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ABSTRACT
Recently, the application of virtual-machine technology to
integrate real-time systems into a single host has received
significant attention and caused controversy. Drawing two
examples from mixed-criticality systems, we demonstrate
that current virtualization technology, which handles guest
scheduling as a black box, is incompatible with this modern
scheduling discipline. However, there is a simple solution
by exporting sufficient information for the host scheduler to
overcome this problem. We describe the problem, the mod-
ification required on the guest and show on the example
of two practical real-time operating systems how flattening
the hierarchical scheduling problem resolves the issue. We
conclude by showing the limitations of our technique at the
current state of our research.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Real-time and
embedded systems

Keywords
Virtualization, real-time, scheduling, embedded systems

1. INTRODUCTION
Given that we want to integrate two or more real-time

systems as guests onto a single host system, what are the
challenges and opportunities that we are faced with? How
do we maintain timeliness properties, such as meeting all
deadlines in such a system when using virtual machines
(VMs)? Different if not contradictory answers are given
to those questions in the recent real-time literature. One
side, for example well represented by Heiser’s paper on ”The
Role of Virtualization in Embedded Systems” [14], claims
a ”mismatch between embedded-systems requirements and
the virtual-machine model is evident in scheduling.” He ar-
gues ”The integrated nature of embedded systems requires
that scheduling priorities of different subsystems must be
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interleaved. This is at odds with the concept of virtual ma-
chines.” On the other side, an argument well presented by
Sisu Xi et al. on RT-Xen [38] claims, that using bandwidth
servers with small enough and frequently replenished bud-
gets (1 ms) is sufficient for most real-time systems and that
the performance overhead is negligible. In another recent
publication, Masrur et al. motivate [25], ”VMs are reward-
ing in the context of mixed-criticality applications to provide
isolation between critical and non-critical tasks running on
the same processor.”, and ”propose a method for selecting
optimum time slices and periods for each VM in the system.
Our goal is to configure the VM scheduler such that not only
all tasks are schedulable but also the minimum possible re-
sources are used.”

The short dispute between the two sides following the pre-
sentation of Sisu Xi’s paper at EMSOFT 2011 remained in-
conclusive. As a key point — apart from Heiser’s doubt re-
garding Xen’s suitability as a real-time kernel — issues with
additional non-real-time tasks in practical real-time guests,
causing problems, were brought forward. In this paper, we
want to clarify the arguments.

We argue that at the root of the problem lies the insight
that mixed-criticality systems across guests in virtual ma-
chines are not compatible with current virtualization tech-
nology. We describe two example task sets and show the
limitations once they are integrated without using run-time
knowledge of scheduling events in the task sets. We then de-
scribe a small modification of virtualization technology that
allows to overcome these limitations: through a small en-
hancement of the scheduler in the guest operating system
we export sufficient information about the guest task sets
for the host scheduler to integrate these workloads onto a
single system (e.g., by interleaving guest priorities). Having
applied our approach in two practical real-time operating
systems (RTOSs), we are confident that the modification
to the guests are well in line with widely used virtualiza-
tion techniques such as paravirtualization and the use of
enlightened drivers for simplified virtualized devices. The
contributions of this paper are:

• Two practical scheduling examples, which cannot be
solved using a plain hierarchical scheduling approach.

• A mechanism to export relevant scheduling informa-
tion from virtualized subsystems to allow the host to
integrate these subsystems while preserving their tim-
ing requirements.

The remainder of this paper is organized as follows: af-
ter introducing the terminology, we construct two examples
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using the task sets of two virtual machines that are to be
integrated into a single host in Section 3. We demonstrate
that the assignment of a single budget (i.e., treating the VM-
internal scheduling as a black box) does not suffice to meet
the timing requirements of both VMs. Section 4 presents in
greater detail how guest scheduling information can be ex-
ported to the host in order to flatten the hierarchical sched-
ule and resolve the issue of integrating these subsystems.
Section 5 demonstrates these modifications on the example
of FreeRTOS and Linux-RT. In Section 6, we evaluate our
approach with regards to the lines of code that had to be
changed for these case studies and the performance implica-
tions that resulted form these changes. With Section 7 we
conclude the paper by discussing the limitations and prelim-
inary ideas how to overcome them.

2. TERMINOLOGY
Mixed-criticality systems [5] integrate tasks of different

importance (criticality) into a single system while preserv-
ing run-time robustness. That is, they drop tasks in the
order of increasing criticality if not all tasks can be serviced.
In safety-critical settings, assurance in the execution of crit-
ical tasks is typically established by certifying more critical
tasks at higher assurance levels and with tools that are more
pessimistic in the characterization of these tasks. As usual,
we assign each task τi the assurance (or criticality) level Li

up to which τi is certified and assume that it is also analyzed
with the tools of all lower criticality levels. More precisely,
we assume that for any two VMs (A and B), the critical-
ity levels of the tasks that execute inside these VMs are
comparable (i.e., LA

i ≥ LB
j ∨ LB

j ≥ LA
i ) and that all tasks

are analyzed at all lower criticality levels (including those of
tasks in other VMs).

For real-time systems, we obtain a task model for τi by re-
placing the worst-case execution time Ci of τi with a vector
of worst-case execution times —one per criticality level—
such that Ci(L) ≥ Ci(L

′) for L ≥ L′. For better readabil-
ity, we set Ci(L) := Ci(Li) for L ≥ Li. In the remainder
of this paper, we shall use the sporadic task model. That
is, a task τi is characterized by its period (minimal interar-
rival time), relative deadline, criticality level and worst-case
execution time vector: (Ti, Di, Li,Ci). We assume implic-
itly constrained tasks (i.e., Di = Ti). The mixed-criticality
(MC) scheduling problem can be phrased as follows: for each
criticality level L, if no job of a task (τj) with criticality level
Lj ≥ L executes longer than Cj(L), find a schedule such that
all jobs of all tasks with criticality level ≥ L complete by their
deadline.

As usual, we say a schedule is feasible if it is a solution to
the scheduling problem. A scheduler is optimal if it finds
a feasible schedule whenever there exists one. The MC
scheduling criterion gives rise to schedulers that deny the
kth job τi,k of a lower-criticality task τi its requested service
if a job τj,l of a higher-criticality task τj executes longer
than Cj(Li). In this case, we say τj,l denies τi,k and call the
earliest point in time by which τj,l has executed longer than
Cj(Li) without completing the criticality decision point of
Li.

Virtualization is a technology to run legacy systems, that
is operating systems and their applications on a Virtual
Machine Monitor (VMM), sometimes also called hypervi-
sor. Following commonly used terminology, we refer to the

entities provided by the VMM as Virtual Machines (VM),
the legacy systems running in VMs as guest (operating) sys-
tems and the (operating) system running the VMM as host.
We encounter two forms of virtualization technology, one
that runs guests without any modification, sometimes called
faithful virtualization, the other using small changes to guest
operating systems, usually called paravirtualization. Exam-
ples for paravirtualization systems are Xen [4]1, L4Linux [13]
and OKLinux [28]. Faithfully virtualized systems require
certain hardware properties that have been added to many
common architectures, for example the Intel-VT and AMD-
SVM to the x86 architectures. Embedded platforms like
ARM will also get virtualization functionality [27]. Current
virtualization technology comes in two architectural variants
often referred to as type I and type II: type I (bare metal)
uses a small kernel and runs the VMM and most of its host-
ing software on top of this kernel, examples being Xen [4],
OKL4 Microvisor [16], the NOVA microhypervisor [33] and
the VMware vSphere Hypervisor™ [36]. Type II (hosted)
includes the VMM/Hypervisor in a fully-fledged operating
system, examples are KVM [23] and VirtualBox [34] running
on Linux. In this paper, we reserve the term hypervisor for
the small kernel in type I systems and discuss our approach
in the setting of a hypervisor-based system with deprivileged
virtual machine monitors. Figure 1 illustrates this setting
and highlights the components that are important for our
work. Deprivileged VMMs execute guest operating systems
and their applications inside virtual machines. The hypervi-
sor offers virtual CPUs (vCPUs) as an abstraction of phys-
ical CPUs (pCPUs). The host scheduler in the hypervisor
schedules vCPUs. On top of vCPUs, the guest scheduler
runs the tasks of its VM. An extension to Type II VMMs is
straightforward.
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Figure 1: System architecture showing a system
with two running VMs.

Scheduling in virtualized systems is typically strictly hier-
archical. Each VM contains a scheduler whose responsibility
it is to meet all the deadlines of the tasks that belong to this
VM. The host scheduler then combines these guest sched-
ules by assigning each VM a fraction of the CPU time. This
fraction is typically characterized by a budget.

Besides having to meet the timeliness guarantees of the
VMs, the host is also responsible for enforcing a certain de-
gree of isolation between all guests. For safety-critical sys-
tems, the host must at least ensure that:

(R1) Scheduling in VM A must not depend on another VM

1Current versions of Xen also support faithful virtualization.



B providing information about the tasks it schedules;
and

(R2) The scheduling and, in particular, the feasibility of a
schedule in a VM A must not depend on the correct-
ness of any component (including the scheduler) in any
other VM B.

Because a guest scheduler in a virtual machine must be cer-
tified at least up to the criticality level of the tasks it sched-
ules, we can relax the latter requirement for mixed-criticality
systems:

(R2’) The feasibility of a schedule produced by VM A for
a certain criticality level Li must not depend on the
correctness of lower than Li certified schedulers and
components in other VMs.

Referring again to Figure 1, the hypervisor including the
host scheduler must necessarily be trusted by all guests and
hence certified at the highest criticality level. The VMMs
must be trusted only up to the extent that the guest OS
and its scheduler have to be trusted. That is, they must be
certified at the highest criticality level of the tasks in the
task set of the VM.

Other settings may impose further constraints on the iso-
lation of VMs such as for instance the complete absence
of covert channels [32]. However, for this paper, we re-
strict ourselves only to the above two constraints for mixed-
criticality systems.

3. MOTIVATING EXAMPLES
The following two examples illustrate the need for multi-

ple and, at the level of the host scheduler, interleaved bud-
gets. In the first example, this need arises with as low as
two mixed-criticality virtual machines (VM A and B), which
schedule task sets comprised of two respectively three spo-
radic tasks with two criticality levels HI > LO and different
periods. All tasks in the second example share the same pe-
riod of 8 units of time. The criticality levels of these tasks
are HI > MED > LO. Table 1 contains the parameters for
Example I, Table 2 for Example II. All units are normalized
to the host system. We assume optimal mixed-criticality
schedulers in both VMs and neglect all times spent in the
host or guest operating systems. Both examples assume that
the hypervisor schedules VMs strictly hierarchically. That
is, it assigns exactly one budget to each of the two virtual
machines VM A and VM B.

Sisu Xi et al. [38] propose to meet guest system timeliness
properties by running each VM as a bandwidth server
and allocate budgets proportional to the utilization. To
ensure that even systems with very small periods can be
handled, the budgets are allocated in very small portions.
The paper reports that splitting up budgets into chunks
of 1ms do not lead to significant performance problems,
but state that with much smaller chunks the additional
scheduling overhead becomes prohibitive. In our exam-
ples, we ignore the overheads introduced by small chunks
and assume, arbitrarily small chunks can be selected
without penalty. For our first example, we shall further
allow the host scheduler to adjust budgets dynamically.
In this way, the examples we give describe idealized systems.

VM Task Ti Li WCET

A
τ1 8 HI C1(HI) = 4, C1(LO) = 1
τ2 4 LO C2(LO) = 1
τ3 16 LO C3(LO) = 4

B
τ4 16 HI C4(HI) = 6, C4(LO) = 2
τ5 4 LO C5(LO) = 1

Table 1: Task parameters for Example I.

I 2:2 II 2:2 III 3:1 IV 3:1

Figure 2: Schedule for the simultaneous release of
the task set in Table 1 on top of a mixed-criticality
hypervisor. Filled bars show LO WCETs (Ci(LO)),
dashed bars show the time Ci(HI)−Ci(LO) that is re-
quired to complete high tasks that do not complete
before Ci(LO).

3.1 Example I
Figure 2 shows a schedule for the simultaneous release of

the task sets of Example I. We can distinguish four phases
which correspond to the periods of the tasks τA2 and τB5 . Ir-
respective of when the hypervisor switches to VM A or VM
B in the first phase, VM A and VM B cannot both execute
τA1 for C1(LO) and τB4 for C4(LO) while meeting the low
deadlines of τA2 and τB5 if both τA1 and τB4 would complete
before their criticality decision points. For the same reason
τA1 cannot completely be delayed to Phase II. As a conse-
quence, A needs at least a budget of 2 in Phase I and B
a budget of at least 1. Figure 2 illustrates the case where
both VMs receive the same budget of length 2. It is easy to
see that the arguments that we give hold also for all other
sensible budget assignments. With a 2 : 2 budget assign-
ment in Phase I, VM A can execute τA1 for one unit of time,
which allows the scheduler in VM A to decide whether τ2
is released or, if τA1 does not complete by C1(LO), whether
to allow further execution of τA1 . Remember the mixed-
criticality scheduling rule gives no further guarantees to LO
tasks if a HI task executes longer than its LO WCET. VM
B has to execute τB5 because VM isolation (R1) prevents
B’s scheduler from knowing whether or not τA1 has already
completed by C1(LO). It may drop τB5 only after τB4 has
executed longer than C4(LO). Following Baruah et al. [6],
we call the situation caused by τB5 criticality inversion. Fol-
lowing a 2 : 2 budget in Phase I, A needs at least a budget of
2 in Phase II to guarantee completion of τA1 in the situation
when τA1 did not complete by C1(LO). An assignment of a
larger budget to A is counterproductive as this would result
in a remaining LO utilization for the two remaining phases
of 1 and a remaining HI utilization of 9/8 (i.e., > 1). If
both τA1 and τB4 are not completed by their LO WCETs, a
completion by their HI WCETs can therefore no longer be
guaranteed. The key insight that completes this example is
that any execution of τA3 for longer than 1 unit of time may
result in τB4 missing its deadline if it has executed longer



than C4(LO). However, without knowing the progress of
τB4 , VM A cannot decide whether or not to execute τA3 at
time 14 in Phase IV. Following the same line of argumenta-
tion, it is easy to see that also for other budget assignments
the taskset in Table 1 is not feasible for mixed-criticality hy-
pervisors that assign only one budget per VM. A priority as-
signment π with π(τA3 ) < π(τB4 ) < π(τB5 ) ≤ π(τA2 ) ≤ π(τA1 ),
that is two budgets for VM A to execute τA3 and τA2 , τA1
interleaved with the tasks of VM B, however leads to a fea-
sible (fixed-priority) schedule if we assume that VM A stops
τA2 latest after C2(LO) = 1 and that it switches to its low
budget if τA1 completes before C1(LO). To fulfill the Isola-
tion Requirement (R2’), we do not have to require a similar
precaution for τA3 .

3.2 Example II
Example II demonstrates the possibility of infeasible

schedules when integrating two task sets with two tasks each
and where all tasks share a single global strict period of 8
units of time. Table 2 contains the parameters of these task
sets.

VM Task Ti Li WCET

A
τ1 8 HI

C1(HI) = 4, C1(MED) = 2,
C1(LO) = 2

τ2 8 LO C2(LO) = 1

B
τ3 8 HI

C3(HI) = 4, C3(MED) = 2,
C3(LO) = 2

τ4 8 MED C4(MED) = 3, C4(LO) = 3

Table 2: Task parameters for Example II.

To ensure that all high-criticality tasks meet their dead-
lines, a minimum of four execution units per period must
be allocated to each VM. Otherwise, τA1 , τB3 , or both may
miss their deadline if they fully need the execution time
Ci(HI) = 4 (i ∈ {1, 2}) determined by the high WCET anal-
ysis tools. However, if τA1 executes only for C1(MED) = 2
of the four allocated units, the local scheduler of VM A
will run τA2 on the remaining time (2 units) because it has
only a local view on its task set (see Isolation Requirement
(R1)). If τA2 then uses more than its low-criticality execu-
tion time C2(LO) = 1, for example because of an error or
because the scheduler in VM A does not enforce C for low-
criticality tasks, then the medium-criticality task τB4 may
miss its deadline if both τB3 requires C3(MED) = 2 units
and if τB4 requires the third unit as predicted by the medium
WCET analysis tool (C4(MED) = 3). Notice, the violation
of the mixed-criticality scheduling criterion does not depend
on a particular guest or host scheduler but merely on the
assigned budgets. For as long as the host scheduler allows
VM A to consume 4 units, τB3 or τB4 may miss their dead-
lines because the remaining 4 units do not always suffice for
C3(MED) + C4(MED).

An assignment of multiple interleaved budgets again re-
solves this violation. Table 3 lists the global (i.e., host) pri-
orities, parameters and tasks to run on these budgets. Like
for Example I, we have to assume the scheduler in VM A to
switch to its low budget if τA1 completes before C1(MED).

Our general approach to enable the interleaved execution
of virtual machines is to flatten the hierarchical scheduling
problem by exporting some parts of the guest scheduling
to the host. At the current state of our research, exporting

VM Budget Time Priority Tasks to run on

A
A1 4 1 τA1
A2 1 3 τA2

B B1 5 2 τB3 , τB4

Table 3: Example II priority/budget allocation
(smaller numbers denote higher priority).

the required information to the host scheduler requires small
modifications of the guest operating system. Moreover, we
have to require that the results of the real-time analysis and
hence the parameters of all real-time tasks in the task sets of
all guests are available to the host scheduler for the purpose
of a global admission. We believe that both requirements
are adequate given that the host has to guarantee that all
VMs meet the deadlines of all their tasks. In particular,
deployment of binary guests remains possible after they have
been enlightened for hosts that support flattening.

4. EXPORTING GUEST SCHEDULING TO
THE HOST SCHEDULER

A scheduling property common to virtualization technolo-
gies is that schedulers in guest operating systems operate
independently from the schedulers in other guests and in
the host: The host schedules VMs by selecting the budget
that it has associated with the virtualized CPU (vCPU).
The schedulers in the guest operating systems make use of
this budget to schedule their tasks.

In our approach, we attenuate this strict separation of
schedulers by introducing an interface in the host, which al-
lows VMs to allocate multiple budgets and to switch between
these budgets on their demand. More precisely, during the
startup phase of a virtual machine or later upon request
from the VM, the host scheduler allocates the budgets in
the form of scheduling contexts (SCs). After it has validated
the schedulability of the system, it attaches the SCs to the
virtual CPUs of the requesting VM. A virtual CPU (vCPU)
may have multiple SCs attached in which case the guest can
select the SC to run on. The set of parameters of a SC
includes at least a global priority π and a budget b that is
subject to some replenishment rule. In this sense, our ap-
proach is generally applicable to all host scheduling policies
that select VMs (in our case SCs) from the set of highest
prioritized VMs (SCs) with a positive remaining budget. In
particular, our approach extends to scheduling schemes such
as RT-Xen with small and frequently replenished budgets (if
we limit the selection to the highest prioritized SCs) and to
more classical global or partitioned fixed-priority schemes
where each SC has a period T to denote when budgets are
replenished and hence after which time the next job of a task
is released. Of course, for a partitioning host scheduler, the
physical CPU becomes an additional parameter of an SC
and all SCs that are associated with a vCPU must agree on
this parameter.

In addition to an interface for requesting an SC, which
the host scheduler is able to validate before it associates
this SC with a vCPU of the VM, the interface offered to
guest schedulers consists of the following two functions:

set_sc(id_sc) deactivates the current SC of the vCPU
that invokes this function and activates the SC referred



to by id_sc. Identifiers like id_sc are local to the in-
voking VM and have to be translated by the host to
the actual SC. During this translation, the host sched-
uler also validates that the referred SC is associated
with the requesting vCPU of this VM.

register_event(id_sc, event, function) associates the
specified event (e.g., an interrupt) with the SC. Upon
occurrence of this event, the host activates this SC
and, if this SC gets selected, invokes the VM at the
specified function.

We defer the discussion of register_event(id_sc, event,
function) and its use for triggering interrupt service rou-
tines to Section 4.2. For now, let us focus on set_sc(id_sc)
to see how voluntary switches between SCs help resolve the
scheduling problems raised in Section 3.

To keep the operation of the above two functions simple,
it is convenient to assign each vCPU a default scheduling
context (Default-SC). The priority of this Default-SC is the
lowest host priority level. The budgets and in particular the
replenishment and switching times of course depend on the
host scheduling policy. However, to ensure progress of the
non-real-time tasks of the individual VMs a Round-Robin
or weighted Round-Robin scheme suggests itself. That is,
VMs running on the Default-SC receive an equal or weighted
proportional share of the time that remains after scheduling
the real-time workload of all VMs.

vCPU1

A1 A2 B1
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vCPU2 vCPU1

A1 A2

b)

vCPU2

vCPU1

A1 A2
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vCPU2 vCPU1

A1 A2

d)

vCPU2

B1

B1 B1

Figure 3: Step-by-step illustration of a sequence of
scheduler context switches (set_sc()). Bold circles
indicate the active task and the currently active and
highest prioritized scheduling contexts.

Figure 3 illustrates the use of set_sc() to resolve the
mixed-criticality scheduling problem of Example II. Of
course, the three budgets in Table 3 already resolve this

problem if the host creates three SCs with the same param-
eters as the budgets in this table and if the guest scheduler
in VM A invokes set_sc() to switch from the SC for budget
A1 to the SC for budget A2 in the event that τA1 completes
before C1(LO). However, more insights in our approach can
be drawn from a discussion of this scenario with two bud-
gets for each of the two VMs (i.e., one SC (SCi) for each
of the four tasks (τi) parametrized as described in Table 2).
The priorities π of these SCs are π(SCA

1 ) = π(SCB
3 ) = 1,

π(SCB
4 ) = 2, and π(SCA

2 ) = 3. Smaller numbers stand
for higher priorities. We explain the solution for Example
II for the simultaneous release of all tasks. At time 0 (rel-
ative to this simultaneous release), both SCA

1 for τA1 and
SCB

3 for τB3 are active. Irrespective of the host scheduling
policy, both VMs receive a share of 4 units at the highest
priority to complete τA1 and τB3 in the event that not both
complete before C1(LO), respectively before C3(MED). If
one of these tasks completes latest after 2 units, the cor-
responding guest scheduler invokes set_sc(SCA

2 ) (for VM
A) or set_sc(SCB

4 ) (for VM B) to switch to the respective
lower prioritized scheduling context. Fig. 3a and b depict
this situation for the case where τA1 completes first. After
both VMs have dropped to their lower prioritized budgets
(Fig. 3c), SCB

4 has a higher priority than SCA
2 , which allows

τB4 to complete even in the case that τA1 exceeds its budget.
Finally τA2 runs (Fig. 3d), completing the sequence.

4.1 Guest Task to Host SC Mapping
The two examples and in particular the two solutions to

Example II show that the number of exported SCs heavily
depends on the host and guest scheduling policies and on
the workload to be scheduled. For fixed-priority schedulers
in all guests and in the host and for criticality monotonic
priority assignment [6], a relatively easy mapping of guest
tasks to host SCs is demonstrated in the 4 SC variant of
Example II: The scheduling parameters of every task are
directly exported and the local priorities are interleaved in
such as way that criticality levels are preserved. That is,
the priorities of all high-criticality tasks are strictly higher
than the priorities of all medium-criticality tasks and all low-
criticality tasks, etc. The interleaving within these priority
bands must of course be validated by the admission test
performed by the host.

The two examples also show possibilities for reducing the
number of SCs. For example, Table 3 shows a mapping for
Example II with one SC per criticality level. As the focus
of this paper is on introducing an easy to use mechanism
for integrating VM workloads by flattening the hierarchical
scheduling problem, we leave an exhaustive analysis of guest
task to host SC mapping for future work.

4.2 Interrupt Service Routines
We now turn our attention to the second function reg-

ister_event() and on one specific implementation detail
of VM internal scheduling: interrupt service routines. At
the same time, we relax our assumption that host and guest
scheduling comes at no cost.

Scheduling decisions in VMs are triggered by injecting in-
terrupts such as timer or device interrupts. Upon receiving
these interrupts, the guest runs the corresponding interrupt
service routine to decide how to react on these asynchronous
events and how to adjust the VM internal scheduling. For
example, a guest with one-shot timer may have programmed



a timer to the minimum of the absolute deadline of the cur-
rently active task and to the point in time when the budget
of this task will be depleted. Upon receiving this timer,
the timer service routine invokes the scheduler to select the
next task to switch to. From the perspective of the VM,
this service routine runs non-preemptively, that is, effec-
tively at a priority above the priorities of all tasks. How-
ever, to limit the interference from these events on other
VMs and to maintain the principle operation of the VMs in
the first place, the host must be able to integrate interrupts
into the SC scheme and activate SCs in the course of inject-
ing interrupts into the VM. The register_event() function
serves the purpose of informing the host about which SC to
activate for which event. The connection between the inter-
rupt and the to-be-invoked service routine is already known
to today’s VMMs. Our implementation therefore differs in
that the SC-to-event assignment and the event-to-function
assignment are realized as two separate functions.

Priority

A2

A1

B

IS
R

IS
R

IRQ IRQ
t t'

Figure 4: Scheduling context activation at the oc-
currence of asynchronous events such as interrupts
or the expiration of a timer. The interrupt service
routine always runs on A1 until the guest scheduler,
which it invokes, decides which task to run.

Figure 4 shows a detail of the release of τ1 and the acti-
vation of the interrupt service routine that follows. Fig. 5
presents the same step-by-step illustration as Fig. 3 but for
the scenario of Fig. 4, which includes interrupts. At time
t, the host receives an interrupt (IRQ), which triggers the
release of τ1 and later (at time t′) of τ2 in VM A. The hyper-
visor therefore switches to the VMM of VM A, which in turn
injects the interrupt into this VM. Because the interrupt is
associated with SCA

1 (i.e., budget A1), the interrupt service
routine always runs on this highest prioritized scheduling
context. In the first situation (at time t), the guest sched-
uler releases τ1 and drops to SCA

2 (i.e., budget A2) only if τ1
completed before C1(LO). In the second event (at time t′),
the guest scheduler immediately switches to SCA

2 to release
the second job shown for τ2.

4.3 Required Guest OS Modifications
At the current state of our research, small modifications to

guest operating systems are required to make use of multiple
scheduling contexts. For an arbitrary guest, we have to add
the following functionality:

• After every priority change, the corresponding SC
must be activated by means of set_sc() (if this SC
is not already active). A common place where this
call to set_sc() must be made is after the invocation
of the scheduler before the code for switching tasks is
invoked.

• For every interrupt service routine that has an SC as-
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Figure 5: Example sequence of actions as depicted
in Figure 4. a) and b) illustrate the first ISR invoca-
tion, after τ3 has finished, the state of a) is restore.
The second ISR invocation is depicted by c) and d).

sociated with it, set_sc() must be called when the
service routine returns to the currently active task in
the guest. Otherwise, the task would continue execut-
ing at the level of the interrupt routine, which in many
guests corresponds to a non-preemptive execution.

For specific guests a subset of these modifications may
suffice depending on the features the guest already provides.
In the next section we discuss how the functionality is added
to two real-time guest operating systems (RTOSs).

5. CASE STUDIES
For our experiments, we implemented flattening support

in the Fiasco.OC microkernel [1] and into two operating
systems, which we run as guests. Fiasco offers virtualiza-
tion support in the form of specialized threads called vir-
tual CPUs (vCPUs), which in addition to the user acces-
sible registers provides also storage for the state that is
typically accessible only from the kernel. That is, vCPUs
abstract from the implementation details of the virtualiza-
tion support in modern hardware architecture (for exam-
ple, from the Virtual Machine Control Structure (VMCS)
of Intel x86 CPUs [17]). Virtualization events are, as com-
mon for microkernel-based systems, reflected as messages
and delivered with the inter-process communication (IPC)
mechanism to application level virtual machine monitors.
Therefore, taken together, the unprivileged VMMs and the
microkernel serve as a type I VMM in the scenario depicted
in Figure 1. The VMM for faithful virtualization was built
using the Palacios VMM library [24].

Fiasco implements a generic interface, which allows appli-
cation level schedulers to set the parameters for the in-kernel
scheduling policy. Building upon the internal infrastructure
of the kernel, exposing multiple SCs and attaching them to
interrupts was straightforward. Regarding the handling of



multiple SCs by the in-kernel scheduler, there are two prin-
ciple ways this can be accomplished: Either the scheduler
selects threads (or vCPUs) based on their position in the
ready list, which is determined by the highest prioritized
active SC that is attached to this thread; or active SCs oc-
cupy the ready list in the first place and the scheduler selects
first the SC and then the thread attached to it. Both vari-
ants have their benefits and drawbacks depending on the
frequency of SC switches and on the likelihood of finding a
blocked thread, which in the second variant implies a lazy
dequeue operation of all its SCs.

For this paper, we used Fiasco’s fixed-priority scheduler.
That is, the parameters for SCs are periods (implicit dead-
lines), budgets and priorities and SCs are scheduled accord-
ing to these fixed priorities with a Round Robin scheduler
for those SCs with the same priority.

In the remainder of this section, we describe some impor-
tant details on the changes required to two popular oper-
ating systems: FreeRTOS and Linux-RT. In the examples,
set_sc(ID) denotes a switch of the SC of the calling vCPU.
The ID identifies the SC for activation. The specific imple-
mentation varies because of the different implementations
of hypercalls. Faithfully virtualized guest operating systems
invoke the hypervisor and hence the VMM through a spe-
cial machine instruction (vmcall on x86), which in turn the
hypervisor reflects as an IPC message to the VMM. Par-
avirtualized guests can directly invoke system-calls of the
hypervisor to communicate with their VMM. As both tech-
niques build upon vCPUs, the detailed implementation is
transparent to the host scheduler.

Depending on the host scheduler, it is possible to
implement optimizations for deferred scheduling when
set_sc(ID) gets invoked. For example, the switch to a
higher prioritized SC may be deferred to the point in time
of the next preemption or the switch could be dropped if the
current SC gets activated.

To simplify the presentation of our guest OS modifica-
tions, we restrict our examples to two SCs: the Default-SC
and one SC to handle high priority work. Elevation of a VM
to a higher host priority (i.e., to the SC for the high prior-
ity work) is triggered by a single interrupt. Switching away
from this SC targets the Default-SC. An extension to mul-
tiple different SCs at different priorities is straightforward.

5.1 FreeRTOS
The real-time operating system FreeRTOS typically comes

with no memory protection between tasks2. The scheduler
in FreeRTOS allows multiple tasks to run concurrently at
static priorities. Preemptive and non-preemptive variants
of this scheduler exist. In our implementation, we exclu-
sively use the preemptive version, which calls the internal
scheduler for each timer tick. This timer tick is associated
with the high priority SC. After the new task to be run
has been chosen, the function listed in Figure 6 is called,
handing over the new priority. Referring to FreeRTOS v6
and v7, the function must be added as xvPortPostSched-
ule(uxTopReadyPriority) in the function vTaskSwitch-
Context() after the while loop, which calculates the new pri-
ority. The function uses a barrier priority RT_BASE_PRIO to
split FreeRTOS tasks into a real-time and a time-sharing cat-

2 FreeRTOS support memory protection units (MPUs) how-
ever their use is not typical for the application fields of
FreeRTOS.

egory. Based on this barrier priority, the FreeRTOS sched-
uler decides whether the selected task should continue to use
the high priority SC or fall down to the default one (with
set_sc(ID_SC_DEFAULT)).

void xvPortPostSchedule(unsigned prio)

{

if (prio < RT_BASE_PRIO)

set_sc(ID_SC_DEFAULT);

}

Figure 6: SC switching function for FreeRTOS.

5.2 Linux
Linux is a widely used and popular operating system that

can be used for a wide range of use cases. With the on-
going work on improving the preemptiveness of the kernel
and with the merge of a significant part of the Linux-RT
patch, it is also increasingly used for real-time workloads.
Linux priorities are divided into a range for time-sharing
and an exclusive range for real-time processes. This distinc-
tion makes the implementation of the SC switching function
straightforward as listed in Figure 7. Referring to Linux
kernel version 3.3, the function post_sched_sc(current)
is called within the function finish_task_switch() in
kernel/sched/core.c3.

To switch back to the Default-SC in the case no schedul-
ing decision will be made after an interrupt has oc-
curred, we introduce the function irq_no_sched(). It
is called in the code paths for exiting interrupts as
shown in Figure 8. Referring to Linux 3.3, a con-
venient location to call irq_no_sched() is the function
irq_exit() in kernel/softirq.c. The synchronization
in irq_no_sched() is required to atomically check the
rescheduling condition with the actual operation. Other-
wise, if an interrupt occurred meanwhile, a possible RT-task
would be switched back to the default SC.

Using and mapping multiple RT-tasks within Linux to
different SCs is also possible by enhancing the two presented
functions.

6. EVALUATION

6.1 Further Use Cases of Flattening
Although we draw examples from mixed-criticality

scheduling, the application field of flattening and of
the mechanism to switch between multiple interleaved-
prioritized SCs is broader. We now introduce two further
use cases, which benefit from these enhancements.

The ”rare-alarm” example includes two subsystems: S1
consisting of τalarm and τbook and S2 consisting of τM2 .
τalarm is a sporadic task and τbook is a best-effort task, which
gathers statistics for maintenance purposes. τalarm has a low
minimum inter-arrival time and a WCET nearly as high as
the inter-arrival time leading to very high utilization. τM2 is
a high-utilization task. τalarm has an extremely low proba-
bility for high-frequency alarm showers, but the importance

3kernel/sched.c prior to version 3.3.



void post_sched_sc(struct task_struct *p)

{

if (!rt_task(p))

set_sc(ID_SC_DEFAULT);

}

Figure 7: Post scheduling function for Linux.

void irq_no_sched(void)

{

unsigned long flags;

local_irq_save(flags);

if (!need_resched()

&& !rt_task(current))

set_sc(ID_SC_DEFAULT);

local_irq_restore(flags);

}

Figure 8: Function to be called in case no scheduling
decision has been made upon interrupts.

of meeting the deadline in these rare situations is very high.
τM2 is much less important than τalarm, but more impor-
tant than the maintenance task τbook. Without guest-host
interaction in the form described in this paper, τbook will use
budgets reserved for the rare occasions of alarm showers and
block τM2 in most situations.

Another example are systems with interactive processes.
Common desktop operating systems have means to discover
highly interactive tasks and use this information to boost
their priorities. If several virtual machines with such inter-
active tasks change focus, single-budget allocation schemes
cannot consider these priority boosts without knowledge of
guest-task priorities. A way of solving this issue is to use
a high switching frequency between the VMs. However,
this increases the overhead as the VM switching has to be
done periodically. The assignment of multiple (keyboard
and mouse) interrupt triggered SCs allows to minimize these
switches to when they are needed.

6.2 Guest Modifications
To quantify the changes required on the guest operating

system, we count the number of lines that had to be added
to each of the guest variants for switching SCs. We count
here only the changes required for SC switching, not for par-
avirtualization itself. Moreover, we assume the availability
of basic infrastructure code, for example, to issue hypervisor
calls. Table 4 summarizes these changes.

FreeRTOS requires only the addition of one function plus
the calls activating this function after scheduling decisions.
Both sum up to a 10 line patch. We applied the two virtu-
alization techniques to the same Linux version. The same
modification was required to switch SCs after scheduling.
That is, the modification differs only in the IRQ exit paths,
however, not in the amount of code that has to be added.

SC setup requires additional code during the startup of
the VM or in the event that additional real-time tasks arrive.

Guest Added Source Code Lines
FreeRTOS (para-virtualized) 10
Para-virtualized Linux 22
Fully-virtualized Linux 22

Table 4: Added source lines of code to each guest
variant.

However, because this code is largely dependent on the guest
and host scheduling policy, lines-of-code statistics would not
easily be comparable.

6.3 Runtime Costs
The modifications to the guest operating system incur no

measurable overhead when SCs are not switched. Assuming
that set_sc() will call out only when the SC must actu-
ally be changed, the overhead is negligible because in this
situation set_sc() boils down to a simple check for equal-
ity between the IDs of the current and the targeted SC. In
addition, inlining of set_sc() eliminates the function call
overhead.

6.4 Scheduler Context Activation Latency
The costs for actually switching to a new SC are domi-

nated by the costs to call out of the VM into the hypervisor.
We have evaluated these costs in a benchmark running on
an AMD Phenom 8450 based system clocked at 2.1GHz.

Cycles µs
Para-virtualized 795 0.4
Fully-virtualized 5863 2.8

Table 5: Average SC activation latencies. Cycles
were measured using processor’s time stamp counter
(TSC), times are given for comparison.

Table 5 lists the average SC activation cost for the two
types of virtualization used. A call from within a faithfully
virtualized environment is more costly than in a paravirtual-
ized guest. In a faithfully virtualized system, the hypercall
consists of a vmcall instruction. Calls our of paravirtual-
ized guests can directly use the host system call interface
and hence benefit from the faster kernel entry.

7. LIMITATIONS AND FUTURE WORK
Currently, we require explicit call-outs of the guests to

trigger SC switches. This of course only works if the source
code of the guest is available for modification and can be re-
compiled. As this possibility might not always exist, a way
to run unmodified guests would be desirable. The challenge
of such a solution is to detect the locations where priori-
ties change within the guest. Whether or not these limi-
tation can be overcome, for example using techniques such
as binary rewriting, has to be subject to further research.
Considerable knowledge of guest OS kernels is required to
identify those locations and it remains open whether or not
this can be achieved.

For the overall system an admission must be performed
which decides whether a VM, or more general, a subsystem,
can be admitted to run on the system. Due to a possibly



dynamic nature of subsystems, the admission should be done
at runtime. Finding ways to dynamically generate a set of
scheduling parameters that can be handled practically is a
challenging task. Connected with that is the challenge of
extracting runtime information out of guests by techniques
such as profiling and event logging.

So far our guests and the host use static-priority based
scheduling, which allows the construction of a mapping from
guest to host priorities and especially to consider priorities
across multiple VMs. Dynamic-priority based algorithms in
the guest do not map as easily to a host with static priorities.
Guests may use algorithms such as Earliest Deadline First
(EDF) if the task set, which is scheduled according to this
algorithm, is only exposed to the host as a single parameter
set. Interleaving tasks scheduled with EDF across VMs or
treating tasks from a single VM differently would require
an EDF scheduler in the host as well. This also raises the
challenge of mapping EDF guest tasks to another set of EDF
host parameters.

It remains to be seen whether the presented technique
is applicable for other resources, such as disk, network, or
graphics. Generally, multiple scheduling parameters are not
only useful for VMs but can also be beneficial for work loads
with – for example – differing quality levels. Primary targets
might be video decoding and game engines.

8. RELATED WORK
Virtualization of timing-critical systems has been consid-

ered before. In the commercial context several vendors of-
fer real-time operating systems that also allow running vir-
tualized guest operating systems in compartments, among
them being VirtualLogix [35], PikeOS [29] and OKL4 [28].
The virtualized operating system needs to be adopted to run
in those environments. For example, this has been imple-
mented on a commercially deployed mobile phone, running a
Linux and the UMTS software stack side by side [15]. Forth-
coming hardware support for virtualization on the ARM ar-
chitecture will improve currently used virtualization tech-
niques [27]. Time partitioning is a popular method to en-
sure temporal isolation. PikeOS uses a certified time par-
titioning technique to isolate subsystems and those parti-
tions can run a paravirtualized Linux version [18]. In the
research community virtualization in embedded systems has
also been worked on. Proteus [3, 19] is using periodic task-
sets to fully virtualize operating systems without the need
to modify them on the PowerPC architecture. Xen [4] is a
popular virtualization solution for servers but has also been
ported to the ARM architecture [37] and then evaluated
for real-time use [7, 31]. Kinebuchi et al. [20] implemented
a hypervisor to host an RTOS and commodity operating
systems and evaluated against an L4 solution. Using an
L4-based system, it has been researched which costs are in-
duced by introducing address space isolation in Linux-RT
environments [26] by building real-time applications using
an improved environment that implements real-time threads
using host threads. Using specific features of ARM CPUs
and their utility in real-time environments has been evalu-
ated in [12]. Kiszka evaluated the use of Linux and KVM as
a real-time hypervisor [21] by measuring scheduling laten-
cies and introducing a paravirtualized scheduling interface
for guests. Follow-up work examined Linux-KVM for use in
embedded systems [22]. Zuo et al. also examined a KVM-
based solution for low-latency virtualization [40]. Cucinotta

et al. applied hierarchical real-time theory in a system with
KVM by scheduling VMs with reservations [8]. In IRMOS
an EDF scheduler in Linux is used to schedule KVM VMs
with a guaranteed share [9].

Virtualization inevitably includes stacked scheduling
which has been researched in form of hierarchical sched-
ulers. Real-time tasks are grouped into applications with
their own local scheduler, multiple applications run on the
host. Applications are modelled as servers. Zhang et al. in-
vestigated hierarchical scheduling on single processors with
earliest deadline first schedule being used as the local sched-
uler and EDF or fixed-priority as the global one, using in-
dependent local tasks [39]. Saewong et al. analyse fixed-
priority scheduling in hierarchical configurations [30]. Feng
et al. propose a multi-level approach to partition subsys-
tems [11]. Davis et al. investigate hierarchical scheduling
on uni-processors with fixed-priority preemptive scheduling
in both the global and local schedulers [10]. Time-demand
analysis techniques [2] can be used to express waiting times
of subsystems.

9. CONCLUSIONS
Some scheduling problems that arise from the integration

of real-time systems as guests in a real-time capable vir-
tualization system cannot be solved without VMM control
over guest tasks. More generally, in a hierarchical scheduling
setup an outer stage must have knowledge about an inner
stage configuration, possibly flattening the scheduling. The
core of the problem turns out to be a mixed-criticality prob-
lem. We showed, how central control exercised over guests
tasks can be used to overcome these problems. We also
demonstrated how such controlling mechanisms can be pro-
vided using several scheduling contexts for real-time guest
schedulers in the host scheduler. At the current stage of our
research, tiny modifications of the guest OS are needed and
a mapping must exist from guest to host scheduling.
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