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ABSTRACT

Eulerian Subgraphs and Hamiltonicity of Claw-free Graphs

Mingquan Zhan

Let C(l, k) denote the class of 2-edge-connected graphs of order n such that a graph

G ∈ C(l, k) if and only if for every edge cut S ⊆ E(G) with |S| ≤ 3, each component of

G− S has order at least
n− k

l
. We prove that If G ∈ C(6, 0), then G is supereulerian if

and only if G cannot be contracted to K2,3, K2,5 or K2,3(e), where e ∈ E(K2,3) and K2,3(e)

stands for a graph obtained from K2,3 by replacing e by a path of length 2. Previous results

by Catlin and Li, and by Broersma and Xiong are extended.

We also investigate the supereulerian graph problems within planar graphs, and we

prove that if a 2-edge-connected planar graph G is at most three edges short of having

two edge-disjoint spanning trees, then G is supereulerian except a few classes of graphs.

This is applied to show the existence of spanning Eulerian subgraphs in planar graphs

with small edge cut conditions. We determine several extremal bounds for planar graphs

to be supereulerian.

Kuipers and Veldman conjectured that any 3-connected claw-free graph with order n

and minimum degree δ ≥ n+6
10

is Hamiltonian for n sufficiently large. We prove that if H

is a 3-connected claw-free graph with sufficiently large order n, and if δ(H) ≥ n+5
10

, then

either H is hamiltonian, or δ(H) = n+5
10

and the Ryjác̆ek’s closure cl(H) of H is the line

graph of a graph obtained from the Petersen graph P10 by adding n−15
10

pendant edges at

each vertex of P10.
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Chapter 1

Definitions and Notations

We use [1] for terminology and notations not defined here and consider finite, undirected

graphs. We allow graphs to have multiple edges but not loops. A graph with at least two

vertices is called a nontrivial graph.

Let G be a graph. We denote an n-cycle by Cn. We use κ(G), κ′(G) to denote the

connectivity and the edge-connectivity of G, respectively. The degree and neighbor-

hood of a vertex x of G are respectively denoted by dG(x) and NG(x), and the minimum

degree of G is denoted by δ(G). An edge e = uv is called a pendant edge if either

dG(u) = 1 or dG(v) = 1. If S ⊆ V (G) and X1 ⊆ E(G), G[S] and G[X1] are the sub-

graphs induced in G by S and X1, respectively. A vertex v ∈ G is called a locally

connected vertex if G[NG(v)] is connected. For H ⊆ G, x ∈ V (G) and A,B ⊆ V (G)

with A ∩ B = ∅, let NH(x) = NG(x) ∩ V (H), dH(x) = |NH(x)|, NH(A) =
⋃

v∈A

NH(v),

[A,B]G = {uv ∈ E(G) | u ∈ A, v ∈ B}, and G − A = G[V (G) − A]. When A = {v}, we

use G− v for G− {v}. If H ⊆ G, then for an edge subset X ⊆ E(G)− E(H), we write

H + X for G[E(H) ∪X].

A graph G is essentially k-edge-connected if |E(G)| ≥ k + 1 and if for every

E0 ⊆ E(G) with |E0| < k, G − E0 has exactly one component H with E(H) 6= ∅. The

greatest integer k such that G is essentially k-edge-connected is the essential edge-

connectivity κe(G) of G. For each i = 0, 1, 2, · · · , let Di(G) = {v ∈ V (G)|dG(v) = i},

1



CHAPTER 1. DEFINITIONS AND NOTATIONS 2

and for any integer t ≥ 1, let D∗
t (G) =

⋃
i≥t

Di(G). The edge arboricity a1(G) of G is the

minimum number of edge-disjoint forests whose union equals G. The girth of G, denoted

by g(G), is the length of a shortest cycle of G, or ∞ if G is acyclic.

Let O(G) denote the set of odd degree vertices of G. A graph G is Eulerian if

O(G) = ∅ and G is connected. A graph G is supereulerian if G has a spanning Eulerian

subgraph. In particular, K1 is both eulerian and supereulerian. Denote by SL the family

of all supereulerian graphs.

Let X ⊆ E(G). The contraction G/X is the graph obtained from G by identifying

the two ends of each edge in X and then deleting the resulting loops. We define G/∅ = G.

If K is a subgraph of G, then we write G/K for G/E(K). Note that even if G is a simple

graph, contracting some edges of G may result in a graph with multiple edges. If K is a

connected subgraph of G, and if vK is the vertex in G/K onto which K is contracted, then

K is called the preimage of vK , and is denoted by PI(vK). A vertex v in a contraction

of G is nontrivial if PI(v) has at least one edge.

The line graph of a graph G, denote by L(G), has E(G) as its vertex set, where two

vertices in L(G) are adjacent if and only if the corresponding edges in G are adjacent.

A subgraph H of a graph G is dominating if G−V (H) is edgeless. Let v0, vk ∈ V (G).

A (v0,vk)−trail of G is a vertex-edge alternating sequence

v0, e1, v1, e2, · · · , ek, vk

such that all the ei’s are distinct and such that for each i = 1, 2, · · · , k, ei is incident with

both vi−1 and vi. With the notation above, this (v0, vk)-trail is also called an (e1, ek)-

trail. All the vertices in v1, v2, · · · , vk−1 are internal vertices of trail. A dominating

(e1, ek)-trail T of G is an (e1, ek)-trail such that every edge of G is incident with an

internal vertex of T . A spanning (e1, ek)-trail of G is a dominating (e1, ek)-trail such

that V (T ) = V (G). There is a close relationship between dominating eulerian subgraphs

in graphs and Hamilton cycles in L(G).

Theorem 1.0.1 (Harary and Nash-Williams, [16]) Let G be a graph with |E(G)| ≥ 3.

Then L(G) is hamiltonian if and only if G has a dominating eulerian subgraph.
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A graph G is Hamilton-connected if for each u, v ∈ V (G) (u 6= v), there exists a

(u, v)-path containing all vertices of G. With a similar argument in the proof of Theorem

1.0.1, one can obtain a theorem for Hamilton-connected line graphs.

Theorem 1.0.2 Let G be a graph with |E(G)| ≥ 3. Then L(G) is Hamilton-connected

if and only if for any pair of edges e1, e2 ∈ E(G), G has a dominating (e1, e2)-trail.

We say that an edge e ∈ E(G) is subdivided when it is replaced by a path of length

2 whose internal vertex, v(e), has degree 2 in the resulting graph. The process of taking

an edge e and replacing it by the length 2 path is called subdividing e. For a graph G

and edges e1, e2 ∈ E(G), let G(e1) denote the graph obtained from G by subdividing e1,

and let G(e1, e2) denote the graph obtained from G by subdividing both e1 and e2. Thus

V (G(e1, e2))− V (G) = {v(e1), v(e2)}.

From the definitions, one immediately has the following observation.

Proposition 1.0.3 Let G be a graph and e1, e2 ∈ E(G). If G(e1, e2) has a spanning

(v(e1), v(e2))-trail, then G has a spanning (e1, e2)−trail.



Chapter 2

Catlin’s Reduction Method

In [4] Catlin defined collapsible graphs. For R ⊆ V (G), a subgraph Γ of G is called an

R−subgraph if both O(Γ) = R and G − E(Γ) is connected. A graph is collapsible if

G has an R−subgraph for every even set R ⊆ V (G). In particular, K1 is collapsible. Let

CL denote the family of all collapsible graphs. For a graph G and its connected subgraph

H, G/H denotes the graph obtained from G by contracting H, i.e. by replacing H by a

vertex vH such that the numbers of edges in G/H joining any v ∈ V (G)− V (H) to vH in

G/H equals the number of edges joining v in G to H. A graph G is contractible to a

graph G′ if G contains pairwise vertex-disjoint connected subgraphs H1, H2, · · · , Hk with
k⋃

i=1

V (Hi) = V (G) such that G′ is obtained from G by successively contracting H1, H2,

· · · , Hk. The subgraph Hi of G is called the pre-image of the vertex vHi
of G′. Catlin

[4] showed that every graph G has a unique collection of pairwise vertex-disjoint maximal

collapsible subgraphs H1, H2, · · · , Hk such that
k⋃

i=1

V (Hi) = V (G). The reduction of

G is the graph obtained from G by successively contracting H1, H2, · · · , Hk. A graph is

reduced if it is the reduction of some graph. A nontrivial vertex in G′ is a vertex that

is the contraction image of a nontrivial connected subgraph of G. Note that if G has an

O(G)-subgraph Γ, then G−E(Γ) is a spanning Eulerian subgraph of G. Therefore, every

collapsible graph is supereulerian.

4



CHAPTER 2. CATLIN’S REDUCTION METHOD 5

Theorem 2.0.4 (Catlin, [4]) Let G be a connected graph.

(i) If G has a spanning tree T such that each edge of T is in a collapsible subgraph of

G, then G is collapsible.

(ii) If G is reduced, then G is a simple graph and has no cycle of length less than four.

(iii) G is reduced if and only if G has no nontrivial collapsible subgraphs.

(iv) Let G′ be the reduction of G. Then G ∈ SL if and only if G′ ∈ SL, and G ∈ CL
if and only if G′ = K1.

Jaeger in [17] showed that if G has two edge-disjoint spanning trees, then G is su-

pereulerian. Letting F (G) be the minimum number of additional edges that must be

added to G so that the resulting graph has two edge-disjoint spanning trees, Catlin [4]

and Catlin et al. [8] improved Jaeger’s result. We combine these results in the following

theorem.

Theorem 2.0.5 Let G be a graph. Then each of the following holds.

(i)(Jaeger, [17]) If F (G) = 0, then G is supereulerian.

(ii)(Catlin, [4]) If F (G) ≤ 1 and if G is connected, then G is collapsible if and only

if G is not contractible to a K2.

(iii)(Catlin, Han and Lai, [8]) If F (G) ≤ 2 and if G is connected, then either G is

collapsible, or the reduction of G is a K2 or a K2,t for some integer t ≥ 1.

Theorem 2.0.6 (Catlin, Han and Lai, [8]) Let G be a connected reduced graph. If

F (G) ≤ 2, then exactly one of following holds:

(i) G ∈ SL;

(ii) G has a cut edge;

(iii) G is K2,s for some odd integer s ≥ 3.

In 1987, Catlin [6] introduced a reduction technique of the 4-cycle. Let G be a graph

and let C = v1v2v3v4v1 be a 4-cycle of G. Let Gπ denote the graph obtained from G−E(C)

by identifying v1 and v3 to form a single vertex w1, and by identifying v2 and v4 to form

a single vertex w2, and by joining w1 and w2 with a new edge eπ.
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Theorem 2.0.7 Each of the following holds:

(i) (Catlin, [6]) If Gπ is collapsible, then G is collapsible; if Gπ is supereulerian, then

G is supereulerian.

(ii) (Catlin, Han and Lai, [8]) If G is reduced, then F (Gπ) = F (G)− 1.

(iii) (Catlin, [6]) Let K3,3 − e denote the graph obtained from K3,3 by removing an

edge. Then K3,3 − e, Kn(n ≥ 3) and C2 are collapsible.

(iv) (Catlin, [6]) If G is reduced, then a1(G) ≤ 2; if a1(G) ≤ 2, then F (G) = 2|V (G)|−
|E(G)| − 2.

Applying Theorem 2.0.7(i), we have the following lemma.

Lemma 2.0.8 Let G1, G2, G3 be the graphs given in Figure 2.1. Then G1, G2 and G3 are

collapsible.
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Let t, s1, s2, s3 be nonnegative integers. Denote K ′
2,t, K ′′

2,t, K1,3(s1, s2, s3), S(s1, s2),

J(s1, s2), J ′(s1, s2) to be graphs shown in Figure 2.2, where the si (i = 1, 2, 3) vertices

and the two vertices connected by the two lines shown in each of the graphs forms a K2,si

graph.
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Let

F = {K1, K2, K2,t, K ′
2,t, K ′′

2,t, K1,3(s1, s2, s3), S(s1, s2), J(s1, s2), J ′(s1, s2), P},

where P denotes the Petersen graph.

Theorem 2.0.9 (Chen and Lai, [12]) If G is connected reduced graph with |V (G)| ≤ 11

and F (G) ≤ 3, then G ∈ F .

Theorem 2.0.10 (Chen, [10]) Let G be a reduced graph with n ≤ 11 vertices, and

κ′(G) ≥ 3. Then G is either K1 or the Petersen graph.

Lemma 2.0.11 Let G be a connected simple graph with n ≤ 8 vertices and with D1(G) =

∅, |D2(G)| ≤ 2. Then either G is one of three graphs in Figure 2.3, or the reduction of G

is K1 or K2.
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Proof. By Theorem 2.0.10, we may assume κ′(G) ∈ {1, 2}. Suppose first that G has a

cut-edge e and that G1 and G2 are two components of G− e. Let ni = |V (Gi)|, 1 ≤ i ≤ 2

and assume, without loss of generality, n2 ≥ n1. Since G is simple and D1(G) = ∅, n1 ≥ 3

and equality holds if and only if G1 = K3. If both n2 = n1 = 4, then each of G1 and G2

must be K4 or K4− e where e ∈ E(K4). Since K3 is collapsible and by Theorem 2.0.4(i),

both G1 and G2 are collapsible, and so the reduction of G is K2. Since n2 = 3 will force

|D2(G)| ≥ 3, we assume that 4 ≤ n2 ≤ 5 and n1 = 3. If G2 is not collapsible, then

G2 ∈ {C4, C5, K2,3} and |D2(G)| ≥ 3. So G2 must be collapsible. Hence the reduction of

G is K2.

Now we assume that G is 2-edge-connected and G′ is the reduction of G with n′ =

|V (G′)| ≥ 2. Then G′ is 2-edge-connected and nontrivial. Let Cm be a longest cycle in

G′. Then m ≥ 4 by Theorem 2.0.4(ii).

If n′ = 8 or 7, then G = G′. As |D2(G)| ≤ 2, we have F (G′) ≤ 3 by Theorem

2.0.7(iv). By Theorem 2.0.9 and κ′(G′) ≥ 2, |D2(G)| ≥ 3, a contradiction. If n′ = 6,

then either G = G′ or the pre-image of a vertex in G′ is a triangle and the pre-images

of the other vertices in G′ are themselves. Thus |D2(G
′)| ≤ 2. By Theorem 2.0.7(iv),

we have F (G′) ≤ 2. Therefore |D2(G
′)| ≥ 3 by Theorem 2.0.5(iii), a contradiction. If

n′ = 4, then G′ = C4. Note that the size of the pre-image of each vertex is either 1 or at

least 3. Thus |D2(G)| ≥ 3. It contradicts the hypothesis that |D2(G)| ≤ 2. So n′ = 5.

Note again that the size of the pre-image of each vertex is either 1 or at least 3. By

|D2(G)| ≤ 2, |D3(G
′)| 6= 0. Thus F (G′) ≤ 2. By Theorem 2.0.5(iii), G′ = K2,3. As n ≤ 8

and |D2(G)| ≤ 2, the pre-image of a vertex having degree 2 in G′ is either a K4 or a K4

minus an edge, and the pre-images of the other vertices in G′ are themselves. Thus G is
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one of the graphs in Figure 2.3.

Lemma 2.0.12 If G is collapsible, then for any pair of vertices u, v ∈ V (G), G has a

spanning (u, v)-trail.

Proof. Let R = (O(G) ∪ {u, v}) − (O(G) ∩ {u, v}). Then |R| is even. Let ΓR be an

R−subgraph of G. Then G− E(ΓR) is a spanning (u, v)-trail of G.

Let G be a graph and let S ⊆ V (G) be a vertex subset. A eulerian subgraph H of G

is called an S-eulerian subgraph if S ⊆ V (H). Let K2,3,K2,5,W
′
3, W

′
4, L1, L2 and L3 be

the labelled graphs defined in Figures 2.4-2.6, and let F = {K2,3, K2,5,W
′
3,W

′
4, L1, L2, L3}.

Using the labels in Figures 2.4-2.6, for each L ∈ F , we define B(L), the bad set of L, to

be the vertex subset of V (L) that are labeled with the b′is.
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Theorem 2.0.13 (Lai, [20]) Let G be a 2-edge-connected graph and let S ⊆ V (G) with

|S| ≤ 5. If G − S is edgeless, and if G does not have an S-eulerian subgraph, then G is

contractible to a member L ∈ F such that S intersects the preimage of every vertex in

B(L).

Lemma 2.0.14 Suppose that G is a simple graph which does not contain K4 − e as a

subgraph. Then the following statements hold.

(i) If |V (G)| = 3, then |E(G)| ≤ 3.

(ii) If |V (G)| = 4, then |E(G)| ≤ 4.

(iii) If |V (G)| = 5, then |E(G)| ≤ 6.

(iv) If |V (G)| = 6, then |E(G)| ≤ 9.

(v) If |V (G)| = 7, then |E(G)| ≤ 12.

Proof. If |V (G)| = 3, then |E(G)| ≤ 3. If |V (G)| = 4, then |E(G)| ≤ 4 since G does

not contain K4− e as its subgraph. Note that the proofs for (iii),(iv) and (v) are similar.

So we only present the proof for (v).

Let V (G) = {u1, u2, · · · , u7}. Without loss of generality, we assume that dG(u7) =

∆(G). If dG(u7) ≤ 3, then it is clear that (v) holds. Suppose that dG(u7) = 6. Then the

degree of ui(i = 1, 2, · · · , 6) is at most 1 in G− u7 since G does not contain K4 − e as its

subgraph. Thus |E(G− u7)| ≤ 3 and |E(G)| ≤ 6 + 3 = 9.

Suppose that dG(u7) = 5 and u7u6 6∈ E(G). Then the degree of ui(i = 1, 2, · · · , 5) is

at most 1 in G−{u7, u6}. Let p1 = |E(G−{u6, u7})|. Then dG(u6) ≤ 5− p1 since G does

not contain K4− e as its subgraph. Thus |E(G)| = dG(u6)+dG(u7)+ |E(G−{u6, u7})| ≤
5 + (5− p1) + p1 = 10.
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Suppose that dG(u7) = 4 and u7u6, u7u5 6∈ E(G). Then the degree of ui(i = 1, 2, 3, 4) is

at most 1 in G−{u7, u6, u5}. Let p2 = |E(G−{u5, u6, u7})|. Then |[{u1, u2, u3, u4}, {ui}]G|
≤ 4 − p2 (i = 5, 6) and p2 ≤ 2 since G does not contain K4 − e as its subgraph.

If p2 = 0 and u5u6 ∈ E(G), then |[{u1, u2, u3, u4}, {u5, u6}]G| ≤ 5. Thus |E(G)| =

dG(u7) + |[{u1, u2, u3, u4}, {u5, u6}]G| + |E(G − {u5, u6, u7})| + |E(G[{u5, u6}])| ≤ 4 +

5 + 0 + 1 = 10. Otherwise, we have |E(G)| = dG(u7) + |[{u1, u2, u3, u4}, {u5}]G| +

|[{u1, u2, u3, u4}, {u6}]G| + |E(G − {u5, u6, u7})| + |E(G[{u5, u6}])| ≤ 4 + (4 − p2) + (4 −
p2) + p2 + |E(G[{u5, u6}])| = 12− p2 + |E(G[{u5, u6}])| ≤ 12.

Lemma 2.0.15 Suppose that G is a 2-edge-connected graph with at most 10 vertices, and

that G does not contain K4 − e as a subgraph. If |E(G)| ≥ 17, then G is collapsible.

Proof. By Theorem 2.0.5(ii), if H is a simple collapsible subgraph of G with |V (H)| = 4,

then H must contain contain K4 − e as a subgraph. Thus we have

if H is a simple collapsible subgraph of G, then |V (H)| ≥ 3 and |V (H)| 6= 4. (2.1)

Let G′ be the reduction of G. Note that G is collapsible if and only if G′ = K1.

Suppose, by contradiction, that G′ 6= K1. Then κ′(G′) ≥ 2 and |V (G′)| ≤ 10. If κ′(G′) ≥
3, then by Theorem 2.0.10 and by |E(G)| ≥ 17, we must have G′ = K1, a contradiction.

So we may assume that κ′(G′) = 2 and let X ⊆ E(G′) be an edge cut of G′ with |X| = 2.

Pick an e ∈ X, and denote [e] = {e′ ∈ E(G′) | {e, e′} is an edge cut of G′} ∪ {e}. Then

for any {e1, e2} ⊆ [e], {e1, e2} is also an edge cut of G′. Let |[e]| = k ≥ 2. Then G′

has k connected subgraphs G1, G2, · · · , Gk such that Gi, Gi+1 (i = 1, 2, · · · , k − 1) and

G1, Gk are joined by exactly one edge in [e] (see Figure 2.7), and each Gi (i = 1, 2, · · · , k)

is either a K1 or a nontrivial 2-edge-connected graph. Thus, if Gi is nontrivial, then

|V (Gi)| ≥ 4, and F (Gi) ≥ 2 by Theorem 2.0.5(ii). If follows by Theorem 2.0.7(iv) that

|E(Gi)| ≤ 2|V (Gi)| − 4. Let

t = |{Gi|Gi is nontrivial , 1 ≤ i ≤ k}|.

Since |V (G)| ≤ 10, we have 0 ≤ t ≤ 2.
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Case 1. t = 0.

Let V (Gi) = {vi} (i = 1, 2, · · · , k) and let s be the number of nontrivial vertices in {v1,

v2, · · · , vk}. Assume that for each i = 1, · · · , s, vi is a nontrivial vertex and |V (PI(v1))| ≤
|V (PI(v2))| ≤ · · · |V (PI(vs))|. Since G′ is the reduced graph, we have k ≥ 4. Since

|V (G)| ≤ 10, s ≤ 3. By (2.1), |V (PI(vi)| 6= 4. If s = 3, then |V (PI(vi))| = 3 and k = 4.

Thus 17 ≤ |E(G)| =
3∑

i=1

|E(PI(vi))|+k = 9+4 = 13 by Lemma 2.0.14(i), a contradiction.

If s = 2, then |V (PI(v1))| = 3, and either |V (PI(v2))| = 3 or |V (PI(v2))| = 5. Thus

17 ≤ |E(G)| =
2∑

i=1

|E(PI(vi))| + k =

{
3 + 3 + k ≤ 6 + 6 = 12, if |V (PI(v2))| = 3

3 + 6 + k ≤ 9 + 4 = 13, if |V (PI(v2))| = 5
, a

contradiction. If s = 1, then |V (PI(v1))| = 3, 5, 6, 7. Thus |E(G)| = |E(PI(v1))| +

k =





3 + k ≤ 3 + 8 = 11, if |V (PI(v1))| = 3

6 + k ≤ 6 + 6 = 12, if |V (PI(v1))| = 5

9 + k ≤ 9 + 5 = 14, if |V (PI(v1))| = 6

12 + k ≤ 12 + 4 = 16, if |V (PI(v1))| = 7

, contrary to the assumption that

|E(G)| ≥ 17.

Case 2. t = 1.

Without loss of generality, we assume that G1 is the nontrivial subgraph in G′. Then

|E(G1)| ≤ 2|V (G1)| − 4. Since |V (G1)| ≥ 4 and |V (G)| ≤ 10, we have 2 ≤ k ≤ 7.

Case 2.1. 8 ≤ |V (G1)| ≤ 9

In this case, G1 ⊆ G, k ≤ 11 − |V (G1)| and for each v ∈ V (G′) − V (G1), v must be

trivial. Thus 17 ≤ |E(G)| = |E(G1)|+k ≤ (2|V (G1)|−4)+(11−|V (G1)|) = 7+|V (G1)| ≤
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16, a contradiction.

Case 2.2. 6 ≤ |V (G1)| ≤ 7

If v is trivial for each v ∈ V (G′), then k ≤ 11−|V (G1)| and 17 ≤ |E(G)| = |E(G1)|+
k ≤ 7 + |V (G1)| ≤ 14, a contradiction. So there exists some vertex v ∈ V (G′) such

that v is not trivial. By (2.1), |V (PI(v))| 6= 4 and |V (PI(v))| ≥ 3. Note that |V (G)| =

|V (G1)| + |V (PI(v))| + (k − 2) ≤ 10 and k ≥ 2. Then we have |V (PI(v))| = 3. By

Lemma 2.0.14(i), |E(PI(v))| = 3. Thus 17 ≤ |E(G)| = |E(G1)| + |E(PI(v))| + k ≤
(2|V (G1)| − 4) + 3 + (12− |V (G1)| − |V (PI(v))|) = 8 + |V (G1)| ≤ 15, a contradiction.

Case 2.3. |V (G1)| = 5

If v is trivial for each v ∈ V (G′), then k ≤ 6 and |E(G)| = |E(G1)|+ k ≤ (2|V (G1)|−
4) + k ≤ 6 + 6 = 12, a contradiction. So V (G′) must have a nontrivial vertex. Let

q1 = |{v ∈ V (G′) | v is a nontrivial vertex}|.

Suppose that q1 = 1 and v is a nontrivial vertex. Then |V (PI(v))| = 3 or 5 by

(2.1). If |V (PI(v))| = 3, then k ≤ 4. Thus 17 ≤ |E(G)| = |E(G1)| + |E(PI(v))| + k ≤
(2|V (G1)| − 4) + 3 + 4 = 6 + 7 = 13, a contradiction. If |V (PI(v))| = 5, then k = 2.

Thus 17 ≤ |E(G)| = |E(G1)|+ |E(PI(v))|+ k ≤ (2|V (G1)| − 4) + 6 + 2 = 6 + 8 = 14, a

contradiction.

Suppose that q1 ≥ 2 and that v2, · · · , vq1+1 are nontrivial vertices. By (2.1), we have

k = 2, q1 = 2, |V (PI(vi))| = 3 (i = 2, 3). Thus 17 ≤ |E(G)| = |E(G1)| + |E(PI(v2))| +
|E(PI(v3))|+ k ≤ (2|V (G1)| − 4) + 3 + 3 + 2 = 6 + 8 = 14, a contradiction.

Case 2.4. |V (G1)| = 4

If v is trivial for each v ∈ V (G′), then k ≤ 7 and 17 ≤ |E(G)| = |E(G1)| + k ≤
(2|V (G1)|− 4)+k = 4+7 = 11, a contradiction. So V (G′) must have a nontrivial vertex.

Let q2 = |{v ∈ V (G′) | v is a nontrivial vertex }|.

Suppose that q2 = 1 and v is a nontrivial vertex. Then |V (PI(v))| = 3, 5, 6 by

(2.1). If |V (PI(v))| = 3, then k ≤ 5. Thus 17 ≤ |E(G)| = |E(G1)| + |E(PI(v))| + k ≤
(2|V (G1)| − 4) + 3 + 5 = 4 + 8 = 12, a contradiction. If |V (PI(v))| = 5, then k ≤ 3.
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Thus 17 ≤ |E(G)| = |E(G1)|+ |E(PI(v))|+ k ≤ (2|V (G1)| − 4) + 6 + 3 = 4 + 9 = 13, a

contradiction. If |V (PI(v))| = 6, then k = 2. Thus 17 ≤ |E(G)| = |E(G1)|+|E(PI(v))|+
k ≤ (2|V (G1)| − 4) + 9 + 2 = 4 + 11 = 15, a contradiction.

Suppose that q2 ≥ 2 and that v2, · · · , vq2+1 are nontrivial vertices. By (2.1), we have

k ≤ 3, q2 = 2 and |V (PI(vi))| = 3 (i = 2, 3). Thus 17 ≤ |E(G)| = |E(G1)|+|E(PI(v1))|+
|E(PI(v2))|+ k ≤ (2|V (G1)| − 4) + 3 + 3 + 3 = 4 + 9 = 13, a contradiction.

Case 3. t = 2.

Without loss of generality, we assume that G1, G2 are the nontrivial subgraphs in

G′. If there exists v ∈ V (G1) ∪ V (G2) such that v is a nontrivial vertex in G′, then

k = 2, V (G′) = V (G1) ∪ V (G2), |V (G1)| = |V (G2)| = 4 and |PI(v)| = 3. Thus we

have 17 ≤ |E(G)| = |E(G1)| + |E(G2)| + |E(PI(v))| + k ≤ 4 + 4 + 3 + 2 = 13, a

contradiction. So V (Gi) ⊆ V (G)(i = 1, 2). Note that |V (Gi)| ≥ 4, we have k ≤ 4. Since

|V (G1)| + |V (G2)| ≤ 10 and |E(Gi)| ≤ 2|V (Gi)| − 4, we have |E(G1)| + |E(G2)| ≤ 12.

Thus 17 ≤ |E(G)| = |E(G1)|+ |E(G2)|+ k ≤ 12 + 4 = 16, a contradiction.



Chapter 3

Eulerian subgraphs and

Hamilton-connected line graphs

3.1 Introduction

For integers k ≥ 0 and l > 0, let C(l, k) denote the class of 2-edge-connected graphs of

order n such that G ∈ C(l, k) if and only if for every edge cut S ⊆ E(G) with |S| ≤ 3,

each component of G− S has order at least
n− k

l
.

Catlin and Li, and Broersma and Xiong proved the following results concerning when

a graph in the family C(l, k) is supereulerian.

Theorem 3.1.1 (Catlin and Li, [9]) If G ∈ C(5, 0), then G ∈ SL if and only if G is

not contractible to K2,3.

Theorem 3.1.2 (Broersma and Xiong, [2]) If G ∈ C(5, 2) and n ≥ 13, then G ∈ SL if

and only if G is not contractible to K2,3 or K2,5.

In this chapter, we further study the distribution of the small degree vertices in the

15
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reduction of a graph, and sharpen Theorems 3.1.1 and 3.1.2, as shown in Theorem 3.1.3

and Corollary 3.1.4.

Theorem 3.1.3 If G ∈ C(6, 0), then G ∈ SL if and only if G is not contractible to

K2,3, K2,5 or K2,3(e), where e ∈ E(K2,3).

Note that when n ≥ 6k + 1, C(5, k) ⊆ C(6, 0). So we have

Corollary 3.1.4 If G ∈ C(5, k) and n ≥ 6k + 1, then G ∈ SL if and only if G is not

contractible to K2,3 or K2,5.

We investigate the Hamilton-connectedness of line graphs of graphs in C(l, k) and get

the following.

Theorem 3.1.5 If G ∈ C(6, 0) and n ≥ 7, then L(G) is Hamilton-connected if and only

if κ(L(G)) ≥ 3.

Corollary 3.1.6 If G ∈ C(5, k) and n ≥ max{6k + 1, 6}, then L(G) is Hamilton-

connected if and only if κ(L(G)) ≥ 3.

3.2 Proofs of Theorems 3.1.3 and 3.1.5

Proof of Theorem 3.1.3. Let G′ be the reduction of G. If G′ = K1, then G ∈ SL by

Theorem 2.0.4(iv). Next we suppose that G′ 6= K1. Then G′ is 2-edge-connected and

nontrivial. Denote di = |Di(G
′)|(i ≥ 2).

If d2 +d3 ≥ 7, then we assume that v1, v2, · · · , v7 are the vertices of V (G′) in D2(G
′)∪

D3(G
′), i.e. dG′(vi) ≤ 3 for each i, and the corresponding pre-images are H1, H2, · · · , H7.
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Each Hi is joined to the rest of G by an edge cut consisting of dG′(vi) ≤ 3 edges. By the

hypothesis of Theorem 3.1.3, |V (Hi)| ≥ n

6
, and

n = |V (G)| ≥
7∑

i=1

|V (Hi)| ≥ 7n

6
,

a contraction. Therefore we assume d2 + d3 ≤ 6, and when d2 + d3 = 6, V (G′) =

D2(G
′) ∪D3(G

′). We break the proof into two cases.

Case 1. F (G′) ≤ 2.

By κ′(G′) ≥ 2 and by Theorem 2.0.6, G′ ∈ SL or G′ = K2,s where s ≥ 3 is an odd

integer. In the former case, G ∈ SL by Theorem 2.0.4(iv). In the latter, s = 3 or s = 5

by d2 + d3 ≤ 6.

Case 2. F (G′) ≥ 3.

Note that |V (G′)| =
∑
i≥2

di, 2|E(G′)| =
∑
i≥2

idi. By Theorem 2.0.7(iv), we have the

following

2d2 + d3 ≥ 10 +
∑
i≥5

(i− 4)di. (3.1)

Since d2 + d3 ≤ 6, d2 ≥ 4. We distinguish two cases to complete the proof.

Case 2.1. d2 = 4.

By (3.1) and d2 + d3 ≤ 6, d3 = 2. Thus V (G′) = D2(G
′) ∪ D3(G

′). Let D2(G
′) =

{u1, u2, u3, u4} and D3(G
′) = {v1, v2}. If v1v2 ∈ E(G′), then E(G′) = {u1u2, u2v2, v2u3,

u3u4, u4v1, v1u1, v1v2} by Theorem 2.0.4(ii). Thus G′ ∈ SL and so G ∈ SL. If v1v2 6∈
E(G′), then G′ = K2,3(e), where e ∈ E(K2,3).

Case 2.2. d2 = 5 or 6.

If d2 = 5, then d3 = 0 and di = 0(i ≥ 5) by (3.1). If d2 = 6, then di = 0(i ≥ 3). Thus

G′ ∈ SL and so G ∈ SL.

Proof of Theorem 3.1.5. It is trivial that κ(L(G)) ≥ 3 if L(G) is Hamilton-connected.
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So we only need to prove that L(G) is Hamilton-connected when κ(L(G)) ≥ 3.

Let e1, e2 ∈ E(G). By Theorem 1.0.2, Proposition 1.0.3 and Lemma 2.0.12, we need

to prove G(e1, e2) ∈ CL. Let G′ be the reduction of G(e1, e2). By Theorem 2.0.4(iv), it

suffices to prove that G′ = K1. Suppose that G′ 6= K1. Then G′ is 2-edge-connected and

nontrivial. Denote di = |Di(G
′)|(i ≥ 2).

If d2 ≥ 3, then there exists v ∈ D2(G
′) − {v(e1), v(e2)} such that dG′(v) = 2. Let H

be the pre-image of v in G(e1, e2). Then H is joined to the rest of G(e1, e2), therefore of

G, by an edge-cut consisting of dG′(v) = 2 edges. By the hypothesis of Theorem 3.1.5,

|V (H)| ≥ n

6
> 1. Thus κ(L(G)) ≤ 2, a contradiction. So d2 ≤ 2.

If d2 + d3 ≥ 9, then |D2(G
′) ∪ D3(G

′) − {v(e1), v(e2)}| ≥ 7. We assume that

v1, v2, · · · , v7 are the vertices of V (G′) in D2(G
′)∪D3(G

′)−{v(e1), v(e2)}, i.e. dG′(vi) ≤ 3

for each i, and the corresponding pre-images are H1, H2, · · · , H7. Each Hi is joined to

the rest of G(e1, e2), therefore to the rest of G, by an edge cut consisting of dG′(vi) ≤ 3

edges. By the hypothesis of Theorem 3.1.5, |V (Hi)| ≥ n

6
, and

n = |V (G)| ≥
7∑

i=1

|V (Hi)| ≥ 7n

6
,

a contraction. So d2 + d3 ≤ 8, and when d2 + d3 = 8, V (G′) = D2(G
′) ∪D3(G

′).

Suppose that F (G′) ≥ 3, i.e., 2|V (G′)|− |E(G′)| ≥ 5 by Theorem 2.0.7(iv). Note that

|V (G′)| = ∑
i≥2

di, 2|E(G′)| = ∑
i≥2

idi, we have the following

2d2 + d3 ≥ 10 +
∑
i≥5

(i− 4)di. (3.2)

By (3.2) and d2 + d3 ≤ 8, d2 = 2 and d3 = 6. Thus |V (G′)| = 8. As G′ is 2-edge-

connected nontrivial reduced graph, we have G′ = K2,3 by Lemma 2.0.11, a contradiction.

So F (G′) ≤ 2.

As G′ is 2-edge-connected and d2 ≤ 2, G 6= K2, K2,t(t ≥ 1). Thus by Theorem

2.0.5(iii), G′ = K1, a contradiction.
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3.3 Applications

Theorem 3.1.3 and Corollary 3.1.6 have a number of applications.

Theorem 3.3.1 (Zhan, [27]) Let G be a graph. If κ′(G) ≥ 4, then L(G) is Hamilton-

connected.

Theorem 3.3.2 (Broersma and Xiong, [2]) Let G be a 2-edge-connected simple graph

with n ≥ 13 vertices. If δ(G) ≥ 4 and if

min{max{d(x), d(y)}|xy ∈ E(G)} ≥ n− 2

5
− 1,

then G ∈ SL if and only if G is not contractible to K2,3 or K2,5.

Theorem 3.3.3 Let G be a 2-edge-connected simple graph. If δ(G) ≥ 4 and if

min{max{d(x), d(y)}|xy ∈ E(G)} ≥ n

6
− 1,

then G ∈ SL if and only if G is not contractible to K2,3, K2,5 or K2,3(e).

Proof. Let S be an edge cut of G with |S| ≤ 3, and let G1 and G2 be the two components

of G− S with |V (G1)| ≤ |V (G2)|. It is sufficient to prove that |V (G1)| ≥ n

6
by Theorem

3.1.3. Since δ(G) ≥ 4, G1 has at least an edge, say uv, such that both of u, v are not

incident with any edges of S. By the hypothesis of Theorem 3.3.3,

|V (G1)| ≥ max{d(u), d(v)}+ 1 ≥ n

6

Thus Theorem 3.3.3 follows from Theorem 3.1.3.

Obviously, Theorem 3.3.3 improves Theorem 3.3.2 and the following results.

Corollary 3.3.4 Let G be a 2-edge-connected simple graph with n ≥ 6k + 1 vertices. If

δ(G) ≥ 4 and if

min{max{d(x), d(y)}|xy ∈ E(G)} ≥ n− k

5
− 1,

then G ∈ SL if and only if G is not contractible to K2,3 or K2,5.
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Corollary 3.3.5 G be a 2-edge-connected simple graph. If δ(G) ≥ 4 and if every edge

uv ∈ E(G) satisfies

d(u) + d(v) ≥ n

3
− 2,

then G ∈ SL if and only if G is not contractible to K2,3, K2,5 or K2,3(e).

Corollary 3.3.6 Let G be a 2-edge-connected simple graph of order n > 24. If

δ(G) ≥ n

6
− 1,

then G ∈ SL if and only if G is not contractible to K2,3, K2,5 or K2,3(e).



Chapter 4

Supereulerian planar graphs

4.1 Introduction

In 1989, Catlin [5] conjectured that if F (G) ≤ 3 and if G is 3-edge-connected, then G is

collapsible if and only if the reduction of G is not the Petersen graph. Noting that planar

graphs cannot be contracted to the Petersen graph, we in this chapter prove the following.

Theorem 4.1.1 Let G be a 3-edge-connected planar graph. If F (G) ≤ 3, then G is

collapsible.

l¡
¡

¡¡

@
@

@@

¢
¢
¢

¢
¢
¢l

A
A
A

A
A
A l

t t

t

t

s3

s1 s2

K4(s1, s2, s3)

A
A
A

A
A
A l

¢
¢
¢

¢
¢
¢l

t

t tt

s1 s2

T (s1, s2)

l

¢
¢
¢

¢
¢
¢

A
A
A

A
A
A

l

t t

t

s1 s2

C3(s1, s2)

¢
¢
¢

l¢
¢
¢

¢
¢
¢

l¢
¢
¢

t t

t t

s1 s2

S(s1, s2)

l¡
¡

¡¡

@
@

@@

@
@

@@

¡
¡

¡¡©©©©©©

HHHHHH lt t t

t

t

s1 s2

K2,3(s1, s2)

Figure 4.1

Let si ≥ 1(i = 1, 2, 3) be integers. Denote K4(s1, s2, s3), T (s1, s2), C3(s1, s2), S(s1, s2)

and K2,3(s1, s2) to be the graphs depicted in Figure 4.1, where the si (i = 1, 2, 3) vertices
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and the two vertices connected by the two lines shown in each of the graphs forms a K2,si

graph. Denote

F1 =

{
K4(s1, s2, s3), T (s1, s2), C3(s1, s2), S(s1, s2), K2,3(s1, s2)

∣∣∣∣si ≥ 1 (i = 1, 2, 3) is an integer

}

and F = F1 ∪ {K2,t | t ≥ 2 }. Clearly, each graph G in F is reduced and F (G) ≤ 3.

Theorem 4.1.2 Let G be a 2-edge-connected planar graph. If F (G) ≤ 3, then either G

is collapsible or the reduction of G is a graph in F .

Theorem 4.1.3 Let G be an essentially 3-edge-connected planar reduced graph with κ′(G) ≥
2. If F (G) ≤ 5, then G has a dominating Eulerian subgraph H such that D∗

3(G) ⊆ H.

Applying Theorem 4.1.3, we can improve Theorems 3.1.1 and 3.1.2 within planar

graphs.

Theorem 4.1.4 Let G be a simple planar graph of order n with κ′(G) ≥ 3. If G ∈
C(16, 0), then G is supereulerian.

In [3], Cai considered this problem: Find the best possible bound f(n) for a simple

graph G with n vertices such that if |E(G)| ≥ f(n), then G is supereulerian. Let Q3

denote the cube (K2 × C4) and Q3 − v denote the cube minus a vertex. Cai proved the

following result.

Theorem 4.1.5 (Cai, [3]) Let G be a simple graph of order n ≥ 5 and κ′(G) ≥ 2. If

|E(G)| ≥
(

n− 4

2

)
+ 6,

then exactly one of the following holds:

(i) G is supereulerian.

(ii) G can be contracted to a K2,3.

(iii) G is the graph K2,5 or Q3 − v.
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In [3], Cai conjectured that when restricted to the 3-edge-connected simple graphs,

the lower bound can be improved. In [7] and [11], Catlin and Chen settled this conjecture.

Theorem 4.1.6 (Catlin and Chen, [7], [11]) Let G be a simple graph with n ≥ 11 vertices

and with κ′(G) ≥ 3. If

|E(G)| ≥
(

n− 9

2

)
+ 16,

then G is collapsible.

Graphs contractible to the Petersen graph indicate the sharpness of this result. In

this chapter, we prove the following related results among planar graphs.

Theorem 4.1.7 Let G be a planar graph with n vertices, with κ′(G) ≥ 3 and g(G) ≥ 4.

If |E(G)| ≥ 2n− 5, then G is collapsible.

Theorem 4.1.7 cannot be relaxed to 2-edge-connected planar graphs since K2,t is not

collapsible.

Theorem 4.1.8 Let G be a planar graph with κ′(G) ≥ 3 such that every edge of G is in

a face of degree at most 6. If either G has at most two faces of degree 5 and no faces of

degree bigger than 5, or G has exactly one face of degree 6 and no other faces of degree

bigger than 4, then G is collapsible.

Theorem 4.1.8 is related to a former conjecture of Paulraja ([23], [24]): If G is a

2-connected graph with δ(G) ≥ 3 such that every edge of G lies in a cycle of length at

most 4, then G is supereulerian. This conjecture was proved in [19].

Theorem 4.1.9 If G is a 2-edge-connected simple planar graph with order n ≥ 6 and

|E(G)| ≥ 3n− 8, then F (G) = 0.
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Theorem 4.1.10 If G is a 2-edge-connected simple planar graph with n ≥ 9 vertices and

|E(G)| ≥ 3n− 12 edges, then exactly one of the following holds:

(i) G is supereulerian.

(ii) G has a maximal collapsible subgraph H with order n−4 such that G/H is a K2,3.

In this chapter, we present the proofs of Theorem 4.1.1 and Theorem 4.1.2 in Section

4.2. Theorems 4.1.2 and 4.1.1 will be applied to prove Theorems 4.1.3 and 4.1.4 in

Section 4.3, to prove Theorems 4.1.7 and 4.1.8 in Section 4.4, respectively. The proofs for

Theorems 4.1.9 and 4.1.10 are in Section 4.5.

4.2 Proofs of Theorem 4.1.1 and Theorem 4.1.2

Proof of Theorem 4.1.1. Let G be a 3-edge-connected planar graph with F (G) ≤ 3

and let G′ denote its reduction. By Theorem 2.0.4(iv), we only need to show that G′ = K1.

By contradiction. Suppose that G′ is nontrivial. Since G is 3-edge-connected and

planar, G′ is also 3-edge-connected and planar. Since every spanning tree of G will

become a connected spanning subgraph in any contraction of G, F (G′) ≤ F (G) ≤ 3. We

may assume that G′ is embedded on the plane.

By Theorem 2.0.4(ii) and (iii), G′ is reduced and cannot have any cycles of length 2

or 3, and so G′ is a simple plane graph each of whose face has degree at least 4. Let f

denote the number of faces of G′ and let fi denote the number of faces of G′ having degree

i, where i ≥ 1 is an integer. Note that f1 = f2 = f3 = 0, and so we have

4f +
∞∑
i=5

(i− 4)fi =
∞∑
i=4

ifi = 2|E(G′)|. (4.1)

By (4.1) and by Euler’s formula,

2|E(G′)| = 2|V (G′)|+ 2f − 4 = 2|V (G′)|+ |E(G′)| − 4− 1

2

∞∑
i=5

(i− 4)fi. (4.2)
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Thus |E(G′)| = 2|V (G′)| − 4 − 1

2

∞∑
i=5

(i − 4)fi. On the other hand, since F (G′) ≤ 3 and

by Theorem 2.0.7(iv), |E(G′)| ≥ 2|V (G′)| − 5. It follows that

2|V (G′)| − 5 ≤ |E(G′)| = 2|V (G′)| − 4− 1

2

∞∑
i=5

(i− 4)fi. (4.3)

If |E(G′)| = 2|V (G′)| − 4, then by Theorem 2.0.7(iv), F (G′) = 2, and so by The-

orem 2.0.5(iii) and by the fact that G′ is 3-edge-connected, G′ must be a collapsible

graph. Thus G′ = K1 by Theorem 2.0.4(iv). This contradicts the assumption that G′

is nontrivial. Therefore, to obtain our final contradiction, we only need to show that

|E(G′)| = 2|V (G′)| − 5 is impossible.

If |E(G′)| = 2|V (G′)| − 5, then by (4.3), we have

either f4 = f − 2 and f5 = 2, or f4 = f − 1 and f6 = 1. (4.4)

Since κ′(G′) ≥ 3, we must have f4 ≥ 1. Let C = v1v2v3v4v1 denote a 4-cycle of G′ and

consider G′
π. Since κ′(G′) ≥ 3, G′

π is connected. Moreover,

if κ′(G′
π) ≤ 2, then eπ = w1w2 is in an edge cut of size at most 2 in G′

π. (4.5)

Suppose first that κ′(G′
π) ≥ 2. Then by Theorem 2.0.7(ii), F (G′

π) ≤ 2. It follows

by Theorem 2.0.5(iii) that either G′
π is collapsible, whence G′ is collapsible by Theorem

2.0.7(i), contrary to the assumption that G′ is reduced; or the reduction of G′
π is a K2,t

for some integer t ≥ 2, whence G′ has an edge cut of size 2, contrary to the fact that

κ′(G′) ≥ 3.

Therefore by (4.5), eπ must be the only cut edge of G′
π. Let G′

1 and G′
2 be the

two components of G′
π − eπ with w1 ∈ V (G′

1) and w2 ∈ V (G′
2). Then G′ − E(C) has

two components G1 and G2 with v1, v3 ∈ V (G1) and v2, v4 ∈ V (G2) such that G′
1 can be

obtained from G1 by identifying v1 and v3, and G′
2 can be obtained from G2 by identifying

v2 and v4. Since G′ is reduced, both G1 and G2 are reduced.
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If F (G1) ≤ 2, then by Theorem 2.0.5(iii) and by the fact that G1 is reduced, G1 is

either a K2 or a K2,t, for some integer t ≥ 1. If G1 = K2, then G′ has a 3-cycle, contrary

to Theorem 2.0.4(ii); if G1 = K2,t, then G′ has an edge cut of two edges, contrary to the

assumption that κ′(G′) ≥ 3. Therefore F (G1) ≥ 3. Similarly, F (G2) ≥ 3.

By Theorem 2.0.7(iv), |E(Gi)| ≤ 2|V (Gi)| − 5 for both i = 1 and i = 2. It follows by

F (G′) ≤ 3 and by Theorem 2.0.7(iv) that

2|V (G′)| − 9 = |E(G′)| − 4 =
2∑

i=1

|E(Gi)|

≤ 2(
2∑

i=1

|V (Gi)| − 5) = 2|V (G′)| − 10,

a contradiction. Thus G′ must be a K1 and so G is collapsible.

Proof of Theorem 4.1.2. Suppose that G is not collapsible, and G′ is the reduction

of G. Then G′ 6= K1 and F (G′) ≤ 3. By Theorem 4.1.1, κ′(G′) = 2. We apply induction

on n = |V (G′)| to prove G′ ∈ F .

Clearly, n ≥ 4. If n = 4, then G = K2,2 and the result holds. We suppose that the

result holds for fewer vertices.

Note that κ′(G′) = 2. Let X ⊆ E(G′) be an edge cut of G′ with |X| = 2. Pick an

e ∈ X, and denote [e] = {e′ ∈ E(G′)|{e, e′} is an edge cut of G′} ∪{e}. Then for any

{e1, e2} ⊆ [e], {e1, e2} is also an edge cut of G. Let |[e]| = k ≥ 2. Then there are k

connected subgraphs H1, H2, · · · , Hk such that Hi, Hi+1 (i = 1, 2, · · · , k − 1) and H1, Hk

are joined by one edge in [e](see Figure 4.2), and each Hi (i = 1, 2, · · · , k) is either a K1

or 2-edge-connected.

A
AA

¢
¢¢

¢
¢¢

A
AA

m m

m m

m m

H2 H1

H3 Hk

Figure 4.2
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Thus, we have

k∑
i=1

F (Hi) =
k∑

i=1

(2|V (Hi)| − |E(Hi)| − 2)

= 2
k∑

i=1

|V (Hi)| −
k∑

i=1

|E(Hi)| − 2k

= 2|V (G′)| − (|E(G′)| − k)− 2k = 2|V (G′)| − |E(G′)| − k

= F (G′)− k + 2.

We break it into four cases.

Case 1. k ≥ 5.

Note that F (G′) ≤ 3, we have F (Hi) = 0 (i = 1, 2, · · · , k) and k = 5. Thus Hi = K1

(i = 1, 2, · · · , k) and G′ = C5 = C3(1, 1).

Case 2. k = 4.

Then
4∑

i=1

F (Hi) = F (G′) − 2. If F (G′) ≤ 2, then F (Hi) = 0 (i = 1, 2, 3, 4) and

G′ = C4 = K2,2. If F (G′) = 3, then
4∑

i=1

F (Hi) = 1. Without loss of generality, we assume

that F (H1) = 1. By Theorem 2.0.5(ii), either H1 is nontrivial and collapsible, contrary

to the fact that G′ is reduced, or H1 = K2, contrary to the assumption that κ′(G′) ≥ 2

or k = 4.

Case 3. k = 3.

Then
3∑

i=1

F (Hi) = F (G′)− 1. Note that a triangle is collapsible, we have F (G′) = 3,

and there doesn’t exist some Hi such that F (Hi) = 1. Without loss of generality, we let

F (H1) = 2 and F (H2) = F (H3) = 0. Then H2 = H3 = K1. Note that H1 is 2-edge-

connected, we have H1 = K2,t (t ≥ 2) by Theorem 2.0.5(iii). Thus G′ must be one of the

following graphs shown in Figure 4.3.
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Case 4 k = 2.

Let H1, H2 be the two components of G′ − [e] and we assume that F (H1) ≤ F (H2).

Since
2∑

i=1

F (Hi) = F (G′) ≤ 3, F (H1) ≤ 1. Note that for i = 1, 2, either Hi = K1 or Hi

is 2-edge-connected, we have H1 = K1 by Theorem 2.0.5(ii), and H2 6= K1 since C2 is

collapsible. Therefore F (H2) ≤ 3 and κ′(H2) ≥ 2.

Note that H2 is reduced, we have H2 ∈ F by induction. Thus there exists a vertex

v ∈ V (G′) such that dG′(v) = 2 and v is one vertex of a 4-cycle of G′. Let G1 = G′ − v.

Then G1 ∈ F by induction.

When G1 = K4(s1, s2, s3), there are 4 possible way for v to join G1(see Figure 4.4).

Let {si, sj, sk} = {s1, s2, s3}. Then for the first graph in Figure 4.4, in which case G′ =

K4(si + 1, sj, sk). By Lemma 2.0.8 and Theorem 2.0.7(iii), each of the other graphs in

Figure 4.4 contains a collapsible graph, and so G′ could not be these three graphs.
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Similarly, we can check other 5 cases. If G1 = K2,t (t ≥ 2), then G′ = K2,t+1. If

G1 = T (s1, s2), then G′ ∈ {T (s1 + 1, s2), T (s1, s2 + 1), K4(s1, s2, 1), S(2, s1), S(2, s2)}. If

G1 = C3(s1, s2), then G′ ∈ {C3(s1 + 1, s2), C3(s1, s2 + 1), K2,3(s1, 1), K2,3(s2, 1)}. If G1 =

S(s1, s2), then G′ ∈ {S(s1+1, s2), S(s1, s2+1), T (2, s1), T (2, s2), K4(1, 1, s1), K4(1, 1, s2)}.
If G1 = K2,3(s1, s2), then G′ ∈ {

K2,3(s1 + 1, s2), K2,3(s1, s2 + 1)}.

4.3 Proofs of Theorems 4.1.3 and 4.1.4

The following theorem and lemma are needed in the proof of Theorem 4.1.3.

Theorem 4.3.1 (Chen et al., [13]) If G is a 3-edge-connected planar graph with |V (G)| ≤
23, then G is supereulerian.

Lemma 4.3.2 Let C = v1v2v3v4v1 be a cycle of a graph G with N(vi) − V (C) = {ui}
(i = 1, 2, 3, 4), and with either u1 6= u2 or u1 6= u3. If a1(G) ≤ 2, then a1(Gπ) ≤ 2.

Proof. Let (E1, E2) be a partition of E(G) such that each G[Ei] (i = 1, 2) is acyclic,

and let

E = E(C) ∪ {u1v1, u2v2, u3v3, u4v4}, E ′
1 = E1 − E, E ′

2 = E2 − E

E11 = E ′
1 ∪ {u1v1, u4v4, v1v2, v2v3}, E12 = E ′

2 ∪ {u2v2, u3v3, v3v4, v4v1}
E21 = E ′

1 ∪ {u1v1, u2v2, v2v3, v3v4}, E22 = E ′
2 ∪ {u3v3, u4v4, v1v2, v4v1}

E31 = E ′
1 ∪ {u2v2, u3v3, v3v4, v4v1}, E32 = E ′

2 ∪ {u1v1, u4v4, v1v2, v2v3}
E41 = E ′

1 ∪ {u3v3, u4v4, v1v2, v4v1}, E42 = E ′
2 ∪ {u1v1, u2v2, v2v3, v3v4}

Then for each i = 1, 2, 3, 4, (Ei1, Ei2) is also a partition of E(G) such that each G[Eij]

(j = 1, 2) is acyclic. Let eπ = w1w2 be the new edge in Gπ, and for i = 1, 2, 3, 4, let

E ′
i1 = Ei1 − E(C), E ′

i2 = (Ei2 − E(C)) ∪ {eπ}

Then (E ′
i1, E

′
i2) is a partition of E(Gπ). Suppose that a1(Gπ) ≥ 3. Note that Gπ[E ′

i1]

is acyclic by the construction of (Ei1, Ei2), Gπ[E ′
12], Gπ[E ′

22], Gπ[E ′
32], Gπ[E ′

42] contain
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cycles u2P1u3w1w2u2, u3P2u4w2w1u3, u4P3u1w1w2u4, u1P4u2w2w1u1, respectively, where

P1, P2, P3, P4 respectively are (u2, u3)-path, (u3, u4)-path,(u4, u1)-path and (u1, u2)-path

in G. As either u1 6= u2 or u1 6= u3, G[E2] contains a cycle C ⊆ P1 ∪ P2 ∪ P3 ∪ P4, a

contradiction.

Proof of Theorem 4.1.3. By contradiction, suppose that G is a smallest counterex-

ample. Then G is reduced.

Claim 1. κ′(G) ≥ 3.

Since κe(G) ≥ 3, that is, G is essentially 3-edge-connected, we only need to prove

that dG(v) ≥ 3 for any v ∈ V (G). Suppose that there exists v ∈ V (G) such that

dG(v) = 2. Let e1 = vu1, e2 = vu2. Note that G is reduced, G doesn’t contain tri-

angle. Thus u1u2 6∈ E(G). Let G1 = G/e1. Then κ′(G1) ≥ 2, κe(G1) ≥ 3 and

F (G1) ≤ 5. Note that G is smallest, there exists a dominating Eulerian subgraph

H ′ in G1 such that D∗
3(G1) ⊆ V (H ′). By u1u2 6∈ E(G) and κe(G) ≥ 3, we have

dG(u1) ≥ 3 and dG(u2) ≥ 3. Thus dG1(ui) ≥ 3 (i = 1, 2) and u1, u2 ∈ H. Let

H =

{
H ′, if u1u1 6∈ E(H ′)

G[(E(H ′)− {u1u2}) ∪ {vu1, vu2}], if u1u2 ∈ E(H ′)
. Then H is a dominating

Eulerian subgraph of G such that D∗
3(G) ⊆ H, a contradiction.

Claim 2. κe(G) ≥ 4.

Suppose that S is a 3-edge cut and G1, G2 are two components of G−S with F (G1) ≤
F (G2) and E(G1) 6= ∅, E(G2) 6= ∅. Then F (G1) + F (G2) = F (G) + 1 ≤ 6 by Theorem

2.0.7(iv). Thus we have F (G1) ≤ 3.

If G1 has an cut edge e, let H1 and H2 be two components of G1 − e and H2 be the

component adjacent to at least two edges of S. Then either [V (H1), V (G)−V (H1)]G = e or

[V (H1), V (G)−V (H1)]G is a 2-edge cut in G, contrary to Claim 1. So we have κ′(G1) ≥ 2.

Note that G1 is reduced and |V (G1)| ≥ 2, by Theorem 4.1.2, G1 ∈ F . Since |D2(G1)| ≤ 3

and by planarness of G, G1 = K4(1, 1, 1). Similarly, G2 = K4(1, 1, 1). So G must be the

graph shown in Figure 4.5. Clearly, G is supereulerian, a contradiction.
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Claim 3. G has at least 13 4-faces.

By Claim 1 and Theorem 4.3.1, we have n = |V (G)| ≥ 24. Let x be the number of

4-faces, m the number of the edges, f the number of faces. Then 2m ≥ 4x + 5(f − x).

Thus 2m ≥ 5f − x. Note that n − m + f = 2, we have 5n − 3m ≥ 10 − x. Since

F (G) = 2n−m− 2 ≤ 5, we have x ≥ n− 11 ≥ 13. Thus G has at least 13 4-faces.

Claim 4. No two 4-faces C1 = v1v2v3v4v1 and C2 = v1v2v5v6v1 in G satisfy dG(vi) =

3(i = 1, 2 · · · , 6).

By contradiction. Suppose that there exist two 4-faces C1 = v1v2v3v4v1 and C2 =

v1v2v5v6v1 in G such that dG(vi) = 3 (i = 1, 2 · · · , 6). Let H = G−{v1, v2, · · · , v6}. Then

we can get the new graph (Gπ)π by using π−collapsible 2 times (see the graphs in Figure

4.6).
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Let e = w1w2 denote the new edge in (Gπ)π. Clearly, (Gπ)π is 2-edge-connected,

otherwise, e is a cut edge of (Gπ)π and X = {v1v2, v3v4, v5v6} is a 3-edge cut in G in

which both sides of G − X have edges, contrary to Claim 2. Next we want to prove

that G is 3-edge-connected. Suppose that G is not 3-edge-connected. Then {e, e1} is a

2-edge cut, where e1 = w3w4 ∈ E(H). Let H1, H2 be two components of (Gπ)π − {e, e1},
and w1, w3 ∈ V (H1), w2, w4 ∈ V (H2). Then E(H1 − {w1}) = ∅ and E(H2 − {w2}) = ∅
by Claim 2. Thus N(Gπ)π(w1) = w3 and N(Gπ)π(w2) = w4. Hence V (H) = {w3, w4},
NG(v3) ∩ H = NG(v5) ∩ H = {w3} and NG(v6) ∩ H = NG(v4) ∩ H = {w4}. So G is

supereulerian, a contradiction. Thus G is 3-edge-connected. Clearly, (Gπ)π is planar with

F ((Gπ)π) = F (G) − 2 ≤ 3 by Lemma 4.3.2 and Theorem 2.0.7(iv). By Theorem 4.1.2,

(Gπ)π is supereulerian. Thus G is supereulerian by Theorem 2.0.7(i), a contradiction. So

Claim 4 holds.

Claim 5. Suppose that C = v1v2v3v4v1 is a 4-face of G. Then for i = 1, 2, 3, 4,

dG(vi) = 3.

Let G1 = (G − {v1v2, v3v4})/{v1v4, v2v3} and G2 = (G − {v1v4, v2v3})/{v1v2, v3v4}.
First we prove that either κe(G1) ≥ 3 or κe(G2) ≥ 3. Suppose that κe(Gi) = 2 for i = 1, 2.

Then G must have the structure in Figure 4.7.
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For i = 1, 2, 3, |[V (H ′
i), V (H ′

i+1)]G| = 1 and |[V (H ′
4), V (H ′

1)]G| = 1. Let Hi = H ′
1 ∪ {vi}

(i = 1, 2, 3, 4). Then

4∑
i=1

F (Hi) =
4∑

i=1

(2|V (Hi)| − |E(Hi)| − 2)

= 2n− (m− 8)− 8 = 2n−m = F (G) + 2 ≤ 7.

Note that |V (Hi)| ≥ 2, there are at least three of these Hi’s, say H1, H2, H3, such that

F (Hi) ≤ 2 (i = 1, 2, 3). Since κ′(G) ≥ 3, we have Hi 6= K2,t (i = 1, 2, 3). Thus

H1 = H2 = H3 = K2 by Theorem 2.0.5(iii). This contradicts Claim 4. So without

loss generality, we assume that κe(G1) ≥ 3 and w1, w2 are two new vertices. By the

assumption of G, G1 has a dominating Eulerian subgraph H ′ such that D∗
3(G1) ⊆ H ′. If

either w1 ∈ H ′ or w2 ∈ H ′, then we can always get a dominating Eulerian subgraph H of

G such that D∗
3(G) ⊆ H, it is impossible. Thus w1, w2 6∈ H ′. Therefore Claim 5 holds.

By Claim 3, let C1, C2, C3, C4, C5 be five 4-faces of G. By Claims 4,5, no two of these 4-

faces have common vertices or edges. Applying π−collapsible to each of these five 4-faces,

we get the graph G3 with F (G3) = 0 by Lemma 4.3.2 and Theorem 2.0.7(iv). Note that

G3 is connected, G3 is supereulerian by Theorem 2.0.5(i). Thus G is also supereulerian,

a contradiction.

Proof of Theorem 4.1.4. Let G′ be the reduction of G. If G′ = K1, then G

is supereulerian. Next we suppose that G′ 6= K1. Then G′ is 3-edge-connected and

nontrivial. Denote di = |Di(G
′)| (i ≥ 3).

If d3 ≥ 17, then we assume that v1, v2, · · · , v17 are the vertices of V (G′) in D3(G
′), i.e.

dG′(vi) = 3 for each i, and the corresponding pre-images are H1, H2, · · · , H17. Each Hi is

joined to the rest of G by an edge cut consisting of dG′(vi) = 3 edges. By the hypothesis

of Theorem 4.1.4, |V (Hi)| ≥ n

16
, and

n = |V (G)| ≥
17∑
i=1

|V (Hi)| ≥ 17n

16
,

a contradiction. So d3 ≤ 16.
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By Theorem 4.1.3, we only need to consider F (G′) ≥ 6. Note that |V (G′)| =
∑
i≥3

di,

2|E(G′)| =
∑

v∈V (G)

dG(v) =
∑
i≥3

idi, and F (G′) = 2|V (G′)| −|E(G′)| − 2, we have the

following

d3 ≥ 16 +
∑
i≥5

(i− 4)di.

Thus n = d3 = 16. By Theorem 4.3.1, G is supereulerian.

4.4 Proofs of Theorems 4.1.7 and 4.1.8

We shall apply Theorem 4.1.1 to prove both Theorems 4.1.7 and 4.1.8. First, we need

one more lemma in this section.

Lemma 4.4.1 Let G be a planar graph such that every face of G has degree at least 4.

Then |E(G)| ≤ 2|V (G)| − 4.

Proof. Let f denote the number of faces of G. Since every face of G has degree at least

4, 4f ≤ 2|E(G)| and so the lemma follows from Euler’s formula.

Proof of Theorem 4.1.7. Let G be a planar graph with κ′(G) ≥ 3 and with n vertices.

Assume that |E(G)| ≥ 2n− 5. Let G′ denote the reduction of G. By Theorem 2.0.4(iv),

it suffices to show G′ = K1.

By contradiction, assume that G′ is nontrivial. Then by Theorem 2.0.4(ii), G′ also

has girth at least 4. Note that G′ is planar and κ′(G′) ≥ 3, let H1, · · ·Hl denote the

nontrivial maximal collapsible subgraphs of G and let p denote the number of vertices of

G′. Then by Lemma 4.4.1, each |E(Hi)| ≤ 2|V (Hi)| − 4,

2n− 5 ≤ |E(G)| =
l∑

i=1

|E(Hi)|+ |E(G′)| ≤ 2
l∑

i=1

|V (Hi)| − 4l + |E(G′)|,

and so |E(G′)| ≥ 2p− 5 + 2l. By Theorem 2.0.5(iii) and κ′(G′) ≥ 3, we have F (G′) ≥ 3.

Thus, by Theorem 2.0.7(iv), 2p− 5 ≥ |E(G′)| ≥ 2p− 5 + 2l, and so l = 0 and F (G′) = 3.
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Therefore by Theorem 4.1.1, G′ must be collapsible, contrary to the fact that G′ does not

have nontrivial collapsible subgraphs. This proves Theorem 4.1.7.

Proof of Theorem 4.1.8. Let G′ be the reduction of G. Again we argue by contra-

diction and assume that G′ 6= K1. Note that κ′(G′) ≥ 3, by Euler’s formula, by Theorem

2.0.7(iv) and by (4.1) in the process of the proof of Theorem 4.1.1, one concludes that

F (G′) = 3 and so Theorem 4.1.8 follows from Theorem 4.1.1.

4.5 Proofs of Theorems 4.1.9 and 4.1.10

A few more lemmas and a former theorem of Nash-Williams and Tutte are needed in the

proofs in this section.

Theorem 4.5.1 (Nash-Williams [21] and Tutte [26]) A graph G = (V, E) contains l

edge-disjoint spanning trees if and only if for each partition (V1, V2, · · · , Vk) of V , the

number of edges which have end in different parts of the partition is at least l(k − 1).

Proof of Theorem 4.1.9. Suppose V = (V1, V2, · · · , Vk) is any partition of V .

Without loss of generality, let |V1| = |V2| = · · · = |Vl| = 1, |Vl+1| = · · · = |Vl+m| = 2,

and for l + m + 1 ≤ j ≤ k, |Vj| ≥ 3. Since G is a 2-connected simple planar graph,

|E(G[Vj])| ≤ 3|Vj| − 6 for l + m + 1 ≤ j ≤ k; |E(G[Vi])| ≤ 1 for l + 1 ≤ i ≤ l + m; and

E(G[Vj]) = ∅ for 1 ≤ j ≤ l. Then, we have

∑
1≤i<j≤k

|[Vi, Vj]G| = |E(G)| −
k∑

j=1

|E(G[Vj])|
≥ 3n− 8−m− [3(n− 2m− l)− 6(k − l −m)]

= 6k − 3l −m− 8

= 2(k − 1) + 4k − 3l −m− 6.

We consider the following cases.
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Case 1. l = 0.

By n ≥ 6 and k ≥ 2, 4k − 3l −m− 6 = 3k + (k −m)− 6 ≥ 0.

Case 2. m = 0.

If l = k, then 4k−3l−m−6 = k−6 ≥ 0 since k = n ≥ 6. If l < k, then 4k−3l−m−6 =

3(k − l) + k − 6 ≥ 0 except for l = 1, k = 2. But when l = 1, k = 2, since G is a

2-edge-connected simple graph, |[V1, V2]G| ≥ 2 = 2(k − 1).

Case 3. l > 0 and m > 0.

If k = l + m, then 4k − 3l −m − 6 = 3m + l − 6 = (2m + l) + m − 6 = n + m − 6 ≥ 0

since n = 2m + l ≥ 6. If k > l + m, then k − l ≥ m + 1 ≥ 2 and k −m ≥ 0. It follows

that 4k − 3l −m− 6 = 3(k − l) + (k −m)− 6 ≥ 0.

Therefore, in any case,
∑

1≤i<j≤k

|[Vi, Vj]G| ≥ 2(k − 1), and so G must have two edge-

disjoint spanning trees by Theorem 4.5.1.

We shall prove a stronger result than Theorem 4.1.10, as stated below.

Theorem 4.5.2 If G is a 2-edge-connected simple planar graph with n ≥ 9 vertices and

with |E(G)| ≥ 3n− 12 edges, then exactly one of the following holds:

(i) G is collapsible.

(ii) The reduction of G is a 4-cycle.

(iii) The reduction of G is isomorphic to K2,3 with exactly one nontrivial vertex whose

pre-image is a maximal planar graph of n− 4 vertices.

We need two more lemmas.

Lemma 4.5.3 If G is a simple planar graph with n ≥ 9 vertices and with |E(G)| ≥
3n− 12, then G is not reduced.

Proof. If G is reduced, then by Theorem 2.0.4(ii) and Lemma 4.4.1, 2n− 4 ≥ |E(G)| ≥
3n − 12, whence n ≤ 8, contrary to the assumption that n ≥ 9. Therefore, G is not

reduced.
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Lemma 4.5.4 Let C > 0 be a constant, and let G be a simple planar graph with n vertices

and with l nontrivial maximal collapsible subgraphs. Let G′ denote the reduction of G. If

|E(G)| ≥ 3n− C, then

|E(G′)| ≥ 3|V (G′)| − C + 3l.

Proof. Let H1, · · ·Hl be nontrivial maximal collapsible subgraphs of G. Let G′ =

G/(
l⋃

i=1

E(Hi)) be the reduction of G with n′ vertices. Since each Hi is a nontrivial planar

graph for each i with 1 ≤ i ≤ l,

|E(Hi)| ≤ 3|V (Hi)| − 6. (4.6)

Note that |V (G′)| = n−
l∑

i=1

|V (Hi)|+ l. It follows from (4.6) that

|E(G′)| = |E(G)| −
l∑

i=1

|E(Hi)| ≥ |E(G)| −
l∑

i=1

(3|V (Hi)| − 6)

≥ 3n− C − 3(n− |V (G′)|+ l) + 6l = 3|V (G′)| − C + 3l.

This proves the lemma.

Proof of Theorem 4.5.2. Since the 4-cycle and K2,3 are not collapsible, (i),(ii) and

(iii) are mutually exclusive. We assume that both Theorem 4.5.2(i) and Theorem 4.5.2(ii)

are false, and want to prove that Theorem 4.5.2(iii) must hold.

By Lemma 4.5.3, G is not reduced. Let H1, · · ·Hl be the nontrivial maximal collapsible

subgraphs of G. Let G′ = G/(
l⋃

i=1

E(Hi)) be the reduction of G with n′ vertices. By

Theorem 2.0.4(iii), G′ is reduced and so by Lemma 4.5.4 with C = 12 and l ≥ 1, we have

|E(G′)| ≥ 3|V (G′)| − 12 + 3l. (4.7)

By Theorem 2.0.4(ii) and Lemma 4.4.1,

2|V (G′)| − 4 ≥ |E(G′)|. (4.8)

It follows from (4.7) and (4.8) that

2|V (G′)| − 4 ≥ |E(G′)| ≥ 3|V (G′)| − 12 + 3l. (4.9)
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By (4.9), |V (G′)| ≤ 8−3l. Since any 2-edge-connected graph with 3 vertices is collapsible,

and since any simple graph with 4 vertices is either collapsible or is isomorphic to the

4-cycle, we must have l = 1 and |V (G′)| = 5. Therefore, equalities must hold everywhere

in (4.9), and so by Theorem 2.0.5(iii) and by |V (G′)| = 5, G′ ∼= K2,3 with exactly one

nontrivial vertex, named by H.

Note that |E(H)| ≥ |E(G)| − 6 ≥ 3n − 18 and that |V (H)| = n − 4. It follows that

|E(H)| ≥ 3(n − 4) − 6 = 3|V (H)| − 6, and so H must be a maximal planar graph with

n− 4 vertices.

Proof of Theorem 4.1.10. Note that 4-cycles are supereulerian, and so Theorem

4.1.9 follows from Theorem 2.0.4(iv) and Theorem 4.5.2.



Chapter 5

Hamiltonicity in 3-connected

claw-free graphs

5.1 Introduction

Let H be the line graph L(G) of a graph G. Then the order ν(H) of H is equal to the

number m(G) of edges of G, and δ(H) = min{dG(x) + dG(y) − 2|xy ∈ E(G)}. If L(G)

is k-connected, then G is essentially k-edge-connected, which means that the only

edge-cut sets of G having less than k edges are the sets of edges incident with some vertex

of G.

A graph H is claw-free if it does not contain K1,3 as an induced subgraph. In

[25], Ryjác̆ek defined the closure cl(H) of a claw-free graph H to be one obtained by

recursively adding edges to join two nonadjacent vertices in the neighborhood of any

locally connected vertex of H, as long as this is possible.

Theorem 5.1.1 (Ryjác̆ek, [25]) Let H be a claw-free graph and cl(H) its closure. Then

(i) cl(H) is well-defined, and κ(cl(H)) ≥ κ(H),

(ii) there is triangle-free graph G such that cl(H) = L(G),

(iii) both graphs H and cl(H) have the same circumference.

39
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As a corollary of Theorem 5.1.1, a claw-free graph H is hamiltonian if and only if

cl(H) is hamiltonian, and so H is said to be closed if H = cl(H).

Many works have been done to give sufficient conditions for a claw-free graph H

to be hamiltonian in terms of its minimum degree δ(H). These conditions depend on

the connectivity κ(H). If κ(H) = 4, Matthews and Sumner [22] conjectured that H is

hamiltonian and this conjecture is still open. When κ(H) = 2, Kuipers and Veldman

[18], and independently Favaron, Flandrin, Li and Ryjác̆ek [14], proved that if H is a

2-connected claw-free graph with sufficiently large order ν, and if δ(H) ≥ ν+c
6

(where c is a

constant), then H is hamiltonian except a member of ten well-defined families of graphs.

When κ(H) = 3, the following have been proved and proposed.

Theorem 5.1.2 (Kuipers and Veldman, [18]) If H is a 3-connected claw-free simple

graph with sufficiently large order ν, and if δ(H) ≥ ν+29
8

, then H is hamiltonian.

Theorem 5.1.3 (Favaron and Fraisse, [15]) If H is a 3-connected claw-free simple graph

with order ν, and if δ(H) ≥ ν+37
10

, then H is hamiltonian.

Conjecture 5.1.4 (Kuipers and Veldman, [18], see also [15]) Let H be a 3-connected

claw-free simple graph of order ν with δ(H) ≥ ν+6
10

. If ν is sufficiently large, then H is

hamiltonian.

The main purpose of this chapter is to prove Conjecture 5.1.4. In fact, we proved a

somewhat stronger result.

Theorem 5.1.5 If H is 3-connected claw-free simple graph with ν ≥ 196, and if δ(H) ≥
ν+5
10

, then either H is hamiltonian, or δ(H) = ν+5
10

and cl(H) is the line graph of G

obtained from the Petersen graph P10 by adding ν−15
10

pendant edges at each vertex of P10.

5.2 Proof of Theorem 5.1.5

The proof of Theorem 5.1.5 needs the following Theorem and Lemma.
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Theorem 5.2.1 (Chen, Lai, Li, Li and Mao, [13]) Let G be a 3-edge-connected graph

and let S ⊆ V (G) be a vertex subset such that |S| ≤ 12. Then either G has a eulerian

subgraph C such that S ⊆ V (C), or G can be contracted to the Petersen graph in such a

way that the preimage of each vertex of the Petersen graph contains at least one vertex in

S.

Lemma 5.2.2 (Favaron and Fraisse, [15]) Let S be a set of vertices of a graph G con-

tained in a eulerian subgraph of G and let C be a maximal eulerian subgraph of G con-

taining S. Assume that some component A of G− V (C) is not an isolated vertex and is

related to C by at least r edges. Then

(i). G contains a matching T of r + 1 edges such that at most 2r edges of G are adjacent

to two distinct edges of T .

(ii). The number m(G) of edges of G is related to the minimum degree δ(H) of the line

graph H of G by m(G) ≥ (r + 1)δ(H)− r + 1.

Portion of the proof of Theorem 5.1.5 (the treatment to deal with Claims 1 and 2) is

a modification of Favaron and Fraisse’s proof for Theorem 1 in [15], with Theorem 5.2.1

being utilized in our proof.

Proof of Theorem 5.1.5. By Theorem 5.1.1, the graph H is hamiltonian if and only

if its closure cl(H) is hamiltonian. As ν(cl(H)) = ν(H), δ(cl(H)) ≥ δ(H), and cl(H)

is 3-connected, the graph cl(H) satisfies the same hypotheses as H. Hence it suffices to

prove Theorem 5.1.5 for closed claw-free graphs.

By Theorem 5.1.1, we may assume that H is the line graph of a triangle-free graph

G (i.e., H = L(G)), and suppose that H is 3-connected and satisfies δ(H) ≥ ν(H)+5
10

.

Assume by contradiction that neither of the conclusions of Theorem 5.1.5 holds. By

Theorem 1.0.1, G does not contain a dominating eulerian graph.

Let B = {v ∈ V (G)|dG(v) = 1, 2}. Since H is 3-connected, the sum of degrees

of the two ends of each edge in G is at least 5 and thus the set B is independent.

Let X0 = NG(B). We name the vertices of X0 as x1, x2, · · · , xp in the following way.

Assume the vertices x1, · · · , xi are already defined or else put i = 0. Let yi+1 denote



CHAPTER 5. HAMILTONICITY IN 3-CONNECTED CLAW-FREE GRAPHS 42

a vertex of B which is adjacent to some vertex of X0 − {x1, · · · , xi}. Either yi+1 has

exactly one neighbor in X0 − {x1, · · · , xi} and we name it xi+1, or yi+1 has exactly two

neighbors in X0−{x1, · · · , xi} and we name them xi+1 and xi+2 and put yi+2 = yi+1. Let

Y0 = {y1, · · · , yp}. We note that if 1 ≤ i < j ≤ p, then yiyj 6∈ E(G) and yixj 6∈ E(G),

except for the edges yixi+1 when yi = yi+1; and that the components of the subgraph

induced by the edges xiyi, 1 ≤ i ≤ p, are paths of length 1 or 2.

Consider now a matching M of G formed by q − p edges xiyi of G, p + 1 ≤ i ≤ q,

considered in this order and such that

(i) the sets X0, Y0, X = {xp+1, · · · , xq} and Y = {yp+1, · · · , yq} are pairwise disjoint,

(ii) for p + 1 ≤ i < j ≤ q, yiyj, yixj 6∈ E(G).

We choose this matching as large as possible subject to the conditions (i) and (ii).

Note that by the definition of X0 and Y0, the whole set B is disjoint from X ∪Y and that

Property (ii) holds for any i and j with 1 ≤ i < j ≤ q.

Let J be the set of indices j between p + 1 and q such that yj is adjacent to some

vertex z 6∈ X0 ∪ Y0 ∪ X ∪ Y with ykz 6∈ E(G) for 1 ≤ k < j. For each j ∈ J we

choose such a vertex zj and we put I = {p + 1, · · · , q} − J . Let XI = {xi ∈ X|i ∈ I},
XJ = {xi ∈ X|i ∈ J}, YI = {yi ∈ Y |i ∈ I} and YJ = {yi ∈ Y |i ∈ J}.

Claim 1. (Favaron and Fraisse, [15]) The set S = X0 ∪XI ∪ YJ is not contained in any

eulerian subgraph of G.

Proof. Suppose Claim 1 is false and let C be a maximal eulerian subgraph of G

containing S = X0 ∪XI ∪ YJ and R = V (G)− V (C). By the assumption that G has no

dominating eulerian subgraphs, at least one component A of G[R] is not a single vertex.

This component A is disjoint from Y0 since the vertices of Y0 are isolated in G[R].

Suppose first that every vertex of A has a neighbor in C. Then, if uv is an edge of A

and if s denotes the number of edges between A and C, s ≥ dC(u)+dC(v)+ |A|−2. Since

G is triangle-free, dA(u)+ dA(v) ≤ |A| and thus dG(u)+ dG(v) = dC(u)+ dC(v)+ dA(u)+

dA(v) ≤ dC(u) + dC(v) + |A|. Hence s ≥ dG(u) + dG(v)− 2 ≥ δ(H). Apply Lemma 5.2.2

with r = δ(H) to conclude that the number of edges of G satisfies m(G) ≥ δ2(G) + 1.

Since δ(H) ≥ ν(H)+5
10

, then m(G) = ν(H) ≤ 10δ(H)− 5, and so δ2(H) + 1 ≤ 10δ(H)− 5,
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contrary to the hypothesis that ν(H) ≥ 196.

Therefore A contains a vertex z such that NG(z) ⊆ A. Then z 6∈ X0∪Y0∪X ∪Y and

the neighbors of z are all in YI ∪XJ ∪ (R− (Y0 ∪ YI ∪XJ)).

If z has a neighbor in YI , let i be the least index such that yi ∈ Yi and zyi ∈ E(G).

Since z has no neighbor in YJ , zyk 6∈ E(G) for all k < i, in contradiction to the definition

of I. Hence z has no neighbor in YI , and thus in Y .

If z has a neighbor in XJ , let xj be the vertex of NG(z) ∩ XJ with the largest

index. Consider the ordered sets X ′ = {xp+1, · · · , xj−1, xj, zj, xj+1, · · · , xq} and Y ′ =

{yp+1, · · · , yj−1, z, yj, yj+1, · · · , yq}. Then vertex z is neither adjacent to any xk with

k > j by the definition of xj and since z has no neighbor in XI , nor to any vertex of

Y as said above. The vertex zj is not adjacent to any vertex yk with k < j by the choice

of zj. If zzj 6∈ E(G), then the sets X ′ and Y ′ define a matching M ′ which satisfies

(i) and (ii), and thus which contradicts the maximality of M . If zzj ∈ E(G), then the

eulerian subgraph G[(E(C) − E(C ′)) ∪ (E(C ′) − E(C))], with C ′ = yjzjzxjyj, satisfies

V (C) ∩ V (C ′) = {yj} since z has no neighbor in C, and thus contradicts the maximality

of C. Hence NG(z) ∩XJ = ∅ and z has no neighbor in X.

Finally if z has a neighbor t in R− (Y0∪YI ∪XJ), then the matching M ′′ correspond-

ing to the ordered sets X ′′ = {t, xp+1, · · · , xq} and Y ′′ = {z, yp+1, · · · , yq} satisfies the

conditions (i) and (ii) since z has no neighbor in X ∪ Y . This contradicts the maximality

of M and achieves the proof of Claim 1.

Claim 2. (Favaron and Fraisse, [15]) G must be contractible to the Petersen graph.

Proof. By contradiction. Suppose that G can not be contracted to the Petersen graph.

Let G1 be the graph or multigraph obtained from G by deleting the vertices of degree 1

or 2 and replacing each path ayb where dG(y) = 2 by the edge ab. Since G is essentially

3-edge-connected, G1 is 3-edge-connected. Moreover, to each eulerian subgraph C of G1

corresponds a eulerian subgraph of G containing V (C). Since S ∩ B = ∅, the set S is

contained in V (G1). Since S is not contained in any eulerian subgraph of G by Claim

1, S is not contained in any eulerian subgraph of G1. By Theorem 5.2.1, |S| ≥ 13. Let

F = {xiyi|1 ≤ i ≤ 13}, P = {xi|1 ≤ i ≤ 13} and Q = {yi|1 ≤ i ≤ 13}. We suppose that
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F consists of l paths of length 2 with 0 ≤ l ≤ 6 and 13 − 2l edges of a matching. Then

|P | = 13 and |Q| = 13 − l. We know that Q is independent, that yixj 6∈ E(G) − F for

any yi ∈ Q and xj ∈ P with 1 ≤ i < j ≤ 13, and that G is triangle-free. Hence, two

different edges of F are joined by at most one edge of G which is of type xixj or xiyj

with 1 ≤ i < j ≤ 13. More precisely, we can give an upper bound on the number µ of

edges of G which are adjacent to two different edges of F . For a given value of l, this

number can be maximum if the l paths of F occur with smaller indices than those of the

13 − 2l edges of the matching. This is due to the fact that the l vertices yi belonging

to paths of length 2 have degree 2 and thus they cannot be adjacent by an edge not

in F to any vertex xi with i < j. When this condition is fulfilled, there are at most

l2 edges between the vertices x1, x2, · · · , x2l (since the number of edges of a triangle-

free graph of order 2l is at most (2l)2/4), 2l(13 − 2l) edges of type xiyj between the

sets {x1, x2, · · · , x2l} and {y2l+1, y2l+2, · · · , y13}, and (13−2l)(13−2l−1)
2

edges of type xixj or

xiyj with i < j between the vertices of the set {x2l+1, · · · , x13, y2l+1, · · · , y13}. Then µ ≤
l2+2l(13−2l)+ (13−2l)(13−2l−1)

2
= l−l2+78. Counting the edges of G−F adjacent to some

edge of F , we find at least (13−2l)δ(H) edges adjacent to an edge of a matching of F and

2l(δ(H)−1) edges adjacent to an edge of a path of length 2 (since each vertex yi on such a

path has degree 2 in G). At most l−l2+78 of these edges have their two endvertices in P∪Q

and are thus counted twice. Hence m(G) ≥ (13−2l)δ(H)+2l(δ(H)−1)−(l−l2+78)+13,

that is ν(H) = m(G) ≥ 13δ(H) + l2 − 3l − 65 ≥ 13δ(H) − 67 ≥ 10δ(H) − 4 since l is

an integer between 0 and 6 and ν(H) ≥ 196. This contradicts to the hypothesis that

δ(H) ≥ ν(H)+5
10

, and so Claim 2 must hold.

By Claim 2, G can be contracted to the Petersen graph P10. Let v1, v2, · · · , v10 be the

ten vertices of the Petersen graph P10, and Wi be the preimage of vi (i = 1, 2, · · · , 10).

Denote SV = {v ∈ V (G)|dG(v) ≥ 12}. Since dG(u) + dG(v) − 2 ≥ δ(H) ≥ 21 for every

edge e = uv ∈ E(G), we have either dG(u) ≥ 12 or dG(v) ≥ 12. So we have

for every edge e = uv ∈ E(G), either u ∈ SV or v ∈ SV . (5.1)

Moreover, if u, v 6∈ SV , then uv 6∈ E(G). By the hypothesis of Theorem 5.1.5 that H is

3-connected, we have

G is essentially 3-edge-connected. (5.2)



CHAPTER 5. HAMILTONICITY IN 3-CONNECTED CLAW-FREE GRAPHS 45

Let W ∈ {Wi | 1 ≤ i ≤ 10}. Note that G is contracted to P10. Then |NW (V (G) −
V (W ))| = 3. If for any two vertices w1, w2 ∈ NW (V (G) − V (W )), there is a dominating

(w1, w2)-trail in W , then say W is dominatable.

Claim 3. Let W ′ be a graph obtained from W by deleting the vertices of degree 1. If

E(W ′) 6= ∅, then W ′ is 2-edge-connected. Therefore W ′ contains some cycle.

Proof. Since G is contracted to the P10 and W is the preimage of some vertex vi, we

may assume that [V (W ), V (G)−V (W )]G = {e1, e2, e3}, where e1, e2, e3 are edges adjacent

to vi in P10. Suppose that W ′ contains a cut-edge e = z1z2. Then e is also a cut-edge

of W . Let (U1, V1) be the partition of V (W ) such that [U1, V1]W = {e} and z1 ∈ U1 and

z2 ∈ V1. Since z1, z2 ∈ V (W ′), we have dW (z1) ≥ 2 and dW (z2) ≥ 2. Thus E(G[U1]) 6= ∅
and E(G[V1]) 6= ∅. Note that [V (W ), V (G)−V (W )]G = {e1, e2, e3}. We may assume that

the number of edge joining U1 and V (G)−V (W ) is 1, say e1. Then {e1, e} is an essential

edge-cut in G, contrary to (5.2). So Claim 3 holds.

Claim 4. If α′(W ) = 1, then W = K1,p for some p ≥ 1. Therefore all three edges in

[V (W ), V (G) − V (W )]G must be incident with the vertex of K1,p with degree p, and so

H1 is dominatable.

Proof. Since W is a connected triangle-free graph and α′(W ) = 1, G is acyclic. By

Claim 3 and α′(W ) = 1, W = K1,p for some p ≥ 1.

Claim 5. Suppose that α′(W ) = t ∈ {2, 3, · · · , 5} and {u1a1, u2a2, · · · , utat} is a match-

ing in W . Suppose that ui ∈ SV (i = 1, 2, · · · , t). Then V (W ) ∩ SV = {u1, u2, · · · , ut}
and E(W − {u1, u2, · · · , ut}) = ∅.

Proof. Let A = {u1, · · · , ut, a1, · · · , at}, A1 = A− ui and A2 = A− ai. By α′(W ) = t,

E(W −A) = ∅. Note that G is triangle-free and SV = {v ∈ V (G)|dG(v) ≥ 12}. For each

z ∈ V (W )− A, dW (z) ≤ 5 and so dG(z) ≤ 8. Thus z 6∈ SV .

Since G does not contain a triangle and α′(W ) = t ≤ 5, by dG(ui) ≥ 12, we have

NW (ui)− A1 6= ∅. Thus NW (ai) ⊆ A2 (otherwise, {u1a1, · · · , ui−1ai−1, ui+1ai+1, · · · , utat,

uiu, aia} is a matching of W , where u ∈ NW (ui) − A1 and a ∈ NW (ai) − A2, contrary

to the assumption that α′(W ) = t). Since G is triangle-free, we have dW (ai) ≤ 5,
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and so dG(ai) ≤ 8. Thus ai 6∈ SV . Therefore SV ∩ V (W ) = {u1, u2, · · · , ut}, and

E(W − {u1, u2, · · · , ut}) = ∅.

Claim 6. If α′(W ) = t ∈ {2, 3, 4}, then W is dominatable.

Proof. Suppose that α′(W ) = t and {u1a1, · · · , utat} is a matching in W . Without loss

of generality, we assume that ui ∈ SV(i = 1, 2, · · · , t) by (5.1). By Claim 5, SV∩V (W ) =

{u1, u2, · · · , ut}, and E(W − {u1, u2, · · · , ut}) = ∅. Let w1, w2, w3 ∈ NW (V (G) − V (W ))

and w1z1, w2z2, z3w3 ∈ [V (W ), V (G) − V (W )]G. If w1 = w2 and dW (w1) = 1, then

{z3w3, w1x} is an essential edge-cut in G for some x ∈ NW (w1), contrary to (5.2). So we

have dW (w1) ≥ 2 if w1 = w2.

Suppose, by contradiction, that W does not exist a dominating (w1, w2)-trail. If

w1 6= w2, we let K1 = W + {w1w, w2w} where w is a new vertex; if w1 = w2, we let

K1 = W and w = w1. Let K = K1 − D1(K1). Then u1, · · · , ut, w ∈ V (K), and K is

2-edge-connected by Claim 3. Let S = {u1, · · · , ut}∪{w}. Then K−S is edgeless, and K

does not have an S-eulerian subgraph. By Theorem 2.0.13, K is contractible to a member

L ∈ F ( see Figures 2.4, 2.5, 2.6) such that S intersects the preimage of every vertex in

B(L). Note that for each L ∈ F , dL(bi) = 2 (i = 1, 2, 3) and the set of degree 2 vertices

is independent. Without loss of generality, we assume that the preiamges of b1, b2 do not

contain w.

Note that [V (W ), V (G) − V (W )]G = {w1z1, w2z2, z3w3}. Suppose that w ∈ V (L).

Then w1, w2 ∈ V (L). If w1 6= w2, then dL(w) = 2. Thus w1, w2 6∈ {b1, b2}. If w1 = w2,

then w1 = w2 = w. Thus w1, w2 6∈ {b1, b2} still hold. Since either w3 6∈ V (PI(b1))

or w3 6∈ V (PI(b2)), we may assume that w3 6∈ V (PI(b1)). Thus [V (PI(b1)), V (G) −
V (W )] = ∅ and the set of two edges adjacent to V (PI(b1)) is an essential edge-cut of

G, contrary to (5.2). So w 6∈ V (L). We assume that the preimage of some bi(6∈ {b1, b2})
contains w. Thus w1, w2 6∈ V (PI(bi))(i = 1, 2). Therefore either |[V (PI(b1)), V (G) −
V (W )]| = 0 or |[V (PI(b2)), V (G) − V (W )]| = 0. Without loss of generality, we assume

that |[V (PI(b1)), V (G) − V (W )]| = 0. Then the set of two edges adjacent to V (PI(b1))

is an essential edge-cut of G, contrary to (5.2).

Claim 7. If α′(W ) = t ≥ 1, then |E(W )| ≥ tδ(H) + 2t− t2 − 3.
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Proof. Let {u1v1, · · · , utvt} be a matching in W . Then E(W−{u1, · · · , ut, v1, · · · , vt}) =

∅, and for any pair of uivi, ujvj(i 6= j), |[{ui, vi}, {uj, vj}]W | ≤ 2 since W does not contain a

triangle. Since for
∑

v∈V (W )

dW (v), the edges of uivi and the edges in [{ui, vi}, {uj, vj}]W are

counted twice, and since |[V (W ), V (G)−V (W )]G| = 3, we have |E(W )| = ∑
v∈V (W )

dW (v)−
|{u1v1, u2v2, · · · , utvt}| −

∑
i6=j

|[{ui, vi}, {uj, vj}]W | ≥ (
∑

v∈V (W )

dG(v) − 3) − t − 2(t
2). Since

δ(H) ≤ dG(ui) + dG(vi)− 2 for each uivi, we have |E(W )| ≥ t(δ(H) + 2)− 3− t− 2(t
2) =

tδ(H) + 2t− t2 − 3.

Now we finish the proof of Theorem 5.1.5. Let |{vi|vi is a trivial vertex in P10}| = s.

By (5.1), the set of all trivial vertices in P10 is independent. Since α′(P10) = 4, we have

0 ≤ s ≤ 4. If s = 0, then each vi is nontrivial vertex. Thus |E(Wi)| ≥ δ(H) − 2 by

Claim 7. Therefore m(G) =
10∑
i=1

|E(Wi)|+ 15 ≥ 10(δ(H)− 2) + 15 = 10δ(H)− 5. By the

hypothesis of Theorem 5.1.5, we have δ(H) = ν(H)+5
10

, |E(Wi)| = δ(H) − 2, α′(Wi) = 1

and Wi = K1,p, where p = δ(H)− 2 = ν(H)−15
10

.

If s ≥ 1, without loss of generality, we assume that v1 is trivial. Since P10 − v1 has

a spanning cycle, there exists a Wi, say W10, such that α′(W10) ≥ 5 by Claims 4 and 6.

If s ≤ 3, then m(G) =
10∑
i=1

|E(Wi)| + 15 ≥ (10− s− 1)(δ(H)− 2) + (5δ(H)− 18) + 15 ≥
6(δ(H)−2)+5δ(H)−3 = 11δ(H)−15 ≥ 10δ(H)−4. Thus δ(H) ≤ ν(H)+4

10
, a contradiction.

So s = 4. By Claims 3, 6 and δ(H) ≥ ν(H)+5
10

, α′(W10)) = 5. If there exists some

Wj(j 6= 10) such that α′(Wj) ≥ 2, then m(G) =
10∑
i=1

|E(Wi)|+ 15 ≥ |E(W10)|+ |E(Wj)|+
4(δ(H)− 2) + 15 = (5δ(H)− 18) + (2δ(H)− 3) + 4δ(H) + 7 = 11δ(H)− 17 ≥ 10δ(H) + 4,

a contradiction. So the number of Wi with α′(Wi) = 1 is 5. Without loss of generality, we

assume that α′(Wi) = 1(i = 5, 6, 7, 8, 9) and α′(W10) = 5. Let {e1f1, e2f2, e3f3, e4f4, e5f5}
be a matching of W10 and B = {e1, · · · , e5, f1, · · · , f5} and Z = W10[B]. By (2), we

assume that ei ∈ SV(i = 1, 2, · · · , 5). By Claim 5, SV ∩ V (W10) = {e1, e2, · · · , e5}, and

E(W10 − {e1, e2, · · · , e5}) = ∅.
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If |E(Z)| ≤ 16, then |E(W10)| =
∑
v∈B

dG(v) − |E(Z)| − 3 ≥ 5(δ(H) + 2) − 16 − 3 =

5δ(H)− 9. Thus m(G) =
9∑

i=5

|E(Wi)|+ |E(W10)|+15 ≥ 5(δ(H)− 2)+ (5δ(H)− 9)+15 =

10δ(H)− 4, and so δ(H) ≤ ν(H)+4
10

, a contradiction. So we have

|E(Z)| ≥ 17. (5.3)

If Z is collapsible, then W10 −D1(W10) is collapsible by Theorem 2.0.7(iii). Thus for

any pair of vertices u, v ∈ W10 − D1(W10), W10 − D1(W10) has a spanning (u, v)−trail

by Lemma 2.0.12. Then for any pair of vertices u, v ∈ V (W10), W10 has a dominating

(u, v)−trail, and so W10 is dominatable. Since each Wi(i = 1, 2, 3, 4) is a trivial graph,

since each Wi(i = 5, 6, · · · , 9) is dominatable, and since P10 − v1 has a spanning cycle, G

has a dominating eulerian subgraph, a contradiction. So Z is not collapsible. Moreover,

W10 −D1(W10) is not collapsible. (5.4)

Therefore Z is not 2-edge-connected by Lemma 2.0.15.

Let K ⊆ Z with |V (K)| = 8. Suppose that |E(K)| ≥ 14. Then K is 2-edge-connected

by Lemma 2.0.14. If |D2(K)| ≥ 2, then |E(K)| ≤ 2 + 2 + 9 = 13 by Lemma 2.0.14(iv),

a contradiction. So |D2(K)| ≤ 1. By Lemma 2.0.11 and by the fact that G is triangle-

free, K is collapsible. By Claim 3 and Theorem 2.0.7(iii), M10 −D1(M10) is collapsible,

contrary to (5.4). So

|E(K)| ≤ 13. (5.5)

Suppose that Z is not connected and Z1 is a component of Z. Then |V (Z1)| ∈
{2, 4, 6, 8}. By Lemmas 2.0.14(ii),(iv) and (5.3), |V (Z1)| is either 2 or 8. We may assume

that |V (Z1)| = 2 and Z2 = Z − V (Z1). Then |E(Z1)| = 1, |V (Z2)| = 8 and |E(Z2)| ≥ 16,

contrary to (5.5). So Z is connected. Let X be a cut-edge of Z and Z3, Z4 are components

of Z −X with |V (Z3)| ≤ |V (Z4)|. By Lemma 2.0.14 and (5.3), |V (Z3)| is either 1 or 2. If

|V (Z3)| = 2, then |E(Z4)| ≥ 17− 2 = 15, contrary to (5.5). So |V (Z3)| = 1, |V (Z4)| = 9,

|[V (Z3), V (Z4)]Z | = 1 and |E(Z4)| ≥ 16.

By (5.5) and Lemma 2.0.14, Z4 is 3-edge-connected. Let Z ′
4 be the reduction of Z4.

Then Z ′
4 is still 3-edge-connected and |V (Z ′

4)| ≤ 9. Thus Z ′
4 = K1 by Theorem 2.0.11,
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that is, Z4 is collpasible. By Claim 3 and Theorem 2.0.7(iii), W10−D1(W10) is collapsible,

contrary to (5.4).
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