

Abstract—We present an approach of two-level

deployment process for component models used in

distributed real-time embedded systems to achieve

predictable integration of real-time components. Our main

emphasis is on the new concept of virtual node with the use

of a hierarchical scheduling technique. Virtual nodes are

used as means to achieve predictable integration of software

components with real-time requirements. The hierarchical

scheduling framework is used to achieve temporal isolation

between components (or sets of components). Our approach

permits detailed analysis, e.g., with respect to timing, of

virtual nodes and this analysis is also reusable with the

reuse of virtual nodes. Hence virtual node preserves real-

time properties across reuse and integration in different

contexts.

 Index Terms—Hierarchical scheduling, real-time

systems, reusability, component-based software-

engineering.

I. INTRODUCTION

OMPONENT integration can be explained as the

mechanical task of wiring components together [1].

Since it is rare that two components perfectly match,

component integration requires more than just matching

the needs and services of one component with the needs

and services of others. In real-time embedded systems the

components and components integration must satisfy

both (1) functional correctness and (2) extra-functional

correctness, such as satisfying timing properties.

Temporal behavior of the real-time components poses

more difficulties in their integration. When multiple

components are deployed on the same hardware node, the

timing behavior of each of the components is typically

altered in unpredictable ways. This means that a

component that is found correct during unit testing may

fail, due to a change in temporal behavior, when

integrated in a system. Even if a new component is still

operating correctly in the system, the integration could

cause a previously integrated (and correctly operating)

component to fail. Similarly, the temporal behavior of a

This work was supported in part by the Swedish Foundation for

Strategic Research (SSF), via the research program PROGRESS.

R. Inam, J. Mäki-Turja, J. Carlson and M. Sjödin are with the

Mälardalen Real-Time Research Centre, SE-721 23 Västerås, Sweden.

(e-mail: rafia.inam@mdh.se; jukka.maki-turja@mdh.se;

jan.carlson@mdh.se; mikael.sjodin@mdh.se).

component is altered if the component is reused in a new

system. Since also this alteration is unpredictable, a

previously correct component may fail when reused.

Some of these problems can be solved using

scheduling analysis [2][3], however these techniques only

allow very simple models; typically simple timing

attributes such as period and deadline are used.

Components often exhibit a too complex behavior to be

amenable for scheduling analysis. And, even if a suitable

analysis technique should exist, such analysis requires

knowledge of the temporal behavior of all components in

the system. Thus, a component cannot be deemed correct

without knowing which components it is integrated with.

As a result, the reusability of a component is restricted

since it is very difficult to know beforehand if the

component will pass a schedulability test in a new

system.

For large-scale real-time embedded systems,

methodologies and techniques are required to provide

temporal isolation so that the run-time timing properties

could be guaranteed. Further the real-time properties of

the components should be maintained for their reuse in

large-scale industrial embedded systems.

Contributions:

The main contributions of this paper are as follows:

 We propose the concept of a Virtual Node (VN),

which is an execution-platform concept that preserves

temporal properties of the software executed in the

virtual node [4, 5]. The virtual node is intended for

coarse-grained components for single node

deployment and with potential internal multitasking.

 We propose to integrate hierarchical scheduling

framework (HSF) [6] within the components (virtual

nodes) to realize our ideas of providing temporal

properties of real-time components, their predictable

integrations and reusability.

 We describe how the virtual node can be applied in

the run-time infrastructure in three different

component technologies: ProCom [7, 8], AUTOSAR

[9], and AADL [10].

Paper Outline: Section II describes the component

technologies we study in this paper. In section III we

describe the virtual node execution-mechanism and the

Virtual Node - To Achieve Temporal Isolation and

Predictable Integration of Real-Time Components
Rafia Inam, Student Member, IEEE, Jukka Mäki-Turja, Jan Carlson, and Mikael Sjödin

C

DOI: 10.5176_2010-2283_1.4.104

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by GSTF Digital Library (GSTF-DL): Open Journal Systems (Global Science and Technology...

https://core.ac.uk/display/270151942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rafia.inam@mdh.se
mailto:jukka.maki-turja@mdh.se
mailto:jan.carlson@mdh.se
mailto:mikael.sjodin@mdh.se

hierarchical scheduling framework used by the virtual

node. We explain the usage of virtual node in the above

mentioned three component models in section IV, in

section V we conclude the paper and present the future

work to be done.

II. COMPONENT TECHNOLOGIES

Component-Based Software Engineering (CBSE) and

Model-Based Engineering (MBE) are two emerging

approaches to develop embedded control systems like

software used in trains, airplanes, cars, industrial robots,

etc. In this section we briefly outline the component

technologies we will target in our work. We discuss three

representatives of technologies that use component-based

software engineering (AUTOSAR), model-based

engineering (AADL) and a combination of CBSE and

MBE (ProCom).

We present related work from the perspective of

deployment of the components on physical platform and

the generation of final executables of the system in the

above mentioned technologies.

A. ProCom

ProCom component model combines both CBSE and

MBE techniques for the development of the system parts,

hence also exploits the advantages of both. It takes

advantages of encapsulation, reusability, and reduced

testing from CBSE. From MBE it makes use of

automated code generation and performing analysis at an

earlier stage of development. In addition ProCom

achieves additional benefits of combining both

approaches (like flexible reuse, support for mixed

maturity, reuse and efficiency tradeoff) [4].

Fig. 1. The ProCom component model: Overview of the modeling- and

runnable realms.

The ProCom component model can be described in

two distinct realms: modeling and runnable realms as

shown in Figure 1. In the modeling realm the models are

made using CBSE and MBE, while in the runnable realm

the synthesis of runnable entities is done from the model

entities. Both realms are explained as follows:

The Modeling Realm: Modeling in ProCom is done

by four discrete but related formalisms as shown in

Figure 1. The first two formalisms relate to the system

functionality modeling while the later two represent the

deployment modeling of the system.

Functionality of the system is modeled by the ProSave

and ProSys components at different levels of granularity.

The basic functionality (data and control) of a simple

component is captured in ProSave component level,

which is passive in nature. At the second formalism level

many ProSave components are mapped to make a

complete subsystem called ProSys that is active in nature.

Both ProSys and ProSave allow composite components.

For details on ProSave and ProSys, including the

motivation for separating the two, see [7], [8].

The deployment modeling is used to capture the

deployment related design decisions and then mapping

the system to run on the physical platform. Many ProSys

components can be mapped together on a virtual node

(many-to-one mapping) together with a resource budget

(i.e. CPU usage and memory requirements) required by

those components.

After that many virtual nodes could be mapped on a

physical node i.e. an ECU: an electronic control unit. The

relationship is again many-to-one. This part represents

all the physical nodes, their intercommunication through

the network and the type of the network etc. Figure 2

represents how four virtual nodes (VN1, VN2, VN3, and

VN4) are allocated to the three physical nodes (Node1,

Node2, and Node3). Details about the deployment

modeling are provided in [4].

Fig. 2. Allocation of the virtual nodes to the physical nodes.

The Runnable Realm: is the synthesis of the

runnables/executables from the ProCom model entities.

The primitive ProSave components are represented as

simple C language source code in runnable form. From

this C code the ProSys runnables are generated which

contains the collection of operating system tasks. Virtual

node runnables will implement the local scheduler and

will contain the server task. Hence virtual node runnable

actually encapsulates the set of tasks, resource

allocations, and a real-time scheduler within a server in a

two-level hierarchical scheduling framework. Final

binary image will be generated by connecting different

virtual nodes together with a global scheduler and using

some middleware to provide intra-communications

among the virtual node executables. As this work is

going on, some of the details about the runnable realm

are given in [5].

Deployment—Two-steps Process: Rather than

deploying a whole system in one big step, the

deployment of the ProCom components on the physical

platform is done in the following two steps:

1) First the ProSys subsystems are deployed on an

intermediate node called Virtual Node. The allocation of

ProSys subsystems to the virtual nodes is many-to-one

relationship. The additional information that is added at

this step is the resource budgets.

2) The virtual nodes are then deployed on the physical

nodes. The relationship is again many-to-one means more

than one virtual node can be deployed to one physical

node.

This two-steps deployment process allows not only the

detailed analysis in isolation from the other components

to be deployed on the same physical node, but once

checked for correctness, it also preserves its temporal

properties for further reuse of this virtual node as an

independent component. Section III describes this

further.

B. AUTOSAR

AUTomotive Open System ARchitecture (AUTOSAR)

[9] is an open standard for automotive electronics

architecture. It is developed by a number of automotive

manufacturers and suppliers to deal with the increasing

complexity and to fulfill a number of future vehicle

requirements (such as safety and availability, driver

assistance, software updates, environment, and

infotainment). The key features of AUTOSAR are

modularity, configurability, standardized interfaces and a

runtime environment. It provides standardized modular

software infrastructure and basic software for embedded

automotive systems. A layered-software platform has

been developed to achieve modularity, scalability,

transferability, and reusability of components.

AUTOSAR methodology is a standardized technique

that describes all the major steps in a complete

development cycle of a system. It encloses all steps from

the system level configurations till the generation of ECU

executable binaries.

Functional software is developed using component-

based approach. A component is developed over many

layers of AUTOSAR, including: Application layer,

Runtime Environment (RTE), Basic software and ECU

hardware as shown in Figure 3. Some important layers

are:

• Application layer resides at the top of RTE. At this

layer, an application consists of one or many AUTOSAR

software components and sensor/actuator components.

• RTE connects AUTOSAR components. It is

responsible for configurations and communication among

components. It enables both communication between

components on the same ECU and also communication

between components on different ECUs. Hence it makes

the components completely independent from the

underlying hardware. Components communicate with

each other using ports (e.g., PPort, RPort) and port

interfaces (e.g., client-server, sender-receiver).

• Basic software (BSW) provides services to Input/

Output (I/O), communication, memory, and system. It

has access to hardware (e.g., sensors, actuators),

Internal/External memory, microcontroller onboard

peripheral devices and communications. BSW consists of

Internal drivers (e.g., EEPROM, CAN, etc.), external

drivers (e.g., external EEPROM, etc.), Interfaces that

offer generic API for upper layers, handlers, and

managers. BSW uses complex drivers to handle timing

and functional requirements of complex sensors and

actuators.

Fig. 3. AUTOSAR layered architecture [9].

• Microcontroller Abstraction layer resides at the

bottom just above the underlying ECUs. It separates the

above layers from the hardware and provides

standardized interfaces for communication of upper

layers to the ECU.

Software component (SW-C) at ECU level contains at

least one or several runnable entities (or simply

runnables). A runnable is small fragment of sequential

code within a component. Runnable entities are grouped

into operating system tasks executed on ECUs.

Runnables grouped onto one task may belong to different

software components. Operating system controls and

schedules these tasks. These OS tasks can be of one of

the categories, basic tasks (Category1 without

WaitEvent) or extended tasks (Category2 with

WaitEvent). All runnables are activated by RTEEvents.

Deployment: Deployment in AUTOSAR begins when

RTE generator maps all runnables to the OS tasks and

build inter-ECU and intra-ECU communications among

them. This mapping is dependent on different extra-

functional properties and behaviors of the runnables e.g.,

runnable with Category1 will be mapped differently from

the runnable with Category2. Three different rules for

mapping are given in the AUTOSAR RTE specifications

[11]. After mapping, RTE generator configures each

ECU. In the last, the OS tasks bodies are constructed by

RTE generator.

The main disadvantage of AUTOSAR is that it lacks

clear and well-defined timing properties that further

affect the execution semantics too. A tool suite

supporting the complete AUTOSAR methodology is still

missing.

C. AADL

Architecture Analysis and Design Language (AADL)

was developed as a SAE Standard AS-5506 [10] in 2004

to design and analyze software and hardware

architectures of distributed real-time embedded systems.

It supports MBE and has both textual and graphical

representations. It also supports syntax and semantics

analyses of the language. Modeling of software and

hardware parts is supported by software components

(e.g., process, data, thread, thread group, subprogram),

and execution platform components (e.g., processor,

memory, bus, device) respectively. It also allows hybrid

components (e.g., system) [12]. Properties and new

functional aspects can be attached to the elements (e.g.,

components, connections) using the properties defined in

the SAE standard, and communication among

components is performed using component interfaces i.e.,

ports. Ocarina [12] is a tool suite by Telecom Paris that

facilitates the design of AADL models and their mapping

on a hardware platform, assessment of these models (e.g.,

syntactic/semantic analysis, schedulability analysis

performed by Ocarina and Cheddar [13]), and then

automatic code generation from these models and their

deployment.

Deployment: Automatic code generation is done using

the Ocarina compiler [12] that comprises of two

traditional parts: the frontend and the backend.

1) The frontend is responsible for lexical checking,

syntactic analysis, semantic analysis and instantiation. It

generates the lexems, then generates the abstract syntax

tree and add semantics to it, and at the last step produces

the instance tree. It also scrutinizes all syntactic, semantic

and instance errors and warnings.

2) The backend part is responsible for code generation

in three steps; first the expansion of instance tree, second

the conversion of this instance tree into a syntactic tree of

the target language (Ada or C) and the last step is the

code generation that generates the code in C or Ada

language.

Ocarina supports code generation in Ada and C

languages using a middleware API called PolyORB

(PolyORB for Ada while PolyORB-HI for C). This

middleware provides execution services and wraps the

POSIX API, hence it is POSIX compliant. Runnable

entities are presented by processes. A process contains

many tasks and it is a selfcontained runnable entity that

executes on a hardware platform without any

programmatic dependencies. The final executable

binaries are generated by compiling the Ocarina

automatic generated code (in C or Ada) together with the

user written application code (in C or Ada) and the

AADL runtime (e.g. PolyORB, PolyORB-HI).

POK is another type of runnable entity for AADL is

implemented by Julien [14]. This technique is an

extension of the first one implemented by Ocarina. It

employs a hierarchical scheduling concept in a partition.

A partition is a combination of several processes and a

scheduler called Virtual Processor. Each partition is

isolated in terms of space and time. Each process again

encloses several tasks and a local scheduler. A local

scheduler schedules all the tasks of a particular process.

Virtual Processor is then responsible for scheduling all

the processes in a particular partition.

III. VIRTUAL NODE

The concept of virtual node is used to achieve not only

temporal isolation and predictable temporal properties of

real-time components but also to get better reusability of

components with real-time properties. Further it reduces

the efforts related to testing, validation and certification.

This concept is based on two-level deployment process.

It means that the whole system is generated in two steps

rather than a big synthesis step. At the first level of

deployment, functionality (in form of design-time

components) is deployed to virtual nodes, and virtual

nodes are assigned execution resources. In this way

behavior is encapsulated with respect to timing and

resource usage and VN becomes a reusable component in

addition to the design-time components. In the second

level of deployment, these virtual nodes are deployed on

a physical platform together with a global scheduler [5].

A virtual node includes the executable representation

of the components (e.g. a set of tasks), a resource

allocation, and a real-time scheduler to be executed

within a server in the hierarchical scheduling framework.

Hierarchical scheduling is described as follow:

A. Hierarchical Scheduling Framework (HSF)

A two-level Hierarchical Scheduling Framework

(HSF) [6] is used to provide the temporal isolation

among the virtual nodes. In hierarchical scheduling, the

CPU is partitioned into a set of servers, each server can

use a different scheduling policy, and are in turn

scheduled by a global (system-level) scheduler. Hence a

two-level HSF can be viewed as a tree with one parent

node (global scheduler) and many leaf nodes (local

schedulers) as illustrated in Figure 4.

The leaf nodes contain its own internal set of tasks that

are scheduled by a local (subsystem-level) scheduler. The

parent node is a global scheduler that schedules local

schedulers. Using an appropriate HSF, subsystems can be

developed and analyzed in isolation from each other. As

each subsystem has its own local scheduler, after

satisfying the temporal constraints, the temporal

properties are saved within each subsystem. Later, a

global scheduler is used to combine all the subsystems

together without violating the temporal constraints that

are already analyzed and stored in them. Accordingly we

can say that the HSF provides partitioning of the CPU

between different servers. Thus, server-functionality can

be isolated from each other for, e.g., fault containment,

compositional verification, validation and certification,

and unit testing.

 Fig. 4. Two-level hierarchical scheduling framework.

Using HSF a subsystem (virtual node in our case) can

be developed and analyzed in isolation, with its own

local scheduler at first step of deployment and its

temporal properties are preserved. Then at the second

step of deployment an arbitrary global scheduler is used

for the integration of multiple subsystems (virtual nodes)

without violating the temporal properties of the

individual subsystems analyzed in isolation. A brief

overview of our hierarchical scheduling framework

implementation is given here.

HSF implementation in FreeRTOS: The two-level

hierarchical scheduling implementation is done

independently from components [17][18]. We have

chosen FreeRTOS [16], a portable open source real-time

scheduler for the implementation. Its main properties like

open source, small and scalable, support for 23 different

hardware architectures, and ease to extend and maintain

makes it a perfect choice to be used within the

PROGRESS project [7][8]. The motivations for choosing

FreeRTOS and the details about its real-time kernel are

provided in [17][18].

We have implemented time-triggered periodic tasks

within the FreeRTOS operating system to support hard

real-time components. The HSF implementation supports

two kinds of servers, idling periodic and deferrable

servers. The implementation uses fixed priority

preemptive scheduling (FPPS) for both global and local-

level scheduling. FPPS is flexible and simple to

implement, plus is the de-facto industrial standard for

task scheduling and FreeRTOS native scheduling policy.

The resource sharing policy of FreeRTOS to access local

shared resources has been improved, and the support for

inter-subsystem resource sharing to access global shared

resources has been implemented in the HSF

implementation. This entails: support for Stack Resource

Policy (SRP) [19] for local resource sharing to avoid

problems like priority inversions and deadlocks, and

Hierarchical Stack Resource Policy (HSRP) [20] for

global resource sharing with three different methods to

handle overrun [21] to handle the budget expiration

within the critical section. These three types of overrun

mechanisms are overrun without payback (BO), with

payback (PO), and enhanced overrun (EO).

Implementation of BO is very simple, the server simply

executes and overruns its budget, and no further action is

required. For PO and EO we need to measure the overrun

amount of time to pay back at the server’s next

activation. We have also provided legacy support for

existing systems or components to be executed within our

HSF implementation as a subsystem.

We have performed a detailed experimental evaluation

[17] [18] on the implementation to test its temporal

behavior and performance measures on an AVR-based

32-bit EVK1100 board [22]. The AVR32UC3A0512

micro-controller runs at the frequency of 12MHz and its

tick interrupt handler at 1ms. We have tested the

implementation for the correct behavior of idling and

deferrable servers and of overrun mechanisms by plotting

the traces of the execution of the system. We have also

evaluated the system behavior during the overload

situation and tested the temporal isolation among servers.

We showed that when one server is overloaded and its

tasks miss deadlines, it does not affect the behavior of

other servers in the system, even if the priority of the

overloaded server is highest; hence proves the temporal

isolation and fault containment behavior of HSF.

IV. APPLYING VIRTUAL NODE CONCEPT TO PROCOM,

AUTOSAR, AND AADL

In the component models we are currently studying the

virtual node concept to be applied in the following way:

A. ProCom

In ProCom the Virtual Node is an integrated model

concept. That means that the virtual nodes exist both on

the modeling level and as executable entities as shown in

Figure 1. The system is generated using two-level

deployment process rather than a big synthesis step. A set

of ProSys subsystems are mapped to one virtual node

which can then be integration-tested and validated for the

correct temporal behavior. This virtual node preserves its

temporal properties and hence becomes a reusable entity

that is ready to deploy in numerous systems and stored

for future reuse.

At the modeling level, each virtual node contains a set

of integrated ProSys components plus the resources

(CPU budget, memory) required for these ProSys

components. At the executable level, virtual node

contains the set of executable tasks, resources required to

run those tasks and a real-time local scheduler to

schedule these tasks. The local scheduler runs within a

global scheduler in a HSF.

The final executables that can be downloaded and

executed on the physical node consists of a set of virtual

nodes and simple real-time scheduler linked together.

The scheduler is the top level scheduler in the

hierarchical scheduling framework, and is responsible for

dispatching the servers of each virtual node according to

their bandwidth reservation. As the real-time properties

of the virtual node are preserved within the local

scheduler, therefore when integrated with other virtual

nodes on a physical node, the real-time properties of the

whole integrated system will be guaranteed.

B. AUTOSAR

For AUTOSAR, we propose to map a number

runnables to a virtual node. Thus, an AUTOSAR

component can be deployed to a set of virtual nodes; the

natural choice would be to use one virtual node per

physical node that the component will be distributed

over. Using this approach the component can be

developed and its timing behavior tested without

accounting for interference from other AUTOSAR

components deployed at the same physical nodes.

However, since the AUTOSAR component-model and

methodology does not recognize the virtual node as an

entity of its own, reuse in different organizations or

different software architectures may be difficult.

However, the virtual node still provides strong

encapsulation of the runnables and thus makes the

functionality robust against future changes in both the

runnables and in other components running in other

virtual nodes.

C. AADL

For AADL, we propose to map the generated code

from AADL models along with user written code to the

virtual node. Hence instead of synthesizing whole system

in a single big-bang step, the synthesis will be performed

in smaller steps. The synthesis will be done at the two

levels:

1) First the individual runnables will be created in

isolation and timing analysis will be performed on them.

2) Then some middleware (e.g., PolyORB, PolyORB-

HI) can be used for their intra-communications and to

generate a whole system.

Currently a similar concept of two level code

generation has been used for ARINC653 systems [15]

using AADL. It is supported by the tool POK [14] that

uses Ocarina tool for AADL models development and

Cheddar tool for scheduling analysis. POK supports

partitioning of the CPU and hierarchical scheduling for

the underlying ARINC653 systems by using virtual

processor. This approach is not generic in embedded

real-time systems since ARINC653 is an avionics

standard, therefore, the use of virtual processor is

restricted to the avionics only.

V. CONCLUSIONS AND FUTURE WORK

We have described our technique of two-level

deployment process to allow predictable integration of

software components with temporal requirements. The

technique is based on the concept of virtual nodes which

use hierarchical scheduling to achieve temporal isolation

and predictable execution of components allocated to the

virtual nodes. The virtual node will become a real-time

executable reusable entity. We have described how this

technique can be used for three different component

models: ProCom, AUTOSAR and AADL.

Future work is to do the code synthesis for generating

and configuring virtual nodes from ProSys subsystems in

ProCom component model. It includes the integration of

our HSF implementation within the virtual node. Once

these implementation efforts are complete will have all

the links in a complete development chain for model

driven engineering of component based system in the

ProCom component technology:

• Using the ProCom Integrated Development

Environment (PRIDE) components can be developed,

assembled and deployed to virtual nodes.

• Using scheduling analysis of hierarchically

scheduled systems [21] we can determine schedulability

of both individual virtual nodes and the final composition

of multiple virtual nodes on a single physical node.

• And, with our implemented code synthesis and

runtime platform we can generate and execute the

components and their applications in a predictable way.

The next step will then be to validate the generality of

the virtual-node concept by applying it to AUTOSAR

and AADL technologies.

REFERENCES

[1] I. Crnkovic and M. Larsson. ―Building reliable component-based

software systems‖. Artech House, Inc., 2002.

[2] L. Sha, T. Abdelzaher, K.-E. Årzén, A. Cervin, T. Baker, A.

Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K. Mok,

―Real time scheduling theory: A historical perspective,‖ Real-

Time Systems, vol. 28, no. 2/3, pp. 101–155, 2004.

[3] J. Stankovic, M. Spuri, M. D. Natale, and G. Buttazzo,

―Implications of classical scheduling results for real-time

systems,‖ IEEE Computer, pp. 16–25, June 1995.

[4] J. Carlson, J. Feljan, J. Mäkki-Turja, and M. Sjödin,

―Deployment modelling and synthesis in a component model for

distributed embedded systems‖, In 36th Euromicro Conference

on Software Engineering and Advanced Applications (SEAA),

September 2010.

[5] R. Inam, J. Carlson, J. Mäkki-Turja, and M. Sjödin, ‖Using

temporal isolation to achieve predictable integration of real-time

components‖, Proceedings of Wip Euromicro Conference on

Real-Time Systems (ECRTS10), July 2010.

[6] Z. Deng and J. W.-S. Liu, ―Scheduling real-time applications in

an open environment,‖ in Proceedings of IEEE Real-Time

Systems Symposium, December 1997.

[7] T. Bureš, J. Carlson, I. Crnkovic, S. Sentilles, and A. Vulgarakis,

―ProCom – the Progress component model reference manual,

version 1.0,‖ Mälardalen University, Technical Report MDH-

MRTC-230/2008-1-SE, June 2008.

[8] T. Bureš, J. Carlson, S. Sentilles, and A. Vulgarakis, ―A

component model family for vehicular embedded systems,‖ in

The 3rd International Conference on Software Engineering

Advances. IEEE, October 2008.

[9] ―Autosar project-page,‖ www.autosar.org.

[10] SAE International, ―AADL specification,‖

http://www.sae.org/technical/standards/AS5506/1.

[11] AUTOSAR Partnership, ―Specification of RTE V2.0.1 R3.0 Rev

0001 ,‖ 2008, http://www.autosar.org/.

[12] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, ―From the

prototype to the final embedded system using the ocarina AADL

tool suite,‖ ACM Trans. Embedded Computer Systems, vol. 7, no.

4, pp. 1–25, 2008.

[13] F. Singhoff, J. Legrand, L. Nana, and L. Marc, ―Cheddar: a

flexible real time scheduling framework,‖ Ada Lett., vol. XXIV,

no. 4, pp. 1–8, 2004.

[14] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff, and

F. Kordon, ―Validate, simulate, and implement arinc653 systems

using the aadl,‖ Ada Lett., vol. 29, no. 3, pp. 31–44, 2009.

[15] Airlines Electronic Engineering, ―Avionics Application Software

Standard Interface‖. TR, Aeronautical Radio, INC, 1997.

[16] ―FreeRTOS web-site,‖ http://www.freertos.org/.

[17] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, S. M. H. Ashjaei,

Sara Afshar. ‖Support for hierarchical scheduling in FreeRTOS―.

In Proc. of the IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA 2011), September

2011.

[18] Rafia Inam, Jukka Mäki-Turja, Mikael Sjödin, Moris Behnam.

―Hard real-time support for hierarchical scheduling in

FreeRTOS‖. In Proc. of the 7th International Workshop on

Operating Systems Platforms for Embedded Real-Time

Applications (OSPERT 11), July 2011.

[19] T. Baker. ―Stack-based scheduling of real-time processes‖.

Journal of Real-Time Systems, 3(1):67–99, 1991.

[20] R. I. Davis and A. Burns. ―Resource sharing in hierarchical fixed

priority pre-emptive systems‖. In IEEE Real-Time Systems

Symposium (RTSS’06).

[21] M. Behnam, T. Nolte, M. Sjödin, and I. Shin, ―Overrun methods

and resource holding times for hierarchical scheduling of semi-

independent real-time systems,‖ IEEE Transactions on Industrial

Informatics, vol. 6, no. 1, Feb 2010.

[22] ―ATMEL EVK1100 product page,‖

http://www.atmel.com/dyn/Products/.

Rafia Inam (S’09) is a Ph.D. student at

Mälardalen Real-Time Research Centre,

Mälardalen University, Västerås,

Sweden. Her research interests include

timing behavior and reusability of

realtime embedded systems, and realtime

hierarchical scheduling.

She received her M.Sc. degrees in

computer science from the Quaid-i-Azam

University, Islamabad, Pakistan, and her

M.S. degree in networks and distributed

systems from Chalmers University of Technology (CTH), Göteborg,

Sweden, in 1997, and 2010, respectively.

Rafia is awarded scholarship by IEEE Industrial Electronic Society

for the paper ―Support for Hierarchical Scheduling in FreeRTOS‖ in

proceedings of the 16th IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA’ 11), IEEE Industrial

Electronics Society, Toulouse, France, September, 2011.

Jukka Mäki-Turja is a software-

research specialist at Arcticus Systems

and senior lecturer and researcher at

Mälardalen Real-Time Research Centre,

Mälardalen University, Västerås,

Sweden. His research interest lies in

design and analysis of predictable real-

time systems. Jukka received his PhD in

computer science from Mälardalen

University in 2005 with response time

analysis for tasks with offsets as focus

and has since pursued the research in

predictable component-based software design for embedded systems.

Jan Carlson is a senior lecturer at the

School of Innovation, Design and

Engineering, Mälardalen University,

Sweden. He received his M.Sc. degree in

Computer Science from Linköping

University in 2000, and his doctoral

degree from Mälardalen University in

2007.

His research interests include

component models for embedded

systems, event pattern detection, formal

methods and logic programming.

Mikael Sjödin is a professor of real-time

systems at Mälardalen Real-Time

Research Centre, Mälardalen University,

Västerås, Sweden. Mikael is focusing his

research on new methods to construct

software for embedded control systems in

the vehicular and telecom industry. The

current research goal is to find methods

that will make software development

cheaper, faster and yield software with

higher quality.

Concurrently, Mikael is also been pursuing research in analysis of

real-time systems, where the goal is to find theoretical models for real-

time systems that will allow their timing behavior and memory

consumption to be calculated.

Mikael received his PhD in computer systems 2000 from Uppsala

University (Sweden). Since then he has been working in both academia

and in industry with embedded systems, real-time systems, and

embedded communications. Previous affiliations include Newline

Information, Melody Interactive Solutions and CC Systems. In 2006 he

joined the MRTC faculty as a full professor with specialty in real-time

systems and vehicular software-systems.

http://www.autosar.org/
http://www.sae.org/technical/standards/AS5506/1
http://www.autosar.org/
http://www.freertos.org/
http://www.atmel.com/dyn/Products/
http://www.newlineinfo.se/
http://www.newlineinfo.se/

