
   

 

 

Abstract—We present an approach of two-level 

deployment process for component models used in 

distributed real-time embedded systems to achieve 

predictable integration of real-time components. Our main 

emphasis is on the new concept of virtual node with the use 

of a hierarchical scheduling technique. Virtual nodes are 

used as means to achieve predictable integration of software 

components with real-time requirements. The hierarchical 

scheduling framework is used to achieve temporal isolation 

between components (or sets of components). Our approach 

permits detailed analysis, e.g., with respect to timing, of 

virtual nodes and this analysis is also reusable with the 

reuse of virtual nodes. Hence virtual node preserves real-

time properties across reuse and integration in different 

contexts. 

 

 Index Terms—Hierarchical scheduling, real-time 

systems, reusability, component-based software-

engineering. 

I. INTRODUCTION 

OMPONENT integration can be explained as the 

mechanical task of wiring components together [1]. 

Since it is rare that two components perfectly match, 

component integration requires more than just matching 

the needs and services of one component with the needs 

and services of others. In real-time embedded systems the 

components and components integration must satisfy 

both (1) functional correctness and (2) extra-functional 

correctness, such as satisfying timing properties. 

Temporal behavior of the real-time components poses 

more difficulties in their integration. When multiple 

components are deployed on the same hardware node, the 

timing behavior of each of the components is typically 

altered in unpredictable ways. This means that a 

component that is found correct during unit testing may 

fail, due to a change in temporal behavior, when 

integrated in a system. Even if a new component is still 

operating correctly in the system, the integration could 

cause a previously integrated (and correctly operating) 

component to fail. Similarly, the temporal behavior of a 
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component is altered if the component is reused in a new 

system. Since also this alteration is unpredictable, a 

previously correct component may fail when reused. 

Some of these problems can be solved using 

scheduling analysis [2][3], however these techniques only 

allow very simple models; typically simple timing 

attributes such as period and deadline are used. 

Components often exhibit a too complex behavior to be 

amenable for scheduling analysis. And, even if a suitable 

analysis technique should exist, such analysis requires 

knowledge of the temporal behavior of all components in 

the system. Thus, a component cannot be deemed correct 

without knowing which components it is integrated with. 

As a result, the reusability of a component is restricted 

since it is very difficult to know beforehand if the 

component will pass a schedulability test in a new 

system.  

For large-scale real-time embedded systems, 

methodologies and techniques are required to provide 

temporal isolation so that the run-time timing properties 

could be guaranteed. Further the real-time properties of 

the components should be maintained for their reuse in 

large-scale industrial embedded systems. 

Contributions: 

The main contributions of this paper are as follows: 

  We propose the concept of a Virtual Node (VN), 

which is an execution-platform concept that preserves 

temporal properties of the software executed in the 

virtual node [4, 5]. The virtual node is intended for 

coarse-grained components for single node 

deployment and with potential internal multitasking.  

  We propose to integrate hierarchical scheduling 

framework (HSF) [6] within the components (virtual 

nodes) to realize our ideas of providing temporal 

properties of real-time components, their predictable 

integrations and reusability.  

  We describe how the virtual node can be applied in 

the run-time infrastructure in three different 

component technologies: ProCom [7, 8], AUTOSAR 

[9], and AADL [10]. 

 

Paper Outline: Section II describes the component 

technologies we study in this paper. In section III we 

describe the virtual node execution-mechanism and the 
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hierarchical scheduling framework used by the virtual 

node. We explain the usage of virtual node in the above 

mentioned three component models in section IV, in 

section V we conclude the paper and present the future 

work to be done. 

II. COMPONENT TECHNOLOGIES 

Component-Based Software Engineering (CBSE) and 

Model-Based Engineering (MBE) are two emerging 

approaches to develop embedded control systems like 

software used in trains, airplanes, cars, industrial robots, 

etc.  In this section we briefly outline the component 

technologies we will target in our work. We discuss three 

representatives of technologies that use component-based 

software engineering (AUTOSAR), model-based 

engineering (AADL) and a combination of CBSE and 

MBE (ProCom).  

We present related work from the perspective of 

deployment of the components on physical platform and 

the generation of final executables of the system in the 

above mentioned technologies.  

A. ProCom 

ProCom component model combines both CBSE and 

MBE techniques for the development of the system parts, 

hence also exploits the advantages of both. It takes 

advantages of encapsulation, reusability, and reduced 

testing from CBSE. From MBE it makes use of 

automated code generation and performing analysis at an 

earlier stage of development. In addition ProCom 

achieves additional benefits of combining both 

approaches (like flexible reuse, support for mixed 

maturity, reuse and efficiency tradeoff) [4]. 

 

 

 
 
Fig. 1.  The ProCom component model: Overview of the modeling- and 

runnable realms. 

 

The ProCom component model can be described in 

two distinct realms: modeling and runnable realms as 

shown in Figure 1. In the modeling realm the models are 

made using CBSE and MBE, while in the runnable realm 

the synthesis of runnable entities is done from the model 

entities. Both realms are explained as follows:  

The Modeling Realm: Modeling in ProCom is done 

by four discrete but related formalisms as shown in 

Figure 1. The first two formalisms relate to the system 

functionality modeling while the later two represent the 

deployment modeling of the system.  

Functionality of the system is modeled by the ProSave 

and ProSys components at different levels of granularity. 

The basic functionality (data and control) of a simple 

component is captured in ProSave component level, 

which is passive in nature. At the second formalism level 

many ProSave components are mapped to make a 

complete subsystem called ProSys that is active in nature. 

Both ProSys and ProSave allow composite components. 

For details on ProSave and ProSys, including the 

motivation for separating the two, see [7], [8].  

The deployment modeling is used to capture the 

deployment related design decisions and then mapping 

the system to run on the physical platform. Many ProSys 

components can be mapped together on a virtual node 

(many-to-one mapping) together with a resource budget 

(i.e. CPU usage and memory requirements) required by 

those components.  

After that many virtual nodes could be mapped on a 

physical node i.e. an ECU: an electronic control unit. The 

relationship is again many-to-one.  This part represents 

all the physical nodes, their intercommunication through 

the network and the type of the network etc. Figure 2 

represents how four virtual nodes (VN1, VN2, VN3, and 

VN4) are allocated to the three physical nodes (Node1, 

Node2, and Node3).  Details about the deployment 

modeling are provided in [4].  

 

 
Fig. 2.  Allocation of the virtual nodes to the physical nodes. 

 

The Runnable Realm: is the synthesis of the 

runnables/executables from the ProCom model entities. 

The primitive ProSave components are represented as 

simple C language source code in runnable form. From 

this C code the ProSys runnables are generated which 

contains the collection of operating system tasks. Virtual 

node runnables will implement the local scheduler and 

will contain the server task. Hence virtual node runnable 

actually encapsulates the set of tasks, resource 

allocations, and a real-time scheduler within a server in a 

two-level hierarchical scheduling framework. Final 

binary image will be generated by connecting different 

virtual nodes together with a global scheduler and using 

some middleware to provide intra-communications 

among the virtual node executables. As this work is 

going on, some of the details about the runnable realm 

are given in [5].  



   

 

Deployment—Two-steps Process: Rather than 

deploying a whole system in one big step, the 

deployment of the ProCom components on the physical 

platform is done in the following two steps: 

1) First the ProSys subsystems are deployed on an 

intermediate node called Virtual Node. The allocation of 

ProSys subsystems to the virtual nodes is many-to-one 

relationship. The additional information that is added at 

this step is the resource budgets. 

2) The virtual nodes are then deployed on the physical 

nodes. The relationship is again many-to-one means more 

than one virtual node can be deployed to one physical 

node. 

This two-steps deployment process allows not only the 

detailed analysis in isolation from the other components 

to be deployed on the same physical node, but once 

checked for correctness, it also preserves its temporal 

properties for further reuse of this virtual node as an 

independent component. Section III describes this 

further. 

B. AUTOSAR 

AUTomotive Open System ARchitecture (AUTOSAR) 

[9] is an open standard for automotive electronics 

architecture. It is developed by a number of automotive 

manufacturers and suppliers to deal with the increasing 

complexity and to fulfill a number of future vehicle 

requirements (such as safety and availability, driver 

assistance, software updates, environment, and 

infotainment). The key features of AUTOSAR are 

modularity, configurability, standardized interfaces and a 

runtime environment. It provides standardized modular 

software infrastructure and basic software for embedded 

automotive systems. A layered-software platform has 

been developed to achieve modularity, scalability, 

transferability, and reusability of components.  

AUTOSAR methodology is a standardized technique 

that describes all the major steps in a complete 

development cycle of a system. It encloses all steps from 

the system level configurations till the generation of ECU 

executable binaries.  

Functional software is developed using component-

based approach. A component is developed over many 

layers of AUTOSAR, including: Application layer, 

Runtime Environment (RTE), Basic software and ECU  

hardware as shown in Figure 3. Some important layers 

are: 

• Application layer resides at the top of RTE. At this 

layer, an application consists of one or many AUTOSAR 

software components and sensor/actuator components. 

• RTE connects AUTOSAR components. It is 

responsible for configurations and communication among 

components. It enables both communication between 

components on the same ECU and also communication 

between components on different ECUs. Hence it makes 

the components completely independent from the 

underlying hardware. Components communicate with 

each other using ports (e.g., PPort, RPort) and port 

interfaces (e.g., client-server, sender-receiver). 

• Basic software (BSW) provides services to Input/ 

Output (I/O), communication, memory, and system. It 

has access to hardware (e.g., sensors, actuators), 

Internal/External memory, microcontroller onboard 

peripheral devices and communications. BSW consists of 

Internal drivers (e.g., EEPROM, CAN, etc.), external 

drivers (e.g., external EEPROM, etc.), Interfaces that 

offer generic API for upper layers, handlers, and 

managers. BSW uses complex drivers to handle timing 

and functional requirements of complex sensors and 

actuators. 

 

 
Fig. 3.  AUTOSAR layered architecture [9]. 

 

• Microcontroller Abstraction layer resides at the 

bottom just above the underlying ECUs. It separates the 

above layers from the hardware and provides 

standardized interfaces for communication of upper 

layers to the ECU. 

Software component (SW-C) at ECU level contains at 

least one or several runnable entities (or simply 

runnables). A runnable is small fragment of sequential 

code within a component. Runnable entities are grouped 

into operating system tasks executed on ECUs. 

Runnables grouped onto one task may belong to different 

software components. Operating system controls and 

schedules these tasks. These OS tasks can be of one of 

the categories, basic tasks (Category1 without 

WaitEvent) or extended tasks (Category2 with 

WaitEvent). All runnables are activated by RTEEvents. 

Deployment: Deployment in AUTOSAR begins when 

RTE generator maps all runnables to the OS tasks and 

build inter-ECU and intra-ECU communications among 

them. This mapping is dependent on different extra-

functional properties and behaviors of the runnables e.g., 

runnable with Category1 will be mapped differently from 

the runnable with Category2. Three different rules for 

mapping are given in the AUTOSAR RTE specifications 

[11]. After mapping, RTE generator configures each 

ECU. In the last, the OS tasks bodies are constructed by 

RTE generator.  



   

 

The main disadvantage of AUTOSAR is that it lacks 

clear and well-defined timing properties that further 

affect the execution semantics too. A tool suite 

supporting the complete AUTOSAR methodology is still 

missing. 

C. AADL 

Architecture Analysis and Design Language (AADL) 

was developed as a SAE Standard AS-5506 [10] in 2004 

to design and analyze software and hardware 

architectures of distributed real-time embedded systems. 

It supports MBE and has both textual and graphical 

representations. It also supports syntax and semantics 

analyses of the language. Modeling of software and 

hardware parts is supported by software components 

(e.g., process, data, thread, thread group, subprogram), 

and execution platform components (e.g., processor, 

memory, bus, device) respectively. It also allows hybrid 

components (e.g., system) [12]. Properties and new 

functional aspects can be attached to the elements (e.g., 

components, connections) using the properties defined in 

the SAE standard, and communication among 

components is performed using component interfaces i.e., 

ports. Ocarina [12] is a tool suite by Telecom Paris that 

facilitates the design of AADL models and their mapping 

on a hardware platform, assessment of these models (e.g., 

syntactic/semantic analysis, schedulability analysis 

performed by Ocarina and Cheddar [13]), and then 

automatic code generation from these models and their 

deployment.  

Deployment: Automatic code generation is done using 

the Ocarina compiler [12] that comprises of two 

traditional parts: the frontend and the backend.  

1) The frontend is responsible for lexical checking, 

syntactic analysis, semantic analysis and instantiation. It 

generates the lexems, then generates the abstract syntax 

tree and add semantics to it, and at the last step produces 

the instance tree. It also scrutinizes all syntactic, semantic 

and instance errors and warnings. 

2) The backend part is responsible for code generation 

in three steps; first the expansion of instance tree, second 

the conversion of this instance tree into a syntactic tree of 

the target language (Ada or C) and the last step is the 

code generation that generates the code in C or Ada 

language.  

Ocarina supports code generation in Ada and C 

languages using a middleware API called PolyORB 

(PolyORB for Ada while PolyORB-HI for C). This 

middleware provides execution services and wraps the 

POSIX API, hence it is POSIX compliant. Runnable 

entities are presented by processes. A process contains 

many tasks and it is a selfcontained runnable entity that 

executes on a hardware platform without any 

programmatic dependencies. The final executable 

binaries are generated by compiling the Ocarina 

automatic generated code (in C or Ada) together with the 

user written application code (in C or Ada) and the 

AADL runtime (e.g. PolyORB, PolyORB-HI). 

POK is another type of runnable entity for AADL is 

implemented by Julien [14]. This technique is an 

extension of the first one implemented by Ocarina. It 

employs a hierarchical scheduling concept in a partition. 

A partition is a combination of several processes and a 

scheduler called Virtual Processor. Each partition is 

isolated in terms of space and time. Each process again 

encloses several tasks and a local scheduler. A local 

scheduler schedules all the tasks of a particular process. 

Virtual Processor is then responsible for scheduling all 

the processes in a particular partition.  

III. VIRTUAL NODE 

The concept of virtual node is used to achieve not only 

temporal isolation and predictable temporal properties of 

real-time components but also to get better reusability of 

components with real-time properties. Further it reduces 

the efforts related to testing, validation and certification. 

This concept is based on two-level deployment process. 

It means that the whole system is generated in two steps 

rather than a big synthesis step. At the first level of 

deployment, functionality (in form of design-time 

components) is deployed to virtual nodes, and virtual 

nodes are assigned execution resources.  In this way 

behavior is encapsulated with respect to timing and 

resource usage and VN becomes a reusable component in 

addition to the design-time components. In the second 

level of deployment, these virtual nodes are deployed on 

a physical platform together with a global scheduler [5].  

A virtual node includes the executable representation 

of the components (e.g. a set of tasks), a resource 

allocation, and a real-time scheduler to be executed 

within a server in the hierarchical scheduling framework. 

Hierarchical scheduling is described as follow:  

A. Hierarchical Scheduling Framework (HSF) 

A two-level Hierarchical Scheduling Framework 

(HSF) [6] is used to provide the temporal isolation 

among the virtual nodes. In hierarchical scheduling, the 

CPU is partitioned into a set of servers, each server can 

use a different scheduling policy, and are in turn 

scheduled by a global (system-level) scheduler. Hence a 

two-level HSF can be viewed as a tree with one parent 

node (global scheduler) and many leaf nodes (local 

schedulers) as illustrated in Figure 4. 

The leaf nodes contain its own internal set of tasks that 

are scheduled by a local (subsystem-level) scheduler. The 

parent node is a global scheduler that schedules local 

schedulers. Using an appropriate HSF, subsystems can be 

developed and analyzed in isolation from each other. As 

each subsystem has its own local scheduler, after 

satisfying the temporal constraints, the temporal 



   

 

properties are saved within each subsystem. Later, a 

global scheduler is used to combine all the subsystems 

together without violating the temporal constraints that 

are already analyzed and stored in them. Accordingly we 

can say that the HSF provides partitioning of the CPU 

between different servers. Thus, server-functionality can 

be isolated from each other for, e.g., fault containment, 

compositional verification, validation and certification, 

and unit testing. 

 

 
 

 Fig. 4.  Two-level hierarchical scheduling framework. 

 

Using HSF a subsystem (virtual node in our case) can 

be developed and analyzed in isolation, with its own 

local scheduler at first step of deployment and its 

temporal properties are preserved. Then at the second 

step of deployment an arbitrary global scheduler is used 

for the integration of multiple subsystems (virtual nodes) 

without violating the temporal properties of the 

individual subsystems analyzed in isolation. A brief 

overview of our hierarchical scheduling framework 

implementation is given here. 

HSF implementation in FreeRTOS: The two-level 

hierarchical scheduling implementation is done 

independently from components [17][18]. We have 

chosen FreeRTOS [16], a portable open source real-time 

scheduler for the implementation. Its main properties like 

open source, small and scalable, support for 23 different 

hardware architectures, and ease to extend and maintain 

makes it a perfect choice to be used within the 

PROGRESS project [7][8]. The motivations for choosing 

FreeRTOS and the details about its real-time kernel are 

provided in [17][18]. 

We have implemented time-triggered periodic tasks 

within the FreeRTOS operating system to support hard 

real-time components. The HSF implementation supports 

two kinds of servers, idling periodic and deferrable 

servers. The implementation uses fixed priority 

preemptive scheduling (FPPS) for both global and local-

level scheduling. FPPS is flexible and simple to 

implement, plus is the de-facto industrial standard for 

task scheduling and FreeRTOS native scheduling policy. 

The resource sharing policy of FreeRTOS to access local 

shared resources has been improved, and the support for 

inter-subsystem resource sharing to access global shared 

resources has been implemented in the HSF 

implementation. This entails: support for Stack Resource 

Policy (SRP) [19] for local resource sharing to avoid 

problems like priority inversions and deadlocks, and 

Hierarchical Stack Resource Policy (HSRP) [20] for 

global resource sharing with three different methods to 

handle overrun [21] to handle the budget expiration 

within the critical section. These three types of overrun 

mechanisms are overrun without payback (BO), with 

payback (PO), and enhanced overrun (EO). 

Implementation of BO is very simple, the server simply 

executes and overruns its budget, and no further action is 

required. For PO and EO we need to measure the overrun 

amount of time to pay back at the server’s next 

activation. We have also provided legacy support for 

existing systems or components to be executed within our 

HSF implementation as a subsystem. 

We have performed a detailed experimental evaluation 

[17] [18] on the implementation to test its temporal 

behavior and performance measures on an AVR-based 

32-bit EVK1100 board [22]. The AVR32UC3A0512 

micro-controller runs at the frequency of 12MHz and its 

tick interrupt handler at 1ms. We have tested the 

implementation for the correct behavior of idling and 

deferrable servers and of overrun mechanisms by plotting 

the traces of the execution of the system. We have also 

evaluated the system behavior during the overload 

situation and tested the temporal isolation among servers. 

We showed that when one server is overloaded and its 

tasks miss deadlines, it does not affect the behavior of 

other servers in the system, even if the priority of the 

overloaded server is highest; hence proves the temporal 

isolation and fault containment behavior of HSF. 

 

IV. APPLYING VIRTUAL NODE CONCEPT TO PROCOM, 

AUTOSAR, AND AADL   

In the component models we are currently studying the 

virtual node concept to be applied in the following way: 

A. ProCom 

In ProCom the Virtual Node is an integrated model 

concept. That means that the virtual nodes exist both on 

the modeling level and as executable entities as shown in 

Figure 1. The system is generated using two-level 

deployment process rather than a big synthesis step. A set 



   

 

of ProSys subsystems are mapped to one virtual node 

which can then be integration-tested and validated for the 

correct temporal behavior. This virtual node preserves its 

temporal properties and hence becomes a reusable entity 

that is ready to deploy in numerous systems and stored 

for future reuse.  

At the modeling level, each virtual node contains a set 

of integrated ProSys components plus the resources 

(CPU budget, memory) required for these ProSys 

components.  At the executable level, virtual node 

contains the set of executable tasks, resources required to 

run those tasks and a real-time local scheduler to 

schedule these tasks. The local scheduler runs within a 

global scheduler in a HSF.  

The final executables that can be downloaded and 

executed on the physical node consists of a set of virtual 

nodes and simple real-time scheduler linked together. 

The scheduler is the top level scheduler in the 

hierarchical scheduling framework, and is responsible for 

dispatching the servers of each virtual node according to 

their bandwidth reservation. As the real-time properties 

of the virtual node are preserved within the local 

scheduler, therefore when integrated with other virtual 

nodes on a physical node, the real-time properties of the 

whole integrated system will be guaranteed. 

B. AUTOSAR 

For AUTOSAR, we propose to map a number 

runnables to a virtual node. Thus, an AUTOSAR 

component can be deployed to a set of virtual nodes; the 

natural choice would be to use one virtual node per 

physical node that the component will be distributed 

over. Using this approach the component can be 

developed and its timing behavior tested without 

accounting for interference from other AUTOSAR 

components deployed at the same physical nodes. 

However, since the AUTOSAR component-model and 

methodology does not recognize the virtual node as an 

entity of its own, reuse in different organizations or 

different software architectures may be difficult. 

However, the virtual node still provides strong 

encapsulation of the runnables and thus makes the 

functionality robust against future changes in both the 

runnables and in other components running in other 

virtual nodes. 

C. AADL  

For AADL, we propose to map the generated code 

from AADL models along with user written code to the 

virtual node. Hence instead of synthesizing whole system 

in a single big-bang step, the synthesis will be performed 

in smaller steps. The synthesis will be done at the two 

levels: 

1) First the individual runnables will be created in 

isolation and timing analysis will be performed on them. 

2) Then some middleware (e.g., PolyORB, PolyORB-

HI) can be used for their intra-communications and to 

generate a whole system.  

Currently a similar concept of two level code 

generation has been used for ARINC653 systems [15] 

using AADL. It is supported by the tool POK [14] that 

uses Ocarina tool for AADL models development and 

Cheddar tool for scheduling analysis. POK supports 

partitioning of the CPU and hierarchical scheduling for 

the underlying ARINC653 systems by using virtual 

processor.  This approach is not generic in embedded 

real-time systems since ARINC653 is an avionics 

standard, therefore, the use of virtual processor is 

restricted to the avionics only. 

V. CONCLUSIONS AND FUTURE WORK 

We have described our technique of two-level 

deployment process to allow predictable integration of 

software components with temporal requirements. The 

technique is based on the concept of virtual nodes which 

use hierarchical scheduling to achieve temporal isolation 

and predictable execution of components allocated to the 

virtual nodes. The virtual node will become a real-time 

executable reusable entity. We have described how this 

technique can be used for three different component 

models: ProCom, AUTOSAR and AADL. 

Future work is to do the code synthesis for generating 

and configuring virtual nodes from ProSys subsystems in 

ProCom component model. It includes the integration of 

our HSF implementation within the virtual node. Once 

these implementation efforts are complete will have all 

the links in a complete development chain for model 

driven engineering of component based system in the 

ProCom component technology: 

• Using the ProCom Integrated Development 

Environment (PRIDE) components can be developed, 

assembled and deployed to virtual nodes. 

• Using scheduling analysis of hierarchically 

scheduled systems [21] we can determine schedulability 

of both individual virtual nodes and the final composition 

of multiple virtual nodes on a single physical node. 

• And, with our implemented code synthesis and 

runtime platform we can generate and execute the 

components and their applications in a predictable way. 

The next step will then be to validate the generality of 

the virtual-node concept by applying it to AUTOSAR 

and AADL technologies. 
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