
Assessment of Efficient Dispatching in FreeRTOS
Florian Hagens and Kuan-Hsun Chen

Department of Computer Science, University of Twente, the Netherlands
f.hagens@student.utwente.nl, k.h.chen@utwente.nl

Abstract—This study investigates the efficiency of task dis-
patchers in real-world implementations. We focus on evaluating
various task dispatching methods based on four distinct data
structures and their impact on computation overhead and perfor-
mance in FreeRTOS. By using a real-world setup, we analyze the
merits and drawbacks of each data structure and corresponding
task dispatcher implementation. Our preliminary findings sug-
gest that task dispatcher efficiency highly depends on the task
set size and their respective periods, with alternative dispatchers
potentially outperforming the List-based implementation, which
is presently utilized in FreeRTOS, in certain scenarios. Ultimately,
this study seeks to provide valuable insights for system designers
and developers, emphasizing the importance of tailoring task
dispatchers to specific task sets for improved efficiency and
reliability in real-time systems.

Index Terms—Real-Time Operating Systems, Task Dispatchers

I. INTRODUCTION

Real-time systems demand the efficient and timely execu-
tion of periodic tasks to guarantee system stability, respon-
siveness to time-sensitive events, and predictable behavior in
their applications [1]. Although numerous studies have been
conducted on scheduling algorithms, the task dispatcher, which
plays a crucial role in initiating task execution and maintaining
task periodicity, has not been as thoroughly investigated.
This early work aims to investigate this gap by presenting a
case study on FreeRTOS’s task dispatcher, exploring various
implementations to assess their respective operation overheads.

Prior work has studied task dispatcher optimization through
hardware-based solutions and the development of efficient data
structures [2]–[5]. These studies demonstrate the importance
of task dispatcher optimization, and lay the groundwork for
our current research. However, there is yet no definitive
conclusion regarding the most suitable type of task dispatcher
to implement in specific scenarios, emphasizing the need for
further research and context-driven evaluations to establish
best practices in task dispatcher design and implementation.

The task dispatcher plays a critical role in managing tasks
with a specific data structure, as it is invoked in every system
tick. Upon the occurrence of each system tick interrupt, the
task dispatcher checks whether the current tick t is greater
than or equal to the next unblock time B, which is defined by
the earliest release job in the data structure. If this condition
is met (t ≥ B), the job with the earliest release time (Rmin)
is retrieved from the data structure. Then, the task dispatcher
compares Rmin with the current tick t. If Rmin > t, the
unblock time B is updated according to: B = Rmin However,
if Rmin ≤ t, the task with the release time Rmin is removed

Host PC

GDB OpenOCD

idf.py esptool.py USB-to-UART

JTAG Adapter

ESP32-S3-DevKitC-1

VSCode PlatformIO ESP-IDF

FreeRTOS-
Kernel

FreeRTOS-
Application

Fig. 1. Real-world measurement setup

from the task dispatcher’s data structure and placed in the
ready queue. In FreeRTOS, the frequency of tick increments is
defined by configTICK_RATE_HZ (e.g., set to 100, which
corresponds to a tick increment every 10ms). In light of the
description above, it is evident that the task dispatcher is
invoked frequently, highlighting that even minor improvements
in its overhead can lead to substantial reductions in the overall
system overhead throughout its lifespan, which is primarily
determined by the data structure.

Toward this, we evaluate the task dispatcher in FreeRTOS,
which is one of the well-known RTOS, based on four data
structures: List, Binary Search Tree (BST), Red-Black Tree
(RBT), and Heap. BST is selected to strike a balance between
time complexity and code simplicity, while Red-Black Trees
and Heaps were employed for their superior time complexity
performance. We implemented these data structures not only to
compare the average computation overhead but also the ”jitter”
(the difference between worst and best-case performance)
within a task set. The jitter here is crucial in ensuring the
predictability of the system behavior (e.g., no unexpectedly
long delay during the dispatching). Please note that, due to
the considerable challenges arising from the design principles,
e.g., memory footprint, the integration of a timing wheel has
not been implemented [4].
Our Contributions: This paper presents a thorough as-
sessment of each task dispatcher’s effectiveness, evaluating
computational overhead and offering valuable insights for
developers and researchers in the field of embedded systems. A
key aspect of our study is the use of real-world measurements
on actual hardware, on which we performed CPU cycle
measurements as a metric for determining overhead to ensure
accurate and realistic behavior of the investigated dispatchers.

The codebase for the kernel, which includes the dispatcher implementations
evaluated in this paper, is open for reference upon request to encourage trans-
parency and foster collaboration within the academic community; however, it
is not yet publicly available due to its work-in-progress status.

7



II. REAL-WORLD MEASUREMENT SETUP

In Figure 1, we present the components of our real-world
measurement setup, encompassing the software, hardware, and
data collection methodologies employed for evaluating the
performance of our target system.

A. Software Components
The underlying software platform is based on the ESP-

IDF FreeRTOS kernel (FreeRTOS version V10.4.3 and ESP-
IDF version 4.4.1), which offers a comprehensive development
environment tailored for the ESP32 series of microcontrollers.
We use esptool.py and idf.py as essential command-
line utilities for handling firmware-related operations. The
esptool.py allows us to flash firmware and interact with
the ESP32 bootloader, while idf.py provides a range of
build system and project management capabilities. In order
to evaluate the changes made to the task dispatcher, we
have developed a dummy FreeRTOS application that creates
periodic tasks based on the desired task set, allowing for
easy configuration of various parameters, such as periods and
execution times.

B. Hardware and Debugging Tools
We employ the ESP32-S3-DevKitC-1 microcontroller as the

target embedded device. The microcontroller is configured and
managed using the PlatformIO structure, ensuring compatibil-
ity with multiple ESP32 devices and facilitating configuration
adjustments. To gain insights into the measurement results, we
rely on GDB and OpenOCD for debugging and profiling the
embedded device. These tools enable effective examination of
system performance and aid in understanding the intricacies
of the measurement process.

C. Evaluation Methodology
The CPU cycle counter, based on the ccount register

of the ESP32-S3-DevKitC-1, is employed to assess software
system overhead. The CPU cycle counter offers various ad-
vantages, such as high-resolution time measurements, low
overhead, independence from external factors, and consistency
among systems. We track the average, best, and worst-case
scenarios over multiple task executions.

To obtain accurate and reproducible results, we disable
most compiler optimizations (optimization level -O0), making
the measurement outcomes less reliant on the compiler or
CPU architecture. This approach, although it may impact
performance, provides valuable insights into the characteristics
of the task dispatcher and its overhead.

To assess the performance of task dispatchers, we measured
the CPU cycles for their three primary operations (i.e., task
insertion, first task retrieval, and first task removal) and
plotted them to derive visual insight. To ensure the behavioral
correctness of the implementations, we restricted the task set
to a maximum of 150 tasks.

The task model in our evaluation is strictly periodic, main-
tained through the use of the vTaskDelayUntil() func-
tion. Other task characteristics, such as priority and execution
time, have no direct influence on the task dispatcher behavior.

III. EVALUATION

Firstly, we examined the worst-case scenario of each imple-
mentation, ranging from 1 up to 150 tasks per implementation.
Note that the worst-case scenario was enforced manually for
a single execution of the primary operations, e.g., the longest
path in tree-based structures. As shown in Figure 2, the
characteristics of different implementations differ significantly.

Note that, for subsequent task set evaluations (Figure 3
and Figure 4), a graph’s lower opacity area represents the
computation overhead space. A single execution can have any
value within this space, and the line between these bounds
represents the average computation overhead. A smaller area
with lower opacity indicates more consistent performance,
while a larger area suggests more variable performance.

Secondly, we evaluated the homogeneous task sets, where
every task had the same period. This aspect could be of interest
in automotive industries, where substantial proportions of tasks
operate within a limited number of periods [6]. Since the
three primary operations exhibit a similar rate of invocation
in such task sets, we can describe the computation overhead
comparison fairly. As shown in Figure 3, the Heap-based
dispatcher and the RBT-based dispatcher outperform the List-
based dispatcher, at 25 tasks and 65 tasks, respectively.

Finally, we synthesized task sets, according to the automo-
tive benchmark, provided by Kramer et al. [6]. This benchmark
was chosen due to its significance, abstracted from real-world
automotive applications, and its period variance. There was
a total of 9 different task periods. For every period used in
the benchmark, an equal amount of tasks was created. We
evaluated each implementation, ranging from a task set of
one uniform distribution subset, existing of 9 tasks, up to a
task set of 16 uniform distribution subsets, resulting in 144
tasks. In Figure 4, the average performance of the RBT-based
dispatcher is found to be comparable to that of the List-
based dispatcher for larger task sets; however, the RBT-based
dispatcher exhibits a substantially reduced difference, nearly
half, between the best and worst performance outcomes.

IV. CONCLUSION

In this work-in-progress, we assess the efficiency of var-
ious task dispatchers in FreeRTOS. To examine the over-
head incurred by different implementations, we deployed a
real-world measurement setup via ESP32-S3-DevKitC-1 and
examined the efficiency of different implementations under
various configurations. The experimental results show that the
performance highly depends on the size of the task sets and
their respective periods. Interestingly, we found that RBT and
Heap might perform better than the List-based task dispatcher,
which is presently utilized in FreeRTOS, in specific scenarios.

Since the specification of real-time systems is often known
offline, such as the number and the periods of tasks, we plan
to leverage this information to derive tailored implementations
automatically. Such specific solutions could be more applica-
ble for industrial applications, as argued in [7].

8



List Binary Search Tree Heap Red-Black Tree

50 100 150
0

500

1,000

1,500

2,000

Number of tasks

O
ve

rh
ea

d
(C

PU
cy

cl
es

)

(a) Task insertion

50 100 150
0

100

200

300

400

Number of tasks
O

ve
rh

ea
d

(C
PU

cy
cl

es
)

(b) First task retrieval

50 100 150
0

500

1,000

1,500

2,000

Number of tasks

O
ve

rh
ea

d
(C

PU
cy

cl
es

)

(c) First task removal

Fig. 2. Worst-case computation overhead comparison of different task dispatcher implementations.

50 100 150
0

200

400

600

800

1,000

Number of tasks

O
ve

rh
ea

d
(C

PU
cy

cl
es

)

(a) Task insertion

50 100 150
0

20

40

Number of tasks

O
ve

rh
ea

d
(C

PU
cy

cl
es

)

(b) First task retrieval

50 100 150
0

100

200

300

Number of tasks
O

ve
rh

ea
d

(C
PU

cy
cl

es
)

(c) First task removal

Fig. 3. Overhead comparison of different task dispatcher implementations for homogeneous task sets.

5 10 15
0

500

1,000

Number of tasks

O
ve

rh
ea

d
(C

PU
cy

cl
es

)

(a) Task insertion

5 10 15
0

20

40

60

80

100

Number of tasks

O
ve

rh
ea

d
(C

PU
cy

cl
es

)

(b) First task retrieval

5 10 15
0

500

1,000

Number of tasks

O
ve

rh
ea

d
(C

PU
cy

cl
es

)

(c) First task removal

Fig. 4. Overhead comparison of different task dispatcher implementations for uniform distributed task sets.

REFERENCES

[1] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis, “An
empirical survey-based study into industry practice in real-time systems,”
in IEEE Real-Time Systems Symposium (RTSS), 2020, pp. 3–11.

[2] W. Hofer, D. Danner, R. Müller, F. Scheler, W. Schröder-Preikschat, and
D. Lohmann, “Sloth on time: Efficient hardware-based scheduling for
time-triggered rtos,” in 33rd Real-Time Systems Symposium, 2012, pp.
237–247.

[3] P. Kohout, B. Ganesh, and B. Jacob, “Hardware support for real-time
operating systems,” in Proceedings of the 1st international conference on
Hardware/software codesign and system synthesis, 2003, pp. 45–51.

[4] G. Varghese and A. Lauck, “Hashed and hierarchical timing wheels:
efficient data structures for implementing a timer facility,” IEEE/ACM
Transactions on Networking, vol. 5, no. 6, pp. 824–834, 1997.

[5] M. Short, “Improved task management techniques for enforcing edf
scheduling on recurring tasks,” in 16th IEEE Real-Time and Embedded
Technology and Applications Symposium. IEEE, 2010, pp. 56–65.

[6] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in 6th International Workshop on Analysis Tools
and Methodologies for Embedded and Real-time Systems, vol. 130, 2015.

[7] G. v. der Brüggen, A. Burns, J.-J. Chen, R. I. Davis, and J. Reineke,
“On the trade-offs between generalization and specialization in real-time
systems,” in IEEE 28th International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA), 2022, pp. 148–159.

9


	Message from the Chairs
	Program Committee
	Keynote Talk
	Session: RTOS Reactiveness and Awareness
	Assessment of Efficient Dispatching in FreeRTOS
	ResourceGauge: Enabling Resource-Aware Software Components
	Arm MUCH: Full-spectrum hardware-event-based Armv8 application profiler

	Session: From Real-Time OS to Real-Time Cloud Systems
	Joint Time-and Event-Triggered Scheduling in the Linux Kernel

	Program



