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Spanning Eulerian subgraphs and Catlin’s

reduced graphs

Wei-Guo Chen∗, Zhi-Hong Chen†

Abstract

A graph G is collapsible if for every even subset R ⊆ V (G), there
is a spanning connected subgraph HR of G whose set of odd degree
vertices is R. A graph is reduced if it has no nontrivial collapsible
subgraphs. Catlin [4] showed that the existence of spanning Eulerian
subgraphs in a graph G can be determined by the reduced graph
obtained from G by contracting all the collapsible subgraphs of G.
In this paper, we present a result on 3-edge-connected reduced graphs
of small orders. Then, we prove that a 3-edge-connected graph G of
order n either has a spanning Eulerian subgraph or can be contracted
to the Petersen graph if G satisfies one of the following:

(i) d(u) + d(v) > 2(n/15 − 1) for any uv 6∈ E(G) and n is large;
(ii) the size of a maximum matching in G is at most 6;
(iii) the independence number of G is at most 5.

These are improvements of prior results in [16], [18], [24] and [25].

1. Introduction
We shall use the notation of Bondy and Murty [3], except when other-

wise stated. Graphs considered in this paper are finite and loopless, but
multiple edges are allowed. The graph of order 2 and size 2 is called a 2-
cycle and denoted by C2. For a graph G, κ′(G) and dG(v) (or d(v)) denote
the edge-connectivity of G and the degree of a vertex v in G, respectively.
The set of vertices of degree i in G is denoted by Di(G). The maximum
cardinality of an independent set of vertices in G is denoted by α(G). The
size of a maximum matching in G is denoted by α′(G). Let O(G) be the
set of vertices of odd degree in G. A connected graph G is Eulerian if
O(G) = ∅. An Eulerian subgraph H in G is a spanning Eulerian subgraph
if V (H) = V (G). A graph is supereulerian if it has a spanning Eulerian sub-
graph. A graph G is collapsible if for any even subset R ⊆ V (G) or R = ∅,

∗Email: 0815.chen@gmail.com, Guangdong Information Center, Guangzhou, China
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G has a spanning connected subgraph HR with O(HR) = R. Examples of
collapsible graphs include Kn and Kn,n − e (n ≥ 3).

Throughout this paper, we use P for the Petersen graph and use P14

and P16 for the graphs defined in Figure 1.1. P , P14 and P16 are 3-edge-
connected non-supereulerian graphs.
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Figure 1.1

For X ⊆ E(G), the contraction G/X is the graph obtained from G by
identifying the two ends of each edge e ∈ X and deleting the resulting
loops. If H is a subgraph of G, then we write G/H for G/E(H). If H
is connected, then we use vH denote the vertex in G/H to which H is
contracted and vH is called the contraction image of H . Thus, we regard
V (G/H) = (V (G) − V (H)) ∪ {vH} and E(G/H) = E(G) − E(H).

Catlin’s reduction method: In the study of graphs with spanning Eule-
rian subgraphs and other related graph theory problems such as Hamilto-
nian line graph and double cycle cover problems [7, 8, 9], Catlin [4] devel-
oped a reduction technique by contracting collapsible subgraphs. Catlin [4]
showed that every graph G has a unique collection of pairwise disjoint max-
imal collapsible subgraphs H1, H2, · · ·, Hc such that V (G) = ∪c

i=1V (Hi).
The reduction of G is a graph obtained from G by contracting each Hi into
a single vertex vi (1 ≤ i ≤ c) and is denoted by G′. For a vertex v ∈ V (G′),
there is a unique maximal collapsible subgraph H(v) in G such that v is the
contraction image of H(v) and H(v) is the preimage of v. We regard K1

as a collapsible and supereulerian graph, and having κ′(K1) = ∞. A vertex
v ∈ V (G′) is trivial if v is the contraction image of K1. A graph is called
Catlin’s reduced or reduced if G = G′. We use CL and SL to denote the
families of collapsible graphs and supereulerian graphs, respectively. Thus,
CL ⊂ SL. By the definition of contraction, κ′(G′) ≥ κ′(G).

Theorem A below shows the importance of Catlin’s reduction method.
Theorem A (Catlin [4]). Let G be a connected graph. Let G′ be the
reduction of G. Let H be a collapsible subgraph of G. Then each of the
following holds:

(a) G ∈ CL if and only if G/H ∈ CL. Thus, G ∈ CL if and only if G′ = K1.

(b) G ∈ SL if and only if G/H ∈ SL. Thus, G ∈ SL if and only if G′ ∈ SL.
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Knowing the structures of reduced graphs of small orders is very impor-
tant when using the reduction method. The following theorem has been
used by many:
Theorem B (Chen and Lai [14, 18]). Let G be a connected graph with at
most 11 vertices and δ(G) ≥ 3. Then either G ∈ CL or G′ ∈ {K2, P }.

Catlin had a conjecture on reduced graph of order at most 17.
Conjecture 1 (Catlin [9]). Any 3-edge-connected simple graph of order at
most 17 is either supereulerian or is contractible to the Petersen graph.

Several conjectures (see [12, 9, 22]) are extended from Conjecture 1.
In this paper, we prove the following theorem, a progress toward solving
Conjecture 1.
Theorem 1.1. Let G be a 3-edge-connected graph with at most 15 vertices.
Let G′ be the reduction of G. Then each of the following holds:

(a) if |V (G)| ≤ 13, then either G ∈ SL or G′ = P ;

(b) if |V (G)| ≤ 14, then either G ∈ SL or G′ ∈ {P, P14};

(c) if |V (G)| = 15, G 6∈ SL and G′ 6∈ {P, P14}, then G = G′ and G is a 2-
connected and essentially 4-edge-connected reduced graph with girth
at least 5 and V (G) = D3(G)∪D4(G) where D4(G) is an independent
set and |D4(G)| = 3.

Results like Theorem 1.1 play an important role in Catlin’s reduction
method, since using Catlin’s reduction method, many problems related to
the existence of spanning Eulerian subgraphs can be reduced to the same
or similar problems of graphs with very few vertices. Using Theorem 1.1,
we obtain the best possible conditions on α′(G) and α(G) for a graph G to
be supereulerian. The α′(G) case is better than a conjecture in [25].

Theorem 1.2. Let G be a 3-edge-connected simple graph. Let G′ be the
reduction of G. Then each of the following holds:

(a) if α′(G) ≤ 6, then either G ∈ SL or G′ = P ;

(b) if α(G) ≤ 5, then either G ∈ SL or G′ = P .

Next, we prove the following:
Theorem 1.3. Let G be a 3-edge-connected graph of order n and with
girth g, where g ∈ {3, 4}. If n is large enough and

d(u) + d(v) >
2

g − 2

( n

15
− 4 + g

)

for any uv 6∈ E(G) (1)

then either G ∈ SL or G′ ∈ {P, P14}. Thus, either G ∈ SL or G can be
contracted to P .
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2. Prior results and π-reduction method

For a graph G, we use F (G) for the minimum number of extra edges
that must be added to G to obtain a spanning supergraph having two
edge-disjoint spanning trees.

A number of results on reduced graphs are summarized in the following.
Theorem C. Let G be a connected reduced graph. Then each of the
following holds:

(a) (Catlin [4]). G is K3-free with δ(G) ≤ 3 and any subgraph H of G is
reduced. Furthermore, |E(H)| ≤ 2|V (H)| − 4 unless H ∈ {K1, K2};

(b) (Catlin [5]). F (G) = 2|V (G)| − |E(G)| − 2;

(c) (Catlin et al. [11]). If F (G) ≤ 2, then G ∈ {K1, K2, K2,t(t ≥ 1)}.

(d) (Chen and Lai [19]). If δ(G) ≥ 3, then α′(G) ≥ (|V (G)|+ 4)/3.

(e) (Chen [16]). If α(G) ≥ 4, then δ(G)α(G)+4
2 ≤ |V (G)| ≤ 4α(G) − 5.

Let G be a graph containing an induced 4-cycle uvzwu and let E =
{uv, vz, zw, wu}. Denote by G/π the graph obtained from G − E by iden-
tifying u and z to form a vertex x, and by identifying v and w to form a
vertex y, and by adding an edge eπ = xy. The way to obtain G/π from G
is called π-reduction method [5].

Figure 2.1
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Define Θ as a graph shown in Figure 2.1.
Theorem D (Catlin [5]). Let G be a connected graph and let G/π be the
graph defined above, then each of the following holds:

(a) If G/π ∈ CL, then G ∈ CL;
(b) If G/π ∈ SL then G ∈ SL;
(c) If G is K3-free and G/π contains Θ as subgraph, then G has K3,3−e

as a collapsible subgraph.

Notation: Let s1,2, s2,3, s3,1, m, l and t be natural numbers with t ≥ 2
and m, l ≥ 1. Let Φa

∼= K1,3 with center a and ends a1, a2, a3. Define
K1,3(s1,2, s2,3, s3,1) to be the graph obtained from Φa by adding si,j vertices
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with neighbors {ai, aj} (1 ≤ i 6= j ≤ 3). Note that K1,3(1, 1, 1) is the 3-
cube minus a vertex. For graphs K′

2,t, S(m, l), J(m, l), and J ′(m, l), see
the Figure 2.2 below. They are reduced graphs.
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Figure 2.2

Let F = {K1, K2,t, K′
2,t, K1,3(s, s

′, s′′), S(m, l), J(m, j), J ′(m, l), P }.

Some prior results on reduced graphs of small orders are given in the
following theorem:
Theorem E. Let G be a simple connected graph of order n.

(a) (Chen [14]). If n ≤ 7, κ′(G) ≥ 2, and |D2(G)| ≤ 2, then G ∈ CL.

(b) (Catlin [10]). If n ≤ 8, κ′(G) ≥ 2 and |D2(G)| ≤ 1. Then G ∈ CL.

(c) (Chen and Lai [18]). If G is reduced with n ≤ 11 and F (G) ≤ 3 then
either G ∈ F or G is a tree with at most 3 edges.

The following corollary will be needed:
Corollary 2.1. Let G be a connected simple graph of order n with δ(G) ≥
2. Let G′ be the reduction of G.

(a) If n ≤ 6 and δ(G) ≥ 2 and |D2(G)| ≤ 2, then G ∈ CL.

(b) If n ≤ 7, δ(G) ≥ 2 and |D2(G)| ≤ 2, then G′ ∈ {K1, K2}.

(c) If G 6= K1 is reduced, n ≤ 7, κ′(G) ≥ 2 and |D2(G)| = 3, then
G ∈ {K2,3, K1,3(1, 1, 1), J ′(1, 1)}.

(d) If n ≤ 9, δ(G) ≥ 2 and |D2(G)| ≤ 1, then G′ ∈ {K1, K2, K1,2}.

(e) If n ≤ 9, κ′(G) ≥ 2 and |D2(G)| ≤ 2, then G′ ∈ {K1, K2,3}. Further-
more, if G is K3-free, G ∈ CL.
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Proof. For (a) and (b), if κ′(G) ≥ 2, then by Theorem E(a), G ∈ CL. We
may assume that κ′(G) = 1. Let e be an edge-cut of G. Let G1 and G2 be
the two components of G − e and |V (G1| ≤ |V (G2)|. Since δ(G) ≥ 2 with
|D2(G)| ≤ 2, |V (G1)| ≥ 3.

If n = 6, then |V (G1)| = |V (G2)| = 3. But then |D2(G)| > 2, a
contradiction. Thus, (a) holds.

If n = 7, then |V (G1)| = 3 and |V (G2)| = 4. Since |D2(G)| ≤ 2,
G1 = K3 and G2 = K4. Then G′ = (G/K3)/K4 = K2. Thus, (b) holds.

To prove (c), (d) and (e), we prove the following claim first:
Claim 1. If G is reduced and n + |D2(G)| ≤ 11, then F (G) ≤ 3.

Counting the edges in G we have

|E(G)| =
Σv∈V (G)d(v)

2
≥

2|D2(G)|+ 3(n − |D2(G)|)

2
=

3n − |D2(G)|

2
. (2)

By Theorem C(b), (2), n + |D2(G)| ≤ 11,

F (G) = 2|V (G)| − |E(G)| − 2 ≤ 2n −
3n − |D2(G)|

2
− 2 ≤

7

2
.

Since F (G) is an integer, F (G) ≤ 3. Claim 1 is proved.
For (c), since G is reduced with n ≤ 7 and |D2(G)| = 3, n + |D2(G)| ≤

10. By Claim 1, F (G) ≤ 3. By Theorem E(c) and G is not a tree since
δ(G) ≥ 2, G ∈ F . Except for the graphs in {K2,3, K1,3(1, 1, 1), J ′(1, 1)},
other graphs G in F either have |V (G)| > 7, or |D2(G)| 6= 3 or κ′(G) < 2.
Corollary 2.1(c) is proved.

For (d) and (e), we only need to consider 8 ≤ n ≤ 9.
If G is reduced, then since |D2(G)| ≤ 2, n + |D2(G)| ≤ 11. By Claim 1,

F (G) ≤ 3. By Theorem E(c) and G is not a tree, G ∈ F . However, each
graph in F has at least three vertices of degree 2, contrary to the fact that
|D2(G)| ≤ 2. Thus, G cannot be reduced.

Let H be a nontrivial maximal collapsible subgraph of G. Let vH be the
contraction image of H in G/H . Then |V (H)| ≥ 3 and so |V (G/H)| ≤ 7.
If V (H) ∩ D2(G) 6= ∅, then |D2(G/H)| ≤ |D2(G)| ≤ 2. By (b) proved
above, (G/H)′ ∈ {K1, K2} and so G′ ∈ {K1, K2}. Thus, (d) is proved for
this case. For (e), since κ′(G) ≥ 2, G′ 6= K2. Thus, G′ = K1. (e) is proved
for this case too.

In the following, we assume that V (H) ∩ D2(G) = ∅.
Case 1. |D2(G)| ≤ 1 and δ(G) ≥ 2 as stated in (d).

If dG/H(vH) ≥ 2, then since |D2(G)| ≤ 1, |D2(G/H)| ≤ 2. Then
since |V (G/H)| ≤ 7 with |D2(G/H)| ≤ 2, by (a) and (b) above, either
G/H ∈ CL and so by Theorem A G ∈ CL, or the reduction of G/H = K2,
and so G′ = K2. Hence, (d) is proved for this case.
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If dG/H(vH) = 1, let e = uvH be the edge incident with vH , which is an
edge-cut of G. Let G1 be the component of G− e containing u. Then H is
the other component of G − e. Since V (H) ∩ D2(G) = ∅, |V (H)| ≥ 4.

If d(u) > 2, then |V (G1)| ≤ 5 with δ(G1) ≥ 2 and |D2(G1)| ≤ 2, and so
by (a), G1 ∈ CL. Thus G′ = G/(H ∪ G1) = K2.

If d(u) = 2, then dG1(u) = 1. Since |D2(G)| = {u}, dG1(v) ≥ 3 for
v ∈ V (G1)−{u}. Let H1 = G1 − u. Then |V (H1)| ≤ 4 with |D2(H1)| = 1.
By (a) again, H1 ∈ CL, thus G/(H∪H1) = K1,2. Corollary 2.1(d) is proved.

Case 2. |D2(G)| ≤ 2 and κ′(G) ≥ 2 as stated in (e).
We only need to consider the case that |D2(G)| = 2. Let G0 = G/H .

Then |V (G0)| ≤ 7 and |D2(G0)| ≤ 3. If |D2(G0)| ≤ 2, then by (b) proved
above, G′

0 ∈ {K1, K2}. Since κ′(G0) ≥ κ′(G) ≥ 2, G′
0 6= K2. Thus,

G′
0 = K1 and so G′ = K1. We are done in this case.

If |D2(G0)| = 3, then dG0(v0) = 2. Therefore, there are only two edges
from G − E(H) adjacent to vertices in V (H). Since V (H) ∩ D2(G) = ∅,
|V (H)| ≥ 4, and so |V (G0)| = |V (G/H)| ≤ 6.

If G0 is reduced, then since |D2(G0)| = 3, κ′(G0) ≥ 2 and |V (G0)| ≤ 6,
by (c) above, G0 = K2,3 and so G′ = G0 = K2,3. (e) is proved for this case.

If G0 is not reduced, let H1 be a nontrivial maximal collapsible subgraph
of G0. Let G2 = G0/H1 and let v1 be the contraction image of H1. Since
|V (G0)| ≤ 7, |V (G2)| ≤ 4 if dG2(v1) ≥ 3; or |V (G2)| ≤ 3 if dG2(v1) = 2.
Then G2 is collapsible. Thus, G′ = G′

1 = K1. Thus, G′ ∈ {K1, K2,3}.
If G is K3-free, then any non-trivial collapsible subgraph H of G has

order at least 6. Thus, |V (G/H)| ≤ 4 which implies that G′ 6= K2,3 and so
G ∈ CL. Corollary 2.1(e) holds.

This completes the proof of Corollary 2.1. 2.

Lemma 2.2. Let G be a simple and K3-free connected graph of order n
where n ≤ 15 and |D2(G)| ≤ 2. Let H0 = uvzwu be a induced 4-cycle in
G. Let G/π be the graph obtained from G as defined by the π-reduction
method. Then each of the following holds.

(a) If G/π = P , then G ∈ SL.

(b) If κ′(G) ≥ 2, κ′(G/π) = 1 and |D2(G)| ≤ 1, then G is not reduced.

Proof. (a) Since G/π = P is a 3-regular graph of order 10, by the definition
of G/π, |V (G)| = 12 and D2(G) ⊆ V (H0). Then G is one of the graphs
in Figure 2.3 (up to isomorphic). As we can see Ga has a hamiltonian
cycle v1v2zvv5v3v7v6wuv4v8v1; Gb (and Gc) has a spanning closed trail:
v1v6v7v4uvzwuv2v3v5v8v1. Thus, G ∈ SL.
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Figure 2.3

(b) Since κ′(G) ≥ 2, eπ must be an edge-cut of κ′(G/π). Since |D2(G)| ≤ 1,
G − E(H0) has two non-trivial components, say G1 and G2, where u, z ∈
V (G1) and v, w ∈ V (G2) with 1 < |V (G1)| ≤ |V (G2)|. Since |V (G)| ≤ 15,
|V (G1)| ≤ 7. Since |D2(G)| ≤ 1 and κ′(G) ≥ 2, G1 has a 2-edge-connected
subgraph H1 with |D2(H1)| ≤ 2. By Theorem E(a), H1 ∈ CL, and so G is
not reduced. 2

Corollary 2.3. Let G be a simple graph of order n with κ′(G) ≥ 2.

(a) If n ≤ 10 and |D2(G)| ≤ 1, then either G ∈ CL or G = P ;

(b) If n = 12, |D2(G)| = 1 and G is essentially 3-edge-connected, then
either G ∈ SL or G has a maximal collapsible subgraph K3 such that
G′ = G/K3 = P .

Proof. (a) By Corollary 2.1(d), we only need to consider |V (G)| = 10. If
|D2(G)| = 0, then by κ′(G) ≥ 2, Corollary 2.2 follows from Theorem B.

Next, we assume |D2(G)| = 1. Let v be the only vertex in D2(G).
Case 1. G contains a K3. Let H be a maximal collapsible graph con-
taining a K3. Then G/H is simple with κ′(G/H) ≥ 2. If H = K3, then
|V (G/H)| ≤ 8 and |D2(G/H)| ≤ 1, and so by Theorem E(b), G/H ∈ CL.
Thus G ∈ CL. If H 6= K3, then |V (G/H)| ≤ 7 and |D2(G/H)| ≤ 2 and so
by Theorem E(a) and by κ′(G/H) ≥ 2, G/H ∈ CL. Hence G ∈ CL.

Case 2. G is K3-free. Let G1 = G − v. Since |D2(G)| ≤ 1, |D2(G1)| ≤ 2.
Hence |V (G1)| ≤ 9 and |D2(G1)| ≤ 2. If κ′(G1) ≥ 2, then by Corollary
2.1(e), G1 and then G are in CL. Thus, we may assume that κ′(G1) = 1.

Suppose that G1 has a cut-edge e′. Let G′
1 and G′′

1 be the two compo-
nents of G1 − e′. By |D2(G)| ≤ 1, each of G′

1 and G′′
1 contains at least 3

vertices and so each satisfies the hypothesis of Corollary 2.1(a). Thus both
G′

1 and G′′
2 are in CL and so (G/G′

1)/(G′′
1) = K3. Hence G ∈ CL.

(b) Suppose that G 6∈ SL and so G′ 6= K1. Let D2(G) = {v}.
Case 1. G has a K3 subgraph. Let H be a maximum collapsible subgraph
containing a K3. Let vH be the contraction image of H in G/H .



9

If H = K3 then dG/H(vH) ≥ 2 if v ∈ V (H); otherwise, dG/H(vH) ≥ 3.
Thus, |V (G/H)| = 10 and |D2(G/H)| ≤ 1. Since G′ = (G/H)′ 6= K1, by
(a) above, G/H = G/K3 = P .

If H 6= K3, then |V (H)| ≥ 4, and so |V (G/H)| ≤ 9 and |D2(G/H)| ≤ 2.
By Corollary 2.1(e) and G′ 6= K1, G′ = (G/H)′ = K2,3. Since |D2(G)| =
1, at least two vertices of degree 2 in G′ are contractions of nontrivial
collapsible subgraphs of G. Thus, G has an essential edge-cut of size 2,
contrary to the fact that G is essentially 3-edge-connected.

Case 2. G is K3-free but has a 4-cycle H0. Let G/π be the graph defined
by the π-reduction method. Then |V (G/π)| = 10 and |D2(G/π)| ≤ 1.

If κ′(G/π) ≥ 2, then by (a) above, either G/π ∈ CL or G/π = P . By
Theorem D or by Lemma 2.2(a), G ∈ SL, a contradiction.

If κ′(G/π) = 1, then since |D2(G/π)| ≤ 1, by Lemma 2.2(b), G is not
reduced. Let H be a nontrivial maximal collapsible subgraph of G. Since
G is K3-free, |V (H)| ≥ 6. Thus, |V (G/H)| ≤ 7 with |D2(G/H)| ≤ 2 and
κ′(G/H) ≥ κ′(G) ≥ 2. By Theorem E(a), G/H ∈ CL, a contradiction.

Case 3. G has no 3- and 4-cycles. Since |D2(G)| = 1 and G cannot have
11 vertices of degree 3, ∆(G) ≥ 4. Let z be a vertex of degree ∆(G). Let
N(z) = {y1, y2, y3, y4, · · ·}. Since G has no 3- or 4-cycles, (N(yi) − z) ∩
(N(yj) − z) = ∅ for any i 6= j and 1 ≤ i, j ≤ 4. Since |D2(G)| = 1, at least
3 of N(yi)− z has at least 2 vertices. We may assume that |N(y1)− z| ≥ 1
and |N(yi) − z| ≥ 2 for i = 2, 3, or 4. Let S = ∪4

i=1(N(yi) − z). Then
|S| ≥ 7. Since {z} ∪ N(z) ∪ S ⊆ V (G), 12 = |V (G)| ≥ 1 + 4 + 7 = 12.
Thus, ∆(G) = 4, |S| = 7 and G has only one vertex of degree 4 which is
adjacent to the vertex in D2(G), which is y1. Furthermore, every vertex in
S has degree 3. Let GS = G[S]. Then dGS(v) ≥ 2 for any v ∈ S. Since G
has no 3- and 4-cycles, GS = C7. Thus, G must be isomorphic to the graph
in Figure 2.4, which has a hamiltonian cycle: zy1s1s2y2s5s4s3y3s6s7y4z,
contrary to the fact that G 6∈ SL. 2

rz �
��

y1

��
y2

HH
y3

\
\\

y4

r

r���
((((((
r

r

���

r

r

rs2

s3

s4

r
s1

r

r

rs7

s6

s5

Figure 2.4

Define ST as the set of graphs H with the property that δ(H) = 2 and
for any two vertices u, v ∈ D2(H), H has a spanning (u, v)-trail. Note that
{K2,3, K1,3(1, 1, 1), J ′(1, 1)} ⊂ ST .
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Lemma 2.4. Let H ∈ ST . Let G1 be a supereulerian graph with a vertex
v of degree 2 or 3. Let G be a graph obtained from G1 by replacing the
vertex v by H with the edges incident with v joining different vertices in
D2(H). Then G ∈ SL.
Proof. Since G1 ∈ SL, G1 has a spanning closed trail T : ve1v1 · · · vkekv
with e1 and ek incident with v in G1. Since each edge incident with v in G1

is incident with a vertex in D2(H) in G, let x1 and x2 be the two vertices
in D2(H) incident with e1 and ek, respectively. Since H has a spanning
(x1, x2)-trail, let TH be a spanning (x1, x2)-trail in H . Therefore, G[T ∪TH ]
is a spanning closed trail in G. 2

To avoid long and complicated case by case arguments, we will use the
computer search results obtained by David Pike in [23]. David Pike [23]
found all the Non-Hamiltonian Cubic 2-edge-connected graphs of order up
to 16: 1 graph of order 10 (the Petersen graph), 1 graph of order 12 (which
contains a K3), 6 graphs of order 14 (only P14 is K3-free), and 33 graphs of
order 16. The completed list of those graphs can be found in [23]. We are
only interested in reduced cubic 2-edge-connected graphs. After excluded
non-reduced graphs from the list, we have the following:
Theorem F (Pike [23]). If G is a cubic 2-edge-connected Non-Hamiltonian
reduced graph of order at most 16, then G can be contracted to the Pe-
tersen graph. Further more,

(a) If G is not the Petersen graph, G has girth 4;
(b) If |V (G)| ≤ 12, then G is the Petersen graph;
(c) If |V (G)| = 14, then G is the graph P14.

3. Applications of Theorem 1.1
It was proved in [16] that if G is a 3-edge-connected simple graph with

α(G) ≤ 4, then either G ∈ SL or G′ = P . We show that this is still true for
α(G) ≤ 5. For maximum edge independence number α′(G), it was proved
in [18] that for a 3-edge-connected simple graph G with α′(G) ≤ 5, either
G ∈ SL or G′ = P . Not knowing this result, Yan in [25] posted it as a
conjecture. Theorem 1.2 is an improvement of these results.

Proof of Theorem 1.2. (a) By Theorem C(d), a connected reduced graph
of order n with δ(G) ≥ 3 has α′(G) ≥ (n + 4)/3. Thus, (n + 4)/3 ≤ 6,
and so n ≤ 14. By Theorem 1.1, either G ∈ SL or G′ ∈ {P, P14}. But
α′(P14) = 7. Theorem 1.2(a) is proved.

(b) By way of contradiction, suppose that G 6∈ SL and G′ 6= P . By Theorem
C(e) and α(G) ≤ 5, |V (G)| ≤ 4α(G) − 5 ≤ 15. Then by Theorem 1.1,
|V (G)| = 14 or 15. If |V (G)| = 14, then G = P14 and so α(G) = α(P14) = 6,
a contradiction.
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If |V (G)| = 15, then by Theorem 1.1, G has girth at least 5 and D4(G)
is an independent set with |D4(G)| = 3. Let v ∈ D4(G). Let NG(v) =
{x1, x2, x3, x4}. Since D4(G) is independent, D4(G) ∩ NG(v) = ∅, and
so d(xi) = 3 (1 ≤ i ≤ 4). Let NG(xi) − {v} = {y1

i , y2
i }. Since G has

girth at least 5, (NG(xi) − {x}) ∩ (NG(xj) − {v}) = ∅ (i 6= j). Let S =
{y1

1 , y
2
1 , y

1
2 , y

2
2, y

1
3 , y

2
3 , y

1
4 , y

2
4}. Since |V (G)| = 15, there are two vertices in

V (G) − (S ∪ NG(v) ∪ {v}). Let V (G) − (S ∪ NG(v) ∪ {v}) = {z1, z2}.
If {z1, z2} ⊂ D4(G), then z1z2 6∈ E(G), and so {z1, z2, x1, x2, x3, x4} is an
independent set in G, a contradiction. Thus, at least one of {z1, z2} (say z1)
has degree 3. Then there is a vertex in {x1, x2, x3, x4} (say x1) such that z1

is not adjacent to any vertices in NG(x1). Therefore, {z1, y
1
1, y

2
1 , x2, x3, x4}

is an independent set in G, contrary to α(G) ≤ 5. 2.

The following theorem was proved by Catlin [6] and Chen [15]:
Theorem G (Chen [15]). Let p ≥ 2 be an integer. Let G be a 2-edge-
connected simple graph of order n with girth g, where g ∈ {3, 4}. Let G′

be the reduction of G. If n ≥ 4(g − 2)p2 and

d(u) + d(v) >
2

g − 2

(
n

p
− 4 + g

)

for any uv 6∈ E(G), (3)

then either G ∈ CL, or G′ 6= K1 is a graph of order less than p. In particular,
either G ∈ SL or G′ 6∈ SL with order less than p.

The Dirac degree condition below implies the degree-sum condition (3).

δ(G) >
1

g − 2

(
n

p
− 4 + g

)

. (4)

The case p = 5 in (4) was conjecture by Bauer [1], of which the case
g = 3 was proved by Catlin [4], and the case g = 4 was proved by Lai [20].

The case p = 2 with g = 3 in (3) was proved by Lesniak-Foster and
Williamson [21]. The case p = 5 with g = 3 in (3) was proved by Catlin
[6], which was conjectured by Benhocine et al. [2].

For 3-edge-connected graphs, Chen [14] proved the case p = 10 with
g = 3 in (4), Catlin [6] proved the case p = 10 with g = 3 in (3), and Chen
[15] proved the case p = 11 in (3). Li et al [22] proved the following:
Theorem H (Li et al. [22]). Let G be a 3-edge-connected graph of order
n. Then each of the following holds:

(a) If δ(G) ≥ n−13
12 and n ≥ 61, then either G ∈ SL or G′ = P .

(b) If G is K3-free, δ(G) ≥ n−25
24 and n ≥ 97, then either G ∈ SL or

G′ = P .

Theorem 1.3 is an improvement of Theorem H.
Proof of Theorem 1.3. Theorem 1.3 is the case p = 15 in Theorem G.
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Let G′ be the reduction of G. Suppose that G is not collapsible and so
G′ 6= K1. Since κ′(G′) ≥ κ′(G) ≥ 3, by Theorem G, |V (G′)| < 15. By
Theorem 1.1, either G ∈ SL or G′ ∈ {P, P14}. Since P14 can be contracted
to the Petersen graph by contracting the K2,3 into a single vertex, either
G ∈ SL or G can be contracted to P . Theorem 1.3 is proved. 2.

Corollary 3.3. Let G be a 3-edge-connected graph of order n. Then when
n is large, each of the following holds:

(a) If δ(G) > n
15 − 1, then either G ∈ SL or G′ ∈ {P, P14}.

(b) If G is K3-free and δ(G) > n
30 , then either G ∈ SL or G′ ∈ {P, P14}.

Remark: Let G be a graph obtained from P16 by replacing each vertex by a
Kn/16. Then G is a 3-edge-connected graph of order n with δ(G) ≥ n/16−1.
However the reduction of G is P16. Thus, the degree condition in Corollary
3.3 cannot be reduced to δ(G) ≥ n/16− 1. But if we relax the conclusions
of Theorem 1.3 and Corollary 3.3 from ”the reduction of G is in {P, P14}”
to ”G can be contracted to P ”, we have the following conjecture:
Conjecture 2 (Catlin et al [13]). Let G be a 3-edge-connected graph of
order n with girth g ∈ {3, 4}. If d(u) + d(v) > 2

g−2

(
n
18 − 4 + g

)
for any

uv 6∈ E(G) and n is large, then either G ∈ SL or G can be contracted to P .

Let G be a graph obtained from a Blanus̆a snark by replacing each vertex
by a Kn/18 or Kn/36,n/36. Then δ(G) = 2

g−2

(
n
18 − 4 + g

)
. But the reduc-

tion of G is the Blanus̆a snark and cannot be contracted to the Petersen
graph. Thus, the degree condition in Conjecture 2 is the best possible.

4. An Associated Result

Theorem 4.1. Let G be a 3-edge-connected graph with |V (G)| ≤ 15. Let
G′ be the reduction of G. Then one of the following holds:

(a) G ∈ SL or

(b) G′ ∈ {P, P14}, or

(c) G′ is a graph satisfying each of the following:

(i) G′ is 2-connected, 3-edge-connected and essentially 4-edge-connected;

(ii) G′ has girth at least 5;

(iii) D∗
4(G

′) = {v ∈ V (G′) | dG′(v) ≥ 4} is an independent set;

(iv) ∆(G′) ≤ b |V (G′)|−1
3 c.
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Proof. By way of contradiction, suppose that

G is a counterexample to (a) and (b) with |E(G)| minimized. (5)

Since the reduction method preserves the edge-connectivity, by Theorem B
and (5), we may assume that G = G′ and 12 ≤ |V (G)| ≤ 15.
Claim 1. G is 2-connected.

Suppose that G has a vertex cut v. Let H1 and H2 be the two com-
ponents of G − v. Let Gi = G[Hi ∪ v] (i = 1, 2). Since κ′(G) ≥ 3,
Gi is 3-edge-connected. We may assume that |V (G1)| ≤ |V (G2)|. Then
|V (G1)| ≤ (|V (G)| + 1)/2 ≤ 8. Thus, by Theorem B, G1 ∈ CL, contrary to
the fact that G is a reduced graph. Claim 1 is proved.

Claim 2. G is essentially 4-edge-connected.
Suppose that G has an essential edge cut X ⊆ E(G) with |X| = 3. Let

G1 and G2 be the two components of G−X with |V (G1)| ≤ |V (G2)|. Then
|V (G1)| ≤ 7.

Since κ′(G) ≥ 3 and |X| = 3, κ′(G1) ≥ 2. If |D2(G1)| ≤ 2, then
by Theorem E(a), G1 is not reduced, a contradiction. Thus, the three
edges in X must be incident with three different vertices in G1 respectively,
and |D2(G1)| = 3. Since κ′(G1) ≥ 2, |V (G1)| ≤ 7 and |D2(G1)| = 3,
by Corollary 2.1(c), G1 ∈ {K2,3, K1,3(1, 1, 1), J ′(1, 1)}. Therefore, either
|V (G1)| = 5, or |V (G1)| = 7, and so |V (G2)| = |V (G)| − |V (G1)| ≤ 10.

Let G0 = G/G1 with v0 as the contraction image of G1. Then G0 is the
graph obtained from G2 and v0 by joining the edges in X from G2 to v0, and
so |V (G0)| ≤ 11. Since κ′(G) ≥ 3, κ′(G0) ≥ 3. By Theorem B, either G0 ∈
SL or G′

0 = P . If G0 ∈ SL, then since G1 ∈ {K2,3, K1,3(1, 1, 1), J ′(1, 1)} ⊆
ST , by Lemma 2.4, G ∈ SL, a contradiction. If G′

0 = P , then G1 = K2,3

and so G = P14, a contradiction. Claim 2 is proved.

Claim 3. G has no 4-cycle.
By way of contradiction, suppose G has a 4-cycle, say H0 = uvzwu. Let

G/π be the graph defined by the π-reduction method with eπ = xy as the
new edge in G/π. Since κ′(G) ≥ 3 and 12 ≤ |V (G)| ≤ 15, by the definition
of G/π, δ(G/π) ≥ 3, κ′(G/π) ≥ 1 and

10 ≤ |V (G/π)| = |V (G)| − 2 ≤ 13.

Case 1. κ′(G/π) ≥ 3. By (5), since G is a minimum counterexample and
|V (G/π)| < |V (G)|, either G/π ∈ SL or (G/π)′ = P . Since G 6∈ SL, by
Theorem D, G/π 6∈ SL. Thus, the reduction of G/π is P .

Case 1A. |V (G/π)| = 10. Then G/π = P . By Lemma 2.2 G ∈ SL, a
contradiction.
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Case 1B. |V (G/π)| = 11. Then since the reduction of G/π is P , G/π con-
tains a cycle C2 of length 2. Since G is K3-free, the C2 in G/π is formed by
the π-reduction operation on G. By the definition of G/π and κ′(G) ≥ 3,
G must be one of the two graphs in Figure 4.2. Both are supereulerian (Ψ1

has a spanning closed trail x1x2u1uvx5x3x6x8wzu1x4x7x1, and Ψ2 has a
hamiltonian cycle x1x2zvx5x3x6x8u1wux4x7x1), a contradiction again.
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Figure 4.2

Case 1C. |V (G/π)| = 12. Since the reduction of G/π is P , G/π either
contains a K3 or two C2 such that (G/π)/K3 = P or (G/π)/(C2∪C2) = P .

Case 1C(i). (G/π)/K3 = P . If eπ ∈ E(K3), then since G is K3-free
with δ(G) ≥ 3, G is a graph with the structure as shown in Figure 4.3,
which has an essential 3-edge-cut, contrary to the fact that G is essentially
4-edge-connected.
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Figure 4.3
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{e1, e2, e3} is

an essential 3 edge-cut

If eπ 6∈ E(K3), then G/π and G are the graphs as shown in Fig-
ure 4.4 below. Graph G in Figure 4.4 has a hamiltonian cycle: C =
x1x2x3x5x10x9x6x7uvx4x8wzx1, contrary to (5).
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Figure 4.4
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Case 1C(ii). (G/π)/(C2∪C2) = P . Since G is reduced, by Theorem D(c),
G/π has no Θ as a subgraph. The two C2 cycles must be incident with
edge eπ in G/π as shown in Figure 4.5. By the definition of G/π, graph G
is isomorphic to the graph shown in Figure 4.5.

G/π :
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Figure 4.5
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The subgraph H = x1x2x3x8x10wzx4ux5zvx9x7x6x1 is a spanning Eu-
lerian subgraph in G in Figure 4.5, a contradiction.

Case 1D. |V (G/π)| = 13. Since G is reduced, the reduction of G/π is P
and G/π has no Θ as a subgraph, G/π either contains a K3 and a C2 such
that (G/π)/(K3 ∪C2) = P or contains a collapsible subgraph H of order 4
such that (G/π)/H = P .

Case 1D(i). G/π contains a K3 and a C2 such that (G/π)/(K3∪C2) = P .
Since G is reduced, K3 and C2 are generated by the π-reduction on G.

Since δ(G) ≥ 3 and P is 3-regular, G/π has one of the two configurations
shown in Figure 4.6. Thus, G is one of the graphs Ga and Gb in Figure 4.6.
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Figure 4.6

Ga has a spanning closed trail: x11x1x2x3x9x10x6x7x8x11uvx4x5vzx11;
and Gb has a hammiltonian cycle: x11x8x9x3x2x7x6x10x1uvx4x5wzx11.
Thus, G ∈ {Ga, Gb} ⊂ SL, a contradiction. Case 1D(i) is proved.

Case 1D(ii). G/π contains a collapsible subgraph H of order 4 such that
(G/π)/H = P .

Let v0 be the contraction image of H in P . There are exactly three edges
incident with H . By Claim 2 above, G is essentially 4-edge-connected and
so eπ 6∈ E(H) and eπ is an edge in E(P ) incident with v0. Let E(v0) =
{eπ, ea, eb} be the set of three edges in P incident with v0, and so the edges
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in E(v0) are the only three edges joining H to (G/π)−H . Since |V (H)| = 4,
at least one vertex in V (H) is not incident with any edges in E(v0).

Let V (H) = {u0, u1, u2, x} where x is incident with eπ and u0 is not
incident with any edges in E(v0). Since δ(G/π) ≥ 3, either {u1, u2, x} ⊆
NH(u0), or u0 is adjacent to only one of the vertices in {u1, u2} (say u2)
and two parallel edges joining u0 and x (see Figure 4.7 (II)).
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Figure 4.7
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Subcase 1D(ii)(I). NH(u0) = {u1, u2, x} (see Figure 4.7 (I)).
Since G is K3-free, u1u2 6∈ E(G). Therefore, since G is essentially 4-

edge-connected and δ(G/π) ≥ 3, ui (i = 1, 2) must be adjacent to x and
incident with an edge in E(v0) as shown in Figure 4.8 below.
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Figure 4.8
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Thus G is the graph in Figure 4.8 which has a spanning closed trail
H1 = x1x2x6x5uvu1x3x4x7x8u2u0wzx1, contrary to (5).

Subcase 1D(ii)(II). |NH(u0) ∩ {u1, u2}| = 1, and u0 and x are joined by
a pair of edges.

Since |NH(u0) ∩ {u1, u2}| = 1, u0 is adjacent to only one vertex in
{u1, u2}, say u2 as shown on Figure 4.7 (II). Since G is K3-free, u2x 6∈ E(H).
Since d(ui) ≥ 3 and u1 cannot be adjacent to both u0 and x, u1 must be
adjacent to x and u2 (see Figure 4.9). But G has a Hamiltonian cycle:
x1x2x6x5uvu1x3x4x7x8u2u0wzx1, a contradiction again.

This completes the proof of Claim 3 for the case κ′(G/π) ≥ 3.
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Case 2. κ′(G/π) = 2.
Since κ′(G) ≥ 3, eπ = xy must be in any edge-cuts of size 2 in G/π,

where x is the vertex obtained from G by identifying u and z and y is the
vertex obtained by identifying v and w. Let X = {eπ, e0} be an edge cut
of size 2 in G/π where e0 = ab. Let X1 = E(H0)∪{e0}. Therefore, G−X1

has two components, say G1 and G2. We may assume that u, z, a ∈ V (G1)
and v, w, b ∈ V (G2) and |V (G1)| ≤ |V (G2)|.

Claim 2A. dG/π(y) ≥ 4.
By way of contradiction, suppose that dG/π(y) ≤ 3. Then e0 with the

edges other than eπ incident with y forms an essential edge-cut with size at
most 3, contrary to Claim 2 that G is essentially 4-edge-connected. Thus,
dG/π(y) ≥ 4. Claim 2A is proved.

Subcase 1. Every edge in G1 is incident with a vertex in {u, z} ∪ {a}.
Since G is K3-free and δ(G) ≥ 3, either G1 has a K2,3 subgraph, or

G1 = K1,2 with V (G1) = {u, z, a} where dG1(a) = 2.
If G1 has a K2,3 subgraph, then G has a K3,3 − e subgraph, contrary to

the fact that G is reduced.
If G1 = K1,2, then G/π has a C2 with V (C2) = {x, a}. Let G0 =

(G/π)/C2. Let vc be the contraction image of C2 in G0. Then dG0(vc) = 2
with vcy, vcb ∈ E(G0). Note that dG0(y) = dG/π(y) ≥ 4. Furthermore, G0

is essentially 3-edge-connected. Otherwise, if G0 has an essential edge-cut
X0 with |X0| ≤ 2, then either X0 is an essential edge-cut of G if eπ 6∈ X0,
or (X0 − eπ) ∪ {au, az} if eπ ∈ X0 is an essential edge-cut of G, contrary
to the fact that G is essentially 4-edge-connected. Since G0 is essentially
3-edge-connected with |V (G0)| = 12 and |D2(G0)| = 1, by Corollary 2.3(b),
either G0 ∈ SL or G′

0 = P .
If G0 ∈ SL, then by Theorem A, G/π ∈ SL. By Theorem D, G ∈ SL, a

contradiction.
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If G′
0 = P , since |D2(G0)| = 1 and dG0(y) ≥ 4, G0 has a collapsible sub-

graph H0 that contains y and has |V (H0)| ≥ 4 such that G′
0 = (G0/H0)

′ =
P . Then 10 = |V (G′

0)| ≤ |V (G0/H0)| ≤ 9, a contradiction.

Subcase 2. G1 has an edge x1x2 that is not incident with any vertices of
{u, z} ∪ {a}.

Since G is K3-free, NG(x1)∩NG(x2) = ∅ and NG(x1)∪NG(x2) ⊆ V (G1).
We have

|V (G1)| ≥ |NG(x1)| + |NG(x2)| ≥ d(x1) + d(x2) ≥ 3 + 3 = 6. (6)

Since |V (G)| ≤ 15 and |V (G1)| ≤ |V (G2)|, by (6),

6 ≤ |V (G1)| ≤ 7 and |V (G2)| ≤ 9.

Let H1 and H2 be the two components of G/π − X. Then |V (H1)| =
|V (G1)| − 1 = 6 and |V (H2)| = |V (G2)| − 1 ≤ 8, and D1(Hi) ∪ D2(Hi) ⊆
{x, y, a, b} (i = 1, 2).

If G/π is simple, then since κ′(G) ≥ 3, D1(Hi) = ∅, and κ′(Hi) ≥ 2
(i = 1, 2) and |D2(Hi)| ≤ 2. By Corollary 2.1 and κ′(Hi) ≥ 2, Hi ∈ CL.
Therefore, (G/π)/(H1 ∪ H2) = C2 and so G/π ∈ CL. By Theorem D,
G ∈ CL, a contradiction.

If G/π is not simple, then G/π contains C2 cycles formed by the π-
reduction operation on G. Since reduced G has no K3,3 − e, G/π has no
Θ as a subgraph. Thus, all the C2 cycles are incident with only one end of
the vertices of eπ = xy.

We may assume that all the C2 cycles incident with x. (The case that
all the C2’s incident with y can be proved in the same way and so omitted).
Let Hc be the maximal collapsible subgraph in H1 containing all the C2

cycles. Let Hc
1 = H1/Hc. Let vc be the contraction image of Hc. We

regard vc = x and vcy = xy. Then |V (Hc
1)| ≤ |V (H1)| − 1 ≤ 5 and

dHc
1
(vc) ≥ 2. Thus, D1(H

c
1) ∪ D2(H

c
1) ⊆ {vc, a}. If vc is a vertex of

degree 2 in Hc
1 , then let N(vc) = {v0, y}. Then Hc

1 has a nontrivial 2-edge-
connected subgraph H∗

1 with at most two vertices of degree 2 and with
{v0, a} ⊆ V (H∗

1 ). By Corollary 2.1, Hc
1 and H2 are collapsible. Therefore,

(G/π)/(Hc
1 ∪ H2) = K3, and so G/π ∈ CL. By Theorem D, G ∈ CL, a

contradiction. This proved the case κ′(G/π) = 2.

Case 3. κ′(G/π) = 1. Since δ(G/π) ≥ 3, by Lemma 2.2, G is not reduced,
a contradiction.

This completes the proof of Claim 3, and so Theorem 4.1(c)(ii) holds.

Claim 4. D∗
4(G) is an independent set.

By way of contradiction, suppose that G has an edge e = ab with



19

d(a) ≥ 4 and d(b) ≥ 4. By Claim 2, G is essentially 4-edge-connected.
Then since G is reduced, Ge = G − e is a 3-edge-connected reduced graph
with at most 15 vertices. Since G is the minimum counterexample, either
Ge ∈ SL or Ge ∈ {P, P14}.

If Ge ∈ SL, then G ∈ SL, a contradiction.
If Ge = P14, then G = P14 + e has girth at most 4, contrary to Claim 3.
If Ge = P , then G = P +e 6= P . By Theorem B, G ∈ CL, a contradiction

again. Claim 4 and Theorem 4.1(c)(iii) are proved.

Claim 5. ∆(G) ≤ b |V (G)|−1
3

c.
Let ∆(G) = t. Let v be a vertex with degree d(v) = t. Let N(v) =

{x1, x2, x3, · · · , xt} . Since G has no 3- and 4-cycles, (N(xi)−v)∩ (N(xj )−
v) = ∅. Since δ(G) ≥ 3, |N(xi)| = d(xi) ≥ 3 and so

|V (G)| ≥ 1 + t +
∑t

i=1(|N(xi)| − 1) ≥ 1 + t + 2t = 1 + 3t.

Since ∆(G) = t is an integer, ∆(G) ≤ b |V (G)|−1
3 c. Claim 5 is proved. 2

5. Proof of Theorem 1.1

Lemma 5.1. Let G be a 2-connected simple graph with V (G) = D3(G) ∪
D4(G). Let D4(G) = {v1, · · · , vs}. Let G1 be a graph obtained from
G by splitting each vertex vi in D4(G) into two vertices v1

i and v2
i joint

by an edge ei (see Figure 5.1) such that G1 is a 3-regular graph with
V (G1) = (V (G)−D4(G))∪s

i=1{v
1
i , v2

i } and E(G1) = E(G)∪{e1, e2, · · · , es}.
Then
(a) G1 is 2-connected with order |V (G)|+ |D4(G)| and has the girth greater
or equal to the girth of G;
(b) if G1 is hamiltonian, then G is supereulerian.

Splitting operation

r@@

��

��

@@
a ⇐⇒ r r@@

��

��

@@
a1 a2

ea

Figure 5.1

Proof. Lemma 5.1(a) follows from the definitions.
For (b), suppose that G1 is hamiltonian. Let H0 be a hamiltonian cycle

in G1. Let E0 = E(H0)∩ {e1, e2, · · · , es}, then G = G1/{e1, e2, · · · , es} has
a spanning trail H = H0/E0. Lemma 5.1(b) is proved. 2

Proof of Theorem 1.1(a). Let G′ be the reduction of G. By way of
contradiction, suppose that G is a smallest counterexample. Then G = G′,

G 6∈ SL and G 6= P. (7)
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Therefore, by Theorem 4.1(c), G is a reduced, 2-connected, 3-edge-connected
and essentially 4-edge-connected graph with girth at least 5. By Theorem
B, we only need to consider graph G with 12 ≤ |V (G)| ≤ 13.

Case 1. |V (G)| = 12. By Theorem 4.1(c)(iv), 3 ≤ ∆(G) ≤ b |V (G)|−1
3

c.
Then ∆(G) = 3. Thus, G is a cubic 2-edge-connected Non-Hamiltonian
graph of order 12 with girth at least 5, contrary to Theorem F(a).

Case 2. |V (G)| = 13. Since δ(G) ≥ 3, ∆(G) = 4. Thus, V (G) =
D3(G)∪D4(G) and |D4(G)| must be an odd number. If |D4(G)| ≥ 5, then

|E(G)| =
4|D4(G)| + 3|D3(G)|

2
≥

5 × 4 + 8 × 3

2
= 22

and so F (G) = 2|V (G)|− |E(G)|− 2 ≤ 26− 24 = 2. By Theorem C(c) and
G 6= K1, G ∈ {K2, K2,t}, contrary to κ′(G) ≥ 3. Thus, |D4(G)| = 1 or 3.

Let G1 be the graph obtained from G by splitting the vertices in D4(G)
as defined in Lemma 5.1. G1 is a cubic 2-connected graph of order 14 or
16. Since G has girth at least 5, G1 has girth at least 5. By Theorem F(a),
there is no 2-edge-connected cubic Non-Hamiltonian graph of order 14 or
16 with girth great than 4, G1 must be hamiltonian. By Lemma 5.1, G is
supereulerian, contrary to (7).

This completes the proof of Theorem 1,1(a).2

Let T3 be a path of length 3.
Corollary 5.2. Let G be a connected simple graph with |V (G)| ≤ 13 and
δ(G) ≥ 3. Then G′ ∈ {K1, K2, K1,2, K1,3, T3, P }.
Proof. By Theorem 1.1(a), if κ′(G) ≥ 3, then Corollary 5.2 follows. Thus
we may assume that κ′(G) ≤ 2. Let X ⊆ E(G) be an edge cut of G
with |X| ≤ 2. Let G1 and G2 be the two components of G − X with
|V (G1)| ≤ |V (G2)|. Since δ(G) ≥ 3, it follows that δ(Gi) ≥ 2 (i = 1, 2) and

4 ≤ |V (G1)| ≤ 6 and |V (G2)| = 13 − |V (G1)|. (8)

Case 1. κ′(G) = 1. Then |D2(Gi)| ≤ 1 (i = 1, 2). If |V (G1)| = 6, then by
(8) |V (G2)| ≤ 7. By Corollary 2.1(a) and (b), G1 ∈ CL and the reduction
of G2 is in {K1, K2}. Hence the reduction of G is in {K1, K2, K1,2}.

If 4 ≤ |V (G1)| ≤ 5, then by (8), 8 ≤ |V (G2)| ≤ 9. By Corollary 2.1(a),
G1 ∈ CL. By Corollary 2.1(d) the reduction of G2 is in {K1, K2, K1,2}
and so the reduction of G is in {K1, K2, K1,2, K1,3, T3}.

Case 2. κ′(G) = 2. Then |D2(Gi)| ≤ 2 and κ′(Gi) ≥ 2 (i = 1, 2). Since
|V (G1)| ≤ 6 with |D2(G1)| ≤ 2, by Corollary 2.1(a), G1 ∈ CL. Since
|V (G2)| ≤ 9 with |D2(G2)| ≤ 2, by Corollary 2.1(e), G′

2 ∈ {K1, K2,3}.
If G′

2 = K1, then G2 ∈ CL. G/(G1 ∪ G2) = C2 ∈ CL. Thus, G′ = K1.
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If G′
2 = K2,3, then let D2(K2,3) = {u1, u2, u3}. If H(ui) is a non-trivial

preimage of ui, then since δ(G) ≥ 3, |V (H(ui))| ≥ 4. Since |V (G2)| ≤ 9 and
G′

2 = K2,3, G2 has at most one nontrivial collapsible subgraph with at least
4 vertices. Thus, at least two vertices of degree 2 in G′

2 = K2,3 are trivial
contractions. Let u1 and u2 be the two trivial contractions of G′

2. Since
|X| = 2 and δ(G) ≥ 3, ui must be incident with an edge in X (i = 1, 2), and
u3 has a non-trivial preimage H(u3). Therefore, G/(G1∪H(u3)) = K3,3−e.
By Corollary 2.1(a), K3,3 − e is collapsible and so G′ = K1. 2

Remark. Theorem 1.1(a) and Corollary 5.2 were first proved in [17] (with-
out using the computer search results [23]). The proof outlined in [17] was
long and complicated which involved checking on many cases and was never
submitted for publication in journals. However, the result has been used by
several authors [8, 9, 12]. Using that result (i.e., Theorem 1.1(a)), Catlin
and Lai obtained the following:

Theorem I (Catlin and Lai [12]). If G is a 3-edge-connected graph with
at most 10 edge-cuts of size 3, then either G ∈ SL or G′ = P .

We will make use of Theorem I in the proof of Theorem 1.1(b) and (c).
Proof of Theorem 1.1(b) and (c). By Theorem 1.1(a), we only need
to consider graphs G with 14 ≤ |V (G)| ≤ 15. By way of contradiction,
suppose that G is a counterexample with |E(G)| minimized. Then G is
reduced. By Theorem 4.1(c), G is a 2-connected and essentially 4-edge-
connected reduced graph with girth at least 5, ∆(G) ≤ 4 and D4(G) is an
independent set. Thus, V (G) = D3(G) ∪ D4(G).

Case 1. |V (G)| = 14 (Theorem 1.1(b)). Then |D4(G)| must be even.
If |D4(G)| = 0, then by Theorem F, G ∈ {P, P14}, a contradiction.
If |D4(G)| ≥ 4, then |D3(G)| ≤ 10. Since G is essentially 4-edge-

connected, G is 3-edge-connected with at most 10 edge-cuts of size 3. By
Theorem I, either G ∈ SL or G′ = P , a contradiction. Thus, |D4(G)| = 2.

Let G1 be the graph obtained from G by splitting the two vertices in
D4(G) as stated in Lemma 5.1. Then G1 is a 2-connected cubic graph of
order 16 with girth at least 5. By Theorem F, since G1 6= P with girth at
least 5, G1 is hamiltonian. By Lemma 5.1, G ∈ SL, a contradiction.

Case 2. |V (G)| = 15 (Theorem 1.1(c)). Then |D4(G)| must be odd. If
|D4(G)| = 1, let G1 be the graph obtained from G by splitting the vertex
in D4(G) as defined in Lemma 5.1. Then G1 is a 2-edge-connected cubic
graph of order 16 with girth at least 5. By Theorem F, all the cubic 2-
edge-connected Non-Hamiltonian graphs of order 16 have girth at most 4.
Thus, G1 is a hamiltonian. By Lemma 5.1, G ∈ SL, a contradiction.

If |D4(G)| ≥ 5, then |D3(G)| = |V (G)| − |D4(G)| ≤ 10. Since G is
essentially 4-edge-connected, G is 3-edge-connected with at most 10 edge-
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cuts of size 3. By Theorem I, either G ∈ SL or G′ = P , a contradiction.
Thus, |D4(G)| = 3 and so G is the graph defined in Theorem 1.1(c). 2

We conclude this paper with a conjecture that is a refinement of Con-
jecture 1:
Conjecture 3. Any 3-edge-connected simple graph of order at most 17 is
either supereulerian or its reduction is in {P, P14, P16}.
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