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Abstract

Embedded systems were for a long time, single-purpose and closed systems, characterized

by hardware resource constraints and real-time requirements. Nowadays, their functionality is

ever-growing, coupled with an increasing complexity and heterogeneity. Embedded applications

increasingly demand employment of general-purpose operating systems (GPOSs) to handle op-

erator interfaces and general-purpose computing tasks, while simultaneously ensuring the strict

timing requirements. Virtualization, which enables multiple operating systems (OSs) to run on

top of the same hardware platform, is gaining momentum in the embedded systems arena,

driven by the growing interest in consolidating and isolating multiple and heterogeneous environ-

ments. The penalties incurred by classic virtualization approaches is pushing research towards

hardware-assisted solutions. Among the existing commercial off-the-shelf (COTS) technologies for

virtualization, ARM TrustZone technology is gaining momentum due to the supremacy and lower

cost of TrustZone-enabled processors.

Programmable system-on-chips (SoCs) are becoming leading players in the embedded sys-

tems space, because the combination of a plethora of hard resources with programmable logic

enables the efficient implementation of systems that perfectly fit the heterogeneous nature of

embedded applications. Moreover, novel disruptive approaches make use of field-programmable

gate array (FPGA) technology to enhance virtualization mechanisms.

This master’s thesis proposes a hardware-software co-design framework for easing the econ-

omy of addressing the new generation of embedded systems requirements. ARM TrustZone is

exploited to implement the root-of-trust of a virtualization-based architecture that allows the execu-

tion of a GPOS side-by-side with a real-time OS (RTOS). RTOS services were offloaded to hardware,

so that it could present simultaneous improvements on performance and determinism. Instead

of focusing in a concrete application, the goal is to provide a complete framework, specifically tai-

lored for Zynq-base devices, that developers can use to accelerate a bunch of distinct applications

across different embedded industries.
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Resumo

Os sistemas embebidos foram, durante muitos anos, sistemas com um simples e único

propósito, caracterizados por recursos de hardware limitados e com cariz de tempo real. Hoje

em dia, o número de funcionalidades começa a escalar, assim como o grau de complexidade

e heterogeneidade. As aplicações embebidas exigem cada vez mais o uso de sistemas opera-

tivos (OSs) de uso geral (GPOS) para lidar com interfaces gráficas e tarefas de computação de

propósito geral. Porém, os seus requisitos primordiais de tempo real mantém-se. A virtualização

permite que vários sistemas operativos sejam executados na mesma plataforma de hardware.

Impulsionada pelo crescente interesse em consolidar e isolar ambientes múltiplos e heterogé-

neos, a virtualização tem ganho uma crescente relevância no domínio dos sistemas embebidos.

As adversidades que advém das abordagens de virtualização clássicas estão a direcionar estu-

dos no âmbito de soluções assistidas por hardware. Entre as tecnologias comerciais existentes, a

tecnologia ARM TrustZone está a ganhar muita relevância devido à supremacia e ao menor custo

dos processadores que suportam esta tecnologia.

Plataformas hibridas, que combinam processadores com lógica programável, estão em cres-

cente penetração no domínio dos sistemas embebidos pois, disponibilizam um enorme conjunto

de recursos que se adequam perfeitamente à natureza heterogénea dos sistemas atuais. Além

disso, existem soluções recentes que fazem uso da tecnologia de FPGA para melhorar os mecan-

ismos de virtualização.

Esta dissertação propõe uma framework baseada em hardware-software de modo a cumprir

os requisitos da nova geração de sistemas embebidos. A tecnologia TrustZone é explorada para

implementar uma arquitetura que permite a execução de um GPOS lado-a-lado com um sis-

temas operativo de tempo real (RTOS). Os serviços disponibilizados pelo RTOS são migrados

para hardware, para melhorar o desempenho e determinismo do OS. Em vez de focar numa

aplicação concreta, o objetivo é fornecer uma framework especificamente adaptada para dispos-

itivos baseados em System-on-chips Zynq, de forma a que developers possam usar para acelerar

um vasto número de aplicações distintas em diferentes setores.
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1. Introduction

Embedded systems were, for a long time single-purpose systems, showing simple function-

ality and interfaces and little to no need for communication channels or compatibility with other

devices, characterized by constraints hardware resources and real-time requirements. Therefore,

they used to have reduced software complexity. Nowadays, their functionality is ever-growing,

coupled with an increasing complexity that is associated with a higher number of bugs and vul-

nerabilities. Moreover, the pervasive connectivity of these devices in the modern Internet of Things

(IoT) era significantly increases their attack surface [POP+17]. Due to their myriad of applications

and domains, ranging from consumer electronics to aerospace control systems, there is an in-

creasing reliance on embedded devices that often have access to sensitive data and perform

safety-critical operations [Hei11, BBO+16].

Platform virtualization, which enables multiple operating systems (OSes) to run on top of

the same hardware platform, is gaining momentum in the embedded systems arena, driven by

the growing interest in consolidating and isolating heterogeneous environments [Hei11]. This

technology is well established in the server and desktop domains, providing benefits such as

service consolidation, load balancing and power management. While in industrial control or

automotive, systems virtualization has been used to integrate real-time control functionalities with

high-level or infotainment environments [BBO+16], in aeronautics and aerospace, virtualization

provides isolation for safety-critical components [PTM16b]. Without virtualization these systems

would commonly be distributed across multiple physically interconnected hardware platforms.

Applying virtualization to the embedded domain brings a smaller form factor and a reduced bill of

materials (BOM). All of these advantages minimize overall costs and consequently improve profit

margins [PTM16a]. Despite the differences among several embedded industries, all share an

upward trend for integration, due to the common interest in building systems with reduced size,

weight, power and cost (SWAP-C) budget [BBO+16, PPG+17].

According to the virtualization taxonomy [SGB+16], virtualization techniques can be classified

mainly into two types: full-virtualization and paravirtualization. Full-virtualization is a virtualization

technique in which the hypervisor presents to guest OSes an exact replica of the underlying

hardware. Guest OSes do not require any modification to their kernel code, and are completely

1



2 Chapter 1. Introduction

unaware of the system’s virtualization. Privileged instructions trap to the hypervisor and are em-

ulated on behalf of the guest OS. This trap-and-emulate procedure has been, for a long time,

supported by dynamic binary translation (DBT) techniques, which result in large overheads, com-

promising either the real-time capability of embedded devices or their security [CSA+16]. This

drawbacks led the processor industry’s Big Players to extend their ISAs to support hardware-

assisted full-virtualization. The advent of hardware virtualization extensions (e.g., Arm Virtualiza-

tion Extensions, Intel Virtualization Technology) has resulted in new virtualization solutions capable

of providing efficient hypervisors and real-time guarantees [DN14, ZMH15]. Para-virtualization, in

contrast, requires modification of the guest OSes. The privileged instructions are replaced by spe-

cific hypervisor calls (hypercalls), to request services directly from the hypervisor. The guestOSes

communicate directly with the hypervisor, instead of implicitly and unknowingly invoking the hy-

pervisor through virtual resource access, resulting in significant performance advantages at the

cost of a considerably higher engineering effort.

Arm TrustZone technology, although implemented for security purposes, has enabled a spe-

cialized, hardware-assisted form of system virtualization [FLWH10]. With virtual hardware support

for dual world execution, an extra processor mode (i.e., the monitor mode), and other TrustZone

features like memory segmentation, it is possible to provide time and spatial isolation between

execution environments. Basically, the non-secure software runs inside a VM whose resources

are completely managed and controlled by a hypervisor running in the secure world. TrustZone-

assisted virtualization is not particularly considered full-virtualization neither paravirtualization,

because, although guestOSes can run without modifications on the non-secure world side, they

need to co-operate regarding the memory map and address space they are using. There are sev-

eral open-source TrustZone-based solutions for virtualization, such as SafeG [SHT10] and LTZVisor

[PPG+17].

Reconfigurable platforms, hybrid platforms, programmable systems-on-a-chips SoCs, or Field

programmable SoCs (FPSoC) are different designations describing the same concept: technolo-

gies for the implementation of digital systems combining software components with hardware

accelerators [PRAM17]. The Xilinx Zynq-7000 SoC family integrates the software programmabil-

ity of an ARM-based processor with the hardware programmability of an field programmable gate

array (FPGA), enabling hardware acceleration while integrating central processing unit (CPU),

digital signal processor (DSP), and mixed signal functionality on a single device. Programmable

SoCs are becoming leading players in the embedded systems space, because the combination

of a plethora of hard-wired resources with configurable logic enables the efficient implementation

of systems that perfectly fit the heterogeneous nature of embedded applications [PRAM17].

Reconfigurable hardware promises to help mitigating the rigid constraints (e.g., real-time,

performance, power consumption, safety, and security) typical of the embedded domain. The ap-

plicability of such technology ranges from offloading specific applications to hardware [PRAM17,
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CI18], to offloading real-time operating system (RTOS) services [GGP+16] or even hypervisor

features [XPN15] to enable guest to access the reconfigurable logic. RT-SHADOWS [GGP+16]

and ReconOS [LP09] are just a few examples of operating systems which take advantage of re-

configurable hardware technology to improve system performance, determinism and real-time.

Mini-Nova [XPN15] exploits the potential of CPU-FPGA systems by proposing a virtualization frame-

work taking advantage of both virtualization and dynamic partial reconfiguration (DPR) techniques.

The innovative open-source Xilinx Python-based framework [CI18, G. 18] provides an infrastruc-

ture that binds Programmable SoC hardware to the Python environment simplifying the addition

of ad-hoc hardware modules in the programmable logic.

In addition to the bound that most embedded systems have with real-time constraints, embed-

ded applications also require general-purpose systems to handle operator interfaces, databases,

and general-purpose computing tasks. Due to the heavy and complex nature of these systems, a

good solution to improve the performance of these systems is to use multicore technology.

This project presents a hardware-software co-design framework which explores several ca-

pabilities of Zynq-based platforms for easing the economy of building the new generation of em-

bedded systems devices. To the best of our knowledge, no existing framework targeting the

Zynq SoC is able to fully and simultaneously explore TrustZone, multiprocessing, as well as an

hardware-accelerated RTOS via reconfigurable logic. Arm TrustZone technology is exploited to

implement the root of trust of a virtualization-based architecture that allows the execution of a

General Purpose Operating System (GPOS) side-by-side with a real-Time OS. RTOS services were

offloaded to the FPGA fabric, so that we can present simultaneous improvements on performance

and determinism. Instead of focusing in a concrete application, we provide a complete frame-

work, specifically tailored for Zynq-base devices, that developers can use to accelerate a bunch

of distinct applications across different embedded industries.

1.1 Goals

The main goal of this thesis goes towards the implementation of a hardware-software co-

designed virtualization framework. The cornerstone of this virtualization framework development

is the in-house hypervisor LTZVisor, given that a from-scratch design and implementation would be

overkill. LTZVisor [PPG+17] is an open-source lightweight TrustZone-assisted hypervisor mainly

targeting the consolidation of mixed-criticallity systems. LTZVisor provides a virtualization solution

based on the two virtual execution environments provided by the TrustZone hardware, in which

implements a dual-guest OS configuration: the secure world hosts the RTOS and the hypervisor

while the non-secure world is assigned to the GPOS. Notwithstanding, it is believed that the explo-

ration of reconfigurable computing can bring several benefits and present a promising approach.

In this sense, this thesis aims at accomplish the following goals:
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1. Enhance the perfomance and multimedia capability of the non-secure OS, by setting up

the multicore configuration and configuring audio/video interface. These goals can be

splitted in two parts:

(a) Enrich the multimedia capabilities of the general-purpose OS guest by incorporating

a high-definition multimedia interface (HDMI) transmitter driver. This will allow the

system to handle operator interfaces and other multimedia services.

(b) Enable the multi-processing configuration so that the GPOS runs on a dual-core

platform. This will impose changes on the hypervisor, since the LTZVisor as it stands,

only allows the execution of single-core VMs.

2. In behalf of ensuring the hard real-time requirement of critical software some RTOS services

of the secure guest will be deployed to the reconfigurable hardware. This overall goal can

be into more fine-grained objectives:

(a) Perform a comprehensive survey on FreeRTOS, an open source RTOS kernel, identi-

fying which process are a major source of overhead for the Trusted computing base

(TCB) and/or impose latency and indeterminism;

(b) Deployment of the processes that were classified has major sources of jitter and

overhead to the programmable logic. Consequently, give these offloaded services

the same level of security of the associated guest.

3. Integrate the operating systems designed in the base hypervisor, LTZVisor. Assigning the

respective privilege level to them and all their components. Taking into account the nec-

essary changes to the current scheme of the LTZVisor in order to integrate the multicore

general-purpose guest and the hardware-software co-design real-time system;

4. Evaluate the hypervisor’s implemented artifacts, namely in terms of performance and

security;

5. Evaluate the conceived work regarding the hypervisor and its guests, namely identifying

the gains of the used approach as well as the counter-parts.

1.2 Document Structure

The present thesis is divided into 6 different chapters. This chapter, Chapter 1, described

the contextualization for the problem addressed, the motivations for its implementation. Chapter

2 overviews the basic concepts and background knowledge to understand the developed work.

It covers the technologies used during the development of the thesis, with emphasis on virtual-

ization, multicore and reconfigurable hardware technologies. Chapter 3 describes the tools and
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platform. It starts by overviewing LTZVisor, and then focus on describing FreeRTOS. In addition,

the architecture of , since the hardware-software real-time VM implementation will be based on

this operating system. Chapter 4 addresses the design and implementation of Trust SecSi CoDe

framework. It starts by describing the goals for the framework, specifying the enhancements to

the current LTZVisor architecture. Then it addresses the implementation of the hardware-assisted

RTOS as well as the modifications needed to support the multimedia GPOS. Additionally a de-

scription of the necessary modifications on the hypervisor in order to host the hardware-assisted

secure VM and the multicore non-secure VM. Chapter 5 presents the evaluation, focusing on

memory footprint, performance, and real-time. Finally, Chapter 6 provides a summary of this

thesis and draws conclusions regarding open issues of Trust SecSi CoDe, outlining a roadmap

for future improvements and research.





2. Background, Context and State of the

Art

The chapter 2 intent to provide the necessary fundamental concepts and related work to

understand and contextualize the developed project. First, it overviews and compares general-

purpose operating systems and real-time systems. Second, it focus on explaining and describing

virtualization. Then it provides a description of the TrustZone, field-programmable gate array

(FPGA) and multiprocessing, focusing on how these technologies are exploited to implement the

root-of-trust of a virtualization-based architecture. Lastly, it presents the state of art in mixed

criticality and hybrid hardware-software systems.

2.1 Operating Systems

Operating system (OS) is the software component responsible for the management and co-

ordination of activities, as well as the sharing of the system resources. Operating systems tend to

alleviate the complexity of embedded systems development by providing several different mech-

anisms, such as multithreading, semaphores, timers and interrupt handling, in order to abstract

and coordinate the overall system behaviour.

Embedded systems often have the need for deterministic response to real-time events. To

support the requirement for determinism, embedded applications typically use real-time operating

systems (RTOSs). Embedded applications also employ general-purpose OSes to handle opera-

tor interfaces, databases, and general-purpose computing tasks. System architectures that can

combine both types of processing on the same platform can save costs by eliminating redundant

hardware.

2.1.1 General-purpose Operating Systems

A general-purpose operating system (GPOS) is a fully-featured operating system intended to

provide a good user experience. These OSs are designed to optimize average performance of

application programs at the expense of predictability. GPOSs typically provide a non-deterministic

7
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response, where there are no guarantees as to when each task will complete, but they will try to

stay responsive to the user.

In applications that have several distinguish purposes and do not impose time critical, general-

purpose operating systems are the most suitable OS, due to GPOSs commonly uses a fairness

policy to dispatch threads and processes. Such policy enables the high overall throughput required

by user interface and server applications, but offers no guarantees that high-priority, time critical

threads will execute in preference to lower-priority threads. Examples of GPOSs include the well-

known Windows, Linux and MacOS.

A good example of an operating system used in the embedded systems world is Embedded

Linux OS. Its application is usually motivated by the availability of device support, file-systems,

network connectivity, and UI support [OK13b] besides being open-source and free to use. These

features can be available in a RTOS, but often with less broad support, or at additional cost or

integration effort.

2.1.2 Real-time Operating Systems

Most embedded systems are bound to real-time constraints [SR04]. Real-time constraint

means that the system behaviour depends not only on the logical results of the computation,

but also on the physical instant at which these results are produced. Basically, in strict real-time

systems a late result is not just late but wrong. An operating system which is capable of taking

care of real-time constraints is called a real-time operating system (RTOS).

The real-time strictness depends on the purpose of the application and it can be hard real-

time or soft real-time [OK13a]. In hard real-time systems, tasks have to be performed not only

correctly but on time and a failure to meet a deadline is considered to be a fatal fault and lead

to disastrous consequences. In a soft real-time system, tasks are performed by the system as

fast as possible, and if possible, in its specific time. A deadline miss on a soft real-time system

is undesirable but will not cause a serious harm, however could lead an array of deadline misses

until failure. Most real time systems have a combination of soft and hard requirements. Real-time

software applications are typically more difficult to design than non-real-time applications.

Following, some important real-time operating system concepts:

• Shared resource is any entity used by a task that can be used by other tasks. Each task

should gain exclusive access to the shared resource to prevent data corruption. The code

that needs to be treated indivisibly is called critical section of code. To ensure this section of

code is not interrupted, interrupts are typically disabled before the critical code is executed

and enabled when the critical code is finished.

• The process of scheduling and switching the CPU between several tasks is called multi-

tasking. Multitasking maximizes the utilization of the CPU and also provides for modular
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construction of applications. One of the most important aspects of multitasking is that

it allows the application programmer to manage complexity inherent to real-time applica-

tions. Application programs are typically easier to design and maintain if multitasking is

used.

• The design process for a real-time application involves splitting the work to be done into

tasks which are responsible for a portion of the problem. Each task is assigned a priority, its

own set of CPU registers, and its own stack area. Each task typically is an infinite loop that

can be in any one of five states: SUSPEND, READY, RUNNING, WAITING, or INTERRUPTED.

The SUSPEND state corresponds to a task which resides in memory but has not beenmade

available to the multitasking kernel. A task is READY when it can execute but its priority

is less than the currently running task. When the tasks is in RUNNING state it has control

of the CPU. A task is WAITING when it requires the occurrence of an event (waiting for a

time to expire, an I/O operation to complete, a shared resource to be available, a timing

pulse to occur, etc.). Finally, a task is INTERRUPTED when an interrupt has occurred and

the CPU is in the process of servicing the interrupt.

• The process of saving the current task’s context and restore the new task’s context from

its storage area and then resume execution of the new task’s code, is called context switch

or a task switch. Context switching adds overhead to the application. The more registers

a CPU has, the higher the overhead. The time required to perform a context switch is

determined by how many registers have to be saved and restored by the CPU.

• The kernel is the part of a multitasking system responsible for the management of tasks

and the communication between tasks. The fundamental service provided by the kernel

is context switching. The use of a real-time kernel will generally simplify the design of

systems by allowing the application to be divided into multiple tasks managed by the kernel.

However, the kernel add overhead to the system because it requires extra memory for the

kernel data structures but most importantly, each task requires its own stack space which

has a tendency to require large amount of RAM RAM quite quickly.

The basic services required in a RTOS kernel are illustrated in the Figure 2.1. Task Manage-

ment is shown at the center of the RTOS kernel. The RTOS’s task management is responsible for

task scheduling and provide a set of services that handle the tasks behaviour. The scheduler is

the part of the kernel responsible for determining which task will run next. Most real-time kernels

are priority based. Each task is assigned a priority based on its importance. The priority for each

task is application specific. In a priority-based kernel, control of the CPU will always be given to

the highest priority task ready-to-run.

The second main section of an RTOS kernel is inter-task communication and synchroniza-

tion, know as inter-process communication (IPC). Without IPC and synchronization mechanisms
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Figure 2.1: RTOS Kernel

tasks could communicate corrupted information or otherwise interfere with one another. Most

RTOS kernels offer a variety of inter-task communication and synchronization mechanisms that

may include message queues, pipes, semaphores, mailboxes, event groups and asynchronous

signals. The dynamic memory allocation section in RTOS typically uses pools memory allocation

mechanism.

RTOS emphasize predictability, efficiency, and include features to support timing constraints.

In contrast to GPOS, this type of OS attempt to minimize latency rather than maximize throughput.

To reduce the run-time overheads, the kernel has to have quick response to external interrupts and

context switches between tasks, as well as small size. In order to meet the timing requirements,

the kernel must support multi-tasking, provide priority-based preemptive scheduling and synchro-

nization mechanisms. Such rigid constraints and requirements can be more easily achieved by

using hardware-software co-design architectures.

2.1.3 Hardware-Software Real-Time Operating Systems

Hardware-software co-design is the concurrent design of both hardware and software of the

system by taking into consideration the cost, energy, performance, speed and other parameters

of the system. Hardware-software OSes are systems that has some of the services implemented

in hardware and such services can be specific application tasks or even kernel functionalities.

The presence of an operating system introduces new sources of latency and lack of determin-

ism [SWP04]. Lack of determinism is caused by response time variation (jitter), another of the

least desired characteristics of a RTOS. Most of jitter sources comes from RTOS’ dynamic data

structures and their management and traversal. Migration to hardware of software tasks and
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services, addresses the jitter issues leading to solutions able to cope with these increasingly strict

requirements. Migration of RTOS services, such as scheduling, task management and synchro-

nization services, to dedicated hardware modules, allows the RTOS to meet metrics requirements

and consequently, provides increased system performance.

There is a large number of projects/publications focusing on attempt to make an embedded

system capable of providing hardware support to a RTOS, typically following a component based

model [vOvdLKM00, LMP+05]. Back in 1991, efforts were being made to integrate operating

systems’ functionalities in hardware, providing microprocessors with the ability to offer support to

the RTOSs’ primitives [Lin91]. The emergence of high capacity reconfigurable FPGAs at a lower

cost, renewed the interest in this field in recent years [SOLMTS04, PS12]. Nevertheless, to the

best of our knowledge, there is no work that has linking hardware-software co-design OS with

virtualization technologies.

The Hybrid Real-Time Operating System [GPG+15], for example, is a hardware-software co-

designed RTOS that takes advantage of hardware accelerators to improve the RTOS performance

and determinism. HcM-FreeRTOS [QLG+15] makes use of the ARM Generic Interrupt Controller

(GIC) to offload FreeRTOS kernel components to a commercial-off-the-shelf (COTS) multicore hard-

ware. RT-SHADOWS [GGP+16] and HartOS [LASS12] are more examples of operating systems

which take advantage of reconfigurable hardware technology to improve system performance,

determinism and real-time guarantees.

2.1.3.1 Hthreads

The Hthreads operating system consists of a multitasking RTOS kernel that integrates a hybrid

task programming model developed for hybrid systems. This hybrid task programming model is

intended to provide a high level programming environment where programmers are able to access

the field-programmable gate array (FPGA) resources through the use of a software programming

model [APA+05].

This operating system supports up to 256 software tasks, 256 hardware tasks, 64 blocking

semaphores, 64 binary semaphores, preemptive priorities, round robin and First In First Out

(FIFO) scheduling algorithms, 256 tasks are allowed to run simultaneously with 128 priority levels

and use up to 64 traffic lights. Functionalities of the operating system, such as task manager,

scheduler, semaphores, and interrupt controller are mapped to hardware, resulting in shorter

interrupt latencies, fewer CPU context shifts, and reduced jitter.

2.1.3.2 ReconOS

In the ReconOS operating system, the programming model and system architecture provides

unified operating system services for software and hardware execution functions and a standard-

ized interface for integrating custom hardware accelerators. This OS was based on the eCos OS
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[SOSA08].

ECos is an open-source RTOS intended for embedded applications, it is highly configurable

which enables this operating system to be adapted to the requirements of the applications, offering

the best possible run-time performance and an optimized footprint for the hardware resources

[SOSA08].

In ReconOS, all hardware tasks have access to all relevant operating system services offered

by eCos in a transparent way. For example, the tasks they communicate do not need to know

if their communication partners are running as hardware tasks or software [SOSA08], and this

system can simultaneously perform software and hardware tasks. The existing operating sys-

tem layer provides a symmetry between software and hardware tasks that offers benefits for

reconfigurable hardware systems, that can initially develop the entire system using software im-

plementation and later the parts of the application with critical performance can be migrated for

one-to-one hardware tasks. The software tasks have a sequential execution and to use operating

system services the task simply calls the corresponding function of the operating system library

but the hardware tasks present another paradigm because they have a parallel execution, which

means that there is no controlled flow and no apparent notion of calling a function from the op-

erating system. In order to present itself as a possible unified programming model for the user,

the approach of structuring a hardware segment was followed so that all interactions with the op-

erating system were managed by a sequential state machine, in two processes: synchronization

state machine and user logic.

2.2 Virtualization

Virtualization refers to the creation of an integral or partial abstraction in software of the

physical hardware by providing an environment that abstract the underlying hardware platform

and enables the safe sharing of available resources. Thereby, the software executed on these

virtual machines is separated from the underlying hardware resources. Consequently, the system

is transformed so that it appears as an emulated, different machine, or even a set of multiple

machines, as much as possible a replicate of the original one.

Virtualization is a widely used because encompasses a wide range of technologies and can

mean very different things in different contexts. In this context, virtualization refers to the technol-

ogy that allows the co-existence of multiple operating systems (OSes) environments on a single

physical platform. This method introduce an additional software layer to provide this abstraction,

often called Virtual Machine Monitor (VMM) or hypervisor [AH10, SGB+16, Kai09, GZ12]. To guar-

anteed isolation, the hypervisor usually runs with full privileges while the virtual machines (VMs),

also called guests, are pushed to lower privilege layers. Therefore, the hypervisor has full control

of the underlying hardware platform. Usually the full privilege mode of the system is associated to
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the exclusive control of certain peripherals that are used to apply temporal and spatial isolation,

such as timers and memory controllers. The exclusive assignment of the hypervisor privilege

mode is considered to be one of the major challenges in implementing virtualization techniques

on embedded systems.

Besides the benefit of providing multiple concurrent VM environments while multiplexing the

underlying resources, virtualization brings benefit of isolation and encapsulation. Consequently,

improve system’s safety and security, two key requirements of current embedded applications.

Virtualization technology also deliver application consolidation benefits, which helps in reducing

production costs by lowering the amount of required hardware to support all the desired function-

ality, and to reduce energy consumption by load-balancing across clusters [AH10, Hei08, AG09].

The hypervisor should be responsible for the scheduling management of the operating sys-

tems guests„ likewise an OS should also perform the context switch and the changes necessary

to scheduling possibility. According to the methodology of how they are implemented, hypervisors

can be classified by two types, as shown in the Figure 2.2.

• Type 1 hypervisors execute directly above the hardware; Hypervisors, or bare-metal Hy-

pervisors, have direct access to the hardware layer and manage the execution permissions

of every system component, which means that all the hardware accesses are to be me-

diated and controlled by the VMM. As a consequence of this being the most privileged

software on the running platform, the performance degradation of guests OSes will only

be influenced by the performance of the Hypervisor itself, making this type of VM more

suited to systems that must meet time constraints.

• Type 2 hypervisors run on top of an OS [AH10, SGB+16, GZ12], and are also called

hosted hypervisors. This type of VMM usually does not have permissions to access and

perform any operation on the hardware directly since those responsibilities usually rest in

the system software that runs below the VMM, which usually results in lower performance

ratings compared to the type-1 hypervisors.

Regardless of their type, there are mainly two different approaches towards a virtualization

solution: Full Virtualization and Para-Virtualization. Full virtualization schemes simulate the hard-

ware environment. Therefore, VMs do not need modifications to execute. In contrast, para-

virtualization demand certain changes at the OS level in order to execute in the virtual machine, re-

placing critical instructions with system calls to the hypervisor (hypercalls). There are benefits and

disadvantages in each approach. A full-virtualization configuration require little engineering effort

for VM’s deployment, this is more suitable for the deployment of single binaries, when using pro-

prietary OSes for which the source code is not available. Notwithstanding, classic full-virtualization

shows poor performance and high complexity due to the high-frequency mode courses, need for
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Figure 2.2: Hypervisor Types

software to impersonate hardware in trap-and-emulate and DBT. Para-virtualized solutions usu-

ally incur better performance, as the performed changes may also aim to remove unnecessary

operations; however, it typically has associated a higher. involve a higher engineering effort of

manually modify each guest source-code. Besides, the lack of a standardized VMM interface for

VMs, the need to keep up with OS versions and, of course, the obligation for the availability of OS

source code [PKR+13, SK10].

2.2.1 Hardware-assisted Virtualization

Due to the gradual growth of its popularity even with the known ones disadvantages adjacent

to software-assisted virtualization solutions, the development and use of hardware-assisted vir-

tualization techniques gained a new focus. These techniques make use of integrated hardware

extensions in the processor architectures itself to implement virtualization solutions without all or

part of the software-assisted disadvantages.

Extensions are usually characterized by adding to the processor a new level of privilege,which

has higher privilege of execution than the kernel and user modes. Depending on the extension

itself, these primitives may include additions or changes to the components of the primitive pro-

cessor to produce a authentic virtual CPUs in hardware. In between platform peripherals, general

purpose registers or coprocessors, MMUs, caches, and the memory or memory controller itself.

Within the hardware extensions for using virtualization in the domain embedded systems

include the ARM Virtualization Extensions (ARM VE) and Intel Virtualization Technology (Intel VT)

[DN14, ZMH15].
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2.3 ARM TrustZone

Arm TrustZone consists of hardware security extensions introduced into Arm application pro-

cessors (Cortex-A) in 2004 [ARM09]. More recently, TrustZone has been adapted to cover the new

generation of Arm microcontrollers (Cortex-M) [PS]. TrustZone follows a system-wide approach

to security. In the remainder of this section, when describing TrustZone, the focus will be on the

specificities of this technology for Cortex-A processors.

The Arm TrustZone technology is centered around the concept of protection domains named

secure world and non-secure world. The software executed by the processor runs either in the

secure world or in the non-secure world. A new 33rd processor bit, the Non-Secure (NS) bit,

indicates in which world the processor is currently executing. To preserve the processor state

during the world switch, TrustZone adds an extra processor mode: monitor mode. This mode

is completely different from other modes because, when the processor runs in this privileged

mode, the state is always considered secure, independently of the NS bit’s state. Software stacks

in the two worlds can be bridged via a new privileged instruction-Secure Monitor Call (SMC). The

monitor mode can also be entered by configuring it to handle interrupts and exceptions in the

secure side. To ensure a strong isolation between secure and non-secure states, some special

registers are banked, while others are either totally unavailable for the non-secure side.

The TrustZone Address Space Controller (TZASC) and the TrustZone Memory Adapter (TZMA)

extend TrustZone security to thememory infrastructure. TZASC can partition the dynamic random-

access memory (DRAM) into different secure and non-secure memory regions, by using a pro-

gramming interface which is only accessible from the secure side. By design, secure world

applications can access normal world memory, but the reverse is not possible. TZMA provides

similar functionality but for off-chip read-only memory (ROM) or static random-access memory

(SRAMs). Both the TZASC and TZMA are optional and implementation-specific components on

the TrustZone specification. In addition, the granularity of memory regions depends on the sys-

tem on chip (SoC). In Zynq-7000 devices, the memory subsystem includes the TZASC, which

allows the (dynamic) configuration of the security state of memory segments with a granularity

of 64 MB [Xil14]. The TrustZone-aware memory management unit (MMU) provides two distinct

MMU interfaces, enabling each world to have a local set of virtual-to-physical memory address

translation tables. Furthermore, three different exception vectors exist: the secure-world vector,

the non-secure world vector and the monitor vector. The isolation is still available at the cache-

level because processor’s caches have been extended with an additional tag that signals in which

state the processor accessed the memory.

System devices can be dynamically configured as secure or non-secure through the TrustZone

Protection Controller (TZPC). The TZPC is also an optional and implementation-specific compo-

nent on the TrustZone specification. In Zynq-7000 devices, it is possible to (dynamically) configure
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the security state of several SoC (e.g., Triple Timer Counter, Ethernet controller) devices, as well

as access to FPGA AXI ports as secure or non-secure [Xil14]. To support the robust management

of secure and non-secure interrupts, the Generic Interrupt Controller (GIC) provides both secure

and non-secure prioritized interrupt sources. The interrupt controller supports interrupt prioriti-

zation, allowing the configuration of secure interrupts with a higher priority than the non-secure

interrupts. Such configurability prevents non-secure software from performing a denial-of-service

(DOS) attack against the secure side.

2.4 FPGA Technology

Application specific integrated circuits (ASICs) are non-programmable but highly integrated,

small, fast, and energy efficient. Also, ASICs make the process of copy/reverse engineering more

difficult for both hardware and software perspective. In contrast, due the non-programmability

nature, these chips need to be redesigned and refactoring all over again if modifications have to

be made.

Field-programmable gate array (FPGA) technology consists of logic and interconnect resources

that permit to configure an uncommitted chip into the desired functions for different applica-

tions. These chips can be configured to implement custom hardware functionalities without going

through the long fabrication process of custom ASIC design. FPGA technology continues to gain

momentum since their invention by Xilinx in 1984. FPGA chip adoption across all industries is

driven by the fact that FPGAs combine the best parts of ASICs and processor-based systems.

FPGAs provide hardware-timed speed and reliability, but they do not require high volumes to

justify the large upfront expense of custom ASIC design. Reprogrammable platforms also has

the same flexibility of software running on a processor-based system, but it is not limited by the

number of processing cores available. Unlike processors, FPGAs are truly parallel in nature, so

different processing operations do not have to compete for the same resources. Each independent

processing task is assigned to a dedicated section of the chip, and can execute autonomously

without any influence from other logic blocks. As a result, the performance of one part of the

application is not affected when you add more processing.

Taking advantage of hardware parallelism, FPGAs exceed the computing power of digital

signal processors (DSPs) by breaking the paradigm of sequential execution and accomplishing

more per clock cycle. Controlling inputs and outputs (I/O) at the hardware level provides faster

response times and specialized functionality to closely match application requirements. FPGA

technology offers flexibility and rapid prototyping capabilities in the face of increased time-to-

market concerns. The growing availability of high-level software tools decreases the learning curve

with layers of abstraction and often offers valuable IP cores (pre-built functions) for advanced

control and signal processing. Because system requirements often change over time, the cost of
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making incremental changes to FPGA designs is negligible when compared to the large expense

of refactoring an ASIC.

2.4.1 Hardware Description Languages

For a long time, programming languages such as FORTRAN, Pascal, and C were being used

to describe computer programs that were sequential in nature. Similarly, in the digital design

field, designers felt the need for a standard language to describe digital circuits. Thus, Hardware

Description Languages (HDLs) came into existence [Pal03]. HDLs allowed the designers to model

the concurrency of processes found in hardware elements. Both Verilog and VHDL simulators to

simulate large digital circuits quickly gained acceptance from designers.

Designers no longer had to manually place gates to build digital circuits. They could describe

complex circuits at an abstract level in terms of functionality and data flow by designing those

circuits in HDLs. Logic synthesis tools would implement the specified functionality in terms of

gates and gate interconnections. HDLs are used for simulation of system boards, interconnect

buses, FPGAs, and Programmable Array Logic (PALs). A common approach is to design each IC

chip, using an HDL, and then verify system functionality via simulation

2.5 Multicore Processor Technology

With the increasing demand for computing power, greater levels of security and higher per-

formances, more control applications will be used which can require more complex design and

implementation techniques. The need of higher computing power is being covered by the adop-

tion of multi-core architectures. The multicore processor comprises of two or more cores or

computational/processing units that operate in parallel to read and execute instructions. The key

factor about multicore processor is that it gives the same performance of a single faster processor

at lower power dissipation and at a lower clock frequency by handling more tasks or instructions

in parallel. The performance of a processor is a function of three major factors:

• Instructions per cycle, can be improved by increasing instructions level parallelism and

thread level parallelism.

• Clock cycles per instruction, can be increased by the techniques of pipelining.

• Clock frequency, if increased, the power dissipation increases, in turn cause overheating.

Therefore, at a lower clock frequency, the multicore processor will process more data than

the single core processor. In addition to this, multicore processors deliver high performance and

handle complex tasks at a comparatively lower power as compared with a single core.
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The cores normally are independent of one another, except for resources such as main RAM

and some peripherals I/O. There is also a cache level (typically L2) that is shared between the

cores, however the most important caches (L1) are particular to each core. In these cache level

a coherence problem can occur: caches on different cores may contain different values from the

same address in the main memory. To resolve this kind of situation, it could use software-assisted

solutions responsible for maintaining consistency across the cores of each core, or hardware

solutions for example the Snoop Control Unit (SCU) in ARM processors.

A multicore architecture where every core is just an image of the other is called homogeneous

multicore. A heterogeneous multicore is a set of cores which may differ in area, perfomance,

power dissipated etc. There are a number of challenges involved in designing a high-perfomance

multicore system: parallel processing and shared resources are some of the difficulties on migra-

tion of single-core applications. The problems are mitigated by using syncronisation and commu-

nications services.

There are different types of multicore configuration. The most used approaches encompass

the Symmetric Multiprocessing (SMP) configuration and Asymetric Multiprocessing (AMP) config-

uration.

2.5.1 Symetric Multiprocessing

The symmetric multiprocessing (SMP) configuration is only seen on homogeneous platforms

and there is only one operating system that commands the platform cores belonging to the SMP

configuration.

Any application, process or task, which does not have affinity to one of the cores, can be

executed in any core, and is the scheduler’s job migrate those same tasks to different cores.

Moreover, the idea is to achieve an favourable workload across all cores, through the migration

of different tasks. However, this migration should not be too frequent since the change of tasks

between cores may affect cache performance.

This multicore configuration presents the smallest memory footprint because the different

cores run the same image of the operating system. All cores have the same view of memory

and shared hardware. Usually one of the cores will be attributed the responsibility to boot the

operating system as well as to ensure the startup of the remaining cores and will also eventually

’command’ access to shared I/O peripherals.

In a single-core operating system it is necessary to use synchronism mechanisms for the

correct operation of the tasks that share the same resources, since they execute in parallel, i.e.

they can be schedule at intervals. In a multicore SMP operating system the situation is aggra-

vated by the fact that the execution is truly parallel, and it is necessary to implement multicore

synchronism mechanisms (eg spinlock) in order to avoid problems of competition of tasks. In this

configuration where the cores have access to the same memory (i.e., the main memory will be



Chapter 2. Background, Context and State of the Art 19

a shared between the colors) it is necessary to use its own hardware to maintain the coherence

between the data in cache and memory main.

2.5.2 Asymetric Multiprocessing

The asymetric multiprocessing (AMP) configuration is defined by treating each core individ-

ually, i.e., each core executes independently of the other cores, running in each its individual

version of an OS. The AMP configuration can be considered homogeneous if each one runs an

individual copy of the same operating system or heterogeneous if each core has an OS different

from the one executed in the other cores. This configuration is characterized by the increase

memory footprint, because each core will have a copy of its own version of the operating system

that it runs. However, they do not require data coherence mechanisms, since each core would

have its own memory, cache and MMU. Each core can have a different view of available memory

and shared hardware.

From the point of view of each core, it runs as if it were in a single-core configuration. In that

case, due to the nature of the configuration (each core has its OS), no core knows the existence

of others (except the synchronization and communication mechanisms). This particularity allows

to have a execution environment identical to that of a single-core configuration, thus facilitating

the migration of legacy applications.

2.6 Mixed Criticality Systems

An increasingly important trend in the design of real-time and embedded systems is the inte-

gration of components with different levels of criticality onto a common hardware platform. For

example, embedded systems have a need for a deterministic response to real-time events and

there is also an interest in using general-purpose OSs to handle operator interfaces, databases,

and general-purpose computing tasks. Systems that can combine both criticality leves of pro-

cessing on the same platform can save costs by eliminating redundant computing hardware.

Mixed-criticality systems (MCS) integrate two or more distinct levels (for example safety critical,

mission-critical and low-critical) in one system. The following sections give a glance in some

hypervisors that deal with guests of different criticality levels.

2.6.1 SafeG

Safety Gate (SafeG) [SHT10], from TOPPERS Project, is a dual-OS open-source solution that

takes advantage of ARM TrustZone extensions to concurrently execute an RTOS and a GPOS on

the same hardware platform.
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The VMM execute in secure monitor mode and handle the switching between the GPOS,

executed in non-secure, and the RTOS, executed in secure. Spatial isolation is supported by

configuring resources (memory and devices) used by the RTOS to be accessible only from secure.

The remaining resources are configured to be accessible both from secure and non-secure. This

configuration is performed at initialization time after SafeG is loaded. If the GPOS tries to access

some resource configured as secure space, an exception occurs and SafeG is called. Time

isolation of the RTOS is supported by carefully using the two types of interrupt. FIQ interrupts

are forwarded to the RTOS, while IRQ interrupts are forwarded to the GPOS. In secure state, IRQs

are disabled so that the GPOS cannot interrupt the execution of the RTOS. For that reason, the

GPOS can only execute once the RTOS makes an explicit request, through a Secure Monitor Call

(SMC), to SafeG. On the other hand, during the GPOS execution, FIQs are enabled so that the

RTOS can recover the control of the processor. TrustZone is configured to prevent the non-secure

side from disabling FIQ interrupts.

2.6.2 NOVA/MINI-NOVA

The NOVA microhypervisor [SK10][KHV14] , originally developed for the x86 desktop environ-

ment and relying on Intel’s virtualization hardware. NOVA proposes a security-oriented solution

that deallocates virtualization to user space enforcing the principle of the least privilege in mi-

crokernel style. A user-level environment contains the root partition manager, device drivers,

and other special-purpose applications and services that have been written for or ported to the

hypercall interface. This interface implements capability-based access to kernel objects.

The Mini-NOVA[XPN15] microkernel, which is designed to provide a virtualization approach

for the ARM-FPGA platform. Mini-NOVA is built to host paravirtualized operating systems with

lower complexity and has the ability to dispatch hardware tasks to virtual machines by supporting

the dynamic partial reconfiguration technology.

The Mini-NOVA kernel is an abstract layer between the physical resources and software users.

For each guest OS/application, a virtual machine is initiated, running in an isolated user domain.

A virtual machine monitor is used to create the virtualized environment for VMs. Based on the

microkernel features[Lie95], the VMM should provide VMs with four basic properties: CPU virtu-

alization, memory management, communication, and scheduling. To minimize the TCB size of

the privileged code. The Mini-Nova architeture is illustrated in Fig. 2.3
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Figure 1. Mini-NOVA Architecture Overview

III. MINI-NOVA VIRTUALIZATION ON CORTEX-A9

In this section, we introduce the implementation of
Mini-NOVA virtualization on ARM platform. Mini-NOVA
is a revised and simplified version of the NOVA micro-
hypervisor (x86), and has been ported on the ARM Cortex-
A9 architecture, which is the latest ARM version available
for contemporary ARM-FPGA platforms. The principle of
Mini-NOVA is to reduce complexity to reach lower over-
head, smaller TCB size and higher security, making it more
flexible and portable for embedded devices. Due to the
absence of hardware virtualization support in the Cortex-A9
architecture, paravirtualization is used in Mini-NOVA.

The Cortex-A9 architecture offers 6 main operating
modes, which are divided into two privilege levels: non-
privileged PL0 (USR mode) and privileged PL1 (SVC, IRQ,
FIQ, UND and ABT modes). Mini-NOVA is mainly execut-
ing in the supervisor (SVC) mode, occupying the privileged
level, while guest OS(es) are running in the user (USR) mod-
e. Other modes are mainly used to respectively trap different
types of exceptions: interrupt, Undefined Instruction (UND)
and Prefetch/Data Abort (ABT). These exception types are
used to build the virtualized environment. Interrupts are
trapped into the IRQ and fast IRQ modes (IRQ/FIQ). UND
exceptions are mostly caused by unpermitted instructions on
the system registers or coprocessors. They are usually used
to trap privilege instructions. ABT exceptions are caused by
illegal memory access attempts, such as page faults, and
are used for the virtualized memory space management.
Whenever an exception occurs, the CPU leaves the user
mode and enters the corresponding exception mode, which
would later give control back to the SVC mode to handle
this exception.

The Mini-NOVA kernel is an abstract layer between
the physical resources and software users. For each guest
OS/Application, a virtual machine is initiated, running in
an isolated user domain. A virtual machine monitor is
used to create the virtualized environment for VMs. Based
on the microkernel features [4], the VMM should provide
VMs with four basic properties: CPU virtualization, memory

TABLE I. VIRTUAL CPU CONTENT IN MINI-NOVA

Privilege

level
Resources

Switch

mechanism

Non-

privileged

General-Purpose Registers

Platform-specific timer
Active switch

Vector Floating-Point (VFP) Lazy switch

Privileged

Coprocessor Registers(CP14/CP15)

Generic Interrupt Controller (GIC)

Memory Management Unit (MMU)

Active switch

Vector Floating-Point (VFP)

L2 Cache Control Registers
Lazy switch

management, communication, and scheduling. To minimize
the TCB size of the privileged code, we decompose the
microkernel and implemented parts of its properties at user
level. The overview of Mini-NOVA is illustrated in Fig. 1.

A. CPU virtualization

For each virtual machine, Mini-NOVA instantiates a spe-
cific data structure that holds in kernel memory the states of
hardware resources that are used by the virtual machine. This
structure acts as a virtual CPU (vCPU). A vCPU includes
the registers of necessary resources to build up a virtual
environment. Table I shows the hardware resources involved
in a vCPU, which are divided into two privilege levels.

Mini-NOVA permits the frequently-accessed resources to
be directly programmed by the virtual machine, except
for the hardware states that may affect the microkernel
or other virtual machines. For example, interrupt status
registers can only be accessed by the privileged code of the
microkernel to prevent malicious users disabling interrupts
and monopolizing the CPU. While switching between virtual
machines, Mini-NOVA saves the current virtual machine’s
vCPU state and restores its successor’s state. To reduce the
switch overhead, the vector floating-point (VFP) coprocessor
and cache control registers use the lazy switching, meaning
that their contexts are switched passively, instead of actively
at every virtual machine switch. The reason is that they are
relatively less frequently accessed and quite expensive to
save.

To host the vCPU content and organize the virtual ma-
chine capabilities in the kernel domain, a kernel object
Protection Domain (PD) is applied. A Protection domain
acts as a resource container and a capability interface
between a virtual machine and the microkernel. It holds
the state of a virtual machine (the ID number, the priority
level, etc). To handle sensitive operations in the virtual
machine domain, PD includes an exception interface, which
receives exceptions and hypercalls, and distributes them
to different capability portals according to the exception’s
type. Normally, hypercalls are used to replace frequently-
used sensitive operations in order to avoid frequent traps

Figure 2.3: Mini-NOVA Architecture Overview

2.6.3 TZVisor Project

TZVisor Project12, are a set of TrustZone-assisted hypervisors, developed and maintained by

the Embedded System Research Group (ESRG), part of the ALGORITMI center of University of

Minho. The hypervisors RTZVisor, µRTZvisor and LTZVisor belong to the TZVisor Project, all of

them rely on on TrustZone hardware.

LTZVisor[PPG+17], is an open-source lightweight TrustZone-assisted hypervisor mainly target-

ing the consolidation of mixed-criticallity systems. LTZVisor implements a dual-guest OS configura-

tion: the secure world hosts the RTOS and the hypervisor, while the non-secure world is assigned

to the GPOS. Currently, there are two versions: the single-core version and the multicore version

that follows an AMP scheme.

RTZVisor[PTM16a] is a monolithic hypervisor which takes advantage of the ARM’s TrustZone

security hardware extensions to implement a minimal separation kernel, that allowing the execu-

tion of multiple real-time guest OSs. All hypervisor components, drivers and other critical parts

of the virtualization infrastructure run in the most privileged processor mode, i.e., the monitor

mode. Guest OSs are multiplexed on the non-secure world side. The hypervisor follows a simple

and static implementation approach. All data structures and hardware resources are predefined

and configured at design time, avoiding the use of language dynamic features. The strong spatial

isolation is ensured through the TZASC, by dynamically changing the security state of the memory

1http://www.tzvisor.org/
2https://github.com/tzvisor/ltzvisor
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62 Chapter 4. mRTZvisor - Microkernel-like TrustZone Virtualization

The main feature of µRTZVisor is its microkernel-like architecture, depicted
in Figure 4.1. Nevertheless, the main goal of this design was not to implement
traditional microkernel virtualization, which, given its para-virtualization nature,
imposes heavy guest source-code modification. We aim at gathering those ideas
that benefit security and design flexibility, while persevering the RTZVisor’s ca-
pability of running nearly unmodified guest OSes. RTZVisor guests can make full
use of all originally intended privileged levels, being allowed to directly config-
ure assigned system resources, manage their own page tables and directly receive
their assigned interrupts. This has a disadvantage as these guest OSes need to be
compiled and cooperate to execute in the confinement of their assigned segments
given the TrustZone memory segmentation model (see Section 3.1). Besides this,
guest OSes need to be modified only if they are required to use auxiliary services
or shared resources that rely on the kernel’s IPC facilities, i.e., if they need to be
para-virtualized and emit hypercalls. For this, typically used commodity operat-
ing systems, such as Linux, may simply add kernel module drivers to expose these
mechanisms to user applications.

µRTZVisor 
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Figure 4.1: µRTZVisor basic architecture.

µRTZVisor privilege code runs in monitor mode, the most privileged level in
TrustZone-enabled processors, having complete access and configuration rights
over all system resources. This layer strives to be a minimal TCB, implementing
only essential infrastructure to provide the virtual machine abstraction, spatial
and temporal partitioning, and basic services such as controlled communication
channels. The kernel’s design aims for generality and flexibility so that new func-
tionality can be added in a secure manner. For this, it provides a heterogeneous
partition environment. As described above, we inherit from RTZVisor the coarse-
grained partitions based on the memory segmentation model used to run guest
OSes. In addition, µRTZVisor supports finer-grained partitions that execute in
secure user mode and are implemented by managing page tables used by the
MMU’s secure interface, which allows for a greater degree of control over their

Figure 2.4: �RTZVisor Architecture Overview

segments. Only the guest partition currently running in the non-secure side has its own memory

segment configured as non-secure, while the remaining memory is configured as secure.

The �RTZVisor[MAC+17], is a refactoring of RTZVisor, following an object-oriented approach

and the MISRA coding guidelines. �RTZVisor follows a microkernel like architecture, maintaining

its predecessor’s ability of executing coarse-grained partitions in a quasi full-virtualized environ-

ment, while providing support for small user-mode tasks, intended to execute system services as

extensions of the hypervisor. It provides much more functionality, real-time capabilities and con-

figuration flexibility. This includes the addition of a capability-based access control and hypercall

system, and a flexible IPC infrastructure tightly-coupled with the scheduling mechanism ensuring

fast and efficient partition interaction. Figure 2.4 illustrate the �RTZVisor hypervisor architeture.



3. Platform and Tools

In this chapter, the base tools and platforms which lay the groundwork for the work carried

out in this thesis are described. It starts by pointing out the selected platform and the features

that are require for this project. Then a concise survey on the operating systems (OS), FreeRTOS

and Linux, that provides the groundwork for this project will be made. In last subsection, we

provide an overview of LTZVisor, an open-source lightweight TrustZone-assisted hypervisor mainly

targeting the consolidation of mixed-criticality systems.

3.1 Zynq Platform

The Zynq-7000 family is based on the Xilinx All Programmable SoC (AP SoC) architecture,

which integrates a feature-rich single or dual-core ARM Cortex-A9 based processing system (PS)

and Xilinx programmable logic (PL) in a single device [CEES14]. A block diagram depicting the

Zynq-7000 AP SoC architecture is presented in Figure 3.1.

All Zynq devices have the same basic architecture, and all of them contain, as the basis of

the processing system, a ARM Cortex-A9 processor. This is a ”hard” processor, which means

it exists as a silicon element on the device. The ARM Cortex-A9 CPU(s) is/are the heart of the

PS, but the Zynq processing system encompasses also a set of associated computational units

forming an application processing unit (APU), as well as further peripheral interfaces, cache,

and memory interfaces. The APU is endowed with one or two ARM processing cores, each with

associated computational units such as a NEON engine and floating-point unit (FPU), a memory

management unit MMU, and a Level 1 data and instruction cache (both of which are 32KB). The

APU also contains a Level 2 cache of 512KB for instructions and data, and there is a further

256KB of on-chip memory within the APU.

The second part of the Zynq architecture is the programmable logic. It is based on the Artix-7

and Kintex-7 field-programmable gate array (FPGA) fabric, depending on the specific device of

Zynq family. The PL is predominantly composed of general purpose FPGA logic fabric, which is

composed of slices (flip-flops, LUTs, and other logic) and configurable logic blocks, input/output

blocks for interfacing, and other special resources such as block RAMs.

23
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Figure 3.1: Zynq-7000 SoC

Interactions between the PS and the PL are supported through a set of nine Advanced eX-

tensible Interface (AXI) interfaces, each of which is composed of multiple channels. The current

version is AXI4, which is part of the ARM Advanced Microcontroller Bus Architecture (AMBA) 3.0

open standard.

There are a number of Zynq-based development boards. For example, the ZC702 Zynq de-

vice, ZedBoard and ZYBO (diminutive of Zynq Board). Zedboard was the selected platform. The

ZedBoard is a low-cost, community-based board which features a XC7Z020 Zynq device. It is

a joint venture between Xilinx, Avnet (the distributor), and Digilent (the board manufacturer).

The Zynq device interfaces a 256 Mbit flash memory and 512MB DDR3 memory. There are

diverse peripheral interfaces on the ZedBoard: general purpose I/O, HDMI and VGA video, Eth-

ernet, USB-OTG (peripherals), USB-JTAG (programming), and USB-UART (communication), SD

card slot, FMC interface, and Xilinx JTAG header.

3.1.1 Security

Zynq-7000 devices provide a wide range of security features which offer protection of the inter-

nal functionality of the system, ranging from dedicated hardware support for multiple encryption

standards, secure system boot facilities, and software execution protection. The remainder of

this Section briefly introduces the security features provided by Zynq devices.

Zynq-7000 devices have a number of embedded blocks which can support the creation of

secure systems. The functionality of these security IPs includes anti-tamper, trust and informa-

tion assurance, to protect the system from power-on and through runtime [GP09]. These blocks
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include authentication, decryption engines, key storage and unique device identification possibil-

ities. Some of the features of Zynq devices which relate to security are listed as follows:

• ARM TrustZone support (PS and PL);

• Secure configuration and boot (PS and PL);

• AES-256 encryption (BBRAM key and eFUSE key);

• HMAC bitstream authentication;

• First stage boot loader (FSBL) RSA-2048 authentication;

• JTAG disable/monitor.

The need for preventing unwanted access to the internal device data or memory does not end

after the boot process has completed, and, obviously, there is a need to provide runtime security.

One feature of Zynq devices which can prevent such vulnerabilities is the Zynq specific im-

plementation of ARM TrustZone technology [2.13, 2.1]. As previously explained, the Zynq-7000

SoC is divided into two domains: a processing system and a programmable logic domain. The

Zynq-7000 AP SoC supports ARM TrustZone technology in both the PS and PL domains of the

device. The PS provides a set of configuration registers related to TrustZone support for all hard

custom blocks. These configuration registers can be dynamically programmed during software

execution. In the PL, a security-checking feature is provided for each master interface slot in the

AXI interconnect IP. A static secure or non-secure status can be assigned to an AXI interconnect

master interface slot. All slave IP cores instantiated in the logic can also be individually assigned a

secure or non-secure designation. For Xilinx slave 1glsIP cores, secure/non-secure configuration

can be designated also at the AXI interconnect level.

3.2 Linux

Linux is an monolithic Unix-like operating system assembled under the model of free and

open-source software development and distribution. It is a general-purpose operating system

originally developed for personal computers based on the Intel x86 architecture, but which has

been ported to a multitude of mainly MMU-enabled platforms, and has been used on ARM-based

platforms for decades. Linux implements a monolithic kernel, which means it handles process

management, networking, access to the peripherals, and file systems in kernel space. Device

drivers are either integrated directly into the kernel, or added as modules that are loaded while the

system is running. Its application goes from desktop and server computers to home appliances

to smartphones, cars, low-end devices, and plenty other sectors.
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Linux has a huge user base and support community, and the possibility of compiling the

kernel is a major advantage. When adding new hardware, there are lots of resources necessary

for adding drivers, and it is possible that in the open-source community someone has already

developed such driver. Different Linux distributions have been ported to several Zynq-based plat-

forms. For example, the Xilinx Linux distribution, the Linaro Linux distribution, and Digilent Linux

distribution. All of them have support for ZC702, Zedboard and ZYBO platforms.

Xilinx Zynq Linux12, from Xilinx Inc. 3, is based on open source Linux Kernel. Xilinx provides

support for Zynq specific parts of the Linux kernel (drivers and BSP). Also supports Linux through

the Embedded Linux forum. As with many open source projects, Xilinx also expects customers to

also use the open source mailing lists for Linux in areas that are not specific to Xilinx Zynq. There

are plenty third parties that produce many drivers that are compatible to the Xilinx processor or

silicon configurations, like the HDMI transmitter IP from Analog Devices Inc.

3.2.1 HDMI Transmitter driver

When adding a display into an embedded platform — whether it be a low resolution, internal

LCD panel or an external display output via HDMI — the system must be able to support it. The

degree of support that is necessary depends on the specific application but it can generally be split

into two levels: driver support and graphical interface support. In some heterogeneous platforms

resources, such as the HDMI Transmitter driver, does not have a on-chip directly connected to the

hard-wire processor. Instead, these resources need to connect firstly to the programmable logic

(PL) and then the PL connects to the processor system in order to give software access to these

peripherals.

The ADV7511 is a 225 MHz High-Definition Multimedia Interface (HDMI) transmitter. This

reference design made by Analog Devices provides the video and audio interface between the

FPGA and ADV7511 Hardware description language (HDL) reference on board. The Analog De-

vices provides device drivers for Linux, API and tutorials to implement the reference design. This

device will be exploited to allow graphical interface to the non-secure guest, i.e. Linux. Assigning

the same level of security of the guest who employ the HDMI peripheral.

3.3 FreeRTOS

FreeRTOS4 is an open-source RTOS designed to be deployed on embedded systems with

scarce resources. It is characterized by a very simple and small kernel core, written mostly in

1http://www.wiki.xilinx.com/Linux
2https://github.com/Xilinx/linux-xlnx
3https://xilinx.com
4https://www.freertos.org
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C, presenting a software architecture divided into two main layers: the ”hardware independent”

and the ”portable” layer [Bar10]. The former is responsible for performing processor indepen-

dent functions and is maintained intact for all architectures, while the second implements some

architecture-specific routines (e.g. context-switching).

3.3.1 Structure

The FreeRTOS source structure is very small [Bar09]: the core of the RTOS kernel is contained

in only three C files. The tasks.c file provides a set of task management functionalities, including

the scheduler component. FreeRTOS implements a preemptive priority-based scheduler policy,

which privileges the execution of the highest priority tasks. For tasks with the same priority, the

scheduler follows a round-robin model. In addition, the list.c file implements a list data structure

for maintaining task queues (ready, waiting and running). These two files, altogether with the

port specific code, implement the minimum core kernel high-level functionalities. The optional

file queue.c implements a list of queues used for inter-task communication and synchronization.

The timers.c file offers a set of functions to implement software timers used by application tasks.

The operating system features also a special type of tasks, called ”co-routines”, that present high

memory efficiency. These tasks are implemented within croutine.c file. The port.c file contains

not only the hardware-specific code, but also the standard API of the OS. At last, the heap.c file

provides the memory allocation and deallocation functionality, specific to the target architecture.

The FreeRTOS kernel can be tailored to the application being built through a configuration file

called FreeRTOSConfig.h, where it is possible to adjust clock speed, heap size, mutual exclusion

objects, API subsets, etc. Moreover, as an open-source RTOS with a small and simple kernel, it

is possible to change the internals with a small engineering effort. These set of advantages and

features justified the use of FreeRTOS as the target RTOS for this work.

3.3.2 Task Management

Tasks are implemented as C functions. The only thing special about them is their prototype,

which must return void and take a void pointer parameter. Each task is a small program in its

own right. An application can consist of many tasks. If the processor running the application

contains a single core, then only one task can be executing at any given time. This implies that

a task can exist, from an high-level perspective, in one of two states: Running and Not Running.

As there are several reasons for a task not to be running, the ”Not running” state can be

expanded as shows Figure 3.2. A task can be preempted because of an higher priority task

(scheduling is described in section 3.3.3), has been delayed or because it waiting for a event.

When a task is ready to run but is waiting for the processor to be available, its state is said ”Ready”.

This can happen when a task has is ready to run but there is a more priority task running at this
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Figure 3.2: Task state machine

time. When a task is delayed or is waiting for another task (synchronisation through semaphores

or mutexes) a task is said to be ”Blocked”. Finally, a call to vTaskSuspend() and vTaskResume()

or xTaskResumeFromISR() makes the task going in and out the ”Suspend” state.

The scheduler is the only entity that can promote a task for the Running state. Tasks can

only be transitioned to the Running state from the Ready state. A task in Running state can exit

on its own. However, the scheduler is the only service that can transit a task from Ready to

Running state. If the task calls the vTaskSuspend() its state will become suspended and them

the scheduler will select the task with higher priority ready for execution - Ready state. A task

can also move from Ready to Blocked by waiting for an event. Events can be of two types:

timing and synchronization events. When a task needs to be delayed for a certain number of

ticks or for a specific amount time, for the vTaskDelay() and vTaskDelayUntil() services can be

used, respectively. For synchronization events, FreeRTOS offers several features such as queues,

semaphores, countdown lights, recursive semaphores, mutexes. When using synchronization

events a timeout can be set; this means the task will exit the Blocked state as soon as its event

occurs or when the assigned timeout expires.

The maximum number of priorities that can be assigned to tasks is defined by the constant

configMAX_PRIORITIES. FreeRTOS does not impose any limitation on this value but the higher

the number of priorities, the more RAM will be consumed by the OS, because for each priority

a list of ready tasks is created. In certain platforms that present a ”count leading zeros” type

instruction in its Instruction Set Architecture (ISA) , the FreeRTOS provides a task selection mech-

anism (configUSE_PORT_OPTIMISED_TASK_SELECTION) that uses such type of instruction. In

this case, the maximum number of priorities (configMAX_PRIORITIES) need to be bellow than

thirty two priorities, whereas in other cases, configMAX_PRIORITIES can take any value. How-

ever, system designers need to take in mind, the lower the priority the less resources the system

will need.
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3.3.2.1 Task Lists

In order to manage the tasks, FreeRTOS assigns to each task a data structure, called a Task

Control Block (TCB). Figure 3.3 shows this data structure. For each task is assigned a memory

space, called stack. The TCB stores important information for the management of this stack,

using three pointers for this purpose: pxTopOfStack, pxStack, and pxEndOfStack. The pxTopOfS-

tack is a pointer to the last item placed on the task stack. The pxTopOfStack and pxTopOfStack

point to the beginning and end of the stack, respectively. The TCB has also information regarding

the task priority (uxPriority) and name (pcTaskName). The xGenericListItem structure is used to

point to one of this lists, Ready, Suspended, and the xEventListItem points to the corresponded

Block list.

Lists can be used as First In, First Out (FIFO) through the vListInsertEnd() function or as a

list sorted by a value. The lists declared by default are: a list of ready tasks (pxReadyTasksLists);

a list of tasks that are waiting for a temporary event (xDelayedTaskList); and list of tasks that

were acknowledged by the scheduler while it was suspended (xPendingReadyList) and moved to

the ready list when the scheduler resumes. There are other lists such as deleted tasks list and

suspended task list which are used by the vTaskDelete() and vTaskSuspend() APIs functions

The tasks that are waiting for a temporary event are stored in the xDelayed_TaskList This list

sort the tasks by their number of ticks left to unlock. FreeRTOS implements two identical lists

for time events to troubleshoot problems associated with the count timer overflow. The pxDe-

layedTaskList pointer points to the list that is currently in use and the pxOverflowDelayedTaskList

pointer points to the list which saves the tasks that will be unlocked after the overflow of the tick

count. After an overflow occurs, FreeRTOS swap lists.

FreeRTOS implements some time facilities this by providing for each task a dedicated software-

based counter, that is decremented at each system tick. In a complex system, where it is likely

to exist several timers active, the management and activation of the task represent a source of
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jitter.

3.3.3 Scheduler

A task transitioned from the Not Running state to the Running state is said to have been

”switched in” or ”swapped in”. Conversely, a task transitioned from the Running state to the Not

Running state is said to have been ‘switched out’ or ”swapped out”. The FreeRTOS scheduler is

the only entity that can switch a task in and out.

The FreeRTOS scheduler has two modes of operation: preemptive scheduling based on pri-

orities and cooperative scheduling. The scheduling mode must be chosen by the system user

through the configUSE_PREEMPTION parameter in the FreeRTOSConfig.h file. If this parame-

ter preemptive scheduling will be used, otherwise, it will be used cooperative scheduling. The

preemptive scheduling algorithm can be summarized in four points as:

• Each task has an associated priority.

• Each task exists in one of the states.

• At any time only one task is running (Runnning state).

• The scheduler chooses to always execute the task with higher priority with Ready state.

In summary, the preemptive algorithm selects the task ready-to-run with the higest priority

choose the task ready-to-run that has the higgest priority. For tasks with the same priority, the

scheduler follows a round-robin model, where at each tick the running task swap for another task

with the same priority, providing the same time slice for every task with the same priority. The

duration of on slice time is inversely proportional to the frequency of the system tick that is defined

by the parameter configTICK_RATE_HZ.

3.3.4 Synchronization Mechanisms

The binary semaphores, semaphores, mutexes, queues and task notifications are used to

synchronize tasks with other tasks or interrupt services routines (ISRs). These synchronization

mechanisms can be used to unblock a task each time a particular interrupt, effectively synchroniz-

ing the task with the interrupt. This allows the majority of the event processing to be implemented

within the synchronized task, with only a very fast and short portion remaining directly in the ISR.

Binary semaphores and mutexes are very similar but have a subtle differences: mutexes in-

clude a priority inheritancemechanism, binary semaphores do not. This makes binary semaphores

a better choice for implementing synchronisation (between tasks or between tasks and an inter-

rupt), and mutexes a better choice for implementing simple mutual exclusion. The description of
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how a mutex can be used as a mutual exclusion mechanism holds equally for binary semaphores.

FreeRTOS declare binary semaphores and mutexes as a queue that can only hold one item. The

queue can therefore only be empty or full (hence binary). Tasks and interrupts using the queue

don’t care what the queue holds - they only want to know if the queue is empty or full. This

mechanism can be exploited to synchronise (for example) a task with an interrupt. Counting

semaphores are also declare as queues with a length greater than one.

3.3.5 Software Timers

Software timers are used to schedule the execution of a function at a set time in the future,

or periodically with a fixed frequency. The function executed by the software timer is called the

software timer’s callback function. This feature is implemented by, and are under the control

of, the FreeRTOS kernel, and it is optional to include in the OS. They do not require hardware

support, and are not related to hardware timers or hardware counters. In line with the FreeRTOS

philosophy of using innovative design to ensure maximum efficiency, software timers do not use

any processing time unless a software timer callback function is actually executing.

Software timer functionality is easy to implement, but difficult to implement efficiently. The

FreeRTOS implementation does not execute timer callback functions from an interrupt context,

does not consume any processing time unless a timer has actually expired, does not add any

processing overhead to the tick interrupt, and does not walk any link list structures while interrupts

are disabled. However, the task that does the tick handler add some indeterminism and so the

software timers normally aren’t so precise.

3.4 LTZVisor

LTZVisor [PPG+17], from TZVisor Project56, is an open-source lightweight TrustZone-assisted

hypervisor. This section overviews the LTZVisor architecture as well as the AMP implementation.

3.4.1 General Architecture

LTZVisor targets the consolidation of mixed-criticality systems, and implements a classical

dual-guest OS configuration: the secure world hosts the RTOS and the hypervisor, while the non-

secure world is assigned to the general-purpose operating system (GPOS). Figure 3.4 depicts the

LTZVisor system architecture.

The hypervisor runs in the highest privileged processor mode, i.e. the monitor mode. It is

responsible for enforcing the inter-partition isolation, by configuring the security state of memory,

5http://www.tzvisor.org/
6https://github.com/tzvisor/ltzvisor
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Figure 3.4: LTZVisor system architecture.

devices, and interrupts. The RTOS kernel runs in the secure supervisor mode. Therefore, it has

full view over the non-secure privileged software, which means it is part of the trusted computing

base (TCB) and necessarily must have a small footprint. The GPOS kernel runs in non-secure

supervisor partition. The secure partition is completely isolated from the non-secure partition,

and any attempt from the non-secure guest OS to access any of the secure world resources will

immediately trigger an exception to be handled by the hypervisor.

LTZVisor implements an asymmetric or idle scheduler. This scheduling policy guarantees

that the non-secure guest OS is only scheduled during the idle periods of the secure guest OS,

and the secure guest OS can preempt the execution of the non-secure one. As a result, LTZVisor

overcomes the hierarchical scheduling problem that most real-time environment virtualization

solutions enjoy [ZMH15]. Typically, a hypervisor schedules virtual CPUs while a guest RTOS

running over the virtual CPU schedules its own tasks.

Spatial isolation between guest OSs is enforced by the TrustZone-aware hardware. The hy-

pervisor uses the TZASC to configure the security state of the memory blocks of the respective

partition.

Regarding the interrupt subsystem, LTZVisor follows the suggested ARMmodel, assigning fast

interrupt requests (FIQs) to the secure partition and interrupt requests (IRQs) to the non-secure

partition. While executing in the non-secure world, FIQs are set to be handled by the hypervisor.

When an FIQ occurs while non-secure guest is executing, the hypervisor will then trigger a context-

switch to the secure partition, resulting in minimal interrupt latencies for the real-time OS. This

guarantees the secure guest
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Figure 3.5: LTZVisor AMP architecture.

3.4.2 LTZVisor-AMP: Multicore Extension

LTZVisor-AMP implements support for a supervised asymmetric multi-processing (AMP) con-

figuration [POP+17]. In such schema one core runs in the secure world and hosts the secure

software (LTZVisor and RTOS), while the other core runs in the non-secure world and is responsible

for hosting the non-secure software (GPOS). Current implementation is limited to the one-to-one

mapping between core, guests and worlds. Figure 3.5 depicts the LTZVisor-AMP architecture.

For easing development and to avoid modifications to the Linux kernel, the GPOS runs over

the primary core - core 0. This means the real-time OS, running on the secure world side, is

assigned to the secondary core - core 1.

The multicore extension solves the problem of starvation which occurs in single-core platforms

(when the RTOS does not yield its control of the CPU), while presenting significant performance

advantages when the RTOS has a heavy workload [POP+17]. Nevertheless, the fact typical real-

time application have frequent idle time, which making the CPU unusable on those time slices is

not availed non-secure guest OS performance increase.

3.5 Benchmarks

Benchmarking and performance analysis are a well-established method of comparing the

performance of various subsystems across different processors and system architectures. Several
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benchmark suites exist targeting different metrics, systems and domains. This section provides

a quick look over the Benchmark suites used during the development of this thesis, explaining

the main reasons behind their choice.

3.5.1 Thread-Metric

The Thread-Metric benchmark suite7, from Express Logic, is a freely-available set of bench-

marks that measures many aspects of RTOS performance. Criteria such as interrupt response,

context-switching, message passing, thread scheduling, memory allocation, and synchronization

are particularly important when evaluating an RTOS. Thread-Metric consists of the following bench-

marks: cooperative context switching, preemptive context switching, Interrupt processing, inter-

rupt processing with preemption, semaphore processing, message passing, and memory alloca-

tion and deallocation. Each benchmark outputs a counter value, representing the RTOS impact

on the running application: the higher the value, the smaller the impact.

The number of benchmarks available for evaluating the RTOS overhead/performance is

scarce. Thread-Metric has been widely used across academia and industry. It has the advantage

of being freely available and made open-source by Express Logic. It is also easily adapted to

other RTOSs, just by mapping the generic APIs into the RTOS-specific APIs. No special hardware

is required, and the code was tested with various compilers.

3.5.2 LMBench

LMBench [MS96] is a widely known suite of simple and portable micro-benchmarks used for

measuring the most important factors that affect system performance, such as bandwidth and

latency. The timing harness is the heart of the system, because it manages the benchmarking

process: starting the benchmarked activity, repeating the benchmarked activity as long as nec-

essary to ensure accurate results, and finally managing statistics to report representative results.

The suite is written in portable ANSI-C using POSIX interfaces and targeting UNIX systems.

The LMBench 3.0 suite includes more than forty micro-benchmarks within three different

categories:

• bandwidth - file read, memory read/write/copy, memory map, and others;

• latency - memory latency, inter-process communication using Transmission;

• Miscellaneous - CPU clock speed, translation lookaside buffer (TLB) size, cache line size,

arithmetic operations parallelism, memory parallelism, and others.

7http://rtos.com/PDFs/MeasuringRTOSPerformance.pdf
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There are a signifcant number of available benchmarks for GPOSs, namely targeting different

architectural components. LMBench provides a plethora of microbenchmarks, in the same suite,

ranging from computing intensive (e.g., arithmetic operations) to memory, communication and

I/O intensive tests. Its availability as an open-source tool, as well as its widespread in Unix

platforms, make it an attractive option compared to other benchmark suites. The benchmarks

are all in C, and so, fairly portable. The source is small and easy to extend.





4. Trust SecSi Code: A TrustZone-assisted

Secure Silicon Co-design Framework

This chapter intends to provide details regarding the implementation of the TrustZone-assisted

Secure Silicon Co-design framework (Trust SecSi CoDe). The framework development was split

into three parts: (i) development of a hardware-software RTOS that is FreeRTOS application com-

patible; (ii) modified Zynq Linux for supporting multicore and graphical interface; (iii) modified

version of the hypervisor LTZVisor to integrate the software-hardware RTOS and the multicore

GPOS guest.

4.1 Overview

LTZVisor provides a virtualization solution based on the two virtual execution environments

provided by the TrustZone hardware. Notwithstanding, it is believed that the exploration of recon-

figurable computing can bring several benefits and present a promising approach.

The main design principle of the co-designed framework continues to be the same as LTZVi-

sor’s: rely on TrustZone hardware support as much as possible. In addition, it exploits field-

programmable gate array (FPGA) technology to offload secure software services (RTOS) to hard-

ware, and improve the GPOS performance and utility without compromising any real-time dead-

line. Figure 4.1 depicts the proposed hardware-software co-designed architecture. In this figure,

three main software components can be identified: the hypervisor; the real-time guest OS; the

general-purpose guest OS. Figure 4.1 also presents two main hardware subsystems: RTOS related

services and the HDMI Transmitter Interface.

LTZVisor runs in the highest privileged processor mode, i.e., in monitor mode. The hypervisor,

follows an AMP schema, which mean it is split into two parts. The core of the hypervisor is the

master of the system and is responsible for the main tasks, configuring memory, interrupts and

devices assigned to each guest OS, as well as guaranteeing run-time support for inter-partition

communication (IPC). LTZVisor kept the core of the system running in the secondary core - core

1 (to avoid severe modifications on the Linux guest [POP+17]). This limitation of the current

37
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Figure 4.1: Trust SecSi CoDe system architecture.

approach is addressed in this framework by providing the flexibility of executing the hypervisor’s

main layer in either core.

The real-time guest OS kernel runs in the supervisor mode of the secure world and was

assigned to the main core - core 0. This VM must have a small footprint, because, when the

processor state is secure, it has full view over the non-secure world side. Nonetheless, offloading

RTOS services to hardware also bring benefits in terms of security, due to the contention of the

software TCB.

The general-purpose guest OS kernel runs in the supervisor mode of the non-secure world

side. LTZVisor-AMP, which obeys a rigid AMP schema where each guest executed is in a dedicated

core, this framework brings a higher degree of flexibility and scalability for the implemented AMP

configuration. In this sense, the rich or multimedia OS has permission to explore secondary cores

during the idle periods of the RTOS. This approach does not induce non-secure VM starvation, as
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there will be always one core dedicated for this VM, like in LTZVisor-AMP. Nevertheless, this will

not affect the secure VM’s execution since TrustZone technology guarantees, by design, that the

non-secure world is always less privileged than the secure one, despite the CPU execution mode.

In behalf of ensuring the hard real-time requirement of critical software, some RTOS services

were oflloaded to the reconfigurable logic fabric. The scheduler, mutexes and the kernel software

timers services represent the major sources of jitter and overhead [KGJ03] in RTOSes and there-

fore, are major candidates for hardware offloading. The RTOS hardware subsystem is agnostic

from the RTOS software implementation that might be running in the secure world.

The HDMI Transmitter IP, which is supported by Analog Devices, provides graphical interface

for the GPOS and thereforethe FPGA hardware is configured with the security state as as the

associated operating system. The supplier also provides the necessary software driver compatible

with Linux OS.

4.2 Secure VM (Hardware-Software RTOS)

Since in LTZVisor’s architecture the RTOS is part of the TCB of the system, both hypervisor

and RTOS layers act synergically. In order to reduce the software TCB and meet the strict timing

requirements and constraints imposed by real-time systems, some RTOS services were deployed

in the reconfigurable hardware.

The coexistence of a hybrid, software and hardware model in an operating system environ-

ment, raises concerns namely regarding an unified programming model, portability, legacy soft-

ware support, suitable interface and synchronization mechanisms, communication overhead and

resource optimization [ZQCP05, WCW+09, NA07, POP+14], eventually exacerbated in resource

constrained embedded contexts.

Determinism and latency are the critical metrics of these systems. Migrating tasks and ser-

vices from software to hardware help to mitigate/aleviate these issues, leading to solutions able to

cope with these increasingly strict requirements. Migration of RTOS services, such as scheduling,

time management and task management, to dedicated hardware modules, provides increased

system performance and allows the RTOS to improve predictability and determinism [MNK14].

To distinguish between the original FreeRTOS and the implemented co-design, the hybrid system

will be named hardware-software RTOS.

4.2.1 System Structure

For the purpose of this project, the task management service, the scheduler, synchronization

service, and the software timers feature, were the implemented hardware services. Figure 4.2

illustrates the architecture of the hardware-software RTOS.



40 Chapter 4. Trust SecSi Code: A TrustZone-assisted Secure Silicon Co-design Framework

Figure 4.2: Hardware-Software Co-design RTOS architecture

In order to maintain the same FreeRTOS API, the source code was extended with conditional

compilation entries. To enable the co-designed system, a new configuration parameter was cre-

ated, called configRTOS_CODESIGN. When enabled, the classic services available in software are

replaced by its respective hardware implementation. Listing 4.1 is an example of modification in

the tick ISR, FreeRTOS_Tick_Handler() located in port.c.

Listing 4.1: FreeRTOS_Tick_Handler() modification

void FreeRTOS_Tick_Handler( void )
{

/* If the Hardware-Software Co-Design
configuration is enable. */
#if ( configRTOS_CODESIGN == 1 )

ulPortYieldRequired = pdTRUE;
#else /* configRTOS_CODESIGN */

/* Increment the RTOS tick. */
if ( xTaskIncrementTick() != pdFALSE )
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{
ulPortYieldRequired = pdTRUE;

}
#endif /* configRTOS_CODESIGN */

/* Ensure all interrupt priorities are active again. */
portCLEAR_INTERRUPT_MASK();
configCLEAR_TICK_INTERRUPT();

}

The functions that interface with the hardware modules are implemented as INLINE in the

header files started with the nomenclature ”secsirtos_”. They are defined as ”inline functions”since

they just implement read and write operations on the AXI4-LITE communication. The AXI4-LITE

communication is the main peripheral bridge between programmable logic and processing sys-

tem. In all hardware modules, the inputs and outputs are named with a ”_in” and a ”_out” at

the end, respectively .

4.2.2 SysTick Timer

Due to scheduler and time services hardware deployment, the timer that generates the system

tick also have to be implemented in the reconfigurable hardware for the correct use of the migrated

services. Since the timers are a generic peripheral, and Xilinx provides its own timer IPs, we have

used the AXI Timer IP.

The AXI Timer is organized as two identical timer modules. Each timer module has an asso-

ciated load register that is used to hold either the initial value for the counter for event generation,

or a capture value, depending on the mode of the timer. This timer replaces the timer used by

FreeRTOS while presenting the same characteristics, where the configuration of the frequency

used by the system tick must be done through the configuration macros that the operating sys-

tem already makes available. By using such an approach the user does not need to implement

a different configuration.

axi_timer_0

AXI Timer

S_AXI

capturetrig0

capturetrig1

generateout0

generateout1

pwm0

interrupt

freeze

s_axi_aclk

s_axi_aresetn

c_counter_binary_0

Binary Counter

CLK Q[31:0]

tick

tick_value[31:0]

tick_int

Figure 4.3: AXI Timer and the Counter IP
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Figure 4.4: Task Manager IP.

At the interrupt output, a counter has been added so that the kernel hardware can keep track

of time intervals. Figure 4.3 depicts the AXI Timer hardware module, the counter, as well as all

the connections needed between them.

4.2.3 Task Management

The task management service controls and manages the state of each task, by sorting them

in lists. It is worth mentioning that the scheduler is the only entity responsible of changing a

task from a ”ready” state to a ”running” state. Software list manipulation is a good example of

a source of unpredictability [GPG+15]. The time taken to select the next task to run in the ready

queue list of FreeRTOS’ priority-based scheduler, is very dependent on its position into the list.

In order to manage the tasks states, the hardware Task Manager IP (hTM IP) also sorts them

in lists. However, due to the parallel nature of reconfigurable platforms, the unpredictability of list

manipulation operations will be mitigated.

The hTM IP sorts the tasks ready-to-run according to their priority. There are two lists stored in

PL: Task List and Priority list. For each task, Task List saves the TCB address, ”*TCB”, the priority

number, ”Priority”, and two pointers, ”*Previous” and ”Next”, at the address of the provided task

identifier (”ID TASK”). The two pointers are used to create a doubly linked list between all ready-to-

run tasks with the same priority. For each priority, Priority List saves the ready-to-run task identifier

of the first, ”*TASK STRT”, and last, ”*TASK END” , task saved with the priority in question, as

well as the number of tasks associated, ”NUMBER ELEMENTS”.

For the tasks in temporal block state, the hTM IP sorts them in one linked list (Delay List)

instead of having two lists, one for the current tick counter and another for the after overflow of

the tick, as the original version of FreeRTOS.
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The Delay List sort the delayed tasks by order of expiration time. Starting with the task with

the lowest expiration time up to the task with the highest expiration time. To facilitate insertion

and deletion this list is doubly linked. So in each address is saved the pointers ”*Prev”, ”*Next”,

and the expiration time, ”DELAY VALUE”. The address of each Delay List element correspond to

the task identifier in question.

To establish an easy task identification between the hardware module and the software ser-

vice, the implemented approach uses the trace facilities provided by the FreeRTOS, to store the

task hardware identifier. Toward an efficient task management, the hardware module has to be

acknowledge when a task creation/deletion (vTaskCreate, vTaskDelete), or a change of task state

(vTaskDelay, vTaskDekayUntil, vTaskSuspend, vTaskResume and vTaskAbortDelay) occurs. This

module also provides access to the information of a certain task for the hardware scheduler.

Figure 4.4 illustrates the Task Manager hardware module and its I/Os.

The following sections explain how each type of task operation is implemented, as well as the

necessary inputs and outputs for each operation.

4.2.3.1 Task Create/Delete

In an application designer perspective, when a task creation occurs, several key parameters

are specified for a specific task (TCB). In a similar way, the hTM IP that implements the task

creation retains the task identifier (uxTCBNumber), the correspond TCB address (pxNewTCB)

and the assigned priority (uxPriority), while leaving the software layer to store all the remaining

information. These parameters are provided when the prvAddNewTaskToReadyList() is invoked.

For deletion operations, the hardwaremodule has to receive the task identifier (uxTCBNumber)

of the desired task. This parameter is provided when the vTaskDelete is invoked.

The creation operation is mastered by the following path:

1. Receive a signal on createTask_in and, at the same time, the values of TCB address

(addrTCB_in), priority (priority_in) and task ID (taskID_in);

2. Address the Priority List with the priority received and check if there are ready-to-run tasks

with the same priority, i.e., if the parameter ”NUMBER ELEMENTS” is not null:

(a) In case the ”NUMBER ELEMENTS” is null, (meaning that the new task is the first

ready-to-run task with that certain priority), the hTM IP can save the received param-

eters of the new task on the Task List;

(b) Else, address the last ready-to-run task on the doubly linked priority list (such infor-

mation is stored in ”*TASK END”) and updates the parameter ”*Next” so that the

new task is inserted in the linked list.
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Figure 4.5: Create and Delete Task Interface.

3. Update the ”*TASK END” with the inserted task ID and also increment the parameter

”NUMBER ELEMENTS”. In case of being the first task with a different priority from the

previous inserted ones, the ”*TASK STRT” is updated with the inserted task ID;

4. The Task List stores the TCB address and priority of the new task at the task ID provided.

The parameters ”*Prev” and ”*Next” save the previous last task and the first inserted task

with the same priority, respectively.

The deletion and suspension operations are quite similar. The main difference: the creation

operation can successfully occur on a deleted task ID, overwriting the stored task information

(see subsection 4.2.3.6). The delete operation proceeds executes as follows:

1. Receive a signal at (”deleteTask_in” and the identifier of the intended task (taskID_in)

(Figure 4.5);

2. The hTM IP obtains the priority number, the next pointer and the previous pointer by

addressing the Task List with the task ID received;

TASK A
Priority: 0x01

TASK B
Priority: 0x04

TASK C
Priority: 0x01

INACTIVE

TASK D
TASK E

Priority: 0x04
TASK F

Priority: 0x01
EMPTY

TASK G
Priority: 0x02

EMPTY
*TASK A

Elements: 3
*TASK G

Elements: 1
EMPTY

*TASK A
Elements: 2

EMPTY

TASK LIST

Priority LIST *TCB Priority *Prev *NextID TASK:

*TASK STRT *TASK END N_ELEMENTSPRIORITY:

Figure 4.6: Task List and Priority List.
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Figure 4.7: Resume and Suspend Task Interface.

3. Address the Priority List with the priority obtained and check if there are ready-to-run tasks

with the same priority, i.e., if the parameter ”NUMBER ELEMENTS” is not null:

(a) In case the ”NUMBER ELEMENTS” is null, (meaning that the intended task is the

first ready-to-run task with that certain priority), the hTM IP can just reset ”NUMBER

ELEMENTS”;

(b) Else, remove the intended task from the associated doubly linked priority list.

4. Update the ”*TASK END” in case the intended task was the last one in the doubly linked

priority list. Also the same for the ”*TASK STRT” in case the intended task was the first

one in the doubly linked priority list.

Figure 4.6 illustrate an example of how the lists will look if there are three tasks, ”Task A”,

”Task C” and ”Task F” with same priority, ”Task B” and ”Task E” with the same priority but

different of the other group, ”Task G” with a unique priority number and ”Task D” currently

suspended or blocked.

4.2.3.2 Task Resume/Suspend

The ”resume” and the ”create” operations have similar behaviour. However, the ”resume”

operation only needs the task ID because all the remain information is already stored in the Task

List (figure 4.7). Consequently, the ”resume” has an extra step before checking the Priority list

parameter ”NUMBER ELEMENTS”: get the priority number of the intended task by addressing

the Task List.

The ”suspend” operation and the deletion operation, as was previously said, are quite similar.

However, instead of allowing overwriting operations on this particular task ID, a task in suspend

state cannot be overwrited.
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Figure 4.8: Delay and Abort Delay Task Interface.

A ”resume” operation can only execute if the task was previously in suspend state. The same

goes for ”suspend” operations, these operations can only be executed if the task was previously

in ready-to-run state (see subsection 4.2.3.6).

4.2.3.3 Task Delay/Abort

FreeRTOS API presents a set of functions to delay tasks for a specific amount of number of

ticks. The actual time that the task remains blocked depends on the tick rate. vTaskDelay() and

vTaskDelayUntil() are two functions from the FreeRTOS API responsible to delay tasks. The func-

tion vTaskDelayUntil() differs from vTaskDelay() in one important aspect: vTaskDelay() specifies a

time at which the task wishes to unblock in relation to the time at which vTaskDelay() is called,

whereas vTaskDelayUntil() specifies an absolute time (rather than a relative time) at which the

task wishes to unblock.

In the implemented hardware-software RTOS, the calculations needed to determinate the

absolute time at which the calling task should unblock (vTaskDelayUntil() function) remains as

part of the software. This way, the hTM IP does not need to distinguish between a ”delay” and a

”delayuntil” operation. Figure 4.8 highlights the necessary inputs.
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Figure 4.9: Temporal Blocked List.
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In order to sort the temporal blocked tasks by their expiration time, the hTM IP presents the

following execution path:

1. Receive signal on delayTask_in, the identifier of the intended task (taskID_in), and the

expiration tick (valueDelay_in);

2. Remove the intended task from the ready-to-run list;

3. Verify if the Delay list is not empty. In case its not, there is two paths: survey until the it

find a task with a higher expiration time than the intended task or survey until the end of

the list;

4. Once the survey stops for either of the situations, the hTM IP inserts the intended task

information on the interrupted position.

To abort a temporal block of a task, the bit abortTask_in needs to be set as well as the task

identifier need to be on taskID_in. If the task was previously in the delay state, the delay will

be aborted (removing it from the Delay List) and the task becomes ready again (inserting the

intended task back to the ready-to-run linked list).

The hTM IP receives a ”delay” operation assuming that the delay time is not already expired.

The hTM IP only has one list for temporal blocked tasks, instead of two as the original version

of FreeRTOS. This approach does not compromise the maximum delay time that the tasks can

be submitted nor the number of tasks that can be in delay state at the same time. Figure 4.9

illustrates a representation of the Delay List with four tasks in delay state. The expiration time of

the tasks with the delay ”DELAY_VALUE3” and ”DELAY_VALUE4” will happen after an overflow

of the system tick.

4.2.3.4 Priority Selector

A classic RTOS implements a preemptive priority-base scheduler policy, where the scheduler

selects the task which has the highest priority. This sub-module is responsible for surveying all

ready-to-run task priorities and selecting the highest one.

0 0 0 1 … X X X X X 

63 62 61 60  4 3 2 1 0 
 

highpriority_out: 60 
 

Figure 4.10: Bit Array of Priorities
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Figure 4.11: Scheduler Interface.

The selector organizes all the ready-to-run task priorities on an array of sixty-four bits, each

bit corresponding to a priority number. When a ”create” or ”resume” operation is triggered, the

respective priority bit is set; when all the tasks with the same priority are suspended/blocked, the

bit is cleared. The output highpriority_out always contain the position of the highest priority bit

set, by doing this, so it is always possible to know which is the highest priority level. Figure 4.10

illustrates an example of the bit array were the highest priority ready-to-run task has a priority

number of 60.

4.2.3.5 Scheduler Interface

The scheduler is responsible for controlling which task goes to the running state. To allow

this, the hTM IP provides the value of the highest priority (highpriority_out), the identifier of the

first task with the high priority (highpriorityTask_out) and the identifier of the next task with the

same priority (nexttaskID_out). In addition, provides the TCB address (addrTCBrun_out) of the

task ID received on the input taskIDrun_in so the scheduler can perform the context switch if

necessary. Figure 4.11 highlights these I/Os.

4.2.3.6 State Control

The hTM IP always needs to be prepared to receive an incoming operation operation. In

addition, these operation can come from the application designer, from the scheduler, from the

syncronization services, from the software timer module or even from internal operation (for

example when a ”delay” operation occurs, the hTM IP also needs to remove the intended task
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from the ready-to-run list). Before handling any of these commands, this module first verifies if the

operation can be executed, them stores each valid operation in a circular buffer. If the necessary

operation is possible, executes the saved operation.

In order to be a valid command, it is necessary to check the following rules:

• If the task is in resume state, all commands are valid, except ”abort delays” or ”create”

commands;

• If the task is in suspend state, the ”resume” command is the only valid one;

• An ”abort delay” can only happen if the task is in delay state.

4.2.4 Scheduler

The scheduler has two modes of operation: preemptive or cooperative. If the preemptive

mode is chosen, the scheduler preempts the ready-to-run task who has the highest priority, and

when a prioritized tie occurs, the scheduler resolves it using the round robin strategy with time

slice. This means that tasks with the same priority share CPU access when running alternately.

The hardware Scheduler IP (hS IP) controls which task starts to execute and which task gets

out of the running state. The scheduler algorithm becomes less complex, as a result of the lists

structure design. The hS IP was simplified in a way that it has only two assignments:

• Update the task in running state when the highest priority level is updated;

• When a systick is set and the highest priority did not change, the scheduler preempts the

next task with the same priority than the previous running task.

Figure 4.13 depicts the behaviour through a state machine diagram. The state machine has

three states: IDLE, TICK and PRIORITY. The hS IP starts at IDLE state. If the tick_in is set, the

tick_out
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-
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aresetn
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nexttaskID_in[7:0]
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Figure 4.12: Scheduler IP.
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Timer Interrupt High Priority Changed

RETURN RETURN

Figure 4.13: Scheduler State Machine.

module transits to the state TICK or if the highpriorityTask_in is updated, the module transits

to the state PRIORITY. In PRIORITY state, the hS IP updates the register taskIDrun_out with the

value on highpriorityTask_in and then returns to IDLE state. In TICK state, the scheudler updates

the taskIDrun_out with the value nexttaskID_in and then returns to IDLE state.

The hS IP not only controls the TCB address of the task to run (addrTCBrun_out) , but also

commands the tick interrupt (tick_out). The hS IP only sends an interrupt when a tick is triggered

and a context switch is necessary. Therefore, the RTOS ensures that every time a tick handler is

called, a context switch need to occur. By mitigating interrupts that would be useless, it improves

the performance of each task that runs for more than one time slice.

FreeRTOS has a tickless feature, Tickless Idle Mode [Bar10] that suspends the system timer

when the system is in idle time. This feature allows the microcontroller to remain in a deep power

saving state (or in this virtualization context, used for non-secure world purposes), until either an

interrupt occurs, or it is time for the RTOS kernel to transition a task into the ready-to-run state.

The hS IP not only provides this feature, but also does not interrupt the processing of a high

priority task, when there is not an higher process to attend.

Figure 4.14 illustrates a case scenario running on three different schedulers: (i) original

FreeRTOS scheduler; (ii) FreeRTOS scheduler with Tickless Idle Mode enabled; (iii) implemented

hardware-software RTOS scheduler. The case scenario consists of three ready-to-run tasks: ”Task

D” has the higher priority, and ”Task A” and ”Task B” have equal low priority. Each scheduler

starts executing ”Task D” for 2 system ticks. Then, executes ”Task B” and ”Task A” for for one

time slice each. Ending with each scheduler in idle state.
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Figure 4.14: Comparison between different scheduler behaviours during system ticks

4.2.5 Software Timers Service

A software timer (or just a ”timer”) allows a function to be executed at a set time in the

future. The function executed by the timer is called the timer’s callback function. The time

between a timer being started, and its callback function being executed, is called the timer’s

period. The hardware ”Software Timers” IP (hST IP) intends to replace the software functionality

that is responsible for delaying the timer task and also migrating the indeterministic processing

portion that checks if a timer has expired. Figure 4.15 illustrates the inputs and outputs of this

module.

Before any timer creation, the hST IP must receive the task ID of the timers handler task

(timerTaskID_in). The hST IP is responsible of resuming this task, leaving the PS in charge of

suspend it.

The hST IP stores the information related to all created timer (the timer’s period, callback

function and if it is an auto-reloaded timer or not) in the ”Timer Info list”. Activated timers are

saved in a doubly linked list called ”Timer List”. The Timer List sorts the activated timers by their

expiration time. When a timer expires, the hST IP sends a ”resume” command to the hTM IP

(resumetimer_out) in order to place the timers handler task in ready-to-run state. Also, provides

the timer’s callback function to the PS (addrTimer_out). If the expired timer is an auto-reload

timer, then it is again placed in the Timer list with a new expiration time. In addition to the timer’s

start and ”create” commands, the hST IP allows commands such as timer’s stop (stopTimer_in),

change timer’s period (changePeriod_in), and delete (deleteTimer_in).

The principle is the same as in Task Delay sub-module of hTM IP, sorting the active timers by

ascending order of expiration time. Figure 4.16 depicts the behaviour of the list against expired
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Figure 4.15: Software Timers IP.

values after overflow of the timer.

4.2.6 Synchronization Service

Mutexes, binary semaphores, and count semaphores, are quite similar in terms of imple-

mentation. The hardware Semaphore IP (hSmphr IP) implements a count semaphore that can

be used as a mutex or a binary semaphore. Each semaphore has a number of maximum counts.

If it is a binary semaphore, the semaphore only has one count available.

To create a semaphore, the createSemaphr_in needs to be set. Also, the hSmphr IP receives

the maximum counting value that the semaphore can ”give” (countmax_in) and the number of

counts available in the initialization (countInit_in). Each semaphore has an ID that is provided also

in the creation (semphoreID_in). The inputs take_in and release_in, correspond to the ”take” and

”release” operations, respectively. When one of these inputs is set, the hSmphr IP also receives
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Figure 4.16: Software Timers List.
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Figure 4.17: Semaphore IP.

the semaphore ID (semphoreID_in), and the identification of the task that calls the ”take” or

”release” (taskID_in), as well as its priority (priority_in). Furthermore, the Figure 4.17 illustrates

the I/O of the Semaphore Module.

The hSmphr IP stores the semaphores information (maximum of counts and present value

of releases) in the Semaphore List. If a ”take” occurs the value of releases is decremented. If a

”release” command occurs the value of releases is incremented without exceeding the maximum

value. In case of the counting value is null, meaning that the semaphore cannot perform ”take”

operations, the hSmphr IP suspends the task that request the ”take” operation and inserts the

task in the Waiting List. The waiting list sorts the blocked tasks by their priority. When a ”release”

command is invoked, the semaphore resume the higger priority task that was waiting for a release,

and not the task that was waiting the longest. Each semaphore as an associated waiting list, then

multiple tasks can be waiting for a release. However, a task can not be waiting for more than one

semaphore in an instant.

Figure 4.18 depicts an example of list behaviour when there are three semaphores, with tasks

on hold, and a semaphore with availability to run a ”take” command.

4.2.7 Secure Guest OS modifications

As FreeRTOS was used as the secure guest, it was needed to make some modifications to

it so it will execute using FIQs instead of IRQs. As such, the core interrupt handling code was

modified and the GIC CPU interface configured to signal secure interrupts as FIQs. The latter is

simply done by setting the FIQEn bit in the CPU Interface Control Register (ICCICR).

The major issue with this modifications is the fact that, in the Zynq implementation, FIQs are

non-maskable from the interrupt perspective. It is only set by hardware when certain exceptions
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occur, such as the triggering of a FIQ. This seriously complicates the FreeRTOS interrupt code with

respect to interrupt nesting, as this code originally enables and disables IRQs by masking them

in the I bit of the CPSR. Furthermore, this problem is aggravated by the fact that internally, the

implementation of the yield operation is done through the use of a SVC (supervisor call) instruction

to directly jump to the exception vector and execute the needed yield operations. When using IRQs,

this code assumes their automatic masking when the trap is triggered, which does not happen for

FIQs. Not having FIQs maksed in these critical sections, removes the guarantee for their atomic

execution, which might totally disrupt the correct execution of the RTOS. To solve this, the yield

macro was replaced for a software generated interrupt, namely SGI 0, previously configured as

secure, by writing to the ICDSGIR register of the distributor. As such, the FIQ handling code only

needs to redirect control flow to the yield code (and first acknowledge and end the interrupt) in

case the acknowledge interrupt is ”0”, and proceed normally otherwise. Nesting code however,

becomes permanently ”damaged” as are we not able to unmask and mask FIQs at will, so this

functionality will not be completely available in the pure software version of the secure guest

RTOS.

A final note regarding interrupts in the secure FreeRTOS guest: when configuring them, care

must be taken so that they always have a higher priority than non-secure IRQs. This is simply

done by assigning a priority in the lower half of the spectrum (as ARM interrupt priority scale is

inverted), as TrustZone hardware forces secure software to configure priorities in the higher half

of the spectrum.

4.3 Non-Secure VM (Linux with HDMI video output)

The non-secure world host the general-purpose guest OS, Linux. The massive support com-

munity and user base for this GPOS allows the existence of documentation, software modules

and FPGA reference designs compatible, mitigating the engineering effort. GPOS are useful for

running human-machine interfaces as well as internet-based applications and services. In order
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Figure 4.18: Semaphore Lists.
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Figure 4.19: ADV7511 reference design

to enrich the multimedia support, Analog Devices provides a reference HDL design which contain

support for generating the necessary video and audio as well as support for interfacing as well

as Linux driver for the High-Definition Multimedia Interface (HDMI) transmitter, ADV7511.

The reference design illustrated in figure 4.19 [HDM18] consists of two independent core

modules. The video part consists of a Xilinx VDMA interface and the ADV7511 video interface.

The ADV7511 interface consists of a 16bit YCbCr 422 (a format of color spaces used as a part of

the color image pipeline in video and digital photography systems) with separate synchronization

signals. The Video Direct Memory Access (VDMA) streams frame data to this core. The internal

buffers of this core are small (1k) and do not buffer any frames as such. Additional resources may

cause loss of synchronization due to DDR bandwidth requirements. The video core is capable

of supporting any formats through a set of parameter registers (given below). The pixel clock is

generated internal to the device and must be configured for the correct pixel frequency. It also

allows a programmable color pattern for debug purposes. A zero to one transition on the enable

bits trigger the corresponding action for HDMI enable and color pattern enable.

The reference design defaults to the 1080p video mode. The video settings can be change.

The (HDMI Core) requires a corresponding pixel clock to generate the video. The reference design

reads 24bits of RGB data from DDR and performs color space conversion (RGB to YCbCr) and

down sampling (444 to 422). If bypassed, the lower 16bits of DDR data is passed to the HDMI

interface as it is. A color pattern register provides a quick check of any RGB values on the monitor.

If enabled, the register data is used as the pixel data for the entire frame.

The audio part consists of a Xilinx DMA interface and the ADV7511 spdif audio interface. The

audio clock is derived from the bus clock. The audio data is read from the DDR as two 16bit

words for the left and right channels. It is then transmitted on the SPDIF frame. The reference

design defaults to 48KHz.
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The ADV7511 driver is implemented as a IP encoder slave driver. In a typical board design

the ADV7511 is not used as a standalone component but rather as a HDMI encoder fronted for

some other devices with a graphics core, like a SoC or a FPGA. Implementing the ADV7511 driver

as a IP encoder slave driver allows to reuse the driver between different platforms which use the

ADV7511.

4.3.1 Non-Secure Guest OS modifications

The Linux runs in the supervisor mode of the non-secure world side. The non-secure VM

is completely isolated from the privileged software running on the secure world side. The main

limitation posed on the OS hosted on the non-secure side is that it can no longer use the TrustZone

features by itself. The virtual architecture is not completely identical to the physical one, but it

is identical to the bare architecture without TrustZone enhancements with an offset due of the

reserved non-secure space. Notwithstanding, all the hardware modules in the reconfigurable

hardware that pertain to the GPOS are declared as non-secure slaves of the secure AXI Master

Bus.

Follow, some of the modifications made after setting the Xilinx original Linux with the default

configuration provided by Analog Devices:

• FIQ stack initialization were removed, due to IRQs being used instead of FIQs, according

to the LTZVisor interrupt model;

• Updates Linux device tree with specific LTZVisor bootargs (e.g. clock frequency, memory

limitation);

• Clean the Filtering_Start_Address_Register, so the DDR start from 0.

Listing 4.2: Offtsets Declaration

SECTIONS {
. = PHY_OFFSET;
.texts : {

_start:
start.o(.text);
start.o(.rodata);

}
. = NS_OFFSET + DTS_OFFSET;
.textd : {

d.tmp(.data);
. = . + 0x1000;

}
. = NS_OFFSET + ZIMAGE_RAMDISK;
.textr : {

r.tmp(.data);
}
. = NS_OFFSET + ZIMAGE_OFFSET;
.textz : {

_start_linux:
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z.tmp(.data);
}

}

After building the modified Linux, the reserved section for the compiled kernel (zimage), the

device tree struct (dts) and the root file system (ramdisk) are declared in the non-secure space.

Listing 4.2 illustrate the linker script file used to declare those offsets.

4.4 LTZVisor Modifications

This section intend to describe some modification made to the original lightweight TrustZone

hypervisor (LTZVisor) code regarding:

• decouple the secure guest, which was tightly entangled with the hypervisor itself being

compiled together as a single image.

• endowing LTZVisor with multi-processing VM support and so the hardware-software VM .

While the secondary core executes in a normal state hosting exclusively the non-privileged

software (i.e. the Linux guest), the primary core executes the privileged real-time guest

in the secure state, scheduling the non-secure guest on this core in the idle period of the

hardware-software RTOS.

Before describing the LTZVisor modifications carried out on this implementation, this section

will delve a little bit deeper on the internal implementation details and build system of the LTZVisor,

for which an overview is given on section 3.4.

LTZVisor achieves its main objective of dual guest execution by carefully assigning as non-

secure only the needed resources for the non-secure guest to execute. This is accomplished

by configuring the TrustZone module registers [Xil14] according to the needs of the non-secure

guest’s peripheral and memory use. Regarding memory, TrustZone segment assignment is done

according to a predefined memory layout, as the non-secure guest must be previously compiled

to execute specifically within the bound of this configuration. Furthermore, registers of the APU

mpcore module, namely the SNSAC (SCU Non-secure Access Control Register) and the ICDISRX

(Interrupt Security Register) registers of the GIC distributor, are configured to assign internal core

components (e.g. the global timer) and non-secure interrupts to this guest, respectively. At the

same time, the core’s GIC interface is configured to signal secure interrupts as FIQs (in the CPU

Interface Control Register or ICCCICR).

LTZVisor code executes in the monitor mode (which is always considered as running in secure

state independently of the NS bit of the CP15 Secure Configuration Register), and performs the

context switch between the non-secure and secure guests. After the aforementioned system
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initialization, the context of both guests is initialized. Then LTZVisor executes the following steps

to execute the context-switch to the secure-guest:

1. Sets the NS bit to secure.

2. Configures the FIQ bit of the SCR to route FIQs directly to FIQ mode (in the secure exception

vector).

3. Restores secure guest context and transfers control flow to it (the first time this occurs, the

hypervisor directly branches to the main function of the non-secure guest).

After this, the core is in completely control of the processor. It may execute until it seems fit.

When entering an idle state it must emit a SMC to trigger a trap to the hypervisor which will then

perform the sequence:

1. Sets the NS bit to non-secure.

2. Configures the FIQ bit of the SCR to route FIQs directly to Monitor mode (in the monitor

exception vector).

3. Restores non-secure guest context and transfers control flow to it.

The non-secure guest will then execute until a FIQ, configured previously by the secure guest,

is triggered. When this happens, the hypervisor acknowledges the interrupt and branches to a

secure guest defined interrupt service routine. After the guest returns, the steps for the secure-

guest context restore are repeated in the whole cycle repeats. This asymmetric scheduling scheme

gives complete control of the system the secure RTOS guest, which will always execute when it

deems fit by accordingly configuring it interrupts.

4.4.1 Secure Co-Design Guest Decoupling

One important aspect of the original LTZVisor implementation is that the secure guest is

compiled with the hypervisor in a single image. This allows the aforementioned direct branches (at

start-up and for interrupt servicing) from the hypervisor to the secure guest, which entangles both

implementations, making the guest’s interrupt servicing and nesting software highly dependent on

the hypervisor. For this reason, the makefile and FIQ routine of the hypervisor were altered so that

the secure guest is compiled completely from the remain system. In this way no direct branches

happen from the hypervisor to the secure guest - both are completely agnostic of each others

implementation. As such the secure guest will be included as a raw binary in the final system

image, in the same way the non-secure guest is. This as two implications in the functioning of

the hypervisor described above:



Chapter 4. Trust SecSi Code: A TrustZone-assisted Secure Silicon Co-design Framework 59

• The hypervisor cannot directly jump to the main routine of the secure guest at start-up. It

will instead jump to the reset expection vector entry, which must coincide with the base of

the guest image.

• The hypervisor cannot directly branch to the guest’s interrupt service routine when a FIQ

is triggered while the secure guest executes. Instead, it will be agnostic of the FIQ being

serviced and not acknowledge it but directly restore the context of the secure guest. As of

this moment, the FIQ mask in the CPSR is cleared, and the interrupt is still pending, imme-

diately after the guest is resumed, the hardware will jump to the guests secure exception

vector, which will service the interrupt as normally happens when executing standalone.

4.4.2 Multi-Processing

The adaptation of LTZVisor to a multicore-processing configuration is relatively simple. The

main idea here is that while the primary core behaves as the single-core implementation of LTZVi-

sor, by giving almost full control to the secure RTOS guest and scheduling the non-secure guest

on its idle periods, the secondary core is dedicated to exclusively execute the non-secure guest,

To achieve this, only small modifications are needed at the start-up and initialization code of

LTZVisor, as well as duplicate parts of the context of the non-secure guest. First, the primary core

run all TrustZone configurations as it was in the original version. Then, when the non-secure VM

initialization starts and attempt to initialize the secondary core, the hypervisor first takes place

and executes the needed TrustZone configurations in order to declare the secondary core as non-

secure, before handling execution control to the non-secure guest. Some care is needed also to

initialize some core specific structures such as the GIC CPU interface in both cores.





5. Evaluation

The Chapter 4 has describe the implementation of the TrustZone-assisted Secure Silicon

Co-Design framework. This chapter goes through an extensive evaluation. The implemented

solution was evaluated on a ZedBoard evaluation board targeting a dual ARM Cortex-A9 running

at 667 MHz and 100 MHz on the Series-7 Programmable Logic. This evaluation focused on three

metrics: memory footprint, performance overhead and real-time behaviour.

5.1 Engineering effort

The engineering effort required for the implementation of the developed framework was mea-

sured using the Understand software tool. This tool provide pertinent metric and reports regarding

the developed code. In the context of this thesis, we have focused on the number of lines of code

(LoC) of the TCB of the system (libraries and drivers were not taking in consideration).

Figure 5.1a illustrate the comparison between number of LoC of the LTZVisor and the modified

version for this developed framework. It is noted that there is a reduction in terms of LoC between

hypervisor. This reduction is related to the fact that in this developed version the secure guest is

no longer part of the hypervisor’s TCB.

Figure 5.1b depicts the comparison between number of LoC of FreeRTOS v10.0.1 and the

hardware-assisted developed version, and so the LoC written in HDL language for the developed

hardware modules. It was expected a reduction in terms of LoC in the version developed due

the offloading of several OS services to hardware. It is noteworthy that since this approach rely
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on the structure of FreeRTOS and attempt to maintain its architecture, the code refactoring could

never be excessive. Thereupon, the conjunction of software and hardware code presents values

slightly higher than the original version of FreeRTOS.

5.2 Memory Footprint

In order to assess the memory footprint of each software component of the implemented

architecture, we used the size tool of the Arm GNU toolchain. The original and hardware-software

co-design version of FreeRTOS (v10.0.1), as well as the original and modified version of LTZVisor

hypervisor were evaluated without taking in consideration the boot code, libraries and drivers.

Table 5.1 presents the collected measurements. As it can be seen the memory overhead in-

troduced by the hypervisor remains very small, just like the original LTZVisor, i.e., 2816 bytes.

As it can be seen, the hardware-software version of the secure VM RTOS has smaller memory

footprint compared to the original version. This reduction comes from hardware offloading of the

components that caused the most overhead to the real-time operating system.

Table 5.1: TrustSecSiCode memory footprint (bytes)

Software
Memory Footprint

.text .data .bss Total

LTZVisor Trust SecSi Code 2816 0 260 3076

LTZVisor 2368 0 512 2880

Hardware-software RTOS 18554 0 120 18674

FreeRTOS v10.0.1 21526 0 360 21886

5.3 Hardware Costs

Since both VMs employ services on the reconfigurable hardware layer, it is worth to mention

the hardware costs for the developed framework. Vivado post-implementation offers a set of

reports regarding timing, power and utilization. Figure 5.2 depicts the Vivado utilization report.

Vivado utilization report parameters indicates the number of lookup tables (LUTs), LUTRAM, flip-

flops (FFs), buffer random access memory BRAM, I/Os and mixed-mode clock manager (MMCM)

of the current design required in order to implement the secure VM hardware RTOS services

(illustrated in grey colour) and the HDMI transmitter module used by the non-secure VM (illustrated

in cyan colour).
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Figure 5.2: TrustSecSiCoDe framework hardware costs

There is not much to point out about the hardware costs pertaining to the HDMI transmitter

because because it is a third-party implementation. Nevertheless, it is relevant to present them

together with the results of the migrated RTOS services towards analysing the overall hardware

costs. The offloaded RTOS services requires a significant amount of LUT and LUTRAM, due to

the fact that in most cases these services are practically list management operations. This lists

are stored in memory resources. In terms of PL resources, the overall system does not have an

excessive consumption of resources available in the evaluated Zynq platform. Since the consumed

resources do not exceed much more than the 20% of resources available in this platform, leaving

enough development space for applications to be developed on top of this evaluation board.

5.4 Performance

The performance evaluation process was split into two different test case scenarios. First,

evaluate the improvements introduced by the implemented hardware-software co-design RTOS

(using the Thread Metrics Suite) as well as the latency deviation over the secure VM (Hardware-

software RTOS). Then, evaluate the overhead over the non-secure VM (GPOS) using the LMBench.

5.4.1 Secure VM (Hardware-Software RTOS)

Thread-Metric Benchmark Suite provides a set of benchmarks to evaluate the RTOS real-time

capabilities. As already described in section 3.5.1, the suite comprises seven benchmarks, eval-

uating the most common RTOS services and interrupt processing: cooperative context switching

(CS); preemptive context switching (PS); interrupt processing (IP); interrupt processing with pre-

emption (IPP); semaphore processing (SP); message passing (MP); and memory allocation and

deallocation (MA). Each benchmark outputs a counter value, the higher the value, the smaller

RTOS impact on the running application.
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Figure 5.3: Thread-Metric benchmarks results

Benchmarks were executed on the original version of FreeRTOS (FreeRTOS Kernel v10.0.1),

and on the hardware-software RTOS version ( Hardware-Software RTOS). In both versions the

interrupts are handled as FIQs. Because either versions are declared as secure guests on the

Trust SecSi CoDe. Figure 5.3 presents the achieved results, corresponding to the average relative

performance (as well as the average absolute performance) of 20 collected samples for each

benchmark. Each sample reflects the benchmark score for a 30 seconds execution time, encom-

passing a total execution time of 500 minutes, per benchmark. In accordance with Figure 5.3

the hardware-software co-design version of FreeRTOS compared to the original version has an

overall better performance. It is also possible to verify that the improvements in memory alloca-

tion and deallocation and message passing benchmarks were not as significant as the remaining

tests. This phenomenon occurs because no messaging or memory allocation service has been

offloaded to the reconfigurable hardware.

The hardware accelerators implemented to support the RTOS are directly related to the task

switching mechanism. This way, to infer the benefits obtained from the hardware approach, the

evaluation and validation was realized by measuring the latency and jitter in the manipulation of

the various kernel data structures. Both hardware-software RTOS and FreeRTOS Kernel v10.0.1

were measure through a specific hardware counter module, called performance monitor unit

(PMU).

Figure 5.4a and Figure 5.4b illustrate the task switch latencies on the FreeRTOS Kernel

v10.0.1 and on the hardware-software RTOS, respectively. This test measures the latency of

a switch context operation from the idle task to a task with the priority: 0, 7, 15, 23, 31, 39,

47, 55, 63. Also, this test measures the switch latency after on task (with the priorities previous

mentioned) As can be seen on the collected data, the mean latency in the hardware-software

RTOS is significant lower than the original FreeRTOS. More than that, regardless of the priority

that the task has, this operation takes 1200 system ticks. This means hardware-software RTOS

presents more determinism than the original version of FreeRTOS.
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Figure 5.5: xIncrementTick() latency results

Through the results illustrated in the Figure 5.5, was possible to verify that the ”xIncre-

mentTick()” operation is a costly and time consuming procedure. Since, in the developed ap-

proach this procedure was completely moved to hardware, the RTOS processing system will be

entirely released of it and, therefore, the latency is eliminated.
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Figure 5.6: LMBench arithmetic operations latency (lat_ops) benchmark results.

5.4.2 Non-Secure VM (Linux)

LMBench is a widely used suite of micro-benchmarks that measure a variety of important

aspects of system performance, such as latency and bandwidth. The LMBench 3.0 suite includes

more than forty micro-benchmarks within three different categories: bandwidth, latency, and

other. The evaluation was focused on two specific benchmarks:

• lat_ops: Arithmetic operations latency, to evaluate general CPU performance

• bw_mem: Memory operations bandwidth for different blocks size to evaluate the interfer-

ence of the TrustZone Address Space Controller (TZASC);

The presented evaluation exhibit the results taken from four different application scenarios.

For the first scenario, the micro-benchmarks were ran in the native version of Linux (Linux Native).

Second, the micro-benchmarks in virtualized version (TZLinux) without any secure VM executing.

For the third and fourth scenario, the micro-benchmarks were ran with the secure VM configured

with a 1 MHz tick frequency and with 10MHz, respectively. Its worth to mention that no real time

tasks were added to the secure VM. This means, in the case of the implemented hardware-assisted

RTOS will not trigger the timer interrupt since there is no need to context switch. Therefore, for
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Figure 5.7: LMBench memory bandwith (bw_mem) benchmark results

the purpose of this evaluation, a real-time task was created, this task simply suspends it self until

next tick. This way the non-secure VM evaluation for the Trust SecSi Code framework can come

closer to a real typical framework use since to run applications in RTOS it is necessary to associate

them with tasks. Presented results correspond to the average relative performance and variation

(as well as the average absolute performance) of the 10 consecutive experiments, encompassing

a total of 1000 samples.

Figure 5.6 presents the achieved results for the arithmetic operations latency benchmark.

The values on top of the bars correspond to the average latency, in nanoseconds. As it can

be seen, the virtualized version of Linux with a 1 MHz tick frequency of the secure VM only

presents an average performance degradation of 3%, when compared to its native execution.

This value is practically uniform among all micro-benchmarks (apart from the small variations

due to the benchmark’s lack of accuracy). For these arithmetic operations latency -benchmarks,

the achieved results do not reflect the real performance penalty, due to the lack of precision. The

relative performance of GPOS at different RTOS tick rates it has an exponential decay behaviour

for the core 0. Despite this it will not happen starvation on the non-secure world side since the

core 1 is reserved for non-secure virtual machine use. Moreover, at 100 µs RTOS tick rate, the

relative performance of one core used by the GPOS is 85%.
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Figure 5.7 presents the achieved results for the memory bandwidth benchmark. The values

on top of the bars correspond to the average memory bandwidth, in megabytes per second

(MB/s). Figure 5.7a and Figure 5.7b depict the assessed results for a memory block size of 2KB

and 128KB, respectively. These memory block sizes were selected with the intention to fit and not

fit within the L1 and L2 cache sizes, respectively. Looking at the two figures, it is clear the relative

performance of the system is practically uniform among all micro-benchmarks, presenting an

average performance degradation of 3% when comparing to the virtualized version of Linux with

the native one.

In summary, the non-secure VM’s performance is inversely proportional to the secure VM’s

tickrate, but only in the primary core. Since the secondary core run exclusively the non-secure

SMP operating system. Thereby the non-secure VM experience lack of performance on one of its

cores (on the primary core to be more precise), which is much better than suffering completely

starvation, which makes the purpose of this guest ineffective.



6. Conclusion

Embedded systems are proliferating at a rapid pace in our everyday life, representing a huge

part of our key infrastructures. The trend nowadays goes towards the consolidation of a wide

range of functions into the same hardware platform, while reducing size, weight, power and cost

(SWAP-C) budget.

Solutions that guarantee the deadlines of real-time tasks, while at the same time, integrating

rich environments for monitoring and network purposes are gaining momentum in embedded

systems field. Virtualization technology allows the co-existence of mixed-criticality systems envi-

ronments on a single physical platform. Hardware virtualization solutions are capable of providing

efficient hypervisors and real-time guarantees. TrustZone-assisted virtualization has been seen

as a promising approach, due to the ubiquitous presence of TrustZone-enabled processors.

Co-designed systems that exploit reconfigurable hardware technology are able to ensure the

rigid real-time constraints of embedded domain. Virtualization solutions that rely on asymmetric

scheduling policy can lead to the starvation over one of the guests. Multi-processing configuration

demonstrate to be a viable solution to prevent the drawback of asymmetric designs.

This thesis proposed the TrustZone-assisted Secure Silicon Co-design framework (Trust SecSi

CoDe). Trust SecSi CoDe is a hardware-software co-design framework for easing the economy

of building the new generation of embedded devices. By bringing together TrustZone technology,

virtualization, multiprocessing, and RTOS acceleration via configurable hardware, that embedded

system developers and hobbyists will find into Trust SecSi CoDe framework a valuable resource

to speed-up the development of current embedded applications on Xilinx Zynq-based devices.

6.1 Future Work

Although the developed framework is already at a good stage of development, there is still

room for improvements and development. A good example is the implementation of an inter-

partition communication (IPC) mechanism using VirtIO [RSPT18].

Our current priority is the implementation of use cases which might demonstrate the full

potential of the framework across different embedded industries. Among existing embedded

industries, we are particularly interested on the development of a demo for the Industrial IoT.
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Figure 6.1 depicts a use case scenario of a conventional smart factory and respective production

facilities. At the heart of the Industrial IoT are the Automation and Industrial Control Systems,

which are computing platforms that monitor and control physical processes. In the presented use

case scenario, the highlighted ICS unit is responsible for monitoring, controlling and connecting

a robotic arm to the Internet. The Trust SecSi Code framework provides all technologies needed

to address such requirements.

Currently, we are developing a rough prototype of such an application with the DOBOT Ma-

gician1. The framework is used to build a system that runs Ubuntu for monitoring (using a QT

GUI), as well as the accelerated RTOS which interfaces with the robotic arm when the buttons

available on the Zedboard are pressed.

Figure 6.1: Trust SecSi Code for Industrial Control Systems.

1https://www.dobot.cc/dobot-magician/product-overview.html
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