzy DIIM 

The following discrete fuzzy DIIM is proposed: 

  ̃(   )   ̃  ̃ ̃( )   ̃  ̃( )  (   ̃) ̃( ) (7) 

where  ̃( ) is the vector of fuzzy inoperability values of the nodes at time period  ,  ̃ is the fuzzy 

diagonal resilience matrix of nodes,   ̃ is the matrix of fuzzy interdependencies between the nodes, 

  ̃( ) is the fuzzy external perturbation of nodes at time period   and   is the identity matrix. In this 

paper, it is assumed that all fuzzy parameters are modelled using triangular fuzzy numbers, although 

the proposed algorithm can work on any LR fuzzy number (Pedrycz and Gomide, 1998). Triangular 

fuzzy numbers are often used in applications due to their easy interpretability; they can conveniently 

represent standard linguistic terms such as “about a certain value” or “close to a certain value”. Also, 

generally calculations on triangular fuzzy numbers are easy to carry out. 

In order to determine fuzzy inoperability values in Equation (7), a novel method based on fuzzy 

extension principle given in Appendix A and interval arithmetic is developed. An advantage of this 

method is that all parameters, including perturbations, interdependencies and resilience, can be 

fuzzy. The developed method provides an accurate and efficient way to carry out fuzzy arithmetic in 

DIIM, instead of using approximations. The foundation of this method and calculation procedure is 

described in detail in Appendix B. 

It is worth mentioning that the definition of a period is flexible and can vary between different 

companies. It could potentially be between a day to a few months. However, in the example 

provided, we will assume that a period represents a week. 



3.6 Economic Loss of Risk 

The proposed fuzzy DIIM provides useful information about the operability level of GPN’s nodes that 

can be used to asses a particular GPN configuration. However, to assess suitability of a GPN, both 

perspectives, inoperability and economic benefit, need to be considered simultaneously. For 

example, a GPN configuration with a very low inoperability that has no economic benefit is not 

suitable, as well as a configuration that has a high economic benefit but with very high inoperability. 

Hence, the concept of economic loss of risk is introduced to allow for estimating the economic effect 

of risk. 

Economic loss of risk for a node in a GPN at a certain time is calculated as the product of the 

intended revenue, that can be achieved by the node when fully operable during one time period, 

and the inoperability of the node at the time (Wei et al., 2010). The intended revenue can be, for 

example, the intended value of the products produced by a manufacturer, the value of supplies 

provided or the value of the products bought by the customer at a certain period of time. 

To assess a GPN configuration from the risk perspective, the following formula is used to calculate 

the total economic loss of risk for a particular risk scenario: 

 
     ∑  ( )

 

   

 (8) 

where    is the total economic loss of risk for the GPN configuration in risk scenario  ,   is the 

number of time periods in the time horizon under consideration,    is the transpose of vector of 

intended revenue of all nodes for a single time period,   ( ) is the inoperability vector of all nodes at 

time period   for risk scenario  . 

This can be further aggregated for all scenarios as follows: 

 
  ∑    

 

   

 (9) 



where   is the expected total economic loss of risk for the GPN configuration in all risk scenarios,    

is the number of risk scenarios and    is the likelihood of risk scenario  . 

4 An Example from Food Industry 

The proposed risk model has been developed and implemented within FLEXINET – Intelligent 

Systems Configuration Services for Flexible Dynamic Global Production Network. It includes three 

industrial collaborators from different sectors. The process of adapting the model and its application 

in their practices is in progress. One of the collaborators is in the beverage sector. Based on this, we 

defined an illustrative example of a GPN of a drink manufacturing company that includes suppliers of 

fruits, certain ingredients and bottling products. It has two production facilities, one for 

fermentation and another for bottling. Most of company’s operation is concentrated in Region 1, 

while the supplier of ingredients and one of the possible suppliers of bottling products are in 

another region (Region 2). The company is facing a choice between two suppliers of bottling 

products, one residing in Region 1 and the other in Region 2. The diagram representing the flow of 

material within this GPN is shown in Figure 1.  

 

Figure 1- Configuration of a GPN in food industry 

Relationships in the GPN lead to interdependencies between its nodes. It is worth mentioning that 

interdependencies exist not just between the links of the flow of material; other types of 



dependencies can exist in the reverse links. For example, while Fermentation Plant is dependent on 

Supplier 1 for the supply of fruits, Supplier 1 can also be dependent on Fermentation Plant as it may 

be the main customer of a particular type of fruits in the region. However, we will assume that 

Supplier 4 is not dependent on Fermentation Plant, as it has many alternative customers.  

We consider two network configurations. Configuration 1 uses Supplier 3 (in Region 2) for bottling 

products, while Configuration 2 utilizes Supplier 2 (in Region 1). These two configurations will be 

compared in terms of their inoperability and economic loss of risk. Diagrams of the GPN 

Configurations 1 and 2 and the interdependency links between the GPN nodes are presented in 

Figure 2. 

 

Figure 2- Interdependencies between the nodes in Configuration 1 and Configuration 2 

 

4.1 Calculating Interdependencies 

As described in Section 3.3., interdependencies are calculated using the fuzzy multi criteria method. 

For example, the interdependency value of Fermentation Plant on the Supplier 1 is calculated based 

on criteria values and the corresponding confidence presented in Table 2 and using Equation (4). 



Table 2- Linguistic labels of criteria of interdependency of Fermentation Plant on Supplier 1 

Criteria Value Confidence 

Trade volume Fairly High High 

Inventory Fairly High Medium 

Substitutability of the product Low High 

Substitutability of the supplier/customer  High High 

Lead-time Medium Medium 

Distance Very Low High 

Information transparency Medium High 

Collaboration agreement Low Very High 

Compatibility of IT systems Low Very High 

 

Using the judgements provided in Table 2, the fuzzy dependency value of Fermentation Plant on 

Supplier 1 is calculated using Equations (5) and (6) as (0.507, 0.663, 0.833) / 2 = (0.254, 0.332, 0.417). 

Please note that the obtained value is divided by the number of dependencies of Fermentation Plant 

which is 2, including Supplier 1 and Bottling Plant. Using the same method, all fuzzy interdependency 

values shown in Figure 2 are calculated for both Configurations 1 and 2 and presented in Table 3. 

Table 3- Interdependency values for both GPN configurations 

From Node To Node Fuzzy Interdependency Value 

Configuration 1 Configuration 2 

Supplier 1 Fermentation Plant (0.254, 0.332, 0.417) (0.254, 0.332, 0.417) 

Fermentation Plant Supplier 1 (0.704, 0.759, 0.815) (0.704, 0.759, 0.815) 

Supplier 2 Bottling Plant --- (0.102, 0.135, 0.169) 



From Node To Node Fuzzy Interdependency Value 

Configuration 1 Configuration 2 

Bottling Plant Supplier 2 --- (0.199, 0.389, 0.593) 

Supplier 3 Bottling Plant (0.139, 0.168, 0.196) --- 

Bottling Plant Supplier 3 (0.310, 0.565, 0.819) --- 

Supplier 4 Bottling Plant (0.110, 0.135, 0.160) (0.110, 0.135, 0.160) 

Fermentation Plant Bottling Plant (0.123, 0.136, 0.149) (0.123, 0.136, 0.149) 

Bottling Plant Fermentation Plant (0.185, 0.227, 0.269) (0.185, 0.227, 0.269) 

Bottling Plant Consumers (0.635, 0.690, 0.770) (0.635, 0.690, 0.770) 

Consumers Bottling Plant (0.178, 0.178, 0.178) (0.178, 0.178, 0.178) 

 

The values of interdependencies between Bottling Plant and Supplier 2 in Configuration 2 are lower 

than the interdependencies between Bottling Plant and Supplier 3 in Configuration 1. This is due to 

the fact that there is a smaller distance and lead-time, better collaboration agreement, information 

transparency and compatibility of IT systems between Supplier 2 and the Bottling Plant than that of 

the Supplier 3 and Bottling Plant. 

Fuzzy resilience, that represents the recovery performance of a node, and the fuzzy intended 

revenue, which determines the economic loss that is incurred for each unit of inoperability (i.e. 

complete inoperability for one time period in the node), are set as shown in Table 4. 

 

Table 4- Fuzzy resilience and intended revenue values for all nodes in the network 

Node Resilience Intended Revenue 

Supplier 1 (0.8, 0.9, 1) (0, 0, 0) 

Supplier 2 (0.8, 0.9, 1) (0, 0, 0) 



Node Resilience Intended Revenue 

Supplier 3 (0.7, 0.8, 0.9) (0, 0, 0) 

Supplier 4 (0.7, 0.8, 0.9) (0, 0, 0) 

Fermentation Plant (0.8, 0.9, 1) (1500, 2000, 2500) 

Bottling Plant (0.8, 0.9, 1) (2500, 3000, 3500) 

Consumers (0.5, 0.6, 0.7) (0, 0, 0) 

 

As evident from Table 4, the resilience of nodes in Region 1 is generally considered to be higher than 

in Region 2, except of Consumers which have lower resilience, i.e. they will be slower to respond and 

manage disruptions.  The loss of risk is zero for all suppliers and consumers, as their loss will not 

directly affect the company. However, there are intended revenues defined for both of the 

company’s production facilities, i.e. Fermentation Plant and Bottling Plant. 

4.2 Risk Scenarios 

Based on risk factors identified above, four relevant risk scenarios that can affect the network are 

defined. Scenarios 1 to 3 include two regional risks, both regional and node specific risks, a node 

specific risk only, respectively, while Scenario 4 considers a node specific risk associated with 

Supplier 2, which is relevant to Configuration 2, but not Configuration 1. A time horizon of 50 time 

periods is analysed. We are assuming that a period represents a week. They are shown in Table 5. 

Table 5- List of risk scenarios used for the network evaluation 

Scenario Likelihood Risk Factor Affected Perturbation Period  

Scenario 1 (0.1, 0.15, 0.2) Political Instability Region 2 (0.1, 0.2, 0.3) 1 to 10 

Economic Issues Region 2 (0.05, 0.1, 0.15) 5 to 14 

Scenario 2 (0.05, 0.1, 0.2) Economic Issues Region 1 (0.1, 0.2, 0.3) 1 to 10 

Insolvency Supplier 1 (0.2, 0.3, 0.4) 1 to 15 



Scenario 3 (0.3, 0.4, 0.5) Machine Malfunction Bottling Plant (0.8, 0.9, 1) 1 

Scenario 4 (0.1, 0.2, 0.3) Insolvency Supplier 2 (0.1, 0.2, 0.3) 1 to 10 

 

4.3 Analysis of Results 

An inoperability timeline shows the changes in the inoperability value of a particular node over the 

time horizon. Since the inoperability value is fuzzy, it is represented by different  -cuts’ lower and 

upper endpoints, Min and Max, respectively. The  -cut of a fuzzy number is defined in Appendix A. 

The lines obtained for                   and   using the discrete Fuzzy DIIM presented in Section 

3.5 are shown in Figure 3 to Figure 7. An example of the inoperability timeline of the Fermentation 

Plant in Scenario 2 of Configuration 1 is shown in Figure 3 where y-axis is the level of inoperability 

and the x-axis is the timeline. For example, for    , there are two lines, one for the lower 

endpoint that is the most optimistic value for the inoperability of the node and another for the 

upper endpoint that is the most pessimistic value for the inoperability. The distances between these 

two lines correspond to uncertainty in inoperability; the larger the distance the more uncertainty in 

inoperability. For    , there is only one line which models the most likely values of the 

inoperability over the time horizon, i.e., its modals, in this case, the upper and the lower endpoints 

are the same. It might be interesting to notice that the upper and lower endpoints are not 

necessarily symmetrical to the point, modal, with the most likely value; this point can be nearer to 

the most pessimistic or most optimistic inoperability. 



 

Figure 3- Inoperability timeline of Fermentation Plant in Scenario 2 of Configuration 1 

 

It can be seen that inoperability of the Fermentation Plant is increasing in the first 10 time periods 

due to a disruption caused by Economic Issues in Region 1 and Insolvency of Supplier 1, after which 

it gradually decreases until it returns back to full operability in time period 30.  

The inoperability timeline of all nodes in the Risk Scenarios 1, 2, 3 and 4 for the both GPN 

Configurations are shown in Figure 4, Figure 5, Figure 6 and Figure 7, respectively.  



  

Figure 4- Inoperability of the nodes in both GPN configurations for the Risk Scenario 1  



 

Figure 5- Inoperability of the nodes in both GPN Configurations for the Risk Scenario 2 



 

Figure 6- Inoperability of the nodes in both GPN Configurations for the Risk Scenario 3 



 

Figure 7- Inoperability of the nodes in both GPN Configurations for the Risk Scenario 4 

 



In Figure 4 (Risk Scenario 1), both Supplier 3 and Supplier 4 in Region 2 are directly affected which 

results in a major disruption in Configuration 1. In particular, inoperability of Supplier 3 and 

Supplier 4 propagates to Bottling plant and Consumers, and also, but with a smaller effect on 

Fermentation and Supplier 1. However, the effects are lower for the Configuration 2 as only Supplier 

4 is being utilised. Looking at the trend shown for the Bottling Plant in Configuration 1, the timing of 

the two perturbations, and the propagation and accumulation of inoperability are quite visible, 

while, Configuration 2 is affected substantially less than Configuration 1. 

In Figure 5 (Risk Scenario 2), Region 1 and Supplier 1 are affected, and that has a substantial impact 

on both configurations since most of the company’s operations are in Region 1 and both 

configurations depend on Supplier 1. Albeit, inoperabilities of the production facilities are slightly 

higher in Configuration 2 as Supplier 2 is also located in risk affected Region 1. It is worth mentioning 

that due to high inoperabilities of Supplier 1, the most likely inoperability (   ) is closer to the 

most pessimistic inoperability (upper end point Max, when    ) than the most optimistic 

inoperability (lower end point Min, when    ).  

In Figure 6 (Risk Scenario 3), the short-term disruption affects the Bottling Plant and have a similar 

impact on both configurations and on Supplier 3 and Supplier 2, used exclusively in Configurations 1 

and 2, respectively. In this risk scenario, the most likely inoperability values are closer to the most 

optimistic inoperability, rather than the most pessimistic inoperability. Additionally, a delay can be 

observed in the inoperability of the adjacent nodes to the Bottling Plant, such as Fermentation Plant, 

while, even a longer delay is observed for Supplier 1, that is further away from the Bottling Plant.   

On the other hand, Scenario 4 in Figure 7 considers a situation where Supplier 2 is struggling with 

insolvency. As a result, only Configuration 2 is affected. However, due to small interdependency 

between the Bottling Plant and Supplier 2, the effect is not substantial on other nodes. 



The average inoperabilities over the time horizon of all the nodes in the network are estimated as 

triangular fuzzy numbers for each scenario and both configurations as shown in Table 6. The 

likelihood of the scenarios are not considered in this calculation.  

Table 6- Average inoperability of all the scenarios for both configurations 

Average  Inoperability Configuration 1 Configuration 2 

Scenario 1 (0.011, 0.027, 0.053) (0.009, 0.021, 0.037) 

Scenario 2 (0.039, 0.091, 0.157) (0.039, 0.090, 0.152) 

Scenario 3 (0.004, 0.010, 0.023) (0.004, 0.009, 0.019) 

Scenario 4 (0.003, 0.006, 0.009) (0.003, 0.008, 0.016) 

Total  (0.057, 0.134, 0.242) (0.056, 0.128, 0.224) 

 

As it can be seen from Table 6, the average inoperability in Scenario 1 is higher in the Configuration 1 

in comparison with the Configuration 2, which is expected. In Scenario 2, inoperability of 

Configuration 2 is slightly lower than of Configuration 1, although, the risk affected Region 1 where 

there are two suppliers in Configuration 2 and only 1 in Configuration 1. This can be justified as in 

the Configuration 1, Supplier 3 from Region 2 is considerably more affected by the disruption in 

Region 1 due to high interdependency with the Bottling plant. On the other hand, in Configuration 2, 

Supplier 3 is not included while Supplier 2 is slightly affected by the disruption in Region 1. This leads 

to an increased average inoperability in Configuration 1. Furthermore, in Scenario 3, Configuration 2 

is again slightly better in terms of inoperability than Configuration 1. This is due to the lower 

interdependency between Supplier 2 and Bottling plant compared to interdependency between 

Supplier 3 and Bottling Plant which reduces the overall inoperability. Finally, in Scenario 4, 

Configuration 2 has higher average inoperability, as Supplier 2 is only used in Configuration 2. 



However, inoperability is not zero in Configuration 1, as inoperability of the Supplier 2 is considered 

in the average inoperabilities of all nodes, despite the fact that it cannot propagate to other nodes. 

Another perspective for the comparison of the configurations is the economic effect of risk on the 

network. Table 7 represents the total loss of risk over the time horizon for both configurations and 

all the risk scenarios. The expected economic loss of risk for each configuration is calculated by 

weighting the total economic loss of risk of each scenario by its likelihood using Equation (9).  

Table 7- Total economic loss of risk over the time horizon for all the scenarios and the expected economic loss of risk for 
both configurations 

 

Scenario 

Economic Loss of Risk 

Configuration 1 Configuration 2 

Scenario 1 (1201, 4418, 12456) (518, 1868, 5079) 

Scenario 2 (8370, 26233, 57662) (8569, 26667, 57687) 

Scenario 3 (2007, 4378, 10238) (1970, 4143, 9161) 

Scenario 4 (0, 0, 0) (321, 1245, 3542) 

Expected Economic Loss of Risk (1141, 5037, 19143) (1103, 4853, 18196) 

 

Generally, the economic loss of risk is calculated for the nodes that are financially important to the 

company, which in this case is the Fermentation Plant and Bottling Plant. From Table 7 it can be 

observed that Scenario 1 is more than twice as costly for the Configuration 1 as opposed to 

Configuration 2, while average inoperability of Configuration 1 is slightly higher than inoperability of 

Configuration 2 (presented in Table 2). In this example, Configuration 2 outperforms Configuration 1 

in terms of risks, including inoperability and total economic loss of risk. Of course, in practice, in 

addition to the risk aspect, GPN configurations are also evaluated based on economic measures. 



5 Conclusions 

In this paper, we investigated the effects and propagation of risk in GPNs at strategic level. Different 

types of risk factors that affect GPNs, including node specific and regional risk factors, are 

considered. The concept of risk scenarios for GPNs is introduced to allow for a comparison between 

various potential GPNs configurations. A novel Fuzzy DIIM is proposed to evaluate the propagation 

of disruptive events in such networks. Furthermore, a multi criteria method is introduced to 

determine the interdependencies between nodes in the GPNs. Additionally, the concept of 

economic loss of risk is utilised to facilitate the comparison of risk effects from the economic 

aspects. Finally, an illustrative example from food manufacturing is discussed in details to showcase 

the application of the proposed method. While the provided example is kept simple for illustrative 

purposes, larger and more complex GPN configuration problems can be studied using the described 

approach. The large and complex GPN will have more nodes and, consequently, more 

interdependencies among them. However, the method for determining fuzzy interdependency and 

the fuzzy DIIM proposed can be easily applied to this type of GPN. 

In the future, we will have a closer look at the cost analysis perspective of evaluation of GPN 

configurations and its application jointly with the risk evaluation proposed. Also, a more granular risk 

model of GPNs will be developed to be used on the tactical level to be combined with the strategic 

level risk model.  
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Appendix A: Fuzzy Arithmetic Definitions 

Definition of fuzzy number 

A fuzzy number is represented as a fuzzy set over real numbers which can model uncertainty in a 

value. The fuzzy set determines the membership degree of any real number to the fuzzy number; a 

membership degree of 1 shows the complete membership, while a degree of 0 shows no 

membership and degrees between 0 and 1 present a partial membership of a number to the fuzzy 

value. The function that determines the membership degree of a real number to the fuzzy number is 

referred to as the membership function. Fuzzy numbers are assumed to have a piece-wise 

continuous and convex membership functions and are normalised, i.e., have exactly one point with a 

membership degree of one (Klimke, 2006). 

Definition of triangular fuzzy number 

Triangular fuzzy numbers are one of the most often used types of fuzzy numbers that are identified 

by a triplet:  ̃  (        )               , where    is the lower boundary with 

membership degree 0,    is the modal value with membership degree 1 and    is the upper 

boundary with membership degree 0, of possible values that the fuzzy number can take. The 

membership degrees between these points are determined by linear functions.  

Definition of Extension principle 

Extension principle, introduced by Zadeh (1975), is a crucial method which defines the way fuzzy 

calculations are performed on fuzzy numbers. This principle defines that for any function, the 

membership degree of the output of function is the supremum of the minimum memberships of all 

input values to their corresponding fuzzy sets that will result in the output value; or in other words, 

for function                 where   ,   , …,    and   are sets of real numbers, and fuzzy 

sets    ̃    ,   ̃    , …,   ̃    : 



  (  ̃   ̃     ̃)( )     
     ̃        ̃     (          )

    [   ̃ (  )    ̃ (  )      ̃ (  )] 

However, Extension principle is computationally prohibitive. More efficient calculations methods 

have been proposed. Fuzzy addition, unary negation, and scalar multiplication of triangular fuzzy 

numbers  ̃  (        ) and  ̃  (        ) and real non-negative scalar value  , which are used 

in the method proposed, can be efficiently calculated as follows: 

1)  ̃   ̃  (                 ) 

2)   ̃  (           ) 

3)   ̃  (           ) 

Definition of  -cut 

An  -cut of a fuzzy number (or fuzzy set) is a crisp set of values that have a membership degree of at 

least  . The membership function of a fuzzy number is assumed to be convex, which means that any 

 -cut of fuzzy numbers is an interval that can be identified by its lower and upper endpoints,      

and     , respectively. Fuzzy calculations can be simplified by discretising   and using the interval 

calculations to determine the corresponding endpoints of  -cuts. This approach is used in the fuzzy 

DIIM proposed.  

An  -cut of the triangular fuzzy number  ̃ is illustrated in Figure 8. 



 

Figure 8- An  -cut of a triangular fuzzy number 

Appendix B: Fuzzy DIIM 

The basic arithmetic operations on triangular fuzzy numbers are simple. However, while triangular 

fuzzy numbers are closed for addition and subtraction, they are not closed for multiplication and 

division. Different procedures which approximate results of multiplication and division and express 

them as triangular fuzzy numbers have been proposed in the literature (Giachetti and Young, 1997). 

As Equation (7) includes multiple multiplications and is applied iteratively, we developed an exact 

method for fuzzy arithmetic in the fuzzy DIIM method based on  -cuts. As discussed in Section 3.5, a 

vector representation of the fuzzy DIIM proposed can be written as follows: 

 ̃(   )   ̃  ̃ ̃( )   ̃  ̃( )  (   ̃) ̃( ) 

A non-vector version of this model is as follows: 

  ̃(   )      ̃ ∑    
 ̃   ̃( )

 

     ̃  
 ̃( )  (      ̃)  ̃( ) 

and a crisp non-vector representation can be written as: 

   (   )      ∑    
   ( )

 

       
 ( )  (      )  ( ) (10) 



Since this function is continuous on all variables and parameters, the calculation can be simplified to 

finding the output   ( ) for each  -cut,        ), which means effectively determining a lower 

  
  ( ) and an upper   

  ( ) endpoints. For a general function, this is equivalent to two global 

optimisation problems which have to find the global minimum and maximum values of the function 

  ( ) in the boundary space determined by the  -cut intervals of the fuzzy input variables and 

parameters. We are analysing and applying an efficient method to determine the global optima for 

function (10) as follows.  

We need to find the stationary points of function (10) which requires the partial differentials on one 

of the variables or parameters to be zero. We investigate this requirement, for all variables and 

parameters in function (10), as follows: 
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The function (10) is continuous and all partial differentials (1) to (4), except for the resilience matrix 

(5), are positive which implies that   (   ) is increasing when   ( ),   ( ),     
  and   

 ( ) are 

increasing. Therefore, assuming that      is fixed, the minimum (maximum) value of function (10) 

   
  (   ) (and    

  (   )) in an  -cut interval is obtained by using the minimum (maximum) 

values   
  ( ),    

  ( ),     
    and   

   ( ) (  
  ( ),    

  ( ),     
    and   

   ( )). For fixed 

value       , the following holds: 
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The question is which value of      leads to the minimum value,    
  (   ), and the maximum 

value,    
  (   ), of function (10).    

If ∑     
     

  ( )    
   ( )    

  ( )    then (11) is increasing in the  -cut of     ̃ from     
   to     

   

and: 
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This implies that minimum of   (   ),   
  (   ) is achieved for     

  . 

Also, if ∑     
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to     
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This implies that maximum of   (   ),   
  (   ) is achieved for     

  . 

If ∑     
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  ( )    then (11) is decreasing in the  -cut of     ̃ from     
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This implies that minimum of   (   ),   
  (   ) is achieved for     

  . 

Also, if ∑     
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  ( )    then (12) is decreasing in the  -cut of     ̃ from     
   

to     
   and: 
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This implies that maximum of   (   ),   
  (   ) is achieved for     

  . 

Calculation procedure for fuzzy DIIM 

The inoperability is determined by finding  -cut intervals that represent the inoperability value at 

various membership degrees        . The lower and upper endpoints of the  -cut interval for 

inoperability of node   at time period   for membership degree  ,   
  ( ) and   

  ( ) respectively, 

are calculated as follows: 

From     to all time periods in the time horizon. 

From    , to all the nodes in the network. 

For     to     with an arbitrary step increment. 

Beginning 

Step 1: If ∑     
     

  ( )    
   ( )    

  ( ) then     
 =    

    

Else     
 =    

  .  

Step 2: If ∑     
     

  ( )    
   ( )    

  ( ) then     
 =    

    

Else     
 =    

  .  

Step 3:   
  (   )      

 ∑     
     

  ( )      
   

   ( )  (      
 )  

  ( )  



Step 4:   
  (   )      

 ∑     
     

  ( )      
   

   ( )  (      
 )  

  ( ). 

End 

where     
   ,   

   ( ) and     
   (    

   ,   
   ( ) and     

  ) are the lower (upper) end-points of the fuzzy 

interdependency value between nodes   and  , the fuzzy perturbation level of nodes   at time period 

  and the fuzzy resilience of node  , respectively, while,     
  and     

  are the resilience values of 

node   that lead to the minimum and maximum value of inoperability, respectively. 

Steps 1 and 2 find the corresponding resilience values in the  -cut of     , i.e., interval [    
       

  ]  

that can yield the lower and upper endpoint values of the  -cut of inoperability   
  (   ) and 

  
  (   )  respectively, following rules of multiplication of  -cuts of fuzzy numbers. One can notice 

that depending on the value of resilience’s coefficients, resilience can have either a direct impact on 

inoperability when     
 =    

    and     
 =    

   or an inverse impact when     
 =    

    and 

    
 =    

  . 
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