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ABSTRACT

Cycles, Disjoint Spanning Trees and Orientations of Graphs

Yanting Liang

A graph G is hamiltonian-connected if any two of its vertices are connected by a

Hamilton path (a path including every vertex of G); and G is s-hamiltonian-connected

if the deletion of any vertex subset with at most s vertices results in a hamiltonian-

connected graph. We prove that the line graph of a (t + 4)-edge-connected graph is

(t + 2)-hamiltonian-connected if and only if it is (t + 5)-connected, and for s ≥ 2 every

(s+ 5)-connected line graph is s-hamiltonian-connected.

For integers l and k with l > 0, and k ≥ 0, Ch(l, k) denotes the collection of h-edge-

connected simple graphs G on n vertices such that for every edge-cut X with 2 ≤ |X| ≤ 3,

each component of G−X has at least (n− k)/l vertices. We prove that for any integer

k > 0, there exists an integer N = N(k) such that for any n ≥ N , any graph G ∈ C2(6, k)

on n vertices is supereulerian if and only if G cannot be contracted to a member in a well

characterized family of graphs.

An orientation of an undirected graph G is a mod (2p + 1)-orientation if under this

orientation, the net out-degree at every vertex is congruence to zero mod 2p+ 1. A graph

H is mod (2p + 1)-contractible if for any graph G that contains H as a subgraph, the

contraction G/H has a mod (2p + 1)-orientation if and only if G has a mod (2p + 1)-

orientation (thus every mod (2p+ 1)-contractible graph has a mod (2p+ 1)-orientation).

Jaeger in 1984 conjectured that every (4p)-edge-connected graph has a mod (2p + 1)-

orientation. It has also been conjectured that every (4p + 1)-edge-connected graph is

mod (2p + 1)-contractible. We investigate graphs that are mod (2p + 1)-contractible,

and as applications, we prove that a complete graph Km is (2p + 1)-contractible if and

only if m ≥ 4p + 1; that every (4p − 1)-edge-connected K4-minor free graph is mod

(2p + 1)-contractible, which is best possible in the sense that there are infinitely many

(4p−2)-edge-connected K4-minor free graphs that are not mod (2p+1)-contractible; and

that every (4p)-connected chordal graph is mod (2p+ 1)-contractible. We also prove that



the above conjectures on line graphs would imply the truth of the conjectures in general,

and that if G has a mod (2p + 1)-orientation and δ(G) ≥ 4p, then L(G) also has a mod

(2p+ 1)-orientation.

The design of an n processor network with given number of connections from each

processor and with a desirable strength of the network can be modelled as a degree

sequence realization problem with certain desirable graphical properties. A nonincreasing

sequence d = (d1, d2, · · · , dn) is graphic if there is a simple graph G with degree sequence

d. It is proved that for a positive integer k, a graphic nonincreasing sequence d has a

simple realization G which has k-edge-disjoint spanning trees if and only if either both

n = 1 and d1 = 0, or n ≥ 2 and both dn ≥ k and
∑n

i=1 di ≥ 2k(n− 1).

We investigate the emergence of specialized groups in a swarm of robots, using a

simplified version of the stick-pulling problem [56], where the basic task requires the

collaboration of two robots in asymmetric roles. We expand our analytical model [57]

and identify conditions for optimal performance for a swarm with any number of species.

We then implement a distributed adaptation algorithm based on autonomous performance

evaluation and parameter adjustment of individual agents. While this algorithm reliably

reaches optimal performance, it leads to unbounded parameter distributions. Results are

improved by the introduction of a direct parameter exchange mechanism between selected

high- and low-performing agents. The emerging parameter distributions are bounded and

fluctuate between tight unimodal and bimodal profiles. Both the unbounded optimal and

the bounded bimodal distributions represent partitions of the swarm into two specialized

groups.
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Chapter 1

Preliminaries

1.1 Notation and Terminology

We use [1] for terminology and notations not defined here. Let G be a graph. We use

V (G) and E(G) to denote the set of vertices and the set of edges of G, respectively. Two

vertices u, v are adjacent if uv ∈ E(G). If any two vertices are adjacent in G, then G is

called a complete graph. A complete graph on n vertices is denoted by Kn. A graph

is bipartite if its vertex set can be partitioned into two subsets X and Y so that every

edge has one end in X and one end in Y ; if every vertex in X is joined to every vertex

in Y , then G is called a complete bipartite graph, denoted Km,n where |X| = m and

|Y | = n.

The number of edges incident with a vertex v ∈ V (G) is called the degree of v in

G, and is denoted by dG(v) or d(v). We use ∆(G) and δ(G) to denote the maximum

and minimum degree of G, respectively. A graph with at least two vertices is called a

nontrivial graph. For an integer k > 0, a k-cycle, denoted by Ck, is a connected graph

with k vertices and in which each vertex has degree 2. A vertex cut of G is a subset V ′

of V (G) such that G− V ′ is disconnected. A k-vertex cut is a vertex cut of k elements.

A complete graph has no vertex cut; in fact, the only graphs that do not have vertex cuts

are those that contain complete graphs as spanning subgraphs. If G has at least one pair

1



CHAPTER 1. PRELIMINARIES 2

of distinct nonadjacent vertices, the connectivity κ(G) of G is the minimum k for which

G has a k-vertex cut; otherwise, we define κ(G) to be |V (G)| − 1. A graph G is said to

be k-connected if κ(G) ≥ k. Similarly, an edge cut of G is a subset E ′ of E(G) such

that G − E ′ is disconnected. A k-edge cut is an edge cut of k elements. We define the

edge-connectivity κ′(G) of G to be the minimum k for which G has a k-edge cut. A graph

G is said to be k-edge-connected if κ′(G) ≥ k. An edge e = uv is called a pendant

edge of graph G if either dG(u) = 1 or dG(v) = 1. For a vertex or an edge subset X

of G, G[X] denotes the subgraph of G induced by X. For subsets S, S ′ ⊆ V (G), [S, S ′]

denotes the set of edges of G with one end in S and the other in S ′.

For a graph G and for v ∈ V (G), the neighborhood NG(v) denotes the set of all

vertices adjacent to v in G and τ(G) denotes the number of edge-disjoint spanning trees

of G. .

For a graph G and each i = 0, 1, 2, · · · , we let dG(v) denote the degree of v in G and

Di(G) = {v ∈ V (G)|dG(v) = i}. Let di(G) = |Di(G)|. When the graph G is understood

in the context, we use the following short-hand notations: Di = Di(G), d(v) = dG(v) and

di = di(G). Moreover, for an integer k ≥ 0, a vertex of degree k in a graph G is sometimes

referred as a k-vertex of G. If A ⊆ V (G), we let G−A = G[V (G)−A]. When A = {v},
we use G− v for G− {v}.

An edge cut X of G is essential if at least two components of G−X are nontrivial. A

graph G is essentially k-edge-connected if |E(G)| ≥ k+ 1 and if for every E0 ⊆ E(G)

with |E0| < k, G− E0 has exactly one component H with E(H) 6= Ø.

Let X ⊆ E(G). The contraction G/X is the graph obtained from G by identifying

the two ends of each edge in X and then deleting the resulting loops. For convenience,

we use G/e for G/{e} and G/Ø = G; and if H is a subgraph of G, we write G/H for

G/E(H). Note that even if G is a simple graph, contracting some edges of G may result

in a graph with multiple edges. If K is a connected subgraph of G, and if vK is the vertex

in G/K onto which K is contracted, then K is called the pre-image of vK .

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where

two vertices in L(G) are adjacent if and only if the corresponding two edges in G share
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one common end-vertex.

A cycle of a graph G is called a hamiltonian cycle if it visits each vertex of G

exactly once. A path of a graph G is called a hamiltonian path if it visits each vertex

of G exactly once. A graph G is called hamiltonian if it has a hamiltonian cycle; G

is called hamiltonian-connected if for any two distinct vertices u, v ∈ V (G), G has a

hamiltonian path connecting u and v; and G is s-hamiltonian-connected if the deletion of

any vertex subset with at most s vertices results in a Hamiltonian-connected graph.

An Euler circuit is a closed walk that traverses each edge exactly once. A graph

G is called eulerian if it has an Euler circuit; G is Supereulerian if it has a spanning

eulerian subgraph. We denote by S the family of all Supereulerian graphs.

A subgraph H of a graph G is dominating if G − V (H) is edgeless. Harary and

Nash-Williams proved a very useful connection between hamiltonian cycles in the line

grpah L(G) and dominating eulerian subgraphs in G.

Theorem 1.1.1 (Harary and Nash-Willaims [6]) For a connected graph G with |E(G)| ≥
3, L(G) is hamiltonian if and only if G has a dominating eulerian subgraph.

Let e1, e2 ∈ E(G). A trail in G whose first edge is e1 and last edge is e2 is called

an (e1, e2)-trail. Let T be an (e1, e2)-trail. Then T is dominating if every e ∈ E(G)

is incident with an internal vertex of T ; and T is spanning if T is dominating and

V (T ) = V (G). For v1, v2 ∈ V (G), a trail in G whose origin is v1 and terminus is v2 is

called a (v1, v2)-trail, and it is a spanning (v1, v2)-trail if it contains every vertex of G.

Theorem 1.1.2 (Catlin and Lai, Theorem 4 in [5]) Let G be a graph and let e1, e2 ∈
E(G). If G has two edge-disjoint spanning trees, then exactly one of the following holds:

(a) G has a spanning (e1, e2)-trail;

(b) {e1, e2} is an essential edge-cut of G.

With similar arguments in [6], the following is obtained.
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Theorem 1.1.3 Let G be a connected graph with at least 3 edges. The line graph L(G) is

hamiltonian-connected if and only if for any e1, e2 ∈ E(G), G has a dominating (e1, e2)-

trail.

1.2 Catlin’s Reduction Method

A graph G is collapsible if for any even subset R ⊆ V (G), G has a spanning connected

subgraph H such that O(H) = R where O(H) denotes the set of odd vertices of H. The

reduction of G is the graph obtained from G by contracting each maximal collapsible

subgraph of G to a distinct vertex. If G is the reduction of itself, then G is reduced.

By definition, the 3-cycle C3 is collapsible, and any collapsible graph is supereulerian.

Theorem 1.2.1 (Li, Lai and Zhan, Lemma 2.2 in [8]) If G is collapsible, then ∀x, y ∈
V (G), there exists a (x, y)-trail T of G such that V (T ) = V (G).

Define F (G) to be the minimum number of edges that must be added to G so that

the resulting graph has two edge-disjoint spanning trees. The edge arboricity a(G) of a

graph G is the minimum number of forests in G whose union contains G. Nash-Williams

[25] proved

a(G) = max
H⊆G

⌈
|E(H)|
|V (H)| − 1

⌉
. (1.1)

Theorem 1.2.2 (Catlin) Let G be a graph.

(i) (Theorem 2 in [2]) If F (G) = 0, then G is collapsible.

(ii) (Theorem 3 in [2]) If H is a collapsible subgraph of G, then G ∈ S if and only if

G/H ∈ S.

(iii) (Theorem 8(iv) in [2]) If H is a collapsible subgraph of G, then G is collapsible if and

only if G/H is collapsible.

(iv) (Theorem 5 and 8(iii) in [2]) If G is reduced, then any subgraph of G is reduced and

a(G) ≤ 2.
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(v) (Theorem 8(iv) in [2]) If a(G) ≤ 2, then F (G) = 2|V (G)| − |E(G)| − 2. In particular,

if G is a reduced graph, then F (G) = 2|V (G)| − |E(G)| − 2.

(vi) (Lemma 1 in [15]) For any e ∈ E(K3,3), K3,3 − e is collapsible.

Theorem 1.2.3 (Catlin et al, Theorem 6 in [17]) For a graph G, if max
K⊆G

|E(K)|
|V (K)| − 1

≥ 2,

then G has a nontrivial induced subgraph H that has two edge-disjoint spanning trees, i.e.

F (H) = 0.

The following corollary follows from the theorems above directly:

Corollary 1.2.4 If G is reduced, then |E(H)|/(|V (H)|−1) < 2 for any nontrivial induced

subgraph H of G.

Proof. By Theorem 1.2.2(iv) and equation (1), |E(H)|/(|V (H)|−1) ≤ 2 for any nontrivial

induced subgraph H of G. Assume there exists H such that |E(H)|/(|V (H)| − 1) = 2.

Then by Theorem 1.2.3 and 1.2.2(i), G has a nontrivial collapsible subgraph, contrary

to that G is reduced. Hence, |E(H)|/(|V (H)| − 1) < 2.

Theorem 1.2.5 (Catlin, Theorem 7 in [2]) If F (G) ≤ 1, then G is collapsible if and only

if κ′(G) ≥ 2.

Theorem 1.2.6 (Catlin et al, Theorem 1.3 in [4]) If G is connected and if F (G) ≤ 2, G

is collapsible if and only if the reduction of G is not a K2 or K2,t with t ≥ 1.

Theorem 1.2.7 (Catlin, Theorem 8 and Lemma 5 of [2]) If G is reduced, then G is simple

and has no K3. Moreover, if κ′(G) ≥ 2, then
3∑
i=2

|Di(G)| ≥ 4, and when
3∑
i=2

|Di(G)| = 4,

G must be Eulerian.
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1.3 Mod (2p + 1)-orientations

Let Z denotes the set of all integers. For an m ∈ Z, Zm denotes the set of integers modulo

m, as well as the additive cyclic group on m elements.

Let D = D(G) be an orientation of an undirected graph G. If an edge e ∈ E(G)

is directed from a vertex u to a vertex v, then define tail(e) = u and head(e) = v. For

vertex sets U, V ⊂ V (G) with U ∩ V = Ø, denote

EG(U, V ) = {uv ∈ E(G) : u ∈ U, v ∈ V },

E−D(U, V ) = {e = uv ∈ E(D) : head(e) = u ∈ U, tail(e) = v ∈ V },

E+
D(U, V ) = {e = uv ∈ E(D) : tail(e) = u ∈ U, head(e) = v ∈ V }.

Let d−D(U, V ) = |E−D(U, V )| and d+D(U, V ) = |E+
D(U, V )|. If U = {v} and V = V (G)−{v},

then we use EG(v), E−D(v) and E+
D(v) to denote the subsets of edges incident with v

in G, directed into v and directed from v under orientation D, respectively, and let

d−D(v) = |E−D(v)| and d+D(v) = |E+
D(v)|. The subscript D may be omitted when D(G) is

understood from the context.

For a function f : E 7→ Zm, define the boundary of f ∂f : V (G) 7→ Zm as follows:

∂f(v) ≡
∑

e∈E+
D(v)

f(e)−
∑

e∈E−D(v)

f(e) (mod m).

A function b : V (G) 7→ Zm is a zero sum function on Zm if
∑

v∈V (G)

b(v) ≡ 0 (mod m).

The set of all zero sum functions on Zm ofG is denoted by Z(G,Zm). Whenm = 2p+1 > 0

is an odd number, we define M o
2p+1 to be the collection of graphs such that G ∈M o

2p+1 if

and only if ∀b ∈ Z(G,Z2p+1), ∃f : E(G) 7→ {1,−1} such that ∀v ∈ V (G), ∂f(v) ≡ b(v)

(mod 2p+ 1).

For a graph G, if G has an orientation D such that at every vertex v ∈ V (G),

d+D(v)−d−D(v) ≡ 0 (mod 2p+1), then we say that G admits a mod (2p+1)-orientation.

The set of all graphs which have mod (2p + 1)-orientations is denoted by M2p+1. It can

be proved that G has a 3-NZF if and only if G ∈ M3 by letting f : E 7→ {1,−1} with
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∂f = 0 and then reversing the orientation of e for every e ∈ E(G) with f(e) = −1 to

obtain a mod 3-orientation. As implied in [37], the property for G to be in M2p+1 or in

M o
2p+1 is independent of the orientation D(G).

Tutte and Jeager proposed the following conjectures concerning the membership of

M2p+1. A conjecture concerning the membership in M o
2p+1 is also proposed recently.

Conjecture 1.3.1 Let p ≥ 1 denote an integer.

(i) (Tutte, [40]) Every 4-edge-connected graph is in M3.

(ii) (Jaeger, [32] and [33]) Every (4p)-edge-connected graph is in M2p+1.

(iii) ([37] and [38]) Every (4p+ 1)-edge-connected graph is in M o
2p+1

Conjecture 1.3.1 (i) is well-known as Tutte’s 3-flow conjecture. Conjecture 1.3.1 (ii)

is an extension of Tutte’s 3-flow conjecture, which includes Conjecture 1.3.1 (i) as the

special case of p = 1. To the best of our knowledge, all these conjectures remain open.

Given a zero sum function b ∈ Z(G,Z2p+1), and a map f : E(G) 7→ {1,−1} with

∂f ≡ b in Z2p+1 (under the current orientation D of G), one can reverse the orientation of

e for each e ∈ E(G) with f(e) = −1 to obtain an orientation D′ of G such that ∀v ∈ V (G),

d+D′(v)−d−D′(v) = ∂f(v). This orientation will be called a (Z2p+1, b)-orientation of G. Thus

we have the following propositions.

Proposition 1.3.2 ([37]) Let G be a graph. Then G ∈ M o
2p+1 if and only if ∀b ∈

Z(G,Z2p+1), G has a (Z2p+1, b)-orientation, that is, an orientation D with the proper-

ty that ∀v ∈ V (G), d+D(v)− d−D(v) ≡ b(v) (mod 2p+ 1).

Proposition 1.3.3 ([37]) For any integer p ≥ 1, each of the following holds.

(C1) K1 ∈M o
2p+1.

(C2) If e ∈ E(G) and if G ∈M o
2p+1, then G/e ∈M o

2p+1.

(C3) If H is a subgraph of G and H,G/H ∈M o
2p+1, then G ∈M o

2p+1.

(C2’) If e ∈ E(G) and if G ∈M2p+1, then G/e ∈M2p+1.

(C3’) If H is a subgraph of G with H ∈ M o
2p+1, then G/H ∈ M2p+1 if and only if

G ∈M2p+1.
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Proof. Statements (C1)-(C3) can be found in Proposition 2.2 of [37]. The proofs of

(C2’) and (C3’) are similar to those for (C2) and (C3), respectively, and so they are

omitted.

1.4 Main Results

In the coming several chapters, we will present the following main results in this disser-

tation.

(1) The line graph of a (t+ 4)-edge-connected graph is (t+ 2)-hamiltonian-connected

if and only if it is (t + 5)-connected, and for s ≥ 2 every (s + 5)-connected line graph is

s-hamiltonian-connected.

(2 ) For integers h, l and k with h, l > 0, and k ≥ 0, Ch(l, k) denotes the collection

of h-edge-connected simple graphs G on n vertices such that for every edge-cut X with

2 ≤ |X| ≤ 3, each component of G − X has at least (n − k)/l vertices. We prove that

for any integer k > 0, there exists an integer N = N(k) such that for any n ≥ N , any

graph G ∈ C2(6, k) on n vertices is supereulerian if and only if G cannot be contracted to

a member in a well characterized family of graphs.

(3) Let G be a connected graph. Then G has a mod (2p+ 1)-orientation if and only

if G is the contraction of a (2p+ 1)-regular bipartite graph.

(4) We show that M o
2p+1 consists of exactly the graphs H with the following property:

for any graph G which contains H as a subgraph, G ∈M2p+1 if and only if G/H ∈M2p+1.

(5) Every (4p− 1)-edge-connected K4-minor free graph is mod (2p+ 1)-contractible,

and that every (4p)-connected chordal graph is mod (2p + 1)-contractible. Both edge-

connectivity conditions are best possible.

(6) Jaeger in 1984 conjectured that every (4p)-edge-connected graph has a mod

(2p + 1)-orientation. It has also been conjectured that every (4p + 1)-edge-connected

graph is mod (2p + 1)-contractible. We prove that the above conjectures on line graphs
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would imply the truth of the conjectures in general, and we also prove that if G has a

mod (2p+ 1)-orientation and δ(G) ≥ 4p, then L(G) also has a mod (2p+ 1)-orientation.

(7) For a positive integer k, a graphic nonincreasing sequence d has a simple real-

ization G which has k-edge-disjoint spanning trees if and only if either both n = 1 and

d1 = 0, or n ≥ 2 and both dn ≥ k and
∑n

i=1 di ≥ 2k(n− 1).



Chapter 2

Hamiltonian-connected Line Graphs

2.1 Introduction

It is well known that high connectivity does not assure the existence of a hamiltonian

cycle, as evidenced by the complete bipartite graph Km+1,m for large m. However, for a

line graph, C. Thomassen [9] made the following conjecture.

Conjecture 2.1.1 (Thomassen [9]) Every 4-connected line graph is hamiltonian.

Dr. Zhan made the following progresses towards Thomassen’s Conjecture.

Theorem 2.1.2 (Zhan, Theorem 3 in [10]) If κ′(G) ≥ 4, then L(G) is hamiltonian-

connected.

Theorem 2.1.3 (Zhan, Theorem 3 in [11]) If κ(L(G)) ≥ 7, L(G) is hamiltonian-connected.

The main purpose of chapter is to sharpen both theorems obtained by Zhan. In fact,

we proved the following two theorems in this note, for integers t ≥ 0 and s ≥ 2.

10
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Theorem 2.1.4 The line graph of a (t+ 4)-edge-connected graph is (t+ 2)-hamiltonian-

connected if and only if it is (t+ 5)-connected.

Theorem 2.1.5 Every (s+ 5)-connected line graph is s-hamiltonian-connected.

2.2 Proof of Theorems 2.1.4 and 2.1.5

Throughout this section, we assume t ≥ 0 and s ≥ 2 are integers. First, we review

some of mechanisms needed in the arguments.

Theorem 2.2.1 (Zhan, Corollary 10 in [11]) Let G be a graph with κ′(G) ≥ 3 and

κ(L(G)) ≥ 7. Then for every pair x and y of edges of G, the subgraph G − {x, y},
or G−{x} if x and y have an end-vertex of degree 3 in common, can be decomposed into

two connected factors F1 and F2.

The core of a graph G, denoted by Go, is obtained by deleting all vertices of degree 1

and contracting exactly one edge of xy or yz for each path xyz in G with d(y) = 2. This

notation is used throughout this chapter.

By the definition of the core graph Go, all vertices of degree one or two are deleted

or contracted and so δ(Go) ≥ 3. Note that an essential edge cut of G corresponds to a

vertex cut of L(G) and vice versa. So if κ(L(G)) ≥ 7, then κ′(Go) ≥ 3 and κ(L(Go)) ≥ 7.

The following is also useful.

Theorem 2.2.2 (Catlin, Theorem 2 in [3]) Let G be a connected graph and let k ≥ 1 be

an integer, then κ′(G) ≥ 2k if and only if ∀X ⊆ E(G) with |X| ≤ k, τ(G−X) ≥ k.

Proof of Theorem 2.1.4

Note that K4 − e (where e is an edge of a complete graph K4) is 2-connected, but

not hamiltonian-connected. So a hamiltonian-connected graph is 3-connected and an
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s-hamiltonian-connected graph is (s+ 3)-connected. Thus if L(G) is (t+ 2)-hamiltonian-

connected, then κ(L(G)) ≥ t+ 5. It suffices to prove that if κ(L(G)) ≥ t+ 5, then L(G)

is (t+ 2)-hamiltonian-connected.

To show that L(G) is (t + 2)-hamiltonian connected, it suffices to show that ∀Y ⊆
V (L(G)) = E(G), with |Y | ≤ t+ 2 and ∀e1, e2 ∈ E(G)− Y , L(G)− Y has a hamiltonian

(e1, e2)-path. By Theorem 1.1.3, this amounts to show that G − Y has a dominating

(e1, e2)-trail.

Since |Y | ≤ t + 2, we can choose a subset Y1 ⊆ Y , and let Y2 = Y − Y1, such that

|Y1| ≤ t and |Y2| ≤ 2. Since κ′(G) ≥ 4, κ′(G − Y1) ≥ t + 4 − t = 4. By Theorem 2.2.2,

τ(G− Y ) = τ((G− Y1)− Y2) ≥ 2.

For any e1, e2 ∈ E(G), since G has no essential (4+t)-edge-cut, G−Y has no essential

2-edge-cut. Therefore, {e1, e2} is not an essential edge-cut of G− Y . By Theorem 1.1.2,

G− Y has a spanning (e1, e2)-trail.

Let t = 0 in Theorem 2.1.4, we obtain a result stronger than Theorem 2.1.2.

Corollary 2.2.3 Let G be a graph with κ′(G) ≥ 4. Then L(G) is 2-hamiltonian-connected

if and only if κ(L(G)) ≥ 5.

Lemma 2.2.4 If τ(Go) ≥ 2 and κ(L(G)) ≥ 3, then ∀e1, e2 ∈ E(G), G has a dominating

(e1, e2)-trail. Therefore, L(G) is hamiltonian-connected.

Proof. Let e1, e2 ∈ E(G) be given. Note that a spanning (e1, e2)-trail of Go yields a dom-

inating (e1, e2)-trail of G. For i = 1, 2, let ei = uivi, and suppose d(u1) ≤ d(u2), d(ui) ≤
d(vi). Since G does not have an essential 2-edge-cut, for each i = 1, 2, dG(vi) ≥ 3 and so

vi ∈ V (Go).

We shall show that in each of the possible cases, G has a dominating (e1, e2)-trail.

Case 1: e1, e2 /∈ E(Go).
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By Theorem 1.2.2(i), Go is collapsible since τ(Go) ≥ 2. Let v1 = x, v2 = y. By

Theorem 1.2.1, there exists (x, y)-trail T of Go such that V (T ) = V (Go). Therefore,

{e1}
⋃
E(T )

⋃
{e2} is a dominating (e1, e2)-trail of G.

Case 2: e1 /∈ E(Go), e2 ∈ E(Go).

Then subdividing e2 by inserting a new vertex y, we get a new graph Go(e2). Since

τ(Go) ≥ 2, F (Go(e2)) ≤ 1.

By Theorem 1.2.5, Go(e2) is collapsible since κ′(Go(e2)) ≥ 2. By the notation e1 =

u1v1 with d(u1) ≤ d(v1), we must have v1 ∈ V (Go). Let v1 = x. By Theorem 1.2.1, there

exists a spanning (x, y)-trail T of Go(e2). Since T is an (x, y)-trail, exact one of u2y and

yv2 is in T . Assume u2y ∈ E(T ). Then {e1}
⋃

(E(T ) − {u2y})
⋃
{e2} is a dominating

(e1, e2)-trail of G.

Case 3: e1, e2 ∈ E(Go).

Then subdividing e1, e2 by inserting new vertices x and y in e1 and e2 respectively,

we get a new graph Go(e1, e2). Since τ(Go) ≥ 2, F (Go(e1, e2)) ≤ 2.

By Theorem 1.2.6, Go(e1, e2) is either collapsible or its reduction is a K2,t.

If Go(e1, e2) is collapsible, then there exists a spanning (x, y)-trail T of Go(e1, e2).

Without loss of generality, assume u1x, u2y ∈ E(T ). Then {e1}
⋃

(E(T )−{u1x, u2y})
⋃
{e2}

is a dominating (e1, e2)-trail of G.

If the reduction ofGo(e1, e2) is isomorphic to aK2,t, then denote V (K2,t) = {x1, x2}
⋃
{y1, · · · , yt},

where x1, x2 are the two nonadjacent vertices of degree t and where {y1, · · · , yt} are the

vertices of degree 2 other than {x1, x2}. Since Go is collapsible and κ′(Go) ≥ 3, then t = 2

and {y1, y2} = {x, y}. Therefore, {e1, e2} is an essential 2-edge-cut, a contradiction.

Lemma 2.2.5 If κ(L(G)) ≥ 7, then τ(G− Y )o ≥ 2 for any Y ⊂ V (L(G)) = E(G) with

|Y | ≤ 2.

Proof. Note that κ′(Go) ≥ 3 and κ(L(Go)) ≥ 7. We mainly use Theorem 2.2.1 in each

of the possible cases to prove τ(G− Y )o ≥ 2.
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Case 1: Y = φ.

By Theorem 2.2.1, τ(Go − {x}) ≥ 2 for any x ∈ E(G). So τ(Go) ≥ 2.

Case 2: Y = {e}.

Let e = uv and suppose d(u) ≤ d(v).

Subcase 2.1: u ∈ D1.

Since κ(L(G)) ≥ 7, G does not have an essential 6-edge-cut. And E = {e′|e′ is

incident with v and e′ 6= e} is an essential edge-cut. So |E| ≥ 7. Thus d(v) ≥ 7 + 1 = 8.

Therefore, (G− e)o = Go. By Theorem 2.2.1, τ(G− e)o = τ(Go) ≥ 2.

Subcase 2.2: u ∈ D2.

Suppose e′ = uv′ with v′ 6= v. Since E = {e′′|e′′ is incident with v and e′′ 6= e} ∪ {e′}
is an essential edge-cut and κ(L(G)) ≥ 7, then |E| ≥ 7. So d(v) = |E\{e′} ∪ {e}| ≥ 7.

Similarly, d(v′) ≥ 7. Contract e′ such that e ∈ Go when we obtain Go from G, then

(G− e)o = Go − e. By Theorem 2.2.1, τ(G− e)o = τ(Go − e) ≥ 2.

Subcase 2.3: u ∈ D3.

Then d(v) ≥ 6. Let e′ = uv′, e′′ = uv′′ with e′ 6= e′′ and v′, v′′ 6= v. Note that by

Theorem 2.2.1, Go−e has two edge disjoint spanning trees T ′ and T ′′. Since dGo−e(u) = 2,

exactly one of e′ and e′′ is in T ′ and the other is in T ′′. Assume e′ ∈ T ′ and e′′ ∈ T ′′.

Then T ′ − e′ and T ′′ − e′′ are two edge disjoint spanning trees of (Go − e)/e′. And

(G− e)o = (Go − e)/e′. Thus τ(G− e)o = τ((Go − e)/e′) ≥ 2.

Subcase 2.4: d(u) ≥ 4.

Since dG−e(u) ≥ 3, (G− e)o = Go− e. By Theorem 2.2.1, τ(G− e)o = τ(Go− e) ≥ 2.

Case 3: Y = {e, e′}.

Let e = u1v1, e
′ = u2v2 and suppose d(u1) ≤ d(u2), d(ui) ≤ d(vi), for each i = 1, 2.

Subcase 3.1: u1, u2 ∈ D1.
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Then d(v1), d(v2) ≥ 8. So (G − {e, e′})o = Go. By Theorem 2.2.1, τ(G − {e, e′})o =

τ(Go) ≥ 2.

Subcase 3.2: u1 ∈ D1, u2 /∈ D1.

Then (G− {e, e′})o = ((G− e)− e′)o. Apply the same argument as in Subcases 2.2,

2.3 and 2.4 to G− e. We conclude that τ(G− {e, e′})o ≥ 2.

Subcase 3.3: u1, u2 /∈ D1.

Subcase 3.3.1: u1, u2 ∈ D2.

Then d(vi) ≥ 7, for each i = 1, 2. If u1 = u2, contract e′ such that e ∈ Go when we

obtain Go from G. Then (G − {e, e′})o = Go − e. Thus τ(G − {e, e′})o = τ(Go − e) ≥
2. If u1 6= u2, we obtain Go by contracting other edges such that e, e′ ∈ Go. Then

(G− {e, e′})o = Go − {e, e′}. By Theorem 2.2.1, τ(G− {e, e′})o = τ(Go − {e, e′}) ≥ 2.

Subcase 3.3.2: u1 ∈ D2, d(u2) ≥ 3.

We obtain Go by contracting the other edge such that e ∈ Go. If d(u2) = 3, (G −
{e, e′})o = (Go − {e, e′})/e′′ where e′′ = u2v

′′ with v′′ 6= v2. Similar to Subcases 2.2

and 2.3, τ(G − {e, e′})o ≥ 2. If d(u2) ≥ 4, then (G − {e, e′})o = Go − {e, e′}. Thus

τ(G− {e, e′})o = τ(Go − {e, e′}) ≥ 2.

Subcase 3.3.3: d(u1), d(u2) ≥ 3.

If u1, u2 ∈ D3 and u1 = u2, then suppose e′′ = u1v
′′ with v′′ 6= v1, v2. Therefore,

(G − {e, e′})o = (Go − {e, e′})/e′′. Since τ(Go − e) ≥ 2 and dGo−e(u1) = 2, Go − e

has two edge disjoint spanning trees T ′ and T ′′ which contain e′ and e′′ respectively.

Therefore, T ′ − e′ and T ′′ − e′′ are two edge disjoint spanning trees of (Go − {e, e′})/e′′.
So τ(G − {e, e′})o = τ(Go − {e, e′})/e′′ ≥ 2. If u1, u2 ∈ D3 and u1 6= u2, then suppose

e3 = u1v3, e4 = u2v4 with v3 6= v1, v4 6= v2. Then (G − {e, e′})o = (Go − {e, e′})/{e3, e4}.
Similar to Subcase 2.3, τ(G− {e, e′})o = τ((Go − {e, e′})/{e3, e4}) ≥ 2.

If u1 ∈ D3 and d(u2) ≥ 4, let e3 = u1v3 with v3 6= v1. Then (G − {e, e′})o =

(Go − {e, e′})/e3. Similar to Subcases 2.3 and 2.4, τ(G− {e, e′})o ≥ 2.
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If d(u1), d(u2) = 4 and u1 = u2, suppose e3 = u1v3 with v3 6= v1, v2. Then (G −
{e, e′})o = (Go − {e, e′})/e3. Since τ(Go − {e, e′}) ≥ 2, similar to subcase 2.3 τ(Go −
{e, e′})/e3 ≥ 2. If d(u1), d(u2) = 4 and u1 6= u2 or d(u2) > 4, then (G − {e, e′})o =

Go − {e, e′}. Thus τ(G− {e, e′})o ≥ 2.

Proof of Theorem 2.1.5

Let Y ⊂ V (L(G)) = E(G) with |Y | ≤ s. If |Y | ≤ 2, let Y1 = Y and if |Y | ≥ 3,

let Y1 ⊂ Y with |Y1| = 2 and Y2 = Y − Y1, |Y2| ≤ s − 2. Since κ(L(G)) ≥ s + 5 ≥ 7,

κ(L(G) − Y2) ≥ 7. By Lemma 2.2.5, we have τ(G − Y )o = τ((G − Y2) − Y1)o ≥ 2. By

Lemma 2.2.4, L(G)−Y is hamiltonian-connected. Thus L(G) is s-hamiltonian-connected.

When s = 2, the corollary below extends Theorem 2.1.3.

Corollary 2.2.6 Every 7-connected line graph is 2-hamiltonian-connected.

2.3 A Remark

We conclude this chapter with the following remark.

Theorem 2.1.5 suggests that for any s ≥ 2, there exists a minimum number f(s) such

that if κ(L(G)) ≥ f(s), then L(G) is s-hamiltonian-connected. What is the exact value of

f(s)? Theorem 2.1.5 showed that for s ≥ 2, f(s) ≤ s+5. As any s-hamiltonian-connected

graph must be (s+ 3)-connected, we conjecture that for large values of s, f(s) = s+ 3.



Chapter 3

Characterization of Supereulerian

Graphs in C2(6, k)

3.1 Introduction

For integers h, l and k with l > 0, 0 < h ≤ 3 and k ≥ 0, let Ch(l, k) denote the family

of h-edge-connected graphs G such that for every bond X with two or three edges, each

component of G−X has at least (|V (G)| − k)/l vertices.

The supereulerian problem of a graph G is to determine whether G is a supereulerian

graph. This problem was first raised by Boesch et al [12]. They pointed out in [12] that

this problem is very difficult. Pulleyblank [26] showed that determining if a graph is

supereulerian is NP-complete. For literatures of the problem, see Catlin’s survey [14] and

its supplement [18]. Catlin and Li [16] are the first pioneers who consider the problem of

characterizing supereulerian graphs in the family Ch(l, k). Their study was followed by

several researchers.

Definition 3.1.1 Let K2,3(e) denote the graph obtained from K2,3 by replacing an edge

e ∈ E(K2,3) by a path of length 2. Let m, l, t be natural numbers with t ≥ 2 and

m, l ≥ 1. Let K2,t(u, u
′) be K2,t with u, u′ being the nonadjacent vertices of degree t. Let

17
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K ′2,t(u, u
′, u′′) be the graph obtained from K2,t(u, u

′) by adding a new vertex u′′ that joins

to u′ only. Hence, u′′ has degree 1 and u has degree t in K ′2,t(u, u
′, u′′). Let K ′′2,t(u, u

′, u′′)

be the graph obtained from K2,t(u, u
′) by adding a new vertex u′′ that joins to a vertex of

degree 2 of K2,t. Hence, u′′ has degree 1 and both u and u′ have degree t in K ′′2,t(u, u
′, u′′).

Let S(m, l) be the graph obtained from K2,m(u, u′) and K ′2,l(w,w
′, w′′) by identifying u with

w, and w′′ with u′; let J(m, l) denote the graph obtained from K2,m+1 and a K ′2,l(w,w
′, w′′)

by identifying w with 2-vertex and w′′ with an (m+ 1)-vertex in K2,m+1, respectively.

Let F ′ = {S(1, 2), S(2, 3), S(1, 4), J(2, 2), K2,3, K2,5} (see Figure 3.1).

r r
rr rr

S(1, 2)

r r rrr r
r r
S(2, 3)

r r
rr rr rr

S(1, 4)
r
r

r
r

r
rrr

J(2, 2)

Figure 3.1. The graphs in F ′.

We summerize the former results in the area.

Theorem 3.1.2 (Catlin and Li, Theorem 6 of [16]) If G ∈ C2(5, 0), then G ∈ S if and

only if G can not be contracted to K2,3.

Theorem 3.1.3 (Broersma and Xiong, Theorem 7 of [13]) Suppose that G ∈ C2(5, 2)

and n ≥ 13. Then G ∈ S if and only if G can not be contracted to K2,3 or to K2,5.

Theorem 3.1.4 (Li, Lai and Zhan, Theorem 1.3 of [8]) Suppose that G ∈ C2(6, 0). Then

G ∈ S if and only if G can not be contracted to a member in {K2,3, K2,5 or K2,3(e)}.

Theorem 3.1.5 (X. Li, D. Li and H.-J. Lai, Theorem 14 of [24]) Let G ∈ C2(6, 5) be a

graph with n = |V (G)| > 35. Then G ∈ S if and only if G can not be contracted to a

member in F ′.
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Chen [18] and Xiong et al [27] also studied the supereulerian problem for graphs in

C3(l, k). Jeager [21] and Catlin [2] proved independently that every 4-edge-connected

graph is supereulerian, and so the study is of interest only when h < 4.

The supereulerian problem for graphs in C2(6, k), for an arbitrary positive integer

k, remains open [24]. The main purpose of this paper is to answer this question. The

attempt to answer this question leads us to prove an associate result which is of interests

in its own. We prove the following.

Theorem 3.1.6 Let k > 0 be an integer. Then there exists an integer N(k) ≤ 7k such

that, for any graph G ∈ C2(6, k) with |V (G)| > N(k), G ∈ S if and only if G can not be

contracted to a member in F ′.

3.2 An Associate Result

The main purpose of this section is to prove the following associate result, which plays a

key role in the proof of Theorem 3.1.6.

Theorem 3.2.1 If G is a 2-edge-connected reduced graph which satisfies

(i) d2 + d3 ≤ 6,

(ii) d3 + d5 ≤ 2,

then either G ∈ S or G ∈ F ′.

Definition 3.2.2 Let A = {G : G is a 2-edge-connected reduced graph which satisfies

d2 + d3 ≤ 6 and d3 + d5 ≤ 2} and A3 = {G ∈ A : G /∈ S and F (G) = 3}. Then by the

following Lemma 3.2.3, for any G ∈ A3, we have d2 + d3 = 6, d3 + d5 = 2 and dj = 0 for

all j ≥ 6.

We first prove some needed lemmas.
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Lemma 3.2.3 If G ∈ A, then either G is Eulerian or F (G) ≤ 3. Furthermore, if

F (G) = 3, then either G is Eulerian or d2 + d3 = 6, d3 + d5 = 2 and dj = 0 for all j ≥ 6.

Proof. Note that F (G) ≤ 4 since

2F (G) = 4|V (G)| − 2|E(G)| − 4 = 4
∑
i≥2

di −
∑
i≥2

idi − 4

= 2(d2 + d3)− (d3 + d5)−
∑
i≥6

(i− 4)di − 4

≤ 8− (d3 + d5)−
∑
i≥6

(i− 4)di ≤ 8.

If F (G) = 4, then d3 + d5 = 0 and dj = 0 for all j ≥ 6. Since G has no odd-degree

vertices, G is Eulerian.

Suppose F (G) = 3. If there exists some j ≥ 6 such that dj > 0, then j = 6, d6 = 1

and d3 + d5 = 0. Therefore, G is Eulerian. If dj = 0 for all j ≥ 6, then d2 + d3 = 6,

d3 + d5 = 2.

Lemma 3.2.4 If G ∈ A3, then we must have (d2, d3, d5) ∈ {(4, 2, 0), (5, 1, 1), (6, 0, 2)}.

Proof. If d3 = 2, then d2 = 4 and d5 = 0. If d3 = 1, then d2 = 5 and d5 = 1. If d3 = 0,

then d2 = 6 and d5 = 2.

Lemma 3.2.5 If a 2-edge-connected graph G /∈ S and |O(G)| = 2, then O(G) is an

independent set.

Proof. G has two odd vertices, say u and v. If u and v are adjacent, then G − uv is

Eulerian. Therefore, G ∈ S, a contradiction.

Lemma 3.2.6 If G is reduced and e = uv where u, v ∈ D2(G), then the following state-

ments hold.

(i) If G/e ∈ S, then G ∈ S.

(ii) F (G/e) = F (G)− 1.



CHAPTER 3. CHARACTERIZATION OF SUPEREULERIAN GRAPHS IN C2(6, K)21

Proof. Part (i) follows from Lemma 3 of [2]. To prove Part (ii), we first show that the

a(G/e) ≤ 2.

By Corollary 1.2.4, |E(H)|
|V (H)|−1 < 2, for any nontrivial induced subgraph H of G. We now

argue by contradiction to show that a(G/e) ≤ 2, and assume that G/e has a nontrivial

induced subgraph L′ with |E(L′)|
|V (L′)|−1 > 2. Let L be the induced subgraph of G such that

either L = L′, or e ∈ E(L) and L/e = L′. Since |E(H)|
|V (H)|−1 < 2, for any nontrivial induced

subgraph H of G, we must have e ∈ E(L).

Since e ∈ E(L), both |E(L)| = |E(L′)| + 1 and |V (L)| ≤ |V (L′)| + 1 hold. Since
|E(L′)|
|V (L′)|−1 > 2, |E(L′)| ≥ 2|V (L′)| − 1, which implies that

|E(L)|
|V (L)| − 1

≥ |E(L′)|+ 1

|V (L′)|
≥ 2|V (L′)|
|V (L′)|

= 2,

contrary to |E(L)|
|V (L)|−1 < 2.

Thus a(G/e) ≤ 2. By Theorem 1.2.2(v),

2F (G/e) = 4|V (G/e)| − 2|E(G/e)| − 4 = 4(|V (G)| − 1)− 2(|E(G)| − 1)− 4

= 4|V (G)| − 2|E(G)| − 4− 2 = 2F (G)− 2,

and so Part (ii) holds.

Notation 3.2.7 Suppose that H is a subgraph of a graph L. Let di,L(H) denote the

number of vertices of H of degree i in L, and vH the vertex in L/H onto which H is

contracted.

Lemma 3.2.8 Let H be a subgraph of a graph L. Then each of the following statement

holds:

(i) 4|V (H)|−2|E(H)|−4 =
∑

i>0(4−i)di,L(H)+d(vH)−4. In particular, if di,L(v) = 0 for

all i ≥ 6, i = 1 and H is reduced, then 2F (H) = 2d2,L(H)+d3,L(H)−d5,L(H)+d(vH)−4.

(ii) For any H, F (H − e) ≤ F (H) + 1.

Proof. First notice that

2|E(H)| =
∑
v∈H

dL(v)− d(vH) =
∑
i>0

idi,L(H)− d(vH).
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Therefore,

4|V (H)| − 2|E(H)| − 4 = 4
∑
i>0

di,L(H)− (
∑
i>0

idi,L(H)− d(vH))− 4

=
∑
i>0

(4− i)di,L(H) + d(vH)− 4.

So part (i) holds.

For any H, suppose X is a set of edges not in H, but adding X to H will result in a

graph with 2 edge disjoint spanning trees. Then adding X
⋃
e to H − e will also result

in a graph with 2 edge-disjoint spanning trees. Therefore, part (ii) holds.

Lemma 3.2.9 If G ∈ A3, then either G ∈ {S(1, 2), S(1, 4)} or D2(G) is an independent

set.

Proof. Suppose there exist u, v ∈ D2(G) such that e = uv ∈ E(G).

Let G′ = G/e. By Lemma 3.2.6 (i), G′ /∈ S. By Lemma 3.2.3 and Lemma 3.2.6 (ii),

F (G′) ≤ F (G)− 1 ≤ 3− 1 = 2. Since κ′(G′) ≥ 2, the reduction of G′ is not K2 or K2,1.

Since G′ /∈ S, G′ is not collapsible. Let G0 denote the reduction of G′. By Theorem 1.2.2

(ii) and Theorem 1.2.6,

G0 = K2,t, for some t ≥ 3, where t is odd. (3.2)

Let ve denote the new vertex obtained from contracting the edge e of G. Then G′ has

at most one nontrivial collapsible subgraph, as any nontrivial collapsible subgraph must

contain ve. Since d2(G) + d3(G) = 6, d3(G) + d5(G) = 2 and dj(G) = 0 for all j ≥ 6, we

have t = 3 or 5, and so G0 ∈ {K2,3, K2,5} by (3.2). Let H ′ denote the collapsible subgraph

of G′ containing ve, and H denote the preimage of H ′ from contraction .

Suppose H = K2. Then H ′ contains only one vertex ve. Therefore, H = {e} and

G/e = G′. If G/e = K2,3, then G = S(1, 2). If G/e = K2,5, then G = S(1, 4).

Next we will show that H = K2. By contradiction, suppose that H 6= K2. Then

H ′ is a nontrivial collapsible subgraph of G′. Therefore, κ′(H ′) ≥ 2. So κ′(H) ≥ 2. By
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Theorem 1.2.5, since H is not a collapsible subgraph of G, F (H) > 1. Then G/H =

G′/H ′ = G0 ∈ {K2,3, K2,5}.

Suppose G0 = K2,3. Since u, v ∈ H, d2,G(H) ≥ 2. Note that d2(G) + d3(G) = 6 and

d3(G) + d5(G) = 2. So there are two possibilities (see Table 3.1). Computing F (H) by

using Lemma 3.2.8(i), we have F (H) = 1, contrary to F (H) > 1.

d(vH) d2,G(H) d3,G(H) d5,G(H) F (H)

2 2 0 0 1

3 2 0 1 1

Table 3.1. The table for computing F (H) when G0 = K2,3.

Suppose G0 = K2,5. Note that d2,G(H) ≥ 2, d2(G)+d3(G) = 6 and d3(G)+d5(G) = 2.

Then there is only one possibility (see Table 3.2). Computing F (H) by using Lem-

ma 3.2.8(i), F (H) = 1, contrary to F (H) > 1.

d(vH) d2,G(H) d3,G(H) d5,G(H) F (H)

2 2 0 0 1

Table 3.2. The table for computing F (H) when G0 = K2,5.

Thus, if G /∈ S, then either G ∈ {S(1, 2), S(1, 4)} or D2(G) is an independent set.

Lemma 3.2.10 If K is an induced subgraph of a graph L, then each of the following

holds:

(i) If d3(L)+d5(L) ≤ 2, d2(L)+d3(L) ≤ 6 and L/K ∈ F ′, then 2|V (K)|−|E(K)|−2 ≤ 1.

(ii) If L ∈ A and L/K ∈ F ′, then we have F (K) ≤ 1. Moreover, F (K) = 1 only if

L/K ∈ {K2,3, K2,5} and d2(L) + d3(L) = 6.

Proof. First we prove part (i). Since L/K ∈ F ′, we have d3(L) + d5(L) = 2. If

d2(L) + d3(L) = 6, then we have the following possibilities (see Table 3.3. The last

column of Table 3.3 defines the Type of the subgraphs arising from contraction, which

will be used in the proof of Lemma 3.2.13).
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L/K d(vK) d2,L(K) d3,L(K) d5,L(K) 2|V (K)| − |E(K)| − 2 ≤ Type

K2,3 2 2 0 0 1 A

3 1 1 0 1 B

2 0 1 1 C

K2,5 2 2 0 0 1 D

5 0 1 0 1 E

1 0 1 1 F

S(1, 2) 2 1 0 0 0 G

3 0 1 0 0 H

1 0 1 0 I

S(1, 4) 2 1 0 0 0 J

5 0 0 1 0 K

S(2, 3) 2 1 0 0 0 L

3 0 1 0 0 M

1 0 1 0 N

4 0 0 0 0 O

5 0 0 1 0 P

J(2, 2) 2 1 0 0 0 Q

3 0 1 0 0 R

1 0 1 0 S

4 0 0 0 0 T

Table 3.3. The table in the proof of Lemma 3.2.10

If d2(L) + d3(L) < 6, then d2,L(K) decreases at least by one. Computing 2|V (K)| −
|E(K)| − 2 by using Lemma 3.2.8(i), 2|V (K)| − |E(K)| − 2 decreases at least by one. So

2|V (K)| − |E(K)| − 2 ≤ 0. Hence part (i) holds.

If L ∈ A, then K is reduced. So F (K) = 2|V (K)| − |E(K)| − 2 ≤ 1. From the proof

of part (i), the equality holds only if L/K ∈ {K2,3, K2,5} and d2(L) + d3(L) = 6.

Definition 3.2.11 Let u ∈ D2(G) and v ∈ D4(G). Suppose N(u) = {v, w} and N(v) =

{u, x, y, z}. Define T (G) = (G− v) + {yz, ux} (see Figure 3.2).
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Figure 3.2. The operator T on a graph G.

Lemma 3.2.12 Let G be a 2-edge-connected reduced graph, and let e = uv ∈ E(G) such

that u ∈ D2(G) and v ∈ D4(G). Let N(u) = {v, w} and N(v) = {u, x, y, z}. Then

(i) T (G) is 2-edge-connected (relabelling the vertices if needed).

(ii) a(T (G)) ≤ 2. Therefore, F (K) = 2|V (K)| − |E(K)| − 2 for any induced subgraph K

of T (G).

(iii) If T (G) ∈ S, then G ∈ S.

(iv) T (G) has at most two nontrivial collapsible subgraphs which must contain yz or ux.

(v) Any two vertices in N(v) = {u, x, y, z} are not adjacent.

(vi) If G ∈ A, then the reduction of T (G) is also in A.

Proof. Part (i) follows from Splitting Lemma (see [20], on page III. 29).

By contradiction, assume there exists an induced subgraph K of T (G) such that

|E(K)|/(|V (K)| − 1) > 2, i.e. |E(K)| ≥ 2|V (K)| − 1. Suppose H is the subgraph of G

corresponding to K. By Corollary 1.2.4, |E(H)|/(|V (H)| − 1) < 2. So v ∈ H. If both

ux and yz are in K, then |E(H)|/(|V (H)| − 1) = (|E(K)| + 2)/|V (K)| ≥ (2|V (K)| +
1)/|V (K)| > 2, contrary to |E(H)|/(|V (H)|−1) < 2. If exactly one of ux and yz is in K,

then |E(H)|/(|V (H)|−1) = (|E(K)|+1)/|V (K)| ≥ 2|V (K)|/|V (K)| = 2, a contradiction.

Thus a(T (G)) ≤ 2 by (1.1). Hence, by Theorem 1.2.2(v), F (K) = 2|V (K)| − |E(K)| − 2,

for any induced subgraph K of T (G). Part (ii) holds.

If T (G) ∈ S, suppose H is an spanning Eulerian subgraph of T (G). Then H must

contain ux since dT (G)(u) = 2. If yz /∈ H, then H − ux+ uv+ vx is an Eulerian subgraph

of G. If yz ∈ H, then H − ux − yz + uv + vx + vy + vz is an Eulerian subgraph of G.

Thus G ∈ S. Part (iii) holds.

Any collapsible subgraph of T (G) must contain the edge yz or ux. Otherwise, it is

also a collapsible subgraph of G, contrary to that G is reduced. So T (G) has at most two
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nontrivial collapsible subgraphs. Part (iv) holds.

Note that G is reduced, so there is no C3 in G. It implies that part (v) holds.

Now we prove part (vi). Suppose H ′ is a maximum collapsible subgraph of T (G). It

suffices to prove that T (G)/H ′, denoted by G1, still satisfies d2(G1) + d3(G1) ≤ 6 and

d3(G1) + d5(G1) ≤ 2. First, note that the number of odd degree vertices will not increase

by contracting a subgraph. Otherwise, if after the contraction, the number of odd degree

vertices increases by 1, then the number of odd vertices of the new graph obtained by

contraction will be odd, contrary to that the number of odd vertices of a graph must be

even. And since G ∈ A, by Lemma 3.2.3, either G has no odd vertices or F (G) ≤ 3.

If F (G) ≤ 2, then either G has no odd vertices or G = K2,t by Theorem 1.2.6. Since

d2(G) + d3(G) ≤ 6, t ≤ 6. Hence the odd degree of G is at most 5. If F (G) = 3, by

Lemma 3.2.3, either G has no odd vertices or dj = 0 for all j ≥ 6. Thus if G ∈ A, then

the odd degree vertices of G must be of degree 3 or 5. After the contraction, we still have

d3(G1) + d5(G1) ≤ 2.

If d2(G1) + d3(G1) > d2(G) + d3(G), then d(vH′) = 2 or 3. In each case, we will prove

H ′ − yz is a collapsible subgraph of G, contrary to that G is reduced.

Case 1: d(vH′) = 3.

Since d2(G1) + d3(G1) > d2(G) + d3(G), H ′ contains a 5-vertex of G and no 2 or

3-vertices of G. Therefore, u /∈ H ′ and yz ∈ H ′. By part (ii) and computing F (H ′)

by using Lemma 3.2.8 (i), 2F (H ′) = 2d2,G(H ′) + d3,G(H ′) − d5,G(H ′) + 3 − 4 = −2. By

Lemma 3.2.8 (ii), F (H ′ − yz) ≤ F (H ′) + 1 = 0. Thus H ′ − yz is a collapsible subgraph

of G, contrary to that G is reduced.

Case 2: d(vH′) = 2.

Then H ′ contains no vertex of degree 2 or 3 in G. Since the number of odd degree

vertices of T (G)/H ′ must be even, H ′ contains no 5-vertex of G. Therefore, 2F (H ′) =

2d2,G(H ′) + d3,G(H ′)− d5,G(H ′) + 2− 4 = −2. So again, F (H ′− yz) = 0, a contradiction.

Hence, d2(G1) + d3(G1) ≤ d2(G) + d3(G) ≤ 6.
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Lemma 3.2.13 If G is a counterexample of Theorem 3.2.1 with |V (G)| minimized, then

no vertex in D2(G) is adjacent to a vertex in D4(G).

Proof. By the hypothesis, G is a 2-edge-connected reduced graph which satisfies d2(G)+

d3(G) ≤ 6 and d3(G) + d5(G) ≤ 2, and G is neither supereulerian nor in F ′. Since G is

reduced,

G has no nontrivial collapsible subgraphs. (3.3)

Therefore, by Lemma 1.2.2(vi),

G has no K3,3 − e. (3.4)

By contradiction, we assume that there exist u ∈ D2(G) and v ∈ D4(G) such that

uv ∈ E(G). We use notations in Lemma 3.2.12, and denote G′ = T (G). Then G′ /∈ S by

Lemma 3.2.12(iii) and a(G′) ≤ 2 by Lemma 3.2.12(ii). We will prove that either G ∈ S
or G ∈ F ′.

Suppose G1 is the reduction of G′. Then G1 /∈ S, and by Lemma 3.2.12(vi) G1 ∈ A.

Since G is minimized and |V (G1)| ≤ |V (G′)| = |V (G)|−1, G1 ∈ F ′. There are three cases,

depending on the number of nontrivial collapsible subgraph in G′ by Lemma 3.2.12(iv).

Case 1: G′ doesn’t have a nontrivial collapsible subgraph, i.e. G1 = G′.

If G′ ∈ {K2,3, K2,5, S(1, 2), S(2, 3), S(1, 4)}, no matter how we choose y and z, the

vertices u, x, y, z will be in a C4 or C5 in G′. Then in G, at least two of them are adjacent,

contrary to Lemma 3.2.12(v).

Suppose G′ = J(2, 2). A trail in G′ with first edge e1 and last edge e2 is called an

(e1, e2)-trail. Note that the cycle of G′ is of length 4 or 6. If the shortest (ux, yz)-trail

in G′ is of length 3 or less, then at least two of u, x, y, z are adjacent in G, contrary to

Lemma 3.2.12(v). So the shortest (ux, yz)-trail is of length 4. Therefore, ux and yz are

in a C6. By symmetry, there are two possibilities (see Figure 3.3(a) and (b)). But both

of them are supereulerian, contrary to G /∈ S.
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Figure 3.3. The graphs in the proof of Case 1.

Case 2: G′ has only one collapsible subgraph, say H ′.

Let H be the subgraph of G corresponding to H ′, i.e. T (G[E(H)]) = H ′. Then ux

and yz are not both in H ′. Otherwise, G/H ∈ F ′. By Lemma 3.2.10(ii), F (H) ≤ 1. Since

κ′(H) ≥ 2, by Theorem 1.2.5, H is collapsible, contrary to (3.3).

SinceG1 = G′/H ′ ∈ F ′, by Lemma 3.2.10(i) and Lemma 3.2.12(ii), F (H ′) = 2|V (H ′)|−
|E(H ′)| − 2 ≤ 1. We consider two subcases.

Subcase 2.1: yz ∈ H ′.

Then ux is not in H ′. Since κ′(H ′) ≥ 2 and d(u) = 2, u is not in H ′. But x may or

may not be in H ′. If x is in H ′, then |V (H)| = |V (H ′)| + 1 and |E(H)| = |E(H ′)| + 2.

So F (H) = 2|V (H)| − |E(H)| − 2 = 2|V (H ′)| − |E(H ′)| − 2 ≤ 1. As κ′(H) ≥ 2, by

Theorem 1.2.5, H is collapsible, contrary to (3.3).

Then x is not in H ′. Then |V (H)| = |V (H ′)| + 1 and |E(H)| = |E(H ′)| + 1. So

F (H) = (2|V (H ′)| − |E(H ′)| − 2) + 1 ≤ 2. Since H is not collapsible and κ′(H) ≥ 2,

F (H) = 2. It implies that H = K2,t for some t. Therefore, H ′ = H − {yv, vz} + yz. By

the definition of F (H ′), F (H ′) = 1. By Lemma 3.2.10(i), H ′ must be of Type A, B, C, D,

E or F (see Table 3.3) and G1 ∈ {K2,3, K2,5}. Since x and u are not in H, v is of degree

2 in H. Then both y and z are t-vertices in H with 2 ≤ t ≤ 5.

Notice that t 6= 5. Otherwise, dG(y) = dG(z) = 5 since dG = 0 for all j ≥ 6. That

G′/H ′ ∈ {K2,3, K2,5} and y, z ∈ H ′ implies that there is at least another 3 or 5-vertex

except y and z, contrary to d3(G) + d5(G) ≤ 2. Hence, 2 ≤ t ≤ 4.

Subcase 2.1.1: H ′ is of Type A.
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Notice that d2,G(H) = d2,G′(H
′), d3,G(H) = d3,G′(H

′) and d5,G(H) = d5,G′(H
′), so H

has two vertices of degree 2 in G and other vertices of H are of degree 4 in G. Since

dG(u) = 2 and ux ∈ G1, x is a vertex of degree 3 in both G1 and G. If H = K2,2, then by

Lemma 3.2.12(v), dG(y) = dG(z) = 2, so G ∈ S (see Figure 3.4(a) and (b)). If H = K2,3,

then one of y and z is adjacent to x (see Figure 3.4(c)), contrary to Lemma 3.2.12(v). If

H = K2,4, then G[s, t, v, x, y, z] is K3,3 − e (see Figure 3.4(d) and (e)), contrary to (3.4).

r r
r r
z

y

s v

(a)

r
r

r
rr

r rrv

u

x

y

z
s

(b)

r r
r rr
z

y

s v

(c)

r r
r rr r
z

y

s v
t

(d)

r
r

r
rr rrr rrv

u

x

y

t

z
s

(e)

Figure 3.4. The graphs in the proof of Subcases 2.1.1 and 2.1.4.

Subcase 2.1.2: H ′ is of Type B.

Then H has one 2-vertex, one 3-vertex and other vertices are of degree 4 in G. If

H = K2,2, then G ∈ S (see Figure 3.5(a) and (b)) or G = J(2, 2) (see Figure 3.5(c) and

(d)). If H = K2,3 (see Figure 3.5(e) and (f)), since H ′ is of type B, H ′ has a 2-vertex in G.

Let this vertex be t. Then t is adjacent to y, z. So t is not adjacent to u. Without loss of

generality, assume y is the 3-vertex in G, and so z is a 4-vertex in G. Let s ∈ N(y)∩N(z)

be another 2-vertex in H ′. By Lemma 3.2.12(v), y, z, are not adjacent to u. Since vH′

is adjacent to u, but y, z, t are not adjacent to u, we have that s is adjacent to u.

Moreover, v is also adjacent to u in G. Therefore, G[s, t, u, v, y, z] is K3,3− e, contrary to

(3.4). If H = K2,4 (see Figure 3.5(g)), then exactly one of s and t is adjacent to u. So

G[s, t, u, v, y, z] is K3,3 − e, contrary to (3.4).
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Figure 3.5. The graphs in the proof of Subcase 2.1.2.

Subcase 2.1.3: H ′ is of Type C.

Then H has two 2-vertices, one 5-vertex and other vertices are of degree 4 in G. If

H = K2,2, by Lemma 3.2.12(v), dG(s) = 5 (see Figure 3.6(a)), then G = S(2, 3) (see

Figure 3.6(b)). If H = K2,3 (see Figure 3.6(c)), then y or z is adjacent to u, contrary to

Lemma 3.2.12(v). If H = K2,4 (see Figure 3.6(d)), since s is adjacent to u, G[s, t, u, v, y, z]

is K3,3 − e, contrary to (3.4).
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Figure 3.6. The graphs in the proof of Subcase 2.1.3.

Subcase 2.1.4: H ′ is of Type D.

Similar to Subcase 2.1.1, if H = K2,2 (see Figure 3.4(a)), then G ∈ S (see Figure

3.7(a)). If H = K2,3, then one of y and z is adjacent to x (see Figure 3.4(c)), contrary

to Lemma 3.2.12(v). If H = K2,4 (see Figure 3.4(d)), then G[s, t, v, x, y, z] is K3,3 − e,
contrary to (3.4).
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Figure 3.7. The graphs in the proof of Subcases 2.1.4 and 2.1.5.

Subcase 2.1.5: H ′ is of Type E.

If H = K2,2, then there are two possibilities (see Figure 3.7(b) and (d)). In either

case, G ∈ S (see Figure 3.7(c) and (e)). If H = K2,3 (see Figure 3.7(f) and (g)), then u

is adjacent to exactly one of s and t. Therefore, G[s, t, u, v, y, z] is K3,3 − e, contrary to

(3.4). If H = K2,4 (see Figure 3.7(h)), then u is adjacent to exactly one of s, t and w.

Assume that u is adjacent to s. Then G[s, t, u, v, y, z] is K3,3 − e, contrary to (3.4).

Subcase 2.1.6: H ′ is of Type F.

If H = K2,2 (see Figure 3.8(a) and (c)), then G ∈ S (see Figure 3.8(b) and (d)).

If H = K2,3 (see Figure 3.8(e)) or H = K2,4 (see Figure 3.8(f)), then G[s, t, u, v, y, z] is

K3,3 − e, contrary to (3.4).
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Figure 3.8. The graphs in the proof of Subcase 2.1.6.
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Subcase 2.2: ux ∈ H ′

Similar to Subcase 2.1, if y or z is in H ′, then |V (H)| = |V (H ′)| + 1 and |E(H)| =

|E(H ′)| + 2. Therefore, F (H) ≤ 1. So y and z are not in H ′, F (H ′) = 1 and H = K2,t.

Since u is a 2-vertex, d2(H
′) > 1 and t = 2. So H ′ must be of Type A, B, C, D or F and

H is K2,2. Use the same argument to conclude that G ∈ S or G ∈ {J(2, 2), S(2, 3)}.

Case 3: G′ has two nontrivial maximal collapsible subgraphs, say H ′1 and H ′2, such that

yz ∈ H ′1 and ux ∈ H ′2.

Let H1 and H2 be the subgraphs of G corresponding to H ′1 and H ′2, respectively, i.e.

T (G[E(H1)]) = H ′1 and T (G[E(H2)]) = H ′2. Then G′/(H ′1 ∪ H ′2) is in F ′. Notice that

vH′1 6= vH′2 . Otherwise, there exists a vertex t such that t ∈ V (H ′1)
⋂
V (H ′2). Then H ′1∪H ′2

is a connected collapsible subgraph of G′, contrary to that H ′1 and H ′2 are maximal.

Let n′ denote the number of vertices of H1 ∪H2, d
′
i denote the number of vertices of

H1 ∪H2 of degree i in G. Then 2|E(H1 ∪H2)| =
∑
id′i − d(vH′1) − d(vH′2). Since v is in

both H1 and H2, |V (H1)|+ |V (H2)| = n′ + 1.

2F (H1) + 2F (H2) = 4|V (H1)| − 2|E(H1)| − 4 + 4|V (H2)| − 2|E(H2)| − 4

= 4(|V (H1)|+ |V (H2)|)− 2(|E(H1)|+ |E(H2)| − 8

= 4(n′ + 1)− 2|E(H1 ∪H2)| − 8

= 4(
∑

d′i + 1)− (
∑

id′i − d(vH′1)− d(vH′2))− 8

≤ 2d′2 + d′3 − d′5 + d(vH′1) + d(vH′2)− 4.

By Lemma 3.2.3 and G /∈ S, F (G) = 2 or F (G) = 3 with d2(G) + d3(G) = 6 and

d3(G) + d5(G) = 2. If F (G) = 2, by Theorem 1.2.6, since d2(G) + d3(G) ≤ 6, κ′(G) ≥ 2

and G /∈ S, G = K2,3 or K2,5, contrary to G /∈ F ′. Thus F (G) = 3 with d2(G)+d3(G) = 6

and d3(G)+d5(G) = 2. We have the following Table 3.4, where {d(H ′1), d(H ′2)} is a multi-

set and G1 = G′/(H ′1
⋃
H ′2) ∈ F ′. Note that H ′2 contains a 2-vertex u, so d′2 ≥ 1. It helps

us get rid of some cases.
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G1 {d(vH′1), d(vH′2)} d′2 d′3 d′5 F (H1) + F (H2)

K2,3 {2, 2} 3 0 0 3

{2, 3} 2 1 0 3

3 0 1 3

{3, 3} 1 2 0 3

2 1 1 3

3 0 2 3

K2,5 {2, 2} 3 0 0 3

{2, 5} 1 1 0 3

2 0 1 3

{5, 5} 1 0 2 3

S(2, 3) {2, 2} 2 0 0 2

{2, 3} 1 1 0 2

2 0 1 2

{2, 4} 1 0 0 2

{2, 5} 1 0 1 2

{3, 4} 1 0 1 2

{3, 5} 1 0 2 2

J(2, 2) {2, 2} 2 0 0 2

{2, 3} 1 1 0 2

2 0 1 2

{2, 4} 1 0 0 2

{3, 3} 1 1 1 2

2 0 2 2

{3, 4} 1 0 1 2

Table 3.4. The table in the proof of Case 3.

If G1 = S(1, 2), then since S(1, 2) has one more 2-vertex than K2,3, the number of

2-vertices in H1 ∪ H2 will decrease by 1 comparing to the case G1 = K2,3. Therefore,

F (H1) + F (H2) decreases by 1. Hence, F (H1) + F (H2) ≤ 3 − 1 = 2. If G1 = S(1, 4),

then since S(1, 4) has one more 2-vertex than K2,5, F (H1) + F (H2) will decrease by 1

comparing to the case G1 = K2,5. Thus, F (H1) + F (H2) ≤ 3 − 1 = 2. So we have
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F (H1) +F (H2) ≤ 3 (see Table 3.4). Thus F (H1) ≤ 1 or F (H2) ≤ 1. Since κ′(Hi) ≥ 2 for

i = 1, 2, then H1 or H2 is a collapsible subgraph of G, contrary to (3.3).

Proof of Theorem 3.2.1: By contradiction, suppose G satisfies (i) and (ii), but G /∈
S and G /∈ F ′ with |V (G)| minimized. By Lemma 3.2.3, Theorem 1.2.6 and G /∈
{K2,3, K2,5}, F (G) = 3. Therefore, G ∈ A3. By Lemma 3.2.4, (d2, d3, d5) ∈ {(4, 2, 0), (5, 1, 1), (6, 0, 2)}.
By Lemmas 3.2.5, 3.2.9 and 3.2.13, each vertex in D2(G) must be adjacent to two

odd degree vertices which are not adjacent. But this is impossible when (d2, d3, d5) ∈
{(4, 2, 0), (5, 1, 1), (6, 0, 2)}.

Thus the theorem holds.

3.3 Proof of the Main Result

In this section, we are now ready to prove our main result Theorem 3.1.6.

Proof. Let G ∈ C2(6, k) be a graph with n = |V (G)| > 7k. Then we will prove that

G ∈ S if and only if G can not be contracted to a member in F ′. Clearly, if G can be

contracted to a member in F ′, then G /∈ S.

Let G′ be the reduction of G. By Theorem 1.2.2(ii), it suffices to show if G′ /∈ S, then

G′ ∈ F ′, which implies that G can be contracted to a member in F ′. As G′ = K1 implies

that G ∈ S, we may assume that G′ is 2-edge-connected and nontrivial. Let d′i = |di(G′)|.

By Theorem 1.2.7, if d′2 + d′3 = 4, then G′ ∈ S. Therefore, we only consider the case

when d′2 + d′3 ≥ 5. We shall assume that G′ /∈ S to find a contradiction or to get G′ ∈ F ′.

Case 1: d′2 + d′3 = 5.

Subcase 1.1: F (G′) ≤ 2.

By Theorem 1.2.6, since κ′(G′) ≥ 2 and G′ /∈ S, G′ = K2,t with t odd. Since
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d′2 + d′3 = 5, we have t = 3 or t = 5 and so G′ ∈ {K2,3, K2,5} ⊂ F ′.

Subcase 1.2: F (G′) ≥ 3.

By Theorem 1.2.2(v), we have

6 ≤ 2F (G′) = 4|V (G′)| − 2|E(G′)| − 4

= 4
∑
j≥2

d′j −
∑
j≥2

jd′j − 4

= (d′2 + d′3) + d′2 +
∑
j≥5

(4− j)d′j − 4

= 1 + d′2 +
∑
j≥5

(4− j)d′j.

Note that d′2 + d′3 = 5 and (4− j)d′j ≤ 0 for any j ≥ 5. It follows that d′2 = 5, d′3 = 0,

and d′j = 0(j ≥ 5). Thus G′ is Eulerian contrary to that G′ /∈ S.

Case 2: d′2 + d′3 = 6.

If F (G′) ≤ 2, then by κ′(G′) ≥ 2 and by Theorem 1.2.6, G′ = K2,t with t ≥ 3 odd

since G′ is not supereulerain. As d′2 + d′3 = 6, this is impossible. Therefore, we must have

F (G′) ≥ 3.

Subcase 2.1: F (G′) = 3.

6 = 2F (G′) = 4|V (G′)| − 2|E(G′)| − 4

= 4
∑
j≥2

d′j −
∑
j≥2

d′j − 4

= 2(d′2 + d′3)− (d′3 + d′5) +
∑
j≥6

(4− j)d′j − 4

= 8− (d′3 + d′5) +
∑
j≥6

(4− j)d′j.

It follows that (d′3 + d′5) ≤ 2. By Theorem 3.2.1, since G′ /∈ S, we have G′ ∈ F ′.

Subcase 2.2: F (G′) ≥ 4.
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Since d′2 + d′3 = 6,

8 ≤ 2F (G′) = (d′2 + d′3) + d′2 +
∑
j≥5

(4− j)d′j − 4

= 2 + d′2 +
∑
j≥5

(4− j)d′j.

It follows that d′2 = 6, d′3 = 0 and d′j = 0 (j ≥ 5). Hence G′ is Eulerian, contrary to

G′ /∈ S.

Case 3: d′2 + d′3 ≥ 7.

Let c = d′2 + d′3, and H1, H2, · · · , Hc denote the subgraphs of G whose contraction

images in G′ are the vertices of degree at most 3 in G′. Since G ∈ C2(6, k), for each i

with 1 ≤ i ≤ c, |V (Hi)| ≥ (n− k)/6. It follows any c ≥ 7 that

n = |V (G)| ≥
7∑
i=1

|V (Hi)| ≥
7(n− k)

6
.

Therefore, n ≤ 7k, a contradiction.

This completes the proof of Theorem 3.1.6.



Chapter 4

Characterization of Graphs with

Mod (2p + 1)-orientations

4.1 Some Useful Facts

We consider finite graphs without loops, but multiple edges are allowed. If H1 and H2

are subgraphs of a graph G, then H1∩H2 and H1∪H2 are the intersection and the union

of H1 and H2, respectively, as defined in [1].

In this section, we introduce the mod (2p+ 1)-closure of a graph, and investigate the

distribution of the in-degrees and out-degrees of certain vertices in a graph with a mod

(2p+ 1)-orientation. We start with a lemma.

Lemma 4.1.1 Let G be a graph, and m ≥ 1 be an integer. Each of the following holds.

(i) If G ∈M o
2p+1, then κ′(G) ≥ 2p.

(ii) mK2 ∈M o
2p+1 if and only if m ≥ 2p.

Proof. (i). We argue by contradiction and assume that G is in M o
2p+1 with κ′(G) < 2p.

Then G has an edge cut X with |X| < 2p. Let G1, G2 denote the two components of

37
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G − X. By Proposition 1.3.3(C2), G′ = G/G1 ∈ M o
2p+1. Let v denote the vertex of G′

onto which G1 is contracted. Then dG′(v) = |X| < 2p.

Suppose first that dG′(v) = 2k < 2p. Pick a map b ∈ Z(G′,Z2p+1) with b(v) = 1.

As G′ ∈ M o
2p+1, G

′ has a (b,Z2p+1)-orientation D = D(G′). Under this orientation,

d+(v) + d−(v) = 2k and d+(v) − d−(v) ≡ 1 (mod 2p + 1). It follows by k < p that

2d+ = 2k + 1, a contradiction.

Next we assume that dG′(v) = 2k + 1 < 2p. Pick a map b ∈ Z(G′,Z2p+1) with

b(v) = 0. As G′ ∈ M o
2p+1, G

′ has a (b,Z2p+1)-orientation D = D(G′). Under this

orientation, d+(v) + d−(v) = 2k + 1 and d+(v) − d−(v) ≡ 0 (mod 2p + 1). It follows by

k < p that 2d+ = 2k + 1, a contradiction.

(ii). First assume that m = 2p. By Part (i), it suffices to show that mK2 ∈ M o
2p+1. Let

V (mK2) = {v1, v2}, and b(v1) = b′ with 0 ≤ b′ ≤ m. Then exactly one in {m− b′, b′− 1)}
is an even number 2t with 0 ≤ t ≤ p. Orient mK2 such that exactly t edge is directed

from v2 to v1 if m− b′ is even; or such that exactly t edge is directed from v1 to v2 if b′−1

is even. This yields a (Z2p+1, b)-orientation of mK2, and so mK2 ∈M o
2p+1. If m ≥ 2p+ 1,

then mK2/((2p)K2) = K1 ∈M o
2p+1, and so by Proposition 1.3.3(C3), mK2 ∈M o

2p+1. This

completes the proof of the lemma.

Definition 4.1.2 Let H be a subgraph of G, and let p > 0 be an integer. The mod

(2p + 1)-closure of H in G, denoted by cl2p+1
G (H), or cl(H) when G and p is understood

from the context, is a maximal subgraph of G satisfying (i) and (ii) below.

(i) H ⊆ cl(H), and

(ii) If H ′ ⊆ cl(H) and if v ∈ V (G)−V (H ′) such that |[V (H ′), {v}]| ≥ 2p, then G[V (H ′)∪
{v}] ⊆ cl(H).

From definition 4.1.2, if cl(H) 6= H, then V (cl(H)) = V (H) ∪ {v1, v2, · · · , vt} such

that V (H) ∩ {v1, v2, · · · , vt} = Ø, and such that for each i with 1 ≤ i ≤ t− 1,

|[{vi+1}, V (H) ∪ {v1, v2, · · · , vi}]| ≥ 2p. (4.1)

The sequence (v1, v2, · · · , vt) satisfying (4.1) will be referred as a closure sequence of H in

G.
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Proposition 4.1.3 Let H be a subgraph of G, and let p > 0 be an integer, and let

cl(H) = cl2p+1
G (H). If H ∈M o

2p+1, then each of the following holds.

(i) The closure cl(H) is uniquely determined.

(ii) cl(H) ∈M o
2p+1.

(iii) The graph G ∈M o
2p+1 if and only if G/cl(H) ∈M o

2p+1.

(iv) The graph G ∈M2p+1 if and only if G/cl(H) ∈M2p+1.

(v) For any n ≥ 4p+ 1, Kn ∈M o
2p+1.

Proof. (i). Let H ′ and H ′′ be two closures of H in G. Let (v′1, v
′
2, · · · , v′s) be a closure

sequence of H in G such that V (H ′) = V (H) ∪ {v′1, v′2, · · · , v′s}, and (v′′1 , v
′′
2 , · · · , v′′t ) be

a closure sequence of H in G such that V (H ′′) = V (H) ∪ {v′′1 , v′′2 , · · · , v′′t }. Then there

exists a largest integer I > 0 such that for all 1 ≤ i ≤ I, both v′′i ∈ {v′1, v′2, · · · , v′s} and

v′i ∈ {v′′1 , v′′2 , · · · , v′′t }. Assume that the choice of these closure sequences corresponding to

H ′ and H ′′ maximizes this value I.

As I = s = t implies H ′ = H ′′, we assume that for j = I + 1, v′j ∈ V (H ′) − V (H ′′).

Let H0 = G[V (H) ∪ {v′1, · · · , v′I}]. Then by (4.1), v′j is adjacent to at least 2p vertices in

H0. By Definition 4.1.2(ii), v′j ∈ V (H ′′) as well. By the choice of these closure sequences,

we must have v′j = v′′j , contrary to the maximality of I. This proves that V (H ′) ⊆ V (H ′′).

By a similar argument, V (H ′′) ⊆ V (H ′). Thus V (H ′) = V (H ′′), and so H ′ = H ′′.

(ii). Let (v1, v2, · · · , vt) denote a closure sequence of H in G. Let Hi = G[V (H) ∪
{v1, v2, · · · , vi}] with H0 = H. We argue by induction on 0 ≤ i ≤ t to show that

i ∈ M o
2p+1. As H ∈ M o

2p+1, we assume that Hi−1 ∈ M o
2p+1 with i ≥ 1. By (4.1), vi

is adjacent to m ≥ 2p vertices in Hi−1. Thus Hi/Hi−1 ∼= mK2 with m ≥ 2p, and so

by Lemma 4.1.1(ii), Hi/Hi−1 ∈ M o
2p+1. It now follows by Proposition 1.3.3(C3) that

Hi ∈M o
2p+1. By induction, cl(H) = Ht ∈M o

2p+1.

(iii) and (iv). These follow from Proposition 1.3.3(C2) and (C3), and from Proposi-

tion 4.1.3(ii) above.

(v). By Corollary 3.4 in [38], K4p+1 ∈ M o
2p+1. When n ≥ 4p+ 1, we can view K4p+1 as a

subgraph of Kn. Since cl(K4p+1) = Kn, (v) follows from (ii).
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Lemma 4.1.4 Let G be a connected graph with a mod (2p + 1)-orientation D. Each of

the following holds.

(i) For every vertex v ∈ D4p−1(G), either d+D(v) = 3p (in which case v is called a positive

vertex of D), or d+D(v) = p− 1, (in which case v is called a negative vertex of D).

(ii) If G is simple and if X ⊆ D4p−1(G) is a set of positive (or negative) vertices of G

such that G[X] is a complete subgraph of G, then |V (G)| − |X| ≥ 2p+ 1.

(iii) If G is simple and if X ⊆ D4p−1(G) is a set of positive (or negative) vertices of G

such that G[X] is a complete subgraph of G, then |X| ≤ 2p− 1.

Proof. (i). Let v ∈ D4p−1(G), d+ = d+D(v) and d− = d−D(v). As d+ − d− = 0 implies

a contradiction 2d+ = 4p − 1, and as d+ + d− = 4p − 1, it follows that d+ − d− ∈
{2p+1,−2p−1}. If d+−d− = 2p+1, then d+ = 3p and d− = p−1; if d+−d− = −2p−1,

then d− = 3p and d+ = p− 1.

(ii). We assume that there exists a set X of positive vertices with |V (G)| − |X| ≤ 2p

such that H ′ = G[X] is a complete graph. Then D′ = D(H ′) is a sub-digraph of D =

D(G). At each x ∈ X, since x is a positive vertex, it follows by (i) and by the assumption

of |V (G)| − |X| ≤ 2p that D′ has at least p edges directed out from x, and at most p− 1

edges directed into x. This leads to a contradiction: p|X| ≤ |E(H ′)| ≤ (p− 1)|X|.

(iii) By contradiction, we assume that |X| ≥ 2p. Let X ′ ⊆ X with |X ′| = 2p. Then

H ′ = G[X ′] is a complete graph and D′ = D(H ′) is a subdigraph of D = D(G). At

each x ∈ X, since x is a positive vertex, it follows by (i) that d−D′(x) ≤ p − 1 and so

p(2p− 1) = |E(H ′)| =
∑

x∈X d
−
D′(x) ≤ (p− 1)2p, a contradiction.

Example 4.1.5 Let p ≥ 1 be an integer. As an example, we shall show that Km /∈M o
2p+1

for any m with 3 ≤ m ≤ 4p. This, together with Lemma 4.1.3(v), shows that a complete

graph Kn is in M o
2p+1 if and only if n ≥ 4p+ 1.

As a first step, we show that for any integer p with p > 0, K4p /∈ M2p+1, and so

K4p /∈M o
2p+1. Let G = K4p and suppose that G has a mod (2p+1)-orientation D = D(G).

Let VP denote the set of all positive vertices of D(G). By the lemma above, since V (G)−VP
is the set of all negative vertices, |VP | ≥ 2p+1. By the same reason, |V (G)−VP | ≥ 2p+1,



CHAPTER 4. CHARACTERIZATION OFGRAPHSWITHMOD (2P+1)-ORIENTATIONS41

which leads to a contradiction:

4p = |V (G)− VP |+ |VP | ≥ 2(2p+ 1) = 4p+ 2.

Now let m be an integer with 3 ≤ m ≤ 4p−1. By Lemma 4.1.1(i), we may assume that

2p+ 1 ≤ m ≤ 4p− 1, and so we can view that Km as a subgraph K4p. Since m ≥ 2p+ 1,

cl2p+1
K4p

(Km) = K4p. Thus if Km ∈ M o
2p+1, then by Proposition 4.1.3(ii), we would have

K4p ∈M o
2p+1, contrary to the fact K4p /∈M o

2p+1. Hence Km /∈M o
2p+1.

Lemma 4.1.6 Let G be a connected graph and let D2p+1 = D2p+1(G). Each of the

following holds.

(i) If D is a mod (2p + 1)-orientation of G, then for any v ∈ D2p+1(G), either d+D(v) =

2p+ 1 or d−D(v) = 2p+ 1. In particular, G[D2p+1] must be a bipartite graph, such that in

G[D2p+1], all neighbors of a vertex u with d+D(u) = 2p + 1 (d−D(u) = 2p + 1, respectively)

must be vertices v with d−D(v) = 2p+ 1 (d+D(v) = 2p+ 1, respectively).

(ii) Suppose that G is a (2p+ 1)-regular graph. Then G has a mod (2p+ 1)-orientation if

and only if G is bipartite.

(iii) If G is a bipartite graph with a vertex bipartition (X, Y ) such that for every vertex

x ∈ V (G), dG(x) ≡ 0 (mod 2p+ 1), then G ∈M2p+1.

(iv) If G has a mod (2p + 1)-orientation, then for any v ∈ V (G), either d+D(v) = d−D(v)

or dG(v) ≥ 2p+ 1.

(v) If for every vertex v ∈ V (G), dG(v) ≡ 0 (mod 2p+ 1), and for some vertex w, G−w
is bipartite, then G ∈M2p+1.

Proof. The verifications for (i)-(iv) are straightforward, and so will be omitted. We

will only show (v). Let (X, Y ) denote the bipartition of G− w. For any e = uv ∈ E(G),

orient e to a directed edge (u, v) if u ∈ X or v ∈ Y . Denote this resulting orientation by

D. Since ∀v ∈ V (G), dG(v) ≡ 0 (mod 2p+ 1), for every v ∈ V (G−w), d+D(v)−d−D(v) ≡ 0

(mod 2p+ 1). Thus

d−D(w)− d+D(w) =
∑

v∈V (G−w)

d+D(v)− d−D(v) ≡ 0 (mod 2p+ 1),

and so D is a mod (2p+ 1)-orientation of G.
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4.2 A Characterization of Graphs with Mod (2p+ 1)-

orientations

In this section, we will present a characterization of graphs in M2p+1.

Theorem 4.2.1 Let G be a connected graph. Then G has a mod (2p + 1)-orientation if

and only if G is the contraction of a (2p+ 1)-regular bipartite graph.

Proof. Suppose first that G is the contraction of a (2p+ 1)-regular bipartite graph G′.

By Lemma 4.1.6(ii), G′ has a mod (2p+ 1)-orientation, and so by Proposition 1.3.3(C2’),

G has a mod (2p+ 1)-orientation.

Conversely, we assume that G has a mod (2p+ 1)-orientation. We shall fix this mod

(2p+ 1)-orientation D (say) in the discussion below. Define

k(G) = |{v ∈ V (G) : dG(v) < 2p+ 1}|, i(G) =
∑

v∈V (G) and dG(v)≥2p+2

dG(v).

We shall argue by induction on i(G) + k(G) to show that G is a contraction of a (2p+ 1)-

regular bipartite graph.

If i(G) + k(G) = 0, then G is (2p + 1)-regular. By Lemma 4.1.6(i), G must also

be bipartite. Assume that i(G) + k(G) > 0 and that Theorem 4.2.1 holds for graphs

with smaller values of i(G) + k(G). Let D be a mod (2p + 1)-orientation of G. As

i(G) + k(G) > 0, G has a vertex u with

dG(u) 6= 2p+ 1. (4.2)

Claim 4.1: G has no vertex v with d+D(v) = d−D(v) under the orientationD, consequently,

δ(G) ≥ 2p+ 1.

By Lemma 4.1.6(iv), if dG(v) < 2p + 1 for some v ∈ V (G), then we must have

d+D(v) = d−D(v). Hence it suffices to show that G has no vertex v with d+D(v) = d−D(v).

By contradiction, assume that G has a vertex v with d+D(v) = d−D(v) = m > 0. Let

v1, v2, · · · , v2m denote the vertices adjacent to v in G such that (v2l−1, v) and (v, v2l) are
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in D, for 1 ≤ l ≤ m. (Note that we allow vi = vj when i 6= j. This would happen when

G has multiple edges.) For each l, let xl1, x
l
2, · · · , xl2p+1, y

l
1, y

l
2, · · · , yl2p+1 be 2(2p+ 1) new

vertices that are not in V (G). Let K2p,2p(l)−xl2yl2p+1 denote the complete bipartite graph

with bipartition

{xl2, xl3, · · · , xl2p+1} and {yl2, yl3, · · · , yl2p+1}

minus an edge xl2y
l
2p+1. Let H(xl1, y

l
1) denote the graph obtained from K2p,2p(l)− xl2yl2p+1

by adding the vertex xl1 that is adjacent to all xl2, x
l
3, · · · , xl2p+1 and by adding the new

vertex yl1 that is adjacent to all yl2, y
l
3, · · · , yl2p+1. Obtain a new graph G1 from G − v

and H(xl1, y
l
1), (1 ≤ l ≤ m), by joining v2l−1 to xl1, and v2l to yl1, and xl+1

2 to yl2p+1,

where the superscripts are taken modulo m. Orient the edges in E(G1) − E(G) such

that for each l = 1, 2, · · · ,m (mod m), (xl+1
2 , yl2p+1), (v2l−1, x

l
1), (xlj, x

l
1), (yl1, v2l), (yl1, y

l
j),

(2 ≤ j ≤ 2p + 1) are arcs in this orientation of G1, and such that all the vertices in

xl2, · · · , xl2p+1 are directed to all the yl2, · · · , yl2p+1 in K2p,2p(l)−xl2yl2p+1. See Figure 4.1 for

an example.
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Figure 4.1: Part of the graphs G and G1 when dG(v) = 4 and p = 2 (and so 2p+ 1 = 5)

Thus the mod (2p+1)-orientation of E(G) together with the orientation on the edges

E(G1) − E(G) is a mod (2p + 1)-orientation of G1. Note that i(G1) + k(G1) = i(G) +
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k(G)− 1, and so by induction, G1 is the contraction of a (2p+ 1)-regular bipartite graph.

Since G can be obtained from G1 by contracting
m⋃
l=1

H(xl1, y
l
1), G is also a contraction of

a (2p+ 1)-regular bipartite graph.

Note that the construction and argument above can be applied to any even degree

vertex v satisfying d+D(v) = d−D(v) under the orientation D. This completes the proof for

Claim 4.1.

By Claim 4.1 and by (4.), dG(u) ≥ 2p + 2, and we may assume that d+D(u) > d−D(u).

Since d+D(u)−d−D(u) ≡ 0 (mod 2p+1), we must have d+D(u) > 2p+1. Let h = d(u) and let

w1, w2, · · · , wh be the vertices adjacent to u in G, and assume that (u,wi) ∈ D, (1 ≤ i ≤
2p+ 1). (Note that for each i with h ≥ i ≥ 2p+ 2, either (u,wi) or (wi, u) is an arc of D.)

Obtain a new graph G2 from G by first splitting u into two vertices u′, u′′ such that u′ is

adjacent exactly to w1, w2, · · · , w2p, and u′′ is adjacent to w2p+1, w2p+2, · · · , wh, and then

by adding a new edge eu joining u′ and u′′. Thus we can view that E(G2)−{u′u′′} = E(G).

Assign an orientation of G2 such that the orientation of edges in E(G2) − {eu} is

identical with that in D, and such that (u′, u′′) is an arc in this orientation of G2. See

Figure 4.2 for an example.
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Figure 4.2: Part of the graphs G and G2 when 2p+ 1 = 5, d+D(v) = 6 and d−D(v) = 1

Then the mod (2p+1)-orientation D of G plus the orientation of eu give rise to a mod

(2p + 1)-orientation of G2. As k(G2) = k(G) and i(G2) ≤ i(G) − 2p + 1, it follows that

i(G2) + k(G2) < i(G) + k(G), and so G2 is a contraction of a (2p + 1)-regular bipartite

graph. Since G = G2/eu, G is also a contraction of a (2p + 1)-regular bipartite graph.

This completes the proof of the theorem.
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Conjecture 4.2.2 Every (4p)-edge-connected graph is the contraction of a (2p+1)-regular

bipartite graph.



Chapter 5

Characterization of Mod

(2p + 1)-contractible Graphs

5.1 Proof of Theorem 5.1.6

Mod (2p+1)-contractible graphs defined below play an important role in the investigation

of mod (2p + 1)-orientations. In this section, we shall show that the mod (2p + 1)-

contractible graphs are precisely the graphs in M o
2p+1, and present several equivalent ways

to describe graphs in M o
2p+1.

Definition 5.1.1 Let p > 0 be an integer. A graph H is mod (2p + 1)-contractible if

for any graph G which contains H as a subgraph,

G ∈M2p+1 if and only if G/H ∈M2p+1. (5.1)

By Proposition 1.3.2 and Proposition 1.3.3(C3’), every graph H ∈ M o
2p+1 is mod

(2p + 1)-contractible. It is natural to consider whether every mod (2p + 1)-contractible

graph is in M o
2p+1. We first make some observations, stated in the following lemmas.
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Lemma 5.1.2 For any integers p > 0 and m,n ≥ 0 with m ≥ n and m − n ≡ 0 (mod

2p+1), there exists a connected bipartite graph L = L(m,n, 2p+1) with a vertex bipartition

(X, Y ), such that each of the following holds.

(i) ∀v ∈ V (L), dL(v) ∈ {1, 2p+ 1} with D2p+1(L) ∩X 6= Ø and D2p+1(L) ∩ Y 6= Ø, and

(ii) |D1(L) ∩X| = m and |D1(L) ∩ Y | = n.

Proof. First we assume that 0 < m = n ≤ 2p. Let L(m,m, 2p+ 1) denote the bipartite

graph with vertex bipartition ({x0, x1, x2, · · · , xm}, {y0, y1, y2, · · · , ym}), such that

E(L(m,m, 2p+ 1)) = {x0yi : 1 ≤ i ≤ m} ∪ {y0xi : 1 ≤ i ≤ m} ∪ (2p+ 1−m){x0y0},

where (2p + 1 −m){x0y0} represents a set of (2p + 1 −m) parallel edges joining x0 and

y0.

Inductively, assume that we can construct L(m,m, 2p + 1) for smaller values of m.

For m = n = 2p + h, where h ≥ 1, we by induction can construct a graph L(h + 1, h +

1, 2p + 1) satisfying (i) and (ii) of the lemma, with a vertex bipartition (X ′, Y ′), such

that for some x′ ∈ X ′ and y′ ∈ Y ′ with x′, y′ ∈ D1(L(h + 1, h + 1, 2p + 1)). Then

L(m,m, 2p + 1) can be constructed from L(h + 1, h + 1, 2p + 1) by adding new vertices

{x′1, x′2, · · · , x′2p}, {y′1, y′2, · · · , y′2p} and by adding new edges {x′y′i : 1 ≤ i ≤ 2p} ∪ {y′x′i :

1 ≤ i ≤ 2p}. The vertex bipartition of this L(m,m, 2p + 1) is (X, Y ) with X = X ′ ∪
{x′1, x′2, · · · , x′2p} and Y = Y ′ ∪ {y′1, y′2, · · · , y′2p}.

Next, we construct such graphs L = L(m,n, 2p + 1) for the cases when m − n =

k(2p+ 1), for some k ≥ 0. We now argue by induction on k, and we know that this holds

for k = 0. Suppose that m− n = k(2p+ 1) for some k > 0. Then m > 2p. By induction,

we assume that we have now constructed such a graph L(m − 2p, n + 1, 2p + 1) with a

vertex bipartition (X ′, Y ′), and for some y′ ∈ Y ′, y′ ∈ D1(L(m−2p, n+1, 2p+1)). Obtain

L(m,n, 2p+ 1) from L(m− 2p, n+ 1, 2p+ 1) by adding new vertices {x′1, x′2, · · · , x′2p} and

by adding new edges {y′x′i : 1 ≤ i ≤ 2p}. It is routine to verify that graphs obtained

from such constructions do satisfy (i) and (ii) of the lemma, with a vertex bipartition

(X, Y ) such that X = X ′ ∪ {x′1, x′2, · · · , x′2p} and Y = Y ′. Hence this lemma is proved by

induction.
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Notation 5.1.3 Let G be a connected graph and let b ∈ Z(G,Z2p+1). Throughout the

rest of this section, we assume that a : V (G) 7→ {0,±1,±2, · · · ,±2p} is a map such that

av := a(v) ≡ b(v) (mod 2p+ 1). For each v ∈ V (G), define

m =
∑
av>0

av, and n = −
∑
av<0

av.

Since b ∈ Z(G,Z2p+1), both m,n ≥ 0 and m−n =
∑

v∈V (G) av ≡ 0 (mod 2p+1). Without

loss of generality, we may assume that m ≥ n.

By Lemma 5.1.2, when m ≥ n ≥ 0 with m−n ≡ 0 (mod 2p+1), there exists a bipartite

graph L = L(m,n, 2p+ 1) with a vertex bipartition (X, Y ) satisfying Lemma 5.1.2(i) and

(ii). Construct a graph G(b) from G and L by identifying au vertices in D1(L) ∩ X
with each u ∈ V (G) with au > 0; and by identifying av vertices in D1(L) ∩ Y with each

v ∈ V (G) with av < 0.

Lemma 5.1.4 Let G be a connected graph, b ∈ Z(G,Z2p+1), and G(b) be defined as

in Notation 5.1.3. Then G has a (Z2p+1, b)-orientation if and only if G(b) has a mod

(2p+ 1)-orientation.

Proof. Suppose that G(b) has a mod (2p + 1)-orientation D. Let L = L(m,n, 2p + 1)

denote the graph in Notation 5.1.3 in the construction of G(b) such that V (L) has a

vertex bipartition (X, Y ) satisfying Lemma 5.1.2 (i) and (ii). Then L is a subgraph of

G(b). By Lemma 4.1.6(i), for each vertex v ∈ D2p+1(L), either all edges are directed into

v, or all directed away from v, under this orientation D. By replacing the orientation D

by −D (the orientation obtained from D by reversing the direction of each edge in D(G))

if necessary, we may assume that for one x0 ∈ D2p+1(L)∩X, all edges in E(G(b))−E(G)

incident with x0 are oriented from x0. Since L is a bipartite graph, by the construction

of L and by Lemma 4.1.6(i), it follows that ∀x ∈ D2p+1(L) ∩ X, d+D(x) = 2p + 1 and

∀y ∈ D2p+1 ∩ Y , d−D(x) = 2p + 1. Consequently, ∀v ∈ V (G) with av > 0, all edges in

E(G(b)) − E(G) incident with v are oriented into v; and that ∀v′ ∈ V (H) with av′ < 0,

all edges in E(G(b))− E(G) incident with v′ are oriented away from v′. Let D′ = D(G)

denote the restriction of D(G(b)) to E(G). Then by the fact that D is a mod (2p + 1)-

orientation of G(b), ∀v ∈ V (G), d+D′(v) − d−D′(v) = av ≡ b(v) (mod 2p + 1). Thus the

restriction of D to G is a (Z2p+1, b)-orientation of G.
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Conversely, assume that G has a (Z2p+1, b)-orientation D′. Then D′ can be extended

to an orientation D of G(b) in Notation 5.1.3 by, for any vertex v ∈ V (G) with av > 0,

directing all edges in E(G(b)) − E(G) incident with v into v, and by for any vertex

w ∈ V (G) with aw < 0, directing all edges in E(G(b))−E(G) incident with w away from

w. Then it is routine to verify that D is a mod (2p+ 1)-orientation of G(b).

Our characterization of all mod (2p + 1)-contractible graphs will also involve graphs

admitting all (2p+ 1)-orientations, first introduced by Barat and Thomassen in [28].

Definition 5.1.5 ([28]) If for any map w : V (G) 7→ Z2p+1 with
∑

v∈V (G)w(v) ≡ |E(G)|
(mod 2p+ 1), G has an orientation D such that ∀v ∈ V (G), d+(v) ≡ w(v) (mod 2p+ 1),

then we say that G admits all (2p+ 1)-orientations.

Theorem 5.1.6 Let p ≥ 1 be an integer. The following are equivalent for a connected

graph H.

(i) H ∈M o
2p+1,

(ii) ∀G such that H is a subgraph of G, G/H ∈M2p+1 if and only if G ∈M2p+1.

(iii) ∀G such that H is a subgraph of G, G/H ∈M o
2p+1 if and only if G ∈M o

2p+1.

(iv) H admits all (2p+ 1)-orientations.

Proof. (i) =⇒ (ii). This follows from Proposition 1.3.3 (C3’).

(ii) =⇒ (i). It suffices to verify by definition that if H is mod (2p + 1)-contractible,

then H ∈ M o
2p+1. Let b ∈ Z(H,Z2p+1). We adopt Notation 5.1.3 and obtain H(b) as in

Notation 5.1.3. Let vH denote the vertex in H(b)/H, and let L = L(m,n, 2p+ 1) denote

the graph in Notation 5.1.3 in the construction of H(b). Note that H(b)/H − vH ∼= L is

a bipartite graph, and so H(b)/H satisfies the conditions of Lemma 4.1.6(v). It follows

from Lemma 4.1.6(v) that H(b)/H has a mod (2p + 1)-orientation. Since H is mod

(2p+ 1)-contractible, it then follows from Definition 5.1.1 that H(b) has a mod (2p+ 1)-

orientation D. By Lemma 5.1.4, H has a (Z2p+1, b)-orientation. As b is arbitrary, by

definition, H ∈M o
2p+1.

(i) ⇐⇒ (iii). This follows from Proposition 1.3.3 (C2) and (C3).
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(iv) =⇒ (i). Suppose that G admits all generalized (2p + 1)-orientations. We are

to show that G ∈ M o
2p+1. Let b ∈ Z(G,Z2p+1). Define w : V (G) 7→ Z2p+1 be given by

w(v) ≡ (p+ 1)(dG(v) + b(v)), (mod 2p+ 1), ∀v ∈ V (G). Then∑
v∈V (G)

w(v) ≡
∑

v∈V (G)

(p+ 1)(dG(v) + b(v))

≡
∑

v∈V (G)

(p+ 1)dG(v) ≡ 2(p+ 1)|E(G)| ≡ |E(G)| (mod 2p+ 1).

Since G admits all generalized (2p + 1)-orientations, G has an orientation D such that

w(v) ≡ d+D(v) (mod 2p+ 1), ∀v ∈ V (G). Let f(e) ≡ 1, ∀e ∈ E(G). As 2(p+ 1) ≡ 1 (mod

2p+1), ∀v ∈ V (G), ∂f(v) = d+(v)−d−(v) ≡ w(v)−d−(v) ≡ (p+1)(dG(v)+b(v))−d−(v) ≡
(p + 1)(d+(v) + d−(v) + b(v)) − d−(v) ≡ 1

2
(d+(v) − d−(v) + b(v)) (mod 2p + 1). Thus

∂f(v) = d+(v)− d−(v) ≡ b(v), (mod 2p+ 1). By definition, G ∈M o
2p+1.

(i) =⇒ (iv). Now we assume that G ∈ M o
2p+1. Let w : V (G) 7→ Z2p+1 be such that∑

v∈V (G)w(v) ≡ |E(G)| (mod 2p+ 1). Define b : V (G) 7→ Z2p+1 be given by

b(v) ≡ 2w(v)− dG(v) (mod 2p+ 1).

Then
∑

v∈V (G) b(v) ≡
∑

v∈V (G) 2w(v) −
∑

v∈V (G) dG(v) ≡ 2|E(G)| − 2|E(G)| ≡ 0 (mod

2p + 1), and so b ∈ Z(G,Z2p+1). Since G ∈ M o
2p+1, G has an orientation D, such that

when f ≡ 1, ∂f ≡ b. Thus at each vertex v ∈ V (G), d+(v) − d−(v) = ∂f(v) ≡ b(v) ≡
2w(v) − dG(v) ≡ 2w(v) − d+(v) − d−(v) (mod 2p + 1). It follows that 2d+(v) ≡ 2w(v)

(mod 2p+ 1), and so d+(v) ≡ w(v) (mod 2p+ 1), as desired.



Chapter 6

Some Families of Graphs That Are

Mod (2p + 1)-contractible

6.1 Graphs without K4-minors

A subgraph H of a graph G is a K4-minor if H can be contracted onto a K4. In this

section, we shall show a sharp lower bound of edge-connectivity for a K4-minor free graph

to be in M o
2p+1. We need a former theorem from Dirac.

Theorem 6.1.1 (Dirac [31]) If G is a simple graph without a K4-minor, then G has a

vertex of degree at most 2.

Corollary 6.1.2 Every (4p− 1)-edge-connected graph without a K4-minor is in M o
2p+1.

Proof. Let G be a (4p−1)-edge-connected graph without a K4-minor, and let G0 denote

the simplification of G. The conclusion holds trivially if |V (G)| = 1. We assume that

|V (G)| > 1 and the conclusion of the corollary holds also for graphs with smaller order.

Since G has no K4-minor, G0 does not have a K4-minor either. By Dirac’s Theorem,

G0 must have a vertex w of degree 1 or 2. If w has degree 1 and is incident with the
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only edge e in G0, then since κ′(G) ≥ 4p − 1, G must have a subgraph H isomorphic to

(4p− 1)K2. If w has degree 2 and is incident with the edges e1 and e2 in G0, then since

κ′(G) ≥ 4p − 1, one of e1 and e2 must be in a set of at least 2p parallel edges, and so G

must have a subgraph H isomorphic to (2p)K2. By Lemma 4.1.1(ii), H ∈M o
2p+1. Since G

has no K4-minors, G/H also has no K4-minors. Moreover, κ′(G/H) ≥ κ′(G). It follows

by induction that G/H ∈ M o
2p+1. Since H ∈ M o

2p+1 and by (C3) of Proposition 1.3.3,

G ∈M o
2p+1, and so the corollary is proved by induction.

The next example indicates that the edge-connectivity condition cannot be relaxed.

Example 6.1.3 Let m = 2p− 1 and let G = mC2p+1. Choose the constant function b ∈
Z(G,Z2p+1) such that ∀v ∈ V (G), b(v) = 1. Assume that G has a (Z2p+1, b)-orientation

D. Then for any vertex v ∈ V (G), we have{
d+(v) + d−(v) = 4p− 2

d+(v)− d−(v) ≡ 1 (mod 2p+ 1)

It follows that either d+(v) = 3p and d−(v) = p − 2 (referred as a positive vertex) or

d−(v) = 3p− 1 and d+(v) = p− 1 (referred as a negative vertex). It follows that no two

positive vertices are adjacent, and no two negative vertices are adjacent. This implies that

G must be bipartite, contrary to the fact that G has an odd circuit of length 2p+ 1. Hence

G does not have a (Z2p+1, b)-orientation, and so G 6∈M o
2p+1.

6.2 Chordal Graphs

Throughout this section, p denotes a positive integer, and a graph H ∈ M o
2p+1 will be

refereed as an M o
2p+1-graph. A simple graph G is chordal if every cycle of length greater

than 3 possesses a chord. Equivalently speaking, a simple graph G is chordal if every

induced cycle of G has length 3. In Theorem 4.2 of [36], it has been proved that every

4-connected chordal graph is in M o
3 . The purpose of this section is to extend this Theorem

4.2 of [36] to the main result of this section below.

Theorem 6.2.1 Every simple (4p)-connected chordal graph is in M o
2p+1.
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To prove this theorem, we need some lemmas.

Lemma 6.2.2 (Lemma 2.1.2 of [35]) A graph G is chordal if and only if every minimal

vertex cut induces a complete subgraph of G.

Lemma 6.2.3 Let T be a connected spanning subgraph of G. If for each edge e ∈ E(T ),

G has a subgraph He ∈M o
2p+1 with e ∈ E(He), then G ∈M o

2p+1.

Proof. We argue by induction on |V (G)|. The lemma holds trivially if |V (G)| = 1.

Assume that |V (G)| > 1 and pick an edge e′ ∈ E(T ). Then G has a subgraph H ′ ∈M o
2p+1

such that e′ ∈ E(H ′). Let G′ = G/H ′ and let T ′ = T/(E(H ′) ∩ E(T )). Since T

is a connected spanning subgraph of G, T ′ is a connected spanning subgraph of G′.

For each e ∈ E(T ′), e ∈ E(T ), and so by assumption, G has a subgraph He ∈ M o
2p+1

with e ∈ E(He). By Proposition 1.3.3(C2), H ′e = He/(E(He) ∩ E(H ′)) ∈ M o
2p+1 and

e ∈ H ′e. Therefore by induction G′ ∈ M o
2p+1. Then by Proposition 1.3.3(C3), and by the

assumption that H ′ ∈M o
2p+1, G ∈M o

2p+1.

Proof of Theorem 6.1: Let G be a (4p)-connected chordal graph. If G itself is a clique,

then as κ(G) ≥ 4p, G ∼= Km for some integer m ≥ 4p+ 1, and so by Proposition 4.1.3(v),

G ∈ M o
2p+1. Thus throughout the rest of the proof, we assume that G is not a complete

graph.

By Lemma 6.2.3, it suffices to show that every edge e ∈ E(G) lies in a subgraph He

of G with He ∈ M o
2p+1. Let e = xy be an edge in G. For any vertex v ∈ V (G), let N(v)

denote the vertices adjacent to v in G. We shall show in each of the following two cases

concerning the possibilities of e, a subgraph He ∈ M o
2p+1 can always be found such that

e ∈ E(He).

Case 1: N(x) 6= V (G)− {x} or N(y) 6= V (G)− {y}.

Without loss of generality, we assume that N(x) 6= V (G)−{x}. Then G has a vertex

z such that xz /∈ E(G). Since G is 2-connected and not a complete graph, N(x) contains

a minimal vertex cut X of G which separates x and z. By Lemma 6.2.2, G[X] is a

complete graph. Since x is adjacent to every vertex in N(x), G[X ∪ {x}] ∼= Kmx is a
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complete subgraph of G with order mx = |X| + 1 ≥ κ(G) + 1 = 4p + 1. It follows that

mx ≥ 4p + 1 and so by Proposition 4.1.3(v), G[X ∪ {x}] ∈ M o
2p+1. If y ∈ X, then we

define He = G[X ∪ {x}] ∈M o
2p+1.

Hence we assume that y 6∈ X for any minimal vertex cut X ⊆ N(x). It follows

that N(y) ⊆ N(x) ∪ {x}. Otherwise, if there exists t ∈ V (G) − (N(x) ∪ {x}) such that

yz ∈ E(G), then there is a minimal vertex cut of N(x) containing y which separates x and

t, a contradiction. Since N(y) ⊆ N(x)∪{x}, yz /∈ E(G), and so N(y) contains a minimal

vertex cut Y . By Lemma 6.2.2 and by the assumption of κ(G) ≥ 4p, G[Y ∪ {y}] is a

complete graph of order at least 4p+1, and so by Proposition 4.1.3(v), G[Y ∪{y}] ∈M o
2p+1.

If x ∈ Y , then we define He = G[Y ∪ {y}] ∈ M o
2p+1. Hence we assume further that

x 6∈ Y for any minimal vertex cut Y ⊆ N(y), and so x and y must be in the same

component of G−Y . For a such fix Y , by Lemma 6.2.2 and the assumption of κ(G) ≥ 4p,

G[Y ] is a complete subgraph ofG with order at least 4p. Note that Y ⊆ N(y) ⊆ N(x)∪{x}
and x /∈ Y . It follows that G[Y ∪ {x, y}] is a complete subgraph of G with order at least

4p + 2, and so by Proposition 4.1.3(v), G[Y ∪ {x, y}] ∈ M o
2p+1. Therefore in this final

subcase of Case 1, we define He = G[Y ∪ {x, y}].

Case 2: Both N(x) = V (G)− {x} and N(y) = V (G)− {y}.

Since G is not a complete graph itself, G has vertices v, v′ ∈ V (G)− {x, y} such that

vv′ /∈ E(G). Therefore, N(v) contains a minimal vertex cut X ′ separating v and v′ in G.

By Lemma 6.2.2 and by the assumption of κ(G) ≥ 4p, W = G[X ′ ∪ {v}] is a complete

graph of order at least 4p + 1, and so by Proposition 4.1.3(v), W ∈ M o
2p+1. Since both

N(x) = V (G) − {x} and N(y) = V (G) − {y}, both x and y must be in X ′, and so

e = xy ∈ W . It is now natural to define He = W .

Since in either case, we can always find a subgraph He ∈M o
2p+1 such that e ∈ E(He),

it follows by Lemma 6.2.3 that G ∈M o
2p+1.

Definition 6.2.4 (Definition 2.1.8 of [35]) Let k > 0 be an integer. A clique with order

k+1 is a k-tree; given a k-tree Tn on n vertices, a k-tree with n+1 vertices is constructed

by taking Tn and creating a new vertex xn+1 which is made adjacent to a k-clique of Tn,
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and non-adjacent to any of the other n− k vertices of Tn.

Corollary 6.2.5 Every k-tree with k ≥ 4p is in M o
4p+1.

Proof. We may assume that G is a k-tree but not a clique. By Lemma 6.2.2, every

k-tree is also a chordal graph. By the definition of a k-tree, it is routine to verify that

κ(G) ≥ k. It now follows by Theorem 6.2.1 that, if k ≥ 4p, every k-tree must be in M o
2p+1.

By Example 4.1.5, the complete graph K4p is a (4p − 1)-tree which is not in M o
2p+1.

This shows that Corollary 6.2.5 is best possible.



Chapter 7

Mod (2p + 1)-orientation of Line

Graphs

7.1 Introduction

In [41], the following theorem is proved.

Theorem 7.1.1 (Chen et al, Theorem 1.4 in [41]) If G has a 3-NZF and the minimum

degree of G is at least 4, then L(G) also has a 3-NZF.

In this chapter, we prove that the Conjecture 1.3.1 (ii) and (iii) on line graphs would

imply the truth of the conjectures in general.

Theorem 7.1.2 Let G be a graph and k be an integer. Then the following statements

are equivalent.

(i) If κ′(G) ≥ k, then G ∈M2p+1.

(ii) If κ′(L(G)) ≥ k, then L(G) ∈M2p+1.

56
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Theorem 7.1.3 Let G be a graph and k be an integer. Then the following statements

are equivalent.

(i) If κ′(G) ≥ k, then G ∈M o
2p+1.

(ii) If κ′(L(G)) ≥ k, then L(G) ∈M o
2p+1.

We also extend Theorem 7.1.1 to the following.

Theorem 7.1.4 Let G be a graph. If G ∈M2p+1 and δ(G) ≥ 4p, then L(G) ∈M2p+1.

7.2 Preliminaries

In this section, we review some useful results needed in the arguments.

Lemma 7.2.1 (Proposition 4.1.3(v) and Example 4.1.5) A complete graph Km ∈ M o
2p+1

if and only if m = 1 or m ≥ 4p+ 1.

The following lemma follows from the definition of line graph.

Lemma 7.2.2 Let G be a graph with E(G) 6= Ø and let e ∈ E(G) such that the two ends

of e are u and v. Let G(e) be the graph obtained from G by replacing e by a (u, v)-path

uvev of length 2. Let e′ denote the edge in L(G(e)) that has uve and vev as its ends. Then

L(G(e))/{e′} = L(G).

Let G be a graph and let S(G), the subdivided graph of G, be the graph obtained

from G by replacing each edge e of G by a path of length 2 with a newly added internal

vertex ve. Note that the correspondence e ↔ e′ defined in Lemma 7.2.2 is a bijection

between E(G) and {e′|e ∈ E(G)} ⊂ E(L(S(G))). Define

E ′(G) = {e′ ∈ E(L(S(G)))|e ∈ E(G)}.
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Then clearly,

L(G) = L(S(G))/E ′(G) (7.1)

and

E(L(S(G)))− E ′(G) = ∪v∈V (G)E(L(ES(G)(v))), (7.2)

so we have

L(S(G))/[E(L(S(G)))− E ′(G)] = G. (7.3)

Example: Let G be the graph shown in Fig 1. And L(G), S(G) and L(S(G)) are also

shown here. Note that E ′(G) = {e′i : 1 ≤ i ≤ 5}. It’s easy to check that Equations (7.1),

(7.2) and (7.3) hold from the graphs.

7.3 Main results

Lemma 7.3.1 Let T be a connected spanning subgraph of G. If for each edge e ∈ E(T ),

G has a subgraph He ∈M o
2p+1 with e ∈ E(He), then G ∈M o

2p+1.

Proof. We argue by induction on |V (G)|. The lemma holds trivially if |V (G)| = 1.

Assume that |V (G)| > 1 and pick an edge e′ ∈ E(T ). Then G has a subgraph H ′ ∈M o
2p+1

such that e′ ∈ E(H ′). Let G′ = G/H ′ and let T ′ = T/(E(H ′) ∩ E(T )). Since T

is a connected spanning subgraph of G, T ′ is a connected spanning subgraph of G′.

For each e ∈ E(T ′), e ∈ E(T ), and so by assumption, G has a subgraph He ∈ M o
2p+1

with e ∈ E(He). By Proposition 1.3.3(C2), H ′e = He/(E(He) ∩ E(H ′)) ∈ M o
2p+1 and

e ∈ H ′e. Therefore by induction G′ ∈ M o
2p+1. Then by Proposition 1.3.3(C3), and by the

assumption that H ′ ∈M o
2p+1, G ∈M o

2p+1.

Lemma 7.3.2 Let G be a graph. If δ(G) ≥ 4p+ 1, then L(G) ∈M o
2p+1.

Proof. Since δ(G) ≥ 4p+1, for any e ∈ L(G), e ∈ Km with m ≥ 4p+1. By Lemma 7.2.1,

Km ∈M o
2p+1. Therefore, L(G) ∈M o

2p+1 by Lemma 7.3.1.



CHAPTER 7. MOD (2P + 1)-ORIENTATION OF LINE GRAPHS 59

Lemma 7.3.3 Let G be a graph and k be an integer. If κ′(G) ≥ k, then

κ′(L(S(G))) ≥ k.

Proof. By contradiction, suppose X is an edge cut of L(S(G)) satisfies: (1) |X| < k

and |X| is minimized; and (2) |X ∩E ′(G)| is maximized subject to (1). Since κ′(G) ≥ k,

δ(G) ≥ k. Note that for any x ∈ V (L(S(G))), x ∈ Km with m ≥ k and |Ex| = 1 where

Ex = {e = xy ∈ L(S(G))|y /∈ V (Km)}. Therefore, δ(L(S(G))) ≥ k.

If X ⊆ E ′(G), by Equation (7.3), X is also an edge cut of G. Therefore, |X| ≥ k,

contrary to |X| < k.

Suppose there exists e = uv ∈ X − E ′(G), then e is in some Km and is adjacent to

some e′ = uv′ with v′ /∈ V (Km). Let H be one of the components of L(S(G))−X. If H

contains only one vertex, then |X| ≥ δ(L(S(G))) ≥ k. If H contains at least 2 vertices,

let

X ′ = (X − E(Km)) ∪ {uivi ∈ E ′(G) : ui ∈ Km ∩H, vi /∈ Km}

then |X ′| ≤ |X| and |X ′ ∩ E ′(G)| > |X ∩ E ′(G)| and X ′ is also an edge cut of L(S(G)),

contrary to that |X| is minimized and |X ∩ E ′(G)| is maximized.

Hence, κ′(L(S(G))) ≥ k.

Proof of Theorem 7.1.2 (i)⇒(ii) It is trivial.

(ii)⇒(i) Since κ′(G) ≥ k, κ′(L(S(G))) ≥ k by Lemma 7.3.3. Then by the assumption

of part (ii), L(S(G)) ∈M2p+1. Note that G is a contraction of L(S(G)) by Equation (7.3).

Thus G ∈M2p+1 by Proposition 1.3.3 (C2’).

Corollary 7.3.4 To prove Conjecture 1.3.1 (ii), it suffices to prove that if κ′(L(G)) ≥ 4p,

then L(G) ∈M2p+1, for any graph G.

The proof of Theorem 7.1.3 is similar to that of Theorem 7.1.2.
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Proof of Theorem 7.1.3 (i)⇒(ii) It is trivial.

(ii)⇒(i) Since κ′(G) ≥ k, κ′(L(S(G))) ≥ k by Lemma 7.3.3. Then by the assumption

of part (ii), L(S(G)) ∈M0
2p+1. Note that G is a contraction of L(S(G)) by Equation (7.3).

Thus G ∈M0
2p+1 by Proposition 1.3.3 (C2).

Corollary 7.3.5 To prove Conjecture 1.3.1 (iii), it suffices to prove that if κ′(L(G)) ≥
4p+ 1, then L(G) ∈M o

2p+1, for any graph G.

Lemma 7.3.6 If G ∈M2p+1 and δ(G) = 4p, then L(G) ∈M2p+1.

Proof. By Proposition 1.3.3(C2’) and Equation (7.1), it suffices to prove that L(S(G)) ∈
M2p+1.

Since G ∈M2p+1, G has an orientation D such that at every vertex v ∈ V (G),

d+D(v)− d−D(v) ≡ 0 (mod 2p+ 1). (7.4)

Note that by Equation (7.3), D is an orientation of a subgraph of L(S(G)). By Equation

(7.2), E(L(S(G)))−E ′(G) is a disjoint union of Kd(v) with v ∈ V (G). By Equations (7.2)

and (7.4), under the orientation D,

d+D(Kd(v), L(S(G))−Kd(v))− d−D(Kd(v), L(S(G))−Kd(v)) ≡ 0 (mod 2p+ 1), (7.5)

and for any vertex u ∈ Kd(v)

|EG(u, L(S(G))−Kd(v))| = 1. (7.6)

If d(v) ≥ 4p+ 1, then by Lemma 7.2.1, Kd(v) ∈M o
2p+1, and so there exists an orienta-

tion Dv of Kd(v) such that d+Dv
(u)− d−Dv

(u) ≡ 0 (mod 2p+ 1) in L(S(G)) at every vertex

u ∈ Kd(v).

Now suppose d(v) = 4p and let H = Kd(v) = K4p. By Equations (7.5) and (7.6), there

exists partition (U, V ) of H where U = {u1, u2, · · · , u2p} and V = {v1, v2, · · · , v2p}, such

that under the orientation D,

d+D(ui, L(S(G))−H)− d−D(ui, L(S(G))−H) = 1
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and

d+D(vi, L(S(G))−H)− d−D(vi, L(S(G))−H) = −1.

Let M(v) = {uivi|ui ∈ U, vi ∈ V } be a perfect matching of H = Kd(v). Then H−M(v)

is a (4p − 2)-regular graph, and so H −M(v) is Eulerian. Therefore, H −M(v) has an

orientation DM(v) such that for any x ∈ V (H), d+DM(v)
(x) − d−DM(v)

(x) = 0 (mod 2p + 1)

in H − M(v). Then we define an orientation D′M(v) for M(v) as head(uivi) = ui and

tail(uivi) = vi. Let Dv be the disjoint union of DM(v) and D′M(v).

Thus the disjoint union of D and all Dv with v ∈ V (G) gives an orientation D′ of

L(S(G)). It is routine to verify that d+D′(x) − d−D′(x) ≡ 0 (mod 2p + 1) at every vertex

x ∈ V (L(S(G))).

Hence, L(S(G)) ∈M2p+1.

Theorem 7.1.4 now follows from Lemmas 7.3.6 and 7.3.2. When p = 1, we obtain

Theorem 7.1.1, restated as the following corollary.

Corollary 7.3.7 If G ∈M3 and δ(G) ≥ 4, then L(G) ∈M3.



Chapter 8

Graphs with Disjoint Spanning Trees

8.1 Introduction

We consider the problem of designing networks with n processors v1, v2, · · · , vn such that,

for a given sequence of positive integers d1, d2, · · · , dn, it is expected that each processor

vi will be connected to other processors by di connections. It is further expected that

such networks will have certain level of strengths. This problem can be modelled as

the problem of determining whether a (graphical) degree sequence has realizations with

certain graphical properties. Motivated by the research in [44], we shall consider the

strength of the graph as the property of having k edge-spanning trees.

This chapter studies finite and undirected graphs without loops. Undefined terms can

be found in [1]. In particular, ω(G) denotes the number of components of a graph G. For

a vertex v ∈ V (G) and a subgraph K of G, dK(v) is the number of vertices in K that

are adjacent to v in G. If X ⊆ E(G), then G[X] is the subgraph of G induced by the

edge subset X, and G(X) is the spanning subgraph of G with edge set X. A sequence

d = (d1, d2, · · · , dn) is nonincreasing if d1 ≥ d2 ≥ · · · ≥ dn. A sequence d = (d1, d2, · · · , dn)

is graphic if there is a simple graph G with degree sequence d. In this case, this graph G

is a realization of d. We will also call G a d-realization.
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Many researchers have been investigating graphic degree sequences that have a re-

alization with certain graphical properties. See [43], [45], [46], [47], [52], [53], and [54],

among others. An excellent and resourceful survey by J. Li can be found in [50].

In this chapter, we focus on the investigation of graphic sequences that have realiza-

tions with many edge-disjoint spanning trees.

In Section 8.2, we develop some useful properties related to graphs with at least k edge-

disjoint spanning trees. In Section 8.3, we present a proof for the following characterization

of graphic sequences with realizations having k edge-disjoint spanning trees.

Theorem 8.1.1 A nonincreasing graphic sequence d = (d1, d2, · · · , dn) has a realization

G with k edge-disjoint spanning trees if and only if either n = 1 and d1 = 0, or n ≥ 2 and

both of the following hold:

(i) dn ≥ k.

(ii)
n∑
i=1

di ≥ 2k(n− 1).

8.2 Properties of Graphs with k edge-disjoint Span-

ning Trees

Let G be a graph, and k ≥ 2 be an integer. Let τ(G) denote the number of edge-disjoint

spanning trees of G, and Tk the set of all graphs with τ(G) ≥ k. By definition, K1 ∈ Tk,
for any integer k > 0. In this section, we summarize and develop some useful properties

on Tk, some of which were first introduced in [51], and are later extended to matroids in

[48] and [49].

Proposition 8.2.1 (Liu et al, Lemma 2.1 in [51]) For any integer k, Tk is a family of

connected graphs such that each of the following holds.

(C1) K1 ∈ Tk.

(C2) If e ∈ E(G) and if G ∈ Tk, then G/e ∈ Tk.

(C3) If H is a subgraph of G, and if H,G/H ∈ Tk, then G ∈ Tk.
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(C4) If H1 and H2 are two subgraphs of G such that H1, H2 ∈ Tk and V (H1)∩V (H2) 6= Ø,

then H1 ∪H2 ∈ Tk.

Define the density of a subgraph H of G with |V (H)| > 1 as follows:

d(H) =
|E(H)|
|V (H)| − 1

, if |V (H)| > 1.

Theorem 8.2.2 (Yao et al., Theorem 2.4 in [55]) Let G be a multigraph. If d(G) ≥ k,

then G has a nontrivial subgraph H such that H ∈ Tk.

Let G be a nontrivial connected graph. For any positive integer r, a nontrivial sub-

graph H of G is Tr-maximal if both H ∈ Tr and H has no proper subgraph K of G, such

that K ∈ Tr. A Tr-maximal subgraph H of G is called an r-region if r = τ(H). Define

τ(G) = max{r : G has a subgraph as an r-region}.

Lemma 8.2.3 (Liu et al, Lemma 2.3 in [51]) Let r, r′ > 0 be integers, H, H ′ be an

r-region and an r′-region of G, respectively. Then exactly one of the following must hold:

(i) V (H) ∩ V (H ′) = Ø,

(ii) r′ = r and H = H ′,

(iii) r′ > r and H is a nonspanning subgraph of H ′,

(iv) r′ < r and H contains H ′ as a non-spanning subgraph.

Theorem 8.2.4 (Theorem 2.4 in [51]) Let G be a nontrivial connected graph. Then

(a) there exists a positive integer m, and an m-tuple (i1, i2, · · · , im) of positive integers

with

τ(G) = i1 < i2 < · · · < im = τ(G),

and a sequence of edge subsets

Em ⊂ · · · ⊂ E2 ⊂ E1 = E(G),

such that each component of the induced subgraphs G[Ej] is an r-region of G for some r

with r ≥ ij, (1 ≤ j ≤ m), and such that at least one component H in G[Ej] is an ij-region
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of G;

(b) if H is a subgraph of G with τ(H) ≥ ij, then E(H) ⊆ Ej;

(c) the integer m and the sequence of edge subsets are uniquely determined by G.

Lemma 8.2.5 Let k ≥ 1 be an integer, G be a graph with τ(G) ≥ k. Then each of the

following statements holds.

(i) The graph G has a unique edge subset Xk ⊆ E(G), such that every component H of

G[Xk] is a Tk-maximal subgraph. In particular, G 6∈ Tk if and only if E(G) 6= Xk.

(ii) If G 6∈ Tk, then G/Xk contains no nontrivial subgraph H ′ with τ(H ′) ≥ k. (G/Xk is

called the (τ ≥ k)-reduction of G).

(iii) If G 6∈ Tk, then d(H ′) < k for any nontrivial subgraph H ′ of G/Xk.

Proof. If G ∈ Tk, then Xk = E(G). Hence we assume that G 6∈ Tk. Since τ(G) < k ≤
τ(G), there exists an integer j such that ij−1 < k ≤ ij by Theorem 8.2.4 (a). Let Xk = Eij .

Then each component H of G[Xk] is a Tk-maximal subgraph. By Theorem 8.2.4 (c), Xk

is unique. Thus part (i) holds.

To prove part (ii), we argue by contradiction. We assume G/Xk contains nontrivial

subgraph H ′ with τ(H ′) ≥ k and V (H ′) = {v1, v2, · · · , vh} with h ≥ 2. Without loss of

generality, suppose the pre-image of vi in G is Hi, and Hi is nontrivial for 1 ≤ i ≤ t and

is trivial for t + 1 ≤ i ≤ h. We will prove that τ(G′) ≥ k, where G′ = G[∪hi=1V (Hi)].

By induction, if t = 1, then G′/H1 = H ′, and H ′, H1 ∈ Tk. Therefore, G′ ∈ Tk by

Proposition 8.2.1 (C3). Assume it’s true for all t ≤ s. For t = s + 1, consider G′/Hs+1.

Then G′/Hs+1 ∈ Tk by induction hypothesis. Thus G′ ∈ Tk by Proposition 8.2.1 (C3),

and so part (ii) holds.

We argue by contradiction to prove (iii). Assume that d(H ′) ≥ k. Then |E(H ′)| ≥
k(|V (H ′)| − 1). By Theorem 8.2.2, H ′ has a nontrivial subgraph H ′′ such that H ′′ ∈ Tk.
Note that H ′′ is also a nontrivial subgraph of G/Xk, contrary to part (ii).

Notice that d(G) ≥ k implies τ(G) ≥ k by Theorem 8.2.2. Therefore if d(G) ≥ k,

then the unique edge subset Xk defined in Lemma 8.2.5(i) exists.
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Lemma 8.2.6 Let G be a graph satisfying d(G) ≥ k and let Xk ⊂ E(G) be the edge

subset defined in Lemma 8.2.5(i). If G[Xk] has at least two components, then for any

nontrivial component H of G[Xk], both d(H) ≥ k, and G[Xk] has at least one component

H with d(H) > k.

Proof. For any nontrivial component H of G[Xk], by Lemma 8.2.5(i), H ∈ Tk. Thus

|E(H)| ≥ k(|V (H)| − 1), and so d(H) ≥ k.

Suppose G[Xk] has c components H1, H2, · · · , Hc with c ≥ 2. By contradiction,

assume d(H) = k for any nontrivial component H of G[Xk]. Let x = |E(G)−Xk|. Then

|E(Hi)| = k(|V (Hi)| − 1) for any 1 ≤ i ≤ c and

|E(G)| =
c∑
i=1

|E(Hi)|+x =
c∑
i=1

(k|V (Hi)|−k)+x = k
c∑
i=1

|V (Hi)|−kc+x = k|V (G)|−kc+x.

Therefore, x = |E(G)| − k|V (G)|+ kc ≥ k(|V (G)| − 1)− k|V (G)|+ kc = k(c− 1).

Let G′ = G/G[Xk]. Then G′ is a multigraph with |V (G′)| = c > 1 and |E(G′)| = x.

Therefore, d(G′) ≥ k, contrary to Lemma 8.2.5 (iii). Hence G[Xk] has at least one

component Hi such that d(Hi) > k.

Let H1, H2 be two subgraphs of a graph G. Define

E(H1, H2) = {e = uv ∈ E(G) : u ∈ V (H1), v ∈ V (H2)}.

Let α′(G) denote the size of a maximum matching of G and χ′(G) the edge chromatic

number of G. Then we have the well-known Vizing Theorem.

Theorem 8.2.7 (Theorem 17.4 of [1]) For any simple graph G on n vertices, ∆(G) ≤
χ′(G) ≤ ∆(G) + 1 ≤ n.

Since the set of edges of each color is a matching of G, we have the following obser-

vation.

Observation 8.2.8 For any graph G, |E(G)| ≤ χ′(G)α′(G).
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Lemma 8.2.9 For any simple graph G with |E(G)| ≥ 1, α′(G) ≥ d τ(G)
2
e.

Proof. We argue by induction on n = |V (G)|. It is trivial if n = 2. Assume that lemma

holds for smaller n and n ≥ 3.

Suppose τ(G) = k > 0. Then for any v ∈ V (G), d(v) ≥ k. Assume first that G has

a vertex v0 of degree k. Let G′ = G − v0. Since dG(v0) = k and τ(G) = k, v0 is not a

cut-vertex of G. Therefore, G′ is connected and τ(G′) ≥ τ(G) = k. By induction,

α′(G) ≥ α′(G′) ≥ dk
2
e = dτ(G)

2
e.

Hence now we assume that δ(G) ≥ k+ 1. Then by Observation 8.2.8 and Theorem 8.2.7,

nα′(G) ≥ χ′(G′)α′(G) ≥ |E(G)| ≥ n

2
(k + 1).

Therefore, α′(G) ≥ k+1
2
≥ dk

2
e.

Following the terminology in [17], the strength η(G) is defined as

η(G) = min{d(G/X) : |V (X)| < |V (G)|}.

As indicated in Corollary 5 of [17], τ(G) = bη(G)c.

A subgraph H of G is η-maximal if for any subgraph H ′ of G that properly contains

H, η(H ′) < η(H).

Theorem 8.2.10 (Theorem 6 in [17], Corollary 3.6 in [49]) For any integer k with

d(G) ≥ k, either E(G) is the union of k edge-disjoint spanning trees, or G has a unique

edge subset X such that H = G[X] is η-maximal with η(H) > k.

For a connected graph G with τ(G) ≥ k, define Ek(G) = {e ∈ E(G) : τ(G− e) ≥ k}.

Theorem 8.2.11 (Theorem 4.2 in [49]) Let G be a connected graph with τ(G) ≥ k. Then

Ek(G) = E(G) if and only if η(G) > k.
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Lemma 8.2.12 Let G be a simple graph and let Xk ⊂ E(G) be the edge subset defined in

Lemma 8.2.5(i). If H ′ and H ′′ are two components of G(Xk), then each of the following

holds.

(i) |E(H ′, H ′′)| < k.

(ii) If d(H ′) > k, then there exists K ⊆ H ′ such that d(K) > k and τ(K − e) ≥ k for any

e ∈ E(K).

(iii) If d(H ′) > k, then there exists e′ ∈ E(H ′) such that τ(H ′ − e′) ≥ k, and E(G)−Xk

has at most one edge joining the ends of e′ to H ′′.

Proof. By Lemma 8.2.5(i), both H ′ and H ′′ are Tk-maximal subgraphs of G.

Let v′, v′′ denote the two vertices in G/(H ′∪H ′′) onto which H ′ and H ′′ are contracted,

respectively. Let G′ = G[V (H ′) ∪ V (H ′′)]. If |E(H ′, H ′′)| = h ≥ k, then L′ = G′/(H ′ ∪
H ′′)[{v′, v′′}] ∼= hK2 ∈ Tk. As H ′, L′ ∈ Tk, it follows by Proposition 8.2.1(C3) that

G′/H ′′ ∈ Tk. Note that H ′′ ∈ Tk, it follows by Proposition 8.2.1(C3) again that G′ =

G[V (H ′) ∪ V (H ′′)] ∈ Tk, contrary to the assumption that H ′ and H ′′ are Tk-maximal

subgraphs of G. Hence we must have |E(H ′, H ′′)| < k, and so (i) follows.

Part (ii) follows from Theorems 8.2.10 and 8.2.11 directly.

By Lemma 8.2.9 and part (ii), α′(K) ≥ dk
2
e. Let M be a matching of K of size dk

2
e.

Then for any e′ ∈M , K−e′ ∈ Tk by (ii). Since e′ ∈ E(K), (H ′−e′)/(K−e′) = H ′/K. By

Proposition 8.2.1 (C2), (H ′−e′)/(K−e′) ∈ Tk. Therefore, H ′−e′ ∈ Tk by Proposition 8.2.1

(C3). If for any e′ ∈M ⊂ E(H ′) there are at least two edges joining the ends of e′ to H ′′,

then |E(H ′, H ′′)| ≥ |E(K,H ′′)| ≥ 2dk
2
e ≥ k, contrary to (i). Hence this proves (iii).

Lemma 8.2.13 Let G be a nontrivial graph with τ(G) ≥ k. If d(G) = k, then for any

nontrivial subgraph H of G, d(H) ≤ k. Moreover, if τ(H) ≥ k, then d(H) = k.

Proof. Since τ(G) ≥ k and |E(G)| = k(|V (G)| − 1), τ(G) = k and E(G) is a union

of k edge-disjoint spanning trees. Let T1, T2, · · · , Tk be edge-disjoint spanning trees of

G. Then for any nontrivial subgraph H of G, |E(H) ∩ E(Ti)| ≤ |V (H)| − 1, 1 ≤ i ≤ k.
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Therefore,

|E(H)| = |E(H) ∩ (∪ki=1E(Ti)| =
k∑
i=1

|E(H) ∩ E(Ti)| ≤ k(|V (H)| − 1).

Thus d(H) ≤ k. If H has k edge-disjoint spanning trees, then obviousely d(H) is exactly

k.

8.3 Characterizations of Graphic Sequences with Re-

alizations Having k edge-disjoint Spanning Trees

We present the main result of the paper in this section, which is Theorem 1.1 restated

here.

Theorem 8.3.1 Let d = (d1, d2, · · · , dn) be a nonincreasing graphic sequence. Then d

has a realization G in Tk if and only if either n = 1 and d1 = 0, or n > 1 and each of the

following statements holds.

(i) dn ≥ k,

(ii)
n∑
i=1

di ≥ 2k(n− 1).

Proof. The case when n = 1 is trivial and so we shall assume that n > 1. If G ∈ Tk,

2k(|V (G)| − 1) ≤ 2|E(G)| =
n∑
i=1

di and each vertex has degree at least k. This proves the

necessity.

We now prove the sufficiency. Assume d is a nonincreasing graphic sequence satisfying

both Theorem 8.3.1 (i) and (ii). We argue by contradiction and assume that

every d-realization G is not in Tk. (8.1)



CHAPTER 8. GRAPHS WITH DISJOINT SPANNING TREES 70

Suppose G is a d-realization. By (8.1), G /∈ Tk, and so by Lemma 8.2.5 (i), G has

a unique edge subset Xk ⊆ E(G) such that each component of G[Xk] is a Tk-maximal

subgraph. Let X = E(G)−Xk. Since G /∈ Tk, X 6= Ø. Suppose G−X has c components,

H1, H2, · · · , Hc, which are so labelled that d(H1) ≥ d(H2) ≥ · · · ≥ d(Ht) ≥ k, and that

Hj = K1 for j = t+ 1, · · · , c. Define

F1(G) = {Hi : d(Hi) > k} and F2(G) = {Hi : d(Hi) = k}.

Then |F1(G)|+ |F2(G)| = t.

Claim 8.1: If every d-realization is not in Tk, then there exists a d-realization G such

that |F1(G)| = 1.

By contradiction, suppose that for any d-realization G, |F1(G)| ≥ 2. Choose a d-

realization G such that

ω(G−X) is minimized, (8.2)

and among all the d-realizations G satisfying (8.2), we further choose G so that

|X| is maximized. (8.3)

As |F1(G)| ≥ 2, we have d(H1), d(H2) > k. By Lemma 8.2.12(iii), there exist

e1 = u1v1 ∈ E(H1) and e2 = u2v2 ∈ E(H2) such that H1 − e1, H2 − e2 ∈ Tk, and there

exists at most one edge in X joining the ends of e1 and e2. Without loss of generality,

assume u1u2, v1v2 /∈ E(G) and let

G1 = (G− {u1v1, u2v2}) ∪ {u1u2, v1v2} and X1 = X ∪ {u1u2, v1v2}. (8.4)

Then by the choice of these edges u1u2, v1v2, G1 is also a d-realization. By assumption,

G1 /∈ Tk and |F1(G1)| ≥ 2. Since G1−X1 = (H1−u1v1)∪ (H2−u2v2)∪H3∪ · · · ∪Hc and

since each component of G1−X1 is in Tk, it follows by (8.2) that X1 is the unique subset

of E(G1) such that ω(G1 −X1) = ω(G−X) = c with each component of G1 −X1 being

a Tk-maximal subgraph. Now we have |X1| = |X|+ 2, contrary to (8.3). Thus Claim 8.1

holds.
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By Lemma 8.2.6, for any graph G′, either G′ ∈ Tk or |F1(G
′)| ≥ 1. Now we prove the

theorem by contradiction. Suppose for every d-realization G, G /∈ Tk. Then by Claim 8.1,

there exists G such that |F1(G)| = 1. Thus we can choose a d-realization G satisfying

|F1(G)| = 1 with |V (H1)| maximized. (8.5)

And subject to (8.5), we further choose G such that

|X| is maximized. (8.6)

We consider the following cases.

Case 1: t ≥ 2. Thus H2 6= K1.

By Lemma 8.2.12 (iii), there exist e1 ∈ E(H1), e2 ∈ E(H2) such that there is at most

one edge in G joining e1 and e2 and H1 − e1 ∈ Tk. Define G1 and X1 as in (8.4).

Since d(H2 − e2) < k, H2 − e2 is no longer in Tk. Let Tk-maximal subgraphs of

G1[(H1−e1)∪ (H2−e2)] be H1,2, H2,1, · · · , H2,t2 where H1−e1 ⊆ H1,2 and H2,1 · · ·H2,t2 ⊆
H2−e2. For each H2,i, since d(H2) = k and H2,i ⊆ H2, by Lemma 8.2.13 either d(H2,i) = k

or H2,i = K1. Notice that G/(H1 ∪ H2) = G1/[(H1 − e1) ∪ (H2 − e2)]. Therefore,

H1,2, H2,1, · · · , H2,t2 , H3, · · · , Hc are Tk-maximal subgraphs of G1. By (8.5) and F1(G1) =

{H1,2}, H1,2 = H1 − e1.

Let X ′ be the edge subset of G1 such that G1−X ′ = H1,2∪H2,1∪· · ·∪H2,t2∪H3∪· · ·Hc.

Then X 6= X1 and X ⊂ X1 ⊂ X ′, contrary to (8.6).

Case 2: t = 1, and so H2 = K1.

In this case, if c = 2, then by Theorem 8.3.1(i), there must be at least k edges between

H1 and H2. Since H1 ∈ Tk, it follows that G ∈ Tk, contrary to (8.1). Hence we must have

c ≥ 3.

For i ≥ 2, denote V (Hi) = {xi}. Note that for any Hi = K1, there exists an Hj = K1

such that e = xixj ∈ X. For otherwise, xi must only be adjacent to the vertices in H1.

By Theorem 8.3.1 (i), |E(Hi, H1)| ≥ k, contrary to Lemma 8.2.12 (i). Without loss of
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generality, we assume x2x3 ∈ X. By Lemma 8.2.12 (ii), there exists a nontrivial subgraph

K ⊆ H1 such that K − e ∈ Tk for any e ∈ E(K).

Claim 8.2: There exists e′ = uv ∈ E(K) such that ux2, vx3 /∈ E(G).

In order to present the proof, we define

B1 = {v ∈ V (K) : vx2, vx3 /∈ E(G)}, B2 = {v ∈ V (K) : vx2 ∈ E(G), vx3 /∈ E(G)},

B3 = {v ∈ V (K) : vx2 /∈ E(G), vx3 ∈ E(G)}, B4 = {v ∈ V (K) : vx2, vx3 ∈ E(G)}.

and let N(B1) = {v ∈ V (K) : ∃u ∈ B1 such that uv ∈ E(K)}. Note that by definition,

we have

V (K) = B1 ∪B2 ∪B3 ∪B4. (8.7)

If ∃uv ∈ E(G) such that u ∈ B3, v ∈ B2, then Claim 8.2 holds. Thus we may

assume N(B2) ∩ N(B3) = Ø. Therefore, B1 6= Ø. Otherwise, N(B2) ∪ N(B3) ⊆ B4,

forcing |B4| ≥ k since K ∈ Tk, for any vertex v ∈ K, dK(v) ≥ k, and so |E(H1, H2)| ≥
|E(B4, x2)| = |B4| ≥ k, contrary to Lemma 8.2.12 (i). Hence B1 6= Ø.

If E(G[B1]) 6= Ø, then Claim 8.2 holds. Thus we may also assume that E(G[B1]) = Ø.

It follows that N(B1) ∩B1 = Ø.

Firstly, we shall show that

N(B1) ∩ [B2 ∪B3] 6= Ø. (8.8)

If (8.8) fails, then by (8.7), N(B1) ⊆ B4. Therefore, |B4| ≥ |N(B1)| ≥ k. But then by

definition of B4, |E(H1, H2)| ≥ |E(B4, x2)| = |B4| ≥ k, contrary to Lemma 8.2.12 (i).

This verifies (8.8).

By (8.8), we first assume that there exists v ∈ N(B1) ∩B2. Thus there exists u ∈ B1

such that uv ∈ E(K). By the definitions of B2 and B1, both vx3 /∈ E(G) and ux2 /∈ E(G),

and so Claim 8.2 follows.

Next, we assume that there exists u ∈ N(B1) ∩ B3. Thus there exists v ∈ B1 such

that uv ∈ E(K). By the definitions of B3 and B1, ux2 /∈ E(G) and vx3 /∈ E(G). Thus,

Claim 8.2 must hold. This completes the proof for Claim 8.2.
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By Claim 8.2, define

G2 = (G− x2x3 − uv) ∪ {ux2, vx3} and X2 = X − x2x3 ∪ {ux2, vx3}.

Then by the choice of u, v, x2 and x3, G2 is also a d-realization. We shall show that

|F1(G2)| = 1. Assume, to the contrary, that |F1(G2)| ≥ 2. Then there exists S ∈ F1(G2)

and S 6= H1 − uv. By Proposition 8.2.1 (C4), V (S) ∩ V (H1) = Ø. But then S is a

subgraph of G other than H1, contrary to the assumption that |F1(G)| = 1.

By (8.5), H1− uv is a Tk-maximal subgraph of G2. Since G2[H2 ∪ · · · ∪Hc] = G[H2 ∪
· · · ∪Hc]− x2x3, H2, · · · , Hc are Tk-maximal subgraphs of G2. But now |X2| = |X1|+ 1,

contrary to (8.6).

This completes the proof of the theorem.



Chapter 9

Emergence of Specialization in a

Swarm of Robots

9.1 Introduction

In a robotic swarm, heterogeneity may be quantified in terms of diversity, or the variability

of the properties of individual agents. Heterogeneity may also involve the specialization

of individuals for certain tasks. This collective adaptation strategy is often seen in biol-

ogy [58]. The design of heterogeneous swarms requires ways to quantify the degrees of

heterogeneity and specialization as well as their impact on collective performance. Ear-

ly work on heterogeneity and specialization in robot teams established methods for the

composition of group level behaviors [59, 60] and proposed a measure for heterogeneity

[61].

The stick-pulling problem was originally formulated [56] to explore the swarm intelli-

gence paradigm [62] in a context where collaboration is realized through local interactions,

with limited or no global communication. The basic task, finding and pulling randomly

distributed sticks, requires two robots in asymmetric roles. A robot that finds a stick

must wait for another one to help pull the stick. The gripping or waiting time param-

eter (WTP)[57, 56] of a robot is the time it will wait for help before releasing a stick.

74
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In the original study [56], Ijspeert et al. found that this asymmetric task could benefit

from specialization. Through experimentation and a two-level modeling approach, they

identified an optimal WTP for a homogeneous swarm. For a heterogeneous swarm with

two subgroups (castes or species) of agents, each with a different WTP, they found a

family of high-performance pairs of WTP values. This type of heterogeneity led to better

performance when the number of robots was less than the number of sticks and did not

make a significant difference otherwise.

Li, Martinoli and Mustafa [63] investigated how specialization could be learned by

the stick-pulling team. In their system, agents changed their WTP based on local or

global reinforcement signals. Learning resulted in optimal performance accompanied by

increases in information-theoretic measures of diversity and specialization. This work

strengthened the correlation between group performance and diversity and provided an

example of global performance improvement through individual adaptation. However, it

left open the question whether distinct groups with specialized behaviors could emerge

through individual adaptation.

We investigated the advantages of specialization in a slightly modified version of the

stick pulling problem[57], using a methodology developed for task allocation [64]. The

starting point of our modeling approach was similar to the probabilistic model of [56].

Our higher level of abstraction resulted in a concise and transparent analytical model and

in the possibility of scaling simulations into the range of thousands of agents and millions

of updates. We identified a maximal performance level that may not be exceeded for

any WTP configuration, and showed that it could be reached in many different configu-

rations. Comparing homogeneous and two-species configurations, we showed analytically

and confirmed through simulations that the two-species swarm performed better under

non-ideal circumstances than the homogeneous one (in the case with more sticks than

robots). Echoing the results of [56], we found that specialization was advantageous.

In this work we expand the analysis of optimal configurations and explore collective

adaptation based on individual adjustment of the agents. We investigate adaptation s-

trategies from two perspectives: (1) convergence to optimal performance; (2) emergence

of subgroups with specialized behaviors. We implement a distributed adaptation algo-

rithm where robots randomly change their WTP with a frequency based on their own
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performance. In the second algorithm we add an exchange mechanism where WTPs of

successful agents are assigned to underperforming ones. Both algorithms converge to con-

figurations that ensure optimal performance. The WTP exchange mechanism increases

the cohesion of the WTP distribution, causing the system to converge to bounded uni- or

bimodal distributions.

9.2 Model and Analytical Results

9.2.1 The Stick Pulling Problem

N are robots tasked with pulling sticks from the ground. The ST sticks are randomly

distributed in the workspace. Two robots are required to pull a stick. Robot behaviors

are sketched in Figure 9.1. Robots initially wander in search of sticks and can discover

sticks in their immediate vicinity. When a robot finds a stick held by another robot, the

robots pull the stick together. If a robot finds a free stick, it holds it waiting for another

robot to come along, but will release it after a certain time. We model the discovery of

sticks as a stochastic process, characterized by a discovery rate kD, the same for all sticks,

whether or not they are held by another robot. This rate accounts for all physical and

technological constraints, such as: the physical density of sticks, the size and accessibility

of the area, the movement and detection capabilities of the robots. The numbers of sticks

and robots are constant. The only element that can be chosen by design is the behavior

of the robots upon discovery of a free stick. Release after waiting is described as a Poisson

process whose characteristic time is the waiting time parameter (WTP) τi, set individually

for each agent.

9.2.2 Equations of Motion

The N robots are subdivided into p ≤ N groups; Ni is the number of agents in group i.

There are ST sticks in total. At any time, a robot may be free (wandering), or holding

a stick. We denote the number of free robots of type i with Fi, and by Hi the number
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Figure 9.1: Flow chart of robot behaviors in the stick pulling model.

of those holding a stick. The total number of free sticks and free and holding robots are

denoted by S, F , and H. If total number robots of each type are fixed, we have:

N =

p∑
i=1

Ni ; H =

p∑
i=1

Hi ; F =

p∑
i=1

Fi

ST = S +H ; N = F +H ; Ni = Fi +Hi, ∀i ∈ {1, · · · , p} (9.1)

Robots in a group have the same WTP, τi, the average time a robot holds on to a stick

before releasing it. The release is controlled by a Poisson process whose rate is λi = 1/τi.

Similarly, the process of discovery of sticks by free robots is characterized by the discovery

rate kD. Due to (9.1), the state of the system is defined by the number of robots of each

type holding a stick, {H1, · · · , Hp}. We will write our equations in terms of these variables.

Since we are interested in large swarms, we will adopt a continuum approach in describing

the dynamics of the system [64].

There are three processes that contribute to the variation of Hi, capture (discovery),

pull, and release of sticks. The capture rate r
(i)
capt is proportional to the number of free

robots of type i and the number of free sticks. The pulling rate r
(i,j)
pull is proportional to

the number of free robots of type i and the number of robots of type j holding a stick.

These two processes have the same rate constant, kD. Note that the pulling rate does not

impact the number of free robots of the type of the second participant. By contrast, the

robot that was holding the stick changes its state from holding to free. We denote by r
(i)
pull

the total rate of successful pulls of sticks held by robots of type i. The release rate r
(i)
release

of sticks by robots of type i is proportional to the number of robots of type i holding a
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stick, and the rate constant λi = 1/τi.

r
(i)
capt = kDFiS = kD(Ni −Hi)(ST −H) ; r

(i,j)
pull = kDFiHj = kD(Ni −Hi)Hj

r
(i)
release = λiHi ; r

(j)
pull = kD(N −H)Hj . (9.2)

The net rate of change in Hi is then:

dHi

dt
= kD [(Ni −Hi)(ST −H)−Hi(N −H)]− λiHi . (9.3)

9.2.3 Steady state analysis

We are interested in the steady-state(s) of (9.3). For any such configuration, the right-

hand side of the equations of motion must vanish. Setting dHi

dt
= 0, we have:

kD [Ni(ST −H)−Hi(ST +N − 2H)] = λiHi . (9.4)

This equilibrium condition is more transparent in terms of dimensionless variables:

ST
N
≡ σ ;

H

N
≡ φ ;

Hi

Ni

≡ ϕi ;
Ni

N
≡ ρi −→ ϕi =

σ − φ
ξi + (1 + σ − 2φ)

. (9.5)

The dimensionless time parameter ξi is the ratio between the average time between two

discoveries of the same stick by two robots, and the waiting time parameter τi:

ξi ≡
λi
NkD

=
1

NkDτi
=

1/(NkD)

τi
. (9.6)

The occupancy fraction φ is a weighted average of the individual occupancies ϕi. Substi-

tuting the individual equilibrium conditions, we arrive at a global condition:

φ ≡ H

N
=

∑
i

ρiϕi −→ φ =
∑
i

(σ − φ)ρi
ξi + (1 + σ − 2φ)

= f(φ) . (9.7)

It can be shown that the equation φ = f(φ) has a unique solution, which corresponds to

a stable equilibrium of the equations of motion (9.3).
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9.2.4 Pulling rates and optimality

The global pulling rate, (given N robots of which H are holding sticks) is

Rpull = kD(N −H)H . (9.8)

Since 0 ≤ H ≤ N , Rpull is always positive, vanishes for H = 0 and H = N , and is

maximal for H = H∗ ≡ min(N/2, ST ). The maximal pulling rate is R∗pull below:

R∗pull = kD(N −H∗)H∗ ; R∗pull(N,ST ) ≤ Rmax
pull (N) ≡ 1

4
kDN

2 . (9.9)

Here, Rmax
pull is the maximal pulling rate for N robots; it may be achieved if there are

enough sticks (ST > N/2). If the number of robots N is larger than 2ST , the maximal

pulling rate is limited to kD(N − ST )ST . We will assume N < 2ST , so R∗pull = Rmax
pull .

Optimal WTP configurations

The objective of designing our swarm is to maintain the system performance as close

to the ideal situation H = N/2 as possible. For a given configuration of groups and

WTPs, we can calculate the equlibrium state of the system and the corresponding pulling

rate, by solving the equilibrium condition (9.7) for the global occupancy φ, and use it

to calculate the individual occupancies. We then specify conditions for optimality by

requiring φ = 1/2. A configuration of waiting time parameters that results in φ = 1/2 is

called optimal or ideal.

One species: If all agents have the same WTP τ , the equilibrium condition (9.9) reads

2φ2 − (2 + σ + ξ)φ+ σ = 0 . (9.10)

Of the two solutions for φ, only one is in the [0, 1] interval. The design problem here

consists of determining the waiting time parameter τ (through the dimensionless time

parameter ξ = 1/NkDτ) so that optimal performance is achieved. We can calculate the

value of the ideal ξ = 1/NkDτ by substituting φ = 1/2:

ξ∗ = σ − 1 ↔ τ ∗ =
1

kD(ST −N)
. (9.11)
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Two types of robots: We have to design three quantities, the two WTPs τ1, τ2, and

the ratio ρ1/ρ2 between the sizes of the groups. Given {ξ1, ξ2, ρ1, ρ2}, the equilibrium

configuration is uniquely defined. Choosing ρ1 = ρ2 = 1/2, we obtain the following

constraint for the dimensionless time parameters {ξ1, ξ2}:

1

ξ1 + σ
+

1

ξ2 + σ
=

2

2σ − 1
. (9.12)

Equal size groups: Consider a number of p different species, each representing 1/p of

the population. 1 The optimality condition is

p

2σ − 1
=

p∑
i=1

1

ξi + σ
←→ 1

p

p∑
i=1

1

ξi + σ
=

1

2σ − 1
. (9.13)

For p = 1 we reobtain the condition for the ideal ξ. The second version of the condition

can be interpreted as a requirement that the average of the quantities 1/(ξi + σ) match

the ideal value 1/(2σ − 1).

Robustness Measures

The optimality requirement (9.13) represents a single algebraic constraint. With p equal

sized groups, all but one of the WTPs {τ1, · · · , τp} may take any value over a semi-infinite

interval. The corresponding configurations form a p − 1 dimensional manifold in the p-

dimensional space of WTP configurations. We are interested in additional performance

criteria to characterize these ideal configurations.

Performance under changing conditions: Consider the pulling rate of a system that

is optimal for a stick/robot ratio of σ0, when faced with a different σ 6= σ0. In Figure

9.2 we compare a one-group configuration with τ = τ ∗ (9.11) and two configurations of

two groups of equal size with WTP pairs {τ1, τ2} that satisfy (9.12), for σ = σ0 = 10.

The larger τ1, the smaller τ2 has to be. The factor K = τ1/τ
∗ is a measure of how far

the {τ1, τ2} pair is from the one-species case (K = 1). Theoretical predictions for the

pulling rate for K = 1, 10, 100 are confirmed by simulation results as indicated. The

1This also applies to the situation when the robots are essentially independent, taking p = N .
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Figure 9.2: Efficiency loss when conditions differ from ideal. Theoretical predictions

(lines) and simulation results (points) for the pulling rate of a one-group and several

two-group configurations that are optimal for σ = 10. The WTP pairs {τ1, τ2} of the

two-group configurations satisfy (9.12), with the stated values of the ratio K = τ1/τ
∗ (10

and 100, respectively). The simulations (one per data point) had N = 150 robots and

numbers of sticks so that σ = ST/N = 5, 10, 30, 75, 100.
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loss of performace is the strongest for the one-group configuration (K = 1) and becomes

milder as the ratio between τ1 and τ ∗ increases.

Loss of agents: As a measure of how much of the optimality would be preserved by a

subset of the agents in a given configuration, it is useful to compare the pulling efficiency

per agent for a configuration where some agents are destroyed. This measure is relevant

when comparing WTP configurations that result from randomized adaptation algorithms,

where no two agents would likely have the same WTP. It provides a mechanism to penalize

configurations that are “too heterogeneous”.

9.3 Simulation Methods

9.3.1 Basic simulation algorithm

The main simulation algorithm is derived from the Gillespie algorithm used in biochem-

istry and adapted to multi-robot systems in previous work [57]. The state of the system is

defined by that of the individual agents. Each of the N agents can be free (F ) or holding

a stick (H). There are three possbile transitions, corresponding to the three processes

discussed above:

Fi + S → Hi (CAPTURE); Hi + Fj → Fi + Fj + S (PULL); Hi → Fi + S (RELEASE)

In the capture(i) process, agent i goes from F ree toHolding; the reverse is the release(i)

process. In the pull(i, j) process, agent i goes from holding to free, but the process re-

quires another agent (j), whose state is not ultimately changed. Transitions are controlled

by independent Poisson processes; the probability per unit time (or rate) for a specific

transition is given by a time constant and the number of eligible partners, if applicable.

For example, if both agents i and j are free, the probability per unit time for capturing a

stick is the same for both of them, kDS. The release rate for agent i while holding a stick

is λi = 1/τi.

In the Gillespie algorithm, simultaneous Poisson processes are simulated by generating

next event times for each process, then implementing the state transition that corresponds
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to the smallest one of the next event times. When there are many possible transitions,

one may calculate the cumulative transition rate for each type of transition, then choose

a specific (pair of) agent(s) for the transition. This approach is correct for simultaneous

Poisson processes and we do this for events that involve encounters between free robots

and sticks. The additional computational cost due to updating the states of individual

agents is almost negligible. Thus, the Poisson model for transitions allows us to have the

equivalent of an agent-based simulation for the cost of a centralized one.

9.3.2 Individual adaptation

We construct a self-evaluation measure or satisfaction level χi for agent i, as follows.

Every time agent i participates in a successful pull (in either role), χi is incremented

by 1. At every update, χi decreases exponentially with a characteristic time τforget:

χi(t + ∆t) = χi(t)exp(−∆t/τforget). Thus, agents have a memory of past successes, but

their satisfaction level decreases as they go through a dry spell.

The satisfaction level defined here does not provide an absolute measure of an indi-

vidual agent’s effectiveness. There is no reference value for it, unless the agent knows

what pulling rate it should expect. The maximal pulling rate can be computed from the

number of sticks and agents; however, we are interested in an adaptive strategy that can

find the optimum without relying on global knowledge.

In this algorithm, each agent changes their WTP randomly, at a rate proportional to

the inverse of the agent’s satisfaction level (lower satisfaction increases the rate of change).

Adaptation is implemented as a Poisson process with time constant τlearn/χi, that runs

in parallel with the other transitions (but much slower). Every time this process fires, the

respective agent changes its WTP with a small random quantity: τ ′i = τiexp((r−1/2)∆))

where r is a uniformly distributed random number between [0, 1] and ∆ is the Monte-

Carlo (MC) step size (typically a small number). This algorithm results in a random walk

in the space of log(τi) biased by the satisfaction function. Our approach is simpler than

the one used by Li et al., but it also relies on a proper self-assessment of performance.
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9.3.3 Swapping

As we discuss next, the individual adaptive strategy succeeds in optimizing the pulling

rate, but generates configurations where the individual WTPs are spread over many orders

of magnitude. In order to increase the coherence of the resulting WTP distributions, we

introduced a collective mechanism to supplement individual adaptation. It consists of an

additional WTP change, performed with a small (fixed) probability ν, during normal WT-

P updates. This corresponds to an additional Poisson process, with propensity ν/τlearn.

When this process fires, we select a pair of agents, a donor (with a high satisfaction level),

and an acceptor (with a low satisfaction level), and change the WTP of the acceptor to

that of the donor. This procedure is reminiscent of biologically inspired algorithms. While

it requires some degree of collective communication, it can be implemented in a way that

ensures reasonable scaling as the number of agents increases. The key is in that the donor

and acceptor agents can self-select and communicate using a pre-determined procedure of

asynchronous communication to upload or download their WTPs.

9.4 Results and Discussion

9.4.1 Model Validation - Equilibration

The standard system in our simulations consists of N = 150 robots and ST = 2000

sticks. We use time units where the discovery rate kD = 1. Thus, the maximal pulling

rate is 1
4
N2kD = 5625 pulls per unit time. The corresponding optimal waiting time is

τ ∗ = 1/kD(ST −N) = 5.4× 10−4. The average time between two robot-stick encounters

is τE = 1/(kDSTN) = 3.33 × 10−6. The time between two consecutive updates in a

simulation is on the order of 105 iterations per time unit. We performed simulations

with various WTP configurations and verified that the system converges to the average

occupancy fractions and pulling rates predicted by the continuum equations in Sec.9.2

. The value of the equilibration time is comparable to the average time of 5 × 10−4

units it takes for one robot to find one of the 2000 sticks. Figure 9.2 shows theoretical

and simulation results for the equilibrium pulling rate for configurations with one or two
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WTP groups, for the same number of robots (N = 150), but different numbers of sticks

(simulations with σ ≡ ST/N = 5, 10, 30, 75, 100). All configurations are ideal for σ = 10

(ST = 1500 sticks). The simulation results confirm the analytical predictions given in

Sec.9.2.4.

9.4.2 Individual adaptation algorithm

We implemented the individual adaptation algorithm described in Sec.3.2 on the N = 150,

ST = 2000 system, exploring parameter values around τlearn = 1.0 × 10−4, τforget = 0.1

and a Monte-Carlo step size of ∆ = 1.0× 10−2.

The evolution of the system with these parameter values is shown in Figure 9.3.

The waiting time parameters are initially set to 50% of the optimal value τ ∗. As the

individual τ values change, the number of free robots evolves, reaching the optimum

of 75 in approximately 400 time units. This τ -convergence time is significantly longer

than the equilibration time of 5 × 10−4 it takes the number of free robots to reach the

equilibrium value corresponding to a fixed WTP configuration. It is useful to visualize the

time evolution of WTPs using the distribution of the log(τ) values, as in Figure 9.3. The

results are qualitatively different from the one- or the two-group configurations described

previously. As the simulation starts, the log(τ) distribution spreads out and continues

to do so over time, expending into extremely large and small (positive) values, reaching

widths of 10 orders of magnitude and higher after 108 steps. The log(τ) distribution is

close to a normal, whose standard deviation increases like the square root of the simulation

time.

We performed a number of simulations to investigate the effect of changing the adap-

tation parameters on convergence. The results are presented in Figure 9.4. We define

convergence for the purposes of these simulations as the state (after the initial equilibra-

tion) where the moving average over 10, 000 iterations of the number of free robots is

within 1 of the ideal value of 75. We limited the simulations to 107 iterations, and we plot

both the time to convergence and the number of held sticks after the maximum number

of iterations. For the converged simulations, the final number of sticks is very close to
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Figure 9.3: (Left) Evolution of the distribution of WTPs in an adaptive simulation.

Notice the similarity to a diffusion process. (Right) The number of free robots in the

same simulation (expected = based on the current configuration of WTPs). Based on a

single simulation with N = 150 robots, ST = 2000 sticks, and 3× 108 updates.

75, and the convergence time varies. For the unconverged simulations, better adaptation

corresponds to final sticks held counts that are closer to the ideal value of 75.

The dependence on the averaging time τforget is relatively weak. None of the simula-

tions using this algorithm converged (within the iteration limit), due to the values for ∆

and τlearn. However, the final state approaches 75 as τforget is reduced by a factor of 10,

and moves further away as τforget is increased. Increase in the frequency of WTP changes

(decreased τlearn) leads to marginal improvement. A 10-fold increase in the Monte-Carlo

step size ∆ improves the adaptation performance to the point where the system converges

within the 107 iteration cutoff. Further increase of the step size leads to additional im-

provement in the convergence time. However, the configurations reached in this manner

are increasingly incoherent, with a very wide WTP distribution.
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iterations (bottom) versus τforget, τlearn, and MC step size ∆, in the individual adaptive

algorithm (blue) and with swapping (red). Each point represents 5-20 simulations with

N = 150 robots and ST = 2000 sticks.
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9.4.3 Swapping algorithm

The introduction of swapping leads to dramatically improved convergence, over all param-

eter values investigated. It is remarkable that WTP swapping, performed at a frequency

corresponding to one swap per every 100 individual WTP changes, improves convergence

this much. The parameter sensitivity results for this algorithm are also plotted in Figure

9.4. The effect of parameter changes is qualitatively similar in the two algorithms. The

swapping result converges for all but the highest values of the averaging time τforget. The

performance of the algorithm deteriorates as this parameter is increased, and convergence

is lost as τforget goes from 0.1 to 1.0. Increased τlearn also reduces the performance of the

swapping algorithm.

The first algorithm was the most sensitive to the Monte-Carlo step size ∆. Increased

∆ improved the convergence of both algorithms, and their performance became similar as

∆ ≈ 1. A value of ∆ = 1 means that the random change of a WTP is comparable to the

value of the WTP. With such large variation steps, the newly selected parameters have

little to do with the previous ones. In this limit, the algorithm tends to become purely

random selection of parameters rather than a search process (on the level of individual

agents).

Swapping dramatically limits the expansion of the WTP distribution, as shown in

Figures 9.5 and 9.6. For most parameter values (except very high ∆) the simulations

resulted in bounded, unimodal distributions with a spread of little more than one order of

magnitude, much less than in the individual adaptation case (compare Fig.9.6 and 9.3).

In the longer term, some of the simulations exhibit transitions to bimodal distributions.

The bimodal distributions we observed had narrow modes, with maxima separated by 1-2

orders of magnitude. While the bimodal distributions extended over almost three orders

of magnitude, they remained bounded, and the system eventually transitioned back to

the unimodal regime.
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Figure 9.5: Evolution of the distribution of waiting time parameters (left) and the number

of free robots (right) for an adaptive simulation with swapping (expected = based on the

current configuration of WTPs). Note the different time scale of convergence compared

to the non-swapping simulation shown in Figure 9.3; the two simulations have the same

adaptation parameters. Based on a single simulation with N = 150 robots, ST = 2000

sticks, and 107 update steps.
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9.4.4 Waiting time parameter distributions

From a design and analysis perspective, configurations with one, two or a small number

of distinct waiting time parameters seem more straightforward. By contrast, both adap-

tation algorithms result in configurations that can only be characterized by a continuous

distribution of waiting time parameters, rather than one or a few distinct WTPs shared

by groups of agents.

The evolution of the log(τ) in the individual adaptation algorithm (Figure 9.3) is

similar to pure diffusion, consistent with a random walk. This makes sense because each

individual WTP change is a small variation taken from a distribution that is symmetric

in terms of log(τ). This random walk is influenced through the satisfaction function

and is practically confined to globally optimal configurations. The global optimality

condition (9.13) corresponds to a single constraint on the N waiting time parameters. If

the individual log(τ) are allowed to increase or decrease indefinitely, most agents will have

waiting times that are either much larger or much smaller than the ideal value. In this case,

the 1/(ξi +σ) terms in Eq.(9.13) would approach 1/σ and 0, respectively. The optimality

condition for a configuration with Nhigh agents with very high WTP (τi >> 1 → ξi << 1

) and the rest with very small WTP is simply

Nhigh

N
=

σ

2σ − 1
=

S

2S −N
. (9.14)

This simple constraint on the values of the WTPs of the agents in the high and low groups

ensures optimality for the late WTP configurations obtained in the individual adaptation

algorithm. We will call these divergent-optimal or DO configurations. Presumably, these

could also be obtained more easily, by a simple random search on the level of individual

agents. A DO configuration can be interpreted as an example of specialization (castes

with τ = {0,∞}).

9.5 Summary and Conclusions

We have expanded our analysis[57] of the stick-pulling problem and established that

each WTP configuration corresponds to a unique equilibrium pulling rate which can be
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Figure 9.6: Evolution of the distribution of waiting time parameters during a long sim-

ulation with swapping. Based on a single simulation with N = 150 robots, ST = 2000

sticks, and 108 update steps.

estimated analytically. We showed that there is a maximum possible or optimal pulling

rate for a given number of sticks and robots (9.9). The optimality requirement can be

formulated as a single algebraic condition (9.13) for the N parameters.

We designed and implemented two adaptive optimization strategies and showed that

both converge to optimal configurations. The individual adaptation algorithm relies ex-

clusively on the agents’ own record of their performance, in the form of a satisfaction

function. Robots change their WTP based on this function (low satisfaction → higher

change rate). Each change is a Monte-Carlo step in a random direction. The evolution of

the WTP distribution in this algorithm is consistent with diffusion. The distribution of

log(τ) approaches a normal whose witdh increases indefinitely, while maintaining optimal

performance. The long-term limit for this type of distribution, called divergent-optimal

(DO), has WTPs that approach either zero or infinity. Optimality can be ensured by

the appropriate ratio between the two groups (9.14). DO configurations can be regard-

ed as extreme examples of emerging specialization. The τ → ∞ species specializes in

discovering and holding sticks, and the τ → 0 specializes in assisting stick holders.
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In the swapping algorithm we supplement individual adaptation with a mechanism

that assigns the WTP of well performing agents to under-performing ones. While requiring

a limited amount of global communication, this algorithm leads to dramatic improvement

of the rate of convergence. It also limits the width of the WTP distributions. Increased

Monte-Carlo step size in the swapping algorithm leads to faster converence but eventually

results in the emergence of DO configurations.

Emergence of specialization can also be observed in the swapping algorithm, where

long-term simulations fluctuate between bounded uni- and bimodal distributions with

narrow modes. The bounded bimodal configurations are closer to the idea of specialized

groups, each with a narrowly defined set of features (similar to biological phenotypes).

In summary, our results provide two mechanisms by which specialized groups of a-

gents can emerge from an agent-based adaptation strategy. The more easily obtained

DO configurations may not be satisfactory for a given application. Further refinements

are necessary to stabilize the bounded bimodal configurations. This will require more so-

phisticated measures of performance, which can enforce our preference for one or another

type of WTP distribution. We gave two possible examples of such measures that may

be implemented in future applications. Finally, future work in this direction should also

integrate results from machine learning and information theory.
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