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1 | Introduction

A modern world cannot be thought of without computers, they became an integral part
of our lives. Computers are used in nearly all facets of our daily routine, aiming to boost
our productivity and provide a more enjoyable being. Mobile phones, desktop systems,
and laptops are the most visible computing platforms. However, the majority of employed
computing systems are embedded systems that are part of a device, spanning from small
ones such as pacemakers up to airplanes.

The tasks conducted by embedded systems are manifold, covering control, monitoring
as well as entertainment applications. For example, a modern high-end car can have up
to 100 Electronic Control Units (ECUs) [Cha+12] to operate all the actuators, sensors
and other functionality within the vehicle. This includes convenience functionality such
as the entertainment system and the motor-controlled outside rear view mirrors but also
critical components such as engine control and brakes. The ECUs themselves are mostly not
developed by the car manufacturers but are components bought from different suppliers
which have specialized in their specific area. The software running on the ECUs is equally
diverse and ranges from self-made systems through widely-used real-time operating systems
up to generic operating systems including applications.

All ECUs in such a car must be powered and connected within the car. As each ECU is
a computing system on its own, including memory, persistent storage, CPUs, input and
output facilities, it requires appropriate power, space and cabling. The number of systems
also attributes to the overall weight of the car and thus to the fuel consumption that shall
be minimized for environmental and economic reasons. If the many systems could be merged
into fewer and possibly more powerful systems, overall power requirements and weight could
be reduced.

A second area that uses multiple systems is factory automation, where computing systems
are used for controlling machines but also for monitoring and maintaining them. Due to
the timing requirements of the control part, this functionality is laid out in an individual
system while monitoring and maintenance runs on a different system. Here again, multiple
computing systems are used to run the machine and a consolidation into a single system
can save energy and cost.

In this thesis I will evaluate how virtualization technology can be used to consolidate
multiple systems with latency constraints into fewer systems for the benefit of lowering
overall resource usage.

Currently, virtualization is used predominantly in server environments, where it allows
multiple systems to be run on a single host machine, in particular when the individual
systems are controlled by different users. Virtualization allows to provide full control over
each virtual machine to a specific user while isolating the guest operating systems inside the
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16 CHAPTER 1. INTRODUCTION

virtual machine from other guests running on the same physical system. Virtualization is also
one of the key enablers for cloud computing, especially for Infrastructure-as-a-Service (IaaS)
type of systems where customers rent computing capacity in the form of virtual machines. In
those scenarios the focus is on efficient usage of available host processing capacity. Isolation
is also an important characteristics as customers should not be able to access the data of
other customers running on the same physical machine.

Due to the huge diversity of embedded software systems, virtualization is the primary
technology to use for consolidation as it avoids re-implementation and, more importantly,
re-evaluation of existing software.

However, the latency and predictability required by guests when running in their original
environment must be preserved when running in a virtual machine. Only then guests
can work from within VMs, for example, to control the brakes and the actuators of an
industrial robot without risking the safety of people operating these devices. To the best of
my knowledge no current implementation supports the combination of latency and secure
isolation in a VM setting.

In the following, I will propose and evaluate an operating system that achieves security
and legacy support by running components in virtual machines while providing real-time
guarantees to both native and virtualized applications. In particular, my design addresses
the following challenges:

• Generality: The system shall be applicable to any computing system that offers
hardware-based isolation mechanisms. It shall be portable and work equally well on
different hardware platforms.

• It shall support virtualization to run multiple legacy operating systems without or
with only limited need for modification.

• It shall support latency-constrained applications, running either natively on the
host or as part of the guest system in a virtual machine.

• The virtualization and isolation overhead as well as resource requirements of
the system shall be minimal.

• The system must offer and enforce security to prevent unauthorized access to data
of other subsystems and VMs.

• The proposed extensions for guests shall have a good applicability, allowing for easy
integration into existing systems.

As a base platform I have chosen a microkernel-based architecture because it comprises
the best characteristics for the outlines requirements. Microkernels run only the absolutely
necessary functionality in the most privileged kernel mode of the CPU, all other components
are run as user-level components. This is the reason why microkernel-based systems allow to
build application-specific small Trusted Computing Bases (TCBs) and thus provide a good
fit for security-conscious use cases [Sin+06]. Microkernels also provide an abstraction layer
for the hardware and thus provide generic, yet thin, interfaces for portable applications
across hardware architectures.

Virtualization is also a good fit for microkernel-based systems as virtualization integrates
well into the architecture. Simplified, a virtual machine (VM) is much like a traditional
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process that, however, has more state attached that must be handled during runtime: a
complete machine state instead of just the registers of threads running in a process. The
microkernel only implements the virtualization features required for isolation, while virtual
machine monitors (VMMs) are implemented as user-level components to provide the virtual
platform. This design follows the principles required for small TCBs because guests only
depend on their respective VMMs and in particular not on the VMMs of other guests.

Due to the small kernel and most functionality running in user-level, the preemptibility
of the microkernel cannot be negatively influenced by operating system components and
applications. Microkernels are therefore a good foundation to support applications with
real-time constraints [Här+98].

In my thesis I have integrated and extended an existing microkernel-based operating system
with the possibility to execute latency-constrained workloads from within virtual machines.
The specific peculiarity of virtual machines is that they not only execute one task but
many and that most of those tasks are best-effort jobs. However, on the virtualization
layer, the distinction between best-effort and latency-constrained tasks within a virtual
machine is invisible. A virtual machine is only represented by one or multiple virtual CPUs.
Consequently, for adequately supporting real-time tasks, both in virtual machines and as
tasks running directly on the host, mechanisms need to be added to the host system.

The specific implementations of virtualization vary between architectures. Hardware-assisted
virtualization has only been added in recent years to mainstream hardware such as x86
and even more recently to the ARM architecture. However, there is also a generic approach
that allows to execute legacy operating systems and works on any architecture featuring
privileged execution and isolation. I will describe how such a generic virtualization approach
can be built for running latency-constrained guests.

When running multiple virtual machines with real-time applications inside it turned out
that simple approaches such as high-frequency context switching are not sufficient to achieve
the required event dispatching characteristics, see Section 4. However, mixed-criticality
scheduling theory is a good fit and can be applied to the question of running multiple
latency-constrained virtual machines.

It turns out that additions of up to 30 lines of source code are sufficient to enhance guests
systems to make use of the presented mechanisms. The applicability and generality of the
presented approach is shown by an evaluation of the two mainstream architectures x86 and
ARM.

Outline of the Thesis

This thesis continues with Chapter 2 discussing related work and giving an introduction to
microkernel-based systems in general and L4Re in particular. Chapter 3 continues with the
changes and improvements requires to build a hardware-independent virtualization solution
that is able to run latency-constrained applications. Chapter 4 will introduce the background
and mechanisms required for running real-time applications from within virtual machines.
Chapter 5 follows with an evaluation and the thesis concludes with Chapter 6 summarizing
and giving an outlook for further topics.





2 | Fundamentals and RelatedWork

In this work I want to combine real-time, security and virtualization functionality to build a
system that allows to securely consolidate existing real-time systems onto a single system. I
am proceeding to introduce into the relevant areas:

• I introduce hardware for running systems on and the resulting challenges due to
hardware characteristics for predictability and real-time. Bringing existing real-time
systems from their original platform to a platform suited for consolidation also requires
to reconsider platform characteristics.

• I review existing real-time systems and show their drawbacks concerning security and
isolation.

• I look at virtualization as means to run complete software systems by providing a
virtual environment on the host system.

• I present systems that focus on security.

• Finally, I discuss how microkernels appear to be a suitable platform for my work as
they have already showed to provide real-time and security guarantees. My thesis then
combines these features.

2.1 Platforms, Architectures and Devices

Computing systems span a wide range of diverse platforms, ranging from simple and cheap
processing units for special purpose tasks up to systems with many computing cores and
magnitudes more of addressable memory. For building systems with virtualization, real-time
and security in mind I will restrict to platforms that offer hardware means to support and
run software as close to the hardware as possible. Moving existing real-time systems from
their original platform to a platform suitable for consolidation also requires to evaluate those
platform for their real-time execution behavior. Use of pure software mechanisms to achieve
isolation of components, such as use of specific languages and language runtimes [HL07;
Coo14] are excluded.

An exception to hardware requirements is the support for virtualizing guests that may need to
be modified and adapted to run in a virtualized environment whenever the hardware does not
provide virtualization support. For that reason I will address systems with hardware-assisted
virtualization support and systems without.
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20 CHAPTER 2. FUNDAMENTALS AND RELATED WORK

2.1.1 Hardware Architecture

The considered hardware architectures all have the same basic structure. They consist of
one or multiple processing units (CPUs) that are logically connected to the same memory
(RAM), thus all the cores share the same memory. The system also use multiple different
types of caches to speed up the overall system performance. I will go into detail of caches
and their influence on the execution behavior in the next section. Another characteristic
of the considered multiprocessing systems is that their memory is implemented in a cache
coherent fashion. That is, the memory and caching subsystems ensure that all cores always
read the same data written by the core that has last modified a memory location. However,
the same is not generally true for modifications by hardware devices that are connected to
the memory bus but not to the cache subsystem.

For the scope of this work I will use two common hardware architectures: x86 and ARM.
Using more than one architecture allows to show the applicability and generality of the
presented approaches. The x86 architecture is the standard in the portable computer,
desktop and server markets but increasingly also targets smaller systems such as embedded
systems and mobile phones. It has the most modern set of features, including support for
virtualization, and is easily available. Systems using the ARM architecture are dominant
in the growing market of mobile devices, such as smart phones and tablet computers but
are also used in all kinds of embedded devices. ARM systems are available in a variety of
configurations. In the following I will only refer to those offering virtual memory features,
such as the Cortex-A series. Hardware-assisted virtualization [MN10] has been added to the
ARM architecture and is available in an increasing number of deployments.

2.1.2 Influence of Hardware on Execution Behavior

The execution behavior of applications largely depends on the hardware platform they are
executed on. For timing-critical programs it is thus important to understand the character-
istics of the hardware so that timing constraints can be met. When virtualizing existing
systems, those are run on different hardware platforms that have different characteris-
tics and thus require evaluation. In the following I will describe hardware characteristics
and their influence on the execution behavior of software, in particular with regards to
their timing characteristics. I will cover both platform neutral characteristics as well as
architecture-specific ones.

Memory Caches

Memory caches are transparent memories1 that buffer accesses to main memory. They are
available in several stages as Level-1 to Level-X, short L1 - LX. In typical existing platforms
X can range up to 3, where the L1 cache is the closest to the CPU and L3 the most far away.
Small embedded system usually have an L1 cache, more advanced embedded system also
have an L2 cache, especially multi-core systems. High-end desktop and server systems also
use an L3 cache. The closer the cache is to the CPU the faster it is, at the cost of limiting
the size to a few kilobytes. Cache sizes and access times increase with the levels farer away
from the CPU.

Caches may be used for different content. If a cache is used for any data it is called a unified
1Originating from the french word cacher ⇔ to hide.
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cache. In a Harvard architecture the cache is split into a cache for data and a cache for
instructions, abbreviated I-cache and D-cache. This split allows for a better performance
by arranging the I-cache closer to the part of the CPU that is fetching instructions and by
simplifying the I-cache design as the I-cache can be read-only. In common existing platforms,
L1 caches are usually separated in an I-Cache and D-Cache, whereas L2 and further caches
are unified caches.

In a multi-level cache architecture with at least two levels of cache several modes of operation
are possible within the cache hierarchy. An inclusive cache means that data is also contained
in all lower caches at the same time whereas exclusive operation means that data is in
exactly one cache. In practice a combination of both modes is used. The difference of the
configurations is about replacement strategies, interaction with other cores, coherency and
capacity, as for example, exclusive cache arrangements can store more data than inclusive
caches, which in contrast require less effort on eviction.

Caches can be configured with different options regarding their behaviour on access hit and
miss events. A cache hit is a memory access where the data is available in the cache. A
cache miss is a memory access where the data is not available in the cache and thus needs
to access the memory or cache behind that cache level. A cache hit on a memory write can
be handled in two ways: write-through and write-back. Write-through caches will store the
contents in the cache and also directly write the data back to lower cache levels and main
memory. Write-back will just write the contents to the nearest cache. The contents will be
written to main memory in case a modified cache line is evicted. When a write to a memory
location does not have a corresponding entry in the cache, the cache can keep the content in
the cache, called write-allocate, or it can leave the cache unaffected, called write-no-allocate.
A cache is organized in cache lines. A cache line is the smallest chunk of memory that is read
or written by the cache. The size of a cache line is typically 32 or 64 bytes. Generally the
size needs to be at least the size of the biggest register available in the CPU. Along with the
cache line itself the cache needs to store information to which location in main memory that
cache line refers to. That information is called the tag. The index is the position of the cache
line in the cache. Principally two approaches are possible to map memory addresses to cache
locations: using the virtual or the physical address of the memory access. In combination
with the index and the tag, four combinations are possible:

Physically-indexed, physically-tagged (PIPT) Both the index and the tag use the
physical address. PIPT caches have the benefit of avoiding any aliasing problems where
multiple entries in the cache point to the same memory location. Their downside is
that accessing the cache requires a virtual to physical address translation, possibly
memory accesses due to a potential miss in the translation look-aside buffer (TLB), a
cache that caches virtual to physical address translations. Using physical addresses to
addressing the cache thus requires more effort including more energy per access than
using virtual addresses.

Virtually-indexed, virtually-tagged (VIVT) In a VIVT cache virtual addresses are
used to avoid translations. However, VIVT caches suffer from aliasing problems:
multiple virtual addresses can point to the same physical address, leading to the
situation that multiple cache entries exist for the same memory location. Consistency
between those entries must be maintained in software. Another problem is that when
virtual to physical address translation changes, for example, by modifying a page
table entry, virtually cached data can point to the old physical address. To avoid
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this problem the cache needs to be partially flushed on page table modifications. In
particular, this implies to flush the entire cache on address spaces switches.

Virtually-indexed, physically-tagged (VIPT) VIPT caches combine the benefits of
using physical addresses for the tag and virtual addresses to index into the cache.
While the cache is queried using the virtual address, the virtual to physical translation
for the tag can be done in parallel. When both operations are successful a cache entry
has been found. As the virtual address is used for the index, the cache can contain
multiple entries for the same physical memory location which must be handled by
software.

Physically-index, virtually-tagged (PIVT) Only a theoretical construct that is not
useful in practice.

A prominent representative of an architecture implementing VIVT caches is the ARMv5
architecture. Due to the requirement of flushing the cache upon each page-table switch those
architectures are not suited for systems that perform frequent process switches, such as
microkernel-based multi-server systems. Especially when running legacy real-time systems in
a virtualization context, where address space switching is required among different guests due
to isolation requirements, the switching overhead might be prohibitive. Modern architectures,
including ARMv6 onwards and x86, implement physically tagged caches avoiding those
flushing problems and thus being friendlier to systems that change processes frequently.

Multiple configurations are possible when mapping an address of a memory access to a cache
location. The simplest one is the direct-mapped cache where each memory address has a fixed
location in the cache. On the other end of the scale is the fully-associative cache which is
able to place data in any cache-line size location. Generally, fully-associative caches are not
used for large caches as their hardware implementation is costly. The cache must be able to
lookup all cache lines in parallel and reach agreement on which cache line hits or whether all
cache lines miss upon a request. Typical implementations usually use n-way-set-associative
caches that allow to place a datum in n possible cache lines, with n being up to 8, as this is
the best compromise between implementation cost and runtime performance.

Associative caches need a replacement strategy to decide which cache line to evict out of
the n possible cache lines. Ideally, the cache line should be evicted which will be be the
least useful in the future. As caches cannot look into the future they use algorithms such as
Least-Recently-Used (LRU) or variants thereof to determine which cache line to evict.

The execution performance of code running on the system depends not only the processing
unit itself but also on the transfer capacity and latency of the memory bus and the caches.
In this regard the cache plays an important role as it significantly reduces the access time
to data that is required by the processor. Typically, access to the main memory is about
two magnitudes slower than the L1 cache [HP11, p. 72, Chapter 2.1].

This large difference in memory accesses has significant influence on the execution behaviour.
Especially in multi-tasking environments the contents of the cache may vary and lead to
substantially different execution timing. When the system is on load with different programs
being multiplexed concurrently, caches will be filled with the working set of each program
running. When switching to the next one, most of the cached data from the previous run
will have been evicted (cold cache) and are required to be repopulated. For programs with
latency requirements this has the consequence that in the worst case all caches are cold
and all data, including instructions, need to be fetched from main memory first [Meh+01].
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Additionally, depending on the cache configuration, the cache may contain data from other
programs that still need to be written back to main memory, adding additional delay. For
a worst case estimation, cold caches need to be considered when estimating the execution
behaviour of a program.

To avoid or at least reduce the effect of the cache the following options are available:

• Switching off the cache enhances predictability but also tremendously reduces the
execution speed of programs, especially of best-effort programs that do not have any
tight latency requirements. Additionally, in Symmetric Multiprocessor Systems (SMP)
caches cannot be disabled as they are required for maintaining memory consistency
across cores.

• With multi-processor systems, one or more cores can be dedicated to run tasks with
latency requirements exclusively. This allows exclusive use of core-local caches. However,
the tasks need to make sure to only use core-local caches and further cache levels that
span multiple cores can also have influence, for example, with inclusive cache setups.
In an overall view, dedicating cores in a multi-processor system to specific tasks can
also lead to a low utilization of the system.

• Tightly Coupled Memory (TCM), also called scratchpad memory, is a memory that
can be accessed as fast as cache memory and can be available as an optional feature,
especially in embedded processors. The size of the TCM is usually in the range of
256KiB. The operating system can maintain this memory and allow latency-constrained
tasks to place code and data in the TCM to benefit from cache-like access performance
without eviction. However, placing the task’s data and code there is not enough as all
the operating system functionality that is required for the latency-constrained task
would also need to be placed into the TCM. Due to the very limited size of the TCM
this requires very careful layout of the code and data structures. We have evaluated
the use of TCM in a microkernel-based environment [Hes+08].

• Systems may offer the possibility to lock cache lines and thus prevent their eviction.
This avoids that the program for which the cache lines have been locked, is stalled
due to cache misses. However, the approach also takes away cache capacity from other
running programs.

• Systems with latency-constrained programs might want to use write-through caches
instead of write-back caches to avoid stalling their execution due to write-back of data
loaded by other programs.

• Cache coloring [LHH97] is a technique that assigns memory to applications in such a
way that memory of different applications map to different parts of the cache. This way
no other program can evict cache lines. However, cache coloring requires knowledge
on how the cache maps addresses to entries in the cache.

• As already mentioned the ARMv5 architecture suffers from the problem that its
caches must be flushed upon every address space switch. To counter that the ARMv5
architecture offers the Fast-Context-Switch-Extension (FCSE). FCSE uses 128 process
IDs (PIDs) to map the lower 32MB of the address space to unique regions of the
whole 4GB address space and thus avoids cache flushes when switching between these
processes. As the number of domains is limited to 128, an operating system needs to
provide means to handle more tasks in an appropriate manner, such as dynamically
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swap tasks between an FCSE and normal mode. The limitation to a 32MB address
space also requires specifically built applications and thus the benefits of FCSE cannot
be used transparently. FCSE has been implemented in a microkernel-based system
and in Linux [Wig+03; CC09].

Translation Look-Aside Buffer

The Translation Look-Aside Buffer (TLB) caches translations from virtual to physical
addresses. Operating systems maintain a translation table, called page table, for each task
in the system which maps virtual addresses to physical page frames. A page is a fixed size
and size-aligned region of virtual or physical memory. A page table is a multi-level data
structure which is stored in memory. Current implementations of page tables contain two to
four levels, requiring two to four memory accesses for each virtual to physical translation.
As programs run with virtual addressing, a translation is needed for each memory access as
well as for each instruction fetch. Caching those translations is beneficial as they are needed
frequently.

With any change of the page table, the corresponding TLB entry needs to be invalidated.
When setting a new page table base pointer, the TLB will be flushed by the processor to
invalidate any old entry. As TLBs are crucial for performance, some architectures implement
Address Space IDs (ASIDs) which store an operating system defined tag with each TLB
entry. This allows the MMU to differentiate between different address spaces and thus
avoids flushing the TLB upon address space switches. A prominent representative that is
implementing ASIDs is the ARM architecture starting with ARMv6. The x86 architecture
does not offer IDs for address spaces but Intel offers IDs for virtual machines, called Virtual
Processor Identifiers (VPIDs) [Cor14, Volume 3, Chapter 28.1].

MMUs usually offer support for multiple page sizes. To reduce pressure on the TLB it is
beneficial to use big page sizes as far as available and usable. This allows to cover bigger
areas of memory with fewer TLB entries. However, this also requires that the memory of the
used page size is available. For example, on the x86-64 architecture, the choice can be made
between 4KiB, 2MiB and 1GiB pages, where requiring 2MiB of memory for a single program
section often already wastes a considerable amount of memory. The ARM architecture is
more flexible in this regard and offers more page sizes, such as 1KiB, 4KiB, 64KiB and
1MiB.

Latency-constrained programs should use big pages as far as possible to reduce their usage
of the TLB and thus also to reduce TLB misses, especially right after address space switches.
However, with using bigger pages programs are also likely to occupy a larger amount of
physical memory.

Platform Induced Latency

Hardware platforms as a whole increasingly use software to implement features. For example,
recent systems provide legacy devices such as PS/2 keyboards with software, using keyboards
connected via the USB bus. This allows to transition from older hardware technology to new
technologies without keeping legacy devices while remaining compatible with older software.
In such cases performance does not play a key role so that emulation in software is sufficient.

In the following I will describe sources of latency that can be built into hardware platforms:
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System Management Mode (SMM) is a mode that is built into x86-based proces-
sors [Cor14, Volume 3, Chapter 33.1]. Software running in SMM is provided by
the Basic Input/Output System (BIOS) and aims to be completely transparent to
the operating system. It is for example used to provide legacy devices such as PS/2
keyboard and floppy drives with devices connected via USB. Experiments have shown
that SMM may cause tremendous stalls in execution of the processor. For example,
when inserting an USB storage device, experiments showed that a randomly selected
system might run in SMM and not be interruptible for as long as 500 ms.
Most common x86-based systems make use of SMM, not only for legacy device
emulation but also for other required system maintenance tasks, with scarce details
available on their behavior. Consequently it is not generally possible to disable SMM.
Latency demanding software running on such systems should therefore disable “USB
device legacy emulation” in the BIOS, if available. If disabled, no keyboard is available
in old operating systems or simple software, such as DOS or boot loaders. Modern
operating systems will re-initialize the USB sub-system and have drivers for all common
USB devices, including keyboards. Any USB connection event will be handled by the
operating system and not by SMM. However, the operating system is required to
initialize the USB host controller using a USB host driver, which is considerably more
complex and bigger than a driver for PS/2 keyboard and mouse.
If disabling legacy device emulation is not offered, the operating system must initialize
the USB subsystem to bring it under its own control. The other option is to avoid
any plug-in of USB devices to the platform while latency-constrained programs are
running.

BIOS/UEFI The BIOS on x86-based platforms is responsible for setting up the system and
launching the boot loader which then finally launches the operating system. The BIOS
also offers services which can be used by programs, however, those are only available
when running in 16 bit mode which has long been obsoleted. Modern operating system
run in 32 or 64 bit mode, independently of any BIOS functionality.
UEFI (Unified Extendible Firmware Interface) is the successor of the BIOS [Coo].
Besides platform initialization and boot services UEFI also offers runtime services
which are available while the operating system is already running. The UEFI im-
plementation is delivered by the platform provider. Any software must rely on a
proper behaviour of UEFI functionality if used, especially under timing constraints.
Open-source implementations, such as Coreboot [Coma], can provide viable solutions
when the runtime behavior of the supplied platform firmware is not sufficient.

Microcode is part of the processor itself and used to implement complex functionality
within the CPU. Microcode can be updated [Cor14, Volume 3, Chapter 9.11], for
example, to correct errors in the processor. As such microcode can be a source of
latency for executing code. However, as an integral part of the processor unduly long
execution behavior from the microkernel is unlikely.

Trustzone is a technology available in some ARM processors to offer two worlds, a normal
world and a secure world [Lim14]. A typical usage scenario is that the normal operating
system, for example Linux, is running in the normal world while the secure world
offers security services. For that the secure world is running a small operating system
which can be called from the normal world. For security reasons certain hardware
functions, such as cache maintenance operations, are only accessible from the secure
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side, requiring the secure world operating system to offer an interface for those to the
normal world.
Implementations of the secure world may come pre-installed with the device, not
allowing them to be disabled. Examples are the OMAP line of ARM systems by Texas
Instruments [Ins].
Implementations of the secure world may also allow to integrate custom software
modules. Examples are the ’Trusted Foundation™ Software’ by Trusted Logic®.
Latency-constrained software running in the normal world must make sure that the
secure world does not perform any regular task that may interrupt the execution of
the normal world. Furthermore, the normal world software must not call services on
the secure side when execution behavior of that functionality is not known.
System designers should either choose a platform without pre-installed Trustzone
software, or, given they require such a functionality, choose a system with a known
execution behaviour.

Built-in Virtualization comes pre-installed with the system, for example to offer remote
administration features, and cannot be disabled or circumvented. At the time of
writing, no such systems are known, however, technology exists and is emerging to
build such systems. As systems with a built-in and closed Trustzone secure world
component exist today, desktop and mobile system might contain similar technology
in the future.
System designers of real-time systems should avoid such systems, especially if they
want to use hardware virtualization features of the platform requiring the built-in
virtualization solution to support nested virtualization. This will lead to increased and
likely unknown latency for any virtualization relevant operation in the system.

Device Firmwares are software programs or even complete operating systems that are
running on devices and implement their functionality. The program code is either
stored on the device or loaded to the device by the driver running on the host
operating system. The firmware is running on the device, independent of the main
processing cores. However, the device and the main processing cores might share
common resources, such as the memory subsystem. This can lead to congestion on
the memory bus and thus lead to increased latency for the main processor cores. As
the firmware can be supplied by the device driver, an update of the driver might also
change the behavior of the device regarding its interaction with the system or system
software. Latency-constrained systems must therefore pay attention to driver and
firmware updates in the system.
Devices that have direct memory access (DMA) capabilities can access to whole
physical memory, giving devices the possibility to manipulate the system. Malicious
drivers can gain access to unauthorized system areas by using a modified firmware.
Modern systems posses IO-MMUs to limit the possibilities of access to main memory
to predefined regions, avoiding erroneous memory corruption or attacks [Cor11].

Power Management techniques are used to reduce the power consumption of a system
during runtime. Two common techniques are used to achieve a reduction in power
consumption of a system. The first one is to switch off components when they are not
required. The second is to control energy consumption with frequency and voltage
scaling where available, foremost with CPU cores. Depending on system load the
performance and thus also the power consumption can be controlled.
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Using power management in latency-constrained systems must be considered carefully.
For example, x86-based processors offer a set of sleep states that put the processor into
power-saving modes. The different modes are a trade-off between power-savings and
latency of transitioning to and from the mode. The greater the power-savings, the more
time it requires to enter the mode and, more importantly for latency considerations,
the more time it requires to restore a working state. Latency-constrained systems must
therefore be aware that power-saving modes contradict quick event response times.
Often, operating systems offer means to avoid power-saving modes for the benefit of
shorter event latencies.

Multi-Core Systems

In a shared-memory multi-core system the operating system typically runs on each core
and uses hardware-provided cross-core communication mechanisms to implement operating
system features as well as providing (transparent) cross-core communication functionality for
applications. Multi-socket systems are likely to have memory connected to each socket while
accessing that memory from either socket is transparent, yet the performance characteristics
are different. Thus, applications with latency requirements must be aware of the specific
characteristics of such a system and further, the operating system must offer functionality
to the applications to adjust its behavior and configuration to such a system.

The performance characteristics for message passing operations differ significantly depending
on whether the two threads are running on the same core or on different ones. Further,
the distance of the cores, for example whether they are on the same socket or on different
ones, also has an influence on the communication latency. Multi-threaded applications, that
require an upper bound on their communication latency must therefore ensure that their
threads are appropriately placed on the physical cores and that this placement can only
be changed explicitly by the application itself. In this case the operating system must not
transparently migrate threads between cores.

Concerning accessing memory, similar reasons exist for the requirement to pin threads to
cores. In a multi-socket system memory accesses depend on the distance of the core to the
used memory and thus a migration of a thread can change memory access characteristics.

Multi-core systems can also be beneficial in setups with real-time applications. Given the
system provides enough cores, real-time applications can be executed on a dedicated core
so that they do not need to share core-local resources such as TLB and L1 caches with
other applications. However, further caches (L2, L3) are typically shared among cores within
a socket and thus are still a shared resource. This can be brought further to separating
applications to different sockets, where no caches are shared. However, the downside is a
largely underused processor.

Latency Induced Through Virtualization

Hardware-assisted virtualization allows to run unmodified guests in a virtual machine.
Whenever an interrupt triggers, the virtual machine is exited and the host system can
handle the interrupt. However, the guest operating system inside the virtual machine can
execute any valid system-level instruction including any long-running ones. Examples of
such instructions are the WBINVD instruction on the x86 architecture which writes back and
invalidates modified cache lines of the whole cache. We have studied the behavior of those
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instructions in a setting with AMD’s SVM-based virtualization [SLW09]. Measurements
showed that the WBINVD instruction inside a virtual machine on a particular system can run
up to over 600 µs. However, x86-based virtual machines can be configured to exit to the host
system before any such instructions are executed. In a setup with timing constraints the
host system shall make use of those intercept possibilities and implement the functionality
with an interruptible algorithm.

On the ARM platform, operations that run on the whole cache have been removed from the
ARMv7 architecture [Lim14]. System software must accomplish cache maintenance covering
the whole cache by using set/way cache operations within a self-implemented loop. This
avoids long-running instructions and allows the cache maintenance to be interruptible.

2.2 Real-Time Systems

Real-time systems are systems that are able to guarantee timely execution of tasks. According
to a schedule a real-time system selects tasks so that their timing constraints are fulfilled.
The schedule is created by an admission where all constraints of all real-time tasks in the
system are used to compute whether a given task set can be scheduled at all, and if, how the
schedule looks like. Non-real-time tasks in the system are executed in the slack of real-time
tasks, the time that is left after real-time programs have been executed.

The most prominent resource to be scheduled is the CPU, that is the point in time and the
duration a task is scheduled to run on a core. Other resources that can also be scheduled,
especially in setups with combined real-time and best-effort clients, include disks [Reu05],
network [Lös06], and buses [Sch02].

Real-Time System Variants Operating systems implementing real-time functionality
are usually called real-time operating system (RTOS). Three main groups of implementations
exist:

1. Non-isolating systems do not use nor require virtual memory and thus provide no
protection against malfunction in any task. With no hardware protection mechanisms
used, those systems can run on a wide range of platforms. Platforms may offer a
simple form of memory protection via Memory Protection Units (MPUs) to partition
memory. A benefit of those hardware platforms is the runtime predictability as the
whole system is run within the same operating mode that is never changed and caching
mechanisms, such as TLBs, are not required nor available.

2. Co-located approaches hook into an existing multi-tasking operating system. The
low-level interrupt path is modified to branch to the real-time handler which will
run real-time tasks. The multi-tasking kernel will be executed in the idle loop of the
real-time dispatcher. With this approach, real-time programs are executed within the
privileged mode of the CPU (2a). Extended versions allow user-level applications with
the benefit of leveraging user-level software environment (2b).

3. Multi-tasking, multi-user operating systems can run multiple applications isolated
from each other using hardware mechanisms. The operating system kernel provides
functionality that allows its running programs to obey timing requirements.
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One main difference of the three groups is their use of specific hardware features. Group 3 is
the most demanding, requiring a CPU that offers multiple privilege levels and, as real-time
programs are run as user-level applications, means to isolate programs from each other while
allowing efficient and fast context switching. Systems of group 2a require virtual memory
capabilities. However, as the real-time programs run within the kernel-privileged mode and
in any currently running context, the isolation features are only used for non-real-time
programs. Assuming the operating system kernel offers adequate preemtibility, real-time
programs are not affected by the behavior of non-real-time programs. Approaches of group
2b use user processes and thus virtual memory to run their real-time tasks and thus benefit
from efficient context switching in the same was as group 3 systems. The least demanding
group is the first one that does not require any privilege levels nor isolation features.

Hardware Platforms The selection of a hardware platform for use in the context of
virtualization, real-time and security, makes the availability of hardware functionality
for isolation indispensable. At least two privilege levels and virtual memory that can be
efficiently handled, are an absolute requirement to isolate components from each other.
Additional hardware-provided functionality to support virtualization is beneficial to reduce
the virtualization overhead in both runtime performance and engineering effort. However,
they are not an absolute requirement.

Considering the x86 platform, the whole line offers the same feature set of functionality:
User-level and kernel-level privilege modes and virtual memory. The ARM processor line
is more diverse and offers a wide range of CPUs with different capabilities but with a
homogeneous instruction set architecture (ISA). For example, considering the Cortex line of
CPUs, they range from the Cortex-M0, an implementation of the ARMv7 ISA with just
12,000 gates [ARM] and no virtual memory nor privilege levels, over the Cortex-R line offering
an MPU with between 150,000 and 290,000 gates depending on the configuration [Tur10],
up to Cortex-A line with virtual memory including address space IDs and multiple privilege
levels. Later Cortex-A implementations also add support for virtualization and the 64-bit
ARMv8 instruction set.

In the context of this work, the x86 and ARM-based Cortex-A processors can be used as
they are featuring the required functionality.

2.2.1 Mixed Criticality Systems

Mixed-criticality (MC) systems play an important role for this work. Mixed-criticality
systems are a special form of real-time systems which combine tasks of different criticality.
The criticality of a task determines the worst-case execution time (WCET) to be used in
admission: the more critical a task is, the higher the assurance level required, the more
pessimistic the assumptions to be made and hence the longer the WCET. A comprehensive
overview on MC systems is given by Baruah et al. [Bar+11].

In the following I will explain the MC scheduling problem as far as required for this work.
Each task T within an MC system is analyzed at its own criticality level and all the criticality
levels of all other less critical tasks in a system. Concerning scheduling, the resulting problem
then is whether the actual execution times of all tasks of a given criticality level λ and of
higher criticality stay below the WCET of all these tasks as determined for λ. If so, all these
tasks must meet their deadline. Otherwise the completion of lower critical tasks than λ is
no longer guaranteed.
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The MC scheduling problem can be explained using an example for tasks with three levels:
low, medium and high. For brevity and readability I will further refer to tasks TH , TM , TL,
as high, medium, and low criticality tasks respectively and to C(H), C(M), C(L) as high,
medium, and low WCET estimates. With those three levels, the scheduling criterion is:

• If the execution times of all high-level tasks remain within their high-level execution
times, they will meet their deadline.

• If the execution times of all high-level and all medium-level tasks remain within their
medium-level execution times, they will meet their deadlines.

• If the execution times of all high-level, all medium-level and all low-level tasks remain
within their low-level execution times, they will meet their deadlines.

In other words, if a low-level task exceeds its low-level execution time, it must not lead to
high- or medium-level tasks to miss their deadline. Generally, for the WCETs of any task,
the following holds: C(H) ≥ C(M) ≥ C(L).

2.2.2 Admission

Admission is the process of planning the jobs in a system so that they can be run by the
system with the available resources. In a real-time system, an admission service will only
allow further jobs if the resources for that job are available, preventing an overload of the
system.

Admission can be online and offline. Online admission is done at runtime, the system can
dynamically permit newly created jobs as well as handle the termination of jobs. Offline
admission is done with a fixed set of jobs at setup time of the system and yields a fixed
schedule that is then executed by the system.

In both types the execution behavior of the jobs must be known to the admission service.
For real-time systems this comprises the worst case execution time (WCET) and the highest
allowed latency.

For Virtualizing Systems the admission is two-layered. The Local Admission is the
admission that is done by the guest in the virtual machine, with the local knowledge of that
guest only. The Global Admission then combines the schedules of the guests and the host to
an admission for the whole system.

2.2.3 Real-Time and Devices

Up to now I described real-time in the context of the processor alone, that is handling of
processing time. However, the processor is not the only resource in the system that is shared
between multiple clients. Devices such as disk controllers with their attached disks and
network interface cards are commonly shared among multiple client programs on the system.
The operating system has to offer means to multiplex and abstract the services offered by
those devices in a safe way.

Considering applications with timing requirements, the device drivers need to provide
guarantees concerning the service they offer to the application. Additionally, the devices
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themselves should behave in a deterministic way to allow execution time estimations.
Providing device services in combined real-time and best-effort systems has been researched
in the past [Reu05; Lös06]. As devices and their drivers also need to be considered in real-time
systems that use virtualization I will briefly introduce their role in the virtualization stack.

Generally, applications with timeliness requirements can be located in either a component
running as a native program on the host kernel, or, as part of different programs, in a VM,
as depicted in Figure 2.1. Here, the interesting setup is the VM. Any real-time program
inside the VM makes the VMM a real-time program in the host context, that is real-time
requirements for device accesses must also be considered in the VMM. If the VMM has
further knowledge about the device requests it receives from the VM it can use two channels
to a driver and issue real-time and non-real-time request to the device driver, allowing for
better resource usage by the device driver.
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Figure 2.1: Setup of microkernel-based system with real-time applications, virtual machines
with real-time parts and device drivers. The dashed lines indicate a real-time interface and
communication while the straight lines indicate the best-effort interface.

2.3 Security Focused Systems

Systems that involve multiple parties, such as different virtual machines or multiple users,
require that the host provides means to protect the system and each party thereon from
potentially malicious behavior of one or multiple parties on the system. The system can be a
single computer or, in a broader sense, multiple systems that are connected over a network.

In today’s world, where computing systems are connected to other systems over the Internet,
security plays an important role in every system design. Thus any system is required to
provide a security concept. Research has, free of practical constraints of existing systems,
brought forward systems that are designed with stringent security requirements from the
ground up.

The basic principle of information security is to maintain the following three properties:
confidentiality, integrity, and availability. Confidentiality requires that data is not available to
individuals or systems that are not authorized to access this data. Integrity means that any
unauthorized modification of data is detected. Availability means that data can be accessed
when it is needed. Any system, which is concerned with an all-embracing security model,
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bases its design on those three principles. The classical work by Saltzer and Schröder [SS75]
describes how to handle the protection of information on a system with multiple users.

Operating systems need to offer proper functionality for applications to provide the three
security properties. Additionally, the operating system also needs to be tamper-resistant
against modification and against attacks to gain unauthorized access. Eventually this boils
down to the likelihood of programming errors in the operating system code, as this code
is running in the most privileged mode of the system. Any successful penetration of that
code allows the attacker to take over the system. This observation leads to the conclusion
that small kernel designs, such as microkernels, are more appropriate for security concerned
systems than monolithic kernel approaches. Studies of monolithic systems have shown that
programming errors are significant and require consideration [Cho+01; Pal+11a].

One of the main reasons for programming errors in operating systems are the used pro-
gramming languages. All widely used operating systems are written using the C or C++
language, with additional assembly code for hardware-specific operations not available in the
language itself. C and C++ are well suited for programming as they closely model the type
of execution of the hardware. However, they also allow direct manipulation of memory (point-
ers) and modification of the executed code. This gives programmers the flexibility to write
efficient code, however, subtle programming mistakes, for example with regards to handling
buffers in memory, can lead to erroneous code and thus incorrect or even insecure execution
behavior. This may make the code prone to attacks from non-authorized components on
the system. Singularity [HL07] is an operating system that is based on language security.
Software components are written in the type-safe language Sing#, derived from C#. As no
hardware protection is required in this system, the software isolated processes (SIPs) run in
the most privileged mode of the processor, making their handling light-weight. Of course
the compiler and the runtime have to ensure the isolation between the components. The
downside of such an approach is that every component needs to be written in a particular
type-safe language and thus already existing software cannot be used.

Another approach to rule out any programming mistakes in the operating system itself is to
formally validate the code of the operating system against a well defined model. The small
size of a microkernel makes its verification practically possible. The VFiasco project [HTS02]
worked with the L4/Fiasco kernel. seL4 is the first formally proven L4 microkernel [Kle+09].

The design of the security model that is used by the operating system is of relevance as well.
Two major paradigms are commonly used to implemented access control: Access Control
Lists (ACLs) and Capabilities [Tan08, Chapter 9.3]. Both types utilize subjects and resources
to describe access permissions. With ACLs resources posses lists of subjects which describe
which subject is allowed to access the resource, possibly accompanied with an access type.
A typical representative of this approach are UNIX-like systems, where the right to access a
file is stored with the file itself. On the contrary, in capability systems subjects posses the
right, a capability, to access a resource. As with ACLs a capability might include specific
access rights for a resource. A comprehensive overview on ACLs and capability system is
given by Miller et al. [MYS03]. Generally, capability systems are regarded as being superior
over ACLs, especially as they allow to implement the principle of least authority [SS75],
where each subject should only have those privileges which are necessary to complete its job.
Systems implementing a capability-based security model are, for example, EROS [Sha99],
seL4 [Kle+09] and Fiasco.OC.

Summarized, security-focused systems shall prefer a system employing a small kernel and
using a capability-based access control mechanism. Those kernels are written in a C/C++-
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like language for efficiency reasons and provide an execution interface that allows to run
legacy software. Small-kernel systems can be closely evaluated concerning their security
properties.

2.4 Virtualization

According to Popek and Goldberg [PG74] a virtual machine (VM) is “an efficient, isolated
duplicate of the real machine”. The virtualization is provided by a virtual machine monitor
(VMM), which shall have the following three characteristics:

• the environment provided by the VMM for the VM is as identical as possible to the
original system (→ duplicate),

• the performance shall not suffer (→ efficient), and
• the VMM shall be in full control of the resources of the system (→ isolated).

Although they published their work in 1974 and systems making use of virtualization have
been used since then [Gum83; MS70], virtualization only gained momentum about a quarter
of a century later when it entered the mainstream market. The Disco project [BDR97]
started the ongoing interest in virtualization and spawned several widely-used virtualization
solutions such as VMware [Bug+12], Xen [Bar+03], KVM [Kiv+07] and Hyper-V [Mic].

By that time the x86-based hardware got powerful enough to run guest operating systems
in virtual machines. However, the initial x86 architecture is not virtualization friendly
because it has flaws in the instruction set, so-called virtualization holes, that break the
trap-and-emulate approach as described the Popek and Goldberg criterion [AA06]. Trap-
and-emulate requires that any sensitive instruction traps when executing the instruction in
a less privileged processor mode so that it can be handled by the VMM. Virtualization holes
make it impossible to implement a VMM solely based on the technique of trap-and-emulate.
However, with additional techniques such as guest code inspection, virtualization can also
be implemented on architectures with virtualization holes.

Over the course of the evolution of virtualization several techniques have been developed
and combined. I will introduce them in the following sections.

2.4.1 Parts of Virtualization

Generally, virtualization covers a whole system. Going into more detail, several areas need
to be covered: Virtualization of the CPU, the memory and devices. CPU and memory are
usually handled together whereas providing virtualized devices and the multiplexing to real
ones can be handled separately.

CPU Principally there are two possibilities to provide a virtual environment for a given
instruction set architecture (ISA). The first is the emulation of each instruction, building
the whole semantic of each instruction in software. This has the benefit that any ISA can be
handled on a host, including detailed execution behavior, however, it induces a significant
performance overhead. An example for an emulator is Bochs [Law96]. The other possibility
is to execute the code of the guest on the host, called native execution. This requires an
ISA which fulfills the trap-and-emulate criterion. If that criterion is not fulfilled, several
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slight modifications are available to circumvent the virtualization holes.

If the guest operating system kernel can be modified, any instruction which does not
trap on sensitive operations can be avoided and replaced with trapping instructions and
hypervisor calls. This approach is called paravirtualization and a popular representative of
that approach is the Xen hypervisor, see 2.4.4. When the guest cannot be modified, the
virtualization layer has to detect virtualization holes, for example by analyzing the guest code
for instructions that do not trap. Popular for that kind of technique are VMware [Bug+12]
and VirtualBox [Ora].

Memory When an operating system uses virtual memory, its kernel will manage page
tables for each process and describe therein which part of the physical memory is accessible
to this process. However, in a virtualized environment the host system has control over the
physical memory and a guest operating system is not allowed to modify its own page tables in
the host. Consequently the virtualization layer needs to virtualize the use of virtual memory
in the guest operating system. Several options are available. With the paravirtualization
approach, where the guest can be modified, the operating system kernel will use host
functionality to construct the virtual address spaces of its processes. In the case where the
guest cannot be modified, two principle approaches are available. The first approach uses
the possibility that setting a page table base register traps out of the guest kernel and thus
the virtualization layer can inspect the page table of the guest and construct validated page
table entries. As this approach behaves like a TLB it is called virtual TLB (vTLB). A second
common name is shadow paging because the host keeps a second page table of the guest’s
one. Shadow paging incurs a significant performance overhead because of using traps and
inspecting the guest’s page table in software [SK10]. To overcome this penalty, processor
vendors have added a mechanism generally referred to as nested paging [Adv08]. With this
approach the MMU of the processor is capable of using the page table of the guest and one
for the VM provided by the VMM to translate guest virtual addresses to host physical ones.
Nested page tables have been the key feature to get the performance of VMs very close to
the performance of non-virtualized systems.

Devices In the same way a computer system communicates with the outside world using
devices, such as a network card or a keyboard, a VM requires a similar infrastructure
to communicate outside of its VM, either with other VMs or the outside world. To run
unmodified guests, the VMM needs to supply emulations of hardware devices, for example
an interrupt controller, a timer, a network card and a storage device. One device emulation
per device class is sufficient, the particular type is mainly selected by ease of emulation and
availability of device drivers in popular guest systems.

As the communication between the operating system and the device has been designed for
IO memory or IO ports, this interface is not ideal in a virtualized environment. Therefore,
the performance of the guest can be greatly improved by using special purpose drivers inside
the guest that are specifically designed for optimal communication with VMM components.
Another possibility is the so called device pass-through where a VM is permitted access to
a physical device and can thus use it directly, without any virtualization layer in between.
This results in a better performance, however, also needs prerequisites considering security
aspects and the device cannot be shared with other VMs or system components. Devices
are accessed using IO memory and access to this memory is granted through page tables.
Page tables have a minimal granularity, called a page, which requires two devices to not
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have their IO memory within one single page. If that is the case a VM would have access to
both devices and if that is not desired then device pass-through cannot be used.

Another point to consider is the way a device and the processor exchange data with the
device. Direct Memory Access (DMA) is a commonly used mechanism that allows the
device to transfer data between itself and the main memory without interaction of the main
processor. This increases the performance of the system as the processor does not need to
copy data to and from the devices itself. For the copy operations the device drivers need
host physical memory addresses which they pass to the device. The devices can then access
this memory to read and write data. However, the access of the memory is not restricted. A
device can access any memory in the host. As the device driver programs the device it has
the possibility to access any physical memory. In the case of device pass-through to a VM,
the VM is running without host privileges and shall not have access to memory not assigned
to the VM. To prevent such attacks, and to improve failure resistance, several options are
available. In a software-based approach a trusted component must be developed to validate
any DMA-related request for invalid addresses [Meh05]. Another possibility are IO-MMUs,
memory management units for IO devices. IO-MMUs are implemented in the device buses
and are programmed by the host system. They are similar to the MMU in the processor,
adding virtual memory for devices. Only memory pages granted access to by the host system
are accessible for the device, making it impossible to access non-granted memory. Ideally
an IO-MMU is available for every DMA-capable device in the system, however, this is not
usually the case and multiple devices may need to share one IO-MMU.

Due to the increasing use of virtualization, hardware device vendors are adding virtualization
support to their devices. The most prominent example are network cards. Device pass-
through is a very efficient way to make a network card available to a VM, however, one
card per VM is required. With an increasing number of VMs per host it is not possible
to plug as many network cards into the system. To overcome this limitation, devices may
expose their functionality through multiple virtual-function devices, allowing the host to
pass one of those virtual functions to a VM. The devices themselves implement functionality
to aggregate the accesses from the VMs to a single physical device. For the PCI bus this
approach has been standardized under the name Single Root I/O Virtualization [SIG]. In
combination with IO-MMUs this allows efficient use of devices from within VMs without
sacrificing security of the system.

Techniques to protect the system from misbehaving or malicious devices and drivers are not
only useful for virtualization. Any system that runs device drivers in user-level needs means
to protect the host system from faulty or malicious components. Generally, all software
architectures that run driver in non-privileged modes, such as microkernel-based systems,
benefit from the presented techniques.

2.4.2 Implementation Options

In this section I will introduce how virtualization can be implemented, focusing on the x86
and ARM platforms.

Both platforms initially suffered from virtualization holes, making a pure trap-and-emulate
approach impossible. Choices to overcome this limitation with software approaches are the
adaption of the guest system or using additional means to address the virtualization holes.
For unmodified VMs several virtualization solutions exist that apply techniques to overcome
the architectural limitations [Bug+97]. The adaption of the guest is limited to the operating
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system kernel. Examples are the Xen system (see Section 2.4.4) and L4Linux. I will introduce
L4Linux in Section 2.7.2.

With the increasing popularity of using virtualization, hardware vendors have integrated
specific support into their hardware to aid and simplify the implementation of virtualization
software as well as improve virtualization performance. Generally those additions plug the
virtualization holes in the ISAs but also add features specifically targeted to the virtualization
use case.

In the following I will briefly introduce and describe the virtualization related functionality of
the x86 and ARM architectures. For the x86 architecture, Intel and AMD have come up with
technically similar approaches but differing implementations, requiring that virtualization
software must implement both variants to support both processor vendors. On the Intel
platform the virtualization support is called VT-x, while the name VMX (virtual-machine
extensions) is also popular. On the AMD platform the virtualization extension is officially
called AMD Virtualization™ (AMD-V), however, the term secure virtual machine (SVM)
is also common. Virtualization is supported by all current processors by Intel and AMD,
except a few models by Intel which do not have VMX enabled. On the ARM platform,
virtualization support has been introduced with the Cortex-A15 processors. A technique
called TrustZone has been available starting with ARM11 type processors, allowing to run
two operating systems on one processor, one controlled by the other. We have explored
how to multiplex multiple guest operating systems with TrustZone [Fre+10]. A complete
documentation can be found in the processor manuals [Cor14; Dev11; Lim14].

As already outlined in Section 2.4.1, virtualization support is provided in the categories of
CPU, memory and devices.

CPU Both the x86 and ARM architectures introduce new execution modes specifically
targeted at running guest virtual machines. Those modes do not suffer from virtualization
holes and allow to run guests at native near processor speed without any requirement to
detect virtualization holes.

The x86 architectures uses a hardware-defined data structure that describes the configuration
of a virtual CPU (vCPU). With VMX it is called virtual-machine control data structure
(VMCS) and with SVM virtual machine control block (VMCB). I will use the term VMCx
as a generic abbreviation whenever no specific variant is required. A VMCx is a page of
memory and contains the complete CPU state of a virtual machine. A VMM needs to set up
one VMCx per vCPU prior to launching a VM. Main choices are to configure exit conditions,
that is conditions when the CPU shall stop executing the VM and return to host execution.
Such an action is called VM-exit. Launching a VM is done using the explicit VM start
instruction which takes the address of a VMCx. Multiplexing multiple VMs on a host CPU
is possible using different VMCx’s, however, special care might be necessary to flush cached
state, depending on the hardware implementation. Any hardware interrupt hitting a host
CPU will lead to a VM-exit and thus allow the host system to take over control.

The ARM architecture introduces a new execution mode called Hyp mode for executing
VMs. The host has to configure the virtual machine through control registers. Loading and
storing VM state is up to the virtualization software as no hardware data structure has
been defined. The host system is interrupted when device interrupts occur so that it can
regain control over the CPU.
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Memory The key issue with memory is the virtual memory used by the guest. As already
described in 2.4.1 the concept of nested paging is used to avoid expensive handling of guest
virtual memory in software using a vTLB.

The main difference between VMX and SVM on the x86 architecture is the choice of the
page table format. VMX introduces a new page table format whereas SVM uses the standard
page table format also used for normal paging. A pointer to the host page table is stored in
the VMCx to be used by the VM.

The ARM architecture allows to set a page table for the VM. To be able to address more than
4GB of physical memory in 32 bit systems, ARM introduced a new page table format called
Large Physical Address Extension (LPAE). This is especially interesting for the virtualization
use case where the host may want to run multiple VMs and a 32 bit address space does not
suffice.

Devices Device virtualization is termed as Intel®Virtualization Technology for Directed
I/O (VT-d) for Intel systems [Cor11] and AMD-Vi for AMD systems [Dev09]. Both subsume
the ability of the platform to provide an IO-MMU and the possibility for interrupt remapping.
Generally, any platform using the Peripheral Component Interconnect (PCI) together with
devices capable of initiating DMA requests is required to have IO-MMUs to guard against
malicious or faulty devices or device drivers.

Contrary to the x86-based platforms using PCI for devices which VMs shall have direct
access to, ARM systems primarily use the concept of dedicated DMA engines. Since they are
separate from the device itself, access by a driver can be virtualized and direct programming
by a device driver can be prohibited. However, providing a virtual model of a DMA engine
requires engineering effort and is slower than direct access and thus ARM systems also offer
IO-MMUs.

2.4.3 Software Components for Virtualization

Virtualization software must provide the environment that enables a guest system to run.
All of the three previously described areas, CPU, memory and devices, must be covered
by the software. Commonly, the software implementing virtualization is named hypervisor
or virtual machine monitor (VMM) and both terms are used interchangeably. Two major
design concepts exist:

Type-1 hypervisors implement a dedicated kernel that exclusively handles virtual machines.
An example for a type-1 hypervisor is Xen[Bar+03].

Type-2 hypervisors are part of a general purpose operating system which allows to run
both applications and virtual machines. An example for a type-2 hypervisor solution
is KVM[Kiv+07].

For the purpose of this work I want to use the terms hypervisor and VMM for specific and
distinct functionality. Reflecting a virtualization architecture in the context of a microkernel-
based system, the hypervisor is implemented in the microkernel. Still the microkernel
remains an operating system kernel and thus the hypervisor is a role, among others, that
the microkernel provides. Virtualization functionality that must be implemented in the
host kernel are those that must run privileged or are required to be in the host kernel for
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isolation and security reasons. All other functionality shall be implemented in a user-level
component, the VMM. However, the distinction is not strict, as for performance and interface
transparency reasons it might be reasonable to implement more virtualization functionality
in the host kernel.

The VMM is the user-level component that primarily configures and controls VMs and
implements virtual devices. A system can run multiple VMMs independently. Figure 2.2
depicts a possible setup of such a system. The hypervisor is a functionality of the host kernel
and the VMMs are user-level components which are running one or multiple VMs. The
VMMs can be different implementations that target different use cases.

Hardware

Host Kernel
Hypervisor

Privileged
Mode

User
Mode

VM

App

VM VM

Specific
VMM

Feature-rich
VMM

Figure 2.2: A microkernel-based virtualization architecture with different kind of virtual machines
monitors (VMM). The host kernel only provides necessary virtualization functionality upon which
VMMs of different feature sets are based on.

2.4.4 Existing Work

The following presents a selection of existing work and solutions in the area of virtualization.

Xen Xen [Bar+03] is one of the early adopters of virtualization technology on the x86
platform. It started with a paravirtualization approach and added support for hardware-
assisted virtualization later when this technology was becoming available. Xen is a widespread
solution and as it is available as open source, it is also the base for many other virtualization
solutions, both in academia and industry.

The Xen architecture consists of the Type-1 Xen hypervisor and a management VM,
called Dom0. Dom0 is always a paravirtualized VM running Linux [Comb] which runs the
management tools and is in charge to control the other VMs, called DomU. DomUs can run
paravirtualized VMs and, if supported by the hardware, unmodified guest VMs.

From the security perspective, the trusted computing base of any VM running on a Xen
system consists of the Xen hypervisor itself and the complete Dom0 management VM, being
a Linux kernel together with the user-land infrastructure running on it. This increases the
trusted computing base compared to a monolithic Linux system and thus Xen does not
provide the necessary design for a secure system foundation I envisage.

KVM Kernel Virtual Machine (KVM) [Kiv+07] is a Type-2 virtualization system, adding
a virtualization functionality to the Linux kernel and making it a hypervisor. KVM builds
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upon hardware support for virtualization and started with the x86 architecture. For device
virtualization KVM uses an adapted version of the QEMU system emulator [Bel05]. Any
VM running on a Linux with KVM needs to rely on the Linux kernel and the adapted
QEMU driving the VM. Analogous to the reasoning for Xen, the trusted computing base
includes a monolithic kernel design and is thus not suited for a secure system.

VMware Mobile Virtualization Platform The VMware Mobile Virtualization Plat-
form (MVP) [Bar+10] targets embedded and mobiles devices, most prominently smartphones.
Their primary use case is to run a second Android operating system on the mobile phone to
cover contradicting goals of a private and business usage of the phone. The OS for private
use shall be as open as possible and allow to install any third-party application. On the
contrary, the business OS shall be as secure as possible and controlled by company IT.

The architecture of MVP uses a standard Android configuration and places a hypervisor
module into the host Android Linux kernel, making the host system a type-2 hypervisor.
Several programs are executed in the host to provide functionality to the guest system, such
as virtual private networking and storage. MVP emphasises the BYOD (Bring Your Own
Device) approach, which requires easy adaptability of the system to any mobile device and
as such favours the approach of adding hypervisor functionality to an existing system. The
host system runs the private Android and the guest system runs the enterprise version.
Consequently the enterprise Android has to rely on the private Android system, that is the
trusted computing base of the enterprise Android system includes the open private Android
system.

MVP relies on the security properties of the host Android system. Besides relying on the
Linux kernel, the user interface and application starting subsystem must be also trusted as
for example the switching between the domains is done with a special application.

NoHype NoHype [Sze+11] is an architecture that statically allocates CPUs and memory
to virtual machines and lets a single virtual machine run exclusively on a number of cores.
The system uses state-of-the-art Intel processors to leverage virtualization features such as
nested page-tables. During startup Xen is used to bring a virtual machine into a fully running
state. When the startup is completed, the hypervisor is exchanged with a very minimal
one that will kill the virtual machine on any virtual machine exit event. Consequently the
VM must be fully working without causing any exit events. As this architecture removes
the traditional hypervisor during runtime of a VM there is also no attack vector a VM
could use to break out of the virtual machine and attack other VMs or the whole system.
NoHype uses a slightly modified kernel to mitigate problems where the hardware provides
no means to guard against misbehaving other virtual machines, such as with inter-processor
interrupts, which according to the authors, posses no problem to the applicability of their
solution. Their target use case is secure virtualization in the cloud-computing area where
VMs can be statically allocated to the hardware and overprovisioning is not required to
better utilize the available hardware.

Concerning running real-time workload in a virtual machine, the NoHype architecture
is interesting, as no intercepting hypervisor also means that it cannot induce any addi-
tional latency. Only the latency through the hardware virtualization functionality is added
(see [SLW09]). NoHype requires to have a CPU local timer which for the Intel platform is
the APIC timer that would need to be sufficient for the VM workload. NoHype is exclusively
targeted at virtualization and the architecture does not allow to run any additional services
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besides virtual machines where each virtual machines occupies at least one physical CPU at
all times, even if the VM is idle.

CloudVisor CloudVisor [Zha+11] is a virtualization system that targets the cloud envi-
ronment, aiming to reduce the trusted computing base of each VM running in the system.
The threat model describes VMs that exploit the VMM to gain access to other VMs as well
as the cloud provider that can use management tools to inspect customer VMs. To prevent
that, CloudVisor uses secure booting techniques to plug a tiny security monitor below the
VMM and run it in guest mode, using nested virtualization. Nested paging is used to hide
the guest memory from the VMM and each VM exit and entry is trapped by CloudVisor to
adapt the nested page table. VM requests on storage devices are detected and transparently
encrypted by CloudVisor, presenting only encrypted data to the VMM.

The CloudVisor architecture targets common virtualization systems and introduces an
isolated layer between the VMM and guest so that a, potentially penetrated VMM, cannot
access data from within a VM. It runs systems with a single VMM and, due to the encryption
of storage data, induces an overhead of up to 54.5%. Secure booting techniques shall ensure
that a guest must only trust CloudVisor and not the VMM. CloudVisor might be a solution
for existing VMM systems, however, a system should include security considerations from
the ground up and integrate those in the system.

SPUMONE SPUMONE [Nak+11] is a virtualization system for multi-cores that is
developed on the SH platform. It runs guest systems in privileged mode. This offers benefits
with regards to the event latency achieved by the system up in to the guest. The low
engineering effort required to bring a guest OS to the platform is also put as an advantage
of SPUMONE. Regarding devices the platform requires that devices can be exclusively
given to a guest, any possible sharing cannot be prohibited and can be done cooperatively
among the guests. As the guest kernels are running in the privileged mode of the processor,
they cannot be protected from other subsystems using an MMU. Only the user processes
on the guest system use virtual memory protection. SPUMONE proposes to use core-local
memory to run code on a core. Core-local memory is not accessible from other cores and
thus provides protection from code running on other cores. However, this requires that all
code running on a core fits into the core-local memory, which size is only a few hundred
kilobytes and thus does not suffice to run for example Linux. To support guests that do not
fit entirely into the core-local memory, SPUMONE uses a swapping mechanism with hashes
to exchange memory pages between the core-local memory and the main memory. Code is
only executed in the core-local memory and the hashes are used to check the integrity of the
memory when it is copied to from the main memory to the core-local memory. SPUMONE
is not able to protect the virtualization layer itself on the core nor other guest running on
the same core. A monitor service is proposed to check integrity. This monitor must run on a
separate core so that it cannot be tampered with. To protect guests from each other the
system can only support one guest per core.

Cells The Cells architecture [And+11] targets mobile phones by providing multiple virtual
phones on a single device. It uses virtualization based on operating system mechanisms,
such as namespaces and device proxies, to run multiple instances of mobile phone software
on the same kernel. This approach has the benefit that all functionality related to device
drivers, noteworthy 3D acceleration, does not need to be virtualized and can be used in any
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of the virtual phones. The downside is that all the virtual phones depend on the proper
working of the Linux kernel and any attack on Linux puts all virtual phones on risk.

NOVA The NOVA microhypervisor [SK10] is a tiny hypervisor. It uses the mechanisms
provided by the x86 architecture to implement virtualization and splits the functionality
of a traditional VMM into the hypervisor, which runs in privileged mode of the CPU and
handles CPU based virtualization, and the actual VMM which handles device virtualization.
Using one VMM per VM, the VMM is just exposed to the VM it handles but not to other
VMs. Proper isolation is ensured by the NOVA microhypervisor. NOVA outperforms other
virtualization solutions, showing that splitting hypervisor-functionality from the VMM does
not induce any performance penalties.

2.5 Real-Time, Scheduling and Nested Systems

In this section I will give an overview on related work that covers previously introduced
topics, especially those combining multiple of them such as real-time and virtualization.

2.5.1 Scheduling Theory with Stacked Systems

In scheduling theory the handling of multiple subsystems, which use a scheduler itself, has
been of interest. Because in those systems two schedulers are stacked on each other the
scheduling theory is referred to as hierarchical scheduling.
Fundamental results in scheduling theory have laid the grounds for later research of
stacked subsystems. Among this ground work are the rate monotonic scheduling algo-
rithm [LSD89], work on schedulability of real-time systems using static priority preemptive
schedulers [Aud+93], combining hard real-time, periodic tasks using EDF and soft aperiodic
requests [SB96], and the constant bandwidth server (CBS) [AB98].

More recently, scheduling theory has also focused on hierarchical setups, where a base
systems runs multiple other systems on top of it. In their terminology, the scheduler in the
host resides on a global level, whereas the subsystems, also called applications, schedule on
a local level. Scheduling with both the global and the local schedulers being fixed priority
and preemptive has been described by Davis and Burns [DB05]. Using EDF at the local
level and EDF or a fixed priority scheme at the global level has been researched by Zhang
and Burns [ZB07], applications can be both periodic or sporadic. All analysis have been
restricted to single CPU systems.

2.5.2 Real-Time and Virtualization

Virtualization systems have been specifically evaluated for their use in real-time setups. Gan-
dalf [IO08b] is a virtualization system that has been evaluated for its real-time use [IO08a].
Proteus is a system for the PowerPC architecture which can virtualize several guest sys-
tems [BK09] and provides partitions with temporal isolation [KBG10]. No spatial isolation
of virtual machines is provided. Kinebuchi et al. [Kin+08] use an L4 variant as a hypervisor
in an embedded environment with a paravirtualized real-time operating system and evaluate
the system by measuring achieved latencies. With regard to scheduling, tasks and their
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threads in guest systems are exposed to the host. Follow-up work of Kinebuchi developed a
new system [Kin+], called SPUMONE, running on a SH-4A platform. The system is able to
run virtualized systems and targets real-time use cases. The authors explicitly state that,
for their target use cases, security can be ignored for better performance of the system.
The system is described in more detail in Section 2.4.4. Xtratum [CRM10] is a bare-metal
hypervisor that targets avionics environments and allows to run multiple paravirtualized
guest operating systems, among them Linux and RTEMS, in a statically partitioned system.
It supports scheduling schemes such as ARINC 653 as required for avionics use cases.

RT-Xen [Xi+11] extends the Xen Hypervisor with four different and known real-time
scheduler algorithms, allowing to run guest operating systems under one of those real-time
schedulers. The scheduler implementations are compared among each other and the authors
conclude that RT-Xen only gives a “moderate overhead” using 1kHz scheduling frequency.

2.6 Terminology

Basic concepts of computing are used throughout computing industry and academia, however,
different communities may also use different wording for the same concept. Thus, in the
following, I want to define terminology and wording and reflect it against terminology used
by different communities within academia and industry and finally I want to specify the
terminology used in this thesis.

Real-Time and Operating Systems The real-time community as well as the microker-
nel community are using the same words with different meanings:

Task In the real-time context a task is an entity that executes work, which is executed in a
thread provided by an operating system. In the microkernel context a task describes
an container that is implemented with address spaces and may contain threads and
other task-local resources, such as capabilities. To avoid confusion I will not use the
term task without specifying the meaning in the context of real-time and operating
systems.

Server In the operating system terminology and also within networking environments the
term server refers to a provider of a service, which a client can use. A server can also
be a client of other services. Contrary, in real-time scheduling a server subsumes a
group of tasks that are scheduled under a scheduler.

Addressing in Virtual Environments Any type of virtualization, starting with virtual
memory up to nested paging, involves different types of addresses. Physical addresses are
those addresses that are used on the memory and devices buses. To provide flexible memory
handling and isolation of software components, memory management units (MMU) are used
to provide an abstraction from physical memory. Virtual addresses are translated to physical
ones by the MMU, the translation table is maintained by the operating system. Considering
virtualization, a VM has its own notion of physical and virtual memory, however, a VM
gets only access to a subset of the actual available memory in the host. In virtualization
context the terms guest virtual address (GVA) and host virtual address (HVA) are used. To
denote the physical address of the host, the term host physical address (HPA) is commonly
used in this context.
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A special role is taken by paravirtualized guests, such as L4Linux. In Linux kernel differentiates
between virtual and physical addressing, however, in the context of paravirtualization three
different types must be used. The physical addresses need to be divided into ones used for
devices, thus being the real host physical addresses, and those used internally in the L4Linux
kernel for addressing, being virtual in the context of the L4Linux kernel running in a host
address space, and being different from those virtual addresses used for Linux processes.
Operating system kernels typically do not offer support for differentiating between the two
types of addresses and special care must be taken when adding paravirtualization support
to those kernels.

2.7 Microkernel-based Systems

Microkernel-based systems promise to be a good fit for security and real-time conscious
environments. Their design principle of only running absolutely necessary code in the
most privileged mode of the CPU and building any functionality on top as non-privileged
components allows to build system with small Trusted Computing Bases (TCBs) [Hoh+04].
The composition of a system through multiple modules allows to design a system in such a
way that a component only needs to depend on those other components which functionality
it requires. Any other functionality available in the system cannot influence this component,
especially regarding the existence of faults in those components that can lead to the
infringement of confidentiality, integrity and availability demands. This is in contrast to
monolithic designs where a broad set of functionality is implemented in the host kernel and
part of any feature implemented on top. Any programming fault in a monolithic kernel has
direct influence on all components running on the kernel, whether or not this component
requires the affected kernel component. As the number of programming errors correlates
with the amount of code [Pal+11b], it can be assumed that systems which allow a small TCB
are better suited for security conscious systems. Due to their small size, microkernel-based
systems also offer the possibility to be evaluated with formal methods to prove that their
code adheres to a formal specification, ruling out any programming errors that would
violate the specification. An initial step is to provide a proof of the kernel which has been
accomplished in the seL4 project [Kle+09].

Considering real-time systems the predictability and preemptiveness of the system are of
interest. Similar to the security argument for microkernel-based systems, less dependencies
reduce the complexity of the system and thus make the predictability of the system better
understandable. At the lowest level the kernel controls the preemptiveness of the system,
requiring that the kernel provides a good interruptability to be suitable for real-time use.
However, user components still need to be designed with latency requirements in mind
to be able to react to events appropriately. DROPS [Bau+98] is a system that has been
specifically designed to build real-time systems using a microkernel-based design.

Microkernel-based systems have gone through several generations, starting with the Mach
microkernel [Acc+86]. The approach to Mach was to strip down an existing monolithic
kernel and allowed to implement microkernel-based design concepts as well as running
guest operating systems, such as MkLinux [PSR96]. However, Mach suffers from slow IPC
performance, attributed to the asynchronous IPC mechanism used in Mach. This observation
lead to the design of second generation microkernels [Lie95], namely L4, that use a “from
scratch” implementation and put their main focus on IPC performance. Comparisons between
Mach and L4 show that a design from scratch can tremendously improve performance of the
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overall system [Här+97]. Security considerations led to the design and development of the
third and current generation of microkernels. With the introduction of using a capability-
based design, any resources in the system, including communication, can only be used when
being in the possession of an access right to that resource. Contrary to second generation
systems, third generation kernels provide the possibility to isolate subsystems in such a way
that those subsystems do not and cannot know from each other, except when explicitly
configured to do so [LW09]. At the time of this writing third generation microkernel systems
provide the best choice for designing security and real-time conscious systems.

Due to the familiarity with L4-based systems I chose the TUD:OS system for the remainder
of this work. I will introduce this system in the following.

2.7.1 The TUD:OS System

The TU Dresden Operating System (TUD:OS) is a microkernel-based system, consisting of the
Fiasco.OC microkernel and the L4 Runtime Environment (L4Re). L4Re is a flexible, portable
and component-based software layer that runs in user-space on top of the Fiasco.OC kernel,
providing runtime services such as memory management, to be able to run applications.
Existing applications can be run in a port of the Linux kernel to the system, called L4Linux.
TUD:OS evolved out of DROPS [Bau+98], that used the Fiasco microkernel and L4
Environment (L4Env) as its user-level services. L4Linux was one of the first applications
developed within the DROPS project.

Figure 2.3 shows a general architecture overview of a TUD:OS system. The Fiasco.OC
kernel is the only component running in the privileged mode of the processor. All other
components are implemented in isolated, non-privileged tasks, depicted as separate boxes.
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ModeL4 Runtime Environment
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Figure 2.3: General architecture of a TUD:OS system. The kernel is the only component running
in the most privileged processor mode. All other functionality is implemented in services, running
in non-privileged and isolated tasks.

Fiasco.OC

The kernel is the only software component running in the most privileged processor mode of
the system. Being a microkernel, it only covers basic and essential functionality, foremost
ensuring isolation of components running on the kernel. Consequently the kernel must run
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any platform functionality that requires execution in privileged mode. For example, this
covers setting up address spaces and dispatching hardware interrupts. Other functionality is
located in the kernel for usability reasons. For example, scheduling of threads is implemented
in the kernel to ensure proper performance of the system.

Access to kernel functionality is guarded using a capability system [LW09]. Any functionality
in the kernel is modeled as an object, and any access to such an object using a system-call
is directed through a capability table. Each protection domain in the system has its own
capability table, which is maintained by the kernel. This table contains pointers to kernel
objects which a protection domain can invoke. If a capability table does not contain a pointer
to a particular object, the protection domain of that table cannot access this object. This
scheme implements the principle of least authority (POLA) [SS75; SSF99].

Factories are the concept through which objects in the system are created. The kernel
implements factories to create kernel objects, such as protection domains or threads, or
other factories that are equipped with less resources. The factory concept is also used to
create user-level objects.

Overall, the kernel covers the following key functions:

Protection domains By providing different protection domains the kernel ensures that
code running in different domains cannot influence each other. This protection is
achieved by using the memory management unit provided by the platform and creating
address spaces for each domain, called tasks. An address space is an abstraction from
physical memory, building virtual memory. The kernel implements such an address
space by constructing a page table, which is a data structure used by the MMU to
map virtual addresses to physical ones, and thus to memory areas. Each entry in the
page table also carries a set of flags describing memory access characteristics, such as
read-only permissions or caching behavior. Using one page table for each task gives
the kernel the ability to grant each task access to specific memory areas. Access to
other memory is not possible as no entry in the page table exists that points to that
memory. Only the kernel is able to set a current page table in the system as well as to
modify the page table.

For user-level programs the kernel is offering a map operation that allows to give
memory a program possesses to other programs, building up a hierarchy. The memory
can be given out with the same rights or with less rights. The hierarchy denotes
parent/child connections where a parent is responsible for maintaining the memory
of its children. Shared memory between tasks is established by giving multiple tasks
access to the same physical memory. The system has a root memory component that
possesses all memory and which is the start of the memory mapping hierarchy.

Units of execution One unit of execution is a thread. A thread executes code and is
subject to scheduling by the kernel. It is bound to a task and therefore an address
space wherein it executes, multiple threads can be within the same task. The kernel
offers a mechanism to migrate threads between CPUs.

Communication plays an important role within a microkernel based system. When all
services are implemented in different tasks, good performing communication mecha-
nisms become essential to the performance of the whole system. The system supports
multiple ways of communication.
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Message passing is an operation where two threads explicitly invoke a message passing
operation and possibly exchange a limited amount of payload data. In L4 systems,
message passing is called IPC, short for Inter Process Communication. The name is
misleading but traditionally used, as threads are the communication partners rather
than processes. For reasons of simplicity in the kernel, IPC is synchronous, meaning
that when one partner has not invoked an IPC system call the other partner will
block until both have invoked the function. Synchronous IPC avoids to queue up any
messages in the kernel, which would require buffer handling therein. Both partners may
choose to abort the operation specifying send or receive timeouts when one partner
is not getting ready to communicate in time. Several combinations of sending and
receiving are also available.

Another way of exchanging data, and thus communication, is to establish shared
memory between two protection domains. The kernel supports this by allowing a task
to share memory it possesses with other tasks.

Asynchronous notifications are supported by using interrupts that are used both to
implement real physical device interrupts as well as soft interrupts implemented by
programs. An interrupt can be triggered either by a hardware device or by a software
component. Unlike message passing, the receiver of an interrupt needs not be ready
when the interrupt occurs, it can fetch it at any later time. Interrupts do not transfer
any payload except the interrupt itself. Shared memory is often accompanied with
interrupts to signal changes of shared memory contents.

The relationship of two communication partners is established using a capability
system that can create communication channels between domains and give them access
to the channels. These channels must be explicitly created and maintained, a creator
can only build those channels between domains to which it has access. It is the duty
of the creator to enforce a given communication policy for its children. This way only
allowed communication channels are created, all other cross domain communication
is prevented automatically as those domains cannot address other communication
partners.

Scheduling Scheduling is the functionality that decides which thread to run next. Typically,
the scheduler is invoked periodically by a timer event, or when a thread is being blocked
and another ones needs to be selected. Generally, the decision, which thread to select,
can be placed anywhere in the system, especially a user-level component. However,
user-level scheduling for the whole system induces a performance penalty and thus
scheduling is implemented in the kernel [Sto07].

The kernel implements a fixed priority, round robin scheduler that always selects the
thread with the highest priority that is ready to execute. Within one priority level a
round robin scheme is applied. The length of a timeslice can be configured for each
thread separately. The scheduler functionality is also used to put threads on different
cores that might be available in a platform. Multi-processing systems run one scheduler
per core and perform core-local scheduling. User-level policy can instruct the kernel to
migrate threads between cores.

Besides the described key functions the kernel also provides optional debugging facilities
such as serial output and an interactive debugger as well as other functionality that must be
implemented in there, including interrupt controller and hardware virtualization functionality.
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Runtime Environment

As described in the previous section the kernel only implements basic core functionality
itself and offers possibilities to enforce policies that have to be implemented in user land.
The runtime environment implements those policies and also offers services and libraries
that abstract from the pure kernel interface and add functionality that is commonly used
by programs and developers. The environment consists of services running in tasks, called
servers, and task local functionality provided by libraries.

The system server, which is the root of the system, provides several services, including
memory provision for clients, naming services and a simple read-only file system. Application
loading is done by an application loader that interprets scripts that launch applications and
set up communication channels between those.

For productive and convenient application development the runtime environment provides
several sets of libraries. Message passing calls for communication with the servers are
wrapped in libraries that are used by the programs [WL11]. Standard functionality, for
example a subset of POSIX, pthreads and a C++ runtime environment are provided by
corresponding libraries such as a C library.

Device Access

The classical RTOS allows every task to access all devices and thus trusts all applications
to handle the platform devices properly, or not to access them at all. In the contrary, in
a system with protection domains the operating system must prevent that one untrusted
subsystem can control or negatively influence the platform, for example because it has access
to platform-critical devices.

Considering that the operating system must control the platform leads to the conclusion that
a central platform management component is needed in the system. Given client-specific
configurations it will hand out access rights for the available devices. Clients of the platform
manager are components that need to run devices for themselves, for example a protocol
stack, or a system component that multiplexes a device for multiple clients. A good example
for this type of usage is a network device driver that also implements a virtual switch to
handle network connections of multiple clients in the system.

Clients may use device functionality either by calling a specific interface offered by the
device driver component, or they are expecting a hardware device, in which case the device
can be emulated by a device model, typically implemented in a virtual machine monitor.
Modern devices designed with virtualization in mind offer several virtual devices that can
be passed through to multiple clients independently, avoiding the need for a slower software
implementation. Devices or controllers that use direct memory access (DMA) must be
specially treated when they are driven by untrusted components as the DMA functionality
gives access to the physical memory and therefore to all protection domains and the kernel.
Hardware provided IO-MMUs allow to restrict access to physical memory for these devices.
The platform management component is responsible to setup the IO-MMU hardware for
use.
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2.7.2 L4Linux

L4Linux is a port of the Linux kernel to the L4 microkernel system family. The first
publication dates back to 1997 [Här+97] where Linux 2.0 was ported to the initial L4
kernel by Jochen Liedtke. With the hardware architecture available in that time, L4Linux
showed an application performance that was close to native performance and showed that the
unfavorable performance characteristics of MkLinux [PSR96] were not due to the microkernel
idea itself but due to design considerations with and within the Mach kernel [Acc+86].

In the following I will introduce L4Linux and provide sufficient knowledge for the subsequent
work with L4Linux. L4Linux was among the first solutions to provide virtualization on
common of the shelf hardware. To run Linux on L4, the Linux kernel is adapted and
wrapped into an L4 task and executed in user-level. For each Linux process L4Linux creates
an L4 task so that the Linux processes are isolated among each other and the L4Linux
kernel itself is also isolated from its processes. All Linux processes are fully controlled by
the L4Linux kernel by using available L4 mechanisms.

The first port of Linux to L4 had the goal to evaluate the generality of the L4 interface [Lie96].
L4Linux showed to be working and performing well. However, several peculiar solutions had
to be taken to provide the required Linux semantics and binary compatibility. For example,
each Linux process required a signal thread to allow the L4Linux kernel to handle signals for
the process [Här+97].
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Figure 2.4: Architectural overview of L4Linux using threads. Besides the kernel thread, separate
threads for each interrupt are required as well as for each user process.

With the availability of the Fiasco kernel [Här+98], interface adaptions and enhancement of
the kernel interface were possible. This allows for an interface co-design between the kernel
and the application. Subsequent work enhanced the Fiasco interfaces to allow for a better
exception handling and control of L4 threads which in turn simplified L4Linux [Lac04].

At this point, L4Linux is using one L4 thread per process. A schematic view is shown in
Figure 2.4. Within this setup, only one thread is running at a time as this matches the
expectations of an operating system kernel. The newly introduced exception IPC mechanism
allows to retrieve and set the full CPU state of a thread. User processes are executed by
replying to their previous exception IPC with a new state and waiting until they trigger
the next exception. For handling preemption, the L4Linux has to interrupt a currently
running Linux process. This is done in the interrupt context of Linux by injecting a special
preemption exception into the Linux process. The Linux process will then return to the
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L4Linux kernel via an exception IPC, allowing the L4Linux kernel to run internal work,
including scheduling.

Compared to the initial version of L4Linux, no changes in the memory handling were done
or were deemed necessary. Internally, L4Linux uses Linux’ page tables to track the page
allocation to the Linux processes. L4 mappings are established upon faults of user-level
programs by looking up the corresponding memory page in the Linux-internal page table.
Access right removals, including page removals, are done immediately.

Device interrupts are handled with interrupts threads that are running in the L4Linux
server. Initially, an L4 thread could only receive from a single interrupt, requiring one
interrupt thread per device interrupt in L4Linux. Fiasco added the capability of being able
to wait for multiple interrupts, requiring only a single interrupt thread. For generating the
Linux-internal timer interrupt, an L4 thread, similar to the interrupt threads, is used.

Initially, the base synchronization primitive was disabling processor interrupts, which was
allowed by the microkernel. Later work addressed the security and latency implications
of allowing to disable processor interrupts by user-level and added a user-level-based
synchronization mechanism to L4Linux. A lock is used to implement the critical section
and a helper thread is installed to allow a thread to block whenever the lock is already
taken [HHW98]. The helper thread has to respect the priorities of the blocking thread when
waking them up to preserve expected behavior [Meh05].

L4Linux has been integrated into the TUD:OS system by drivers that connect to L4 services,
such as input devices, frame-buffer, network[LH04] and block devices [Reu05]. L4Linux
is being continuously upgraded with Linux releases and available for the x86 and ARM
architectures.

2.8 Summary

In this chapter I have presented fundamentals and related work required for securely
consolidating real-time systems using virtualization techniques. TUD:OS will be the platform
used for the integration.
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Running virtual machines with latency-constrained work requires that the base system
offers adequate support for such a configuration. The software platform must be designed so
that events can be dispatched with low overhead to and within virtual machines. Virtual
machines shall be supported with a uniform interface for different virtualization technologies
as well as different architectures so that virtualization software can support a wide range
of different configurations. Still, latency is not the only consideration. The design must
also include proper isolation so that multiple virtual machines and applications can run
concurrently on the same system without being able to negatively influence each other
both in the spatial and temporal domains. And finally, as we are extending an existing
microkernel-based system new mechanisms shall be integrated into the system such that
it works well with existing applications. New virtualization functionality shall also only
extend the trusted computing base for unrelated programs where absolute necessary which
requires that virtualization functionality is split into a security relevant part and user-level
components.

As the base for this work I chose TUD:OS, a universal L4 microkernel-based operating
system. As already outlined in 2.7.1 it provides the necessary features of a small trusted
computing base together with required isolation properties. It supports multiple architectures
and platforms as well as the possibility to run legacy systems.

With the initial development of L4 by Jochen Liedtke there was the first user-level application
on L4: L4Linux. One of the goals of the L4 interface design was, and still is, to be universal in
a regard that any type software can be built using this interface. With porting Linux to L4
it had been shown that the L4 interface is sufficiently generic so that a complete operating
system including its applications can be hosted. While developing L4Linux, microkernel
interface changes where explicitly not considered [Här+97]. While Linux could be run on
L4 and performance was close the native Linux using application-level benchmarks, some
rough edges remained.

In the course of on-going development those limitations were addressed and consequently
improved L4Linux. The initial design has been discussed in Section 2.7.2. In this Chapter I
will proceed with a new virtualization interface that addresses an yet unresolved issue with
preemptibility and thus low latency.

3.1 The Base System

The base system providing the core operating system functionality includes the host micro-
kernel, Fiasco.OC, and the L4 Runtime Environment, L4Re. In the following I will briefly
introduce and analyze its characteristics as a versatile platform, supporting latency and
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security requirements.

The host kernel is the only component running in the privileged mode of the processor
and thus plays an essential role to the overall behavior and security properties of the
whole system. Besides security properties, the duration and latency of kernel operations is
important for the real-time behavior of the system.

Security Properties The host kernel provides isolated compartments for software com-
ponents. Both spatial and temporal isolation are required. Spatial isolation is provided by
means of address spaces. Each compartment in the system has multiple address spaces,
targeting different resources. The virtual memory address space is enforced by hardware
and the capability address space is protected by the kernel. Further address spaces may be
provided, for example, on the x86 architecture I/O ports form an own address space.

To provide temporal isolation the host kernel implements preemptive multitasking and
ensures that the scheduler can preempt running threads to select other ones which are ready
to run. The scheduler implements a configurable policy and allows to prioritize threads over
others.

The enforcement of resource sharing must be implemented by the host kernel. The kernel
itself manages the processor by means of the scheduler and memory by controlling the
page-tables, as outlined. As described in Section 2.7.1 the kernel provides map and unmap
operations to grant and revoke access rights to memory. Access rights to memory pages can
only be granted with the same or less privileges. The same mechanism is used analogously
for capabilities. Access to other resources is managed by user-level components, for example,
for hardware devices, however, the host kernel needs to supply a communication channel
for components to interact securely with each other. Fiasco.OC supplies IPC-gates for that
purpose which provide a communication channel between two tasks, whereas other tasks in
the system cannot interfere with that channel.

Security-related considerations need to continue in the user-level environment. Implementing
resource access policies for resources for multiple compartments requires appropriate care.
Negligence during implementation may lead to resource access for unauthorized compart-
ments.

Latency Properties For latency-constrained programs it is important that the blocking
time of host kernel invocations and calls to other user-level components is known. Two
groups exist in this regard. The first group are operations that always take a fixed amount of
time, independent of previous operations executed by other components. The second group
are operations that depend on some system state and thus their runtime is not constant and
potentially unbound. For the calling context that shall be no problem as it is known to the
caller that the execution time of the call is unknown. However, execution progress of other
unrelated threads must not be delayed. Regarding the kernel that requires that long-running
operations are preemptible so that potentially runnable threads can be executed. For user-
level services principally the same requirements exist, however, the situation is more relaxed.
Given there is a service that has multiple clients and one client requires a bounded reply
during its latency-constrained operation, the server must specifically consider this client in
its request processing. Concluding, a latency-constrained program must be aware which
operations are potentially unbound and not call those in code paths with timing constraints.
This is true for both native applications as well as legacy code running in a virtualization



3.2. L4LINUX 53

environment. Typical programs are divided into a start-up phase where they call potentially
long-running operations, such as memory allocations, and a control phase which does not
use such calls. Further, any intermediate layer, especially in a virtualization environment,
must not synchronously call any unbound operation while executing latency-constrained
code.

The Fiasco.OC microkernel and the L4 runtime environment were designed with both latency
and security requirements as two of their primary goals. It is therefore well suited as a base
system for this work.

3.2 L4Linux

L4Linux is a major application in TUD:OS and plays an integral role in the overall system. It
is a virtualization solution allowing to run standard Linux applications and drivers, required
in many use cases. Linux is becoming more and more real-time friendly, allowing to run
real-time tasks within Linux, side by side with normal, non-real-time applications [FPT14].
The same can be done using L4Linux, allowing to run legacy real-time applications side by
side with other legacy applications, in the same or other instances of L4Linux. Of course,
programs can also be native L4 applications or application in other virtualized environments,
and they may also have real-time requirements.

Considering the Linux kernel, the whole kernel must provide good preemption characteristics
itself, that is, handling of incoming interrupts shall not be stalled by long-running non-
preemptive operations. As Linux is a monolithic system this poses big challenges to the
internal design and code quality of Linux, especially with regard to drivers. However, Linux
is being used as a real-time operating system which lets us assume those characteristics are
given.

Considering L4Linux, the added L4 adaption must also have these characteristics. However,
the initial design did not focus on those but rather had to adapt to a given and fixed interface,
as described previously. Regarding interrupt responsiveness L4Linux shows limitations. In
the following I will outline those limitations and present possible solutions.

From the security perspective L4Linux offers the same characteristics as native Linux,
protecting the Linux kernel and Linux user processes from each other by the means of address
spaces. Therefore no improvement is required in that regard. However, any modification
made to the system must consider that security properties are being hold.

The following list describes the problems that I identified within L4Linux regarding interrupt
responsiveness:

Semantic gap between Linux and host scheduling
In the initial L4Linux design, the Linux scheduler has been modified such that any
runnable Linux process was exposed to the L4 scheduler. That was done because it was
assumed that the L4 host scheduler can schedule more efficiently among the threads
that are ready, avoiding any additional decision from the Linux kernel code which
would need to be switched to.
However, there is a semantic gap between Linux and the L4 scheduling, as the L4 host
scheduler does not know about any additional attributes the Linux kernel is giving each
process, such as Linux-internal priorities and thus treats every process equally. For
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example, a low priority Linux process is treated equally to a high priority, interactive
process. Adapting the L4 priority of the corresponding L4 thread was discussed for
the initial design [Här+97], but has never been implemented.

Additionally, keeping the modifications of the Linux scheduler has been causing
considerable manual effort as the Linux kernel scheduler was going through multiple
revisions in the early 2.6 series. Thus, due to the mentioned disadvantages with the
handling of scheduling decisions, I decided to drop any modification of the Linux
scheduler. Consequently, with the standard Linux scheduler, L4Linux only exposes one
Linux thread (per CPU) to the host system to run. This change also has a positive
effect in the context of real-time processes as only the Linux thread selected by the
Linux scheduler is eligible to run. As a side effect, the change that only one Linux
context (per CPU) can be active at any time also simplifies the code within L4Linux
that handles release and reception of user processes executing in L4 threads.

Unbounded host interaction
The L4 host system offers potentially long-running operations. One such operation
is rights delegation, for example on memory, using the calls map for granting access
rights and unmap for revoking access rights. Mapping operations build up a hierarchy
among tasks as threads in each task can map memory or capabilities to other tasks,
given the right to do so. The counter operation, unmap, is more expensive because it
requires the kernel to keep a data structure which stores the mapping hierarchy to
be able to remove mappings again. This data structure is called mapping database.
Revoking a right works recursively, that is if a task A has mapped a page to B and B
has mapped it further to a task C, then when A revokes the page, it will be removed
from B and C. In this case A does not know that the page was mapped further by B.
Consequently, the unmap operation depends on the length of the mapping tree behind
a page and it thus not fixed in time. In a general case, real-time programs must be
aware that unmapping a resource is not fixed in time.

Revoking and possibly deleting a resource can also lead to the revocation of other
resources. For example, unmapping a task also causes unmap operations of the memory
pages in there as well as of all capabilities. Thus, the time needed for unmapping a
task is highly dependent on the amount of virtual memory and number of capabilities
mapped in this task. If the task to be deleted has further mapped out pages or
capabilities, those are also deleted recursively.

This behavior places a special challenge to virtualization systems: Since kernel code
runs within a single thread, a call to unmap causes the guest kernel to stall for the time
unmap needs, as it is a synchronous operation. This contradicts to the requirement
of good preemption of a system as needed for real-time workloads. I will describe a
mechanism to overcome this problem in this chapter.

Interrupt handling
Interrupt handling plays an important role in a latency-conscious system where
overhead and thus delay shall be minimized. However, in the initial L4 design each
interrupt had to be handled by a separate L4 thread as one L4 thread could just bind
to a single interrupt. The required interactions between the interrupt threads and
the Linux server cause additional overhead and thus delay. The type of interaction
between the interrupts threads and the Linux server also depends on the state of the
Linux server:
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The interrupt threads are configured with a higher host priority than the Linux server
so that the Linux kernel is interrupted immediately when an interrupt is triggered. In
older Linux versions, the interrupt handling is divided into two parts, the top-half and
the bottom-half. The top-half part is responsible to run any immediate work regarding
handling of the device interrupt and designed in a way that it must not depend on any
specific Linux context. Consequently it can run in the L4 interrupt threads, outside of
a proper Linux kernel context. This ensures that the top-half of a device interrupt is
handled immediately when it is triggered. An interrupt can trigger further work in the
kernel itself, which is flagged by the top-half code. In native Linux this is handled on
the return path from the top-half handler. However, with L4Linux running the top-half
in a different host thread, this interrupt thread needs to notify the Linux server. Three
cases must be considered here:

• The Linux kernel is idling and thus the idler context needs to be woken up so
that Linux’s scheduler is called.

• A user process is running. The user process must be interrupted so that the Linux
kernel gets active again to eventually handle work triggered by the interrupt.

• The Linux kernel is active, for example, handling a system call. Nothing is done
by the top-half handler because the kernel code will check for any interrupt
triggered work before resuming a user process or going to idle.

Delay is not only added by the interaction between the Linux server and its interrupt
threads but also because the Linux server is not preempted when it is executing Linux
kernel code and an interrupt is received. Although the interrupt threads are prioritized
over the Linux server and call their top-half functionality, any further pending work
does not immediately preempt the Linux server so that it can pick up pending work.
The reason is that the initial L4 design did not provide necessary means to preempt
an L4 thread with the required state information. Instead, checks for pending work
are handled in the L4 adaption layer once the Linux server has finished its current
operation, such as handling a system call.
I will address those problems with a new execution model which I will introduce later
in this chapter.

Missing of events
In the original design of L4Linux there is a race condition to miss a notification from
an interrupt thread. The problem lies in the state variable that is required to decide
within the interrupt handlers which way to notify the Linux kernel, or not to notify
at all, as described previously. This state variable contains the L4 thread identifier
of the user process that shall be running. However, setting this variable and doing
the IPC call atomically is not possible. Thus it can happen that the variable is set
with a valid L4 thread ID and the IPC call has not yet happened, an IRQ is delivered
in the meantime, the IRQ handler wants to interrupt the user process, which is not
yet running and thus the wake-up event is lost. Eventually the work triggered by the
interrupt will be done, for example with the next interrupt, for example from the
scheduling interrupt, or a system call invoked by the user process. However, such a
miss causes a latency in the event delivery delaying any required processing of work.
The very first version of L4Linux used to disable interrupt delivery at the CPU level for
synchronization, being allowed to do so. This avoided the race because invoking an IPC
call enabled the interrupts again. However, the possibility to disable CPU interrupts
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from user-level programs was removed for security and robustness reasons in later
kernels such that this way of handling atomic sections is not possible anymore [HHW98].

Overall, the paravirtualization approach taken by L4Linux does work, however, also uses
rather complicated constructs to make Linux run on L4. The root of this design is owed
to the fact that the initial design goal was to stay with the originally proposed L4 kernel
interface. Secondly it has been shown that the interface is capable of supporting such a
workload. The problems described are not unique to Linux but affect all guest operating
systems such as shown in our L4/Symbian port [Bra+08].

However, with the freedom to modify the Fiasco kernel it is possible to develop an inter-
face that is specifically designed for running guest operating systems (virtualization) and
integrates seamlessly into the existing microkernel-based system.

The basic idea is simple: provide an interface that matches a real CPU as close a possible,
because an operating system is expecting this type of execution environment. I will describe
this interface in the following.

3.3 A Generic Virtualization Interface

To address the problems mentioned above, we added new mechanisms to the L4 kernel
meant to genuinely support virtualization of CPUs, referring to the resulting mechanism as
a virtual CPU (vCPU).

The goal is to provide a virtualization interface that supports both faithful virtualization as
well as paravirtualization with the same functional approach, covering CPU and memory
virtualization. Further goals include the integration into microkernel-based systems so that
VMs and native microkernel applications can coexist and work together, creating a symbiosis.
The last goal is to provide a platform for latency-conscious workloads.

The basic idea for the virtualization interface is straightforward. Operating systems have
been developed to run on hardware and hardware follows a simple model of execution. A
processor executes instructions until the executed instructions cause an exception or an
external interruption occurs. In this case the processor continues execution at handler code
that has been provided by the operating system. The operating system will then handle
the exception and remove the reason for the exception so that the original execution can
continue where it has been interrupted.

Virtual machine monitors follow a similar approach: They execute the guest operating
system and handle any exception that is caused by executing the guest operating system.

The virtualization interface provided by the microkernel shall have similar characteristics
when executing guest operating systems: let the guest execute code and branch any exception
to a predefined exception handler function within the guest kernel. For integration with
the host system the virtualized guest shall also be able to communicate with other system
modules by means of L4 operations such as IPC. As such a virtualization interface provides
virtual CPUs to the guest operating systems we call this interface briefly the vCPU interface.

Overall, the following features need to be provided by a vCPU:

• One or more entry points must be defined where execution continues when an event
shall be delivered to the vCPU.
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• It must be possible to disable injection of events to the vCPU to be able to implement
atomic sections.

• A memory area must be available which can hold the state of one interrupted execution.

• Communication with other microkernel threads must be possible through the same
mechanism, allowing to use any existing L4 component directly and without restrictions.

• Multi-processor guests must be supported.

Entry Point(s) The entry point is the start of a function similar to an interrupt vector
on physical processors. Execution is branched to this function whenever an interrupt is
injected to the vCPU. Besides external events there are also synchronous events that are
triggered during code execution, for example, an exception when executing an undefined
instruction or faulting on memory accesses. Those types of events can be handled in the
same way as external events, given the possibility to differentiate them.

Event Delivery Flag The event delivery flag indicates whether the vCPU is ready to
be interrupted and to be branched to an entry point. This flag is used very frequently
by prospective guest operating systems and must therefore be modifiable with very low
overhead.

State Save Area The state save area is an area of memory that is used to store sufficient
state to resume execution after handling interrupts and exceptions in the guest operating
system. Both the host system and the vCPU access this region. The event delivery flag
prevents reentry and thus locks this region and thereby prevents inconsistencies from
concurrent modifications. The kernel disables event delivery whenever the vCPU is branched
to the entry point. When the context information has been saved from the state save area,
the guest can re-enable event delivery to signal that the state save is clear for new content.

Receiving and Sending Messages The primary communication method on L4 systems
is IPC which is synchronous. This is in contrast to the asynchronous nature of vCPUs that
receive messages whenever event delivery is enabled without invoking a specific operation.
However, vCPUs shall be able to communicate with other servers and to use the respective
client libraries of the servers without the need to redesign those services and libraries. It is
therefore crucial that L4 IPC works the same way in vCPU mode as in non-vCPU mode.

For transferring message data, L4 IPC uses a user-level thread control block (UTCB). Each
L4 thread has a UTCB and UTCBs are located on kernel-provided memory. Senders store
their message into the UTCB prior to invoking the corresponding IPC operation and get
messages out of the UTCB when receiving messages. The UTCBs are also used for memory
and capability mappings.

When in vCPU mode, receiving an IPC message can be twofold, depending on the state of
event delivery:

Event delivery is enabled: Whenever a message is received, execution continues at the
entry point. Event delivery is disabled and message contents are stored in the UTCB
and the state save area.
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Event delivery is disabled: The vCPU behaves as in non-VCPU mode and messages
can be received by explicitly invoking a message receive operation.

With vCPUs a thread is able to receive an IPC message while not blocking in a corresponding
IPC receive operation. Receiving interrupt notifications works in the same way as those are
also delivery via the IPC mechanism. Asynchronous event reception is not only required in
virtualization environments but shall also prove useful for any kind of asynchronous usage
models.

Sending an IPC message, or more generally, invoking any IPC operation, can be done
anytime while in vCPU mode. However, for the duration of the IPC event delivery through
the entry point will be disabled so that the semantics of IPC are retained. Further, as
sending and receiving IPC involves copying data to and from the UTCB, event delivery
must be disabled throughout handling the UTCB. Otherwise an asynchronously incoming
IPC message will overwrite UTCB contents. Consequently, event delivery to the vCPU must
be disabled before putting data into the UTCB and only enabled again after retrieving the
reply from the UTCB. Event delivery must also be disabled for library calls that may invoke
IPC operations.

Paravirtualization and Multiple Processes Operating systems commonly use multi-
ple virtual address spaces to provide isolation among different processes on their system.
They also guard the guest kernel from the user processes. Protection of the kernel could be
accomplished by using a separate address space, however, that would require address space
switches for all kernel invocations such as system calls. To avoid the switching, the virtual
address space is divided into a part accessible to the user process and a part that is only
usable by the kernel. Furthermore the kernel is part of every user address space. With such
a configuration kernel requests require only two privilege changes and address spaces are
not switched.

To apply the same approach to paravirtualized setups, the system would need three privilege
levels: for the host kernel (hypervisor), for the guest kernel and the user processes to guard
the host kernel from the guest kernel and to guard the host and guest kernels from the user
processes. However, commonly hardware only offers two privilege levels. For this reason
guest setups can only use the non-privileged mode and therefore have to use separate address
spaces for the guest kernel and user processes. A side effect of using separate address spaces
is that both the guest kernel’s address space as well as the user’s address spaces can use the
full size of the virtual address space available to user-level programs on the host system. In
a potential system with three privilege levels the virtual address space must be divided in
three parts for each level, yielding in less available address space for each part. This is in
particular interest on 32-bit architectures and today’s systems with multi-gigabyte memory
setups.

With the separate address spaces it is required that those address spaces are switched when
changing from vCPU guest kernel mode execution to a vCPU user process and again when
switching back. This ensures that the guest kernel code and data is protected from accesses
by the user processes. To support this common use case of address space switching, a vCPU
can switch between host tasks and thus different guest address spaces. When continuing
execution in a user process, the guest kernel will supply the host kernel a corresponding
address space where the vCPU will be migrated to. Whenever an event shall be delivered or
the user code triggers an exception, the vCPU is switched back to its guest kernel address
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space to continue execution at the entry point.

Besides the address space argument, the corresponding vCPU operation can also be supplied
with pages to be mapped to the target address space. This allows to handle page faults of
user tasks within the same call instead of using separate map operations, speeding up page
fault handling.

Figure 3.1 depicts a schematic view on a paravirtualized operating system, consisting of an
address space for the guest operating system kernel and two user processes.
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Figure 3.1: Using multiple address spaces for a vCPU to implement user-processes in a paravirtu-
alized operating system. The execution starts in the kernel task and continues with switching
the vCPU to task A (1). Executing user code, the vCPU will execute a system call and thus
transition back to the kernel task (2). Similarly, executing in task B (3), an external event (4)
switches the vCPU back to the kernel task (5).

3.3.1 Multi-Processor Guest Operating Systems

Symmetric multi-processor systems have multiple processors within one system that can
be used in parallel. Operating systems make all the processors available to applications. In
virtualized setups multiple processors can be made available to VMs, allowing guest systems
to use multiple host processors.

With vCPUs, the guest operating system is supplied with multiple vCPUs that are placed
on the available host processors. No specific features or enhancements are required by the
vCPU functionality to run multi-processor capable guest operating systems. Inter Processor
Interrupts (IPIs) are mapped to L4 interrupts that can be triggered by software.

3.3.2 Full Virtualization and vCPUs

Modern processors such as x86-based systems from AMD and Intel provide hardware support
for operating system virtualization [Cor14; Dev11]. The virtualization extensions provide an
execution mode that is free of virtualization holes and further provide several performance
targeted features for virtualization, such as nested paging (see 2.4.1).

The execution of a virtual machine is very similar to the execution model of vCPUs. As
already introduced earlier, each virtual CPU of a virtual machine is configured by a VMCx.
The CPUs provide additional privileged instructions for managing the VMCx and handling
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virtual machines. Whenever an event inside the virtual machine cannot be handled within
the virtual machine, the CPU will exit the VM and return to the VMM, delivering sufficient
information to let the VMM handle the event.

Mapping this type of execution to vCPUs is straightforward. Virtual machines always
require a task for execution comprising the resources, such as memory, for the VM. The
VMCx is configured by the VMM, which is running a vCPU for each CPU of the virtual
machine. To hold the VMCx data, a vCPU requires a bigger vCPU state save area than
for a normal vCPU. Resuming into the virtual machine is done through the kernel, which
copies and sanity checks the VMCx and calls into the virtual machine. The exit from the
virtual machine goes through the kernel back to the VMM. Depending on the state of the
event delivery within the vCPU, the VMM is either entered through vCPU’s entry or when
the vCPU-resume call returns.

On Intel processors, when using nested paging, the page table for VMs uses the Extended
Page Table format (EPT) [Cor14] which is different from the standard process page table
format. For that reason a VM needs a different type of address space and cannot use a
standard L4::Task for holding a VM’s page table. Instead it has to use an L4::Vm which is
derived from L4::Task and behaves in the same way but uses the EPT format.

Recent versions of the ARM architecture also include support for virtualization [Lim14].
On ARM, the CPU-based virtualization functionality has been integrated differently than
on x86, for example, the guest VM configuration must be saved and restored register by
registers instead of being handled as a whole by a single instruction as on x86. For memory
virtualization ARM uses the same principle as x86, providing nested page-tables for VMs.
Overall, the ARM virtualization extensions fit well into the vCPU model. As the format
of the nested page-table is the same for VMs and host applications, no specific L4::VM
object is required as on x86 and the standard L4::Task object works for both VMs and host
applications. For VMs an extended state save area has to be used to store the additional
VM state. The data layout of the area is defined by the host kernel.

Although ARM and x86 follow different approaches for CPU virtualization, both virtualiza-
tion architectures can be made available through the vCPU interface. I thus believe that
hardware-assisted virtualization functionality on other architectures can be integrated in
the same way.

3.3.3 Conclusion

Concluding, the vCPU interface provides an execution model with asynchronous event
delivery for user-level programs on L4. It is generic to support any guest operating system,
including multi-processor configurations, and multiple hardware architectures. Compared
to other virtualization solutions, such as DISCO [BDR97] and Xen [Bar+03], the vCPU
model integrates and naturally extends an existing system, allowing to use system services
in virtualization components as well as using virtualization functionality in microkernel-
based applications. As an example, the vCPU mechanism is used to implement redundant
multi-threading for replication-based fault tolerance [Döb14].



3.4. IMPLEMENTING VIRTUAL CPUS 61

3.4 Implementing Virtual CPUs

Previously I described the requirements for a generic virtualization interface that can both
handle paravirtualization and hardware-assisted full virtualization. In the following, I will
provide details on the implementation of this interface and the virtualization functionality
in the Fiasco.OC microkernel. The following has also been published in [LWP10]. I will
start with the para-virtualization interface and add the interface for hardware-assisted
virtualization in a second step.

The base for the para-virtualization interface is the virtual CPU (vCPU) that executes
the code of a guest. A virtual machine can consist of multiple vCPUs, building a virtual
multi-processing system.

As described in the previous section, the following five distinct features are required to
implement vCPUs:

• An event delivery enable/disable flag.

• A state save area.

• One or more entry points.

• Support for messages.

• Address space switching.

Threads are being used to execute code and are scheduled by the host kernel. The same is
required for vCPUs and thus threads are the basis for implementing the vCPU functionality
in the host kernel. A thread is promoted to a vCPU by adding configuration settings, such
as an entry point and the location of the state save area. Implementation-wise the first
choice to make is whether threads shall be replaced by vCPUs altogether. Technically this is
possible as vCPUs offer thread semantics with disabled event delivery. However, vCPUs also
require more memory resources for the state save area, which can be up to a whole page in
the current implementation for hardware-assisted virtualization. However, most threads do
not need any state save area. Thus normal threads are preserved and remain available.

The next choice to make is when a vCPU is created. Principally, two options exist. One is
that the system offers a way to create a thread and similar but separate function to create a
vCPU. The other choice is to add vCPU-functionality to a thread at any later point. The
first option looks simpler to implement. However, implementation-wise it is not required to
know whether a thread will eventually become a vCPU. Creating a thread is independent
of promoting an existing thread to a vCPU and can thus be done in two separate steps.
Further, knowing beforehand whether a thread shall also be a vCPU possibly requires this
knowledge in the loader of the application because this loader is creating the first thread
of the application. For reasons of usage flexibility and additional memory requirements for
vCPUs, any thread can be promoted to a vCPU at any later point, saving system resources.

State Save Area One of the features required for vCPUs is the state save area. In this
memory area the kernel stores the state of the vCPU prior to branching to an entry point.
The handler that is called by the entry point in the guest then uses this state to handle the
entry. The state consists of a reasonable set of CPU registers and the state can be modified
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by the handler to influence the execution of the vCPU. When finishing the handler with a
resume operation, the contents of the state save area are loaded into the physical processor
and the vCPU continues execution.

Referring to a physical CPU, the state save area is either a kernel stack or banked registers
and only a minimum of state is saved. Most of the state is kept in the CPU registers and
the handler is responsible for saving this live state to an appropriate place, if required at
all for the functionality of the handler. A similar approach of only saving a minimal set
could be taken by the vCPU functionality. However, the host kernel is required to save the
whole register state of a vCPU when entering the host kernel as only a minimal set of CPU
registers is not sufficient to run the host kernel. Therefore the saved state is stored into the
state save area right away, containing all general purpose CPU registers and flag values,
instead of re-loading them into the CPU and leaving them for the user handler to save them
again.

The state save area itself must be a memory area, which is shared between the kernel and
the user. Pushing the state to save onto the stack of the user’s handler would be a natural
approach, however, the host kernel shall not access user memory as it can cause page faults
when accessing it. Any effort in handling this situation will be avoided when using memory
with the same characteristics as the UTCBs. Alternative ways of accessing the state, for
example, using a system call, would add additional latency because that system call is
likely to be required on every entry and resume operation. Also, such a system call would
exchange data with the kernel using the UTCB, which in turn leads to the conclusion that
the kernel can store the saved state directly into it before calling the entry point. However,
using the vCPU’s UTCB for this state is not possible as the vCPU may also receive IPC
messages. The IPC messages will place their message contents into the vCPU’s UTCB which
is therefore not available as a state save area.

As the state save area needs to be accessed by both the kernel and the user, in the same way
as the UTCBs, the memory for the state save area is created in the same way as UTCBs.
With the introduction of vCPUs, the memory used for UTCBs and the state save areas
has been renamed to the more generic name kernel-user memory. Kernel-user memory is
allocated to a task through the L4::Task interface.

Entry Point The entry point designates a function within the guest code which is used
by the host kernel to branch the execution of the vCPU to whenever an event shall be
delivered to the vCPU. Native CPUs typically have multiple entry points, for example,
called interrupt vectors. However, in a software approach, a single entry point turned out to
be sufficient. The address of the entry point is stored in a configuration area of the state
save area. The single handler can then determine the cause for the exception by inspecting
architecture-specific state.

Event Delivery Flag The event delivery flag indicates whether an entry into the vCPU
through an entry point is allowed. The so-called interrupt flag is the corresponding flag
in physical CPUs. The flag is required in order to implement vCPU-local critical sections.
For example, upon entry through an entry point, the state save area contains the previous
state of the vCPU. Any consecutive entry to the vCPU has to be prevented until the state
has been saved elsewhere and can be discarded from the state save area. For that reason
the kernel is disabling the event delivery flag upon entry. The guest operating system can
enable event delivery again at any point in time. The event delivery state can also be set in
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a vCPU resume operation.

Operating systems use interrupt disable and enable operations to implement CPU-local
atomic operations. On physical CPUs this is a fast operation and is thus used frequently
in operating systems. That means for the vCPU that the manipulation of the entry flag
must perform equally well. For that reason the flag is located in the state save area to be
manipulated with memory writes only and without interacting with the host kernel. An
alternative approach would be to use a system call to set the entry flag state of the vCPU in
the host kernel, but that comes with an unacceptable performance penalty. However, a benefit
of the system-call approach is the involvement of the host kernel when enabling interrupts.
In the case an event was received while event delivery was disabled, and the event is still
pending when event delivery is enabled again, the host kernel could immediately branch to
the entry point. When the event delivery flag is just in memory, without involvement of the
host kernel, the host kernel does not know when event delivery is enabled again and thus
cannot branch the vCPU to the entry point. For that reason, the state save area also hosts
a pending flag where the host kernel flags any pending event. Thus, when vCPU enables
event delivery again, it has to check the pending flag, and if it is set, poll any pending event
by issuing a message receive operation.

vCPU Attributes The state save area does not only contain the entry and pending flags
but also additional flags that control whether a vCPU can be branched to the entry point.
The event disable/enable flag is responsible for IPC and IRQ messages. Entry through the
vCPU entry point is additionally available and separately controllable for page-faults and
exceptions. In the same way as L4 threads, any vCPU has a pager and exception handler to
which page faults and exceptions are forwarded. For vCPUs, the page-fault and exception
flags allow to configure whether the vCPU itself will handle page faults and exceptions or
those will be forwarded to the appropriate handler thread. This allows to setup a vCPU as
required by the use case.

The state of the Floating-Point Unit (FPU) can also be controlled through a state flag,
allowing to share the FPU between the vCPU kernel mode and the user-mode, and providing
the possibility to implement FPU switching in the same way as native operating systems do.
With an enabled FPU flag, the host kernel will not switch the FPU contents when switching
to a user process but leave the FPU as setup by the guest kernel. This way the guest kernel
can handle the FPU state of its user processes.

The paravirtualization of operating systems with user processes, such as Linux, requires to
use address spaces provided by the host to isolate guest user processes among each other and
the virtualized operating system kernel. The vCPU mechanism supports that by allowing to
specify a task in which execution shall be resumed. The user-mode flag in the state save
area is used to indicate that the execution shall switch to the currently used user task and
allows to reuse the last provided task capability, providing improved performance as no
capability look-up needs to be performed by the host kernel. Upon an entry the user-mode
flag indicates whether the saved state is from a user-mode execution or from within the task
running the kernel code. The stack pointer stored in the state save area is only used when
transitioning from user to kernel vCPU mode. When entering from vCPU kernel mode, the
stack pointer is unchanged. This behavior is in line with the behavior of native CPUs.



64 CHAPTER 3. GENERIC VIRTUALIZATION

3.4.1 Common vCPU Functionality

Common functionality of a vCPU that is required in any or most of the guest operat-
ing systems is gathered in a library libvcpu. Performance critical functionality is thereby
implemented in header files so that it can be fully inlined by the guest code.

The following listing shows the most used functions of the library.

1 void
2 l4vcpu_irq_disable(l4_vcpu_state_t *vcpu);
3
4 l4vcpu_irq_state_t
5 l4vcpu_irq_disable_save(l4_vcpu_state_t *vcpu);
6
7 void
8 l4vcpu_irq_enable(l4_vcpu_state_t *vcpu, l4_utcb_t *utcb,
9 l4vcpu_event_hndl_t do_event_work_cb,

10 l4vcpu_setup_ipc_t setup_ipc);
11
12 void
13 l4vcpu_irq_restore(l4_vcpu_state_t *vcpu, l4vcpu_irq_state_t s,
14 l4_utcb_t *utcb,
15 l4vcpu_event_hndl_t do_event_work_cb,
16 l4vcpu_setup_ipc_t setup_ipc);

Most interesting in the shown listing are the enable and restore functions because they
provide the functionality for the aforementioned requirement of checking the pending flag
after enabling event delivery again. The caller of the function must provide a function call-
back that will be invoked whenever an event is pending. The interface of the enable/restore
functions is designed in a way that the callback is an integral part of the function and cannot
be forgotten. The setup_ipc function is provided to do any preparatory work before calling
the event reception function or before opening event delivery.

Guest operating systems must also have the chance to idle, that is to stop execution and
wait for incoming interrupts. CPUs offer specific instructions to stop execution, such as hlt
on the x86 architecture. Those instructions can only be called in privileged processor modes.
In virtualized environments, the guest should inform the host that it is idling so that the
host can schedule other work in the system, or idle itself.

The libvcpu offers a corresponding l4vcpu_wait_for_event() function that blocks the
vCPU and waits for any incoming IPC message. It shall be used as an replacement for the
idle function in the guest operating system.

1 void
2 l4vcpu_wait_for_event(l4_vcpu_state_t *vcpu, l4_utcb_t *utcb,
3 l4vcpu_event_hndl_t do_event_work_cb,
4 l4vcpu_setup_ipc_t setup_ipc);

As with the l4vcpu_irq_enable() and l4vcpu_irq_restore() functions, l4vcpu_wait_-
for_event() takes the necessary call-backs to setup and handle incoming events.
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3.4.2 User-Mode Virtualization Specifics

L4Linux virtualizes the Linux kernel and runs it on an L4-based host system as a user-
level application. Due to the design of hardware only supporting two privilege levels at
most in general, L4Linux has to use a configuration where the Linux kernel and its user-
level application run both unprivileged on the host. To maintain binary compatibility for
applications to the native Linux version, L4Linux requires host operating system features
that are normally not needed or required for normal applications. In the following I will
explain what is required for the x86 and ARM architectures.

x86 Architecture

On the x86-32 and x86-64 architectures, Thread Local Storage (TLS) is typically implemented
by using segment registers. Those registers point to a table defining segments of memory
together with access rights. Setting a table index in the segment register is possible from
user-level, however, defining the contents of the table, that is the memory ranges, can only
be done by privileged mode and thus in the host kernel. To be able to provide the necessary
segments, for example for TLS or Linux’s modify_ldt() system call, the host kernel needs
to offer the option to set entries in those tables. Fiasco.OC offers a system call to define
user-accessible ranges of memory on those tables. There are two different types of tables:
the Local Descriptor Table (LDT) and the Global Descriptor Table (GDT). The LDT is
local to the task and thus needs to be switched on task changes. The GDT is per CPU and
three entries of the GDT are available for each thread to use. The entries are set to the
thread-specific value on each thread switch. TLS is implemented using the GDT.

Fiasco.OC uses TLS to make the UTCB address available to threads through a segment
register. However, in virtualization setups this segment register may be used by the guest
code so that it either cannot be used by L4 code or must be multiplexed. In any case
Fiasco.OC can only initialize the segment register with the UTCB address upon thread
creation and has to save and restore it for further thread switches instead of just resetting
it. L4Re handles this by providing a wrapper implementation of the l4_utcb() function for
getting the UTCB address that can be overwritten by programs.

L4Linux makes use of that wrapper as Linux is using the segment registers itself. The
alternative way of getting ones UTCB address in L4Linux is to put in the TCB of Linux’s
threads. The TCB is embedded in the stack memory which follows size and alignment rules
so that the TCB can be found using appropriate masking on the stack pointer.

ARM Architecture

The evolution of the ARM architecture brought changes to the way low-level functionality
must be implemented in user-space programs. For example, with the introduction of multi-
processor systems, going from architecture version v5 to v6, new facilities to implement
atomic operations and thread local storage were introduced. To keep applications independent
and binary compatible across different architecture variants, the Linux kernel provides a set
of functions that shall be called by user-programs. Those functions live in the kernel space
area of the virtual memory and implement functions such as compare-and-exchange with
the hardware functionality provided and needed by the hardware. This way a compiled user
program works on any sub-architecture as the Linux kernel provides the right implementation
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of the function. These functions are not implemented by system calls, which would be an
alternative, as they are used frequently in programs and must have low overhead.

The following list shows the functions that are provided by the Linux kernel.

• cmpxchg and cmpxchg64: Atomically compare and exchange function on 4 and 8
bytes of memory. Provided by the kernel as the v5 and early versions of the v6 sub-
architectures do not provide means to implement this functionality without the help
of the kernel.

• memory_barrier: Required for SMP systems, an empty function on uni-processor
systems.

• get_tls: Get the thread local storage (TLS) register. For v5, the kernel uses a single
and global memory location to store the TLS value of the current thread. This is
possible as v5 only supports single processor systems. With v6 and upwards the CPU
offers dedicated TLS registers per CPU which allows a thread to get the TLS register
value without kernel interaction.

For L4Linux this poses a problem as the designated address range for those functions
(0xffff0f60 - 0xffff0fff) is defined by the ABI but is not available for L4Linux as this
range of the address space is occupied by the host kernel. Linux programs have those
addresses hard-coded in their binaries. Binary compatibility can be retained by emulating
access to those functions in L4Linux, however, this significantly slows down applications as
handling the page-fault is much more expensive than a function call.

The following possibilities exist to improve the situation:

• The host kernel implements the same set of functions with the same semantics as
Linux. This solution provides the same execution speed as the native implementation,
however, it also has drawbacks. The interface is provided for a particular user program
or VM such as L4Linux and may collide with other implementations. Further, it would
be necessary that the value the get_tls function returns is known to the host kernel
and it needs to be updated for every user thread switch that L4Linux does. The update
can be included in the corresponding user thread activation function to avoid any
extra kernel system call.
Another possibility could be to allow programs to install an arbitrary page in the
kernel’s address space to let the programs define the functions. However, this is not
possible as the ARM processor uses the same page to host its entry vectors which
are located at 0xffff0000. Giving the user the ability to define code for the Linux
functions would require copying code to that location on thread or task switches in
the host kernel to protect the kernels own entry code.

• If the source of the user program is available, especially the C library, it can be
modified to use an address range provided by the L4Linux kernel. L4Linux offers the
same kernel functions and maps those to the address space of each user program. No
other change is required besides changing the base address of the function area.

• If recompilation is not possible, code can also be patched at runtime. Whenever a
page-fault to the original function area is detected, the corresponding caller is modified
to use the proper address provided by L4Linux. Successive calls of a patched function
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will not cause a page-fault anymore but use the L4Linux address right away. The
downside of this approach is that finding the right place to modify is not always
(easily) possible as the user code might load the address into a register and jump to
a different code part to actually jump to the kernel-provided function. At the time
of the page-fault, the L4Linux kernel might not be able to find the place where the
address is loaded into the register without scanning the surrounding user code and a
proper knowledge of the ARM instruction flow. Furthermore, user code that performs
integrity checks on its code, for example, for security reasons, will find differences to
the original.

In practice, runtime patching proved to be simple for programs using glibc as this C library is
using a sequence of inline assembly instructions in its source code to call the kernel-provided
functions. Consequently the calling code is always the same and can be easily detected
and patched. Linux distributions, such as Debian GNU/Linux, will thus be patched at
runtime and run, except for patching the first invocation, without slow trap-and-emulate
mechanisms.

When patching user code, the new code needs to jump to the address supplied by L4Linux
instead to the original location at 0xffff0f60. The choice of that address is important. The
new instructions including its target jump address must be encodable with the same amount
or less instructions as the original code. The ARM instruction set allows to encode values
within an instruction, optionally with an additional shift value, allowing to also encode big
values within the instructions itself, without requiring an extra memory load instruction. As
the original Linux kernel code is located in the upper part of the virtual address space, a
big 32-bit value is required. With this technique a call to addresses in the range 0xffff0000
to 0xffff00ff, the range of the kernel provided functionality, can be constructed with a few
ARM instructions without any memory reference. The following code is used to get the TLS
value and represents a typical example:

0: mvn r0, #0xf000 ; r0 <= 0xffff0fff
4: mov lr, pc ; return address
8: sub pc, r0, #0x1f ; jump to 0xffff0fe0

The first instruction loads the value 0xffff0fff into the register r0 using a negative move
instruction. The second instruction sets the link register for the function to be called to
return to after the jump and the third instruction finally jumps to 0xffff0fe0 by substracting
31 from r0 and setting the result as the new program counter.

The code which replaces the original code needs thus to fit into these three instructions. As
the address space available to L4Linux is limited to 3GB (0xc0000000), the provided code has
to be placed below that address limit and needs to be encodable within the available space
of the original instructions. A straight-forward approach is to limit the available address
space of Linux programs below the 3GB limit required by the underlying kernel and use that
area to provide the Linux code. This allows to map the code to a page at virtual address
0xbffff000. The code to be patched in the applications looks as follows:

0: mov r0, #0xc0000000 ; r0 <= 0xc0000000
4: mov lr, pc ; return address
8: sub pc, r0, #0x20 ; jump to 0xbfffffe0
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This code jumps to the same offset (0xfe0) within the provided page at 0xbffff000, allowing
to use the same code as in the original implementation. An analogous implementation is
used for the other kernel-provided functions.

Other C libraries, such as the one used in the Android operating system, may not allow to
do runtime patching. The Android C library gives the compiler better means to integrate
the calling of the kernel-provided functions. Additionally, Android prefers to circumvent
the ABI provided by the Linux kernel and use sub-architecture-specific code directly to
avoid the additional indirection. Generally, such setups can always use the trap-and-emulate
approach, or recompile to adapt to the changed settings.

A third option is to provide the environment which the user programs expect. An example
is again providing TLS. Starting with version v6 the ARM architecture provides dedicated
TLS registers and Linux uses the TPIDRURO register for TLS. This register can only be
written by the host kernel and thus requires an interface for setting the value of the registers
for user programs such as L4Linux. The host kernel also has to load the thread’s value on
each thread switch. With support for the TPIDRURO register the aforementioned Android
system, which avoids the get_tls function provided by Linux, can run unmodified with
regard to TLS.

Coming back to the patching approach, we can also avoid to call the get_tls function by
directly patching the original code with the appropriate load instruction. As this is only a
single instruction, there are not space constraints:

0: mrc 15, 0, r0, cr13, cr0, {2} ; r0 <= TPIDRURO
4: nop
8: nop

Overall, all programs can be at least handled via trap-and-emulate and with multiplexing
of registers as those accesses do not trap. In specific cases, such as when programs use the
glibc library, runtime patching avoids the requirement to use the costly trap-and-emulate
mechanism.

To suggest improvements, Linux on the ARM architecture should announce the base address
for the kernel functionality, for example via the aux vectors as done on the x86 architecture.
This way L4Linux can use another memory area than native Linux. User programs should
also keep to the ABI defined by Linux to be able run unmodified binaries without substantial
effort. However, both suggestions come with a minimal performance penalty. Non-ABI
functionality should thus only be used when the source of the applications is also available
for a possible recompilation by the end-user.

3.4.3 Integrating vCPUs into the L4 System

A virtual machine also needs to communicate with other host system components, for example,
with memory managers and external device drivers. Using those services is accomplished by
invoking corresponding capabilities and thus by doing L4 IPC. IPC within a vCPU works in
the same way as in non-vCPU mode and allows to reuse existing code. This is especially
important for using libraries that use IPC, for example, client libraries that implement
communication with a server.

However, attention must be paid to the handling of the UTCB that is required for storing
and retrieving IPC payload data. While event delivery is enabled in the vCPU, asynchronous
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notifications can be received anytime, including IPC messages that deliver payload data in
the UTCB. Thus, for preparing an IPC message, a vCPU must disable interrupt delivery
before filling the UTCB and only open them again after retrieving all data from the UTCB
after receiving an answer.

As an example, in L4Linux, the wrapping code looks like this:

1 unsigned long flags;
2 local_irq_save(flags);
3 ... // l4_ipc-calls-with-utcb-handling, L4 library calls
4 local_irq_restore(flags);

For easier use, a set of function wrappers is available that wrap the above code sequence and
avoids writing repetitive code sequences. Still developers need to remember that disabling
virtual interrupts also means that the vCPU cannot receive any event during this time
which in turn attributes to the latency of L4Linux. The code sequences under lock should
therefore be minimized to one call a time.

3.5 Implementing Full Virtualization

Modern CPUs provide built-in support for virtualization to run unmodified guest operating
systems, reducing the complexity for the VMM for running unmodified guests and also
providing a more accurate behavior of the virtual platform. However, running unmodified
guests requires that the VMM emulates a real hardware platform sufficiently well. Considering
the x86 platform, this includes device models of an interrupt controller, keyboard, mouse,
UART, graphics, to name the most basic ones only. Additionally, x86-based systems require
a BIOS to boot and launch with running 16-bit code that needs to be supported by the
VMM. Later versions of the x86-based virtualization hardware add more features to handle
virtualization in hardware, however, the need for a VMM remains.

The hardware virtualization functionality has to be used from the privileged host processor
mode, and thus requires that the host kernel is extended to support the hardware virtual-
ization features. However, not all virtualization functionality, such as device emulation, is
required to be in the kernel. The virtualization functionality is therefore split into two parts:

1. The host kernel is required to run virtualization functionality that can only be executed
in privileged host mode and all functionality required for isolation with regards to
virtualization in the system.

2. The remaining parts that can be implemented in a user-level component. Implementing
as much functionality as possible outside of the kernel reduces the size of the trusted
computing base.

We distinguish between the two parts and call a host-kernel that supports virtualization a
hypervisor and the user-level component virtual machine monitor (VMM).

The VMM has to provide a virtual platform the guest operating system is running in. The
VMM needs provide resources to the VM, such as memory and CPU, as well as provide
virtual or pass-through devices. Virtual devices can be emulations of existing physical devices
so that existing device drivers in the guest can be used or virtual devices that are specifically
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designed for virtualization environments. The latter provide a better fit for virtualization
environments as they avoid emulation and can use the best possible and best performing
interface between the VM and VMM. In the following, I will provide an overview on three
different approaches to virtualization that have been implemented on Fiasco.OC and can be
used to run guest operating systems.

3.5.1 Fiasco.OC’s Full Virtualization Interface

Using the hardware virtualization features of modern CPUs in a host operating system
requires the execution of privileged processor instructions. Thus the host kernel needs to
explicitly support those virtualization features. Fiasco.OC has been extended [Pet+09] to
support both AMD’s [Dev11] and Intel’s [Cor14] variants of x86-based virtualization.

Both virtualization variants implement the same model for running guest operating systems,
however, differ substantially in their implementation so that the VMM component must be
aware of the differences. Both virtualization extensions duplicate x86’s four privilege levels
and split them into root mode and non-root mode. A hypervisor is running in root mode and
the CPU provides the functionality to switch into non-root mode. Any event that cannot be
handled by the guest operating system, or is configured to trap out of the VM, transfers the
CPU back to root mode for the hypervisor to take control. During the transition between
the two modes the state of the CPU is saved to and loaded from the corresponding VMCx.

As the size of the VMCx is bigger than the standard vCPU state, a whole page of kernel-user
memory must be provided when a thread is promoted to extended vCPU mode. ’Extended’
indicates that the hardware virtualization feature shall be used for this vCPU. From this
point on, the VMM can use the L4::Thread::vm_resume operation to switch to the VM.
Depending on the state of the event delivery flag of the vCPU, VM exits to the VMM
will either continue in the vCPU’s entry point (event delivery allowed) or the vm_resume
operation call will return (event delivery disabled). The availability of those two options
proved useful to support different execution models of VMMs.

The VMM is also responsible for handling the VMCx for each vCPU. Fiasco.OC will perform
sanity and security checks so that a VMM cannot gain more system privileges or harm
the host kernel or other user-level components. The format of the VMCB is defined as
a memory layout and thus the vCPU interface uses this format as described in AMD’s
reference manual. In contrast to AMD, Intel does explicitly not define the memory layout of
the VMCS but defines field numbers to be used with the vmwrite and vmread instructions.
Both instructions are only available in privileged mode and thus cannot be used by the
VMM. For that reason Fiasco.OC uses a memory layout for the VMCx that derives the
offsets into the memory area from the field numbers used for vmread and vmwrite.
A VMM is also required to provide memory to a VM. The virtualization features of the CPUs
provide the feature of nested paging for that purpose (see 2.4.1). With nested paging, the
CPU first translates virtual addresses within the VM to so-called guest physical addresses,
followed by a translation using the VM’s page-table to host physical addresses. This outer
page-table is managed by the host. The concept of nested page tables maps very well to
L4-based systems. Principally, an L4::Task could be used for the outer page table. As already
outlined previously, on the x86 architecture, the page table formats are different so that the
derived L4::Vm is necessary. Using the usual L4 operations map and unmap any available
memory can be given to the VM and withdrawn from it.
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Differences between Paravirtualization and Hardware-Assisted Virtualization
No major performance differences are to be expected when comparing systems with and
without hardware-assisted virtualization. Both virtualization methods use the vCPU mecha-
nism so that they operate similarly. However, larger effort is required for context switching
as for hardware-assisted virtualization the host kernel is required to save and restore more
state (VMCx) than for standard vCPUs, which induces additional overhead. For guests
that use an MMU nested paging is a significant performance improvement that cannot be
accomplished with pure software-based solutions such as used with paravirtualization [SK10].

Conclusion With the described extensions implemented in Fiasco.OC it is now possible to
implement VMMs that are required to let VMs run. The design allows to run different VMMs
on the system as already depicted previously in Figure 2.2. Different VMM implementations
can cover different use cases and run simultaneously on the same system. For example, a
feature-rich VMM can support a wide variety of guests but also comes with a large code
size and complexity. On the contrary, a specialized VMM for a specific guest setup can
be small and of low complexity and thus be a better fit for security and latency-conscious
environments.

The following three VMMs have been developed or been adapted to run on Fiasco.OC:
L4/KVM, Karma and the Palacios VMM.

3.5.2 L4/KVM

L4/KVM [Pet+09] uses L4Linux with KVM [Kiv+07] to run unmodified guests in virtual
machines. KVM is a Linux module that implements hypervisor functionality using hardware-
assisted virtualization features of the system. For using KVM in L4Linux, KVM has been
adapted to use vCPU functionality instead of privileged instructions to provide memory to
VMs as well as to run VMs.

Using L4Linux with KVM provides a feature-rich VMM that supports many guests, including
Microsoft Windows, however, also resorts to a large and complex code base that is not
suited for security-conscious nor latency-critical use cases.

3.5.3 The Karma VMM

The Karma VMM takes a different approach to virtualization on the x86 architecture.
Instead of emulating hardware devices and providing the functionality solely required for
booting an x86-based guest system, Karma slightly modifies the guest operating system
kernel and omits the boot path of an x86-based system altogether. Connection to devices in
the host is accomplished by virtualization-aware drivers in the guest. The approach of the
Karma VMM significantly reduces the VMM’s software complexity required for virtualizing
operating systems.

The Karma VMM has been implemented by Steffen Liebergeld during his Diploma the-
sis [Lie10; LPL10]. By design, the Karma VMM requires adapted guest systems but can use
this as an advantage for a low-complexity VMM that is well suited for applications that
demand security as well as latency properties.
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3.5.4 Palacios VMM

Palacios [LD] is a VMM library that is built for being linked to kernels and provide the system
with VMM capabilities. In its original use case it is linked to the Kitten kernel [Lan+il], an
operating system kernel used in high-performance computing environments.

The Palacios library has open ends that need to be filled with functionality by the user of the
library. For example, Palacios needs to allocate memory and requires locking functions that
must be provided. Because Palacios is a library it looked promising to be used for a VMM on
top of L4Re and Fiasco.OC. As Palacios is targeted to run in kernel mode, it does not offer
hooks for functionality required when run in user mode. Such hooks include functionality to
modify memory mappings of the guest or use the virtualization instructions of the processor
as those can be directly manipulated and called when run in kernel mode. Hooks for halting
a vCPU, resuming a vCPU and handling guest memory have been added to Palacios and
been implemented by the VMM using appropriate functionality of Fiasco.OC and L4Re.

Linking Palacios to a user-level VMM program provided no major difficulties and was
of low engineering effort. For the execution model of Palacios it proved useful that the
vCPU-resume operation can also return from its call instead of branching to the vCPU’s
entry point. As the resuming the VM is implemented by a function that is used by the
library, the function needs to return to the library. Continuing execution at the entry point
would require additional effort to return to calling function that can be avoided here.

Summary Overall, with the implementation of three different types of VMMs, Fiasco.OC’s
virtualization interface shows to be versatile enough to cover different requirements and
demands.

3.6 Guest Operating Systems

Using vCPUs, I have virtualized two commonly used operating systems. The first is FreeR-
TOS, a classical real-time operating systems which is not using privilege separation. The
second is Linux, a popular general-purpose operating system that uses hardware provided
isolation mechanisms for process isolation. Linux is also increasingly used for real-time
workloads.

The paravirtualization technique is generic and thus applicable on any hardware architecture
with minor architecture-specific adaptions. Its abstraction level is also higher than that of
native hardware which gives advantages regarding support of target architectures. I will
evaluate FreeRTOS and Linux on both the x86 and ARM architectures. For FreeRTOS
the higher abstraction level yields to a particular advantage which I will describe in the
following section on FreeRTOS.

3.6.1 vCPU-based Paravirtualization of FreeRTOS

FreeRTOS is a classical RTOS which does not make use of multiple privileges and thus can
run on CPUs without an MMU. On a system with an MMU, FreeRTOS will not make use
of it. However, FreeRTOS can make use of ARM’s memory protection unit (MPU) that
offers to guard areas of memory from access and allows to guard the FreeRTOS kernel from
access by user code.
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FreeRTOS is highly configurable and supports multiple tasks with different priorities. The
scheduler can be called preemptively via a timer interrupt or cooperatively and selects
among runnable tasks with the highest priority. Interrupt handlers are available to service
interrupts.

Typically, the FreeRTOS kernel and the application tasks are linked together, building a
single binary that is loaded onto the target. For paravirtualization that means that this single
binary is executed in vCPU’s kernel-mode. The adaptions required for paravirtualization
are the following:

• In native FreeRTOS critical sections are guarded by disabling and enabling interrupts
to avoid preemption. For running in a vCPU this is replaced with disabling and
enabling event delivery to the vCPU.

• A timer is required for periodically invoking FreeRTOS’s scheduler. For the paravirtu-
alized FreeRTOS the timer is emulated using a separate host thread that periodically
triggers a software interrupt that is delivered to the vCPU executing the FreeRTOS
code. Alternatively, a hardware timer can be used to trigger the scheduler of FreeRTOS.

The vCPU and the timer thread must be scheduled in the host system. Assuming a fixed-
priority scheduling in the host, both the vCPU and the timer thread have a host priority. To
allow the timer thread to preempt the vCPU, the timer thread is given a higher host priority
than the vCPU thread. The priorities of the FreeRTOS system must also be considered
for the whole system to define its responsiveness relative to other subsystems in the host
system.

The required vCPU-adaptions are, with very few exceptions, hardware independent and thus
the paravirtualized version of FreeRTOS is running on ARM and x86 platforms whereas the
original FreeRTOS is not available for x86. As the specific architecture adaption is provided
by the host system, guest operating systems do not need to provide architecture-specific
code and can exploit the host system to provide a wider range of architectures and systems.

As FreeRTOS supports task protection using MPUs, it is desirable to support the same
features in the paravirtualized variant. Separate host tasks can be used to run tasks with a
specific view on the address space. Those address spaces will only contain those parts that
the FreeRTOS task shall be able to access and the task switching functionality of vCPUs
will be used.

A difference between the MPU hardware and page tables is the size of the protection
granularity those mechanisms support. The minimal size of ARM’s page table is one kilobyte,
while the smallest page size on Fiasco.OC system is four kilobytes. The smallest region
supported by MPUs is 32 bytes. Thus when running the paravirtualized FreeRTOS system
the alignment of the FreeRTOS regions must be adapted to the supported page sizes of the
host system.

3.6.2 vCPU-based L4Linux

Linux, as a full-fledged operating system kernel, uses all features of the vCPU model to be
paravirtualized. In the following I will describe the differences between the thread-based
variant presented in Sections 2.7.2 and 3.2 and the vCPU-based version.
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The thread-based L4Linux uses multiple threads internally to implement a logical CPU. Syn-
chronization of interrupt state among the threads is done by using a central synchronization
service. Threads are blocked entering a critical section when another thread already has
virtual interrupts disabled by sending an IPC messages to the synchronization service. The
service will unblock the thread when the other thread leaves the critical section. With the
vCPU-based variant, this handling becomes much simpler. First, multiple threads to build a
logical CPU are not required anymore due to the asynchronous entry possibility to handle
interrupts and other events. Secondly, synchronization is achieved by manipulating the vCPU
event disable flag that is directly mapped to the corresponding low-level Linux operations.
Consequently, a central synchronization service is not required anymore as disabling event
delivery to the vCPU will automatically prevent any interruption of the vCPU execution.

The handling of the user-level processes is also significantly changed between the two variants.
In the thread-based version, each user-level thread is mapped to its own L4 thread and
exceptions triggered by a user-level thread are sent to the Linux kernel via L4 exception IPC,
generated by the host kernel. In the vCPU-model, the vCPU transitions between the kernel
task and the user tasks. Thus only a single vCPU is required for any number of processes
used in L4Linux, saving host resources compared to the thread-based model. The handling of
address spaces itself is not changed. Both variants require one L4 task per user-level process
to provide process isolation.

Adding support for virtual multi-processor support is straight-forward. Multiple vCPUs are
created, one for each virtual CPU, running the Linux kernel code and handling user-level
processes in the same way as on native hardware. The L4-specific work in L4Linux must be
multi-processing aware and handle concurrent access to shared resources. One example of
such a code path is the handling of page mappings to user processes. As L4Linux manages
its own shadow page table, upon answering a page fault, L4Linux will need to look up the
page fault address and translate it to its internal memory address. That address is then
mapped to the user process when resuming its execution. In this case the look-up and the
resume operation must not be interrupted so that the mapping does not become invalid
after the look-up and before the mapping has been finished. Otherwise, the contents of
the source memory page could have been changed already, for example, due to swapping.
Further, unmap operations on other CPUs, to perform rights downgrades on memory pages,
must make sure that map operations on any CPU are done before doing the unmap. This
can be achieved by performing a remote procedure call on all other relevant CPUs, so that
when the call returns, all map code paths have been left. Any new map operation needs to
look up the source memory address again, which could have since been updated.

Summarized, the vCPU approach significantly simplifies L4Linux compared to the previous
thread-model. The vCPU-model also made it possible to support a virtual multi-processor
L4Linux with only very few adaptions.

3.7 Responsiveness of VM Systems

In the following I will qualitatively evaluate the VM architectures regarding their ability
to provide a continuous and timely execution of their guest systems. This is an important
property for two reasons:

• VMs must be able to run periodically. Guest operating systems commonly schedule
regular work, interact with devices or other external systems. To ensure proper
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operation the VM must be scheduled timely by the host whenever the VM requests
execution so that no communication with the external world times out because a guest
operating system did not react within a certain time frame. Delays until the VM is
actually required to be scheduled can be typically in the hundreds of milliseconds or
more without negative effects. Longer delays might trigger error or warning conditions
within the guest operating system due to abnormal timing and lead to misbehavior.

• When guest systems are handling timing critical events, the VM must be scheduled
according to the requirement of the event handling. Periodic execution of the VM is
not sufficient in this case as the process within the VM shall immediately. Colloquially
speaking, the VM, which is handling the event, must be scheduled as fast as possible.

Both reasons have in common that a VM must not be blocked from receiving events unduly
long, in either case for seconds or microseconds. Reasons that a VM cannot receive events
are:

• The VM is not scheduled.

• The VM is scheduled but the guest operating system has interrupts disabled.

• The guest operating system or the VMM are engaged in an L4 IPC operation or
system call.

The first reason is due to scheduling decisions in the host and we will cover a possible solution
in Chapter 4. The second reason is due to the internal handling of the guest operating
system and cannot be influenced by the VMM or host system. The third reason can be
influenced or avoided by obeying design rules which we will study in more detail.

3.7.1 Invoking Host Services and Communication

Virtual machines and VMMs need to invoke host services, for example, to allocate memory or
for input/output operations. Still the VM shall not block while invoking these services. Ideally,
this requires that all communication between the VM and VMM and other components
in the host system is asynchronous. The client, the VM or VMM, would put a request
into a shared memory region, notify the server and would in turn be notified when the
request has been handled so that the result can be retrieved from the shared memory. While
the request is in progress, the VM can continue to run and, for example, receive interrupt
messages. However, L4 systems dominantly use synchronous communication, predominantly
for simplicity in both the server and the client.

Besides communication between components on the system, VMs and VMMs also need to
issue system calls that are handled by the host kernel. System calls may require a fixed time
to execute the request while for others no upper bound can be specified. Still, those system
calls are implemented such that they allow the host kernel to be preemptive. Further, calls
to host kernel functionality might be handled by user-level proxies so that generally system
calls must also be treated as communication with other components. Calling other user-level
components must also consider the following:

• The communication partner, typically a server, might not be ready to receive any
message, for example, because it is handling another request. New requests will
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have to wait until the server has finished handling previous requests. Statements on
communication duration might be difficult to make depending on the service and its
potential clients.

• Priorities in the host system must be considered. Communicating with services that
have a lower host priority might be subject to priority inversion. Although timeslice
donation, temporarily elevating the receiver’s priority to handle the request, has been
addressed in the past, open issues, however, remain, especially with multi-processor
setups [SBK10].

To avoid blocking of the VM and VMM, the VMM must make sure that, when the guest
system runs, L4 IPC and system calls, called from its vCPUs, do not block for an unbound
amount of time. The following approaches can be taken to avoid blocking:

1. Sending IPC with zero timeouts can be used to avoid blocking if the receiver is
currently not ready to receive IPC. This way the sender can poll until the receiver is
ready to communicate and run the VM during polling tries. This method only prevents
blocking until the communication partner is ready to receive the message and does
not affect the duration of the IPC once the connection has been established.

2. Servers are implemented such that they can handle requests from multiple clients.
With the current interface of Fiasco.OC this communication pattern requires one
IPC-gate per client. Furthermore, each IPC-gate must be bound to a separate thread
as there can be only one (implicit) reply capability. In any case multiple concurrent
client requests require that the server prioritizes one client over other clients according
to a policy to provide better response times. Due to multi-threading in the server, the
server will also get more complex as data structure need to be locked and concurrent
execution needs to be considered.

3. The clients, such as the VMM, can use a worker thread to carry out the IPC and thus
implement asynchronous handling internally itself.

The option with the best applicability is option 3, as it works with any server interface
and regardless of the response behavior of the server. In any case asynchronous handling of
communication adds additional code and thus increases code complexity.

3.7.2 Device Emulation

For running guest systems, the VMM needs to emulate devices so that the guest can use its
standard hardware drivers. The interface between a device driver and its hardware device is
always built for asynchronous communication. The driver puts a request into the device
memory (shared memory between host and device) and receives notification via device
interrupts.

When designing interfaces for virtual hardware that is used between a guest operating system
and its VMM, the same principle must be followed. This allows the guest operating system
to stay responsive to events. Furthermore, the VMM also needs to follow this approach, as
already addressed in the previous section.
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3.7.3 Responsiveness in Paravirtualized VMs

Paravirtualized VMs need to follow the same rules as hardware virtualized VMs regarding
interfacing between the guest system and the VMM that implements the communication with
other host components. Additionally paravirtualized VMs also use functionality provided by
the host kernel, exposed via system calls, which do not follow the typical device pattern.

A typical example in paravirtualized guests is the required creation and destruction of host
tasks in the guest environment to work as an isolating container for guest processes. In their
native operation the creation and destruction of an address space are mainly operations
of memory allocation to get or free memory of process-related data structures such as the
page-table. Activating the page-table and thus making it the current one on the CPU is a
simple operation of writing a privileged system register. A paravirtualized guest cannot be
allowed to control the memory used for the page-table as this would circumvent the isolation
provided by the host system. Instead, the host must create, destroy, and activate page-tables.
To request that service from the host, the guest must call appropriate host functionality.
Remembering the latency requirement of the guest, calling this host functionality must not
exceed the guest’s latency demands.

Considering an L4 system, operations handling tasks might expose a call duration that is
not within the range of required latency and thus not acceptable for the guest. Consequently
the guest must call this functionality asynchronously to be able to receive events while
the call is being processed. However, it turned out that implementing asynchronous task
handling in L4Linux is more complex than initially envisioned. In the following I will walk
through a solution for implementing asynchronous host task handling in L4Linux [Lac12].

The critical operation in L4Linux is the destruction of a task as the host kernel needs to
not only free the memory for the page-tables used for the task but also any other resource
associated with it. Generally, this involves capabilities associated with the task as well as
memory and port I/O mappings that need to be removed not only in this task but also
in all tasks that have received mappings from the task to be destroyed. Furthermore, in
multi-processor setups the Fiasco.OC kernel uses Read-Copy Update (RCU) [Mck04] to
synchronize task destruction on multiple cores. RCU involves waiting periods until other
cores have gone through a quiescent state. In the case of L4Linux no memory and capabilities
have been granted to other tasks from user processes, which reduces the potential work to be
carried out by the host kernel. However, this does not alleviate the need for an asynchronous
task handling solution as the RCU handling remains.

The first approach to that problem is to create an additional host worker thread, as described
previously, called deletion-thread. This deletion-thread is performing the actual deletion of
the task in the host system. The vCPUs are queuing deletion requests into a work-queue, a
data structure available in Linux. The deletion-thread takes out requests from the queue and
handles them independently and asynchronously from the vCPUs. The host priority of the
deletion-thread is lower than the priorities of Linux’s vCPUs, so that those can keep to their
event latency requirements. However, establishing the deletion-thread and the work-queue is
just the first step. Due to the lower host priority of the deletion-thread, the vCPU must
pause to give the deletion-thread a chance to run and perform any task deletions. As the
vCPU is executing many Linux processes, the vCPU is never idling as long as any Linux
process is ready to run. New processes can be created, which in turn also requires the
creation of corresponding host tasks. As the deletion-thread cannot run, no host tasks are
deleted, leading to an out-of-resource situation for L4Linux, where no host task cannot be
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created anymore.

A solution to this problem might be to wait in the process deletion in the L4Linux kernel
until the deletion-thread has deleted the corresponding host task. While waiting, L4Linux is
able to receive incoming events and switch to a different context to handle them. However,
in the code path for process destruction in Linux, a process cannot sleep anymore as its
context is being destroyed. Thus it is not possible to suspend a context at that point.

Contrary to the process exit path, the creation path is able to sleep and thus to wait. This
is the point to give the deletion-thread a chance to run when the work-queue size indicates
that there are tasks to be deleted. With this approach new processes free the host resources
they need for creating new host tasks. An upper boundary for the number of tasks to be
deleted can be used to not let new processes stall unduly long.

However, one problem remains in this setup. The deletion-thread needs to be able to run,
however, the vCPU will not necessarily release the CPU on its own so that the deletion-
thread can run. Thus a process creation will wait on the deletion-thread as long as the
vCPU has any process running. For the purpose of suspending the vCPU I have added
a kernel-internal Linux process, called waiter that is woken up when host tasks shall be
deleted by the deletion-thread, and suspended again when the deletion-thread has done its
run. This waiter thread calls a host-specific halt instruction to suspend the execution of
the vCPU and thus give the deletion-thread a chance to run. However, although the waiter
suspends the vCPU, the vCPU must still be able to run any real-time process that might
be able to run. For that reason the waiter thread is assigned a Linux priority of -20 which
translates into the highest priority for any non-real-time Linux process. Consequently, a
real-time process must use a priority out of the real-time priority range provided by Linux.
Those can, for example, be set with the chrt program.

Another design choice for a short latency process deletion is to place the deletion-thread on
a host CPU that is not used by L4Linux, if such a host CPU is available and has enough
free capacity to not block the progress of the L4Linux. However, it is unlikely to leave
a free host CPU unused instead of using its capacity, for example, for the L4Linux. The
waiting in process creation also means that this operation can take considerable more time
than in native Linux. Consequently a program should not assume any timely execution of
process creation functions. As real-time programs are typically divided into a non-real-time
initialization phase and the actual real-time operation, and process creation is done in the
initialization phase, an enlarged process creation time shall not be an issue for real-time
programs.

Data Handling The handling of the shared data structure between the vCPU running
operating system code and the deletion-thread must also follow defined rules. Any resource
allocation must be handled solely in either the vCPU or the host thread. The reason is
that, for example, the allocation of memory for an item in the work-queue uses the Linux
memory allocator and that allocator requires a valid Linux context, that is the calling
code needs to run in the Linux vCPU and on the appropriate Linux stack. However, the
deletion-thread is a host thread and unknown to the Linux kernel itself. Thus, it must not
use any Linux functionality that requires the existence of a Linux context. For the allocation
of the work-queue items that means, that the deletion-thread is not allowed to delete the
items in the queue when the host task has been deleted. The freeing of the memory must be
performed by a Linux context. Nevertheless, the deletion-thread must inspect the work-queue
to find out about the host tasks to delete. The work-queue is implemented using a Linux
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list that works independently of a Linux context and can thus be traversed in any context.
The deletion-thread only flags items as done so that they can be removed from the list and
deleted by a Linux context, which is also hooked into the process creation function.

Besides the shared work-queue, the vCPUs and the deletion-thread are using an interrupt
by which the deletion-thread is notified when new tasks to be deleted have been queued.
The deletion-thread uses the generic L4Linux-internal server infrastructure to receive those
interrupt events. A prototypical implementation in L4Linux add about 230 lines of source
code.

3.8 Summary

Summarized, the vCPU-based virtualization interface provides a better fit than the previous
thread-based virtualization approach for running legacy operating systems as it more closely
resembles the execution model of physical CPUs. The model is also better suited for running
latency-constrained workloads in paravirtualized setups compared to the thread-based
approach as it provides better preemptibility. The concept of vCPUs is also portable across
hardware architectures, and has been implemented on x86 and ARM. Conveniently, the
vCPU model also fits for providing support for hardware-assisted virtualization, allowing a
better combination of virtualization technology.





4 | Real-Time and Virtualization

In the previous chapter we looked at how different flavors of virtualization technology can
be integrated into an existing microkernel-based system. Building on the presented solutions
we want to proceed with integrating real-time systems.

Real-time systems are systems where timeliness is important, for example, systems where
externally imposed deadlines must be met by the system. Schedulers in the real-time systems
ensure timeliness of task execution.

Real-time operating systems come in different flavors: A thread library is a software package
that provides basic operating system support and a scheduler. The library is bundled with
the application. Thread libraries run on wide range of systems as they have low hardware
requirements, for example, they do not require hardware isolation mechanisms. On the
contrary, general purpose operating systems are increasingly used for real-time use cases as
they provide access to a rich set of applications and device drivers.

The question we address in this chapter is this: can we use virtualization to consolidate
real-time systems such that all timeliness guarantees of the native systems can also be
honored when running these systems in a virtual machine?

These techniques are not limited to classical control-based real-time systems but are also
interesting for systems where timeliness is important. Both desktop and server environments
can be targets. For desktop systems adequate handling of user interaction is crucial for
a decent user experience. On the server side, processing of real-time protocols, such as
voice-over-IP, or streaming of video data, requires timely processing for a pleasant user
experience.

In this chapter we first enumerate design alternatives, then discuss “Mixed Criticality” and
then follow-up with our proposed mechanisms of scheduling contexts and their implementa-
tion.

4.1 Design Alternatives

At the core of running real-time systems in virtual machines lies a hierarchical scheduling
problem. The scheduler in the host schedules virtual machines, which in turn have their
own scheduler as depicted in Figure 4.1.

The generic isolation properties of a virtualization system also include the schedulers. All
schedulers in the system run independently. The scheduler in the hypervisor schedules the
VM and does not have any knowledge which guest process within the VM will be scheduled
when the VM runs. Similarly each individual scheduler in the guest has a local view on its
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VM VM

Host Kernel / Hypervisor

Figure 4.1: A scheduler hierarchy in a virtualization system. Both the hypervisor and the VM
guests have a scheduler on their own.

VM-local processes only and neither will nor can consider any global system state.

When a guest is running latency sensitive processes, for example reacting on an event
triggered by a sensor, the VM must be scheduled to receive the event so that the guest
scheduler is able to run the proper process for handling the specific event.

Common virtualization systems are optimized for throughput rather than event latency.
For improving the latency until a VM is scheduled, the following approaches describe two
possible options:

Timeslicing VMs Assuming the hypervisor uses a proportional share scheduler with
fixed time-slices, a first approach to improve the event reaction latency of code running in a
virtual machine is to increase the frequency with which the virtual machines are activated.
A typical scheme used by hypervisors is a round-robin based selection of virtual machines.
Commonly VMs are run for a long time, for example, Xen runs VMs for 30ms in the default
setting [CGV07], allowing the VM to build up a cache working set and benefiting from it.

For VMs with latency requirements, the commonly used large time-slices of VMs is considered
too long. For example, assuming 3 VMs with an equal share on the CPU and a 30ms time-
slice, a VM would need to wait up to 60ms until it is scheduled again to be able to process
a pending event. With more VMs the event would be pending accordingly longer.

Enhancing the hypervisor to switch immediately to a VM, instead of waiting for the next
time-slice, would allow to reduce the latency of activating the VM. However, to guarantee
the assured CPU share for all VMs, the hypervisor has to implement appropriate budgeting
mechanisms to avoid that a VM can exceed its CPU share due to external events. This may
in turn lead to the situation that despite a pending event a VM has to wait for CPU time.

To counter the possibly long waiting times, Sisu Xi et al. [Xi+] propose to increase the
switching frequency of VMs. The authors report that splitting up budgets into chunks of
1ms does not lead to significant performance problems. They furthermore state that with
much smaller chunks the additional scheduling overhead becomes prohibitive. This overhead
comes from multiple sources. The available time for a VM to build a cache working set
is greatly reduced with an increased scheduling frequency. Further, due to the increased
scheduling frequency the host system is also used more often and thus the scheduling and
switching overheads in the hypervisor itself sum up. Section 5.4 contains an evaluation of the
relation between scheduling frequency, scheduling overhead and application performance.
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Priority-based Systems In a host system that supports priorities, a VM requiring timely
event reaction latency can be prioritized over other running components, such as other VMs
or applications. This way the hypervisor schedules the real-time task whenever an event is
pending for it because it has a higher priority than other activities in the system. However,
this has a downside, the VM occupies the CPU for as long as it is runnable, blocking all
other activities in the system that might also be ready to execute. As previously described
for VMs, VMs are likely to also run best-effort work, which will in turn be executed on
the high host priority of the VM. In such a scenario, as shown in Figure 4.2, low-priority,
best-effort work is preventing the medium-priority work from being executed because the
VM itself must be configured to a high host priority to be able to timely react on events.
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Figure 4.2: A host system running a virtual machine with real-time (RT) and best-effort (BE) tasks
as well as a medium priority application. Assuming the best-effort tasks in the VM are low-priority
in a global scope, they are preventing the medium prioritized application from running as their
container, the virtual machine, is running at the high host priority.

Budgets can be used to limit the execution of the RT+BE-VM. However, since such a VM
can run both real-time and best-effort work, the VM might not be scheduled upon reception
of a real-time-relevant event because the budget has already been depleted by best-effort
work. In this case the VM has to wait until a new time-slice begins and the budget is refilled,
as depicted in Figure 4.3. This is the same problem as with long time-slices as described
previously.

Setting the time-slice length at reach of the latency demands requires to decrease the
time-slice and thus increase the host scheduling frequency. This contradicts the goal to keep
the host scheduling frequency small, as outlined previously.

Global View Taking a step back, we notice that VMs may run, colloquially speaking,
“important” and “less important” work. Taking a global view on a system with multiple VMs
we have a system that consists of subsystems of differing importance running in multiple
VMs, as shown in Figure 4.4. Such a configuration can also be handled as a mixed-criticality
system which we are going to explore in the following. The use the mixed-criticality paradigm
will allow us to understand that the simple time-slicing approach is not sufficient to handle
the systems as described previously.

4.2 Definition of Terms

Before proceeding with mixed-criticality systems, we want to introduce basic terms used
for real-time systems and scheduling(see also 2.6). In real-time systems, a task denotes an
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Figure 4.3: A thread with an assigned budget handling interrupt events. With the occurrence of
interrupts (a) and (b), budget is available and the thread can run. However, when interrupt (c)
occurs, the budget is exhausted and execution of the thread has to wait, depicted by the dotted
box, until the budget is refilled at point p2.
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Figure 4.4: View of a system consisting of multiple VMs and native applications with tasks of
differing “importance” running both as native applications and inside the VMs.

entity that executes jobs.

• A job is a piece of work that is characterized through attributes such as deadlines and
periods.

• The WCET, the worst-case execution time, is the maximum time a job needs for
completing its work. The WCET can be, for example, determined by theoretical
examination of the whole system, considering worst behavior, or by practical exper-
imentation, depending on requirements. WCETs are also specific to the computing
system the software is running on as the execution behavior is largely defined by the
hardware platform.

• A deadline is a point in time when a job must have finished its work.

• The period, also called time-slice, defines a time range when a job can be executed.
Deadlines are often at the end of a period. Periods repeat, forming periodic tasks.
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• A scheduler is a component that selects the next task to run.

• Priorities are a prevalent mechanism in real-time systems to drive scheduling. Tasks
have differing priorities which allow the scheduler to select the task with the highest
priority.

• A budget is used to limit the available CPU share for a task within its period, allowing
the scheduler to enforce a maximum CPU usage of a task.

4.3 Mixed Criticality Systems

Mixed-criticality systems [Bar+11] are systems that can handle systems with multiple
software components with differing criticality. As analyzing every component in the system
to the same degree is time-consuming and costly, mixed-criticality systems allow to restrict
analysis of components to the criticality requirement of the particular component, and
combine multiple of the components into a system. This scheme can also be applied for
real-time systems where the level of evaluation for any component is defined by their timing
criticality. In a setup with multiple real-time virtual machines we find such a configuration.
The following sections have also been published in [Lac+12].

Mixed-criticality (MC) systems must make sure that tasks with lower criticality will only
be allowed to run if tasks with higher criticality are guaranteed to complete. MC systems
work under the assumption that a whole system, consisting of multiple components, cannot
reasonably be certified under the requirements for the most critical component. Thus only
critical components are examined under that regime, using the appropriate tools and effort.
Less critical system components are certified with less strict demands, requiring less effort
and time. The main objective of a mixed-criticality system is to make sure that a less critical
component can never cause a situation where a higher critical component misses its deadline.
Microkernel-based systems are especially suited for running mixed-criticality systems as
they provide secure and strong isolation for a component-based system architecture.

Defining mixed-criticality systems formally, each task τ is assigned an assurance/criticality
level L up to which τ is certified, that is τ is certified for each level up to L. For real-time
systems, the certification yields the worst-case execution time C, and as the certification is
done for each criticality level up to L, each task has a vector C of WCETs. The WCETs
are only increasing with every criticality level, so that C(L) ≥ C(L′) for L ≥ L′. For the
following we will assume a sporadic task model. That is, a task is characterized by its period,
a relative deadline, its criticality level and WCET vector: τ = (T,D,L,C), and we assume
implicitly constrained tasks (D = T ).

The mixed-criticality scheduling problem can now be phrased as follows: for each criticality
level L, if no job of a task τj with criticality level Lj ≥ L executes longer than Cj(L), find
a schedule such that all jobs of all tasks with a criticality level greater or equal than L
complete by their deadline. A schedule is feasible if it is a solution to the scheduling problem
and it is optimal if it finds a feasible schedule whenever there exists one. The MC scheduling
criterion requires schedulers to deny the kth job τi,k of a lower-criticality task τi its requested
service if a job τj,l of a higher-criticality task τj executes longer than Cj(Li). In this case
τj,l denies τi,k and we call the earliest point in time by which τj,l has executed longer than
Cj(Li) without completing the criticality decision point of Li.

Looking at virtual machines again, as depicted in Figure 4.5, we see that scheduling in such
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Figure 4.5: A system using virtualization to host two virtual machines.

systems is typically strictly hierarchical. Each VM has its own scheduler, which is responsible
to meet all deadlines of the tasks within the VM. The host scheduler then combines these
guest schedules by assigning each VM a share of the CPU time. This share is typically
characterized by a budget.

The host scheduler does not only have to guarantee timeliness for the guests but also needs
to enforce a certain degree of isolation between all guests. For such systems, the host must
at least ensure that:

(R1) Scheduling in VM A must not depend on another VM B providing information about
the tasks it schedules; and

(R2) The scheduling and, in particular, the feasibility of a schedule in a VM A must not
depend on the correctness of any component (including the scheduler) in any other
VM B.

Because a guest scheduler in a virtual machine must be certified at least up to the criticality
level of the tasks it schedules, we can relax the latter requirement for mixed-criticality
systems:

(R2’) The feasibility of a schedule produced by VM A for a certain criticality level Li must
not depend on the correctness of lower than Li certified schedulers and components in
other VMs.

Mapping those requirements to our example as seen in Figure 4.5, the hypervisor including
the host scheduler must necessarily be trusted by all guests and hence certified at the highest
criticality level of any guest task. The VMMs must be trusted only up to the extent that the
guest operating system and its scheduler have to be trusted. That is, they must be certified
at the highest criticality level of the tasks in the task set of the particular VM.

4.3.1 Mixed-Criticality Examples

In the following we will show, using two examples, that a simple increase of the scheduling
frequency in the time-slicing approach cannot cover a system with multiple tasks of differing
importance in multiple VMs.
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The first example works with two virtual machines that run two tasks each. Three distinct
criticality levels are used to characterize the tasks within the virtual machines and all tasks
have the same period. The second example also uses two virtual machines, which schedule
task sets comprised of two respectively three sporadic tasks with two criticality levels and
different periods.

For both examples the used units are normalized to the host system. Further we assume
optimal mixed-criticality schedulers in the VMs and neglect all other times spent in the host
or guest operating systems. Both examples assume that the hypervisor schedules virtual
machines strictly hierarchically. That is, it assigns exactly one budget to each of the two
virtual machines in the scenarios.

Example 1

Example 1 demonstrates the possibility of unfeasible schedules when integrating two task
sets with two tasks each as seen in Figure 4.6. All tasks in the example share a single global
strict period of 8 units of time. Table 4.1 contains the parameters of these task sets.
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Figure 4.6: Two virtual machines running tasks with different criticality.

VM Task Ti Li WCET

A τ1 8 HI C1(HI) = 4 C1(MED) = 2 C1(LO) = 2
τ2 8 LO C2(LO) = 1

B τ3 8 HI C3(HI) = 4 C3(MED) = 2 C3(LO) = 2
τ4 8 MED C4(MED) = 3 C4(LO) = 3

Table 4.1: Task parameters for Example 1.

Let us first verify that the given WCET values in Table 4.1 are eligible for a valid schedule.
Looking at the utilization at each criticality level shows that each task can be scheduled
within the limits of the required budgets and the period of 8 time units:

C1(HI) + C3(HI) = 4 + 4 = 8 ≤ 8
C1(MED) + C3(MED) + C4(MED) = 2 + 2 + 3 = 7 ≤ 8

C1(LO) + C2(LO) + C3(LO) + C4(LO) = 2 + 1 + 2 + 3 = 8 ≤ 8

To ensure that all high-criticality tasks meet their deadlines, a minimum of four execution
units per period must be allocated to each VM. Otherwise, τA

1 , τB
3 , or both may miss their
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deadline if they fully need the execution time Ci(HI) = 4 (i ∈ {1, 3}) as determined by the
WCET analysis tools for the high criticality level.

However, if τA
1 restricts its execution to the medium criticality regime and thus only executes

C1(MED) = 2 units of time, the local scheduler of VM A can execute other work in the
remaining 2 units that have been allocated to VM A. Consequently that will be τA

2 because
it has only a local view on its task set (see Isolation Requirement (R1)). If τA

2 then uses
more than its low-criticality execution time C2(LO) = 1, for example, because of an error
or because the scheduler in VM A does not enforce C for low-criticality tasks, then the
medium-criticality task τB

4 may miss its deadline if both τB
3 requires C3(MED) = 2 units

and if τB
4 requires the third unit as predicted by the WCET analysis tool for the medium

criticality level (C4(MED) = 3). Note, the violation of the mixed-criticality scheduling
criterion does not depend on a particular guest or host scheduler but merely on the assigned
budgets. For as long as the host scheduler allows VM A to consume 4 units, τB

4 may miss
its deadline because the remaining 4 units do not suffice for C3(MED) + C4(MED) = 5.

This example shows that a time-slicing approach for scheduling virtual machines is not
powerful enough to cover the execution of systems with differing criticality, such as real-time
and best-effort work. The solution here is to introduce multiple budgets per virtual machine
and have them scheduled by the host so that tasks can be scheduled following their criticality
level. Table 4.2 provides configurations of global (i.e., host) priorities, parameters and tasks
to run on these budgets. Following this assignment, we have to assume that the scheduler in
VM A switches to its low budget if τA

1 completes within 2 units of time.

a)
VM Budget Priority Tasks to run on

A 4 1 τA
1

1 3 τA
2

B 5 2 τB
3 , τB

4

b)
VM Budget Priority Tasks to run on

A 4 1 τA
1

1 3 τA
2

B 4 1 τB
3

3 2 τB
4

Table 4.2: Possible priority/budget allocations for Example 1, smaller numbers denote higher
priority.

Figure 4.7 shows a potential sequence of budgets to be scheduled for the distribution shown
in Table 4.2b.
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Figure 4.7: Possible schedule for budgets as shown in Table 4.2b for example 1. Down-pointing
arrows indicate a switch of budget.

Example 2

Figure 4.8 shows a schedule for the simultaneous release of the task sets of Example 2 which
has the task parameters shown in Table 4.3. Again, we want to verify first that the given
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task set can be scheduled when assuming a global system view. As the tasks have differing
periods, we normalize the budgets to the hyper-period 16 by using a multiplication factor
16/T with function N(C, T ) = (16/T ) ∗ C.

N(C1(HI), T1) +N(C4(HI), T4) = 4 ∗ 2 + 1 ∗ 6 = 14 ≤ 16
5∑

i=1
N(Ci(LO), Ti) = 1 ∗ 2 + 1 ∗ 4 + 4 ∗ 1 + 2 ∗ 1 + 1 ∗ 4 = 16 ≤ 16

With the shown results we see that the utilization of the system is 1 at a maximum for both
criticality levels and thus the given task can be scheduled. A schedule for the low-criticality
task set is shown in Figure 4.8.

VM Task Ti Li WCET

A
τ1 8 HI C1(HI) = 4 C1(LO) = 1
τ2 4 LO C2(LO) = 1
τ3 16 LO C3(LO) = 4

B τ4 16 HI C4(HI) = 6 C4(LO) = 2
τ5 4 LO C5(LO) = 1

Table 4.3: Task parameters for Example 2.

Now we explore the case of running the tasks in their respective virtual machines in a
time-sliced fashion. We can distinguish four phases which correspond to the period of 4 of the
tasks τA

2 and τB
5 as seen in Table 4.3. Irrespective of when the hypervisor switches to VM A

or VM B in the first phase, VM A and VM B cannot both execute τA
1 for C1(LO) = 1 and

τB
4 for C4(LO) = 2 while meeting the low deadlines of τA

2 and τB
5 if both τA

1 and τB
4 would

complete before their criticality decision points. For the same reason τA
1 cannot completely

be delayed to Phase II. As a consequence, A needs at least a budget of 2 in Phase I and B
a budget of at least 1.

I II III IV

Figure 4.8: Schedule for the simultaneous release of the task set in Table 4.3 on top of a mixed-
criticality system. Filled bars show low WCETs (Ci(LO)), dashed bars show the time Ci(HI)−
Ci(LO) that is required to complete high tasks that do not complete before Ci(LO).

Figure 4.8 illustrates the case where both VMs receive the same budget of length 2. It is easy
to see that the arguments that we give hold also for all other sensible budget assignments.
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With a 2 : 2 budget assignment in Phase I, VM A can execute τA
1 for one unit of time, which

allows the scheduler in VM A to decide whether τ2 is released or, if τA
1 does not complete

by C1(LO), whether to allow further execution of τA
1 . Remember the mixed-criticality

scheduling rule gives no further guarantees to LO tasks if a HI task executes longer than
its LO WCET. VM B has to execute τB

5 because VM isolation (R1) prevents B’s scheduler
from knowing whether or not τA

1 has already completed by C1(LO). It may drop τB
5 only

after τB
4 has executed longer than C4(LO). Following Baruah et al. [BBD11a], we call the

situation caused by τB
5 criticality inversion. Following a 2 : 2 budget in Phase I, A needs

at least a budget of 2 in Phase II to guarantee completion of τA
1 in the situation when τA

1
did not complete by C1(LO). An assignment of a larger budget to A is counterproductive
as this would result in a remaining LO utilization for the two remaining phases of 1 and
a remaining HI utilization of 9/8 (i.e., > 1). If both τA

1 and τB
4 are not completed by

their LO WCETs, a completion by their HI WCETs can therefore no longer be guaranteed.
The key insight that completes this example is that any execution of τA

3 for longer than 1
unit of time may result in τB

4 missing its deadline if it has executed longer than C4(LO).
However, without knowing the progress of τB

4 , VM A cannot decide whether or not to
execute τA

3 at time 14 in Phase IV. Following the same line of argumentation, it is easy
to see that also for other budget assignments the taskset in Table 4.3 is not feasible for
mixed-criticality hypervisors that assign only one budget per VM. A priority assignment π
with π(τA

3 ) < π(τB
4 ) < π(τB

5 ) ≤ π(τA
2 ) ≤ π(τA

1 ), that is two budgets for VM A to execute τA
3

and τA
2 , τA

1 interleaved with the tasks of VM B, however leads to a feasible (fixed-priority)
schedule if we assume that VM A stops τA

2 latest after C2(LO) = 1 and that it switches to
its low budget if τA

1 completes before C1(LO). To fulfill the Isolation Requirement (R2’),
we do not have to require a similar precaution for τA

3 .

Conclusion We summarize that time-slicing multiple VMs is not a generally applicable
method for running multiple virtual machines with real-time and best-effort tasks on one
system. Although increasing the scheduling frequency in the host system improves on the
achievable event latency in the guest, it cannot solve the problem of real-time tasks being
blocked by less important tasks.

We propose an approach to enable the interleaved execution of virtual machines to flatten
the hierarchical scheduling problem by exporting some parts of the guest scheduling to the
host. This allows the host system to have a global view on the real-time requirements of the
system without the need to know about all the best-effort threads running in all virtual
machines. The approach requires that the guests are modified to export selected parts of
their internal scheduling behavior to the host. In the next section we will detail on the
mechanisms for this functionality.

4.4 Exporting Guest Scheduling to the Host Scheduler

As seen in our examples, we need to export scheduling information from the guest to the
host. That information describes which type of work is running in the guest so that the host
can adapt the scheduling of the virtual CPU accordingly. Additionally the host needs to
know how this exported information translates to actual scheduling configurations on the
host.

An important aspect with regard to security is how the responsibilities and possibilities
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for interaction are distributed throughout the system. For example, while a guest virtual
machine can expose knowledge of its internal scheduling behavior it shall not be able to
set scheduling parameters in the host. Another component is entitled to combine exported
scheduling decisions from a guest and actual settings for the host scheduler.

Generally, the following components in a system are involved with scheduling:

Guest Virtual Machines and Applications Guest virtual machines run operating sys-
tems that have their own scheduler and schedule according to their local view. Selected
scheduling parameters can be exported to the host. Both VMs and applications need
to be scheduled by the host and both need to express their resource requirements to
the host.

Host Kernel The host kernel has a global view on the system and schedules all host-
visible applications and VMs. Temporal isolation is ensured by appropriate scheduling
methods.

Admission The admission component is a system application and responsible to manage
scheduling configurations of its clients. Scheduling parameters of all the clients are
checked to produce a valid schedule for the system and finally passed to the host kernel.
So-called online admission systems can cope with arbitrary number of clients. They
can deny a client’s configuration because it demands resources beyond the capabilities
of the system and they may negotiate applicable schedules with a client. Multiple
admission components can exist in a system, while there must be one root admission
service. In contrast to online admission with an active system component, offline
admission defines all scheduling parameters statically at configuration time of the
system.

Figure 4.9 depicts a schematic view on such a system with multiple admission components
and clients. Admission1 is the admission component with the global view, while Admission2
is both an admission service to its clients as well as a client to Admission1. An admission
domain includes an admission component with its clients.

Host Kernel

App AppApp

App App

Admission1

App

Admission2

App

Figure 4.9: A schematic view of a system with multiple admission services. Each admission service is
an application in the system itself. Dotted boxes denote the admission domain for each admission
component.

Summarized, we need to provide a mechanism to securely export selected scheduling events
from the guest to the host. The mechanism must be built such that the guest informs the
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host about a change in scheduling, however, another independent component is responsible
to configure global scheduling policy so that the untrusted guest is unable control global
scheduling. The admission component is responsible to combine the information provided
by the guest with the host’s scheduling configuration.

Scheduling Contexts

Traditionally threads are represented in operating system kernels by a collection of thread-
specific data, called Thread Control Block (TCB). A TCB also includes information required
for scheduling. In this work we separate the information relevant for scheduling from
the TCB and call the entity holding scheduling parameters a Scheduling Context (SC).
The term ’scheduling context’ is derived from previous work on scheduling in the Fiasco
microkernel [Ste04].

For the remainder of this work, we assume that the scheduling parameters represented by a
SC are a budget, a period and a priority. As SCs are a mechanism of the host kernel, the
priorities are global priorities.

Each thread has a default SC. Default SCs have an infinite budget. Additional SCs can
be created and configured with a budget, period and priority. The default SC of a thread
typically has the lowest priority of all SCs of a thread. The set_sc() function allows a
thread to select among its available SCs. Threads running on the same priority are scheduled
in a round-robin fashion. SCs are equally available for vCPUs and all statements for threads
regarding SCs are equally valid for vCPUs.

For explaining the use of scheduling contexts, we assume they have been created and
configured.
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Figure 4.10: Step-by-step illustration of a sequence of scheduler context switches (set_sc()).
Bold circles indicate the running task and the currently used and highest prioritized scheduling
contexts.

Figure 4.10 illustrates the use of the set_sc() function, to resolve the mixed-criticality
scheduling problem of Example 1. The three budgets (4, 1, 5) as shown in Table 4.2a already
solve this problem if the host creates three SCs with the same budgets and if the guest
scheduler in VM-A invokes set_sc() to switch from the SCA

1 to the SCA
2 in the event that

τA
1 completes before C1(LO). The sequence starts with with τA

1 using SCA
1 which has the

highest priority, followed by a switch to SCB
1 to run τB

3 and τB
4 (Fig. 4.10b and 4.10c).

Finally, τA
2 will be run on SCA

2 in VM-A (Fig. 4.10d), concluding the sequence.

More insights in our approach can be drawn from a discussion of this scenario with two
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Figure 4.11: Modified sequence of Figure 4.10 using two SCs for VM-B.

budgets for each of the two VMs (i.e., one SC (SCi) for each of the four tasks (τi) parametrized
as described in Table 4.1). The priorities π of these SCs are π(SCA

1 ) = π(SCB
1 ) = 1,

π(SCB
2 ) = 2, and π(SCA

2 ) = 3. Smaller numbers indicate higher priorities. We discuss
Example 1 for the simultaneous release of all tasks. At time 0 (relative to this simultaneous
release), both SCA

1 for τA
1 and SCB

1 for τB
3 are used. Irrespective of the host scheduling

policy, both VMs receive a share of 4 units at the highest priority to complete τA
1 and

τB
3 in the event that not both complete before C1(LO), respectively before C3(MED). If
one of these tasks completes latest after 2 units, the corresponding guest scheduler invokes
set_sc(SCA

2 ) (for VM-A) or set_sc(SCB
2 ) (for VM-B) to switch to the respective lower

prioritized scheduling context. Fig. 4.11a and b depict this situation for the case where τA
1

completes first. After both VMs have dropped to their lower prioritized budgets (Fig. 4.11c),
SCB

2 has a higher priority than SCA
2 , which allows τB

4 to complete even in the case that τA
1

exceeds its budget. Finally τA
2 runs (Fig. 4.11d), completing the sequence.

Conclusions The two examples and in particular the two solutions to Example 1 show
that the number of exported SCs heavily depends on the host and guest scheduling policies
and on the workload to be scheduled. For fixed-priority schedulers in all guests and in the
host and for criticality monotonic priority assignment [BBD11b], a relatively easy mapping
of guest tasks to host SCs is demonstrated in the 4 SC variant of Example 1: The scheduling
parameters of every task are directly exported and the local priorities are interleaved in such
as way that criticality levels are preserved. That is, the priorities of all high-criticality tasks
are strictly higher than the priorities of all medium-criticality tasks and all low-criticality
tasks, etc. The correct interleaving within these priority bands must of course be validated
by the admission test performed by the host.

The two examples also show possibilities for reducing the number of SCs. For example,
Table 4.2a shows a mapping for Example 1 with one SC per criticality level. A generic
analysis of guest task to host SC mappings is a topic on its own and is left for future
work. However, we have made a first step analyzing the applicability of SCs to various
mixed-criticality scheduling algorithms, see Section 4.6 and Völp et al. [VLH13].

4.4.1 Interrupt Service Routines

So far, selecting a scheduling context is under control of the guest operating system. This
raises the question how to trigger these operations from outside events.
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Scheduling decisions in VMs are triggered by injecting interrupts such as timer or device
interrupts. Upon receiving these interrupts, the guest runs the corresponding interrupt
service routine (ISR) to decide how to react on these asynchronous events and how to adjust
the VM internal scheduling. For example, a guest with one-shot timer may have programmed
a timer to the minimum of the absolute deadline of the currently active task and to the
point in time when the budget of this task will be depleted. When receiving this timer, the
corresponding ISR invokes the scheduler to select the next task to run.

From the perspective of the VM, this service routine runs non-preemptively, that is, effectively
at a priority above the priorities of all tasks in the VM. However, from the perspective of
the host, the VM might run at a host priority that is lower than other runnable VMs or
host threads and thus might be blocked from running. Consequently, injecting events, such
as interrupts, to the VM will be deferred until the VM is eligible for execution in the host
again. This also means that the VM cannot switch to a scheduling context that would allow
it to change to a host priority that is above the currently runnable set of VMs and threads.

To resolve this situation, we invented a mechanism to boost the VM to a host priority
sufficiently high to allow the VM to execute whenever an interrupt is injected that triggers
work that must be run on an elevated host priority. The approach is to bind an SC with
such an elevated priority to an interrupt. Whenever an interrupt is injected to a vCPU or
thread, the host kernel will switch to the associated scheduling context.

Priority

A2

A1

B

IS
R

IS
R

IRQ IRQ
t t'

Figure 4.12: Scheduling context activation at the occurrence of asynchronous events such as
interrupts or the expiration of a timer. The interrupt service routine always runs on priority A1
until the guest scheduler, which it invokes, decides which task to run.

Figure 4.12 depicts a possible usage of the described mechanism by showing the release of
τ1 and the activation of the interrupt service routine that follows. Fig. 4.13 presents the
same step-by-step illustration as Fig. 4.10 but for the scenario of Fig. 4.12, which includes
interrupts. At time t, the host receives an interrupt (IRQ), which triggers the release of τ1
and later (at time t′) of τ2 in VM A. The hypervisor therefore switches to the VMM of VM
A, which in turn injects the interrupt into this VM. Because the interrupt is associated with
SCA

1 (i.e., budget A1), the interrupt service routine always runs on this highest prioritized
scheduling context. In the first situation (at time t), the guest scheduler releases τ1 and
drops to SCA

2 (i.e., budget A2) only if τ1 completed before C1(LO). In the second event (at
time t′), the guest scheduler immediately switches to SCA

2 to release the second job shown
for τ2.

Notably the mechanism also allows to bind individual SCs to interrupts, thus for example
allowing to run a VM at the host priority required to run the interrupt service routine for a
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Figure 4.13: Example sequence of actions as depicted in Figure 4.12. a) and b) illustrate the first
ISR invocation. After τ3 has finished, the state of a) is restored. The second ISR invocation is
depicted by c) and d).

specific device.

4.4.2 Guest Operating System Modifications

As described previously, guests must use the set_sc() function to inform the host of relevant
scheduling decisions.

Generally, for an arbitrary guest, we have to add the following functionality:

• After every priority change in the guest, the corresponding SC must be activated by
means of set_sc(), if this SC is not already active. A common place for this call to
set_sc() is after the invocation of the scheduler and switching tasks.

• For every interrupt service routine that has an SC associated, the ISR-SC shall be
deactivated and the previous one activated unless execution shall continue on that
ISR-SC, for example, because a high-priority task has been selected by the internal
dispatching decisions.

For specific guests a subset of these modifications may suffice depending on the features the
guest provides.

Guests that are available in source code and can be recompiled can directly add the hooks
into the code. In the implementation section we will discuss how the hooks are added to the
two popular guest operating systems FreeRTOS and Linux.
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For guests without source code availability adding the hooks is possible by instrumenting
the binary code. However, finding the necessary locations to patch is challenging. I will
describe possible options in the next section.

4.4.3 Blackbox Guests

Blackbox guests are not available as source code and thus cannot be modified by changing
the source code and recompiling them. As described previously, SCs need to be changed
at runtime of the guest at defined events. As the guest kernel cannot be directly modified,
other techniques must be used to detect the described events and act accordingly.

Although the guest kernel might only be available in binary form, loading a kernel module
at runtime is a common feature. This allows to add functionality to the kernel and is
commonly used for device drivers, including third-party drivers. However, interfaces to hook
into scheduling or thread handling are usually not offered to kernel modules. Nevertheless
there is a use for SCs. A loaded driver can use a scheduling context to run its interrupt
service routine at an elevated host priority. As the SC handling is in the sole responsibility
of the driver, the ISR has to return the VM to the default SC at the end of its ISR.

A more sophisticated possibility is to detect the code paths in the guest where SC handling
is required and to mark those locations in the binary. The marking can be done by replacing
the relevant locations with instructions that trap into the VMM, so that the VMM can take
the appropriate actions with regard to the SC handling and also make the guest execute the
replaced code. If the architecture offers a sufficient number of hardware breakpoints those
can be used to identify the execution of those locations without the need for modifying
the guest kernel. For the techniques to work those locations must be identified. Depending
on the usage scenario that can be done once, even manually, if the guest binary code is
known. If the guest binary code is not available at system configuration time, the analysis
of relevant locations in the guest must be done at runtime.

Analysis of the Linux kernel shows that two operations can be identified at which binary
instrumentation is necessary to switch scheduling contexts: switching the stack from one
kernel-internal thread to another, and returning from an interrupt context. They can be
identified by analyzing the assembly instructions of the guest kernel. We will look at both
the x86 and ARM architectures.

Stack switching On both ARM and the x86 architecture, the stack pointer is a register
that can be written to and read from. As the C family of programming languages does not
offer to directly set the stack pointer, operating system kernels must use assembly code to
read and write it. Nevertheless, the compiler-generated assembly code contains instructions
handling the stack pointer but those are limited to operations of increasing and decreasing
it, as well as storing and reloading it to facilitate stack variables and function call nesting.
Therefore the location where threads are switched in the guest kernel is detectable by finding
a unique pattern of stack pointer handling operations.

On the x86 architecture, stack switching can be identified by locating the following pattern
of instructions:

mov %esp, MEMORY
mov MEMORY, %esp
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Only a single occurrence of this pattern can be found in a Linux kernel, including an L4Linux
kernel.

Linux for the x86 architecture may also switch stacks for calling interrupt routines onto
an extra stack for interrupt handling. Those locations can be identified with the following
pattern:

xchg REG1, %esp
call *REG2
mov REG1, %esp

However, not all interrupt handlers are called with different stacks, so that this location
cannot be relied on to mark the end of an interrupt service routine. However, in those cases
the interrupt return can be detected, as discussed in the following.

On the ARM architecture, the thread switching code can be identified with the following
pattern when using ARM code:

stmia reg!, { ..., sp, lr}
...
ldmia reg, { ..., sp, pc}

The last ldmia instruction loads a set of registers from memory, including the new stack-
pointer and the program counter. This instruction uniquely identifies the thread switching
code throughout the whole kernel as this instruction is not generated by the compiler. It
also only occurs once through the whole binary of the kernel. The ARM Linux kernel does
not change stack for handling interrupt routines.

Interrupt handling Interrupts are asynchronous events that interrupt the currently
running context by storing its state to a known location and branching to the interrupt
service routine running in the kernel. Upon completion of the routine, the original context,
or possibly another selected one, is resumed. As this operation possibly also involves a CPU
mode switch, for example, when resuming to user code, CPUs provide specific instructions
for that purpose. Those specific instructions can be found by analyzing the binary code
to eventually handle the necessary SC work of switching away from the interrupt SC if
required.

On the x86 architecture, the instruction for loading context state from memory into the CPU
is called iret and easily detectable. The ARM architecture principally offers two instructions
for that purpose. The rfe instruction (return from exception) has been introduced with
the ARMv7 architecture revision, however, it is not used in Linux1. Linux uses an ldm
instruction in its exception return:

ldmXX sp, {rX - pc}^

This exception return ldm can be uniquely identified as the pc register is given in the register
list and the exception return is enabled as symbolized the caret sign at the end. Considering
a binary-only L4Linux, a l4_vcpu_resume system call is used to switch to another context
which must be intercepted.

1An exception are kernels built for Thumb2 mode that use the rfe instruction as the ldm method is not
available in that execution mode.
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The return-from-interrupt code path is not only run after an interrupt service routine has
finished but also for any other switch of context that involves a privilege mode change, i.e.
it is called more often than required for SC-handling work. Especially it is also used when
returning to a user program from a system call. Intercepting the resume instruction has
thus a performance impact on normal user programs.

A possibility to avoid unnecessary detection of return-from-interrupt executions would be
to only enable those after an interrupt has been injected and disable them again after a
return-from-interrupt has been detected. However, it can be problematic to detect injections
of interrupts.

Hardware-assisted virtualization provides the possibility to mark an interrupt for injection
which is then carried out by the virtualization support in the CPU when appropriate, i.e.
the virtual CPU is ready to take the interrupt. Thus, when the VMM receives a return-from-
interrupt trap, this might not necessarily be from the interrupt service routine but could, for
example, also be the final part of a system call processing. As the kernel uses the same exit
paths for both functions, the VMM cannot differentiate between the two different events.

Also, the VMM might not be involved in injecting interrupts at all. As the injection method
is uniform for any device that is directly passed to the virtual machine, the VMM might be
surpassed to gain execution performance as the host kernel can inject a hardware interrupt
directly into the VM. The same applies for paravirtualized guests where all interrupt are
uniformly handled and thus an interrupt can be directly injected to the guest by the host
kernel without any intermediate VMM or monitor component.

For handling scheduling contexts for the guest, this fast-path cannot be used and the VMM
must inject interrupts, ensuring that the guest is in a state ready to take a interrupts. This
way the VMM can ensure that the exception return following the injection of the interrupt
is from the interrupt routine. However, this assumes that an interrupt handler does not
cause any resolvable exceptions itself and does not cause any mode change before leaving
the interrupt handling routine. When the VMM is injecting interrupts, it can also install a
trap to exit the VM upon the exception return, and uninstall the trap again when the exit
has happened. As described this allows to remove the penalty for system calls in the guest
that use the same exit path when returning to user-mode. In case the number of system
calls does not out-weight the number of SC-enhanced interrupts taken, the installation and
removal of the trap instruction can just be omitted.

Analysis has shown that using a non-modifiable guest with scheduling contexts is possible
but has trade-offs in engineering effort and runtime performance. Considering closed-source
guests the analysis becomes more challenging as only the binary itself can be used instead
of its source code. It is therefore advisable to use such techniques only as a last resort.

4.4.4 Further Use Cases of Scheduling Contexts

We introduced scheduling contexts by integrating them in mixed-criticality systems using
two examples. There are more use cases where using SCs can be beneficial and which we
want to introduce briefly.

Emergency Alarm System The “emergency-alarm” system includes two virtual ma-
chines: VM1 consists of τalarm and τmaint and VM2 of τM

video. τalarm is a sporadic task and
τmaint is a best-effort task, which gathers statistics for maintenance purposes. τalarm has
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a low minimum inter-arrival time and a worst-case execution time nearly as high as the
inter-arrival time, leading to very high utilization. τM

video in VM2 is a high-utilization task,
for example, doing periodic image processing of the connected video surveillance system.
τalarm has an extremely low probability for high-frequency alarm showers. However, it is
very important that deadlines are met in these rare situations. τM

video is much less important
than τalarm, but more important than the maintenance task τmaint.

Without the possibility to differentiate τalarm and τmaint in VM1, the system would need
to be set up in a way that VM1 gets a higher host priority as VM2 to fulfill the low-
latency requirement of τalarm. However, τmaint will then also be run under that host priority,
potentially taking away CPU capacity from τM

video in VM2. Considering the availability of
budgets would allow to give VM1 a considerably smaller CPU share than VM2, however,
that leaves no room to run τmaint in VM1.

With the availability of multiple SCs per virtual machine, the configuration for this described
use case could look as show in the following table:

VM1 VM2
τalarm SC(1, 10, 3)
τM

video SC(2, 1000, 600)
τmaint SC(3, -, -)

Table 4.4: Possible setting of SCs to virtual machines for the emergency alarm use case. The
parameters for the SC configuration are SC(host-priority, period, budget). τalarm has the highest
host priority and can get a CPU share of 30% with a period of 10. τM

video gets 60% CPU share
with a much higher period. The remaining CPU capacity is left for τmaint.

Interactive Systems Another example for employing SCs are systems with interactive
processes, such as desktop systems with graphical user interfaces (GUIs). Modern operating
systems have means to discover and differentiate between interactive and background
processes. Interactive processes get their priority boosted to improve the usability of the
system. If several virtual machines with such interactive processes change focus, single-
budget allocation schemes for the VMs cannot consider the priority adaptions without
further knowledge of VM-internal task priorities. A way of solving this issue is to use a high
switching frequency between the virtual machines. However, this increases the overhead in
the system as described previously. The assignment of multiple interrupt triggered SCs for
input devices (for example, keyboard and mouse) allows to minimize these switches to when
they are needed.

Server and Cloud Systems Processing of latency-constrained workloads is also done
in server and cloud systems. For example, handling real-time communication data, such
as Voice-over-IP (VoIP) and video conferencing, or online gaming services, require timely
processing. In a server infrastructure using virtualization, scheduling contexts can help
to improve the latency of applications while still sharing a single physical system among
multiple VMs. SCs can foster consolidation approaches for latency-constrained applications
in the cloud by using fewer hardware resources.
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4.5 Implementing Scheduling Contexts

After describing the mechanism of scheduling contexts we concentrate on their implementa-
tion in the Fiasco.OC microkernel now.

We will introduce use cases and then present two implementation variants. A very flexible
approach which, however, raises implementation challenges, and a less flexible approach
which still allows to cover the majority of use cases of scheduling contexts but significantly
reduces implementation complexity.

4.5.1 Security and Performance Requirements

Before going into implementation details of scheduling contexts we first need to look at the
security and performance characteristics of a possible implementation. The following has
been published in [LVW13].

Security For understanding security implications we first need to understand the interac-
tion of system components and their trustworthiness to other components in the system. Let
us assume a typical microkernel-based system, consisting of the microkernel and multiple
subsystems, for example, applications or virtual machines. Here, the microkernel must ensure
isolation between those subsystems, both temporally and spatially. Concerning scheduling
contexts, which an application or VM may want to use, the system cannot allow uncontrolled
creation of SCs nor uncontrolled configuration of those. Uncontrolled creation can lead to
exhaustion of system resources and arbitrary settings of scheduling parameters have an
influence on the global scheduling, likely to be negative in a global view as applications try
to monopolize the CPU. Consequently, it must be possible to control and limit the creation
and configuration of SCs. Further, SCs must only be usable by the subsystems they have
been assigned to so that only those can use the provided CPU time of the SC.

Performance Characteristics The most frequent operation that is used with scheduling
contexts is activating an SC for a host thread or vCPU. This set_sc operation is called
throughout the runtime of a vCPU. In comparison, the operations of creating and configuring
scheduling contexts is muss less frequently. The focus is therefore twofold: the set_sc function
must be optimized for performance while creation and configuration can focus flexibility.

4.5.2 Fiasco.OC Scheduling Interface

Fiasco.OC’s L4::Scheduler interface is used to set scheduling parameters and CPU affinities
of threads and vCPUs. In particular, the run_thread() function allows to initially start
threads with scheduling parameters on a specific CPU as well as change this configuration
while running. The scheduler of an application or VM is accessible through a capability.
Calls to the kernel scheduler can be interposed by user-level components implementing
the L4::Scheduler interface. Using interposition, user components can implement poli-
cies and strategies for running and controlling threads, for example, limiting priorities of
their subsystems or doing load balancing over multiple cores. As each application in the
system requires an assigned scheduler, an application setup can be configured to route
the application’s scheduler queries not to the kernel but to another user-level component.
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Figure 4.14: A schematic view on a hypothetical system with two L4::Scheduler-proxies, allowing
to refine scheduler API invocations of clients. The proxies are service user and provider at the
same time.

This component then receives any scheduler-related messages, can monitor or change the
supplied scheduling parameters and pass it on to its scheduler interface. A schematic view
of a possible composition is shown in Figure 4.14. This view is an implementation-focused
view of the previously shown Figure 4.9.

Next, we focus on the integration of scheduling contexts into the system.

4.5.3 Managing Scheduling Contexts

As already outlined, additional scheduling contexts for a thread must be created and
destroyed, configured with scheduling parameters and used by threads.

Creating and destroying scheduling contexts is by itself not security critical as non-configured
SCs do not posses any CPU time and are thus of no use. However, the memory on which
the scheduling context has been created must be accounted to a quota.

Principally, scheduling contexts can be part of some already existing object, or they can be
a first-class object with capabilities referring to them. The first approach suggests a simpler
implementation while the second approach promises more flexibility. Figure 4.15 illustrates
the possibilities with the given variants.

In configuration A, the VMM creates vCPUs on behalf of the guest together with the
scheduling contexts. For letting the vCPU run, the VMM invokes the scheduling interface
of the admission component passing it the vCPU capability. The admission service will then
apply its policy on the client’s invocation and finally pass the request on to the kernel’s
scheduler. From this point on the vCPU can run. However, if the admission component
requires to change the parameters it has assigned to the vCPU, for example, to lower its
priority, it may be unable to change it. The reason is that the VMM might have revoked
the vCPU capability from the admission component, leaving Admission no possibility to
name the vCPU and thus change parameters. Therefore time once granted may never be
reclaimed unless all clients of Admission are trustworthy, or are destroyed.

Scenario B shows a first solution to this problem. Rather than creating vCPUs in the VMM,
the creation is done by Admission using a factory and the embedded quota that is part of
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Figure 4.15: Different variants for creating and using scheduling contexts.

Admission’s resources. The vCPU capability is then passed to the VMM which may create
scheduling contexts. For configuring those SCs the VMM must go through the admission
service again. Because Admission has created the vCPU, it has a non-revocable identifier
of it for as long as the vCPU exists. For this reason Admission does not depend on the
VMM as Admission has always access to the vCPU and can thus modify its scheduling
configuration.

However, scenario B also burdens the vCPU and thread management onto the admission ser-
vices instead of focusing on scheduling-related functionality. Scenario C offers an alternative
approach where the admission component is only responsible for the scheduling contexts
but not for vCPU and thread management. Like in scenario A, vCPUs and threads are
created by the applications itself and passed down in a revocable fashion to Admission.
However, instead of creating a second class scheduling context, which can only implicitly be
addressed through threads, Admission now creates a first-class scheduling context with is
own capability. Therefore, even if the VMM later on revokes the thread or vCPU capability,
identifiers to the created SCs remain with the admission component and keep the possibility
to change or reset scheduling parameters. This setup also enables further opportunities, for
example, sharing a scheduling context for multiple threads or vCPUs.

4.5.4 Challenges with First-Class Scheduling Contexts

Scheduling contexts as first-class objects come with more flexibility but also with implemen-
tation challenges that are not present when scheduling contexts are embedded in threads.
The following provides an overview on the required additions and added complexity:

• Principally, a stand-alone, first-class scheduling context can be bound to multiple
threads. Allowing to bind the same scheduling context to multiple threads allows to
use one budget for multiple threads. This gives an application the possibility to run
multiple threads with one budget, without the need to redistribute budgets among
multiple threads in dynamic workloads. However, the sharing also includes the other
parameters in the scheduling context such as host priorities which will then be equal
for all threads sharing the scheduling context. Depending on the workload, this might
pose a problem, for example, virtualization systems may use a software timer that is
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implemented as a host thread. Running the vCPU and the timer thread under one
budget is attractive, however, the timer thread needs a higher host priority to timely
interrupt the vCPU.
On single processor systems only one scheduling context can be in use at a time,
avoiding additional complexity in the implementation. However, on multi processor
systems, a scheduling context can be used for multiple threads running on different
processors. This is problematic for several reasons:

– A priority value, as configured in a scheduling context, has a different meaning
on different processors. Thus the single value stored in the scheduling context is
not expressive enough.

– A scheduling context can be used on different processors at the same time.
Concerning the budget in the scheduling context that means that all processors
using the same scheduling context must know about the use of the same scheduling
context on other processors to calculate their local remaining budget. In case one
processor does not use up its share of the budget, other processors must check
at the end of their budget whether budget is still available and coordinate with
possible other processors.

This complexity is reduced by limiting SC usage to a single processor at a time.

• Access to objects can be revoked using the unmap operation (see 2.7). The revocation
of access rights must happen immediately so that the unmapping task does not depend
on the task that received the access rights earlier. This in turn means that a scheduling
context can be revoked in any state, including being bound to a thread or an interrupt.
The kernel tracks mapping relationships in its mapping database to know in which
task a reference to an object exists. However, it also needs to find the object to which a
scheduling context is bound to for disconnecting the two. A reference in the scheduling
context to the bound kernel object (interrupt, thread) will solve this.
When revoking a scheduling context from a thread, that thread must stop execution
using the scheduling parameters of this particular scheduling context. By setting
another scheduling context or stopping the thread, the original scheduling context is
freed.

Overall, converting Fiasco.OC and L4Re to a system with first-class scheduling contexts
requires a considerable effort in redesigning and re-implementing parts of the system.
However, this is not required for showing the general applicability of the mechanism itself.
For that reason the simpler approach with embedded scheduling contexts will be used in
the following for the practical evaluation.

4.5.5 Integrated Scheduling Contexts

For implementation we choose the less complex variant of embedding scheduling contexts in
another kernel object. This approach is less flexible, however, sufficient to implement the
mechanism of scheduling contexts. Generally, the number of scheduling contexts used by
a thread is dynamic and thus not known before starting the thread. The number might
change during runtime so that more scheduling contexts need to be allocated, or unused
ones can be freed. Although a scheduling context is not a first-class object, it is created by
the kernel and this creation requires kernel memory. The allocation of that memory must be
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bound to a task-specific quota, so that the creator of scheduling contexts can only allocate
so many scheduling contexts that the limit is not exceeded.

Looking at the internals of the kernel, several kernel objects also store a reference to the
quota of the object memory which they have been created from, for the purpose of returning
the memory to the quota on their destruction. The availability of the quota is of benefit
here as we also need the quota for allocating scheduling contexts.

As scheduling contexts are used with threads and the L4::Thread object also stores a
reference to its quota object, it is natural to add allocation (sc_add) and release (sc_del)
functionality for scheduling contexts to the thread object. For identifying a scheduling
context an ID must be provided. The ID is an integer type, must be uniquely chosen by the
creator of scheduling contexts and its scope is local to the thread.

After being allocated, the scheduling context is not yet usable because no scheduling
parameters have been set yet. Configuration of a scheduling context is accomplished through
an L4::Scheduler as the scheduler is the entity that manages the resource CPU. For that
task, the scheduler provides a sc_cfg function, that takes an L4::Thread, the corresponding
scheduling context ID and the scheduling parameters that shall be set for that scheduling
context.

After configured, the scheduling context can be used. It can be activated explicitly via the
thread’s sc_set function, which puts the given scheduling context in use, or it is used when
an interrupt triggers. The L4::Irq object is extended with an attach_sc function that
behaves similar to the L4::Irq::attach function but also includes the ID of the scheduling
context.

A scheduling context can only be destroyed when the scheduling context is not in use, not
bound to any interrupt and when it has been unregistered at the corresponding scheduler.
For that purpose the scheduler offers the sc_release function. Besides unregistering the
scheduling context at the scheduler this operation also gives the scheduler the possibility to
recalculate its CPU allocations, for example, for load balancing.

After being unregistered, the scheduling context can be freed with the L4::Thread::sc_del
function. The kernel memory used for the scheduling context is freed and returned to the
quota.

The following listings 4.1, 4.2 and 4.3 give an overview on the additional interfaces required
for implementing scheduling contexts. Each class is derived from the original class to which
the functionality is added. Due to the object-oriented design of Fiasco.OC and L4Re such
enhancements can be added without modifying original files or functionality.

1 namespace L4
2 {
3 class Thread_SC : public Thread
4 {
5 public:
6 l4_msgtag_t sc_set(unsigned id, l4_utcb_t *utcb = l4_utcb());
7 l4_msgtag_t sc_add(unsigned id, l4_utcb_t *utcb = l4_utcb());
8 l4_msgtag_t sc_del(unsigned id, l4_utcb_t *utcb = l4_utcb());
9 };

10 }

Listing 4.1: Enhanced interface for L4::Thread
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1 namespace L4
2 {
3 class Scheduler_SC : public Scheduler
4 {
5 public:
6 l4_msgtag_t sc_cfg(L4::Cap<L4::Thread> thread,
7 unsigned sc_id,
8 l4_sched_param_t *sp,
9 l4_utcb_t *utcb = l4_utcb());

10 l4_msgtag_t sc_release(L4::Cap<L4::Thread> thread,
11 unsigned sc_id, l4_utcb_t *utcb = l4_utcb());
12 };
13 }

Listing 4.2: Enhanced interface for L4::Scheduler

1 namespace L4
2 {
3 class Irq_SC : Irq
4 {
5 public:
6 l4_msgtag_t attach_sc(l4_umword_t label,
7 L4::Cap<L4::Thread> const thread,
8 unsigned sc_id,
9 l4_utcb_t *utcb = l4_utcb());

10 };
11 }

Listing 4.3: Enhanced interface for L4::Irq

Usage Example

The following shall give a brief overview on a typical usage of threads or vCPUs with
multiple scheduling contexts. The scenario consists of multiple virtual guest systems that
have been stand-alone systems and that have been consolidated to run on a single host
system. The operating system is para-virtualized, that is the operating system kernel is
running as a native application on the host system and allows it to issue system calls as any
other host application. The task of this operating system with its applications is to control
a sorting machine that separates items that do not meet a particular weight. The items
come by on a conveyor belt where a photoelectric beam triggers an interrupt when an item
is about to reach the scale. The control program will be woken up by the interrupt of the
beam and query the scale device for the weight of the unit on the belt. Depending on the
measured weight the control program will trigger a pushing device that will redirect the
item to a bucket and move back to its original position. Besides the control program, this
system also offers a maintenance facility where operators can monitor the system status and
query statistics information on the weights of the items and thus of the failure rate of the
previous production steps.
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The described scenario requires real-time execution of the control program because the
belt is running at a constant speed and requires timely reaction of the pushing device to
sort out any non-confirming items. The speed of the belt cannot be influenced without
also influencing other task handling items on the belt, possibly the whole factory. Missing
a timely reaction of the pushing device will let through non-confirming items for further
processing, which can possibly hinder or even stop the whole production process. On the
other hand, the maintenance and statistics tasks of the system do not require real-time
execution and can be run whenever the system has otherwise unused processing capacity
available.

The host system is required to setup the guest operating system and one part of this setup
phase is to create an additional scheduling context for the single vCPU the guest is using.
The first task is to create the scheduling context. As seen in Listing 4.1 of the extended
L4::Thread interface, we require the thread object, thus adding the scheduling context is
done after creating the vCPU for the guest. The variable vcpu is of type L4::Thread_SC
and stores the capability to the vCPU to be used. To identify the scheduling context we
choose the ID 1:

1 L4::Cap<L4::Thread_SC> vcpu;
2
3 // Create / retrieve vCPU capability and store in vcpu variable
4
5 // Add scheduling context and check for errors
6 L4Re::chksys(vcpu->sc_add(1));

Listing 4.4: Creating a scheduling context

After successful execution of the sc_add() call the vCPU has one additional scheduling
context available. Note that this call is only successful when the resource quota associated
with the vCPU has enough resources available to create the scheduling context.

At this point the scheduling context is not yet usable because it has not been configured
with proper scheduling parameters. Setting up scheduling parameters is done using the
scheduling interface provided by the program environment. Prior analysis of the control
program on the target platform concluded that a 10% share of the CPU with a period of
20ms is sufficient to run it. Therefore we choose the scheduling parameters of the scheduling
context as seen the following listing 4.5. For the scenario the priority specified must be the
highest for the guest system, that is the highest priority as seen by the local view of the
guest. The scheduler proxies are then responsible for setting an appropriate host priority,
considering a global view.

1 L4::Cap<L4::Scheduler> sched = L4Re::Env::env()->scheduler();
2 l4_sched_param_sc_t sched_params;
3
4 sched_params.prio = 5;
5 sched_params.budget = 2000;
6 sched_params.period = 20000;
7 L4Re::chksys(sched->sc_cfg(vcpu, 1, &sched_params));

Listing 4.5: Configuration of scheduling parameters of the scheduling context.

As a final configuration step, we need to bind the scheduling context to the device interrupt
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of the photoelectric beam. For that we are required to supply the ID of the scheduling when
attaching the IRQ to the vCPU.

1 L4Re::chksys(irq->attach_sc(label, vcpu, 1));

Listing 4.6: Binding the scheduling context to a device interrupt.

When all those described steps have been completed successfully the scheduling context can
be used. Using it requires a single call on the vCPU to switch between the two available
scheduling contexts:

1 // Switch to high priority scheduling context
2 L4Re::chksys(vcpu->sc_set(1));
3
4 // Switch to best-effort (default) scheduling context
5 L4Re::chksys(vcpu->sc_set(0));

Listing 4.7: Selecting a scheduling context as the active one.

The sc_set function must be invoked whenever the guest operating system kernel switches
to the control program or away from it, so that the host priority of the virtual machine can
be adapted accordingly.

4.5.6 Using Scheduling Contexts in Existing Systems

In the following we will show how scheduling contexts can be integrated and used in existing
operating systems. We will cover paravirtualization and hardware-assisted virtualization,
as well as a general purpose operating system, Linux, and the real-time operating system
FreeRTOS.

For the following we assume that all required scheduling contexts have been set up and the
guests are only required to use a single function to select among their available SCs. This
function is named set_sc(ID) where ID identifies the SC.

The specific implementation of set_sc(ID) varies because of the different implementations
of virtualization. With hardware-assisted virtualization guest operating systems invoke
the hypervisor and hence the VMM through a special machine instruction (vmmcall on
x86), which in turn the hypervisor forwards to the VMM. The VMM can then decode the
VM-exit, extract the SC-selection request and pass it on to the hypervisor. More optimized
implementations can also support special hypercalls in the hypervisor so that the forwarding
through the VMM is not necessary.

Paravirtualized guests can directly invoke system-calls of the host kernel and do not require
any specific event handling in the VMM.

To simplify the presentation of the guest operating system modifications, we restrict the
examples to two scheduling contexts. A best-effort SC and one SC to handle high priority
work. Elevation of a VM to a higher host priority, that is to the SC for the high priority
work, is triggered by a single interrupt. Switching away from this SC targets the best-effort
SC. An extension to multiple different SCs with different priorities is straightforward.
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FreeRTOS

FreeRTOS is a typical representative of a real-time operating system. It runs on a variety
of architectures and CPU variants and does not use a memory management unit, however,
it can make use of a memory protection unit (MPU). The scheduler in FreeRTOS allows
multiple tasks to run concurrently at static priorities. Preemptive and non-preemptive
variants are available. In our implementation, we exclusively use the preemptive version,
which calls the internal scheduler for each timer tick. This timer tick is associated with
the high priority SC. After the new task to be run has been chosen, the function listed in
Listing 4.8 is called, handing over the new priority. Referring to FreeRTOS v6 and v7, the
function must be added as xvPortPostSchedule(uxTopReadyPriority) in the function
vTaskSwitchContext() after the while loop, which calculates the new priority. The function
uses a barrier priority RT_BASE_PRIO to split FreeRTOS tasks into a real-time and a time-
sharing category. Based on this barrier priority, the FreeRTOS scheduler decides whether
the selected task should continue to use the high priority SC or fall down to the best-effort
one, using set_sc(ID_SC_BE).

1 void xvPortPostSchedule(unsigned prio)
2 {
3 if (prio < RT_BASE_PRIO)
4 set_sc(ID_SC_BE);
5 }

Listing 4.8: SC switching function for FreeRTOS.

The function vTaskSwitchContext() is also called by FreeRTOS after interrupt processing
so that a possible elevated priority is reset again when a non-high-priority task has been
selected.

Linux

Linux is a widely used and popular general purpose operating system. With the ongoing work
on improving the preemptiveness of the kernel and with the merge of a significant part of
the Linux-RT patch-set, it is also increasingly used for real-time workloads. Linux priorities
are divided into a range for time-sharing and an exclusive range for real-time processes. This
distinction makes the implementation of the SC switching function straightforward as shown
in Listing 4.9. Referring to Linux kernel version 3.12, the function post_sched_sc(current)
is called within the function finish_task_switch() in kernel/sched/core.c.

1 void post_sched_sc(struct task_struct *p)
2 {
3 if (!rt_task(p))
4 set_sc(ID_SC_BE);
5 }

Listing 4.9: Post scheduling function for Linux.

To switch back to the best-effort scheduling context in the case no scheduling decision will
be made after an interrupt has occurred, we introduce the function irq_no_sched(). It
is called in the code paths for exiting interrupts as shown in Listing 4.10. Referring to
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Linux 3.12, a convenient location to call irq_no_sched() is the function irq_exit() in
kernel/softirq.c. The synchronization in irq_no_sched() is required to atomically check
the rescheduling condition with the actual operation. Otherwise, if an interrupt occurred
meanwhile, a possible real-time task would be switched back to the best-effort scheduling
context.

1 void irq_no_sched(void)
2 {
3 unsigned long flags;
4 local_irq_save(flags);
5 if (!need_resched() && !rt_task(current))
6 set_sc(ID_SC_BE);
7 local_irq_restore(flags);
8 }

Listing 4.10: Function to be called in case no scheduling decision has been made upon interrupts.

Using and mapping multiple real-time tasks within Linux to different SCs is also possible
by enhancing the two presented functions. For that the guest needs to know a mapping
between its internal process priorities and scheduling context IDs. The contents of this map
must be determined upon launching the guest system.

4.5.7 Scheduling Contexts and Hardware-Assisted Virtualization

In paravirtualized environments the kernel code can use host system calls like any other
host program. The situation is different for hardware-assisted virtualization. Here, the guest
must invoke a hyper-call which causes the VM to exit and switch control to the VMM.
The VMM will identify the type of the hyper-call and invoke the appropriate function for
handling the guest request. Thus for selecting scheduling contexts the guest needs to use a
hyper-call, as schematically depicted by Figure 4.16. Overall, the used mechanism is more
costly than the paravirtualized approach as the VM must first exit to the VMM, including
saving the extended state for hardware-assisted virtual machines, and then issue the system
call to the host kernel. Returning from the system-call back to the VM includes loading the
extended state again to run the VM.

Host Kernel

VM

VMM
VM Handler

SC
Select

vCPU

Figure 4.16: View on the control flow when selecting a scheduling context from within a hardware-
assisted virtual machine.
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With additional functionality in the host kernel, the execution performance in the described
scenario can be improved. One part of the execution path is the handling of the VM guest
state. When switching from a VM context to the hosting VMM, the host kernel saves the
VM state from the physical VMCx memory page, only used internally in the kernel, to the
extended state page of the vCPU so that it is available to the VMM. When returning to the
VM, the host kernel loads the state from the vCPU state area to the physical VMCx so
that the CPU loads the proper state when switching to the VM. In the case of handling a
hyper-call, for example, to select a scheduling context, the VMM does not require the full
VM state. Thus the host kernel could leave most of the state in the physical VMCx and
invoke the VMM with that information. When switching back to the VM only the return
information of the hyper-call needs to be updated in the physical VMCx and the VM can
continue. This approach avoids state saves and restores when switching between VM and
VMM. However, the kernel needs to implement lazy VMCx handling then and save the state
of the physical VMCx whenever another VM, i.e. another vCPU with extended state, shall
be run. As this is transparent to the VMM, the kernel needs to also load back the complete
state when resuming a VM. Despite the effort in the host kernel, such an approach still
improves on the fast path of switching between VM and VMM.

With more functionality in the host kernel, the VMM can be left out when handling a
hyper-call. Generally, a hyper-call could invoke any capability available in its VM task,
similar to invoking a capability with a system call in normal L4 task. Provided the host
kernel offers a capability space for the VM, the VM can direct invoke the vCPU capability
to select a scheduling context without requiring the VMM. For best performance this shall
be combined with the lazy VMCx saving mechanism just described. With this implemented,
the performance of selecting a scheduling context comes closer to the paravirtualized variant,
however, as a VM exit and re-entry is still more costly than just a system call, it will still
be more expensive.

We will evaluate the use of scheduling contexts with hardware-assisted virtualization in
Section 5.

4.6 Applicability to Mixed-Criticality Scheduling Algorithms

Scheduling contexts are an operating systems mechanism and shall provide a reasonable
generic interface to be able to implement a wide range of scheduling algorithms. We
have investigated whether a range of mixed-criticality scheduling algorithms can be used
on top of scheduling contexts and whether extensions are required to support a specific
algorithm [VLH13]. In the following I will provide an overview on our findings.

Criticality-Monotonic and Static Fixed Task-Priority Algorithms require a dead-
line for the end of the budget of a scheduling context. The scheduling context will be refilled
on the start of the next period. The required extensions for scheduling contexts are the
deadline parameter in the SC configuration as well as a second timeout in the kernel for the
deadline. We expect only minimal overhead for this extension.

Own-Criticality Based Priority Ordering and Static Fixed Job-Priority Algo-
rithms can make use of multiple scheduling contexts. Examples are systems where work
can be split in mandatory and optional parts, for example, video decoding where decoding



4.7. FURTHER DIRECTIONS 111

the frame is mandatory and additional quality enhancing picture post-processing is optional.
The parts of the work can be modeled with scheduling contexts, so that the SC for the
mandatory part has a high priority and the SCs for the optional parts have lower priorities.

There are two design choices for implementing the necessary SC switching: controlled by
user-space or done in the kernel. When user-space shall handle the switching to the next
scheduling context, the kernel has to notify user-space when a scheduling context ran out of
budget. When done by the kernel, the scheduling contexts must be linked so that the kernel
can select the SC in a defined order. A possibility to drop the remaining budget must also
be available so that the kernel can switch to the next scheduling context in the queue.

Adaptive Mixed-Criticality Algorithms require to know the time a thread has run
on an SC. This allows a scheduler to decide on further execution and which mixed-criticality
level to use. For example, an overrun of a low-criticality WCET triggers a criticality change
and thus means that low-criticality jobs must not be executed and consequently disabled.

On the implementation side this requires that the scheduler gets a signal when the kernel
is switching to the next scheduling context so it can act accordingly and a mechanism to
disable scheduling contexts. The signaling mechanism is the same as already described in
the first case.

Disabling a group of scheduling contexts requires the next extension. This extension can be
implemented with an enabled token, which the scheduler can toggle to disable at once all
scheduling contexts that refer to this token. To cover multiple criticality levels, we suggest
implementing the enabled token as a bit-field complemented with a mask inside each SC.
The mask is then used to determine which bits are significant for this SC.

Earliest Deadline First with Virtual Deadlines requires the possibility to enable
and disabled groups of scheduling contexts. To implement this requirement we can built on
the group enable and disable functionality as described in the previous case. Groups are
formed among scheduling contexts. Once a criticality change happens, all low-criticality SCs
are disabled by clearing their significant low flag and high criticality SCs are enabled by
setting the formerly disabled high criticality flag in the enabled token.

.

4.7 Further Directions

Scheduling contexts are a promising approach for combining several latency-constrained
environments into a single physical machine. Their usage potential goes beyond what has
been presented in this work, however, I will outline ideas for possible future directions in
the following.

The property of scheduling contexts to be standalone offers interesting possibilities. Their
budget feature could not only be used for a single thread but also for a group of threads.
That way a subsystem, usually consisting of multiple threads, can be limited in their CPU
time usage without the need to force a budget limitation on each individual thread. However,
in the current form scheduling contexts also have other per-CPU scheduling settings, such as
a priority. With a group of threads the priority of each thread still needs to be configurable
individually. The challenge here is to allow the grouping while also still allow individual
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thread parameters. Options could be different type of scheduling contexts which are linked
together for a particular thread. When additionally considering that the group of threads is
running on different CPUs, the grouping becomes more challenging. The reason is that a
budget can be used by multiple threads at a time, which requires cross-CPU arbitration that
needs to be redone whenever one involved thread blocks or gets running so that the potential
end-of-budget point in time can be reevaluated. Whether such an approach is practically
reasonable or is impractical due to the required cross-CPU communication overhead remains
to be evaluated.

Other requirements need minor extensions to the model, such as notifications on end
of deadlines or budgets so that a controlling software components can adapt workloads
accordingly. The concept of scheduling contexts might also be of useful for other resources,
such as memory buses, disks or network resources. Their applicability in such scenarios
remains to be evaluated.
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In this chapter we will evaluate how the presented virtualization techniques perform, including
in the context of real-time execution. We will also look at scheduling contexts and evaluate
the amount of modifications needed for the Fiasco.OC kernel as well as potential guest
operating systems.

In the previous chapters we already introduced and used two different hardware architectures:
x86 and ARM, showing the broad applicability of our virtualization approach. For evaluation,
we will use three different type of systems, covering both architectures:

x86 The x86 architecture is the dominant platform in the desktop, laptop and server
segment and thus represents a broad share of practically used systems.

ARM is the dominant architecture in the embedded area and available in many different
configurations. The range of Cortex-A CPUs, which support virtual memory and priv-
ilege levels, offers CPUs with different execution characteristics. They are instruction
set compatible and can thus run the same binaries without modification despite their
differences in the architectural design of the processor. By optimizing for different
design criteria, energy-efficiency or performance-centric, the implementer can chose
between the contradictory goals. By putting both configurations into a single system
a wider range of utility can be covered. Such a configuration is called big.LITTLETM

and the performance-centric design is called big core while the energy-efficiency-centric
core is called little core. A big.LITTLETM setup uses Cortex-A15 CPUs as big and
Cortex-A7 CPUs as little cores respectively.

We use the following three systems as seen in Figure 5.1 for benchmarking throughout this
chapter and refer to them by their short x3, arm-B and arm-L.

5.1 Performance Characteristics of the Systems

First, we will run generic benchmarks to get an overview on the performance characteristics
of the three systems and their relative performance among each other.

5.1.1 Memory Bandwidth

Figure 5.1 shows the achievable memory bandwidth on each system for reading, writing and
copying large chunks of memory.
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Label Architecture System Description

x3 x86 AMD Phenom-X3 8450 x86-based CPU, clocked at
2111MHz.

arm-B ARM (big) Odroid-XU

System-on-Chip based on the Sam-
sung Exynos 5410, using a quad-core
Cortex-A15, running at its default
frequency of 900MHz.

arm-L ARM (little) Cubieboard2
Allwinner A20 SoC, running a dual-
core Cortex-A7, with a clock speed
of 912MHz.

Table 5.1: Systems used in evaluation.

Figure 5.1: Achievable memory bandwidth for reading, writing and copying memory.

The x86-based system is the fastest for all operations, however, the ARM-based system are
not far behind. While the read and write performance is about the same for the little and
big ARM systems, the big ARM core can gain advantage when copying data compared to
the little core. The advantage of the little core over the big core for memory writes is likely
to be attributed to the different systems used.

5.1.2 CPU-Bound Application

For evaluating the CPU-performance of the systems, I have run a series of matrix multipli-
cations. The program uses the naïve algorithm with O(n3) complexity for square matrix
multiplications using int as a data storage type for the matrix elements. Figure 5.2 shows
the performance on each of the three systems when running the calculation as an L4Re
program. The execution times have been normalized to 1000MHz to allow for a better
comparison between the systems independent of the particular clock speed of each system.

The results show that the x86 system offers the best performance per clock cycle in the trio,
followed by the ARM big core. As expected, the ARM big core offers more performance
than the ARM little core.
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Figure 5.2: Performance of a series of matrix multiplications on the three evaluation systems,
normalized to a clock speed of 1000MHz.

5.1.3 CPU-Bound Application within L4Linux

When running the matrix multiplication as a Linux program inside an L4Linux virtual
machine, the results are as shown in Figure 5.3 together with the results from the previous
Section 5.1.2.

Figure 5.3: Performance of a series of matrix multiplications on the three evaluation systems, run
each on L4Re as well as virtualized. Results are normalized to a clock speed of 1000MHz.

The results show that the virtualization infrastructure has no significant influence on the
execution time of the matrix multiplications on all three platforms. This is to be expected
as CPU-bound tasks shall not put load on the virtualization functionality.

5.2 L4Linux Application Performance

During this work, L4Linux was converted from the previous thread-based execution model to
the vCPU execution model. The different execution model also implies different execution
behavior and thus execution performance. I used the AIM Multiuser Benchmark Suite VII
to evaluate the performance of the system, the same benchmark that has already been used
for the first L4Linux system [Här+97]. The benchmarks simulates application workload and
increases the jobs it runs until the system is saturated.

The figures show several configurations of Linux and L4Linux, running on the x3 system. All
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variants have 1500MB of memory available and a standard SATA hard-disk drive is used to
run the benchmark.

Figure 5.4: Each individual AIM XII benchmark run of Linux standard configuration with the
fluctuating results and the average of all runs.

Four variants have been evaluated, two Linux and two L4Linux configurations. For L4Linux
the vCPU-based (L4Linux vCPU ) and thread-based model (L4Linux thread) have been
run. For native Linux, the Linux standard configuration is an unmodified Linux. The Linux
TLB-flush version uses a modified Linux kernel that flushes the TLB on each entry and exit of
the kernel for page faults and system calls for two reasons. First, this effectively emulates the
address space switches that are architecturally required by L4Linux within Linux and thus
gives an insight on the share of the address space switching on the performance difference
between Linux and L4Linux. Second, this also allows to judge on the potential benefit of the
small address space optimization [Hof02] that is not available anymore.

All configurations were executed at least 5 times. Each run takes about 12 hours on the
given setup. The Linux version used is 3.14 and all Linux and L4Linux setups use the same
base-line configuration. As the results of the same configuration showed to be fluctuating
(see Figure 5.4 for an example) I computed an average graph of all benchmark runs of the
same configuration using least squares fitting, as shown in Figure 5.5.

Overall, the results are close. For the averaged results the slowest configuration (L4Linux
thread) is just 2.8% slower than the fastest setup (Linux standard). Experimental runs where
storage has been placed in a tmpfs in-memory file-system instead on the hard-disk showed
that the system can handle a magnitude more load, however, the system also runs into
resource exhaustion in all configurations and cannot finish the benchmark run. This shows
that file-system operations have a significant impact in the benchmark. For reference, the
graph also shows the results from the first L4Linux publication [Här+97] (L4Linux ’97 SOSP
and Linux ’97 SOSP). Although the CPU performance has increased by magnitudes, the
benchmark performance only increased by about one magnitude, giving further indication
that the access performance of the hard-disk has significant influence in the benchmark.

The results show that the application performance of L4Linux is in range of native Linux.
Further, vCPU-based L4Linux shows a slight improvement in application performance
over thread-based L4Linux. The modified Linux with TLB-flushing shows a performance
degradation, however, in this application benchmark the share on the difference between
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Figure 5.5: AIM Multiuser Benchmark Suite VII jobs per minute results. Each graph shows the
average of multiple benchmark runs of different configurations of native Linux and L4Linux, as
well as a comparison against the benchmark results of the ’97 SOSP publication on L4Linux.
The lower graph shows a magnified version for better visibility of the differences between the
configurations.

Linux and L4Linux is minimal.

5.3 Linux Compile Benchmark

The Linux kernel compile is a classical and popular system benchmark. It is mainly a CPU
throughput benchmark but also exercising operating system functionality such as paging as
well as storage and file-system subsystems.

The benchmark records the time required to unpack a Linux kernel source tree, compile a
defined configuration and delete the source tree and generated files again. Both the source
files and generated files are stored on a hard disk.

Figure 5.6 shows the results of the benchmark that has been run on the x3 system. Again,
as with the AIM benchmark in 5.2, four configurations have been used. Linux standard and
Linux TLB-Flush for native Linux and L4Linux vCPU and L4Linux thread for L4Linux.

The order of results are in line with the AIM benchmark. The fastest configuration is the
Linux standard setup, followed by the Linux TLB-Flush setup. For the L4Linux setups, the
vCPU version shows improved performance compared to the thread-mode configuration.
With this benchmark the native Linux with TLB flushing is about 5% slower compared to
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Figure 5.6: Linux and L4Linux Linux kernel compile benchmark. Smaller numbers indicate better
performance. The upper values show relative performance to the Linux standard setup, while
lower values show absolute benchmark runs in seconds.

standard Linux. L4Linux is 21.6% slower than standard Linux.

5.4 Influence of Host Timer Frequency

As described earlier, in a system with fixed time-slices the frequency of the host scheduler is
the base of scheduling guests on the system. In such a system with a partitioning scheduler,
the higher the frequency, the more accurate guests can be scheduled. However, increasing
the host timer frequency also increases the overhead of the overall system. First, servicing a
timer interrupt requires work in the host system. Secondly, switching guests more frequently
means that the guests’ performance will degrade because their cache working-set is evicted
more frequently.

To demonstrate the effect of increased host timer interrupt activity, I ran matrix multipli-
cations with varying host timer interrupt frequencies. The main reason for choosing this
application is that it is both CPU-consuming as well as memory demanding and thus can
represent a busy subsystem, including virtual machines. By adjusting the size of the matrices,
the amount of work in the test can also be easily adapted to work practically well on any
platform.

When running the multiplication in just one task, its runtime will only be influenced by
the overhead of the timer interrupt processing in the host. In other words, by increasing
the timer interrupt frequency, the matrix multiplication will slow down. When using matrix
multiplications in different tasks, the effect of voided cache working sets will also be seen.

Figure 5.7 shows the results of running the matrix multiplication on the x3 system. The
size of the matrices is 886x886, resulting in memory usage of each task of about 9MiB.
The x-axis shows the period of each task in µs, the y-axis shows the relative performance
compared to a configuration with a 10ms period and a single task.

The results show that running a host system with a timer frequency of 1kHz instead of a lower
frequency results only in a hardly measurable overhead. However, increasing the frequency
further, considerably impacts the runtime of the workload. For example, running with 10kHz
leads to about 20% more runtime. The impact of using multiple tasks concurrently is also
clearly visible and further increases the overhead for each single matrix multiplication.

Considering a virtualization system that uses time partitioning and is running virtual
machines with real-time latency requirements, we can conclude that a period of 1ms per
VM is manageable from an overhead point of view. However, it still must be considered that
the achievable latency for event reactions within a virtual machines depends on the length
of the time slices in the host as well as the number of virtual machines running. Taking an
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Figure 5.7: Relative time required to run the same workload, using one to three tasks and timer
frequencies from 100Hz (period of 10000µs) up to 20kHz (period of 50µs).

arbitrary example of 5 running VMs and a length of a period of 1ms, a VM has to wait up to
4ms until it is dispatched again and can handle events. For practical real-time systems such
a waiting time might be too long. Increasing the host scheduling frequency improves that
situation but also increases the overhead, as demonstrated with the matrix multiplications.
These results are in line with the results reported for RT-Xen [Xi+11]. Section 5.7 shows an
evaluation on how scheduling context improve on the event reaction latency and avoid the
problem of otherwise required high switching frequencies.

5.5 Added Source Code

Scheduling contexts are an enhancement that has been implemented in the host kernel. The
host kernel is part of the Trusted Computing Base (TCB) of all software running on the
system and thus we need to pay attention to a possible code increase as more code is also
likely to introduce more bugs.

Fiasco.OC Fiasco.OC implements scheduling policies in modules, allowing us to compare
the standard fixed-priority scheduler with our extended version supporting scheduling
contexts. However, generic code has also been extended to support additional scheduling
contexts.

Overall, the added scheduling module and the further added code, such as the internal
interface extensions required for multiple scheduling contexts, sum up to 626 source lines
of code as measured with the sloccount tool [Whe]. The already existing fixed-priority
scheduling module was adapted to the extended internal interface for scheduling modules
and grew from 102 source lines to 151 source lines. The scheduler module for multiple
scheduling contexts, an extension of the fixed-priority scheduler modules, requires 311 source
lines. The ready-queue implementation module for the fixed-priority scheduler stays constant
in size with 73 lines of source code, while the ready-queue implementation for multiple
scheduling contexts is 76 lines of source code.

Guests Virtual Machines Guests must be at least equipped with calls to the host to
select their used scheduling context during runtime. Manual effort is likely to correlate with
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the amount of code required to be added to the guest, thus small and compact additions
are preferred. Table 5.2 shows the source lines of code that need to be added to Linux and
FreeRTOS, the two systems introduced in Section 4.5.6.

Guest Added Source Code Lines
FreeRTOS 10
Linux 22

Table 5.2: Required code addition for Linux and FreeRTOS to enhance them with scheduling
context selection calls.

The implementation of a system call can be attributed with 8 lines of code, however, those
might already be available in the guest for other reasons, for example, because the guest is
paravirtualized.

Overall, the required additions are small and compact, allowing them be added to guest sys-
tems easily, either by modifying the sources or even patching the binary at the corresponding
positions if possible.

5.6 Performance of the Scheduling Functionality

In this section we look at the performance characteristics of the scheduling context function-
ality.

5.6.1 Passive Runtime Overhead

When scheduling contexts are not used within a guest operating system, the applied
modifications to the guest system incur no measurable overhead. Referring to 4.4.2 and
assuming that the set_sc() function will call out only when the SC must actually be
changed, the overhead is negligible because in this situation set_sc() boils down to a simple
check for equality between the IDs of the current and the targeted SC.

5.6.2 Scheduler Call Latencies

The following test evaluates the latency of calling the kernel’s scheduler. This is interesting
because, as already explained previously, schedulers can be nested and thus calling a scheduler
capability might go through proxies until it finally hits the kernel. Figure 5.8 shows the
layout of the conducted tests that have been run on the three systems. Each of the proxies
and the client run in their own address space.

The results are shown in Figure 5.9. The “Direct” column shows the call duration for directly
calling a kernel’s scheduler function in CPU cycles. The “1”, “2” and “3” columns show the
CPU cycles it takes to call the same function through the specified number of proxies. All
systems uniformly add about 2000 CPU cycles per proxy layer.

Taking about 2000 CPU cycles or multiples of that for calling a scheduler function in a
typical setup is in a reasonable time frame. However, for the frequently used operation of
setting the scheduling context of a thread or vCPU, such a call duration might be too long.
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Figure 5.8: Measurement setup.

Figure 5.9: Results of calling a scheduler’s function directly and via up to three proxies.

Additionally, by calling through the proxies, other address spaces are activated, leading
to usage of caches and TLBs that evict entries from the current application. This lead to
the design decision that switching a scheduling context should not be done through an
intermediate component, such as with the Scheduler interface. Instead, a more direct way
has been chosen by using the Thread interface for the selection operation.

Hardware-Assisted Virtualization With hardware-assisted virtualization, exiting a
virtual machine is more costly because the CPU needs to save and restore more state. This
also affects the vmmcall operation, the instruction that is used by guests to voluntarily exit
the virtual machine, for example, to call host functionality. In virtualization context, this
operation is typically called a hypercall.
Figure 5.10 shows the duration of calling out of a virtual machine, to the VMM and further
to the scheduler in the kernel, including up to three proxies, on the x3 x86-based system.

The results show that calling a VMM function from within a hardware-assisted virtual
machine must be attributed with 3075 cycles on the x3 system. This is also the baseline for
further calling the scheduling interface, either directly or via up to three proxies. Calling
from a hardware-assisted virtual machine is more expensive than using a paravirtualized
guest or native applications, however, the about 3000 cycles are still a practically acceptable
value. The added runtime for each added proxy correspond to the measured values as seen
in Figure 5.9 and thus it makes no difference from where the call originates.
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Figure 5.10: Results of calling a scheduler’s function from within a hardware-assisted virtual
machine directly and via up to three proxies. The column VM↔VMM denotes the time it takes
to call an empty VMM function. Other columns perform scheduler invocations.

5.7 Effect of Fixed-Partition Scheduling on Event Latency

In this section we study the effect of fixed-partition scheduling on the event delivery latency
into a vCPU, as being part of virtual machines, and compare it to a variant using scheduling
contexts.

Figure 5.11 shows the results of a program that runs two vCPUs which have a period of
10ms each, that is the vCPUs are switched, ignoring other system activity, every 10ms. Both
vCPUs execute a spinning loop to occupy the CPU. Interrupts are injected to one of the
vCPUs by a third thread, which waits for the vCPU to acknowledge its reception until again
waiting 1ms for injecting the next interrupt. The time between injection of 4000 interrupts
and their reception is depicted in the histograms of Figure 5.11.

Figure 5.11: Plot of the interrupt latency using a fixed-partitioning scheme (lower graph) and an
approach employing scheduling contexts (upper graph). In the bottom graph the large latency of
the event delivery for non-active vCPUs is clearly visible at about 21 million cycles.

The lower graph shows the latencies observed when using a fixed-partition approach. While
the “partition” is active, the latency is in the range of immediate delivery to the vCPU and
can be seen in the left part of the graph. However, when the vCPU is not active, delivery
is deferred until the vCPU is activated again. The experiment has been executed on the
x3 system which is using a processor speed of 2.1GHz, thus a 10ms period takes about 21
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million cycles, as indicated by the dashed vertical line. Parts of the event delivery suffer
from this behavior and have a latency over 21 million cycles. As the program is waiting for
the interrupt to arrive, the injector has to wait until the period is over and thus only one
interrupt per period is experiencing this large latency in this test, leading to less occurrences
of large latencies compared to immediate deliveries.

In the upper graph, the vCPU receiving the interrupts employs a scheduling context that is
bound to the interrupt and that raises its host priority compared to the other vCPU on
reception of that interrupt. The budget for the interrupt scheduling context is a fraction of
the overall budget for the vCPU. In our particular example a budget of 3ms for the whole
execution of the experiment suffices. The maximum observed latency value in the experiment
is 1426 cycles, including periods where the vCPU was not active when the interrupt was
triggered, and is marked in the graph with the dotted vertical line.

For reference, Table 5.3 lists the times required for running the ISR in this scenario for
all three systems. The listed figures are measured values and thus do not represent the
values that shall be put into an SC budget configuration for running the ISR. Those values
must be determined with an appropriate WCET analysis for the given system. The three
measured budgets reflect the relative performance of the three systems. The arm-L is the
slowest among the three and needs to allocate the biggest budget for running the ISR. The
x3 system is the fastest and required the least budget for the ISR.

System Budget for ISR
arm-L 12 ms
arm-B 10.5 ms
x3 3 ms

Table 5.3: Measured times required for the ISR handling in the three evaluation systems for the
complete runtime of the experiment.

In this experiment we see that the event delivery latency, for example for interrupts, in
fixed-partitioned setups depends on the configured period for the vCPU. Thus the WCET
of an interrupt service routine is at least a period. Picking up the findings of Section 5.4 and
the example therein, practically achievable latencies are in the range of at least a millisecond,
and increasing with more vCPUs running. Such latencies might be acceptable in scenarios
with only soft real-time requirements, such as with user interaction. In scenarios with more
stringent requirements, such as control applications, such latencies are not acceptable and
require a solution that provides better event reaction latencies. Further, an influence on
other running activities in the system is also not acceptable and thus requires a different
approach such as with the proposed scheduling contexts.

5.8 Summary

The evaluation assesses key aspects of the vCPU execution model and scheduling contexts.
Using the vCPU execution model within L4Linux yields a slightly improved application
performance and, due to behaving more closely to the native execution behavior of Linux,
allows to add more features, such as multi-processor support.

Experiments using scheduling contexts have shown that the presented mechanisms allow low
latency handling of real-time events in scenarios where other approaches fail. Furthermore,
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we evaluated the performance impact of increasing the host timer frequency. Results indicate
that a frequency of 1kHz still has barely any impact on execution time. Measurements
have shown that with a frequency of 10kHz an overhead of about 20% for the scheduled
applications must be accepted. By using scheduling contexts we can avoid the high switching
frequency and avoid long event latency.

Further, scheduling contexts are only used when an event occurs while an increased scheduling
frequency must be run permanently. This reduces the system load and thus gives potential
to reduce the energy consumption of the system. Schönherr et al. [Sch+10] report that a
system with a periodic timer tick consumes more energy compared to a tickless system. The
amount of timer interrupts is therefore visible in the energy consumption of a system. We can
therefore assume that using scheduling contexts also results to a lower energy consumption
of the system.

Finally, we also evaluated the source code lines that have been added to the Fiasco.OC
microkernel as well as the source code lines that need to be added to guest operating systems
to enhance them to use scheduling contexts. We conclude that the required additions are
small and manageable for any guest operating system.
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This chapter concludes the thesis by summarizing the contributions of this work and giving
directions for future work.

6.1 Contributions

This thesis addresses the challenges raised by the ongoing demand of system consolidation
in the area of real-time systems. Through the use of virtualization, systems, formerly
distributed to multiple physical systems, can be merged into a single system, exploiting
increased hardware performance and less overall resource usage.

The main contributions of this work are:

A portable, generic and latency-aware virtualization solution that allows to run a
variety of guest systems on a wide range of systems and platforms. Through a natural
enhancement of the existing microkernel-based system it allows to use virtualization
techniques not only to run legacy applications but also as an integral part of microkernel-
based applications.
As hardware platforms have a different range of features regarding their virtualization
capabilities, different virtualization solutions are required. However, for ease of applica-
bility the software interface to the different virtualization solutions shall be a generic as
possible. The vCPU-based virtualization interface in the Fiasco.OC microkernel allows
to use paravirtualization and hardware-assisted virtualization features under the hood
of a common interface that only exhibits differences where enforced by hardware.
For running latency-constrained systems through virtualization, the virtualization
layer must be designed in a way to allow guests to maintain their latency requirements.
First, that requires that the virtualization layer only adds minimal overhead: The
overhead that is required by the hardware to ensure isolation in the whole system.
Otherwise it shall provide access as direct, and thus as fast, as possible. Second,
the mechanisms must be designed in a way that the guest can react as direct as
possible to incoming events. The vCPU mechanism provides the direct interface to the
virtualization functionality and improves over previous paravirtualization approaches
regarding event reaction. The mechanism has been implemented for x86 and ARM
architectures.

Virtualization of real-time guests through scheduling contexts. Virtual machine
guests may run both best-effort and real-time jobs. However, this distinction is not
made at the hypervisor level that only schedules VM, rather than individual jobs
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inside the VM. The introduction of scheduling contexts, a mechanism to export the
necessary scheduling information to the hypervisor, allows to handle different types
of jobs inside the VM. The responsibility for selecting the appropriate scheduling
context is up to the VM while the host system ensures that the VM only uses assigned
resources. Scheduling contexts also do away with the need to run at high scheduling
frequencies for low event reaction latencies and thus save computing resources and
energy.

Further, mixed-criticality systems have shown to map onto the mechanism of scheduling
contexts, including mixed-criticality systems that run inside virtual machines. That
allows to extend mixed-criticality system with virtualization, giving those system a
broader applicability.

Generic and Hierarchical Scheduling Interface The proposed scheduling mechanism
also shows to be applicable to for a multitude of possible mixed-criticality scheduling
algorithms across a variety of platforms. Its hierarchical design further allows to stack
several independent components in one system and provide required isolation and
resource separation.

Both the vCPU-based virtualization and scheduling contexts have been implemented with
the TUD:OS framework, showing feasibility of the approaches. vCPU-based virtualization
has been provided on both the x86 and ARM architectures, including hardware-assisted
virtualization. Scheduling contexts have shown practicability on both architectures and mul-
tiple platforms. In the introduction I claimed that this work addresses particular challenges
which we can reflect on this work now:

• The generality of the approach has been accomplished by using different hardware
architectures, namely x86 and ARM. Thus, use on other architectures is assumed to
be straightforward.

• The approach uses virtualization on all platforms through the uniform vCPU inter-
face. Hardware-provided features for virtualization are used to improve the virtualiza-
tion performance.

• Latency-constrained applications and guests are supported by the preemptive Fi-
asco.OC microkernel and the asynchronous exception model provided by the introduced
vCPU functionality.

• The overhead of virtualization and isolation as well as resource requirements
has been shown to be minimal.

• By using a third-generation, capability-based microkernel, Fiasco.OC, the system uses
a state-of-the-art security architecture.

• The applicability of the presented extensions to existing guest operating systems
have shown to be small, clear and easy to integrate.

As the listing shows, all points could be covered. Overall my hope is that this work can give
a valuable contribution and help to bring computing systems forward.
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6.2 Outlook

This thesis opens up possibilities for future work. Further directions regarding scheduling
contexts have already been discussed in Section 4.7.

On a more general view, the system can be extended in several directions. The proposed
mechanisms allow for a configuration and reconfiguration of the system during runtime, thus
a flexible admission system can manage changing system settings. Such a reconfiguration of a
system might be beneficial for saving resources, for example, when a service is temporarily not
required, less computing cores can be sufficient to provide necessary execution environment.
The scope of the admission system can be from a simple approach of switching between
different profiles up to a system that can dynamically manage new applications that are put
on the system as well as their disappearance.

The applicability of the proposed mechanism to existing environments in virtualization
settings might also be of interest. I have shown how scheduling contexts can be integrated
in existing operating system kernels and how they can be virtualized. However, there are
also domain-specific software architectures that require real-time execution. Examples are
AUTOSAR, Real-Time Java and communication stacks such as for UMTS and its successor
Long Term Evolution (LTE). When consolidating such systems it is of interesting how the
proposed mechanisms can be applied, possibly reaching out to the application programming
interface of that environment.
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