Dynamic Reconfiguration for Software and Hardware Heterogeneous Real-time WSN

Abstract

International audienceWireless Sensor Network (WSN) technology has imposed itself in civilian and industrial applications as a promising technology for wireless monitoring due to its wireless connectivity, removing many hardware constraints. Initially used in low frequency sampling applications, the increasing performances of electronic circuits has driven WSNs to integrate more powerful computation units, paving the way for a new generation of applications based on distributed computation. These new applications (process control, active control, visual surveillance, multimedia streaming) involving medium to heavy computation present real-time requirements at node level where reactivity becomes a primary concern as well as at the network level where latency must be bounded. In this paper, we present the implementation of a high-level language MinTax coupled with an in-situ compilation solution for real time Operating Systems enabling energy-aware dynamic reconfiguration while supporting hardware heterogeneity in Wireless Sensor Networks

    Similar works