
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

0

An Efficient Hierarchical Scheduling Framework
for the Automotive Domain

Mike Holenderski, Reinder J. Bril and Johan J. Lukkien
Eindhoven University of Technology

The Netherlands

1. Introduction

Modern real-time systems have become exceedingly complex. A typical car is controlled
by over 100 million lines of code executing on close to 100 Electronic Control Units (ECU).
With more and more functions being implemented in software, the traditional approach of
implementing each function (such as engine control, ABS, windows control) on a dedicated
ECU is no longer viable, due to increased manufacturing costs, weight, power consumption,
and decreased reliability and serviceability (Nolte et al., 2009). With the ECUs having
increasingly more processing power, it has become feasible to integrate several functions
on a single ECU. However, this introduces the challenge of supporting independent and
concurrent development and analysis of individual functions which are later to be integrated
on a shared platform. A popular approach in the industry and literature is component based
engineering, where the complete system is divided into smaller software components which
can be developed independently. The Automotive Open System Architecture (AUTOSAR)
(AUTOSAR, 2011) standard is an example of such an approach in the automotive domain.
It relies on a formal specification of component interfaces to verify the functional properties
of their composition. Many functions in automotive systems, however, also have real-time
constraints, meaning that their correct behavior is not only dependent on their functional
correctness but also their temporal correctness. AUTOSAR does not provide temporal
isolation between components. Verifying the temporal properties of an integrated system
requires complete knowledge of all functions comprising the components mapped to the same
ECU, and therefore violates the requirement for independent development and analysis.

In this chapter we address the problem of providing temporal isolation to components in an
integrated system. Ideally, temporal isolation allows to develop and verify the components
independently (and concurrently), and then to seamlessly integrate them into a system which
is functioning correctly from both a functional and timing perspective (Nolte, 2011; Shin &
Lee, 2008). The question is how to provide true temporal isolation when components execute
on a shared processor. We address this problem by means of an hierarchical scheduling
framework (HSF).

An HSF provides the means for the integration of independently developed and analyzed
components into a predictable real-time system. A component is defined by a set of tasks, a
local scheduler and a server, which defines the component’s time budget (i.e. its share of the
processing time) and its replenishment policy.

4

www.intechopen.com

2 Will-be-set-by-IN-TECH

An HSF-enabled platform should provide the following general functionalities:

1. Interface for the creation of servers and assigning tasks to servers.
2. Virtual timers, which are relative to a components’s budget consumption, as well as global

timers, which are relative to a fixed point in time.
3. Local scheduling of tasks within a component, and global scheduling of components on

the system level.

In this chapter we focus on providing temporal isolation and preventing interference between
components. We aim at satisfying the following additional requirement:

4. Expiration of events local to a component, such as the arrival of periodic tasks, should not
interfere with other components. In particular, the handling of the events local to inactive
components should be deferred until the corresponding component is activated. The time
required to handle them should be accounted to the corresponding component, rather than
the currently active one.

These requirements should be met by a modular and extensible design, with low performance
overhead and minimal modifications to the underlying RTOS. It should exhibit predictable
overhead, while remaining efficient to support resource-constrained embedded systems in
the automotive domain.

Real-time applications will often require support for periodic task arrival. Periodic tasks rely
on timers to represent their arrival time. For servers, we also need timers representing the
replenishment and depletion of a budget. Vital, and a starting point for our design, is therefore
the support for simple timers (or timed events), i.e. the assumption that an event can be set to
arrive at a certain time. This simple timer support is typically available in an off-the-shelf
Real-Time Operating System (RTOS) (Labrosse, 2002). Some RTOSes provide much more
functionality (for which our work then provides an efficient realization) but other systems
provide just that. As a result, the emphasis lies with the management of timers. The timer
management should support long event interarrival times and long lifetime of the system at
a low overhead.

Contributions

We first present the design of a general timer management system, which is based on Relative
Timed Event Queues (RELTEQ) (Holenderski et al., 2009), an efficient timer management
system targeted at embedded systems. Pending timers are stored in a queue sorted on the
expiration time, where the expiration time of each timer is stored relative to the previous timer
in the queue. This representation makes it possible to reduce the memory requirements for
storing the expiration times, making it ideal for resource constrained embedded systems. We
have implemented RELTEQ within µC/OS-II, and showed that it also reduces the processor
overhead compared to the existing timer implementation.

We then leverage RELTEQ to implement periodic tasks and design an efficient HSF.
The proposed HSF extension of RELTEQ supports various servers (including the polling,
idling-periodic, deferrable and constant-bandwidth servers), and provides access to both
virtual and global timers. It supports independent development of components by separating
the global and local scheduling, and allowing each server to define a dedicated scheduler.
The HSF design provides a mechanism for tasks to monitor their server’s remaining budget,

68 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 3

and addresses the system overheads inherent to an HSF implementation. It provides temporal
isolation and limits the interference of inactive servers on the system level. Moreover, it avoids
recalculating the expiration of virtual events upon every server switch and thus reduces the
worst-case scheduler overhead.

The proposed design is evaluated based on an implementation within µC/OS-II, a commercial
operating system used in the automotive domain. The results demonstrate low overheads of
the design and minimal interference between the components.

In this chapter we focus on the means for implementing a HSF. The corresponding analysis
falls outside of the scope.

Outline

Section 2 discusses related work, followed by the system model description in Section 3.
Section 4 introduces RELTEQ, describing its provided interface, underlying data structures,
and algorithms for fast insertion and deletion of timed events. Subsequently, the RELTEQ
interface is used to implement periodic tasks in Section 5 and fixed-priority servers in
Section 6. The servers form an integral part of the HSF presented in Section 7. In Section 8
the HSF design is evaluated based on an implementation on top of a commercial operating
system. Section 9 concludes this chapter.

2. Related work

In this section we discuss the work related to timer management, HSFs in general, and HSFs
in automotive systems.

2.1 Timer management

The two most common ways to represent the timestamps of pending timers are: absolute
timestamps are relative to a fixed point in time (e.g. January 1st, 1900), while relative
timestamps are relative to a variable point in time (e.g. the last tick of a periodic timer).

In (Oikawa & Rajkumar, 1999; Palopoli et al., 2009) each timer consists of a 64-bit absolute
timestamp and a 32-bit overflow counter. The timers are stored in a sorted linked list. A
timer Interrupt Service Routine (ISR) checks for any expiring timers, and performs the actual
enforcement, replenishment, and priority adjustments. In (Oikawa & Rajkumar, 1999) the
timer ISR is driven by a one-shot high resolution timer which is programmed directly. Palopoli
et al. (2009) use the Linux timer interface, and therefore their temporal granularity and latency
depend on the underlying Linux kernel.

The Eswaran et al. (2005) implementation is based on the POSIX time structure timeval, with
two 32-bit numbers to represent seconds/nanoseconds. The authors assume the absolute
timestamp value is large enough such that it will practically not overflow.

Carlini & Buttazzo (2003) present the Implicit Circular Timers Overflow Handler (ICTOH),
which is an efficient time representation of absolute deadlines in a circular time model. It
assumes a periodic timer and absolute time representation. It’s main contribution is handling
the overflow of the time due to a fixed-size bit representation of time. It requires managing the
overflow at every time comparison and is limited to timing constraints which do not exceed
2n−1, where n is the number of bits of the time representation. Buttazzo & Gai (2006) present

69An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

4 Will-be-set-by-IN-TECH

an implementation of an EDF scheduler based on ICTOH for the ERIKA Enterprise kernel
(Evidence, n.d.) and focus on minimizing the tick handler overhead.

The µC/OS-II (Labrosse, 2002) real-time operating system stores timestamps relative to the
current time. The timers are stored in an unordered queue. It assumes a periodic timer, and
at every tick it decrements the timestamp of all pending timers. A timer expires when its
timestamp reaches 0. Timestamps are represented as 16-bit integers. The lifetime of their
queue is therefore 216 ticks.

In (Holenderski et al., 2009) we introduced Relative Timed Event Queues (RELTEQ), which is
a timed event management component targeted at embedded operating systems. It supports
long event interarrival time (compared to the size of the bit representation for a single
timestamp), long lifetime of the event queue, and low memory and processor overheads. By
using extra “dummy" events it avoids the need to handle overflows at every comparison due
to a fixed bit-length time representation, and allows to vary the size of the time representation
to trade the processor overhead for handling dummy events for the memory overhead
due to time representation. Similar to (Engler et al., 1995; Kim et al., 2000), our RELTEQ
implementation is tick based, driven by a periodic hardware timer.

2.2 Hierarchical scheduling frameworks

HSFs are closely related to resource reservations. Mercer et al. (1994) introduce the notion
of processor reservations, aiming at providing temporal isolation for individual components
comprising a real-time system. Rajkumar et al. (1998) identify four mechanisms which
are required to implement such reservations: admission control, scheduling, monitoring and
enforcement. Run-time monitoring of the consumed resources is intrinsic to realizing correct
implementation of the scheduling and enforcement rules. Monitoring of real-time systems can
be classified as synchronous or asynchronous (Chodrow et al., 1991). In the synchronous case,
a constraint (e.g worst-case execution time) is examined by the task itself. In the asynchronous
case, a constraint is monitored by a separate task. The approaches in (Chodrow et al., 1991)
are based on program annotations and, hence, are synchronous. In reservation-based systems,
however, monitoring should be asynchronous to guarantee enforcement without relying on
cooperation from tasks. Moreover, monitoring should not interfere with task execution, but
should be part of the operating system or middleware that hosts the real-time application.
Our HSF takes the asynchronous monitoring approach.

Shin & Lee (2003) introduce the periodic resource model, allowing the integration of
independently analyzed components in compositional hard real-time systems. Their resource
is specified by a pair (Πi, Θi), where Πi is its replenishment period and Θi is its capacity.
They also describe the schedulability analysis for a HSF based on the periodic resource
model under the Earliest Deadline First and Rate Monotonic scheduling algorithms. While
the periodic-idling server Davis & Burns (2005) conforms to the periodic resource model,
the deferrable (Strosnider et al., 1995) and polling (Lehoczky et al., 1987) servers do
not. The HSF presented in this chapter supports various two-level hierarchical processor
scheduling mechanisms, including the polling, periodic idling, deferrable servers, and
constant-bandwidth (Abeni & Buttazzo, 1998) servers. We have reported on the benefits of our
constant-bandwidth server implementation in (van den Heuvel et al., 2011). In this chapter
we focus on the underlying timer management and illustrate it with fixed-priority servers.

70 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 5

2.2.1 HSF implementations

Saewong et al. (2002) present the implementation and analysis of an HSF based on deferrable
and sporadic servers using an hierarchical rate-monotonic and deadline-monotonic scheduler,
as used in systems such as the Resource Kernel (Rajkumar et al., 1998).

Inam et al. (2011) present a FreeRTOS implementation of an HSF, which is based on our earlier
work in (Holenderski et al., 2010). It supports temporal isolation for fixed-priority global
and local scheduling of independent tasks, including the support for the idling-periodic and
deferrable servers. Their goal is to minimize the changes to the underlying OS. Consequently
they rely on absolute timers provided by FreeRTOS. They do not address virtual timers.
The HSF presented in this chapter relies on relative times, which allow for an efficient
implementation of virtual timers. Also, our HSF implementation is modular and supports
both fixed-priority as well as EDF scheduling on both global and local levels, as well as
constant-bandwidth servers.

Kim et al. (2000) propose a two-level HSF called the SPIRIT uKernel, which provides a
separation between components by using partitions. Each partition executes a component,
and uses the Fixed-Priority Scheduling (FPS) policy as a local scheduler to schedule the
component’s tasks. An offline schedule is used to schedule the partitions on a global level.

Behnam et al. (2008) present an implementation of a HSF based on the periodic resource model
in the VxWorks operating system. They keep track of budget depletion by using separate
event queues for each server in the HSF by means of absolute times. Whenever a server is
activated (or switched in), an event indicating the depletion of the budget, i.e. the current
time plus the remaining budget, is added to the server event queue. On preemption of a
server, the remaining budget is updated according to the time passed since the last server
release and the budget depletion event is removed from the server event queue. When the
server’s budget depletion event expires, the server is removed from the server ready queue,
i.e. it will not be rescheduled until the replenishment of its budget.

Oikawa & Rajkumar (1999), describe the design and implementation of Linux/RK, an
implementation of a resource kernel (Portable RK) within the Linux kernel. They minimize
the modifications to the Linux kernel by introducing a small number of call back hooks
for identifying context switches, with the remainder of the implementation residing in an
independent kernel module. Linux/RK introduces the notion of a resource set, which is
a set of processor reservations. Once a resource set is created, one or more processes can
be attached to it to share its reservations. Although reservations are periodic, periodic
tasks inside reservations are not supported. The system employs a replenishment timer
for each processor reservation, and a global enforcement timer which expires when the
currently running reservation runs out of budget. Whenever a reservation is switched in the
enforcement timer is set to its remaining budget. Whenever a reservation is switched out, the
enforcement timer is cancelled, and the remaining budget is recalculated.

AQuoSA (Palopoli et al., 2009) also provides the Linux kernel with EDF scheduling and
various well-known resource reservation mechanisms, including the constant bandwidth
server. Processor reservations are provided as servers, where a server can contain one or more
tasks. Periodic tasks are supported by providing an API to sleep until the next period. Similar
to Oikawa & Rajkumar (1999) it requires a kernel patch to provide for scheduling hooks and
updates the remaining budget and the enforcement timers upon every server switch.

71An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

6 Will-be-set-by-IN-TECH

Faggioli et al. (2009) present an implementation of the Earliest Deadline First (EDF) and
constant bandwidth servers for the Linux kernel, with support for multicore platforms. It
is implemented directly into the Linux kernel. Each task is assigned a period (equal to its
relative deadline) and a budget. When a task exceeds its budget, it is stopped until its next
period expires and its budget is replenished. This provides temporal protection, as the task
behaves like a hard reservation. Each task is assigned a timer, which is activated whenever a
task is switched in, by recalculating the deadline event for the task.

Eswaran et al. (2005) describe Nano-RK, a reservation-based RTOS targeted for use in
resource-constrained wireless sensor networks. It supports fixed-priority preemptive
multitasking, as well as resource reservations for processor, network, sensor and energy.
Only one task can be assigned to each processor reservation. Nano-RK also provides explicit
support for periodic tasks, where a task can wait for its next period. Each task contains a
timestamp for its next period, next replenishment and remaining budget. A one-shot timer
drives the timer ISR, which (i) loops through all tasks, to update their timestamps and handle
the expired events, and (ii) sets the one-shot timer to the next wakeup time.

Unlike the work presented in (Behnam et al., 2008), which implements a HSF on top of a
commercial operating system, and in (Faggioli et al., 2009; Oikawa & Rajkumar, 1999; Palopoli
et al., 2009), which implement reservations within Linux, our design for HSF is integrated
within a RTOS targeted at embedded systems. Kim et al. (2000) describe a micro-kernel with
a two-level HSF and time-triggered scheduling on the global level.

Our design aims at efficiency, in terms of memory and processor overheads, while minimizing
the modifications of the underlying RTOS. Unlike Behnam et al. (2008); Oikawa & Rajkumar
(1999); Palopoli et al. (2009) it avoids recalculating the expiration of local server events, such as
budget depletion, upon every server switch. It also limits the interference of inactive servers
on system level by deferring the handling of their local events until they are switched in.
While Behnam et al. (2008) present an approach for limiting interference of periodic idling
servers, to the best of our knowledge, our work is the first to also cover deferrable servers.

2.3 Hierarchical scheduling in automotive systems

Asberg et al. (2009) make first steps towards using hierarchical scheduling in the AUTOSAR
standard. They sketch what it would take to enable the integration of software components by
providing temporal isolation between the AUTOSAR components. In (Nolte et al., 2009) they
extend their work to systems where components share logical resources, and describe how to
apply the SIRAP protocol (Behnam et al., 2007) for synchronizing access to resources shared
between tasks belonging to different components. In this work we consider independent
components and focus on minimizing the interference between components due to them
sharing the timer management system.

3. System model

In this paper we assume a system is composed of independently developed and analyzed
components. A components consists of a set of tasks which implement the desired application,
a local scheduler, and a server. There is a one-to-one mapping between components and
servers.

72 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 7

3.1 Tasks

We consider a set Γ of periodic tasks, where each task τi ∈ Γ is specified by a tuple (i, φi, Ti, Ci),
where i is a fixed priority (smaller i means higher priority), φi is the task’s phasing, Ti is the
interarrival time between two consecutive jobs, and Ci is its worst-case execution time. Tasks
are preemptive and independent.

3.2 Servers

We consider a set of servers Σ, where each server σi ∈ Σ is specified by a tuple (i, Πi, Θi),
where i is the priority (smaller i means higher priority), Πi is its replenishment period and
Θi is its capacity. During runtime, its available budget βi may vary. Every Πi time units
βi is replenished to Θi. When a server is running, every time unit its available budget βi is
decremented by one.

The mapping of tasks to servers is given by γ(σi) ⊆ Γ which defines the set of tasks mapped
to server σi. We assume that each task is mapped to exactly one server. A task τj ∈ γ(σi)
which is mapped to server σi can execute only when βi > 0.

3.2.1 Deferrable server

The deferrable server Strosnider et al. (1995) is bandwidth preserving. This means that when a
server is switched out because none of its tasks are ready, it will preserve its budget to handle
tasks which may become ready later. A deferrable server can be in one of the states shown in
Figure 1. A server in the running state is said to be active, and in either ready, waiting or depleted
state is said to be inactive. A change from inactive to active or vice-versa is accompanied by
the server being switched in or switched out, respectively.

Depleted

RunningReady

wakeup

depletion

dispatch

preemption

create

Waiting

replenishment

workload exhausted

Fig. 1. State transition diagram for the deferrable server. The replenishment transitions from
the Ready, Running and Waiting states pointing to the same state are not shown.

A server σi is created in the waiting state, with βi = Θi. When it is dispatched by the scheduler
it moves to running state. A running server may become inactive for one of three reasons:

• It may be preempted by a higher priority server, upon which it preserves its budget and
moves to the ready state.

• It may have available budget βi > 0, but none of its tasks in γ(σi) may be ready to run,
upon which it preserves its budget and moves to the waiting state.

• Its budget may become depleted, upon which it moves to the depleted state.

73An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

8 Will-be-set-by-IN-TECH

When a depleted server is replenished it moves to the ready state and becomes eligible to run.
A waiting server may be woken up by a newly arrived periodic task or a delay event.

3.2.2 Idling periodic server

When the idling periodic server Davis & Burns (2005) is replenished and none of its tasks are
ready, then it idles its budget away until either a proper task arrives or the budget depletes.
An idling periodic server follows the state transition diagram in Figure 1, however, due to its
idling nature it will never reach the waiting state (and can therefore be regarded as created in
ready state).

3.3 Hierarchical scheduling

In two-level hierarchical scheduling one can identify a global scheduler which is responsible
for selecting a component. The component is then free to use any local scheduler to select a
task to run.

In order to facilitate the reuse of existing components when integrating them to form larger
systems, the platform should support (at least) fixed-priority preemptive scheduling at the
local level within components (since it is a de-facto standard in the industry). To give the
system designer the most freedom it should support arbitrary schedulers at the global level.
In this paper we will focus on a fixed-priority scheduler on both local and global level.

3.4 Timed events

The platform needs to support at least the following timed events: task delay, arrival of a
periodic task, server replenishment and server depletion.

Events local to server σi, such as the arrival of periodic tasks τj ∈ γ(σi), should not interfere
with other servers, unless they wake a server, i.e. the time required to handle them should be
accounted to σi, rather than the currently running server. In particular, handling the events
local to inactive servers should not interfere with the currently active server and should be
deferred until the corresponding server is switched in.

4. RELTEQ

To implement the desired extensions in µC/OS-II we needed a general mechanism for
different kinds of timed events, exhibiting low runtime overheads. This mechanism should
be expressive enough to easily implement higher level primitives, such as periodic tasks,
fixed-priority servers and two-level fixed-priority scheduling.

4.1 RELTEQ time model

RELTEQ stores the arrival times of future events relative to each other, by expressing their
time relative to their previous event. The arrival time of the head event is relative to the current
time1, as shown in Figure 2.

1 Later in this chapter we will use RELTEQ queues as an underlying data structure for different purposes.
We will relax the queue definition: all event times will be expressed relative to their previous event, but
the head event will not necessarily be relative to “now”.

74 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 9

12 5 3 0 7

e
1

e
2

e
3

e
4

e
5

absolute time1002

event time

1007 1010 1010 1017990

now

Fig. 2. Example of the RELTEQ event queue.

Unbounded interarrival time between events

One of our requirements is for long event interarrival times with respect to time
representation. In other words, given d as the largest value that can be represented for a
fixed bit-length time representation, we want to be able to express events which are kd time
units apart, for some parameter k > 1.

For an n-bit time representation, the maximum interval between two consecutive events in the
queue is 2n − 1 time units2. Using k events, we can therefore represent event interarrival time
of at most k(2n − 1). RELTEQ improves this interval even further and allows for an arbitrarily
long interval between any two events by inserting “dummy" events, as shown in Figure 3.

(a)

(b)

4 5 Legend:

event

dummy event
4 5 2

n
-1 11

2
n

+10

Fig. 3. Example of (a) an overflowing relative event time (b) RELTEQ inserting a dummy
event with time 2n − 1 to handle the overflow.

If t represents the event time of the last event in the queue, then an event ei with a time larger
than 2n − 1 relative to t can be inserted by first inserting dummy events with time 2n − 1 at
the end of the queue until the remaining relative time of ei is smaller or equal to 2n − 1.

In general, dummy events act as placeholders in queues and can be assigned any time in the
interval [0, 2n − 1].

4.2 RELTEQ data structures

A RELTEQ event is specified by the tuple (kind, time, data). The kind field identifies the event
kind, e.g. a delay or the arrival of a periodic task. time is the event time. data points to
additional data that may be required to handle the event and depends on the event kind.
For example, a delay event will point to the task which is to be resumed after the delay event
expires. Decrementing an event means decrementing its event time and incrementing an event
means incrementing its event time. We will use a dot notation to represent individual fields
in the data structures, e.g. ei.time is the event time of event ei.

A RELTEQ queue is a list of RELTEQ events. Head(qi) represents the head event in queue qi.

2 With n bits we can represent 2n distinct numbers. Since we start at 0, the largest one is 2n − 1.

75An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

10 Will-be-set-by-IN-TECH

4.3 RELTEQ tick handler

While RELTEQ is not restricted to any specific hardware timer, in this chapter we assume a
periodic timer which invokes the tick handler, outlined in Figure 4.

The tick handler is responsible for managing the system queue, which is a RELTEQ queue
keeping track of all the timed events in the system. At every tick of the periodic timer the time
of the head event in the queue is decremented. When the time of the head event is 0, then the
events with time equal to 0 are popped from the queue and handled.

The scheduler is called at the end of the tick handler, but only in case an event was handled.
If no event was handled the currently running task is resumed straightway.

The behavior of a RELTEQ tick handler is summarized in Figure 4.

Head(system).time := Head(system).time - 1;
if Head(system).time = 0 then

while Head(system).time = 0 do

HandleEvent(Head(system));
PopEvent(system);

end while

Schedule();
end if

Fig. 4. Pseudocode for the RELTEQ tick handler.

How an event is handled by HandleEvent() depends on its kind. E.g. a delay event will resume
the delayed task. In general, the event handler will often use the basic RELTEQ primitives, as
described in the following sections.

Note that the tick granularity dictates the granularity of any timed events driven by the tick
handler: e.g. a server’s budget can be depleted only upon a tick. High resolution one-shot
timers (e.g. High Precision Event Timer) provide a fine grained alternative to periodic ticks.
In case these are present, RELTEQ can easily take advantage of the fine time granularity by
setting the timer to the expiration of the earliest event among the active queues. The tick based
approach was chosen due to lack of hardware support for high resolution one-shot timers on
our example platform. In case such a one-shot timer is available, our RELTEQ based approach
can be easily modified to take advantage of it.

4.4 Basic RELTEQ primitives

Three operations can be performed on an event queue: a new event can be inserted, the head
event can be popped, and an arbitrary event in the queue can be deleted.

NewEvent(k, t, p) Creates and returns a new event ei with ei.kind = k, ei.time = t, and
ei.data = p.

InsertEvent(qi, ej) When a new event ej with absolute time tj is inserted into the event queue
qi, the queue is traversed accumulating the relative times of the events until a later event
ek is found, with absolute time tk ≥ tj. When such an event is found, then (i) ej is inserted
before ek, (ii) its time ej.time is set relative to the previous event, and (iii) the arrival time
of ek is set relative to ej (i.e. tk − tj). If no later event was found, then ej is appended at the
end of the queue, and its time is set relative to the previous event.

76 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 11

PopEvent(qi) When an event is popped from a queue it is simply removed from the head of
the queue qi. It is not handled at this point.

DeleteEvent(qi, ej) Since all events in a queue are stored relative to each other, the time ej.time
of any event ej ∈ qi is critical for the integrity of the events later in the queue. Therefore,
before an event ej is removed from qi, its event time ej.time is added to the following event
in qi.
Note that the addition could overflow. In such case, instead of adding ej.time to the
following event in qi, the kind of ej is set to a dummy event and the event is not removed.
If ej is the last event in qi then it is simply removed, together with any dummy events
preceding it.

4.5 Event queue implementation

The most straightforward queue implementation is probably a doubly linked list. The time
complexity of the InsertEvent() operation is then linear in the number of events in the queue,
while the complexity of the DeleteEvent() and PopEvent() operations is constant.

The linear time complexity of the insert operation may be inconvenient for large event
queues. An alternative implementation based on a heap or a balanced binary tree may seem
more appropriate, as it promises logarithmic time operations. However, as the following
theorem states, the relative time representation coupled with the requirement for long
event interarrival times (compared to the time representation) make such an implementation
impossible.

Theorem 4.1. Assume that the maximum value we can represent in the time representation is d and
also assume that we store times in a tree using relative values no greater than d. Finally, assume that
any two events in the tree are at most kd apart in real time, for some parameter k. Then a logarithmic
time retrieval of an event from a tree is not possible.

Proof. If there are k events, the largest time span these k events can represent is kd time units,
i.e., the time difference between the first and last event can be at most kd units. If we are to
obtain this value by summing over a path this path has to be of length k which leads to a linear
representation. This argument pertains to any representation that sums contributions over a
path.

We can illustrate Theorem 4.1 using dummy events: assuming that we start at time 0, the real
time of a newly inserted event is at most kd. We would need to insert dummy events until a
root path can contain this value. This means we would need to add dummy events until there
is a root path of length k.

Conversely, if we assume a tree representation, then we would like to obtain kd as a sum of
log(k) events. If we assume an even distribution over all events, which is the best case with
respect to the number of bits required for the time representation, then each event time will

be equal to k
log(k) d. This means that

⌈

log
(

k
log(k)

)⌉

extra bits are needed. Therefore, in a tree
implementation one cannot limit the time representation to a given fixed value, independent
of kd (i.e. the tree span).

77An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

12 Will-be-set-by-IN-TECH

In order to satisfy our initial requirement for long event interarrival time, we chose for a
linked-list implementation of RELTEQ queues. In future work we look into relaxing this
requirement.

5. Periodic tasks

The task concept is an abstraction of a program text. There are roughly three approaches to
periodic tasks, depending on the primitives the operating system provides. Figure 5 illustrates
the possible implementations of periodic tasks, where function fi() represents the body of task
τi (i.e. the actual work done during each job of task τi).

Task τi :
k := 0;
while true do

now := GetTime();
DelayFor(φi + k ∗ Ti − now);
k := k + 1;
fi();

end while

Registration:
TaskMakePeriodic(τi , φi , Ti);

Task τi :
while true do

TaskWaitPeriod();
fi();

end while

Registration:
RegisterPeriodic(fi(), φi , Ti);

(a) (b) (c)

Fig. 5. Possible implementations of a periodic task.

In Figure 5.a, the periodic behavior is programmed explicitly while in Figure 5.b this
periodicity is implicit. The first syntax is typical for a system without support for periodicity,
like µC/OS-II. It provides two methods for managing time: GetTime() which returns the
current time, and DelayFor(t) which delays the execution of the current task for t time units
relative to the time when the method was called. As an important downside, the approach in
Figure 5.a may give rise to jitter, when the task is preempted between now := GetTime() and
DelayFor().

In order to go from Figure 5.a to 5.c we extract the periodic timer management from the
task in two functions: a registration of the task as periodic and a synchronization with the
timer system. A straightforward implementation of TaskWaitPeriod() is a suspension on a
semaphore. Note that we wait at the beginning of the while loop body (rather than at the
end) in case φi > 0. Going from interface in Figure 5.b to 5.c is now a simple implementation
issue.

Note that the task structure described in Figure 5.b guarantees that a job will not start before
the previous job has completed, and therefore makes sure that two jobs of the same task will
not overlap if the first job’s response time exceeds the task’s period.

RELTEQ primitives for periodic tasks

In order to provide the periodic task interface in 5.b, we need to implement a timer which
expires periodically and triggers the task waiting inside the TaskWaitPeriod() call.

To support periodic tasks we introduce a new kind of RELTEQ events: a period event. Each
period event ei points to a task τi. The expiration of a period event ei indicates the arrival of

78 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 13

a periodic task τi upon which (i) the event time of the ei is set to Ti and reinserted into the
system queue using InsertEvent(), and (ii) the semaphore blocking τi is raised.

To support periodic tasks we have equipped each task with three additional variables:
TaskPeriod, expressed in the number of ticks, TaskPeriodSemaphore, pointing to the semaphore
guarding the release of the task, and TaskPeriodEvent, pointing to a RELTEQ period event. For
efficiency reasons we have added these directly to the Task Control Block (TCB), which is the
µC/OS-II structure storing the state information about a task. Our extensions could, however,
reside in a separate structure pointing back to the original TCB.

A task τi is made periodic by calling TaskMakePeriodic(τi, φi, Ti), which

1. sets the TaskPeriod to Ti,
2. removes the TaskPeriodEvent from the system queue using DeleteEvent(), in case it was

already inserted by a previous call to TaskMakePeriodic(), otherwise creates a new period
event using NewEvent(period, Ti, τi) and assigns it to TaskPeriodEvent.

3. sets the event time of the TaskPeriodEvent to φi if φi > 0 or Ti if φi = 0, and inserts it into
the system queue.

6. Servers

A server σi is created using ServerCreate(Πi, Θi, kind), where kind specifies whether the server
is idling periodic or deferrable. A task τi is mapped to server σi using ServerAddTask(σi, τi).

In Section 4.3 we have introduced a system queue, which keeps track of pending timed events.
For handling periodic tasks assigned to servers we could reuse the system queue. However,
this would mean that the tick handler would process the expiration of events local to inactive
servers within the budget of the running server.

In order to limit the interference from inactive servers we would like to separate the events
belonging to different servers. For this purpose we introduce additional RELTEQ queues
for each server. We start this section by introducing additional primitives for manipulating
queues, followed by describing how to use these in order to implement fixed-priority servers.

6.1 RELTEQ primitives for servers

We introduce the notion of a pool of queues, and define two pools: active queues and inactive
queues. They are implemented as lists of RELTEQ queues. Conceptually, at every tick of the
periodic timer the heads of all active queues are decremented. The inactive queues are left
untouched.

To support servers we extend RELTEQ with the following methods:

ActivateQueue(qi) Moves queue qi from the inactive pool to the active pool.
DeactivateQueue(qi) Moves queue qi from the active pool to the inactive pool.
IncrementQueue(qi) Increments the head event in queue qi by 1. Time overflows are handled

by setting the overflowing event to 2n − 1 and inserting a new dummy event at the head
of the queue with time equal to the overflow (i.e. 1).

SyncQueueUntilEvent(qi, qj, ek) Synchronizes queue qi with queue qj until event ek ∈ qj, by
conceptually computing the absolute time of ek, and then popping and handling all the
events in qi which have occurred during that time interval.

79An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

14 Will-be-set-by-IN-TECH

6.2 Limiting interference of inactive servers

To support servers, we add an additional server queue for each server σi, denoted by σi.sq, to
keep track of the events local to the server, i.e. delays and periodic arrival of tasks τj ∈ γ(σi).
At any time at most one server can be active; all other servers are inactive. The additional
server queues make sure that the events local to inactive servers do not interfere with the
currently active server.

When a server σi is switched in its server queue is activated by calling ActivateQueue(σi.sq). In
this new configuration the hardware timer drives two event queues:

1. the system queue, keeping track of system events, i.e. the replenishment of periodic servers,
2. the server queue of the active server, keeping track of the events local to a particular server,

i.e. the delays and the arrival of periodic tasks belonging to the server.

When the active server is switched out (e.g. a higher priority server is resumed, or
the active server gets depleted) then the active server queue is deactivated by calling
DeactivateQueue(σi.sq). As a result, the queue of the switched out server will be “paused", and
the queue of the switched in server will be “resumed". The system queue is never deactivated.

To keep track of the time which has passed since the last server switch, we introduce a
stopwatch. The stopwatch is basically a counter, which is incremented with every tick. In order
to handle time overflows discussed in Section 4.1, we represent the stopwatch as a RELTEQ
queue and use IncrementQueue(stopwatch) to increment it.

During the time when a server is inactive, several other servers may be switched in and
out. Therefore, next to keeping track of time since the last server switch, for each server we
also need to keep track of how long it was inactive, i.e the time since that particular server
was switched out. Rather than storing a separate counter for each server, we multiplex the
stopwatches for all servers onto the single stopwatch which we have already introduced,
exploiting the RELTEQ approach. We do this by inserting a stopwatch event, denoted by σi.se,
at the head of the stopwatch queue using InsertEvent(stopwatch, σi.se) whenever server σi is
switched out. The event points to the server and its time is initially set to 0. The behavior of
the tick handler with respect to the stopwatch remains unchanged: upon every tick the head
event in the stopwatch queue is incremented using IncrementQueue(stopwatch).

During runtime the stopwatch queue will contain one stopwatch event for every inactive
server (the stopwatch event for the currently active server is removed when the server is
switched in). The semantics of the stopwatch queue is defined as follows: the accumulated
time from the head of the queue until (and including) a stopwatch event σi.se represents the
time the server σi was switched out.

When a server σi is switched in, its server queue is synchronized with the stopwatch using
SyncQueuesUntilEvent(σi.sq, stopwatch, σi.se), which handles all the events in σi.sq which might
have occurred during the time the server was switched out. It accumulates the time in the
stopwatch queue until the stopwatch event σi.se and handles all the events in σi.sq which
have expired during that time. Then σi.se is removed from the stopwatch queue. When σi is
switched out, σi.se with time 0 is inserted at the head of the stopwatch queue.

80 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 15

6.2.1 Example of the stopwatch behavior

The stopwatch queue is a great example of RELTEQ’s strength. It provides an efficient and
concise mechanism for keeping track of the inactive time for all servers. Figure 6 demonstrates
the behavior of the stopwatch queue for an example system consisting of three servers A, B
and C. It illustrates the state of the stopwatch queue at different moments during execution,
before the currently running server is switched out and after the next server is switched in.

A

B

C

Stopwatch

0 5 10 15 20 25

3

B

0

C

4

A

2

B

4

A

7

C

2

B

6

A

9

C

Legend

0

C

running server

stopwatch event
before server switch

stopwatch event
after server switch

0

A

0

B
0

C

4

A

3

C

0

B

0

C

4

A

0

B

4

A

0

C

2

B

6

A

7

C

9

C

0

B

0

C

0

A

3

C

Fig. 6. Example of the stopwatch queue.

Initially, when server σi is created, a stopwatch event σi.se with time 0 is inserted into the
stopwatch queue. At time 0 server A is switched in and its stopwatch event is removed.
While server A is running, the tick handler increments the head of the stopwatch queue, which
happens to be the stopwatch event of server B. At time 3, when server A is switched out and
server B is switched in, server B synchronizes its absolute queue with the stopwatch queue
until and including B.se, B.se is deleted, and A.se with time 0 is inserted. Note that when B.se
is deleted, its time is added to C.se.

At time 7 server C is switched in, its absolute queue is synchronized with time 4+ 3 = 7, after
which C.se is deleted, and B.se with time 0 is inserted.

At time 9, since no server is switched in, no synchronization is taking place and no stopwatch
event is deleted. Only stopwatch event C.se with time 0 is inserted, since server C is switched
out.

At time 16, when server B is switched in and its stopwatch event B.se is deleted, the time of
B.se is added to C.se.

81An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

16 Will-be-set-by-IN-TECH

6.2.2 Deferrable server

When the workload of a deferrable server σi is exhausted, i.e. there are no ready tasks in
γ(σi), then the server is switched out and its server queue σi.sq is deactivated. Consequently,
any periodic task which could wake up the server to consume any remaining budget cannot
be noticed. One could alleviate this problem by keeping its server queue active when σi is
switched out. This, however, would make the tick handler overhead linear in the number of
deferrable servers, since a tick handler decrements the head events in all active queues (see
Section 6.6).

Instead, in order to limit the interference of inactive deferrable servers, when a deferrable
server σi is switched out and it has no workload pending (i.e. no tasks in γ(σi) are ready), we
deactivate the σi’s server queue, change its state to waiting, and insert a wakeup event, denoted
as σi.we, into the system queue. The wakeup event has its data pointing to σi and time equal
to the arrival of the first event in σi.sq. When the wakeup event expires, the σi’s state is set to
the ready state. This way handling the events inside σi.sq is deferred until σi is switched in.

When a deferrable server is switched in while it is in the waiting state, its wakeup event σi.we
is removed from the system queue.

6.2.3 Idling periodic server

An idling periodic server is a special kind of a deferrable server containing an idle task (with
lowest priority). The idle task is switched in if no higher priority task is ready, effectively
idling away the remaining capacity. In order to save memory needed for storing the task
control block and the stack of the idle task, one idle task is shared between all idling periodic
servers in the system.

6.3 Virtual timers

When the server budget is depleted an event must be triggered, to guarantee that a server
does not exceed its budget. We present a general approach for handling budget depletion
and introduce the notion of virtual timers, which are events relative to server’s budget
consumption.

We can implement virtual timers by adding a virtual server queue for each server, denoted by
σi.vq. Similarly to the server queues introduced earlier, when a server is switched in, its virtual
server queue is activated. The difference is that the virtual server queue is not synchronized
with the stopwatch queue, since during the inactive period a server does not consume any of
its budget. When a server is switched out, its virtual server queue is deactivated.

The relative time representation by RELTEQ allows for a more efficient virtual queue
activation than an absolute time representation does. An absolute time representation (e.g.
in (Behnam et al., 2008; Inam et al., 2011)) requires to recompute the expiration time for all the
events in a virtual server queue upon switching in the corresponding server, which is linear
in the number of events. In our RELTEQ-based virtual queues the events are stored relative
to each other and their expiration times do not need to be recomputed upon queue activation.
Note that it will never be necessary to handle an expired virtual event upon queue activation,
since such an event would have been already handled before the corresponding server was
switched out. Therefore, our HSF design exhibits a constant time activation of a virtual server
queue.

82 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 17

6.4 Switching servers

The methods for switching servers in and out are summarized in Figures 7 and 8.

SyncQueuesUntilEvent(σi.sq, stopwatch, σi.se);
ActivateQueue(σi.sq);
ActivateQueue(σi.vq);
if σi.we �= ∅ then

DeleteEvent(system, σi.we);
σi.we = ∅;

end if

Fig. 7. Pseudocode for ServerSwitchIn(σi).

DeleteEvent(stopwatch, σi.se);
σi.se = NewEvent(stopwatch, 0, σi);
InsertEvent(stopwatch, σi.se);
DeactivateQueue(σi.sq);
DeactivateQueue(σi.vq);
if σi.readyTasks = ∅ then

σi.we = NewEvent(wakeup, Head(σi.sq).time, σi);
InsertEvent(system, σi.we);

end if

Fig. 8. Pseudocode for ServerSwitchOut(σi).

6.5 Server replenishment and depletion

We introduce two additional RELTEQ event kinds to support servers: budget replenishment
and budget depletion. When a server σi is created, a replenishment event ej is inserted into the
system queue, with ej.data pointing to σi and ej.time equal to the server’s replenishment period
Πi. When ej expires, ej.time is updated to Πi and it is inserted into the system queue.

Upon replenishment, the server’s depletion event ej is inserted into its virtual server queue,
with ej.data pointing to σi and ej.time equal to the server’s capacity Θi. If the server was not
depleted yet, then the old depletion event is removed from the virtual server queue using
DeleteEvent(σi.vq, ej).

6.6 RELTEQ tick handler with support for servers

An example of the RELTEQ queues managed by the tick handler in the proposed RELTEQ
extension with servers is summarized in Figure 9. Conceptually, every tick the stopwatch
queue is incremented and the heads of the system queue, the active server queue and the
active virtual server queue are decremented. If the head of any queue becomes 0, then their
head event is popped and handled until the queue is exhausted or the head event has time
larger than 0.

Actually, rather than decrementing the head of each active queue and checking whether it is 0,
a CurrentTime counter is incremented and compared to the Earliesttime, which is set whenever
the head of an active queue changes. If they are equal, then (i) the CurrentTime is subtracted
from the heads of all the active queues, (ii) any head event with time 0 is popped and handled,

83An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

18 Will-be-set-by-IN-TECH

(iii) CurrentTime is set to 0, and (iv) Earliesttime is set to the earliest time among the heads of
all active queues3.

56 4 5 2
n

-1 10system queue

23 2
n

-1 34
inactive

server queues &
virtual server queus

37 4

3

17 21
active

server queue

7 2
n

-1stopwatch queue

27 5 101
active

virtual server queue

Legend: head of an active queue which is decrementdevent

dummy event head of an active queue which is incremented

327

Fig. 9. Example of the RELTEQ queues managed by the tick handler.

The behavior of a RELTEQ tick handler supporting servers is summarized in Figure 10.

IncrementQueue(stopwatch);
CurrentTime := CurrentTime + 1;
if Earliesttime = CurrentTime then

for all q ∈ activequeues do

Head(q).time := Head(q).time − CurrentTime;
while Head(q).time = 0 do

HandleEvent(Head(q));
PopEvent(q);

end while

end for

CurrentTime := 0;
Earliesttime := Earliest(activequeues);
Schedule();

end if

Fig. 10. Pseudocode for the RELTEQ tick handler supporting hierarchical scheduling.

Note that at any moment in time there are at most four active queues, as shown in Figure 9.

3 Note that the time of any event will never become negative.

84 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 19

6.7 Summary

We have described a generic framework for supporting servers, which is tick based (Section
4.3) and limits the interference of inactive servers on system level (Section 6.2). The
interference of inactive servers which are either ready or depleted was limited by means of
a combination of inactive server queues and a stopwatch queue. Deactivating server queues
of waiting servers was made possible by inserting a wakeup event into the system queue, in
order to wake up the server upon the arrival of a periodic task while the server is switched
out.

7. Hierarchical scheduling

Rajkumar et al. (1998) identified four ingredients necessary for guaranteeing resource
provisions: admission, monitoring, scheduling and enforcement. In this section we describe
how our implementation of HSF addresses each of them.

7.1 Admission

We allow admission of new components only during the integration, not during runtime. The
admission testing requires analysis for hierarchical systems, which is outside the scope of this
chapter.

7.2 Monitoring

There are two reasons for monitoring the budget consumption of servers: (i) handle the budget
depletion and (ii) allow the assigned tasks to track and adapt to the available budget.

In order to notice the moment when a server becomes depleted we have introduced a virtual
depletion event for every server, which is inserted into its virtual server queue. When the
depletion event expires, then (i) the server’s capacity is set to 0, (ii) its state is set to depleted,
and (iii) the scheduler is called.

In order to allow tasks τj ∈ γ(σi) to track the server budget βi we equipped each server
with a budget counter. Upon every tick the budget counter of the currently active server is
decremented by one. The depletion event will make sure that a depleted server is switched
out before the counter becomes negative. We also added the ServerBudget() method, which
can be called by any task.

ServerBudget(σi) Returns the current value of βi, which represents the lower bound on the
processor time that server σi will receive within the next interval of Πi time units.

7.3 Scheduling

The µC/OS-II the scheduler does two things: (i) select the highest priority ready task, and (ii)
in case it is different from the currently running one, do a context switch. Our hierarchical
scheduler replaces the original OS_SchedNew() method, which is used by the µC/OS-II
scheduler to select the highest priority ready task.

It first uses the global scheduler HighestReadyServer() to select the highest priority ready server,
and then the server’s local scheduler HighestReadyTask(), which selects the highest priority ready

85An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

20 Will-be-set-by-IN-TECH

task belonging to that server. This approach allows to implement different global and local
schedulers, and also different schedulers in each server. Our fixed-priority global scheduler is
shown in Figure 11.

highestServer := HighestReadyServer();
if highestServer �= currentServer then

if currentServer �= ∅ then

ServerSwitchOut(currentServer);
end if

if highestServer �= ∅ then

ServerSwitchIn(highestServer);
end if

currentServer := highestServer;
end if

if currentServer �= ∅ then

return currentServer.HighestReadyTask();
else

return idleTask;
end if

Fig. 11. Pseudocode for the hierarchical scheduler.

The currentServer is a global variable referring to the currently active server. Initially
currentServer = ∅, where ∅ refers to a null pointer.

The scheduler first determines the highest priority ready server. Then, if the server is different
from the currently active server, a server switch is performed, composed of 3 steps:

1. If there is a currently active server, then it is switched out, using ServerSwitchOut()
described in Section 6.4.

2. If there is a ready server, then it is switched in, using ServerSwitchIn() described in Section
6.4.

3. The currentServer is updated.

Finally the highest priority task in the currently active server is selected, using the current
server’s local scheduler HighestReadyTask(). If no server is active, then the idle task is returned.

7.4 Enforcement

When a server becomes depleted during the execution of one of its tasks (i.e. if a depletion
event expires), the task will be preempted and the server will be switched out. This is possible,
since we assume preemptive and independent tasks.

8. Evalulation

In this section we evaluate the modularity, memory footprint and performance of the HSF
extension for RELTEQ. We chose a linked-list as the data structure underlying our RELTEQ
queues and implemented the proposed design within µC/OS-II.

86 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 21

8.1 Modularity and memory footprint

The design of RELTEQ and the HSF extension is modular, allowing to enable or disable the
support for HSF and different server types during compilation with a single compiler directive
for each extension.

The complete RELTEQ implementation including the HSF extension is 1610 lines of code
(excluding comments and blank lines), compared to 8330 lines of the original µC/OS-II. 105
lines of code were inserted into the original µC/OS-II code, out of which 60 were conditional
compilation directives allowing to easily enable and disable our extensions. No original code
was deleted or modified. Note that the RELTEQ+HSF code can replace the existing timing
mechanisms in µC/OS-II, and that it provides a framework for easy implementation of other
scheduler and servers types.

The 105 lines of code represent the effort required to port RELTEQ+HSF to another operating
system. Such porting requires (i) redirecting the tick handler to the RELTEQ handler, (ii)
redirecting the method responsible for selecting the the highest priority task to the HSF
scheduler, and (iii) identifying when tasks become ready or blocked.

The code memory footprint of RELTEQ+HSF is 8KB, compared to 32KB of the original
µC/OS-II. The additional data memory foot print for an application consisting of 6 servers
with 6 tasks each is 5KB, compared to 47KB for an application consisting of 36 tasks (with a
stack of 128B each) in the original µC/OS-II.

8.2 Performance analysis

In this section we evaluate the system overheads of our extensions, in particular the overheads
of the scheduler and the tick handler. We express the overhead in terms of the maximum
number of events inside the queues which need to be handled in a single invocation of the
scheduler or the tick handler, times the maximum overhead for handling a single event.

8.2.1 Handling a single event

Handling different events will result in different overheads.

• When a dummy event expires, it is simply removed from the head of the queue. Hence,
handling it requires O(1) time.

• When a task period event expires, an event representing the next periodic arrival is
inserted into the corresponding server queue. In this section we assume a linked-list
implementation, and consequently insertion is linear in the number of events in a queue.
Note that we could delay inserting the next period event until the task completes, as at
most one job of a task may be running at a time. This would reduce the handling of a
periodic arrival to constant time, albeit at the additional cost of keeping track for each task
of the time since its arrival, which would be taken into account when inserting the next
period event. However, if we would like to monitor whether tasks complete before their
deadline, then we will need to insert a deadline event into σi.sq anyway. Hence the time
for handling an event inside of a server queue is linear in the number of events in a server
queue. Since there are at most two events per task in a server queue (period and deadline
events), handling a period event is linear in the maximum number of tasks assigned to a
server, i.e. O(m(σi)).

87An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

22 Will-be-set-by-IN-TECH

• When a task deadline event expires, it is simply removed from the head of the queue an
the system is notified that a deadline was missed. Hence, handling it requires O(1) time.

• When a server replenishment event expires, an event representing the next replenishment
is inserted into the system queue4. Since there are at most two events in the system queue
per server (replenishment and wakeup event), handling a replenishment event is linear in
the number of servers, i.e O(|Σ|).

• When a server depletion event expires, it is simply removed from the queue. Hence,
handling it requires O(1) time.

8.2.2 Scheduler

Our HSF supports different global and local schedulers. For the sake of a fair comparison
with the µC/OS-II which implements a fixed-priority scheduler, we also assume fixed-priority
global and local schedulers in this section. For both global and local scheduling we can reuse
the bitmap-based approach implemented by µC/OS-II, which has a constant time overhead
for selecting the highest priority ready task as well as indicating that a task is ready or not
(Labrosse, 2002). Consequently, in our HSF we can select the highest priority server and task
within a server in constant time.

Once a highest priority server σi is selected, the overhead of switching in the server depends
on the number of events inside the stopwatch queue and σi’s server queue (which needs to be
synchronized with the stopwatch), and the overhead of selecting the highest priority task.

The stopwatch queue contains one stopwatch event for each inactive server. The length of the
stopwatch queue is therefore bounded by |Σ| + ds, where |Σ| is the number of servers, and

ds = maxσi∈Σ

⌊

ts(σi)
2n−1

⌋

is the maximum number of dummy events inside the stopwatch queue.

ts(σi) is the longest time interval that a server can be switched out, and 2n − 1 is the largest
relative time which can be represented with n bits.

The only local events are a task delay and the arrival of a periodic task. Also, each task can
wait for at most one timed event at a time. The number of events inside the server queue is
therefore bounded by m(σi) + dl(σi), where m(σi) is the maximum number of tasks assigned

to server σi, and dl(σi) =
⌊

tl(σi)
2n−1

⌋

is the maximum number of dummy events local to the server

queue σi.sq. tl(σi) is the longest time interval between any two events inside of σi.sq (e.g. the
longest task period or the longest task delay).

The complexity of the scheduler is therefore O(|Σ| + ds + m(σi) + dl(σi)). Note that the
maximum numbers of dummy events ds and dl(σi)) can be determined at design time.

8.2.3 Tick handler

The tick handler synchronizes all active queues with the current time, and (in case an event
was handled) calls the scheduler. The active queues are comprised of the system queue and
two queues for the server σi which is active at the time the tick handler is invoked (its server
queue σi.sq and virtual server queue σi.vq).

4 Inserting the next replenishment event could be deferred until the server is depleted, at a similar cost
and benefit to deferring the insertion of the task period event.

88 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 23

The system queue contains only replenishment and wakeup events. Its size is therefore

proportional to |Σ| + dg, where dg =
⌊

tg

2n−1

⌋

is the maximum number of dummy events
inside the global system queue. tg is the longest time interval between any two events inside
the global system queue (i.e. the longest server period).

The size of σi.sq is linear in the number of tasks assigned to the server. Similarly, since σi.vq
contains one depletion event and at most one virtual timer for each task, its size is linear in
the number of tasks assigned to the server.

Therefore, when server σi is active at the time the tick handler is invoked, the tick handler will
need to handle tt(σi) = |Σ|+ dg + m(σi) + dl(σi) events. The complexity of the tick handler is
therefore O(maxσi∈Σ m(σi)tt(σi)). Note that the tick handler overhead depends only on tasks
belonging to the server σi which is active at the time of the tick. It does not depend on tasks
belonging to other servers.

8.2.4 Experimental results

In Section 6.2 we introduced wakeup events in order to limit the interference due to inactive
servers. In order to validate this approach we have also implemented a variant of the HSF
scheduler which avoids using wakeup events and instead, whenever a deferrable server σi

is switched out, it keeps the server queue σi.sq active. Consequently, the scheduler does not
need to synchronize the server queue when switching in a server. However, this overhead is
shifted to the tick handler, which needs to handle the expired events in all the server queues
from inactive deferrable servers. In the following discussion we refer to this approach as
without limited interference, as opposed to with limited interference based on wakeup events.

Figures 12.a to 12.e compare the two variants. We have varied the number of deferrable
servers and the number of tasks assigned to each server (all servers had the same number
of tasks). The server replenishment periods and the task periods were all set to the same
value (100ms), to exhibit the maximum overhead by having all tasks arrive at the same time.
Each task had a computation time of 1ms and each server had a capacity of 7ms. We have run
the setup within the cycle-accurate hardware simulator for the OpenRISC 1000 architecture
OpenCores (2010). We have set the processor clock to 345MHz and the tick to 1KHz, which
is inline with the platform used by our industrial partner. Each experiment was run for an
integral number of task periods.

Figures 12.a and 12.b show the maximum measured overheads of the scheduler and the tick
handler, while Figures 12.c and 12.d show the total overhead of the scheduler and the tick
handler in terms of processor utilization. The figures demonstrate that wakeup events reduce
the tick overhead, at the cost of increasing the scheduler overhead, by effectively shifting the
overhead of handling server’s local events from the tick handler to the scheduler. Since the
scheduler overhead is accounted to the server which is switched in, as the number of servers
and tasks per server increase, so does the advantage of the limited interference approach.
Figure 12.e combines Figures 12.c and 12.d and verifies that the additional overhead due to
the wakeup events in the limited interference approach is negligible.

Figure 12.f compares the system overheads of our HSF extension to the standard µC/OS-II
implementation. As the standard µC/OS-II does not implement hierarchical scheduling,
we have implemented a flat system containing the same number of tasks with the same
parameters as in Figures 12.a and 12.b. The results demonstrate the temporal isolation and

89An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

24 Will-be-set-by-IN-TECH

 1
 2

 3
 4

 5
 6 1

 2
 3

 4
 5

 6

 0

 1

 2

 3

 4

 5

 6

 7

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

With limited interference
Without limited interference

Number of servers

Number of tasks per server

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

 1
 2

 3
 4

 5
 6 1

 2
 3

 4
 5

 6

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

With limited interference
Without limited interference

Number of servers

Number of tasks per server

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

(a) (b)

 1
 2

 3
 4

 5
 6 1

 2
 3

 4
 5

 6

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

O
v

er
h

ea
d

 (
%

 p
ro

ce
ss

o
r

ti
m

e)

With limited interference
Without limited interference

Number of servers

Number of tasks per server

O
v

er
h

ea
d

 (
%

 p
ro

ce
ss

o
r

ti
m

e)

 1
 2

 3
 4

 5
 6 1

 2
 3

 4
 5

 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
v

er
h

ea
d

 (
%

 p
ro

ce
ss

o
r

ti
m

e)

With limited interference
Without limited interference

Number of servers

Number of tasks per server

O
v

er
h

ea
d

 (
%

 p
ro

ce
ss

o
r

ti
m

e)

(c) (d)

 1
 2

 3
 4

 5
 6 1

 2
 3

 4
 5

 6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

O
v

er
h

ea
d

 (
%

 p
ro

ce
ss

o
r

ti
m

e)

With limited interference
Without limited interference

Number of servers

Number of tasks per server

O
v

er
h

ea
d

 (
%

 p
ro

ce
ss

o
r

ti
m

e)

 1
 2

 3
 4

 5
 6 1

 2
 3

 4
 5

 6

 0

 1

 2

 3

 4

 5

 6

 7

O
v

er
h

ea
d

 (
%

 p
ro

ce
ss

o
r

ti
m

e)

C/OS-II + HSF
C/OS-II

Number of servers

Number of tasks per server

O
v

er
h

ea
d

 (
%

 p
ro

ce
ss

o
r

ti
m

e)

(e) (f)

Fig. 12. (a) maximum overhead of the (local + global) scheduler, (b) maximum overhead of
the tick handler, (c) total overhead of the scheduler, (d) total overhead of the tick handler, (e)
and (f) total overhead of the tick handler and the scheduler.

90 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 25

efficiency of our HSF implementation. While the standard µC/OS-II scans through all tasks
on each tick to see if any task delay has expired, in the HSF extension the tick handler needs
to consider only head event in the server queue of the currently running server.

Figure 13 compares the best-case and worst-case measured overheads of the scheduler and
tick handler between µC/OS-II with our extensions, compared to the standard µC/OS-II, for
which we have implemented a flat system containing the same number of tasks with the same
parameters as for the µC/OS-II+HSF case.

 1
 2

 3
 4

 5
 6 1

 2
 3

 4
 5

 6

 0

 1

 2

 3

 4

 5

 6

 7

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

Max tick handler overhead
Min tick handler overhead

Number of servers

Number of tasks per server

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

 1
 2

 3
 4

 5
 6 1

 2
 3

 4
 5

 6

 0

 0.5

 1

 1.5

 2

 2.5

 3

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

Max tick handler overhead
Min tick handler overhead

Number of servers

Number of tasks per server

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

(a) (b)

 1
 2

 3
 4

 5
 6 1

 2
 3

 4
 5

 6

 0

 1

 2

 3

 4

 5

 6

 7

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

Max scheduler overhead
Min scheduler overhead

Number of servers

Number of tasks per server

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

 1
 2

 3
 4

 5
 6 1

 2
 3

 4
 5

 6

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

Max scheduler overhead
Min scheduler overhead

Number of servers

Number of tasks per server

N
u

m
b

er
 o

f
in

st
ru

ct
io

n
s

(x
1

0
0

0
)

(c) (d)

Fig. 13. (a) tick handler overhead in µC/OS-II+HSF, (b) tick handler overhead in µC/OS-II,
(c) scheduler overhead in µC/OS-II+HSF, (d) scheduler overhead in µC/OS-II.

The figure shows that both scheduler and tick handler suffer larger execution time jitter under
µC/OS-II+HSF, than the standard µC/OS-II. In the best case the µC/OS-II+HSF tick handler
needs to decrement only the head of the system queue, while in µC/OS-II the tick hander
traverses all the tasks in the system and for each one it checks whether its timer has expired.

In a system with small utilization of individual tasks and servers (as was the case in our
experiments), most local events will arrive while the server is switched out. Since handling
local events is deferred until the server is switched in and its server queue synchronized with
the stopwatch queue, it explains why the worst-case tick handler overhead is increasing with
the number of servers and the worst-case scheduler overhead is increasing with the number
of tasks per server.

91An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

26 Will-be-set-by-IN-TECH

9. Conclusions

We have presented an efficient, modular and extendible design for enhancing a real-time
operating system with a two-level HSF. It relies on Relative Timed Event Queues (RELTEQ), a
general timer management system targeting embedded systems. Our design supports various
server types (including polling, idling periodic, deferrable and constant-bandwidth servers),
and global and virtual timers. It supports fixed-priority and EDF schedulers on both local and
global level. It provides temporal isolation between components and limits the interference of
inactive servers on the active server, by means of wakeup events and a combination of inactive
server queues with a stopwatch. We have evaluated a fixed-priority based implementation of
our RELTEQ and HSF within the µC/OS-II real-time operating system used in the automotive
domain. The results demonstrate that our approach exhibits low performance overhead and
limits the necessary modifications of the underlying operating system.

We have assumed a linked-list implementation of our RELTEQ queues, and indicated the
challenges of a tree-based implementation due to the relative time representation. In the
future we want to investigate in more detail other advanced data structures for implementing
RELTEQ queues.

10. References

Abeni, L. & Buttazzo, G. (1998). Integrating multimedia applications in hard real-time
systems, Real-Time Systems Symposium (RTSS), pp. 4–14.

Asberg, M., Behnam, M., Nemati, F. & Nolte, T. (2009). Towards hierarchical scheduling in
AUTOSAR, Emerging Technologies Factory Automation (ETFA), pp. 1 –8.

AUTOSAR (2011). Automotive open system architecture (AUTOSAR).
URL: http://www.autosar.org

Behnam, M., Nolte, T., Shin, I., Åsberg, M. & Bril, R. J. (2008). Towards hierarchical scheduling
on top of VxWorks, International Workshop on Operating Systems Platforms for Embedded

Real-Time Applications (OSPERT), pp. 63–72.
Behnam, M., Shin, I., Nolte, T. & Nolin, M. (2007). Sirap: a synchronization protocol for

hierarchical resource sharingin real-time open systems, International Conference on

Embedded Software (EMSOFT), pp. 279–288.
Buttazzo, G. & Gai, P. (2006). Efficient EDF implementation for small embedded

systems, International Workshop on Operating Systems Platforms for Embedded Real-Time

Applications (OSPERT).
Carlini, A. & Buttazzo, G. C. (2003). An efficient time representation for real-time embedded

systems, ACM Symposium on Applied Computing, pp. 705–712.
Chodrow, S., Jahanian, F. & Donner, M. (1991). Run-time monitoring of real-time systems,

Real-Time Systems Symposium (RTSS), pp. 74–83.
Davis, R. I. & Burns, A. (2005). Hierarchical fixed priority pre-emptive scheduling, Real-Time

Systems Symposium (RTSS), pp. 389–398.
Engler, D. R., Kaashoek, M. F. & O’Toole, Jr., J. (1995). Exokernel: an operating system

architecture for application-level resource management, Symposium on Operating

Systems Principles (SOSP), pp. 251–266.
Eswaran, A., Rowe, A. & Rajkumar, R. (2005). Nano-RK: An energy-aware resource-centric

RTOS for sensor networks, Real-Time Systems Symposium (RTSS), pp. 256–265.

92 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

An Efficient Hierarchical Scheduling Framework for the Automotive Domain 27

Evidence (n.d.). ERIKA Enterprise: Open Source RTOS for single- and multi-core applications.
URL: http://www.evidence.eu.com

Faggioli, D., Trimarchi, M., Checconi, F. & Scordino, C. (2009). An EDF scheduling class for
the linux kernel, Real-Time Linux Workshop.

Holenderski, M., Cools, W., Bril, R. J. & Lukkien, J. J. (2009). Multiplexing real-time timed
events, Emerging Technologies and Factory Automation (ETFA), pp. 1718–1721.

Holenderski, M., Cools, W., Bril, R. J. & Lukkien, J. J. (2010). Extending an open-source
real-time operating system with hierarchical scheduling, Technical Report CS-report

10-10, Eindhoven University of Technology.
Inam, R., Maki-Turja, J., Sjodin, M., Ashjaei, S. & Afshar, S. (2011). Support for hierarchical

scheduling in freertos, Emerging Technologies Factory Automation (ETFA), pp. 1 –10.
Kim, D., Lee, Y.-H. & Younis, M. (2000). SPIRIT-µKernel for strongly partitioned real-time

systems, Real-Time Systems and Applications (RTCSA), pp. 73–80.
Labrosse, J. J. (2002). MicroC/OS-II: The Real Time Kernel, 2nd edition edn, CMP Books.
Lehoczky, J. P., Sha, L. & Strosnider, J. K. (1987). Enhanced aperiodic responsiveness in hard

real-time environments, Real-Time Systems Symposium (RTSS), pp. 261–270.
Mercer, C., Rajkumar, R. & Zelenka, J. (1994). Temporal protection in real-time operating

systems, IEEE Workshop on Real-Time Operating Systems and Software, pp. 79–83.
Nolte, T. (2011). Compositionality and CPS from a platform perspective, Embedded and

Real-Time Computing Systems and Applications (RTCSA), Vol. 2, pp. 57 –60.
Nolte, T., Shin, I., Behnam, M. & Sjödin, M. (2009). A synchronization protocol for temporal

isolation of software components in vehicular systems, IEEE Transactions on Industrial

Informatics 5(4): 375–387.
Oikawa, S. & Rajkumar, R. (1999). Portable RK: a portable resource kernel for guaranteed and

enforced timing behavior, Real-Time Technology and Applications Symposium (RTAS),
pp. 111–120.

OpenCores (2010). Openrisc 1000: Architectural simulator.
URL: http://opencores.org/openrisc,or1ksim

Palopoli, L., Cucinotta, T., Marzario, L. & Lipari, G. (2009). Aquosa—adaptive quality of
service architecture, Software – Practice and Experience 39(1): 1–31.

Rajkumar, R., Juvva, K., Molano, A. & Oikawa, S. (1998). Resource kernels: A resource-centric
approach to real-time and multimedia systems, Conference on Multimedia Computing

and Networking (CMCN), pp. 150–164.
Saewong, S., Rajkumar, R. R., Lehoczky, J. P. & Klein, M. H. (2002). Analysis of hierarchical

fixed-priority scheduling, Euromicro Conference on Real-Time Systems (ECRTS), p. 173.
Shin, I. & Lee, I. (2003). Periodic resource model for compositional real-time guarantees,

Real-Time Systems Symposium (RTSS), pp. 2–13.
Shin, I. & Lee, I. (2008). Compositional real-time scheduling framework with periodic model,

ACM Transactions on Embedded Computing Systems 7: 30:1–30:39.
Strosnider, J. K., Lehoczky, J. P. & Sha, L. (1995). The deferrable server algorithm for enhanced

aperiodic responsiveness in hard real-time environments, IEEE Transactions on

Computers 44(1): 73–91.
van den Heuvel, M. M. H. P., Holenderski, M., Bril, R. J. & Lukkien, J. J. (2011).

Constant-bandwidth supply for priority processing, IEEE Transactions on Consumer

Electronics 57(2): 873–881.

93An Efficient Hierarchical Scheduling Framework for the Automotive Domain

www.intechopen.com

28 Will-be-set-by-IN-TECH

van den Heuvel, M. M. H. P., Holenderski, M., Cools, W., Bril, R. J. & Lukkien, J. J. (2009).
Virtual timers in hierarchical real-time systems, Work in Progress session of the Real-time

Systems Symposium (RTSS).

94 Real-Time Systems, Architecture, Scheduling, and Application

www.intechopen.com

Real-Time Systems, Architecture, Scheduling, and Application

Edited by Dr. Seyed Morteza Babamir

ISBN 978-953-51-0510-7

Hard cover, 334 pages

Publisher InTech

Published online 11, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is a rich text for introducing diverse aspects of real-time systems including architecture, specification

and verification, scheduling and real world applications. It is useful for advanced graduate students and

researchers in a wide range of disciplines impacted by embedded computing and software. Since the book

covers the most recent advances in real-time systems and communications networks, it serves as a vehicle for

technology transition within the real-time systems community of systems architects, designers, technologists,

and system analysts. Real-time applications are used in daily operations, such as engine and break

mechanisms in cars, traffic light and air-traffic control and heart beat and blood pressure monitoring. This book

includes 15 chapters arranged in 4 sections, Architecture (chapters 1-4), Specification and Verification

(chapters 5-6), Scheduling (chapters 7-9) and Real word applications (chapters 10-15).

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mike Holenderski, Reinder J. Bril and Johan J. Lukkien (2012). An Efficient Hierarchical Scheduling Framework

for the Automotive Domain, Real-Time Systems, Architecture, Scheduling, and Application, Dr. Seyed Morteza

Babamir (Ed.), ISBN: 978-953-51-0510-7, InTech, Available from: http://www.intechopen.com/books/real-time-

systems-architecture-scheduling-and-application/an-efficient-hierarchical-scheduling-framework-for-the-

automotive-domain

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

