
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 2 Issue 2 Article 1

April 2011

Next Generation Middleware Technology for Mobile Computing Next Generation Middleware Technology for Mobile Computing

B. Darsana
Sr. Lecturer, Dept of ISE, The Oxford College of Engineering, Bangalore – 560068, Karnataka,
darsana@gmail.com

Karabi Konar
Sr. Lecturer, Dept of ISE, The Oxford College of Engineering, Bangalore – 560068, Karnataka,
karabi@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcct

Recommended Citation Recommended Citation
Darsana, B. and Konar, Karabi (2011) "Next Generation Middleware Technology for Mobile Computing,"
International Journal of Computer and Communication Technology: Vol. 2 : Iss. 2 , Article 1.
DOI: 10.47893/IJCCT.2011.1074
Available at: https://www.interscience.in/ijcct/vol2/iss2/1

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol2
https://www.interscience.in/ijcct/vol2/iss2
https://www.interscience.in/ijcct/vol2/iss2/1
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol2%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol2/iss2/1?utm_source=www.interscience.in%2Fijcct%2Fvol2%2Fiss2%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

Next Generation Middleware Technology for Mobile Computing

Next Generation Middleware Technology for
Mobile Computing

B. Darsana, Karabi Konar
Sr. Lecturer, Dept of ISE,

The Oxford College of Engineering,
Bangalore – 560068, Karnataka

Abstract-Current advances in portable devices, wireless
technologies, and distributed systems have created a
mobile computing environment that is characterized by
a large scale of dynamism. Diversities in network
connectivity, platform capability, and resource
availability can significantly affect the application
performance. Traditional middleware systems are not
prepared to offer proper support for addressing the
dynamic aspects of mobile systems. Modern distributed
applications need a middleware that is capable of
adapting to environment changes and that supports the
required level of quality of service.

This paper represents the experience of several research
projects related to next generation middleware systems.
We first indicate the major challenges in mobile
computing systems and try to identify the main
requirements for mobile middleware systems. The
different categories of mobile middleware technologies
are reviewed and their strength and weakness are
analyzed.

Key Words: dynamism, platform capability, quality
of service, resource availability, network connectivity.

1. Introduction

The availability of lightweight, portable computers
and wireless technologies has created a new class of
applications called mobile applications. These
applications often run on scarce resource platforms such
as personal digital assistants, notebooks, and mobile
phones, each of which have limited CPU power, memory,
and battery life. They are usually connected to wireless
links, which are characterized by lower bandwidths,
higher error rates, and more frequent disconnections.

Most distributed applications and services were designed
with the assumption that the terminals were powerful,
stationary and connected to fixed networks. Conventional
middleware technologies thus have focused on masking
out the problems of heterogeneity and distribution to
facilitate the development of distributed systems. They
allow the application developers to focus on application
functionality rather than on dealing explicitly with
distribution issues.
Under the highly variable computing environment
conditions that characterize mobile platforms, it is
believed that existing traditional middleware systems are
not capable of providing adequate support for the mobile
wireless computing environment. There is a great demand
for designing modern middleware systems that can
support new requirements imposed by mobility. This
paper provides a most relevant mobile middleware
systems and goals that still need to be achieved.

2. Mobile Architectural Requirements

Middleware is an enabling layer of software that
resides between the application program and the
networked layer of heterogeneous platforms and
protocols. It decouples applications from any
dependencies on the plumbing layer that consists of
heterogeneous operating systems, hardware platforms and
communication protocols

Middleware plays a vital role in hiding the complexity
of distributed applications. These applications typically
operate in an environment that may include
heterogeneous computer architectures, operating systems,
network protocols, and databases. It is unpleasant for an
application developer to deal with such heterogeneous
“plumbing”.

Middleware’s primary role is to conceal this
complexity from developers by deploying an isolated
layer of APIs[6]. This layer bridges the gap between

74

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

Next Generation Middleware Technology for Mobile Computing

application program and platform dependency.
Middleware is defined as follows by Linthicum.

2.1 The Limitations of Mobile Computing

There are at least three common factors that affect the
design of the middleware infrastructure required for
mobile computing: mobile devices, network connection,
and mobility, which vary from one to another in term of
resource availability. Devices like laptops can offer fast
CPUs and large amount of RAM and disk space while
others like pocket PCs and phones usually have scarce
resources. Hence, middleware should be designed to
achieve optimal resource utilization. Network connections
in mobile scenarios is characterized by limited bandwidth,
high error rate, higher cost, and frequent disconnections
due to power limitations, available spectrum, and
mobility.

Due to these limitations, conventional middleware
technologies designed for fixed distributed systems are
not prepared to support mobile systems. They target a
static execution platform where the host location is fixed,
the network bandwidth does not fluctuate, and services
are well defined. We next identify a number of important
requirements that must be provided by middleware for
mobile computing.

2.2 Analyzing the Requirements for Mobile
Computing

During the system lifetime, the application behavior
may need to be altered due to dynamic changes in
infrastructure facilities, such as the availability of
particular services.

Dynamic reconfiguration is thus required and can be
achieved by adding a new behavior or changing an
existing one at system runtime. Dynamic changes in
system behavior and operating context at runtime can
trigger re-evaluation and reallocation of resources.
Middleware supporting dynamic reconfiguration needs to
detect changes in available resources and either reallocate
resources, or notify the application to adapt to the
changes.

Adaptability[9] is also part of the new requirements
that allows applications to run efficiently and predictably
under a broader range of conditions. Through adaptation a
system can adapt its behavior instead of providing a
uniform interface in all situations. The middleware needs
to monitor the resource supply/demand, compute
adaptation decisions, and notify applications about
changes.

Asynchronous interaction tackles the problems of high
latency and disconnected operations that can arise with
other interaction models. A client using asynchronous

communication primitives issues a request and continues
operating and then collects the result at any appropriate
time. The client and server components do not need to be
running concurrently to communicate with each other. A
client may issue a request for a service, disconnect from
the network, and collect the result later on. This type of
interaction style reduces the network bandwidth
consumption, achieves decoupling of client and server,
and elevates system scalability.

Context-awareness is an important requirement to
build an effective and efficient adaptive system. The
context of a mobile unit is usually determined by its
current location which, in turn, defines the environment
where the computation associated with the unit is
performed. The context may include device
characteristics, user’s activities, services, as well as other
resources of the system. Context-awareness is used by
several systems; however, few systems sense execution
context other than location. The system performance can
be increased when execution context is disclosed to the
upper layer that assists middleware in making the right
decision.

Lightweight middleware needs to be considered when
constructing middleware for mobile computing. Current
middleware platforms like CORBA[7] are too heavy to
run on devices with limited resources. By default, they
contain a wide range of optional features and all possible
functionalities, many of which will be unused by most
applications. For example, invoking a method on a remote
object involves only client side functionality and either
Dynamic or Static Invocation Interface. Most of the
existing ORB implementations provide either a single or
two separate libraries for the client and server sides that
contains all functionality. This forces the client program
to be glued with the entire functionality without having a
choice to select a specific subset of this functionality.

3. Mobile Middleware Technologies

This section sheds some light on the different types of
mobile middleware technologies. We start by introducing
a classification that allows us to contrast and evaluate the
different categories. Among the middleware systems we
reviewed, we have identified four categories of
middleware. Each category aims to support at least one of
the above requirements imposed by mobility. These
categories are reflective middleware, tuple space, context-
aware middleware, and event-based middleware, each of
which attempts to address the previous requirements
using different approaches. The following table illustrates
how various requirements are met by the different
categories.

75

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

Next Generation Middleware Technology for Mobile Computing

Table: 3.1. Requirements Vs Categories

Requirements Reflective Tuple
Space

Context
Aware

Event
Based

Synchronous/
connection
based

X X

Asynchronous/
connectionless X X
Re-
configuration X

Adaptation X X
Awareness X X
Light weight X

The above table shows the relation between Requirements
and Categories. For synchronous /connection based
Reflective and Context Aware is applicable. For
asynchronous/connection Event based and Tuple space is
applicable. For Light weight requirement Event based is
the best approach. For Awareness and Adaption
Reflective and context Aware meet the requirements.

3.1 Reflective Middleware

The reflection technique was initially used in the field
of programming languages to support the design of more
open and extensible languages. Reflection is also applied
in other fields including operating systems and more
recently distributed systems. The principle of reflection
enables a program to access, reason about and change its
own behavior.

Smith defined the concept of reflection in the
following quote: “In as much as a computational process
can be constructed to reason about an external world in
virtue of comprising an ingredient process (interpreter)
formally manipulating representations of that world, so
too a computational process could be made to reason
about itself in virtue of comprising an ingredient process
(interpreter) formally manipulating representations of its
own operations and structures”.

A reflective system consists of two levels referred to as
meta-level and base-level[11]. The former performs
computation on the objects residing in the lower levels.
The latter performs computation on the application
domain entities. The reflection approach supports the
inspection and adaptation of the underlying
implementation (the base-level) at run time. A reflective
system provides a meta-object protocol (meta-interface)
to define the services available at the meta-level. The
meta-level can be accessed via a concept of reification.
Reification means exposing some hidden aspect of the
internal representation and hence they can be accessed by
the application (the base-level). The implementation

openness offers a straightforward mechanism to insert
some behavior to monitor or alter the internal behavior of
the platform. This enables the application to be in charge
of inspecting and adapting the middleware behavior based
on its own needs. Thus, a lightweight middleware with a
minimal set of functionality is achieved to run on mobile
systems.

The main motivation of this approach is to make the
middleware more adaptable to its environment and better
able to cope with changes. Examples of middleware
systems that adopted the concept of reflection are
OpenCorba, Open-ORB(Object request Broaker),
DynamicTAO , FlexiNet , and Globe.

3.2 Tuple Space Middleware

Communication in a wireless environment is
characterized by frequent disconnections and limited
bandwidth. Communication models such as message
passing, RPC, or RMI[6] all have the drawback of tight
coupling. This means that a sender has to know the exact
identity and address of a receiver. Also, the sender has to
wait for the receiver to be ready for exchanging
information (synchronization paradigm). In distributed
open systems this tends to be too restrictive. A decoupled
and opportunistic style of computing is thus required.
Computing is expected to proceed even in the presence of
disconnection and to exploit connectivity whenever it
becomes available.

One solution is the concept of tuple space, which was
initially introduced by Gelernter in as part of the Linda
coordination language. Tuple Space systems[10] have
proved their ability for facilitating communication in
wireless settings. In general, a tuple space is a globally
shared, associatively addressed memory space that is used
by processes to communicate. A tuple space system can
be realized as a repository of tuples, which are basically a
vector of typed values or fields. Client processes create
tuples and place them in the tuple space using a write
operation. Also, they can concurrently access tuples using
read or take operations. Most tuple space systems support
both versions of the tuple retrieval operations, blocking
and non-blocking.

A template, which is similar to a tuple, is used to
match the contents of tuples in the tuple space during the
retrieval operations. A template matches a tuple if they
have an equal number of fields and each template field
matches the corresponding tuple field. This form of
communication fits well in mobile setting where logical
and physical mobility is involved.

76

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

Next Generation Middleware Technology for Mobile Computing

The Tuple space communication model, such as the
one used in Linda,provides great flexibility for modeling
concurrent process. This approach has also been extended
with distributed tuple space.

3.3 Context-Aware Middleware

Mobile systems run in an extremely dynamic
environment. The execution context changes frequently
due to the user’s mobility. Mobile hosts often roam
around different areas, and services that are available
before disconnecting may not be available after
reconnecting. Also, the bandwidth and connectivity
quality may quickly alter based on the mobile host
movements and their locations.

The application developers cannot predict all the
possible execution contexts that allow the application to
know how to react in every scenario. The middleware has
to expose the context information to the application to
make it aware of the dynamic changes in execution
environment.

The application then instructs the middleware on how
to adapt its own behavior in order to achieve the best
quality of service. Many research groups gave special
attention in particular to location awareness. For example,
location information was exploited to provide travelers
directional guidance, to discover neighboring services,
and to broadcast messages to users in a specific area.
Most location-aware systems depend on the underlying
network operating system to obtain location information
and generate a suitable format to be used by the system.

The heterogeneity of coordination information is not
supported and hence different positioning systems are
required to deal with different sensor technologies, such
as the Global Positioning System (GPS) outdoors, and
infrared and radio frequency indoors.

MobiPADS is a middleware system for mobile
environment. The principal entity is Mobilets, Which are
entities that provide a service, and which can be migrated
between different MobiPADS environment.

3.4 Event-Based Middleware

Invocation-based middleware systems such as
CORBA(Common object request Broaker Architecture)
or Java (Remote Method Invocation)[7] are useful
abstractions for building distributed systems. The
communication model for these platforms is based on a
request/reply pattern: an object remains passive until a
principle performs an operation on it. This kind of model
is adequate for a local area network (LAN) with a small

number of clients and servers, but it does not scale well to
large networks like the Internet.

The main reason is that the request/reply model only
supports one-to-one communication and imposes a tight
coupling between the involved participants because of the
synchronous paradigm. This model is also unsuitable for
unreliable and dynamic environment.

The event-based communication paradigm is a
possible alternative for dealing with large-scale systems.
Event notification is the basic communication paradigm
that is used by event-based middleware systems. Events
contain data that describes a request or message. They are
propagated from the sending components to the receiver
components. In order to receive events, clients
(subscribers) have to express (subscribe) their interest in
receiving particular events. Once clients have subscribed,
servers (publishers) publish events, which will be sent to
all interested subscribers.

This paradigm hence offers a decoupled, many-to-
many communication model between clients and servers.
Asynchronous notification of events is also supported
naturally. There are several examples of middleware
based on the event-based systems, but not limited to,
Hermes, CEA, STEAM, JEDI and ToPSS.

3.5 Other Middleware Solutions

There are many other middleware solutions that have
been proposed particularly to target mobility aspects.
Unpredictable disconnections are one of the major
mobility issues that have been addressed by several
systems. Systems like Coda, its successor Odyssey],
Bayou, and xmiddle have used data replication to increase
data availability to mobile users. This allows users access
to replicas and to continue their tasks whenever the
disconnection operations take place.

Each system uses different mechanisms to guarantee
the ultimate consistency among the replicas. These
mechanisms include the support for discovery of
inconsistent data as well as data reconciliation. Services
discovery is another well-know problem introduced by
user mobility. In a static environment, new services can
be easily discovered by asking service providers to
register with a well-known location service. In a mobile
computing environment, the situation is different since
mobile hosts often roam around various areas.

Services that were present before disconnecting from
the network may not exist after reconnecting. Jini and
Ninja Service Discovery Service (SDS) are examples of
systems that support dynamic service discovery, Bayou is

77

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

Next Generation Middleware Technology for Mobile Computing

the system which support s disconnected operations and
Jini is the system which support discovery of services.

4. Analysis of next-generation middleware

This section summarizes the previous discussion on
next-generation middleware with an emphasis on lessons
learned from investigating the proposed solutions
presented in the previous section. We particularly aim to
highlight in which extent these solutions are suitable for
mobile settings.

It is a major challenge to solve all problems of mobile
distributed systems. This is true due to the high degree of
dynamism in mobile environments. Current middleware
platforms like CORBA cannot successfully run in such an
environment. Hence, there is an urgent need for new
solutions that support particular application requirements
such as dynamic reconfiguration, context-awareness, and
adaptation. We believe that the reflective approach
provides a solid base for building next generation
middleware platforms and overcomes the limitations of
the current middleware technologies.

More specifically, the architecture follows a white box
philosophy that provides principled and comprehensive
access to internal details. It can also decrease problems of
maintaining integrity since each object/interface is
attached to a single meta-object at a time. Therefore, any
modification to a meta-object can only affect a single
object.

Some reflective systems support higher level of
reflection since they can add or remove methods from
objects and classes dynamically and even alter the class of
an object at run time. In contrast, others concentrate on a
simpler reflective paradigm to achieve a better
performance. Their reflective mechanisms are not part of
the usual flow of control and only invoked when required.
Reflective middleware like FlexiNet and DynamicTAO
are built around the concept of object-oriented and
component frameworks respectively.

Component Frameworks (CFs) were initially defined
by Szyperski as “collection of rules and interfaces that
govern the interaction of a set of components plugged into
them” There are several advantages of using CFs over the
object-oriented approach. The uses of CFs are not limited
to a particular programming language and there is no
inheritance relation between components and framework.

Hence, components and CFs can be developed
independently, distributed in binary form, and combined
at run time. We have noticed that the issue of consistent
dynamic reconfiguration is still under research. There is
some work in this area that has focused on developing
reconfiguration models and algorithms that enforce well-

defined consistency rules while minimizing system
disturbance.

Performance is another issue that remains a matter for
further investigation. All of the reflective systems
presented previously impose a heavy computational load
that would cause significant performance degradation on
mobile devices. Tuple-space systems exploit the
decoupled nature of tuple spaces for supporting
disconnected operations in a natural manner. By default
they offer an asynchronous interaction paradigm that
appears to be more appropriate for dealing with
intermittent connection of mobile devices, as is often the
case when a server is not in reach or a mobile client
requires to voluntary disconnect to save battery and
bandwidth.

By using a tuple-space approach, we can decouple the
client and server components in time and space. In other
words, they do not need to be connected at the same time
and in the same place. Tuple-space systems support the
concept of a space of spaces that offers the ability to join
objects into appropriate spaces for ease of access. This
opens up the possibility of constructing a dynamic super
space environment to allow participating spaces to join or
leave at arbitrary time. The ability to use multiple spaces
will elevate the overall throughput of the system.

Throughout our study, we have noticed that
JaveSpaces and TSpaces typically require at least
60Mbytes of RAM. This is not affordable by most
handheld devices available on the market nowadays.

Context-Aware systems provide mobile applications
with the necessary knowledge about the execution context
in order to allow applications to adapt to dynamic changes
in mobile host and network condition. The execution
context includes but is not limited to: mobile user
location, mobile device characteristics, network condition,
and user activity (i.e., driving or sitting in a room). The
context information is typically disclosed in a convenient
format to the applications that instruct the middleware
system to apply a certain adaptation policy. To our
knowledge, most context-aware applications are only
focusing on a user’s location while other things of interest
are also mobile and changing.

We believe that a reflective approach may improve the
development of context-aware services and applications.
In general, a reflective system provides mobile
applications with context information that they need to
optimize middleware and their own behaviors. One
reflection solution has suggested the use of metadata and
reflection to support context-aware applications.

Traditional, invocation-based middleware like
CORBA follow a request/reply communication style,
which does not scale well to large networks like the
Internet.

Event-based paradigms present an interesting style that
supports the development of large-scale distributed
systems. In such a system, clients first announce their

78

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

Next Generation Middleware Technology for Mobile Computing

interest in receiving specific events and then servers
broadcast events to all interested clients. Hence, the
event-based model achieves a highly decoupled system
and many-to-many interaction style between clients and
servers.

We believe that not a lot of work has managed to
merge the publish/subscribe communication approach
with event-based middleware systems. Most existing
systems do not combine traditional middleware
functionality (i.e., security, QoS, transactions, reliability,
access control, etc.) with the event-based paradigm. We
feel that event-based middleware can be more successful
if such functionality is provided in the future.

Event-based systems also do not integrate well with
object-oriented programming languages due to the major
mismatch between the concept of objects and events.
Events are viewed as untyped collection of data
(attribute/value pairs) whereas current programming
languages only support typed objects. Hence, events
should support data typing in order to be treated as
objects. In addition, the developers are responsible for
handling the low-level event transmission issues. Current
publish/subscribe systems are restricted to certain
application scenarios such as instant messaging and stock
quote dissemination. This indicates that such systems are
not designed as general middleware platforms. From this
discussion, we can realize that until this moment there is
no middleware system that can fully support the
requirements for mobile applications. Several solutions
have considered one aspect or another; however, the door
for further research is still wide open.

5. Conclusion

The proliferation and development of wireless
technologies and portable appliances have paved the way
for a new computing paradigm called mobile computing.
Mobile computing software is expected to operate in
environments that are highly dynamic with respect to
resource availability and network connectivity.
Traditional middleware products, like CORBA and Java
RMI, are based on the assumptions that applications in
distributed systems will run in a static environment;
hence, they fail to provide the appropriate support for
mobile applications. This gives a strong incentive to many
researchers to develop modern middleware that supports
and facilitates the implementation of mobile applications.

We discussed the state-of-the-art of middleware for
mobile computing. We presented common characteristics
and a set of requirements for mobile computing
middleware, which allows us to better understand the
relationship between the existing bodies of work on next-
generation middleware. We explained the reasons behind

the failure of traditional middleware systems for
supporting mobile settings. We also identified, illustrated,
and comparatively discussed four middleware classes:
reflective middleware, tuple space, context-aware
middleware, and event-based middleware. Beside these
four categories, a pool of other middleware solutions has
been developed to address specific mobility issues.
However, none of these middleware systems support all
the requirements. We concluded each category with a
simple qualitative evaluation and made a number of
observations related to some issues that need further
investigations.

6. References

[1] Gordon S. Blair, Geoff Coulson, Anders Andersen,
Lynne Blair, Michael Clarke, F´abio Costa, Hector Duran
Limon, Tom Fitzpatrick, Lee Johnston, Rui Moreira,
Nikos Parlavantzas, and Katia Saikoski, “The Design and
Implementation of Open ORB 2”, IEEE Distributed
Systems Online, 2(6), 2009.

[2] R. Meier and V. Cahill, "STEAM: Event-Based
Middleware for Wireless Ad Hoc Networks", in
Proceedings of the International Workshop on Distributed
Event-Based Systems (ICDCS/DEBS'02). Vienna,
Austria, 2009, pp. 639-644.

[3] Antonio Carzaniga and Alexander L. Wolf, “Content-
Based Networking: A New Communication
Infrastructure”, In NSF Workshop on an Infrastructure for
Mobile and Wireless Systems, Scottsdale, AZ, October
2008.

[4] Antony Rowstron and Peter Druschel, “Pastry:
Scalable, Decentralized Object Location and Routing for
Large-scale Peer-to-Peer Systems”, In Proc. of
Middleware 2009, November 2009.

[5] G. Ashayer, H. K. Y. Leung, and H.-A. Jacobsen,
“Predicate Matching and Subscription Matching in
Publish/Subscribe Systems,” in Proceedings of the
Workshop on Distributed Event-based Systems, 22nd
International Conference on Distributed Computing
Systems, (Vienna, Austria), IEEE Computer Society
Press, July 2008.

[6]International Journal of Ad Hoc and Ubiquitous
Computing (2007)
Volume: 2, Issue: 4, Publisher: Inderscience Publishers,
Pages: 263
ISSN: 17438225

79

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

Next Generation Middleware Technology for Mobile Computing

[7] The impact of research on middleware technology
Volume 41 , Issue 1 (January 2007
Pages: 89 - 112 Year of Publication: 2007 ISSN:0163-
5980

[8]W. Andreas. HyperDesk's response to the ORB RFP.
OMG TC Document 91.1.6, Object Management Group,
492 Old Connecticut Path, Framingham, MA, USA, Jan.
1991.

[9] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J.
Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weerawarana ANSA.

[10] The Advanced Network Systems Architecture
(ANSA). Reference manual, Architecture Project
Management, Castle Hill, Cambridge, UK, 1989.

[11] H. E. Bal. The Shared Data Object Model as a
Paradigm for Programming Distributed Systems. PhD
thesis, Dept. of Computer Science, Vrije Universiteit
Amsterdam, The Netherlands, 1989.

80

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-2, Iss-2

	Next Generation Middleware Technology for Mobile Computing
	Recommended Citation

	Next Generation Middleware Technology for Mobile Computing

