26 research outputs found

    Spanning Eulerian subgraphs and Catlin’s reduced graphs

    Get PDF
    A graph G is collapsible if for every even subset R ⊆ V (G), there is a spanning connected subgraph HR of G whose set of odd degree vertices is R. A graph is reduced if it has no nontrivial collapsible subgraphs. Catlin [4] showed that the existence of spanning Eulerian subgraphs in a graph G can be determined by the reduced graph obtained from G by contracting all the collapsible subgraphs of G. In this paper, we present a result on 3-edge-connected reduced graphs of small orders. Then, we prove that a 3-edge-connected graph G of order n either has a spanning Eulerian subgraph or can be contracted to the Petersen graph if G satisfies one of the following: (i) d(u) + d(v) \u3e 2(n/15 − 1) for any uv 6∈ E(G) and n is large; (ii) the size of a maximum matching in G is at most 6; (iii) the independence number of G is at most 5. These are improvements of prior results in [16], [18], [24] and [25]

    Properties of Catlin's reduced graphs and supereulerian graphs

    Get PDF
    A graph GG is called collapsible if for every even subset RV(G)R\subseteq V(G), there is a spanning connected subgraph HH of GG such that RR is the set of vertices of odd degree in HH. A graph is the reduction of GG if it is obtained from GG by contracting all the nontrivial collapsible subgraphs. A graph is reduced if it has no nontrivial collapsible subgraphs. In this paper, we first prove a few results on the properties of reduced graphs. As an application, for 3-edge-connected graphs GG of order nn with d(u)+d(v)2(n/p1)d(u)+d(v)\ge 2(n/p-1) for any uvE(G)uv\in E(G) where p>0p>0 are given, we show how such graphs change if they have no spanning Eulerian subgraphs when pp is increased from p=1p=1 to 10 then to 1515

    A study on Dicycles and Eulerian Subdigraphs

    Get PDF
    1. Dicycle cover of Hamiltonian oriented graphs. A dicycle cover of a digraph D is a family F of dicycles of D such that each arc of D lies in at least one dicycle in F. We investigate the problem of determining the upper bounds for the minimum number of dicycles which cover all arcs in a strong digraph. Best possible upper bounds of dicycle covers are obtained in a number of classes of digraphs, including strong tournaments, Hamiltonian oriented graphs, Hamiltonian oriented complete bipartite graphs, and families of possibly non-hamiltonian digraphs obtained from these digraphs via a sequence of 2-sum operations.;2. Supereulerian digraphs with given local structures . Catlin in 1988 indicated that there exist graph families F such that if every edge e in a graph G lies in a subgraph He of G isomorphic to a member in F, then G is supereulerian. In particular, if every edge of a connected graph G lies in a 3-cycle, then G is supereulerian. The purpose of this research is to investigate how Catlin\u27s theorem can be extended to digraphs. A strong digraph D is supereulerian if D contains a spanning eulerian subdigraph. We show that there exists an infinite family of non-supereulerian strong digraphs each arc of which lies in a directed 3-cycle. We also show that there exist digraph families H such that a strong digraph D is supereulerian if every arc a of D lies in a subdigraph Ha isomorphic to a member of H. A digraph D is symmetric if (x, y) ∈ A( D) implies (y, x) ∈ A( D); and is symmetrically connected if every pair of vertices of D are joined by a symmetric dipath. A digraph D is partially symmetric if the digraph obtained from D by contracting all symmetrically connected components is symmetrically connected. It is known that a partially symmetric digraph may not be symmetrically connected. We show that symmetrically connected digraphs and partially symmetric digraphs are such families. Sharpness of these results are discussed.;3. On a class of supereulerian digraphs. The 2-sum of two digraphs D1 and D2, denoted D1 ⊕2 D2, is the digraph obtained from the disjoint union of D 1 and D2 by identifying an arc in D1 with an arc in D2. A digraph D is supereulerian if D contains a spanning eulerian subdigraph. It has been noted that the 2-sum of two supereulerian (or even hamiltonian) digraphs may not be supereulerian. We obtain several sufficient conditions on D1 and D 2 for D1 ⊕2 D 2 to be supereulerian. In particular, we show that if D 1 and D2 are symmetrically connected or partially symmetric, then D1 ⊕2 D2 is supereulerian

    Spanning Trails and Spanning Trees

    Get PDF
    There are two major parts in my dissertation. One is based on spanning trail, the other one is comparing spanning tree packing and covering.;The results of the spanning trail in my dissertation are motivated by Thomassen\u27s Conjecture that every 4-connected line graph is hamiltonian. Harary and Nash-Williams showed that the line graph L( G) is hamiltonian if and only if the graph G has a dominating eulerian subgraph. Also, motivated by the Chinese Postman Problem, Boesch et al. introduced supereulerian graphs which contain spanning closed trails. In the spanning trail part of my dissertation, I proved some results based on supereulerian graphs and, a more general case, spanning trails.;Let alpha(G), alpha\u27(G), kappa( G) and kappa\u27(G) denote the independence number, the matching number, connectivity and edge connectivity of a graph G, respectively. First, we discuss the 3-edge-connected graphs with bounded edge-cuts of size 3, and prove that any 3-edge-connected graph with at most 11 edge cuts of size 3 is supereulerian, which improves Catlin\u27s result. Second, having the idea from Chvatal-Erdos Theorem which states that every graph G with kappa(G) ≥ alpha( G) is hamiltonian, we find families of finite graphs F 1 and F2 such that if a connected graph G satisfies kappa\u27(G) ≥ alpha(G) -- 1 (resp. kappa\u27(G) ≥ 3 and alpha\u27( G) ≤ 7), then G has a spanning closed trail if and only if G is not contractible to a member of F1 (resp. F2). Third, by solving a conjecture posed in [Discrete Math. 306 (2006) 87-98], we prove if G is essentially 4-edge-connected, then for any edge subset X0 ⊆ E(G) with |X0| ≤ 3 and any distinct edges e, e\u27 2 ∈ E(G), G has a spanning ( e, e\u27)-trail containing all edges in X0.;The results on spanning trees in my dissertation concern spanning tree packing and covering. We find a characterization of spanning tree packing and covering based on degree sequence. Let tau(G) be the maximum number of edge-disjoint spanning trees in G, a(G) be the minimum number of spanning trees whose union covers E(G). We prove that, given a graphic sequence d = (d1, d2···dn) (d1 ≥ d2 ≥···≥ dn) and integers k2 ≥ k1 \u3e 0, there exists a simple graph G with degree sequence d satisfying k 1 ≤ tau(G) ≤ a(G) ≤ k2 if and only if dn ≥ k1 and 2k1(n -- 1) ≤ Sigmani =1 di ≤ 2k2( n -- 1 |I| -- 1) + 2Sigma i∈I di, where I = {lcub}i : di \u3c k2{rcub}

    Cycles in graph theory and matroids

    Get PDF
    A circuit is a connected 2-regular graph. A cycle is a graph such that the degree of each vertex is even. A graph G is Hamiltonian if it has a spanning circuit, and Hamiltonian-connected if for every pair of distinct vertices u, v ∈ V( G), G has a spanning (u, v)-path. A graph G is s-Hamiltonian if for any S ⊆ V (G) of order at most s, G -- S has a Hamiltonian-circuit, and s-Hamiltonian connected if for any S ⊆ V( G) of order at most s, G -- S is Hamiltonian-connected. In this dissertation, we investigated sufficient conditions for Hamiltonian and Hamiltonian related properties in a graph or in a line graph. In particular, we obtained sufficient conditions in terms of connectivity only for a line graph to be Hamiltonian, and sufficient conditions in terms of degree for a graph to be s-Hamiltonian and s-Hamiltonian connected.;A cycle C of G is a spanning eulerian subgraph of G if C is connected and spanning. A graph G is supereulerian if G contains a spanning eulerian subgraph. If G has vertices v1, v2, &cdots; ,vn, the sequence (d( v1),d(v2), &cdots; ,d(vn)) is called a degree sequence of G. A sequence d = ( d1,d2, &cdots; ,dn) is graphic if there is a simple graph G with degree sequence d. Furthermore, G is called a realization of d. A sequence d ∈ G is line-hamiltonian if d has a realization G such that L(G) is hamiltonian. In this dissertation, we obtained sufficient conditions for a graphic degree sequence to have a supereulerian realization or to be line hamiltonian.;In 1960, Erdos and Posa characterized the graphs G which do not have two edge-disjoint circuits. In this dissertation, we successfully extended the results to regular matroids and characterized the regular matroids which do not have two disjoint circuits

    Supereulerian Properties in Graphs and Hamiltonian Properties in Line Graphs

    Get PDF
    Following the trend initiated by Chvatal and Erdos, using the relation of independence number and connectivity as sufficient conditions for hamiltonicity of graphs, we characterize supereulerian graphs with small matching number, which implies a characterization of hamiltonian claw-free graph with small independence number.;We also investigate strongly spanning trailable graphs and their applications to hamiltonian connected line graphs characterizations for small strongly spanning trailable graphs and strongly spanning trailable graphs with short longest cycles are obtained. In particular, we have found a graph family F of reduced nonsupereulerian graphs such that for any graph G with kappa\u27(G) ≥ 2 and alpha\u27( G) ≤ 3, G is supereulerian if and only if the reduction of G is not in F..;We proved that any connected graph G with at most 12 vertices, at most one vertex of degree 2 and without vertices of degree 1 is either supereulerian or its reduction is one of six exceptional cases. This is applied to show that if a 3-edge-connected graph has the property that every pair of edges is joined by a longest path of length at most 8, then G is strongly spanning trailable if and only if G is not the wagner graph.;Using charge and discharge method, we prove that every 3-connected, essentially 10-connected line graph is hamiltonian connected. We also provide a unified treatment with short proofs for several former results by Fujisawa and Ota in [20], by Kaiser et al in [24], and by Pfender in [40]. New sufficient conditions for hamiltonian claw-free graphs are also obtained

    Eulerian subgraphs and Hamiltonicity of claw -free graphs

    Get PDF
    Let C(l, k) denote the class of 2-edge-connected graphs of order n such that a graph G ∈ C(l, k) if and only if for every edge cut S ⊆ E(G) with |S| ≤ 3, each component of G - S has order at least n-kl . We prove that If G ∈ C(6, 0), then G is supereulerian if and only if G cannot be contracted to K2,3, K 2,5 or K2,3(e), where e ∈ E(K2,3) and K2,3(e) stands for a graph obtained from K2,3 by replacing e by a path of length 2. Previous results by Catlin and Li, and by Broersma and Xiong are extended.;We also investigate the supereulerian graph problems within planar graphs, and we prove that if a 2-edge-connected planar graph G is at most three edges short of having two edge-disjoint spanning trees, then G is supereulerian except a few classes of graphs. This is applied to show the existence of spanning Eulerian subgraphs in planar graphs with small edge cut conditions. We determine several extremal bounds for planar graphs to be supereulerian.;Kuipers and Veldman conjectured that any 3-connected claw-free graph with order n and minimum degree delta ≥ n+610 is Hamiltonian for n sufficiently large. We prove that if H is a 3-connected claw-free graph with sufficiently large order n, and if delta(H) ≥ n+510 , then either H is hamiltonian, or delta( H) = n+510 and the Ryjac˘ek\u27s closure cl( H) of H is the line graph of a graph obtained from the Petersen graph P10 by adding n-1510 pendant edges at each vertex of P10

    Circuits and Cycles in Graphs and Matroids

    Get PDF
    This dissertation mainly focuses on characterizing cycles and circuits in graphs, line graphs and matroids. We obtain the following advances. 1. Results in graphs and line graphs. For a connected graph G not isomorphic to a path, a cycle or a K1,3, let pc(G) denote the smallest integer n such that the nth iterated line graph Ln(G) is panconnected. A path P is a divalent path of G if the internal vertices of P are of degree 2 in G. If every edge of P is a cut edge of G, then P is a bridge divalent path of G; if the two ends of P are of degree s and t, respectively, then P is called a divalent (s, t)-path. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K3}. We prove the following. (i) If G is a connected triangular graph, then L(G) is panconnected if and only if G is essentially 3-edge-connected. (ii) pc(G) ≤ l(G) + 2. Furthermore, if l(G) ≥ 2, then pc(G) = l(G) + 2 if and only if for some integer t ≥ 3, G has a bridge divalent (3, t)-path of length l(G). For a graph G, the supereulerian width μ′(G) of a graph G is the largest integer s such that G has a spanning (k;u,v)-trail-system, for any integer k with 1 ≤ k ≤ s, and for any u, v ∈ V (G) with u ̸= v. Thus μ′(G) ≥ 2 implies that G is supereulerian, and so graphs with higher supereulerian width are natural generalizations of supereulerian graphs. Settling an open problem of Bauer, Catlin in [J. Graph Theory 12 (1988), 29-45] proved that if a simple graph G on n ≥ 17 vertices satisfy δ(G) ≥ n − 1, then μ′(G) ≥ 2. In this paper, we show that for 4 any real numbers a, b with 0 \u3c a \u3c 1 and any integer s \u3e 0, there exists a finite graph family F = F(a,b,s) such that for a simple graph G with n = |V(G)|, if for any u,v ∈ V(G) with uv ∈/ E(G), max{dG(u), dG(v)} ≥ an + b, then either μ′(G) ≥ s + 1 or G is contractible to a member in F. When a = 1,b = −3, we show that if n is sufficiently large, K3,3 is the only 42 obstacle for a 3-edge-connected graph G to satisfy μ′(G) ≥ 3. An hourglass is a graph obtained from K5 by deleting the edges in a cycle of length 4, and an hourglass-free graph is one that has no induced subgraph isomorphic to an hourglass. Kriesell in [J. Combin. Theory Ser. B, 82 (2001), 306-315] proved that every 4-connected hourglass-free line graph is Hamilton-connected, and Kaiser, Ryj ́aˇcek and Vr ́ana in [Discrete Mathematics, 321 (2014) 1-11] extended it by showing that every 4-connected hourglass-free line graph is 1- Hamilton-connected. We characterize all essentially 4-edge-connected graphs whose line graph is hourglass-free. Consequently we prove that for any integer s and for any hourglass-free line graph L(G), each of the following holds. (i) If s ≥ 2, then L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2; (ii) If s ≥ 1, then L(G) is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. For integers s1, s2, s3 \u3e 0, let Ns1,s2,s3 denote the graph obtained by identifying each vertex of a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, Ps3+1 of length s1,s2 and s3, respectively. We prove the following results. (i)LetN1 ={Ns1,s2,s3 :s1 \u3e0,s1 ≥s2 ≥s3 ≥0ands1+s2+s3 ≤6}. Thenforany N ∈ N1, every N-free line graph L(G) with |V (L(G))| ≥ s + 3 is s-hamiltonian if and only if κ(L(G)) ≥ s + 2. (ii)LetN2={Ns1,s2,s3 :s1\u3e0,s1≥s2≥s3≥0ands1+s2+s3≤4}.ThenforanyN∈N2, every N -free line graph L(G) with |V (L(G))| ≥ s + 3 is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. 2. Results in matroids. A matroid M with a distinguished element e0 ∈ E(M) is a rooted matroid with e0 being the root. We present a characterization of all connected binary rooted matroids whose root lies in at most three circuits, and a characterization of all connected binary rooted matroids whose root lies in all but at most three circuits. While there exist infinitely many such matroids, the number of serial reductions of such matroids is finite. In particular, we find two finite families of binary matroids M1 and M2 and prove the following. (i) For some e0 ∈ E(M), M has at most three circuits containing e0 if and only if the serial reduction of M is isomorphic to a member in M1. (ii) If for some e0 ∈ E(M), M has at most three circuits not containing e0 if and only if the serial reduction of M is isomorphic to a member in M2. These characterizations will be applied to show that every connected binary matroid M with at least four circuits has a 1-hamiltonian circuit graph

    Cycles, Disjoint Spanning Trees and Orientations of Graphs

    Get PDF
    A graph G is hamiltonian-connected if any two of its vertices are connected by a Hamilton path (a path including every vertex of G); and G is s-hamiltonian-connected if the deletion of any vertex subset with at most s vertices results in a hamiltonian-connected graph. We prove that the line graph of a (t + 4)-edge-connected graph is (t + 2)-hamiltonian-connected if and only if it is (t + 5)-connected, and for s ≥ 2 every (s + 5)-connected line graph is s-hamiltonian-connected.;For integers l and k with l \u3e 0, and k ≥ 0, Ch( l, k) denotes the collection of h-edge-connected simple graphs G on n vertices such that for every edge-cut X with 2 ≤ |X| ≤ 3, each component of G -- X has at least (n -- k)/l vertices. We prove that for any integer k \u3e 0, there exists an integer N = N( k) such that for any n ≥ N, any graph G ∈ C2(6, k) on n vertices is supereulerian if and only if G cannot be contracted to a member in a well characterized family of graphs.;An orientation of an undirected graph G is a mod (2 p + 1)-orientation if under this orientation, the net out-degree at every vertex is congruence to zero mod 2p + 1. A graph H is mod (2p + 1)-contractible if for any graph G that contains H as a subgraph, the contraction G/H has a mod (2p + 1)-orientation if and only if G has a mod (2p + 1)-orientation (thus every mod (2p + 1)-contractible graph has a mod (2p + 1)-orientation). Jaeger in 1984 conjectured that every (4p)-edge-connected graph has a mod (2p + 1)-orientation. It has also been conjectured that every (4p + 1)-edge-connected graph is mod (2 p + 1)-contractible. We investigate graphs that are mod (2 p + 1)-contractible, and as applications, we prove that a complete graph Km is (2p + 1)-contractible if and only if m ≥ 4p + 1; that every (4p -- 1)-edge-connected K4-minor free graph is mod (2p + 1)-contractible, which is best possible in the sense that there are infinitely many (4p -- 2)-edge-connected K4-minor free graphs that are not mod (2p + 1)-contractible; and that every (4p)-connected chordal graph is mod (2p + 1)-contractible. We also prove that the above conjectures on line graphs would imply the truth of the conjectures in general, and that if G has a mod (2p + 1)-orientation and delta(G) ≥ 4p, then L(G) also has a mod (2p + 1)-orientation.;The design of an n processor network with given number of connections from each processor and with a desirable strength of the network can be modelled as a degree sequence realization problem with certain desirable graphical properties. A nonincreasing sequence d = ( d1, d2, ···, dn) is graphic if there is a simple graph G with degree sequence d. It is proved that for a positive integer k, a graphic nonincreasing sequence d has a simple realization G which has k-edge-disjoint spanning trees if and only if either both n = 1 and d1 = 0, or n ≥ 2 and both dn ≥ k and i=1n di ≥ 2k(n -- 1).;We investigate the emergence of specialized groups in a swarm of robots, using a simplified version of the stick-pulling problem [56], where the basic task requires the collaboration of two robots in asymmetric roles. We expand our analytical model [57] and identify conditions for optimal performance for a swarm with any number of species. We then implement a distributed adaptation algorithm based on autonomous performance evaluation and parameter adjustment of individual agents. While this algorithm reliably reaches optimal performance, it leads to unbounded parameter distributions. Results are improved by the introduction of a direct parameter exchange mechanism between selected high- and low-performing agents. The emerging parameter distributions are bounded and fluctuate between tight unimodal and bimodal profiles. Both the unbounded optimal and the bounded bimodal distributions represent partitions of the swarm into two specialized groups
    corecore