207 research outputs found

    Virtual Node - To Achieve Temporal Isolation and Predictable Integration of Real-Time Components

    Get PDF
    We present an approach of two-level deployment process for component models used in distributed real-time embedded systems to achieve predictable integration of real-time components. Our main emphasis is on the new concept of virtual node with the use of a hierarchical scheduling technique. Virtual nodes are used as means to achieve predictable integration of software components with real-time requirements. The hierarchical scheduling framework is used to achieve temporal isolation between components (or sets of components). Our approach permits detailed analysis, e.g., with respect to timing, of virtual nodes and this analysis is also reusable with the reuse of virtual nodes. Hence virtual node preserves real-time properties across reuse and integration in different contexts

    Secure Virtualization of Latency-Constrained Systems

    Get PDF
    Virtualization is a mature technology in server and desktop environments where multiple systems are consolidate onto a single physical hardware platform, increasing the utilization of todays multi-core systems as well as saving resources such as energy, space and costs compared to multiple single systems. Looking at embedded environments reveals that many systems use multiple separate computing systems inside, including requirements for real-time and isolation properties. For example, modern high-comfort cars use up to a hundred embedded computing systems. Consolidating such diverse configurations promises to save resources such as energy and weight. In my work I propose a secure software architecture that allows consolidating multiple embedded software systems with timing constraints. The base of the architecture builds a microkernel-based operating system that supports a variety of different virtualization approaches through a generic interface, supporting hardware-assisted virtualization and paravirtualization as well as multiple architectures. Studying guest systems with latency constraints with regards to virtualization showed that standard techniques such as high-frequency time-slicing are not a viable approach. Generally, guest systems are a combination of best-effort and real-time work and thus form a mixed-criticality system. Further analysis showed that such systems need to export relevant internal scheduling information to the hypervisor to support multiple guests with latency constraints. I propose a mechanism to export those relevant events that is secure, flexible, has good performance and is easy to use. The thesis concludes with an evaluation covering the virtualization approach on the ARM and x86 architectures and two guest operating systems, Linux and FreeRTOS, as well as evaluating the export mechanism

    Dynamic Reconfiguration for Software and Hardware Heterogeneous Real-time WSN

    Get PDF
    International audienceWireless Sensor Network (WSN) technology has imposed itself in civilian and industrial applications as a promising technology for wireless monitoring due to its wireless connectivity, removing many hardware constraints. Initially used in low frequency sampling applications, the increasing performances of electronic circuits has driven WSNs to integrate more powerful computation units, paving the way for a new generation of applications based on distributed computation. These new applications (process control, active control, visual surveillance, multimedia streaming) involving medium to heavy computation present real-time requirements at node level where reactivity becomes a primary concern as well as at the network level where latency must be bounded. In this paper, we present the implementation of a high-level language MinTax coupled with an in-situ compilation solution for real time Operating Systems enabling energy-aware dynamic reconfiguration while supporting hardware heterogeneity in Wireless Sensor Networks

    PORTING OF FREERTOS ON A PYTHON VIRTUAL MACHINE FOR EMBEDDED AND IOT DEVICES

    Get PDF
    The fourth industrial revolution, The Industry 4.0, puts emphasis on the need of “Smart” and “Connected” objects through the use of services provided by Internet of Things, cyber-physical systems and cloud computing to optimize the cost, development time and remote connectivity. Development of highly scalable and flexible IoT applications is the need of time. These solutions require connectivity, less development time, time-to-market and at the same time offers a high performance and great reliability. Zerynth, a small company, provides its full stack for IoT solutions. Zerynth Virtual Machine is the core component among other components in stack which allow the programmers to code in python or hybrid C/Python coding with multithreaded Real Time OS with negligible memory footprint. The Python layer, Application Layer, is totally agnostic of underlying RTOS and hardware abstraction layer. This layered software architecture of Zerynth VM makes it totally compatible with new Industry 4.0 standard. The Hardware abstraction layer, VHAL, abstracts the hardware features of supported MCU and its peripherals while RTOS layer, VOSAL, uses the features of underlying Real Time OS. Zerynth VM can be ported with different Real Time OS and various hardware platforms depending upon the application’s cost, features and other relevant parameters. Configuring Kinetis MCU (MK64FN1M0VDC12) with existing VM became the first objective of my thesis. This configuration covers from scratch the clock, boot loading and peripheral support. Since previous version of Zerynth VM had a support of only Chibi2 OS which has certain dependency on the hardware layer underneath so this became another objective to separate the Chibi2 OS from VHAL layer for total independence. Finally, Porting of FreeRTOS on Zerynth VM with Hexiwear MCU as target board could a make a room for another RTOS hence enhancing the features and support of currently available VM. This thesis report describes all porting steps, procedures and testing methodologies starting from configuring a new hardware platform Hexiwear to FreeRTOS porting on Zerynth V

    ReTiF: A declarative real-time scheduling framework for POSIX systems

    Get PDF
    This paper proposes a novel framework providing a declarative interface to access real-time process scheduling services available in an operating system kernel. The main idea is to let applications declare their temporal requirements or characteristics without knowing exactly which underlying scheduling algorithms are offered by the system. The proposed framework can adequately handle such a set of heterogeneous requirements configuring the platform and partitioning the requests among the available multitude of cores, so to exploit the various scheduling disciplines that are available in the kernel, matching application requirements in the best possible way. The framework is realized with a modular architecture in which different plugins handle independently certain real-time scheduling features. The architecture is designed to make its behavior customization easier and enhance the support for other operating systems by introducing and configuring additional plugins

    Design of an Embedded Readout System for the ALOFT Gamma-Ray Detector Instrument

    Get PDF
    Birkeland Center for Space Science has proposed a campaign known as the Airborne Lightning Observatory for FEGS & TGFs (ALOFT) to study Terrestrial Gamma-Ray Flashes (TGFs). TGFs are the most energetic natural phenomena occurring in the Earth’s atmosphere, and are important to our knowledge about the relationship between the Earth and space. The ALOFT campaign will use a gamma-ray detector instrument built by the University of Bergen which will be mounted to the NASA ER-2 High-Altitude Airborne Science Aircraft. This work covers the design and development of the embedded software used to offload and operate the detector readout system of said instrument. A similar instrument was built and flown in 2017. The new instrument differs from this by being implemented on a System on a Chip (SoC) embedded platform, reusing relevant modules from the old instrument. The software has been implemented with the FreeRTOS Realtime Operating System (RTOS). Design considerations to limit complexity, and the impact of the radiation environment the instrument is to be operated in, has been performed trough implementation of a checksum algorithm, cyclic rewriting of registers, and modular design strategies. A verification system has been realized with a prototype hardware setup, in which test systems has been added to process synthetic TGF-events in the software and hardware. Test with emulated data and a Telnet control interface has been successfully implemented. The current implementation focuses on modularity, and thus offers a very good framework for further development of the instrument when campaign specifications are decided.Masteroppgåve i fysikkMAMN-PHYSPHYS39

    A TrustZone-assisted secure silicon on a co-design framework

    Get PDF
    Dissertação de mestrado em Engenharia Eletrónica Industrial e ComputadoresEmbedded systems were for a long time, single-purpose and closed systems, characterized by hardware resource constraints and real-time requirements. Nowadays, their functionality is ever-growing, coupled with an increasing complexity and heterogeneity. Embedded applications increasingly demand employment of general-purpose operating systems (GPOSs) to handle operator interfaces and general-purpose computing tasks, while simultaneously ensuring the strict timing requirements. Virtualization, which enables multiple operating systems (OSs) to run on top of the same hardware platform, is gaining momentum in the embedded systems arena, driven by the growing interest in consolidating and isolating multiple and heterogeneous environments. The penalties incurred by classic virtualization approaches is pushing research towards hardware-assisted solutions. Among the existing commercial off-the-shelf (COTS) technologies for virtualization, ARM TrustZone technology is gaining momentum due to the supremacy and lower cost of TrustZone-enabled processors. Programmable system-on-chips (SoCs) are becoming leading players in the embedded systems space, because the combination of a plethora of hard resources with programmable logic enables the efficient implementation of systems that perfectly fit the heterogeneous nature of embedded applications. Moreover, novel disruptive approaches make use of field-programmable gate array (FPGA) technology to enhance virtualization mechanisms. This master’s thesis proposes a hardware-software co-design framework for easing the economy of addressing the new generation of embedded systems requirements. ARM TrustZone is exploited to implement the root-of-trust of a virtualization-based architecture that allows the execution of a GPOS side-by-side with a real-time OS (RTOS). RTOS services were offloaded to hardware, so that it could present simultaneous improvements on performance and determinism. Instead of focusing in a concrete application, the goal is to provide a complete framework, specifically tailored for Zynq-base devices, that developers can use to accelerate a bunch of distinct applications across different embedded industries.Os sistemas embebidos foram, durante muitos anos, sistemas com um simples e único propósito, caracterizados por recursos de hardware limitados e com cariz de tempo real. Hoje em dia, o número de funcionalidades começa a escalar, assim como o grau de complexidade e heterogeneidade. As aplicações embebidas exigem cada vez mais o uso de sistemas operativos (OSs) de uso geral (GPOS) para lidar com interfaces gráficas e tarefas de computação de propósito geral. Porém, os seus requisitos primordiais de tempo real mantém-se. A virtualização permite que vários sistemas operativos sejam executados na mesma plataforma de hardware. Impulsionada pelo crescente interesse em consolidar e isolar ambientes múltiplos e heterogéneos, a virtualização tem ganho uma crescente relevância no domínio dos sistemas embebidos. As adversidades que advém das abordagens de virtualização clássicas estão a direcionar estudos no âmbito de soluções assistidas por hardware. Entre as tecnologias comerciais existentes, a tecnologia ARM TrustZone está a ganhar muita relevância devido à supremacia e ao menor custo dos processadores que suportam esta tecnologia. Plataformas hibridas, que combinam processadores com lógica programável, estão em crescente penetração no domínio dos sistemas embebidos pois, disponibilizam um enorme conjunto de recursos que se adequam perfeitamente à natureza heterogénea dos sistemas atuais. Além disso, existem soluções recentes que fazem uso da tecnologia de FPGA para melhorar os mecanismos de virtualização. Esta dissertação propõe uma framework baseada em hardware-software de modo a cumprir os requisitos da nova geração de sistemas embebidos. A tecnologia TrustZone é explorada para implementar uma arquitetura que permite a execução de um GPOS lado-a-lado com um sistemas operativo de tempo real (RTOS). Os serviços disponibilizados pelo RTOS são migrados para hardware, para melhorar o desempenho e determinismo do OS. Em vez de focar numa aplicação concreta, o objetivo é fornecer uma framework especificamente adaptada para dispositivos baseados em System-on-chips Zynq, de forma a que developers possam usar para acelerar um vasto número de aplicações distintas em diferentes setores

    Flattening Hierarchical Scheduling.

    Get PDF
    ABSTRACT Recently, the application of virtual-machine technology to integrate real-time systems into a single host has received significant attention and caused controversy. Drawing two examples from mixed-criticality systems, we demonstrate that current virtualization technology, which handles guest scheduling as a black box, is incompatible with this modern scheduling discipline. However, there is a simple solution by exporting sufficient information for the host scheduler to overcome this problem. We describe the problem, the modification required on the guest and show on the example of two practical real-time operating systems how flattening the hierarchical scheduling problem resolves the issue. We conclude by showing the limitations of our technique at the current state of our research
    • …
    corecore