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ABSTRACT

Supereulerian Properties in Graphs and

Hamiltonian Properties in Line Graphs

Keke Wang

Following the trend initiated by Chvátal and Erdös, using the relation of independence

number and connectivity as sufficient conditions for hamiltonicity of graphs, we charac-

terize supereulerian graphs with small matching number, which implies a characterization

of hamiltonian claw-free graph with small independence number.

We also investigate strongly spanning trailable graphs and their applications to hamil-

tonian connected line graphs characterizations for small strongly spanning trailable graphs

and strongly spanning trailable graphs with short longest cycles are obtained. In particu-

lar, we have found a graph family F of reduced nonsupereulerian graphs such that for any

graph G with κ′(G) ≥ 2 and α′(G) ≤ 3, G is supereulerian if and only if the reduction of

G is not in F .

We proved that any connected graph G with at most 12 vertices, at most one vertex

of degree 2 and without vertices of degree 1 is either supereulerian or its reduction is one

of six exceptional cases. This is applied to show that if a 3-edge-connected graph has the

property that every pair of edges is joined by a longest path of length at most 8, then G

is strongly spanning trailable if and only if G is not the wagner graph.

Using charge and discharge method, we prove that every 3-connected, essentially 10-

connected line graph is hamiltonian connected. We also provide a unified treatment with

short proofs for several former results by Fujisawa and Ota in [20], by Kaiser et al in [24],

and by Pfender in [40]. New sufficient conditions for hamiltonian claw-free graphs are

also obtained.
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Chapter 1

Preliminaries

1.1 Notation and Terminology

We consider finite graphs which may have multiple edges, use [5] for terminology and

notations not defined here, and unless otherwise stated, graphs are loopless. Let G be

a graph, we use V (G) and E(G) to denote the set of vertices and the set of edges of G,

respectively. The independence number α(G) of a graph G is the cardinality of the

largest independent vertex subset. κ(G), κ′(G), α′(G) and τ(G) represent the connectivity,

the edge connectivity, the matching number of a graph G, and the maximum number of

edge-disjoint trees in G respectively. A graph is trivial if it contains no edges.

Given a graph G, and an integer k > 0, a cycle (or a bond, respectively) of length

k is a k-cycle (or a k-bond, respectively). A 2-cycle is also denoted as 2K2. A minimal

edge cut is a bond. Let Ck(G) and C∗k(G) denote the set of k-cycles of G and the set of

k-bonds of G, respectively. The circumference of G, denoted by c(G), is the length of

a longest cycle of G. The girth of G, denoted by g(G), is the length of a shortest cycle

of G.

If X ⊆ E(G) is an edge subset, then V (X) denotes the set of vertices of G that are

incident with an edge in X. For a vertex v ∈ V (G), EG(v) denotes the set of edges

1



CHAPTER 1. PRELIMINARIES 2

incident with v in G, and NG(v) denotes the set of vertices adjacent to v in G. For a

subset W ⊆ V (G), define NG(W ) to be the set of vertices in V (G)−W that are adjacent

to a vertex in W . For an edge subset X, NG(X) = NG(V (X)). For any integer i ≥ 1,

define

Di(G) = {v ∈ V (G) : dG(v) = i}, and D≥i(G) =
⋃
k≥i

Dk(G)

Let A,B be the subsets of V (G) with A ∩B = ∅. Denote

E(A,B) = {ab ∈ E(G)|a ∈ A, b ∈ B} and e(A,B) = |E(A,B)|.

An edge cut Y of G is essential if G−Y has at least two nontrivial components. For

an integer k > 0, a graph G is essentially k-edge-connected if G does not have an essential

edge cut Y with |Y | < k.

For a set F = {F1, F2, ...} of graphs, a graph G is F-free if G does not have an

induced subgraph isomorphic to any member in F . In particular, a {K1,3}-free graph is

referred as a claw-free graph.

t
t tt

center

a claw

Figure 1.1

The line graph of a graph G, denoted by L(G), has E(G) as its vertex set, where

two vertices in L(G) are adjacent if and only if the corresponding edges in G have at least

one vertex in common. See Figure 1.2 as an example. Graph G consists of sold vertices

and sold edges. Empty vertices and dash edges are the corresponding L(G).
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Figure 1.2

Beineke ([2]) and Robertson ([22] and [42]) showed that every line graph is also a

claw-free graph. By definition, if a line graph L(G) is not a complete graph, then a subset

X ⊂ V (L(G)) is a k-vertex cut of L(G) if and only if X is an essential k-edge-cut of G.

Conjecture 1.1.1 (Matthews and Sumner [37]) Every 4-connected claw-free graph is

hamiltonian.

Conjecture 1.1.2 (Thomassen [46]) Every 4-connected line graph is hamiltonian.

In [43], Ryjác̆ek pointed out that these two conjectures are equivalent. Towards

these conjectures, there has been efforts in investigating 3-connected hamiltonian claw-

free graphs, as can be seen in the survey paper by Fardree, Flandrin, and Ryjác̆ek [18].

A subgraph H of a graph G is dominating if E(G − V (H)) = ∅. Let O(G) denote

the set of odd degree vertices in a graph G. If G is connected with O(G) = ∅, then G is

eulerian. If G has a spanning eulerian subgraph, then G is supereulerian.

Boesch et al [3] first posed the problem of characterizing supereulerian graphs. Then

Pulleyblank [41] proved that determining whether a 3-edge-connected planar graph is

supereulerian is NP-complete. Catlin [11] gave a survey on supereulerian graphs, which

was supplemented and updated in [15, 30]. Characterizations of supereulerian graphs for

certain classes of graphs have been widely invetigated. See [[6], [13], [28], [33]].

A spanning cycle of G is a Hamiltonian cycle of G. If G has a Hamiltonian cycle,

then G is hamiltonian. A graph G is Hamiltonian-connected if for any two vertices

u, v ∈ V (G)(u 6= v), there exists a (u, v)-path containing all vertices of G.
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A trail of G as a vertex-edge alternating sequence

v0, e1, v1, e2, · · · , ek, vk (1.1)

such that all ei’s are distinct, i = 1, 2, · · · , k, and ei is incident with both vi−1 and vi. Here

vertices in {v1, v2, · · · , vk−1} are internal vertices of the trail in (1.1). If a closed trail

C of G satisfies E(G− V (C)) = ∅, then C is called a dominating eulerian subgraph.

Theorem 1.1.3 (Li et al., [31] )Let G be a graph with |E(G)| ≥ 3. Then L(G) is

Hamilton-connected if and only if for any pair of edges e1, e2 ∈ E(G), G has a dominating

(e1, e2)-trail.

Let G be a graph such that κ(L(G)) ≥ 3 and L(G) is not complete. The core of

the graph G, denoted by G0, is obtained by deleting all pendant edges and contracting

exactly one edge xy or yz for each path P = xyz in G with dG(y) = 2, where d(x), d(z) > 2

since κ(L(G)) ≥ 3. The remaining edge of P will be referred as a nontrivial edge in the

contraction. Shao [45] proved Theorem 1.1.4 (a)-(c). In a similar way as Theorem 1.1.4

(c), we can prove Theorem 1.1.4 (d).

Theorem 1.1.4 (Shao, [45]) Let G0 be the core of graph G, then each of the following

holds:

(a) G0 is nontrivial and δ(G0) ≥ κ′(G0) ≥ 3;

(b) G0 is well defined;

(c) If G0 has a spanning eulerian subgraph, then G has a dominating eulerian sub-

graph;

(d) If G0 has a dominating eulerian subgraph containing all nontrivial vertices and

both endvertices of each nontrivial edges, then G has a dominating eulerian subgraph.

Spanning trailable graphs are a special class of supereulerian graphs. Let e, e′ ∈ E(G).

A trail from e to e′ is called an (e, e′)-trail. An (e, e′)-trail is dominating if each edge of G
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is incident with at least one internal vertex of the trail, it is spanning if it is a dominating

trail which contains all the vertices of G. A graph is spanning trailable if for any pair of

edges e, e′ ∈ E(G), G has a spanning (e, e′)-trail. As e = e′ is possible, spanning trailable

graphs are supereulerian. Luo et al [35] first studied spanning trailable graphs (called

eulerian-connected graphs in [35]). They showed that every 4-edge-connected graph is

spanning trailable, improved the former result of Caltin [8] and Jaeger [23] that every

4-edge-connected graph is supereulerian. Thus it is natural to study whether 3-edge-

connected graphs are spanning trailable.

Suppose that e = u1v1, e
′ = u2v2 ∈ E(G) denote two edges of G. If e 6= e′, then the

graph G(e, e′) is obtained from G by replacing e = u1v1 by a path u1vev1 and by replacing

e′ = u2v2 by a path u2ve′v2, where ve, ve′ are two new vertices not in V (G). If e = e′, then

G(e, e′) is also denoted by G(e) and is obtained from G by replacing e = u1v1 by a path

u1vev1. Given u, v ∈ V (G), a (u, v)-trail is a trail from u to v. A graph G is strongly

spanning trailable if for any e, e′ ∈ E(G), G(e, e′) has a spanning (ve, ve′)-trail. By

definition,

every strongly spanning trailable graph is also spanning trailable. (1.2)

As shown explicitly in [35] (see Theorem 4.1.2 below) and implicitly in Theorem 4 of

[9], every 4-edge-connected graph is strongly spanning trailable. However, it is routine

to see that the Wagner graph H8 depicted in Figure 1.3 below is spanning trailable but

not strongly spanning trailable. Thus strongly spanning trailable and spanning trailable

are not equivalent concepts in graphs with edge-connectivity at most 3. As e = e′ is

possible, strongly spanning trailable graphs are supereulerian. The following Catlin-Jaeger

Theorem indicates that it suffices to study supereulerian graphs with edge-connectivity

at most 3.

v7

v8v1

v2

v3

v4 v5

v6

Figure 1.3



CHAPTER 1. PRELIMINARIES 6

Theorem 1.1.5 (Catlin [8] and Jaeger [23]) Every 4-edge-connected graph is supereule-

rian.

The four cycle is an example that a supereulerian graph may not be spanning trailable.

Luo, Chen and Chen [35] first explicitly studied spanning trailable graphs (called eulerian-

connected graphs in [35]). The following theorem improves Theorem 1.1.5.

Theorem 1.1.6 (Luo, Chen and Chen [35]) Every 4-edge-connected graph is spanning

trailable.

1.2 Catlin’s Reduction Method

Let G be a graph and X ⊆ E(G) be an edge subset. The contraction G/X is the

graph obtained from G by identifying two ends of each edge in X and then deleting the

resulting loops. We define G/∅ = G. If H ⊆ G, then we write G/H for G/E(H). If H is

a connected subgraph of G, and if vH is the vertex in G/H onto which H is contracted,

then H is the preimage of vH , and is denoted by PIG(vH).

Collapsible graphs were introduced by Catlin [8]. A graph G is collapsible if for

any subset R ⊆ V (G) with |R| ≡ 0 (mod 2), G has a spanning connected subgraph GR

such that O(GR) = R. Catlin showed in [8] that for any graph G, every vertex of G lies

in a unique maximal collapsible subgraph of G. The reduction of G, denoted by G′,

is obtained from G by contracting all maximal collapsible subgraphs of G. A graph is

reduced if it does not contain nontrivial collapsible subgraphs.

Let F (G) be the minimum number of additional edges that must be added to G so

that the resulting graph has two edge-disjoint spanning trees.

Theorem 1.2.1 Let G be a connected simple graph on n ≥ 1 vertices.

(ii) (Chen and Lai, Theorem 2.4 of [16]) If n ≤ 11, d1(G) = 0, d2(G) ≤ 1 and F (G) ≤ 3,

then the reduction of G is in {K1, K2, K1,2, K2,3, P (10)}.
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(iii) (Chen [14], see also Theorem 3.2 of [16]) If n ≤ 13 and δ(G) ≥ 3, then either

G ∈ S12, or the reduction of G is in {K1, K2, K1,2, K1,3, P (10)}.

Theorem 1.2.2 Let G be a connected graph, H be a collapsible subgraph of G, vH the

vertex in G/H with PIG(vH) = H, and G′ the reduction graph of G. Then each of the

following holds.

(i) (Theorems 3 and 8 of [8]) G is collapsible if and only if G/H is collapsible; and G is

supereulerian if and only if G′ is supereulerian. In particular, G is collapsible if and only

if the reduction G′ = K1.

(ii) (Theorem 5 of [8]) G is reduced if and only if G has no nontrivial collapsible subgraphs.

(iii) (Theorem 8 of [8]) G′ is simple, girth(G′) ≥ 4 and δ(G′) ≤ 3.

(iv) (Lemma 1 of [7]) Every subdivision of K4 with at most 6 vertices is collapsible. In

particular, K−3,3 is collapsible, where K−3,3 is the graph obtained from K3,3 by deleting an

edge.

(v) (Theorem 1.3 of [12]) If G is connected and if F (G) ≤ 2, then G′ ∈ {K1, K2} ∪
{K2,t|t ≥ 1}.
(vi) If G is reduced, then F (G) = 2|V (G)| − |E(G)| − 2.

(vii) (Theorem 11 of [7]) For an integer t > 0, let G(t) be the graph with 2t + 3 vertices

and 3t + 3 edges with V (G(t)) = {x0, x1, ..., xt, y0, y1, ..., yt, v}, where E(G(t)) consists

of the edges {x0y0, x0v} ∪
(⋃t

i=1{xiyi, xi−1xi, yi−1yi}
)

and exactly one edge in {vxt, vyt}.
Then G(t) is collapsible if and only if G(t) is not bipartite.

Lemma 1.2.3 Let G be a connected simple graph with n ≥ 3 vertices.

(i) (Li et al., Lemma 2.1 of [31]) If n ≤ 8 and if d1(G) = 0 and d2(G) ≤ 2, then the

reduction of G is in {K1, K2, K2,3}.
(ii) (Chen [14], also Theorem 2.5 of [16]) If G is reduced with |V (G)| ≤ 11 and κ′(G) ≥ 3,

then G = K1 or G is the Petersen graph.

(iii) (Theorem 2.4 of [16] ) If G is a connected reduced graph with 6 ≤ |V (G)| ≤ 11 and

F (G) ≤ 3, then either G is the Petersen graph, or G must have at least 3 vertices of

degree at most 2.
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1.3 Main Results

In the coming several chapters, we will present the following main results.

(1) Motivated by the Chinese Postman Problem, Boesch, Suffel, and Tindell in [3] pro-

posed the supereulerian graph problem which seeks the characterization of graphs with a

spanning eulerian subgraph. Pulleyblank in [41] showed that the supereulerian problem,

even within planar graphs, is NP-complete. In this paper, we settle an open problem

raised by An and Xiong in [1] on characterization of supereulerian graphs with small

matching numbers. A well known theorem by Chvátal and Erdös in [17] states that if

G satisfies α(G) ≤ κ(G), then G is hamiltonian. Flandrin and Li in [19] showed that

every 3-connected claw-free graph G with α(G) ≤ 2κ(G) is hamiltonian. Our characteri-

zation is also applied to show that every 2-connected claw-free graph G with α(G) ≤ 3 is

hamiltonian, with only one well characterized exceptional class.

(2) A graph is supereulerian if it has a spanning eulerian subgraph, and is spanning

trailable if for any pair of edges e, e′ ∈ E(G), G has a spanning trail from e to e′. Luo et

al in [35] proved that every 4-edge-connected graphs are trailable. In this paper, we show

that the Wagner graph is the smallest 3-edge-connected non-spanning trailable graph, and

we prove a characterization of the reduced graphs of an almost 3-edge-connected graph

with at most 12 vertices, extending a former result of Chen in [14]. This characterization

help us to prove that, under a condition on bounded length of longest paths, a 3-edge-

connected graph is spanning trailable graphs if and only if it is not contractible to the

Wagner graph.

(3) In Chapter 4, for a graph G and edges e = u1v1, e
′ = u2v2 ∈ E(G), the graph G(e, e′)

is obtained from G by replacing e = u1v1 by a path u1vev1 and by replacing e′ = u2v2

by a path u2ve′v2, where ve, ve′ are two new vertices not in V (G). A graph G is strongly

spanning trailable if for any e = u1v1, e
′ = u2v2 ∈ E(G), G(e, e′) has a spanning (ve, ve′)-

trail. Luo et alin [35] proved that every 4-edge-connected graph is spanning trailable. In

this paper, we show that, for a 3-edge-connected graph G which is not the Wagner graph,

if every pair of edges is joined by a longest path of length at most 8, then G is strongly

spanning trailable.
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(4) In Chapter 5, we use a discharge method to prove that every 3-connected, essentially

10-connected line graph is hamiltonian connected.

(5) In Chapter 6, we develop a cycle chain method to prove that every 3-edge-connected

graph G is supereulerian if every 3-edge-cut of G intersects with short cycles in G. This

is applied to the study of hamiltonian claw-free graphs, and provides a unified treatment

with short proofs for several former results by Fujisawa and Ota in [20], by Kaiser et al

in [24], and by Pfender in [40]. New sufficient conditions for hamiltonian claw-free graphs

are also obtained.



Chapter 2

Supereulerian graphs with small

matching number

2.1 Introduction

The main purpose of this chapter is to characterize supereulerian graphs with small match-

ing number. For graph G with α′(G) small, the following have been proved.

Theorem 2.1.1 Let G be a graph with κ′(G) ≥ 2 and α′(G) ≤ 2. Following holds.

(i) (Lai and Yan, [29]) Graph G is supereulerian if and only if G is not contractible to a

K2,t for some odd integer t ≥ 3.

(ii) (An and Xiong, [1]) Either G is collapsible, or G has a nontrivial collapsible subgraph

H such that for some integer t ≥ 2, G/H ∼= K2,t.

(iii) (An and Xiong, [1]) If κ′(G) ≥ 3 and α′(G) ≤ 5, then G is supereulerian if and only

if G is not contractible to the Petersen graph.

An and Xiong proposed a conjecture (Conjecture 12 in [1]), which can be restated as

the following open problem. Chapter 2’s main result is motivated by their conjecture.

10
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Problem 2.1.2 (An and Xiong, [1]) If κ′(G) ≥ 2 and α′(G) ≤ 3, determine the collection

of graphs such that G is supereulerian if and only if G is not contractible to a member in

this collection.

A well known theorem by Chvátal and Erdös [17] states that if G satisfies α(G) ≤
κ(G), then G is hamiltonian. Flandrin and Li in [19] showed that for 3-connected claw-free

graphs, this assumption can be relaxed.

Theorem 2.1.3 (E. Flandrin and H. Li, [19]) Every claw-free graph G with connectivity

κ(G) ≥ 3 and independence number α(G) ≤ 2κ(G) is hamiltonian.

In this chapter, we have determined a graph family F ′ and prove the following main

results.

Theorem 2.1.4 Let G be a graph with κ′(G) ≥ 2 and α′(G) ≤ 3. Then G is supereulerian

if and only if the reduction of G is not a member in F ′.

Theorem 2.1.4 has an application to hamiltonian line graphs and hamiltonian claw-

free graphs. Let K2,3 be the complete bipartite graph with vertex bipartition X = {x1, x2}
and Y = {y1, y2, y3}. For integers s1, s2, s3 ≥ 1, the graph Ks1,s2,s3

2,3 is obtained from K2,3

by attaching si pendant vertices adjacent to yi, (1 ≤ i ≤ 3). Theorem 2.1.4 implies the

following.

Corollary 2.1.5 Let G be a connected simple graph. If κ(L(G)) ≥ 2 and α(L(G)) ≤ 3,

then L(G) is hamiltonian if and only if G is not a member in {Ks1,s2,s3
2,3 : s1 ≥ s2 ≥ s3 > 0}.

It has been a question whether Theorem 2.1.3 holds for 2-connected line graphs. A

consequence of Theorem 2.1.4 answers this question.

Definition 2.1.6 (Ryjác̆ek closure [43]) If G is a claw-free graph, then there is a graph

cl(G) such that
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(i) G is a spanning subgraph of cl(G)

(ii) cl(G) is a line graph of a triangle-free graph, and

(iii) the length of a longest cycle in G and in cl(G) is the same.

Corollary 2.1.7 Let G be a claw-free graph with κ(G) ≥ 2 and α(G) ≤ 3. Then G is

hamiltonian if and only if the Ryjácěk closure of G is not isomorphic to L(H), for some

H ∈ {Ks1,s2,s3
2,3 : s1 ≥ s2 ≥ s3 > 0}.

2.2 Preliminaries

The following theorem summarizes the useful results on collapsible graphs and reduced

graphs needed in our arguments.

Theorem 2.2.1 Let G be a connected graph. Then each of the following holds.

(i) (Catlin, Theorem 3 of [8]) Let H be a collapsible subgraph of G. Then G is collapsible

if and only if G/H is collapsible; G is supereulerian if and only if G/H is supereulerian.

(ii) (Lemma 2.3 of [12]) If G 6= K1 is reduced, then F (G) = 2|V (G)| − |E(G)| − 2.

(iii) (Catlin, Han and Lai, Theorem 1.3 of [12]) If F (G) ≤ 2, then G is collapsible if and

only if the reduction of G is not isomorphic to a K2 or to a K2,t for some integer t ≥ 1.

(iv) (Catlin, [8]) The reduction of G is reduced. In particular, the reduction of G is simple

and contains no cycles of length 3.

(v) (Catlin, Lemma 3 of [8]) If G is collapsible, then any contraction of G is also collapsi-

ble.

To answer the question in Problem 2.1.2, we first describe the graph families F and

F ′, where F ′ is the excluded graph family stated in Theorem 2.1.4.

Definition 2.2.2 (The families F and F ′): Let i, s1, s2, s3,m, l, t be natural numbers

with t ≥ 2 and i,m, l ≥ 1. Let Ci denote the cycle of length i. Let M ∼= K1,3 with center

a and ends a1, a2, a3. Define K1,3(s1, s2, s3) to be the graph obtained from M by adding
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si vertices with neighbors {ai, ai+1}, where i ≡ 1, 2, 3 (mod 3). Define C6(s1, s2, s3) =

K1,3(s1, s2, s3) − a. Let K2,t(u, u
′) be a K2,t with u, u′ being the nonadjacent vertices of

degree t. Let K ′2,t(u, u
′, u′′) be the graph obtained from a K2,t(u, u

′) by adding a new vertex

u′′ that joins to u′ only. Hence u′′ has degree 1 and u has degree t in K ′2,t(u, u
′′). Let

K ′′2,t(u, u
′, u′′) be the graph obtained from a K2,t(u, u

′) by adding a new vertex u′′ that joins

to a vertex of degree 2 of K2,t. Hence u′′ has degree 1 and both u and u′ have degree

t in K ′′2,t(u, u
′′). We shall use K ′2,t and K ′′2,t for a K ′2,t(u, u

′, u′′) and a K ′′2,t(u, u
′, u′′),

respectively. Let Sm,l be the graph obtained from a K2,m(u, u′) and a K ′2,l(w,w
′, w′′) by

identifying u with w, and w′′ with u′. Let J(m, l) denote the graph obtained from a

K2,m+1 and a K ′2,l(w,w
′, w′′) by identifying w,w′′ with the two ends of an edge in K2,m+1,

respectively; and J ′(m, l) = J(m, l)−ww′′. Let K2,3(1, 2, 2) be the union of three internally

disjoint (u,w)-paths of lengths 2, 3 and 3, respectively; and let K∗2,3(1, 2, 2) be obtained

from K2,3(1, 2, 2) by adding a chord e to the 6-cycle joining two vertices of degree 2 so

that no 3-cycle is resulted. Let C7 = v1v2v3v4v5v6v7v1 denote a cycle of length 7. Define

J7
1 = C7 + v1v4 and J7

2 = J7
1 + v2v5 = C7 + {v1v4, v2v5}. See Figure 1 for examples of

these graphs. Let

F = {K1}
⋃(
{C7, J7

1 , J
7
2 , K2,3(1, 2, 2), K∗2,3(1, 2, 2)}

⋃
{K2,t|t ≥ 1}⋃

{K1,3(s, s′, s′′), C6(s, s′, s′′)|s, s′, s′′ ≥ 0}
⋃
{Sm,l : m, l ≥ 1}

)⋂
{G|κ(G) ≥ 2},

and define

F ′ = {G ∈ F : G is non supereulerian.}
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a1

a2

a3

a

K1,3(1, 2, 3)
u

u′

K ′2,3(u, u′, u′′)
u

u′u′′

K ′′2,3(u, u′, u′′)

a1 a2 a3 a4 a5

u′ = w′′ w′

u = w

S(3, 2)

x w′′ w′

w y
J(1, 2)

a2

b2

a1

b1

K∗2,3(1, 2, 2)

Figure 1: Some graphs in F with small parameters

K3,3 − e L1 L2

Figure 2: Some collapsible graphs: K3,3, L1 and L2

Define L3 = K∗2,3(1, 2, 2) + {a1b2}.

Lemma 2.2.3 The graphs K3,3 − e, L1, L2 and L3 are collapsible.

Proof: The graph K3,3 − e is proved to be collapsible in Lemma 1 of [7]. By Theorem

11 in [7] we can directly get L1 and L2 are collapsible. L3 is also collapsible by Theorem

3.3.2 (i).
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Definition 2.2.4 (Families F1 and F2) Define

F1 = {C7, K2,3(1, 2, 2)}∪{C6(s, s′, s′′), K1,3(s, s′, s′′)|s ≥ s′ > 0, s′′ ≥ 0}∪{Sm,l|m ≥ l ≥ 1}.

x1 x2 = x3

y1 = y2 y3

e1

e2

Figure 3: The graph J(3, 2, 4)

For integers s1, s2, s3 ≥ 2, Let K2,s1(x1, y1), K2,s2(x2, y2), K2,s3(x3, y3) be three disjoint

graphs such that for i ∈ {1, 2, 3}, K2,si(xi, yi) is isomorphic to K2,si with xi and yi being

the two nonadjacent vertices of degree si. The graph J(s1, s2, s3) is obtained by identifying

y1 with y2 and x2 with x3, and by adding new edges e1 = x1x3 and e2 = y1y3. (See Figure

3 for an example). Note that J(m, 0, l) = J ′(m, l).

Define

F2 = {K1}∪(F ∩ {Γ : Γ is essentially 4-edge-connected})∪{J(s1, s2, s3)|s1 ≥ s3 ≥ 3, s2 ≥ 2}.

Lemma 2.2.5 below is a key lemma in the proof of Theorem 2.1.4. It indicates that

once a certain type of subgraph appears in G, then G must be in F . The family F2 will

be needed in Theorem 2.3.2 of the next section.

Lemma 2.2.5 Let G be a reduced graph with κ′(G) ≥ 2 and α′(G) ≤ 3. If G has a

subgraph H ∈ F1 − {K1}, then G ∈ F .

Proof. We first observe that if H ∈ F1−{K1, S1,1}, then α′(H) ≥ 3. By contradiction,

we assume that G is a counterexample to the lemma such that |V (G)| is minimized.
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Claim 1. κ(G) ≥ 2.

By contradiction, assume that G has a cut vertex z. Then G has nontrivial connected

subgraphs G1 and G2 such that G = G1 ∪G2 and V (G1)∪V (G2) = {z}. Since κ′(G) ≥ 2

and α′(G) ≤ 3, both κ′(G1) ≥ 2 and κ′(G2) ≥ 2, and both α′(G1) ≤ 3 and α′(G2) ≤ 3.

Since every graph in F1 is 2-connected, we may assume that H is a subgraph of G1. If

H = S1,1, which is a 5-cycle, then H has a matching M1 of size 2 such that M1 is not

incident with the vertex z. Since G2 is a 2-edge-connected nontrivial reduced graph, G2

has a cycle of length at least 4, and so G2 has a matching M2 of size at least 2. As M1 is

not incident with z, it follows that M1 ∪M2 is a matching of size at least 4, contrary to

α′(G) ≤ 3. This contradiction proves Claim 1.

Since G is a counterexample, G has a subgraph H ∈ F1 − {K1}, but G /∈ F . We

assume that H is maximal, in the sense that H is not properly contained in another

subgraph of G in F1. We have the following observations.

Observation 2.2.6 Let H be a subgraph of G.

(i) If H ∈ {C7, K2,3(1, 2, 2)} ∪ {K1,3(s, s′, s′′)|s ≥ s′ ≥ s′′ > 0}, and if G has an edge with

exactly one end in H, then α′(G) ≥ 4.

(ii) If H = K1,3(s, s′, s′′) with s ≥ s′ ≥ s′′ > 0, then adding any additional edge to join two

distinct vertices in H will result in a collapsible graph. Since G is reduced, we conclude

that in this case G = K1,3(s, s′, s′′).

(iii) If G is spanned by H = K2,3(1, 2, 2), then by Lemma 6.2.1 and by the assumption

that G is reduced, G cannot have L3 or a 3-cycle as a subgraph. By inspection, G ∈
{K2,3(1, 2, 2), K∗2,3(1, 2, 2)}.
(iv) If G is spanned by C7, then as G is reduced, C7 can have at most 2 chords in G.

(This is because, if C7 with 3 chords, F (G[V (C7)]) ≤ 2(7) − 10 − 2 = 2, and so by

Theorem 6.2.2(iii), G[V (C7)] is not reduced.) As G has no cycles of length at most 3,

G ∈ {C7, J7
1 , J

7
2}.

Only Observation 2.2.6 (i) when H = K1,3(s, s′, s′′) needs an explanation. We use

the notations in Figure 1. Let xy denote an edge incident with a vertex x ∈ V (H) and

y /∈ V (H). If x has degree 2 in H or if x = a, then G[E(H) ∪ {xy}] has 4 independent
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edges. Therefore, we assume that any edges in G incident with exactly one vertex in H

must be incident with one in {a1, a2, a3}. Since κ(G) ≥ 2, and since y ∈ V (G) − V (H),

we may assume that G has a path P with y ∈ V (P ) such that V (P ) ∩ V (H) = {ai, aj}
for some i 6= j and 1 ≤ i, j ≤ 3. Since H is maximal, |E(P )| ≥ 3, and so G[E(H)∪E(P )]

has 4 independent edges. This verifies the observation.

Recall that c(G) is the length of a longest cycle in G. By Observation 2.2.6, and since

any cycle of length at least 8 has 4 independent edges, we may assume that

G has no subgraph in {C7, K2,3(1, 2, 2)} ∪ {K1,3(s, s′, s′′) : s ≥ s′ ≥ s′′ > 0} and c(G) ≤ 6.

(2.1)

By (2.1), we only need to examine the cases when H ∈ {C6(s, s′, s′′)|s ≥ s′ ≥ s′′ ≥
0} ∪ {K1,3(s, s′, 0)|s ≥ s′ > 0} ∪ {Sm,l, |m ≥ l ≥ 1}. We make another observation.

Observation 2.2.7 Let e′ be an edge in E(G)−E(H) joining two distinct vertices in H.

Let H ′ = G[E(H) ∪ {e′}] be the edge induced subgraph of G. Each of the following holds.

(i) If H ∈ {K1,3(s, s′, 0) : s ≥ s′ > 0}∪{Sm,l, |m ≥ l ≥ 1}, then H ′ has a K3 or a K3,3−e,
and so G is not reduced.

(ii) If H = C6(s, s′, s′′) for some s ≥ s′ ≥ s′′ ≥ 0 either with s′′ > 0, or with s′′ = 0 and

s′ ≥ 2, then either H ′ has a K3, or H ′ is a K1,3(t, t′, t′′) with t ≥ t′ > 0 and t′′ ≥ 0, or is

an Sm,l, with m ≥ l ≥ 2, contrary to the maximality of H.

By (2.1) and by Observation 2.2.7, we proceed the proof of the lemma by examining

the following cases.

Case 1. H = K1,3(s, s′, 0) with s ≥ s′ > 0.

Since G 6= H and by Observation 2.2.7 (i), V (G)−V (H) has a vertex z. By κ(G) ≥ 2

and by α′(G) ≤ 3 = α′(H), there exist distinct vertices u, v ∈ NG(z) ∩ V (H). Since

u, v ∈ NG(z), the edge induced subgraph H ′ = G[E(H)∪ {uz, vz}] of G either has one of

{K3, K3,3 − e, L2} as a subgraph, contrary to the assumption that G is reduced; or is a

K1,3(t, t′, t′′) with t ≥ t′ > 0 and t′′ ≥ 0 properly containing H, contrary to the maximality
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of H; or α′(G) ≥ α′(H ′) ≥ 4. These contradictions complete the proof for Case 1.

Case 2. H = Sm,l for some m ≥ l ≥ 1 and with m+ l ≥ 3 maximized.

Since G 6= H and by Observation 2.2.7 (i), V (G)−V (H) has a vertex z. By κ(G) ≥ 2

and by α′(G) ≤ 3 = α′(H), there exist distinct vertices u, v ∈ NG(z) ∩ V (H). Since

u, v ∈ NG(z), the edge induced subgraph H ′ = G[E(H) ∪ {uz, vz}] of G either has one

of {C7, K3, L1, L2} as a subgraph, contrary to (2.1) or the assumption that G is reduced;

or is an Sm′,l′ with m ≥ l′ > 0 properly containing H, contrary to the maximality of H.

These contradictions complete the proof for Case 2.

Case 3. H = C6(s, s′, s′′) is a subgraph of G for some s ≥ s′ ≥ s′′ ≥ 0 with either

s′′ > 0 or s′′ = 0 and s′ ≥ 2.

Since G 6= H and by Observation 2.2.7 (i), V (G)−V (H) has a vertex z. By κ(G) ≥ 2

and by α′(G) ≤ 3 = α′(H), there exist distinct vertices u, v ∈ NG(z) ∩ V (H). Since

u, v ∈ NG(z), the edge induced subgraph H ′ = G[E(H) ∪ {uz, vz}] of G either has one

of {C7, K2,3(1, 2, 2), K3} as a subgraph, contrary to (2.1) or the assumption that G is

reduced; or is C6(t, t′, t′′) with t ≥ t′ ≥ t′′ ≥ 0 and with either t′′ > 0 or both t′′ = 0 and

t′ ≥ 2, properly containing H, contrary to the maximality of H; or α′(G) ≥ α(H ′) ≥ 4.

These contradictions complete the proof for Case 3.

Case 4. H = C6(s, 1, 0) is a subgraph of G with either s > 0, and G does not have a

subgraph in Cases 1, 2 or 3.

Let P = v1v2v3v4v5 be a path of length 4 in H such that dH(v1) = 1, and NH(v3) ∩
NH(5) has s vertices of degree 2 in H. Since κ(G) ≥ 2, NG(v1) − {v2} has a vertex z.

Since G does not have a subgraph in Cases 1, 2 or 3, and by (2.1), z 6∈ V (H). Since

κ(G) ≥ 2, the edges v1z and v3v4 are in a cycle of G, and so G − v1 has a path Q from

z to a vertex w ∈ V (H) − {v1, v2} such that V (H) ∩ V (Q) = {w}. If |E(Q)| ≥ 3, then

G has a cycle of length at least 6, contrary to (2.1) or to the assumption that G does

not have subgraph in Cases 1, 2 or 3. Hence |E(Q)| = 2 and so we must have s = 1,
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dH(v5) = 1, H = P and w = v4. By Symmetry, there must be a vertex z′ ∈ V (G)−V (H)

such that z′v5, z
′v2 ∈ E(G). Thus G[V (P ) ∪ {z, z′}] contains a K2,3(1, 2, 2), contrary to

(2.1). These contradictions prove Case 4, and the proof for the lemma is done.

2.3 Proof of Theorem 2.1.4

In this section we will prove the following theorem, which together with Theorem 2.2.1(i),

implies Theorem 2.1.4.

Theorem 2.3.1 Let G be a graph with κ′(G) ≥ 2 and α′(G) ≤ 3. Then the reduction of

G is in F .

The proof of Theorem 2.3.1 needs a useful tool stated as Theorem 2.3.2 below. We

shall need the graphs introduced in Definitions 2.2.2 and 2.2.4. By Definition 2.2.4,

F2 = {K1} ∪ {K2,t : t ≥ 3} ∪K1,3(s, s′, s′′) |s ≥ s′ ≥ 2, s′′ ≥ 0} ∪{Sm,l|m ≥ l ≥ 2}
∪{C6(s, s′, s′′)| either s ≥ s′ ≥ 2 and s′′ ≥ 1 or s ≥ s′ ≥ 3 and s′′ = 0} ∪{K∗2,3(1, 2, 2)}
∪{J(s1, s2, s3)| s1 ≥ s3 ≥ 3, s2 ≥ 2}.

Theorem 2.3.2 Let G be a 2-edge-connected graph. Each of the following holds.

(i) Suppose that c(G) ≤ 5. Then G is collapsible if and only if the reduction of G is not

a member in {K2,t, Sm,l}, where l,m ≥ 1 and t ≥ 2 are integers.

(ii) Suppose that G is essentially 4-edge-connected graph with c(G) ≤ 6. Then G is

collapsible if and only if the reduction of G is not in F2.

Proof. Since any graph in {K2,t, Sm,l} is not collapsible, by Theorem 6.2.2 (v), if the

reduction of G is in {K2,t, Sm,l}, then G is not collapsible.

To prove the necessity, we argue by contradiction to assume that G 6= K1 is reduced,

but G /∈ {K2,t, Sm,l}. By Theorem 2.2.1 (iv), G has no cycles of length at most 3. Suppose

first that c(G) = 4. Then G contains a K2,2 as a subgraph. Let t ≥ 2 be the maximum
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number such that G has K2,t as a subgraph. Since G 6= K2,t, V (G)−V (K2,t) has a vertex

v. Since κ(G) ≥ 2, G has a path P from a vertex x to a vertex y with v ∈ V (P ) such that

V (P ) ∩ V (K2,t) = {x, y}. As v ∈ V (P )− V (K2,t), |E(P )| ≥ 2. If x and y are adjacent in

K2,t, then G has a 5-cycle, contrary to c(G) = 4. Therefore, we must have x, y ∈ NG(v),

and x and y are of distance 2 in K2,t. It then follows that either c(G) ≥ 5, contrary to

c(G) = 4; or G has a K2,t+1, contrary to the maximality of t.

Hence c(G) = 5, and so G contains a C5 = S1,1 as a subgraph. Thus G has Sm,l as a

subgraph with m ≥ l ≥ 1 such that m+ l is maximized. Since G 6= Sm,l, V (G)− V (Sm,l)

has a vertex v′. By κ(G) ≥ 2, G has a path P ′ from a vertex x′ to a vertex y′ with

v′ ∈ V (P ′) such that V (P ′) ∩ V (Sm,l) = {x′, y′}.

If x′y′ ∈ E(Sm,l), then G has a cycle of length at least 6, contrary to c(G) = 5.

Therefore, the distance between x′ and y′ in Sm,l is 2. It follows that G[V (Sm,l) ∪ {v′}]
either has a cycle of length at least 6, contrary to c(G) = 5; or is isomorphic to an Sm+1,l

or an Sm,l+1, contrary to the maximality of m+ l. This completes the proof for Theorem

2.3.2 (i).

To prove Theorem 2.3.2(ii), we argue by contradiction to assume that

G is a counterexample with |V (G)| minimized. (2.2)

By (2.2), by the assumption that G is essentially 4-edge-connected, and by Theorem

2.3.2 (i), we further assume that

G is reduced, κ(G) ≥ 2, D2(G) is an independent set, and c(G) = 6. (2.3)

Let C6 = v1v2v3v4v5v6v1 be a longest cycle of G. Since G is reduced and by Lemma

6.2.1, G contains no K3 or K3,3 − e as a subgraph. Thus if C6 has chords, then C6

has exactly one chord, isomorphic to a J(1, 1) = K1,3(1, 1, 0). Note that C6 = J ′(1, 1).

Hence G has a subgraph H ∈ {J(m, l)|m ≥ l ≥ 1} ∪{J ′(m, l)|m ≥ l ≥ 1} ∪ {C6(s, s′, s′′)

|s ≥ s′ ≥ s′′ > 0} ∪{K1,3(s, s′, s′′)|s ≥ s′ > 0, s′′ ≥ 0}. Choose such an H so that

|V (H)|+ |E(H)| is maximized. (2.4)
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If G = H, then as G is essentially 4-edge-connected, G 6= J ′(m, l) with m ≥ l ≥ 1.

Since α′(G) ≤ 3, G 6= J(m, l) for m ≥ l ≥ 2. As J(m, 1) = K1,3(m, 1, 0), we conclude

that if G = H, then G ∈ F2, contrary to (2.2).

Hence G 6= H. By (2.4), V (G) − V (H) has a vertex z. As κ(G) ≥ 2, G has a

path Q with z ∈ V (Q), and V (Q) ∩ V (H) = {u, v} for some distinct u and v. Since

α′(H) = 3 = α′(G) and since G is reduced, u, v ∈ NG(z) and u and v are not adjacent in

H. In the arguments below, we will use the notation in Figure 1.

If H ∈ {K1,3(s, s′, s′′)|s ≥ s′ > 0, s′′ ≥ 0} ∪ {C6(s, s′, s′′)|s ≥ s′ ≥ s′′ > 0}, then either

u, v ∈ {a1, a2, a3}, whence (2.4) is violated; or (by symmetry) H = K1,3(s, 1, 0), u = a

and v ∈ D2(H), whence (2.4) is violated; or {u, v} − {a1, a2, a3} 6= ∅, and G[V (H) ∪ {z}]
contains a cycle of length at least 7, contrary to (2.3).

Assume that H ∈ {J(m, l)|m ≥ l ≥ 1}. Since J(m, 1) = K1,3(m, 1, 0), we assume

that m ≥ l ≥ 2. If u, v ∈ D2(H), then G[V (H)∪{z}] contains a cycle of length at least 7,

contrary to (2.3). Hence we assume that u /∈ D2(H). Then G[V (H)∪{z}] either violates

(2.4), or contains a cycle of length at least 7, contrary to (2.3).

Finally we assume that H ∈ {J ′(m, l)|m ≥ l ≥ 1}. As J ′(m, 1) = C6(m, 1, 1), we may

assume m ≥ l ≥ 2. Since J ′(m, l) = J(m, 0, l), we may assume that H = J(s, s′, s′′) with

s ≥ s′′ ≥ 2 and s′ ≥ 0, and s+s′+s′′ maximized. If {u, v}∩D2(H) 6= ∅, then G[V (H)∪{z}]
also contains a cycle of length at least 7, contrary to (2.3). Hence u, v ∈ V (H)−D2(H).

It follows that G[V (H) ∪ {z}] contains a J(t, t′, t′′) with t + t′ + t′′ = s + s′ + s′′ + 1,

contrary to the maximality of H. This completes the proof of Theorem 2.3.2 (ii).

Proof of Theorem 2.3.1. By contradiction, we assume that

G is a counterexample to Theorem 2.3.1 with |V (G)| minimized. (2.5)

By Theorem 4.1.2 and by (2.5), G is reduced. By the assumption α′(G) ≤ 3, c(G) ≤ 7.

If G has a C7 or a C6 as a subgraph, then by Lemma 2.2.5, G ∈ F , contrary to (2.5).

Therefore, we must have c(G) ≤ 5. By Theorem 2.3.2 (i), G ∈ F , contrary to (2.5). This
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completes the proof.

2.4 Proofs of Corollaries 2.1.5 and 2.1.7

To prove Corollary 2.1.5, we also need the following theorem of Harary and Nash-Williams,

which reveals a close relationship between eulerian subgraphs in G and Hamilton cycles

in L(G).

Theorem 2.4.1 (Harary and Nash-Williams [21]) Let G be a connected graph with |E(G)| ≥
3. Then L(G) is hamiltonian if and only if G has an eulerian subgraph H such that

E(G− V (H)) = ∅.

Let G be a graph such that κ(L(G)) ≥ 2, E1(G) denote the set of pendant edges

(edges incident with a vertex in D1(G)) of G, and let Γ = G/E1(G). Let Γ′ denote the

reduction of Γ, and define Λ(Γ′) = {v ∈ V (Γ′) such that v is the contraction image of a

nontrivial connected subgraph of G}. Using Theorem 2.4.1, Shao proved the following.

Proposition 2.4.2 (Shao, Section 1.4 of [45]) If Γ′ has an eulerian subgraph H with

Λ(Γ′) ⊆ V (H), then L(G) is hamiltonian.

Proof of Corollary 2.1.5 Let G be a graph with κ(L(G)) ≥ 2 and α(L(G)) ≤ 3. Since

κ(L(G)) ≥ 2 and α(L(G)) ≤ 3, κ′(Γ) ≥ 2 and α′(Γ) ≤ 3. Let Γ′ be the reduction of Γ.

If Γ′ is supereulerian, then by Proposition 2.4.2, L(G) is hamiltonian. Thus by Theorem

2.1.4, we may assume that Γ′ ∈ F ′. By the definition of F ′, we observe that

∀F ∈ F ′, and ∀v ∈ D2(F ), F has an eulereian subgraph H such that V (F )− v ⊆ V (H).

(2.6)

By (2.6) and Proposition 2.4.2, if Γ′ ∈ F ′ such that D2(Γ′) − Λ(Γ′) 6= ∅, then L(G)

is hamiltonian. Thus L(G) is not hamiltonian only if D2(Γ′) ⊆ Λ(Γ′). Therefore, each

vertex in D2(Γ′) contains an edge of G, and these edges are independent. Hence |D2(Γ′)| ≤
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α′(Γ) ≤ 3, and so as Γ′ ∈ F ′, we conclude that L(G) is not hamiltonian only if Γ′ = K2,3

with D2(Γ′) ⊆ Λ(Γ′). Suppose that one vertex v in D2(Γ′) is the contraction image of a

nontrivial collapsible graph H. Let AG(H) denote the vertices of H that are adjacent to

vertices in V (G)−V (H) in G. Thus |AG(H)| ≤ dΓ′(v) ≤ 3. Since H is a simple collapsible

graph, |E(H)| ≥ 3, and so there must be an edge e1 ∈ E(H) and an edge e2 ∈ EΓ′(v)

such that {e1, e2} is a matching in G. Let e3, e4 be two edges in the preimages of the

two vertices of D2(Γ′)− {v}. Then {e1, e2, e3, e4} would be a matching of G, contrary to

α′(G) ≤ 3. With a similar argument, the two vertices of degree 3 in Γ′ must be trivial,

and so G ∼= Ks1,s2,s3
2,3 for some s1, s2, s3 > 0. This proves Corollary 2.1.5. .

A vertex v ∈ V (G) is locally connected if G[NG(v)] is connected. Following the

definition given by Ryjácěk ([43]), a graph H is the closure of a claw-free graph G,

denoted by H = cl(G), if both of the following hold.

(A) There is a sequence of graphs G1, ..., Gt such that G1 = G,Gt = H, V (Gi+1) = V (Gi)

and E(Gi+1) = E(Gi)
⋃
{uv|u, v ∈ NGi

(xi), uv /∈ E(Gi)} for some xi ∈ V (Gi) with

connected non-complete Gi[NGi
(xi)], for i = 1, ..., t− 1

(B) No vertex of H has a connected non-complete neighborhood.

Theorem 2.4.3 (Ryjáček, [43]) Let G be a claw-free graph. Then

(i) cl(G) is uniquely determined.

(ii) cl(G) is the line graph of a triangle-free graph.

(iii) G is hamiltonian if and only if cl(G) is hamiltonian

Proof of Corollary 2.1.7 By Theorem 2.4.3, we may assume that for some simple

graph H, cl(G) = L(H). As adding edge to a graph does not increase the independence

number α and does not decrease the connectivity κ, both κ(cl(G)) ≥ κ(G) ≥ 2 and

α(cl(G)) ≤ α(G) ≤ 3 hold. By Corollary 2.1.5, cl(G) = L(H) is hamiltonian if and only

if H /∈ {Ks1,s2,s3
2,3 : s1 ≥ s2 ≥ s3 > 0}.



Chapter 3

On 3-edge-connected Strongly

Spanning Trailable Graphs

3.1 Introduction

In order to apply Catlin’s reduction method by contracting collapsible subgraphs, iden-

tifying small reduced graphs are of particular importance ([11, 15]). Let P (10) denote

the Petersen graph, and let S12 denote the family of supereulerian graphs on 12 vertices.

Chen proved the following useful results.

Theorem 3.1.1 Let G be a connected simple graph on n ≥ 1 vertices.

(ii) (Chen and Lai, Theorem 2.4 of [16]) If n ≤ 11, d1(G) = 0, d2(G) ≤ 1 and F (G) ≤ 3,

then the reduction of G is in {K1, K2, K1,2, K2,3, P (10)}.
(iii) (Chen [14], see also Theorem 3.2 of [16]) If n ≤ 13 and δ(G) ≥ 3, then either

G ∈ S12, or the reduction of G is in {K1, K2, K1,2, K1,3, P (10)}.

The graph H8 and K+
2,3, are defined in Figure 1. The graph H8 is often known as the

Wagner graph. A relaxation of Theorem 3.1.1(ii) is obtained in this chapter.

24
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Theorem 3.1.2 Let G be a connected simple graph with n ≤ 12 vertices and with d1(G) =

0 and d2(G) ≤ 1. Then the reduction of G is either in {K1, K2, K1,2, K2,3, K
+
2,3, P (10), P (10)(e)}

or G is a supereulerian graph on 12 vertices.

By inspection, H8 is not strongly spanning trailable. In fact, we have the following

conclusion.

Proposition 3.1.3 Let G be a 3-edge-connected non strongly spanning trailable graph.

Each of the following holds.

(i) |V (G)| ≥ 8.

(ii) If |V (G)| = 8, then G ∼= H8.

v7

v8v1

v2

v3

v4 v5

v6

H8
K+

2,3

Figure 1: The graph H8 and K+
2,3

Since spanning trailable graphs are supereulerian, and since deciding 3-edge-connected

supereulerian graphs is NP-complete, characterizing 3-edge-connected spanning trailable

graphs will also be difficult. In this chapter, we prove the following, which implies that

under the given longest path length condition, G is not strongly spanning trailable if

and only if G can be contractible to H8 in which the preimage of every vertex of H8 is

nontrivial.

Theorem 3.1.4 Let G be a graph with κ(G) ≥ 2 and κ′(G) ≥ 3 such that G is not

contractible to H8. For any distinct edges e, e′ ∈ E(G), if every longest (ve, ve′)-path P in
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G(e, e′) is not spanning and satisfies |E(P )| ≤ 8, then one of the following holds:

(i) G(e, e′) is not reduced.

(ii) G(e, e′) has a spanning (ve, ve′)-trail.

For an integer n ≥ 0, let Pn denote the path on n vertices, and Z7 denote the graph

obtained by identifying a vertex of a K3 and a P8. Let F denote the family of graphs

that are obtained from H8 by attaching at least one pendant edge to each vertex of H8;

and let H ′8 denote the graph obtained from H8 by attaching exactly on pendant edge to

each vertex of H8. In a separate paper, Theorem 3.1.4 will be applied to show that every

3-connected line graph without an induced Z7 is hamiltonian-connected if and only if it is

not the line graph of H ′8; and that every 3-connected line graph without an induced P10

is hamiltonian-connected if and only if it is not the line graph of a member in F .

This chapter is organized as follows: In Sections 2 and 3, we present needed tools in

our proofs for the main results. In the last two sections, we will prove the main results.

3.2 Collapsible Graphs

We will present some basic properties of collapsible graph in this section. By H ⊆ G

we mean that H is a subgraph of a graph G. For a vertex v ∈ V (G), define NG(v) =

{u ∈ V (G) | vu ∈ E(G)}, and for X ⊆ V (G), NG(X) = ∪x∈XNG(x). The subscript G

might be omitted if G is understood from the context. The next theorem summarizes the

properties needed in our arguments in the proofs.

Theorem 3.2.1 (Catlin, [8]) Let G be a connected graph, H be a collapsible subgraph of

G, vH the vertex in G/H with PIG(vH) = H, and G′ the reduction graph of G. Let K−3,3
denote the graph obtained from K3,3 by deleting an edge. Then each of the following holds.

(i) (Theorem 3 of [8]) G is collapsible if and only if G/H is collapsible. In particular, G

is collapsible if and only if the reduction G′ = K1.

(ii) (Theorem 5 of [8]) G is reduced if and only if G has no nontrivial collapsible subgraphs.

(iii) (Theorem 8 of [8]) G′ is simple, girth(G′) ≥ 4 and δ(G′) ≤ 3.
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(iv) (Theorem 8 of [8]) G is supereulerian if and only if G′ is supereulerian.

(v) (Theorem 8 of [8]) If L′ if an open (or closed, respectively) trail of G/H such that

vH ∈ V (L′), then G has an open (or closed, respectively) trail L with E(L′) ⊆ E(L) and

V (H) ⊆ V (L).

(vi) (Lemma 1 of [7]) Every subdivision of K4 with at most 6 vertices is collapsible. In

particular, K−3,3 is collapsible.

(vii) (Theorem 1.3 of [12]) If G is connected and if F (G) ≤ 2, then the reduction of G

must be in {K1, K2} ∪ {K2,t : t ≥ 1}.

The symmetric difference of two sets X and Y , is

X ⊕ Y = (X ∪ Y )− (X ∩ Y ).
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Figure 2: Non collapsible graphs in Lemma 1.2.2

Lemma 3.2.2 Each of the following holds.

(i) (Li et al, Lemma 2.1 of [31]) Let G be a connected simple graph with n ≤ 8 vertices

and with D1(G) = ∅, |D2(G)| ≤ 2. Then either G is one of three graphs depicted in Figure

2, or the reduction of G is K1 or K2.

(ii) Let u,w ∈ V (G), H be a collapsible subgraph of G, and G′ = G/H. Let vH denote

the vertex in G′ onto which H is contracted, and

u′ =

{
u if u /∈ V (H)

vH if u ∈ V (H).
, and w′ =

{
u if w /∈ V (H)

vH if w ∈ V (H).
.

If G′ has a (u′, w′)-trail L′ containing vH , then G has a (u,w)-trail L such that (V (L′)−
{vH}) ∪ V (H) ⊆ V (L).



CHAPTER 3. ON 3-EDGE-CONNECTED STRONGLY SPANNING TRAILABLE GRAPHS28

Proof. (ii). Let L′ be a (u′, w′)-trail of G′. By the definition of contractions, E(L′) ⊆
E(G). Let L′′ be the spanning subgraph of G with edge set E(L′) and define

R = {v ∈ V (H) | dL′′(v) is odd } ⊕ {u,w}.

Since L′ is a (u′, w′)-trail of G′, dL′(vH) is odd if and only if |V (H)∩{u,w}| = 1. It follows

that |R| ≡ 0 (mod 2). Since H is collapsible, H has a spanning connected subgraph HR

such that O(HR) = R. Let L = G[E(L′) ∪ E(HR)] be an edge induced subgraph of

G. Since L′ contains vH , L is connected. By the definition of R and the choice of HR,

O(L) = {u,w}, and so L satisfies the conclusion of (ii).

Lemma 3.2.3 Let G be a graph with κ′(G) ≥ 3, and let G1, G2, · · · , Gk be the blocks of

G. Then the following are equivalent.

(i) G is strongly spanning trailable.

(ii) For every i = 1, 2, · · · , k, Gi is strongly spanning trailable.

Proof. Since each block of G is also 3-edge-connected, (i) implies (ii). To prove (ii)

implies (i), we argue by induction on k, the number of blocks of G. As (ii) trivially implies

(i) when k = 1, we assume that k > 1 and for any graph with fewer than k blocks, (ii)

implies (i).

Since k ≥ 2, G has two connected subgraphs H and L and a vertex z0 such that

G = H ∪ L and V (H) ∩ V (L) = {z0}. Let e, e′ ∈ E(G). If {e, e′} ∩ E(L) = ∅, then by

induction, H(e, e′) has a spanning (ve, ve′)-trail Q1. By induction, for any edge e′′ ∈ E(L),

L(e′′) has a spanning (ve′′ , ve′′)-trial, and so L has a spanning closed trail Q2. It follows

that Q = G[E(Q1)∪E(Q2)] is a spanning (ve, ve′)-trail of G. The proof for the case when

{e, e′} ⊆ E(L) is similar, and will be omitted. Hence we may assume that e ∈ E(H) and

e′ ∈ E(L).

Since κ′(H) ≥ κ′(G) ≥ 3, and so H has an edge e′′ ∈ EH(z0)− {e}. By induction, H

has a spanning closed (ve, ve′′)-trail T ′1. Assume that e′′ = z0w. Define

T1 =

{
T ′1 − z0v(e′′) if z0v(e′′) is the last edge in T ′1
H[E(T ′1 − v(e′′)) ∪ {e′′}] if wv(e′′) is the last edge in T ′1

.
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Thus T1 is a spanning (v(e), z0)-trail of H. Similarly, L has a spanning (z0, v(e′))-trail T2.

It follows T = T1 ∪ T2 is a spanning (ve, ve′)-trail.

Lemma 3.2.4 Let G be a graph with κ′(G) ≥ 3 and κ(G) ≥ 2. Then for any connected

subgraph W of G with |V (W )| ≥ 2, and for any v ∈ V (G) − V (W ), G has three edge-

disjoint paths (v, wi)-paths Qi (1 ≤ i ≤ 3) such that

V (Q′i) ∩ V (P ) = {wi}, and |{w1, w2, w3}| ≥ 2. (3.1)

Proof. Since κ′(G) ≥ 3, by Menger Theorem (Theorem 9.7 of [5]), for some vertices

w′1, w
′
2, w

′
3 ∈ V (W ), G has edge-disjoint (v, w′i)-paths Qi such that V (Qi)∩V (W ) = {w′i},

i ∈ {1, 2, 3}. If |{w′1, w′2, w′3}| ≥ 2, then we are done with {w1, w2, w3} = {w′1, w′2, w′3}.
Therefore, we assume that |{w′1, w′2, w′3}| = 1. Thus w′1 = w′2 = w′3. Since |V (W )| ≥ 2,

W − w′1 has a vertex w. Since κ(G) ≥ 2, G− w′1 is also connected, and so G− w′1 has a

(v, w)-path Q4 in G−w′1. Since v ∈ V (Q1∪Q2∪Q3) and since w /∈ V (Q1∪Q2∪Q3), Q4 has

a vertex w′ which is the last vertex of Q4 in V (Q1 ∪Q2 ∪Q3). Without lose of generality,

we assume that w′ ∈ V (Q3). Let Q3[v, w′] denote the subpath of Q3 from v to w′, and let

Q4[w′, w] denote the subpath Q4[w′, w] of Q4 from w′ to w. Then Q′3 = Q3[v, w′]∪Q4[w′, w]

is a path edge-disjoint from Q1 and Q2. Therefore, with w1 = w2 = w′1 and w3 = w,

Q1, Q2, Q
′
3 are edge disjoint (v, wi)-paths from v to W satisfying |{w1, w2, w3}| ≥ 2.

3.3 π-collapsible Graphs

We in this section will introduce the concept of π-collapsible graphs, which was first

introduced by Catlin.

Definition 3.3.1 Let C = w1w2w3w3w4 be a 4-cycle in G with a partition π(C) =

〈{w1, w3}, {w2, w4}〉. Following [7], we define G/π(C) to be the graph obtained from

G − E(C) by identifying w1 and w3 to form a vertex w′, by identifying w2 and w4 to

form a vertex w′′, and by adding an edge eπ(C) = w′w′′.
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Theorem 3.3.2 (Caltin, [7]) Let G be a graph containing a 4-cycle C and let G/π(C)

be defined as in Definition 3.3.1. Each of the following holds.

(i) If G/π(C) is collapsible, then G is collapsible.

(ii) If G/π(C) has a spanning eulerian subgraph, then G has a spanning eulerian subgraph.

(iii) If G is reduced with a 4-cycle C, then F (G/π) ≤ F (G)− 1.

Theorem 3.3.2 (ii) can be directly verified by definition. Let Ji, 1 ≤ i ≤ 7, denote

the graphs depicted in Figure 3, where J7 denotes any graph in the family of graphs such

that each of the vertices w1 and v3 can be adjacent to any (identical of distinct) vertices

in v6, v7 or v8. Applying Theorem 3.3.2(i) to each of these graphs with the indicated

partition of a given 4-cycle C = w1w2w3w4w1, it is routine to verify that all these are

collapsible graphs.

Lemma 3.3.3 For each i with 1 ≤ i ≤ 7, Ji is collapsible.

w2 w1 w4

w3

e1 e2

J1

w1 w2 w3 w4

J2

w2 w1 w4

w3

J3

w2 w1 w4

w3

J4

w2 w4

w1

w3

J5

w4 w2

w1

w3

J
′
5

w2 w4

w1

w3

J6

w2 v3 w4 v6 v7 v8

w3

w1

J7

Figure 3: A collection of collapsible graphs
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3.4 Proof of Theorem 3.1.2 and Proposition 3.1.3

The main purpose of this section is to prove Theorem 3.1.2 and proposition 3.1.3. For a

graph G and for an integer k, define

D≤k(G) = ∪ki=1Di(G).

Define the graphs Φ1,Φ2,Φ3 as depicted in Figure 4 below. Note that Φ1 = P (10)(e). It

is routine to verify that the graphs Φ2,Φ3 are in S12.

Φ1 Φ2 Φ3

Figure 4: The graphs Φ1,Φ2,Φ3

We shall prove the following useful tool, which is a restatement of Theorem 3.1.2.

Theorem 3.4.1 Let G be a connected simple graph on n vertices. If

n ≤ 12, d1(G) = 0 and d2(G) ≤ 1, (3.2)

then either the reduction of G is in {K1, K2, K1,2, K2,3, K
+
2,3, P (10),Φ1}, or G ∈ S12.

Proof. Let G′ be the reduction of G. We argue by contradiction and assume that

G /∈ S12 and G′ /∈ {K1, K2, K1,2, K2,3, P (10),Φ1}. (3.3)



CHAPTER 3. ON 3-EDGE-CONNECTED STRONGLY SPANNING TRAILABLE GRAPHS32

We shall frequently use the facts that K3 is the smallest nontrivial collapsible simple

graph and the nontrivial reduced graphs with at most 5 vertices are either a tree, or a

4-cycle, or K2,3 or K2,3 minus an edge. Since d1(G) = 0 and d2(G) ≤ 1,

both | ∪v∈D1(G′) PIG(v)| ≥ 4d1(G′) and | ∪v∈D2(G′) PIG(v)| ≥ 4(d2(G′)− 1) + 1. (3.4)

By (3.2) and (3.4), we must have d1(G′) ≤ 2 and d1(G′)+d2(G′) ≤ 3. Let m′ = |E(G′)|
and n′ = |V (G′)|. We first indicate that

G is reduced, with 11 ≤ n′ ≤ 12, d1(G′) = 0 and d2(G′) ≤ 1. (3.5)

If d2(G′) = 3, then d1(G′) = 0. By (3.4), | ∪v∈D2(G′) PIG(v)| ≥ 9. Hence n′ ≤
12 − 9 + 3 = 6, and so by (3.2) and by d2(G′) = 3, we must have G′ = K2,3, contrary

to (3.3). Hence d2(G′) ≤ 2. Assume that d1(G′) = 2. By (3.4), | ∪v∈D1(G′) PIG(v)| ≥ 8.

Thus n′ ≤ 12 − 8 + 2 = 4, and so by d1(G′) = 2, we have G′ ∈ {K2, K1,2}, contrary to

(3.3). Hence d1(G′) ≤ 1.

Suppose that D1(G′) = {v}. Let H1 = G − PIG(v), and v1 ∈ V (H1) be the vertex

adjacent to a vertex in H1. By (3.4), |V (H1)| ≤ 12− 4 = 8. If dG(v1) ≥ 3, then by (3.2),

d1(H1) = 0 and d2(H1) ≤ 2. By Lemma 3.2.2(i), the reduction of H1 is in {K1, K2, K2,3}.
It follows that the the reduction of G is in {K2, K1,2, K

+
2,3}, contrary to (3.3). Hence

dG(v1) = 2. Let NH1(v1) = {v2}. Let H2 = G − (PIG(v) ∪ {v1}). Since d2(G) ≤ 1, we

have dG(v2) ≥ 3, and so d1(H2) = 0 and d2(H1) ≤ 1. By Lemma 3.2.2(i), the reduction

of H2 is in {K1, K2}. Accordingly, the reduction of G is in {K2, K1,2}, contrary to (3.3).

Hence we must have d1(G′) = 0.

As d1(G′) = 0 and d2(G′) ≤ 2, by Lemma 3.2.2(i) and by (3.3), we assume that

9 ≤ n′ ≤ 12. By (3.4) and by n ≤ 12, we have 9 ≤ n′ ≤ 12 − (4d2(G′) − 3), and so

d2(G′) ≤ 1.

If n′ ∈ {9, 10}, then 2m′ ≥ 2 + 3(n′ − 1) = 3n′ − 1. F (G′) = 2n′ − m′ − 2 ≤
2n′ − 3

2
n′ − 3

2
= n′−3

2
, implying that F (G′) ≤ 3. As d2(G′) ≤ 1, by Theorem 3.1.1 (ii),

G′ = P (10), contrary to (3.3). Therefore, we have 11 ≤ n′ ≤ 12. Since every simple

collapsible graph must have at least 3 vertices, G is reduced. This verifies (3.5).
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Claim 1. κ′(G) ≥ 2 and d2(G) = 1.

Assume that e is an cut-edge of G, and let H1 and H2 be the components of G − e.
Since G is reduced and by (3.2), 5 ≤ |V (Hi)| ≤ 7, for i = 1, 2. By Lemma 3.2.2(i),

Hi ∈ {K1, K2, K2,3}, contrary to (3.5). Hence κ′(G) ≥ 2. Suppose that δ(G) ≥ 3. Then

by κ′(G) ≥ 2, and by Theorem 3.1.1(iii), either G ∈ S12, contrary to (3.3), or G is

contracted to P (10), whence by (3.5), G = P (10), contrary to (3.3). Hence d2(G) = 1.

This proves Claim 1.

By Claim 1, we denote D2(G) = {v}.

Claim 2. d3(G) = 10. Moreover, if n = 12, then d4(G) = 1.

If d≥4(G) ≥ 1, then 2|E(G)| ≥ 3n+d≥5(G). F (G) = 2n−m−2 ≤ 2n− 3n+d≥5(G)

2
−2 =

n−4−d≥5(G)

2
. If n = 11, then F (G) ≤ 3. By Theorem 3.1.1(ii), G = P (10), contrary to

n = 11. Hence if n = 11, then d3(G) = 10.

Let n = 12. Since n = 12, and since the number of odd degree vertices is even,

d3(G) ≤ 10, and so di≥4(G) ≥ 1. If di≥5(G) ≥ 1, then F (G) ≤ 24 − 19 − 2 = 3. Let

H = G− v. As κ′(G) ≥ 2, H is connected and reduced with |V (H)| = 11, d2(H) ≤ 2 and

F (H) = 3. By Theorem 3.1.1(ii), H ∈ {K1, K2, K1,2, K2,3, P (10)}, contrary to the fact

|V (H)| = 11. Thus we have d2(G) = 1, d3(G) = 10 and d4(G) = 1. Claim 2 holds.

Claim 3. If girth(G) ≥ 5, then G ∈ {Φ1,Φ2}.

If n = 11, then by girth(G) ≥ 5, there must be a vertex w ∈ V (G) such that

the distance between v and w is at least 3. If n = 12, then by Claim 2, we denote

D4(G) = {w}. In any case, for integer i ≥ 0, define

Ti = {u ∈ V (G)| the distance from u to w in G is i}.

Suppose first that n = 11. Then |T0| = 1, |T1| = 3, |T2| = 6 and |T3| = 1. Let T1 =

{u1, u2, u3} and let T2 = {v1, v2, · · · , v6}. Since the degree of each vertex of T2 ∪ T3 in

the induced subgraph G[T2 ∪ T3] is two, and since G is reduced, the induced subgraph

G[T2 ∪ T3] is a C7. Without loss of generality, we assume that C7 = v1v2 · · · v6vv1. Also
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we assume that NG(u1) ∩ T2 = {v1, v4} and u2v2 ∈ E(G). Then NG(u2) = {v2, v5} and

NG(u3) = {v3, v6}. Thus G = Φ1.

Next we assume that n = 12. Then |T0| = 1, |T1| = 4, |T2| = 7 and u1 ∈ T1. Let

T1 = {u1, u2, u3, u4} and let T2 = {v1, v2, · · · , v7}. Since the degree of each vertex of T2 in

the induced subgraph G[T2] is two, and since G is reduced, the induced subgraph G[T2]

is a C7. Without loss of generality, we assume that C7 = v1v2 · · · v7v1. By symmetry,

we assume that u1v7 ∈ E(G), NG(u2) ∩ T2 = {v1, v4}, NG(u3) = {v2, v5} and NG(u3) =

{v3, v6}. Thus G = Φ2. This completes the proof for Claim 3.

By Claim 3, we may assume that G has a 4-cycle C = v1v2v3v4v1. Let π(C) =

〈{v1, v3}, {v2, v4}〉 be a partition of V (C). Form the graph G/π with the new edge eπ =

eπ(C) as in Definition 3.3.1. Hence we identify v1 and v3 to get u1 and identify v2 and v4

to get u2.

Claim 4. κ′(G/π) ≥ 2.

By Claim 1, κ′(G) ≥ 2. If G/π has a cut edge, then it must be eπ. Assume that

eπ = u1u2 is an cut edge in G/π and let H1 and H2 be the components of G/π − e with

u1 ∈ V (H1) and u2 ∈ V (H2).

Case 1. NG(v1) = NG(v3). Let NG(v1) = NG(v3) = {v2, v4, x}. By Claim 1, we must

have x = v. (See Figure 5).

v v1 v4

v2v3

Case 1.

v1 v4

v2v3

L1 L2

Case 2.

Figure 5: The two cases in the proof of Claim 4
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Let K = G−{v, v1, v2, v3, v4}. Then K is connected, and |V (K)| =

{
6, if n = 11

7, if n = 12
.

By Claims 3 and 4, |E(K)| =

{
8, if n = 11

9 or 10, if n = 12
.

Thus F (K) =

{
2, if n = 11, or n = 12 and |E(K)| = 10

3, if n = 12 and |E(K)| = 9
.

Furthermore, d1(K) = 0 and d2(K) =

{
2, if n = 11, or n = 12 and |E(K)| = 10

3, if n = 12 and |E(K)| = 9
.

If F (K) = 2, then by Theorem 3.2.1 (vii), K = K2,n−2, contrary to fact d2(K) ≤ 3. If

F (K) = 3, then d2(K) = 3 and |V (K)| = 7. By Theorem 3.1.1(ii), K = K1, contrary to

(3.3). This proves Case 1.

Case 2. NG(v1) 6= NG(v3) and NG(v2) 6= NG(v4).

Let L1 and L2 be components of G−{v1, v2, v3, v4}. (See Figure 5). Since κ′(G) ≥ 2,

L1 and L2 are connected. As G is reduced and d2(G) ≤ 1, |V (L1)|+ |V (L2)| ≥ 9, and so

n ≥ 13, contrary to the hypothesis that n ≤ 12. Claim 4 holds.

If n = 11, then |V (G/π)| = 9, and so by Theorem 3.1.1(ii), the reduction of G/π is

in {K1, K2, K1,2, K2,3}. By Claim 4, κ′(G/π) ≥ 2, and by Claim 1, d2(G) = 1. It follows

that the reduction of G/π is K1. By Theorem 3.3.2, G is collapsible, contrary to (3.3).

Hence we have n = 12. By (3.5), G is reduced. By Claims 1 and 2, d2(G) = 1, d3(G) =

10 and d4(G) = 1, F (G) = 4, and so by Theorem 3.3.2 (iii), F (G/π) ≤ F (G) − 1 = 3.

By Definition 3.3.1, |V (G/π)| = n − 2 ∈ {9, 10}. By Theorem 3.1.1(ii) and by Claim 4,

the reduction of G/π is in {K1, P (10)}. By Theorem 3.3.2, if the reduction of G/π is

K1, then G is collapsible, contrary to (3.3). Therefore, n = 12 and G/π = P (10). This

implies G = Φ3. The proof of Theorem 3.4.1 is now complete.

Proof of Proposition 3.1.3. Let G be a non strongly spanning trailable graph with

κ′(G) ≥ 3. Then for some pair of edges e, e′, G(e′, e′′) does not have a spanning (ve, ve′)-
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trail. Let H be the graph obtained from G(e′, e′′) by adding a new vertex z0 and new

edges z0ve′ , z0ve′′ . Then H cannot be supereulerian.

Suppose that |V (G)| ≤ 8, then |V (H)| ≤ 11. By Theorem 3.4.1, we must have

H = P (10)(e), which forces that G = H8. This proves the proposition.

3.5 Proof of Theorem 3.1.4

The follow lemma is verified using case analysis. Detailed proofs will be in Chapter 4.

Lemma 3.5.1 (Chapter 4 Theorem 4.3.1) Let G be a graph with κ(G) ≥ 2 and κ′(G) ≥ 3,

e = v0v1 and e′ = vc−1vc be distinct edges in G, and P = vev1 · · · vc−1ve′ is a longest

(ve, ve′)-path in G(e, e′) with c = |E(P )| ≤ 8. If G(e, e′) is reduced, then V (G) = V (P ) ∪
{v0, vc}.

Lemma 3.5.2 Let G be a graph with κ′(G) ≥ 3 and let e = uv ∈ E(G). If |V (G)| ≤ 11

and if the reduction of G(e) is P (10), then G has a (u, v)-path of length at least 9.

Proof. Let ve denote the vertex so that G(e) is obtained from G − e by adding new

edges uve, vev. Since the the reduction of G(e) is P (10), ve, u, v must be in a maximal

collapsible subgraph of G(e), which is the preimage of a vertex w (say) of P (10). Since

P (10) has a cycle of length 9 passing w, this cycle of length 9 can be lifted to a cycle of

length 11 containing ve in G(e). Therefore, G has a (u, v)-path with length at least 9.

Proof of Theorem 3.1.4. We argue by contradiction and assume that

G is counterexample to the theorem. (3.6)

Thus for some edges e, e′ ∈ E(G), every longest (ve, ve′)-path in G(e, e′) has length c ≤ 8.

By Lemma 3.2.2 (ii) and by (3.6), we may assume that G(e, e′) is reduced. Hence G(e, e′)

does not have a spanning (ve, ve′)-trail.
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Let P = vev1 · · · vc−1ve′ be a longest (ve, ve′)-path in G(e, e′) and V (P ) 6= V (G(e, e′)).

Let e = v0v1 and e′ = vc−1vp for some vertices v0, vc ∈ V (G).

Obtain a new graph L from G(e, e′) by adding a new vertex z0 not in G(e, e′) and

by adding two new edges z0ve, z0ve′ . Thus L has a spanning eulerian subgraph. This

would imply that G(e, e′) has a spanning (ve, ve′)-trail, contrary to the assumption that

G(e, e′) has a spanning (ve, ve′)-trail. Since κ′(G) ≥ 3, we have κ′(L) ≥ 2 and L has

exactly one edge cut of size 2. By Lemma 3.5.1, V (G(e, e′)) = V (P ) ∪ {v0, vc}, and so

|V (G(e, e′))| ≤ c + 3 = 11. Thus |V (L)| ≤ 12. Hence one of the conclusions of Theorem

3.1.2 must hold. Since κ′(L) ≥ 2 and L has exactly one edge cut of size 2, the reduction

of L cannot be K2, K1,2, K2,3 or K+
2,3. If L is collapsible or supereulerian, then Theorem

3.1.4 (ii) holds. If L = Φ1, then since κ′(G) ≥ 3, the only vertex of degree 2 in Φ1 must

be the newly added vertex z0 in L. It follows that G = H8. contrary to the assumption

that G is not contractible to H8.

Therefore, by Theorem 3.1.2, the reduction of L must be P (10). By Lemma 3.5.2,

G(e, e′) has a (ve, ve′)-path with length at least 9, contrary to the assumption that every

longest such path has length at most 8. This completes the proof of the theorem.



Chapter 4

Strongly Spanning Trailable Graphs

with Short Longest Paths

4.1 Introduction

Catlin in [8] and Jaeger in [23] proved that every 4-edge-connected graph is supereulerian.

In fact, Catlin’s proof implies a stronger result stated below.

Theorem 4.1.1 (Catlin [8]) Every 4-edge-connected graph is strongly spanning trailable.

The four cycle is an example that a supereulerian graph may not be spanning trailable.

Luo, Chen and Chen [35] first explicitly studied spanning trailable graphs (called eulerian-

connected graphs in [35]). The following theorem improves Theorem 4.1.1.

Theorem 4.1.2 (Luo, Chen and Chen [35]) Every 4-edge-connected graph is spanning

trailable.

Theorem 4.1.2 was implicitly proved in Theorem 4.1.3 below.

38
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Theorem 4.1.3 (Catlin and Lai [9]) If G has two edge-disjoint spanning trees, then G

is strongly spanning trailable if and only if G is essentially 3-edge-connected.

Spanning trailable graphs have several useful applications. Shao [45] indicated that

spanning trailable graphs have applications in the investigation of hamiltonian-connected

line graphs. For fixed distinct edges e, e′ ∈ E(G), G∗(e, e′) is obtained from G(e, e′) by

adding a new vertex z and new edges zve, zve′ . Then G(e, e′) has a spanning (ve, ve′)-trail

if and only if G∗(e, e′) is supereulerian. As Pulleyblank [41] indicated that determining

if a 3-edge-connected graph is supereulerian is NP-complete, determining if a 3-edge-

connected graph is strongly spanning trailable is at least as hard as the supereulerian

graph problem.

v7

v8v1

v2

v3

v4 v5

v6

H8 K+
2,3

Figure 1. The graph W8 and K+
2,3

Let H8 denote the Wagner graph as depicted in Figure 1. For e = v1v5, e′ = v3v7 ∈
E(H8), it is routine to check that H8(e, e′) does not have a spanning (ve, ve′)-trail, and so

any longest (ve, ve′)-path in H8(e, e′) has length 8. Later in this chapter, we verified that

H8 is the 3-edge-connected non-spanning trailable graph with fewest number of vertices.

Our main results of this paper are the following.

Theorem 4.1.4 Let G be a 3-edge-connected graph. Let e, e′ ∈ E(G) be two edges. If

the length of a longest (ve, ve′)-path in G(e, e′) is at most 8, then either G has a spanning

(ve, ve′)-trail or G = H8 with, up to isomorphism, e = v1v5 and e′ = v3v7.
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Corollary 4.1.5 Let G be a 3-edge-connected graph. If for any edges e, e′ ∈ E(G), the

length of a longest (ve, ve′)-path in G(e, e′) is at most 8, then either G is strongly spanning

trailable.

Corollary 4.1.5 follows from Theorem 4.1.4 immediately as for edges e1 = v1v2 and

e2 = v7v8, a longest (ve1 , ve2)-path ve1v2v3v4v8v1v5v6v7ve2 has length 9. Hence H8 does

not satisfy the hypothesis of Corollary 4.1.5. This chapter is organized as the proof of

Theorem 4.1.4 will be given in the last two sections.

4.2 Preliminaries

Lemma 4.2.1 Let u,w ∈ V (G), H be a collapsible subgraph of G, and let vH denote the

vertex in G/H onto which H is contracted, and

u′ =

{
u, if u /∈ V (H)

vH , if u ∈ V (H)
and w′ =

{
w, if w /∈ V (H)

vH , if w ∈ V (H)
.

If G/H has a (u′, w′)-trail L′ containing vH , then G has a (u,w)-trail L such that

(V (L′)− {vH}) ∪ V (H) ⊆ V (L).

Proof. By the definition of contraction, E(L′) ⊆ E(G). Let L′′ be the subgraph of G

with edge set E(L′) and define

R = [{v ∈ V (H) | dL′′(v) is odd } ∪ {u,w}]
−[{v ∈ V (H) | dL′′(v) is odd } ∩ {u,w}].

Since L′ is a (u′, w′)-trail of G/H, dL′(vH) is odd if and only if |V (H) ∩ {u,w}| = 1.

It follows that |R| ≡ 0 (mod 2). Since H is collapsible, H has a spanning connected

subgraph HR such that O(HR) = R. Let L = G[E(L′) ∪ E(HR)] be an edge induced

subgraph of G. Since L′ contains vH , L is connected. By the definition of R and the

choice of HR, O(L) = {u,w}, and so L satisfies (V (L′)− {vH}) ∪ V (H) ⊆ V (L).
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Lemma 4.2.2 Let G be a graph with κ′(G) ≥ 3, and let G1, G2, · · · , Gk be the blocks of

G. Then the following are equivalent.

(i) G is strongly spanning trailable.

(ii) For every i = 1, 2, · · · , k, Gi is strongly spanning trailable.

Proof. Since each block of G is also 3-edge-connected, (i) implies (ii). To prove (ii)

implies (i), we argue by induction on k, the number of blocks of G. As (ii) trivially implies

(i) when k = 1, we assume that k > 1 and for any graph with fewer than k blocks, (ii)

implies (i).

Since k ≥ 2, G has two connected subgraphs H and L and a vertex z0 such that

G = H ∪ L and V (H) ∩ V (L) = {z0}. Let e, e′ ∈ E(G). If {e, e′} ∩ E(L) = ∅, then by

induction, H(e, e′) has a spanning (ve, ve′)-trail Q1. By induction, for any edge e′′ ∈ E(L),

L(e′′) has a spanning (ve′′ , ve′′)-trial, and so L has a spanning closed trail Q2. It follows

that Q = G[E(Q1)∪E(Q2)] is a spanning (ve, ve′)-trail of G. The proof for the case when

{e, e′} ⊆ E(L) is similar, and will be omitted. Hence we may assume that e ∈ E(H) and

e′ ∈ E(L).

Since κ′(H) ≥ κ′(G) ≥ 3, and so H has an edge e′′ ∈ EH(z0)− {e}. By induction, H

has a spanning closed (ve, ve′′)-trail T ′1. Assume that e′′ = z0w. Define

T1 =

{
T ′1 − z0v(e′′), if z0v(e′′) is the last edge in T ′1
H[E(T ′1 − v(e′′)) ∪ {e′′}], if wv(e′′) is the last edge in T ′1

.

Thus T1 is a spanning (v(e), z0)-trail of H. Similarly, L has a spanning (z0, v(e′))-trail T2.

It follows T = T1 ∪ T2 is a spanning (ve, ve′)-trail.

In the rest of this section, we will discuss properties of a graph H as specified in the

next definition.

Definition 4.2.3 Let k > 0 be an integer. A connected graph H with two distinct vertices

w1, w2 ∈ V (H) is said to have Property R(k) if each of the following holds.

(i) For any v ∈ V (H)− {w1, w2}, dH(v) ≥ 3.

(ii) For any longest (w1, w2)-path P and for any u ∈ V (H) − V (P ), H has three edge-

disjoint paths Q1, Q2, Q3 from u to V (P ) with |V (Qi) ∩ V (P )| = 1, (1 ≤ i ≤ 3) and with
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| ∪3
i=1 V (Qi) ∩ V (P )| ≥ 2.

(iii) every (w1, w2)-path in H has length at most k.

Throughout the rest of this section in Lemmas 4.2.4-4.2.7, H always denotes a 2-

connected graph with Property R(6) and with the same notations in Definition 4.2.3,

and

P = z0z1...zh is a longest (w1, w2)-path in H. (4.1)

Lemma 4.2.4 If for a pair of distinct vertices zi, zj (0 ≤ i < j ≤ h ≤ 6), H −E(P ) has

a longest (zi, zj)-path Q = x0x1...xk with x0 = zi and xk = zj such that k = |E(Q)| ≥ 4

and V (P ) ∩ V (Q) = {zi, zj}, then either

(i) H is not reduced, or

(ii) H[V (P ) ∩ V (Q)] is spanned by the graph L depicted in Figure 2 below.

z3 z6z0

x3x1

x2

Figure 2: The graph L

Proof. We assume that H is reduced to prove Lemma 4.2.4(ii). By Theorem 1.2.2 (iii),

girth(H) ≥ 4. Since H is connected, for each i (1 ≤ i < k), H has a shortest path Ti

from xi to P with V (Ti)∩V (P ) = {zti}. Then we have the following observations: either

(A0), or one of (A1) or (A2) must hold, and either (B0) or (B1) must hold. Moreover, if

k = 6, (C0) holds.

(A0) V (T1) ∩ V (Q)− (V (P ) ∪ {x1} − {zi, zj}) 6= ∅.

Note that if (A0) fails, then t1 ≤ j. Otherwise, assume that t1 > j. By (4.1),

j ≥ i+ |E(Q)| ≥ i+ 4, and so 6 ≥ t1 ≥ j + 4 ≥ i+ 8, a contradiction.
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(A1) If (A0) fails and i < t1 < j, then by girth(H) ≥ 4, t1 ≥ i + 2. Hence 6 ≥ j ≥
t1 +|E(Q)| ≥ t1 +4 ≥ i+6. It follows that we must have i = 0, t1 = 2, j = 6, x1z2 ∈ E(H)

and |E(Q)| = 4.

(A2) If (A0) fails and t1 < i, then by girth(H) ≥ 4, i ≥ t1 + 2. Hence 6 ≥ j ≥
i+ |E(Q)| ≥ i+4 ≥ t1 +6. It follows that we must have t1 = 0, i = 2, j = 6, x1z0 ∈ E(H)

and |E(Q)| = 4.

(B0) V (T2) ∩ V (Q)− (V (P ) ∪ {x2} − {zi, zj}) 6= ∅.

Note that if (B0) fails, then i ≤ t2 ≤ j. Otherwise, if t2 < i, then by (4.1), i ≥ t2 + 3,

whence 6 ≥ j ≥ i+ |E(Q)| ≥ i+ 4 ≥ t1 + 7, a contradiction. Thus i ≤ t2. By symmetry,

t2 ≤ j.

(B1) If (B0) fails and i < t2 < j, then by (4.1), t2 ≥ i + 3 and so 6 ≥ j ≥ t2 +

|E(Q[x2, xk])| ≥ t2 + 3 ≥ i + 6. It follows that we must have i = 0, t2 = 3 , j = 6,

x2z3 ∈ E(F ) and |E(Q)| = 4.

(C0) If k = 6, then V (T3)∩V (Q)−(V (P )∪{x3}−{zi, zj}) 6= ∅. Otherwise, symmetrically,

we may assume that j ≥ t3 ≥ 3 and so P [z0, zt3 ]x3Q[x3, zj] P [zj, zh] is longer than P ,

contrary to (4.1).

By symmetry, these observations can also be applied to xk−1 (as symmetric to x1)

and to xk−2 (as symmetric to x2).

Claim 1. (A0) holds for x1.

If not, then assume first that (A1) holds for x1. Thus (B1) does not hold as otherwise

t1 = 2 and t2 = 3, and so P [z0, z2]T−1 [x1, z2]T2[x2, z3] P [z4, zh] is longer than P . Hence

(B0) must hold. By |E(Q)| = 4, t2 ∈ {0, 6}. If t2 = 0, then by girth(H) ≥ 4, |E(T2)| ≥ 2,

and so T−2 [x2, z0]x1T1[x1, z2]P [z2, z6] is longer than P , contrary to (4.1). Hence t2 = 6 and

T2 = x2x
′
3z6. Applying the observations of (A0)-(A2) to x3 (by the symmetry between x1

and x3), we conclude that t3 = 0, whence z0x3x2x1P [z2, z6] is longer than P , contrary to

(4.1). This proves that (A1) does not hold. The proof for (A2) does not hold is similar.
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This proves Claim 1.

Since girth(H) ≥ 4, and since Q is longest, T = T1[x1, xs] satisfies V (T ) ∩ V (Q) =

{x1, xs} such that if s = 3, then |E(T )| ≥ 2. As T1 is shortest, s ≥ 3.

Claim 2. If xs 6= zj, then (B0) holds for x2.

If (B0) does not hold for x2, then (B1) holds for x2, implying s = 3. As Q is longest,

T = x1x
′
2x3, and so (B0) or (B1) must also hold for x′2. If (B1) holds for x′2, then

x′2z3 ∈ E(H), and so P [z0, z3]x′xx1x2x3z6 is longer than P , contrary to (4.1). Hence (B0)

holds for x′2. By symmetry, and since girth(H) ≥ 4 and since Q is longest, we may assume

that H has a vertex x′1 /∈ V (P ) ∪ V (Q) such that z0x
′
1, x
′
1x
′
2 ∈ E(H). (See Figure 3).

Thus z0x
′
1x
′
2x1x2z3P [z3, z6] is longer than P , contrary to (4.1). This proves Claim 2.

z6z2z0

x3x1

x2

(A1) and (A2)
z3 z6z0

x3x1

x2

x2′

Figure 3: (A0),(B1) and (B0) for x2′

If t2 = i, then by girth(H) ≥ 4 and as Q is longest, T2 = x2x
′
1zi for some x′1 /∈

V (P )∪V (Q). By the symmetry between x1 and x′1, we must also have (A0) holds for x′1.

Let T ′ be an (x′1, xs′)-path with V (T ′) ∩ V (Q) = {x′1, xs′} and V (T ′) ∩ V (P ) = ∅.

Claim 3. If xs 6= zj and t2 = i, then s = s′. Moreover, s > 3.

If s′ 6= s, then as girth(H) ≥ 4, H would have an (zi, zj)-path of length at least 7

(See Figure 4). Hence we assume that s = s′ ≥ 3. If s = s′ = 3, then by girth(H) ≥ 4

and by (4.1), |E(T ′)| = 2 and E(T1[x1, x3]) = 2. It follows that H[{x0, x2} ∪ V (T ′) ∪
V (T1[x1, x3])] ∼= G(2) defined in Theorem 1.2.2 (vii), and so by Theorem 1.2.2 (vii), H is

not reduced, contrary to the assumption that H is reduced. This proves Claim 3.
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zi zj

x1

x2 xs

xs′
x′1

(a)
zi zj

x1

xs′

xsx′1

(b)

zi zj

x1

x2 x3

x4
x′1

y′2

y2

(c) s = s′ = 4,k = 5

z0 z6

x1

x2

x3

x4

x5

(d) s = s′ = 5,k = 6

Figure 4

Claim 4. If xs 6= zj and t2 = i, then s = s′ = 5 (and so k = 6).

If s = s′ = 4, and if min{|E(T ′)|, |E(T1[x1, x4])|} = 1, then by Theorem 1.2.2 (vii), H

is not reduced. Hence when s = s′ = 4, by (4.1), we must have |E(T ′)| = |E(T1[x1, x4])| =
2, and so we may denote T ′ = x′1y

′
2x4 and T1[x1, x4] = x1y2x4. If k = 5, then by

symmetry with x2, either (B0) or (B1) holds (with x3 replacing x2). If i < t3 < j, then

zix1x2T
′[x′1, x4]x3T3[x3, zt3 ]P [zt3 , zj] is longer than P [zi, zj], contrary to (4.1). Therefore

(B0) must hold for x3, and so H has an (x3, z)-path T ′3 such that V (T ′3)∩ (V (Q)∪V (T ′)∪
V (T2)) = {x3, z}. Table 1 below shows that for any values of x, either H has a nontrivial

collapsible subgraph, or (4.1) is violated, and so Claim 4 is proved.
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z longer (z0, zh)-path or H is not reduced Explanations

x1 P [z0, zi](T
′
3)
−[x1, x3]x2x

′
1x4P [zj , zh], girth(H) ≥ 4,

|E(T ′3)| ≥ 2.

x2 P [z0, zi]x1(T
′
3)
−[x2, x3]x4P [zj , zh], girth(H) ≥ 4,

|E(T ′3)| ≥ 3.

x4 P [z0, zi]Q[x1, x3]T
′[x3, x4]P [zj , zh], girth(H) ≥ 4,

|E(T ′3)| ≥ 3.

x′1 P [z0, zi]x1x2x3(T
′
3)
−[x′1, x3]y

′
2x4P [zj , zh], girth(H) ≥ 4,

|E(T ′3)| ≥ 2.

y2 P [z0, zi]x1y2x3x2x
′
1y
′
2x4P [zj , zh].

zi H[V (Q[x0, x4]) ∪ x′1, y2, y
′
2}] is not reduced, by Lemma 1.2.3(i),

if |E(T ′3)| = 1.

zi P [z0, zi](T
′
3)
−[zi, x3]x2x1T1[x1, x4]P [zj , zh], if |E(T ′3)| ≥ 2.

zj P [z0, zi]T1[x1, x4](T
′)−[x4, x

′
1]x2T

′
3[x3, zj ]P [zj , zh].

Table 1: When s = s′ = 4, a contradiction is found

Claim 5. If xs 6= zj, then t2 6= i, and so t2 = j.

If not, then by Claim 4, we have s = s′ = 5 and k = 6. Thus i = 0 and j =

6. By Definition 4.2.3 (ii), H has an (y2, y)-path T ′4 such that x′1y2, y2x5 /∈ E(T ′4) and

V (T ′4) ∩ (V (P ) ∩ V (Q) ∪ {x′1, y2, y
′
2}) = {y2, y}. If y = zt for some 0 < t < 6, then either

P [z0, zt](T
′
4)−[y2, zt]x

′
1Q[x2, z6] or z0x1x2x

′
1T
′
4[y2, zt]P [zt, z6] is longer than P , contrary to

(4.1). Hence y ∈ V (Q) ∪ {x′1, y2, y
′
2}. Table 2 below indicates that for any possibilities of

y, a violation to (4.1) always occurs, and so Claim 5 follows.
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y longer (z0, zh)-path in H Explanations

x1 z0x
′
1T
′
4[y2, x1]Q[x1, z6].

x2 z0x
′
1T
′
4[y2, x2]Q[x2, z6].

x3 z0x1x2x
′
1T
′
4[y2, x3]Q[x4, z6].

x4 z0x1x2x
′
1T
′
4[y2, x4]x5z6.

x5 z0x1x2x
′
1T
′
4[y2, x5]z6, by girth(H) ≥ 4, |E(T ′4)| ≥ 3.

x′1 z0x1x2x
′
1(T ′4)[y2, x

′
1]x5z6, by girth(H) ≥ 4, |E(T ′4)| ≥ 3.

y′2 z0x1x2x
′
1T
′
4[y2, y

′
2]x5z6, by girth(H) ≥ 4, |E(T ′4)| ≥ 2.

z0 (T ′4)−[z0, y2]x′1x2Q[x2, z6].

z6 Q[z0, z5]y2T
′
4[y2, z6].

Table 2: When s = s′ = 5, a contradiction to (4.1) is found.

Claim 6. xs = zj, and so t1 = j.

If not, then by Claim 5, t2 = j. If k = 4, then s = 3. By girth(H) ≥ 4, both

|E(T [x1, x3])| ≥ 2 and |E(T2)| ≥ 2. It follows that z0T1[x1, x3]x2T2[x2, zj] is longer

than Q, contrary to the choice of Q. Suppose that k = 5 and s = 4. By symmetry,

t3 = i and T3 is internally disjoint from Q. If |E(T [x1, x4])| = |E(T2)| = |E(T3)| = 1,

then H[V (Q)] contains a K−3,3, contrary to the assumption that H is reduced. Hence

max{|E(T [x1, x4])|, |E(T2)|, |E(T3)|} ≥ 2. Table 3 shows that a contradiction to the

choice of Q always exists.

Cases (zi, zj)-path longer than Q in H − E(P )

|E(T [x1, x4])| ≥ 2 ziT1[x1, x4]x′3T2[x2, zj].

|E(T2)| ≥ 2 ziT1[x1, x4]x′3T2[x2, zj].

|E(T3)| ≥ 2 T−3 [zi, x3]x2T1[x1, zj].

Table 3: When k = 5 and s = 4, a, (zi, zj)-path longer than Q is found.

Therefore we must have k = 5 and s = 3. By girth(H) ≥ 4, |E(T1)| ≥ 2. As Q is

longest, T1 = x1x
′
2x3 and T2 = x2zj. By (4.1), t4 = i and T4 = x4zi. By Theorem 1.2.2

(vii), H[V (Q)] is not reduced, contrary to the assumption that H is reduced. This proves

Claim 6.
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Claim 7. (B0) holds for x2.

If not, then (B1) holds for x2, whence i = 0, t2 = 3, j = 6, x2z3 ∈ E(F ) and

|E(Q)| = 4. If |E(T1)| ≥ 2, then P [z0, z3]x2T1[x1, z6] is longer than P . Hence we have

T1 = x1z6. By symmetry to x1, we also have T3 = x3z0. Thus H[V (P )∩V (Q)] is spanned

by the graph depicted in Figure 2, and so Claim 1 must hold. Hence Claim 7 follows.

By Claims 1 and 6, and by the symmetry between x1 and xk−1, we may assume that

V (T1) ∩ (V (P ) ∪ V (Q)) = {zj, x1} and V (Tk−1) ∩ (V (P ) ∪ V (Q)) = {zi, xk−1}. By the

maximality of Q, we have

T1 = x1zj and Tk−1 = xk−1zi. (4.2)

By Claim 7, T2 contains a subpath T ′2 = T2[x2, y
′] such that V (T ′2) ∩ V (Q) = {x2, y

′}
and such that x1x2, x2x3 /∈ E(T ′2). By the choice of Q, y′ /∈ {x1, x3}. By Claim 6 and by

symmetry, y′ 6= xk−1.

If k = 4, then as Q is longest and by girth(H) ≥ 4, we have

T2 = x2xz, where z ∈ {zi, zj} and x /∈ V (P ) ∪ V (Q). (4.3)

By the symmetry between x and x1, we must have {x, z} = {zi, zj}. ThusH[V (Q)∪{x}] ∼=
K−3,3, contrary to the assumption that H is reduced. Hence k ≥ 5.

Assume that k = 5. As y′ 6= xk−1, y′ ∈ {zi, zj}. If y′ = zi, then by maximality

of Q, (4.3) holds. Hence by Lemma 1.2.3(i), H[V (Q) ∪ V (T2)] is not reduced, contrary

to the assumption that H is reduced. Thus we have y′ = zj. By the maximality of Q,

|E(T2)| = 2. By the symmetry between x2 and x3, we also have t3 = i and |E(T3)| = 2.

If follows by Lemma 1.2.3 (i) that H[V (Q) ∪ V (T2) ∪ V (T3)] is not reduced, contrary to

the assumption that H is reduced.

Hence k = 6. Then y′ ∈ {zi, x4, zj}. If y′ = zi, by the maximality of Q, (4.3) holds

with z = zi. By the symmetry between x1 and x, and by (4.2), we have xzj ∈ E(H). It

follows that H[{zi, zj, x1, x, x2, x5}] ∼= K−3,3, contrary to the assumption that H is reduced.

Thus y′ 6= zi (t2 6= i) and by symmetry, t4 6= j.
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If y′ = x4, then |E(T ′2)| = 2. By (C0), T3 has a subpath T ′3 = T3[x3, y
′′] such

that V (T ′3) ∩ V (Q) = {x3, y
′′} and such that x2x3, x3x4 /∈ E(T ′3). By Claim 6 and by

symmetry, y′′ /∈ {x1, x5}. Thus y′′ ∈ {zi, zj}. Assume first y′′ = zi. If |E(T3)| ≥ 2, then

ziT
−
2 [zi, x3]x4T

−
2 [x4, x2]x1zj has length at least 7, contrary to (4.1); if T3 = x3zi, then by

Lemma 1.2.3 (i), H[V (Q) ∪ V (T2)] is not reduced, contrary to the assumption that H is

reduced. Thus y′′ 6= zi. By symmetry, we also have y′′ 6= zj.

Hence we must have y′ = zj. If |E(T2)| ≥ 3, then ziQ
−[x5, x2]T2[x2, zj] has length

at least 7, contrary to (4.1). Thus we must have T2x2x
′zj. By symmetry, we must also

have T4 = x4x
′′zi. Now applying (4.2) to the path Q′ = x0x

′′x4x3x2x
′x6, we also have

x′′zj, x
′zi ∈ E(H). Thus by Lemma 1.2.3 (iii), H[V (Q)∪{x′, x′′}] is not reduced, contrary

to the assumption that H is reduced. This completes the proof of the lemma.

Denote V (H) − V (P ) = {u1, u2, ...}. By Definition 4.2.3 (ii), for each 1 ≤ i ≤ 3 and

uj ∈ V (H)− V (P ), let

Qj
i denote a (uj, ztji

)-path with V (P ) ∩ V (Qj
i ) = {ztji} (4.4)

such that Qj
1, Qj

2 and Qj
3 are mutually edge-disjoint.

Lemma 4.2.5 Let H be a reduced graph satisfying Property R(6). If for some j, i1 and

i2 with i1 6= i2, we have V (Qi1
j )∩ V (Qj

i2
)− (V (P )∪{u1}) 6= ∅, then {tji1 , t

j
i2
} = {0, 6} and

for a path Q in Qi1
j ∪Q

i2
j , P ∪Q is spanned by the graph L depicted in Figure 2.

Proof. Let Q1
i = vi0v

i
1...v

i
ni

with u1 = vi0 and zt1i = vini
. We assume that p < n1 is the

largest such that v1
p ∈ V (Q1

2) and q < n2 is the largest such that v2
q ∈ V (Q1

1).

zt11

v1
p

v2
q

u1

zt12

Q1
2

Q1
1

zt11

v1
p = v2

q

u1

v2
q−1

zt12

Q1
2 Q1

1

Q′

Figure 5. V (Q1
1) ∩ V (Q1

2)− (V (P ) ∪ {u1}) 6= ∅.
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Suppose first that v1
p 6= v2

q . By symmetry, we may assume that v2
q ∈ V (Q1

1[u1, v
1
p]).

Hence t12 > t11. As girth(H) ≥ 4, H has a (zt11 , zt12)-path Q12 with

V (P ) ∩ V (Q12) = {zt11 , zt12} and with |E(Q12| ≥ 4. (4.5)

Next we assume that v1
p = v2

q . By (4.6), H − v1
p has a path Q′ from v2

q−1 to a vertex in

V (P ). By girth(H) ≥ 4, we also conclude that (4.5) must hold (see Figure 5). By Lemma

4.2.4, we must have {t11, t12} = {0, 6} and H[V (P ) ∪ V (Q12)] is spanned by L.

Lemma 4.2.6 Let H be a reduced graph satisfying Property R(6) with h = 6, z0 = w1,

z6 = w2 and P in (4.1) being a longest (w1, w2)-path. Each of the following must hold.

(A) H does not have L (depicted in Figure 2) as a subgraph.

(B) For any uj ∈ V (H)− V (P ), if i1 6= i2, then V (Qj
i1

) ∩ V (Qj
i2

) ⊆ {uj} ∪ V (P ).

(C) There is no path Q satisfying the condition in Claim 1 in the proof of Lemma 4.2.4.

(Thus any path Q satisfying the condition of Claim 1 of Lemma 4.2.4 will be referred to

a forbidden path).

(D) E(H − V (P )) = ∅.

Proof. We shall use the same notations in Lemmas 4.2.4 and 4.2.5.

(A). Assume that H has L as a subgraph. Let Q be a path stated in Lemma 4.2.5 such

that H[V (P ) ∪ V (Q)] is spanned by L. If the neighbors of vertices in z1, z2, z4 and z5

are all on V (P ), then by Definition 4.2.3(i), we have κ′(H[V (P ) ∪ V (Q)]) ≥ 3, and so

by |V (L)| = 10 and by Lemma 1.2.3(ii), H[V (P ) ∪ V (Q)] is not reduced, contrary to the

assumption that H is reduced. Hence by symmetry we assume that z1 or z2 is adjacent

to a vertex z′ not on P . Let z ∈ {z1, z2}. By Claim 1 in the proof of Lemma 4.2.4, z is

not adjacent to any vertex in Q − V (P ). Let z′ ∈ NH(z) − V (P ). By Definition 4.2.3

(ii), H has a (z′, zi)-path Qz, for some 0 ≤ i ≤ 6 such that V (Qz) ∩ V (P ) = {zi}. By

Lemma 4.2.4, V (Qz) ∩ V (Q) ⊆ {z0, z6}. By (4.1), zi /∈ NH(z) ∩ V (P ). If i ∈ {4, 5}, then

P [z0, z]Qz[z, zi]P
−[z3, zi]x2x1z6 is longer than P . Therefore, if z = z1, then i 6= 0 and so

i = 6. It follows that z0x1x2z3z2z1zQz[z
′, z6] is longer than P . Therefore, we must have

z = z2 and NH(z′) = {z0, z2, z6}. It follows by Lemma 1.2.3 (i) that H[V (Q)∪{z′, z2, z3}]
is not reduced, contrary to the assumption that H is reduced. This proves (A).



CHAPTER 4. STRONGLY SPANNING TRAILABLE GRAPHSWITH SHORT LONGEST PATHS51

(B). If not, we assume that for j = 1 and so V (Q1
1) ∩ V (Q1

2) − {u1} ∪ V (P ) 6= ∅. By

Lemma 4.2.5, the graph L depicted in Figure 2 is a subgraph of H containing P , contrary

to (A).

(C). If it does, then by Lemma 4.2.4, H contains L as a subgraph, contrary to (A).

(D). By contradiction, we assume that u1u2 ∈ E(H − V (P )). By (B), the paths in

(4.4) are internally vertex disjoint. Without lose of generality, for j ∈ {1, 2}, we assume

tj1 ≤ tj2 ≤ tj3. By Definition 4.2.3 (ii), we may assume t11 ≤ t12 < t13, and t12 < t23. By

symmetry, we further assume that t11 ≤ t22, t
1
2 ≤ t23. If t11 < t12 < t22 < t23, then since

girth(H) ≥ 4 and by (4.1), we must have t12 ≥ t11 + 2, t22 ≥ t12 + 3 and t23 ≥ t22 + 2. Thus

6 ≥ h ≥ t23 ≥ t11 + 7, a contradiction. Hence we cannot have t11 < t12 < t22 < t23. Similarly,

we cannot have t11 < t22 < t12 < t23. Hence we must have |{t11, t22, t12, t23}| ≤ {2, 3},

Case D1. |{t11, t22, t12, t23}| = 3

Thus either t11 < t12 = t22 < t23, or t11 = t22 < t12 < t23 or t11 < t22 < t12 = t23 must hold (see

Figure 6 (a) and (b)). As girth(H) ≥ 4, if t11 < t12 = t22 < t23, then |E(Q1
2)|+ |E(Q2

2)| ≥ 3,

and so either Q1
1∪Q2

2∪{u1u2} or Q1
2∪Q2

3∪{u1u2} is a forbidden path; if t11 = t22 < t12 < t23,

then |E(Q1
1)| + |E(Q2

2)| ≥ 3, and so either Q1
1 ∪ Q2

3 ∪ {u1u2} or Q1
2 ∪ Q2

2 ∪ {u1u2} is a

forbidden path. The case when t11 < t22 < t12 = t23 is similar to that for t11 = t22 < t12 < t23.

Thus a contradiction to (C) always exists.

zt11 zt12 = zt21 zt23

u2u1

(a)

Q1
1 Q1

2 Q
2
2
Q2

3

zt11 = zt22 zt12 zt23

u2u1

Q1
1
Q2

2
Q1

2

Q2
3

(b)

zt11 = zt22 zt12 = zt23

u2u1

Q1
1
Q2

2 Q1
2

Q2
3

(c)

Figure 6. forbidden paths in Lemma 4.2.6(D).

Case D2. |{t11, t22, t12, t23}| = 2.
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Thus {t11, t12} = {t22, t23}, and so t11 = t22 and t12 = t23. By girth(H) ≥ 4, both |E(Q1
1)|+

|E(Q2
2)| ≥ 3 and |E(Q1

2)|+ |E(Q3
2)| ≥ 3 (see Figure 6(c)). It follows that a forbidden path

must exist, contrary to (C).

This completes the proof for Case D2, and so (D) is justified.

Lemma 4.2.7 If H is a graph satisfying Property R(6), then H is not reduced.

Proof. By contradiction, we assume that H is a smallest counterexample, and so H is

reduced. Then by Theorem 1.2.2, girth(H) ≥ 4. We shall assume and use the notations

of (4.1).

If |V (H)| ≤ 8, then by Lemma 1.2.3, H is not reduced. Hence we must have |V (H)−
V (P )| ≥ 2. If H has a cut vertex w, then H has two connected nontrivial subgraphs

H1 and H2 such that H = H1 ∪ H2 and V (H1) ∩ V (H2) = {w}. If for some i ∈ {1, 2},
w1, w2 ∈ V (Hi), then by the minimality of H, Hi is not reduced. If for i ∈ {1, 2},
wi ∈ V (Hi), then applying the minimality of H to w1, w in H1, we conclude that H1 is

not reduced. These contradictions show that

κ(H) ≥ 2. (4.6)

Claim 1. |V (H)− V (P )| ≥ 4.

If |V (H) − V (P )| < 4, then as |V (P )| ≤ 7, |V (H)| ≤ 10. Construct a new graph G

from H by adding a new vertex z, which is adjacent to both w1 and w2. Then z is the only

vertex of degree 2 in G and |V (G)| ≤ 11. By (4.6) and Lemma 1.2.3 (iv), the reduction

of G is either K2,3, whence H is not reduced; or is in {P (10), P (10)(e)}, whence a longest

path connecting w1 and w2 in H is at least 9. These contradictions establish Claim 1.

By Lemma 4.2.6(D), for any uj ∈ V (H) − V (P ), ztj1
, ztj2

, ztj3
∈ NH(uj) ⊆ V (P ). By

Claim 1, |E(G)| = |E(P )|+ |E(G)−E(P )| ≥ |V (P )| − 1 + 3|V (H)−V (P )| = 3|V (H)| −
1− 2|V (P )| ≥ 2|V (H)| − 1 + |V (H)− V (P )| − |V (P )| ≥ 2|V (H)|+ 3− 7 = 2|V (H)| − 4.

By Theorem 1.2.2(vi) F (H) = 2|V (H)|−|E(H)|−2 ≤ 2. By Theorem 1.2.2(vi), either H

is not reduced, contrary to the assumption; or H is a K2,t for some integer t ≥ 11−2 = 9,

contrary to the fact that H has a path of length at least 6. This proves the lemma.
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4.3 Proof of Theorem 4.1.4

In order to prove Theorem 4.1.4, we need an auxiliary theorem as stated below. The

proof of Theorem 4.3.1 will be given in Section 4.

Theorem 4.3.1 Suppose G is a graph such that G 6= H8, and satisfies κ(G) ≥ 2 and

κ′(G) ≥ 3. Let e = v0v1 and e′ = vc−1vc be edges in G, and P = vev1 · · · vc−1ve′ be a

longest (ve, ve′)-path in G(e, e′) with c = |E(P )| ≤ 8. If G(e, e′) is reduced and contains

no spanning (ve, ve′)-trail, then V (G) = {vi : 0 ≤ i ≤ c}.

Proof of Theorem 4.1.4. Let G be a counterexample to Theorem ?? with

|V (G)| is minimized. (4.7)

Let e, e′ ∈ E(G) be edges such that the length of a longest (ve, ve′)-path in G(e, e′) is at

most 8 and such that G(e, e′) does not have a spanning (ve, ve′)-trail. If G = H8, then it

is routine to verify that, up to isomorphism, e = v1v5 and e′ = v3v7 (using notations in

Figure 1 or Figure 7). Hence we assume that G 6= H8. Denote e = z0z1 and e′ = zc−1zc

and let P = vez1 · · · zc−1ze′ be a longest (ve, ve′)-path in G(e, e′), By the assumption of

Theorem 4.1.4, c ≤ 8. By (4.7), by Lemmas 4.2.1 and 4.2.2, we may assume that

κ(G) ≥ 2 and G(e, e′) is reduced. (4.8)

By Theorem 4.3.1, V (G) = {zi : 0 ≤ i ≤ c}. Obtain a new graph Lw from G(e, e′)

by adding a new vertex w and new edges wve and wve′ . Then G(e, e′) has a spanning

(ve, ve′)-trail if and only if Lw is supereulerian. Since |V (G)| = c + 1 ≤ 9, we have

|V (Lw)| ≤ |V (G)|+3 = 12. As Lw has exactly one edge cut of size 2, it follows by Lemma

1.2.3(iv) that either L is supereulerian, or the reduction of Lz is P (10) or P (10)(f), for

any edge f ∈ E(P (10)).

If the reduction of Lw is P (10), then one vertex vL (say) of P (10) must be the image

of a nontrivial collapsible subgraph of Lw containing the new vertex w. As P (10) has

a cycle of length 9 containing vL, this implies that G(e, e′) has a (ve, ve′)-path of length

at least 9, contrary to the assumption of Theorem 4.1.4. If Lw is supereulerian, then
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G(e, e′) has a spanning (ve, ve′)-trail, contrary to (4.7). Hence the reduction of Lw must

be isomorphic to P (10)(f). (In Figure 7, we choose f = v′5v
′
7 as an illustration.) Thus w

must be the only vertex of degree 2 in P (10)(f).

If any vertex w′ of P (10)(f) − w is the contraction image of a nontrivial collapsible

subgraph of G(e, e′), then P (10)(f) has a cycle containing both w and w′ with length

10. By definition of contraction, this cycle can be lifted to yield a (ve, v
′
e)-path in G(e, e′)

of length at least 9, contrary to the assumption of Theorem 4.1.4. Thus we must have

Lw = P (10)(f), implying that G = H8 with, up to isomorphism, e = v1v5 and e′ = v3v7.

(See Figure 7. The labels indicates that the H8 in Figure 7 is a different drawing of the

H8 in Figure 1.) This contradicts to the assumption that G 6= H8, and completes the

proof of the theorem.

v2

v1

v′5

v5

v6

v3

v8

v′7
v4

v7

P (10)− v′5v′7

v2

v1 v5

v6

v3

v8 v4

v7

W8 = (P (10)− v′5v′7)/{v5v
′
5, v7v

′
7}

Figure 7. The graphs in the proof of Theorem 4.1.4.

4.4 Proof of Theorem 4.3.1

We denote e = v0v1 and e′ = vc−1vc. For any longest (ve, v
′
e)-path P = vev1...vc−1ve′ in

G(e, e′), define P ′ = v0v1...vc−1vc and J = J(P ) = G(e, e′)−(V (P )∪{v0, vc}) = G−V (P ′).

The strategy of the proof is to work on a counterexample G. First show that E(J) = ∅
for any longest (ve, v

′
e)-path P in G(e, e′). Then we use case analysis to show that if

|V (J)| ≥ 2, then a longer (ve, v
′
e)-path or a nontrivial collapsible subgraph can always be
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found. Finally, we prove that assuming |V (J)| = 1 will also yield a similar contradiction,

which forces that V (J) = ∅, and completes the proof of Theorem 4.3.1.

If H is a subgraph of a graph Γ, we define the set of vertices of attachment of H in Γ

as

AΓ(H) = {v ∈ V (H) : v is adjacent to a vertex in V (Γ)− V (H)}.

To prove Theorem 4.3.1, we assume G 6= W8,

P = vev1 · · · vc−1ve′ is a longest (ve, ve′)-path in G(e, e′), (4.9)

that G(e, e′) has no spanning (ve, ve′)-trail and that

c ≤ 8 and G(e, e′) is reduced (and so girth(G(e, e′)) ≥ 4). (4.10)

If e = e′, then let e = w1w2. Thus in G − e, every longest (w,w′)-path has length at

most 6, and so G− e has Property R(6). By Lemma 4.2.7, G− e is not reduced, contrary

to (4.10). Throughout the rest of this section, we assume that e 6= e′. For each vertex

u ∈ V (J), as κ(G) ≥ 2 and κ′(G) ≥ 3, we note that G has edge-disjoint (u, vij)-path Qi

with

V (Qi) ∩ V (P ′) = {vij}(1 ≤ j ≤ 3) and |{vi1 , vi2 , vi3}| ≥ 2. (4.11)

The following notation will be used in the proof:

Qj = uzj1z
j
2...z

j
nj
vij , for j = 1, 2, 3. (4.12)

Claim 1. In each component of J , choose a vertex u and the related paths Qi (1 ≤ i ≤ 3)

such that

|{vi1 , vi2 , vi3}| is maximized. (4.13)

Then |{i1, i2, i3}| = 3.

Proof of Claim 1. By contradiction and without lose of generality, we assume that J

has a component J1 with a vertex u ∈ V (J1) satisfying (4.13) with {i1, i2, i3} = {i1, i2}.
Since u satisfies (4.13), we have AG(e,e′)(J1) = {vi1 , vi2}. It follows by c ≤ 8 that J1 has

Property R(6) with {w1, w2} = {vi1 , vi2}. By Lemma 4.2.7, J1 is not reduced, contrary to

(4.10). This proves Claim 1.
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v4 v7ve′v8v1vev0

u0 u1 u2

(a) L1

v4 ve′v8v1vev0

u0 u1 u2

(b) L2

v4 v7ve′v8v1vev0

u0 u1 u2

(c) L3

Figure 8. The subgraphs in Claim 2(B).

Claim 2. Let u ∈ V (J) and define the Qj’s as in (4.11). Each of the following holds.

(A) J does not have an edge u1u2 ∈ E(J) such that NG(u1) ∪ NG(u2) − {u1, u2} ⊆
V (P ) ∪ {v0, vc}.
(B) If v0 6= vc, and if a nontrivial component of J contains a vertex u ∈ NG(vi) for some i

with 1 ≤ i ≤ c−1, then either G(e, e′) is not reduced or G(e, e′) has a (ve, ve′)-path longer

than P , or G(e, e′) has a subgraph isomorphic to one of the graphs depicted in Figure 8.

(C) E(J) = ∅.

Proof of Claim 2. (A). Assume that such u1, u2 exist. Let vi1 , vi2 ∈ NG(u1) − {u2}
and vj1 , vj2 ∈ NG(u2)− {u1}. By (4.10), i1, i2, j1, j2 are mutually distinct. By symmetry,

we assume that j1 < j2 and i1 < min{i2, j1} < j2.

Case A1. i1 < i2 < j1 < j2.

By (4.9), i2 ≥ i1 + 2, j1 ≥ i2 + 3 and j2 ≥ j1 + 2. Hence j2 ≥ i1 + 7. It follows that we

must have i1 = 0 or j2 = c = 8. If i1 = 0, then by (4.9), i2 ≥ 3, and so j2 ≥ i2 + 5 = 8,

forcing j1 = 6 and j2 = 8. But then, P [ve, v6]u2v8ve′ is longer than P , contrary to (4.9).

Case A2. i1 < j1 < i2 < j2.

By (4.9), j2 ≥ i1 + 3, i2 ≥ j1 + 3 and j2 ≥ i2 + 3. It follows that 8 = c ≥ j2 ≥ i1 + 9,

a contradiction.

Case A3. i1 < j1 < j2 < i2.

By (4.9), j1 ≥ i1 + 3, j2 ≥ j1 + 2 and i2 ≥ j2 + 3. Hence i2 ≥ i1 + 7. It follows that we

must have i1 = 0 or i2 = c = 8. If i1 = 0, then by (4.9), j1 ≥ 4, and so i2 ≥ j1 + 5 = 9,

forcing j2 = 6 and i2 = 8. But then, P [ve, v6]u2u1v8ve′ is longer than P , contrary to (4.9).
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(B). Let H be a nontrivial component of J with a vertex u ∈ V (H) satisfying the

hypothesis of Claim 2(B). Since E(H) 6= ∅, H contains a longest (u, u′)-path Q for some

vertex u′ ∈ AG(H)−{u} such that u′ is adjacent to a vertex vj with j 6= i. Since κ(G) ≥ 2,

such u′ exists. By symmetry, we may assume that i < j. Denote Q = u0u1u2...uq with

u = u0, u′ = uq. By (4.9), we have 4 ≥ q ≥ 2. If every path from a vertex in Q to a vertex

in P ∪ {v0, vc} must use vi or vj, then by Lemma 4.2.7 (with wi, wi replaced by vi, vj),

G[V (H)∪{vi, vj}] is not reduced. Hence we may assume that for some h with 0 ≤ h ≤ q,

and a (uh, vk)-path Q′ with k /∈ {i, j}.

Case B1. i < k < j. By (4.9), we have
k ≥ i+ 2, j ≥ k + |E(Q)|+ 2 ≥ i+ 6 if h = 0

k ≥ i+ 3, j ≥ k + |E(Q[uh, uq])|+ 2 ≥ i+ 6 if 0 < h < q

k ≥ i+ |E(Q)|+ 2, j ≥ k + 2 ≥ i+ 6 if h = q

Since i ≥ 1, we must have i = 1, j ∈ {7, 8}, k ∈ {3, 4, 5}, |E(Q′)| = 1 and |E(Q)| = 2.

Let

z =

{
u1 if h = 0 (whence k = 3) or if h = 2 (whence k = 5)

u0 if h = 1 (whence k = 4)

As κ′(G) ≥ 3, G(e, e′) has a (z, vl)-path T1 such that V (Q) ∩ V (T1) = {z}. Tables 4A

and 4B below indicate that either a (ve, ve′)-path longer than P always exists, or when

k = 3 and h = 0, l = j ∈ {7, 8}. Thus we may assume that k = 3 and h = 0, either

u0v7, u2v7 ∈ E(G) or u0v8, u2v8 ∈ E(G). By symmetry, either u0v0, u2v0 ∈ E(G) or

u0v1, u2v1 ∈ E(G). Thus G(e, e′) contains a graph in Figure 8 as a subgraph.
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k h j z l (ve, ve′)-path longer than P

(or collapsible subgraph in G(e, e′))

3 0 7,8 u1 0 vev0u1u0P [v1, ve′ ]

3 0 7,8 u1 1 vev0u1P [v1, ve′ ]

3 0 7,8 u1 2, 3 vev1u0u1P [vl, ve′ ]

3 0 7,8 u1 4, 5 vev1v2v3u0u1P [vl, ve′ ]

3 0 7,8 u1 6 veP [v1, v6]u1u2v7ve′ ]

3 0 7(or 8) u1 7(or 8) G[{u1, u2, v7}] ∼= K3 or

0 G[{u1, u2, v8}] ∼= K3

3 0 7 u1 8 veP [v1, v7]u2u1v8ve′ ]

3 0 8 u1 7 veP [v1, v7]u1u2v8ve′ ]

Table 4A: Case B1 with k = 3 and h = 0

(The case k = 5 and h = 2 is symmetric to this).

k h j z l (ve, ve′)-path longer than P

(or collapsible subgraph in G(e, e′))

4 1 7,8 u0 0 vev0u0P [v1, ve′ ]

4 1 7,8 u0 2(or 4) G[{u1, v1, v2}] ∼= K3 or

G[{u1, u2, v4}] ∼= K3

4 1 7,8 u0 3 P [ve, v3]u0u1P [v4, ve′ ]

4 1 7,8 u0 5, 6 P [ve, v4]u1u0P [vl, ve′ ]

4 1 7 u0 8 P [ve, v7]u2u1u0v8ve′ ]

4 1 8 u0 7 P [ve, v7]u0u1u2v8ve′ ]

Table 4B: Case B1 with k = 3 and h = 0.

Case B2. k < i < j. If h > 0, then by (4.9), i ≥ k + |E(Q[u1, uh])| + 2 and 8 ≥ j ≥
i + |E(Q)| + 2 ≥ k + |E(Q[u1, uh])| + 5. It follows that either k = 1, i = 4, |E(Q)| = 2,

h = 1, u1v1 ∈ E(G) and j = 8, or k = 0, i = 4, |E(Q)| = 2, h = 1, u1v0 ∈ E(G) and

j = 8. In any case, P [ve, v4]u0u1u2v8ve′ is longer than P . Hence we must have h = 0. By

(4.9), i ≥ k + 2 and j ≥ i + |E(Q)| + 2 ≥ k + |E(Q[u1, uh])| + 4. Thus k ∈ {0, 1}, i = 3,
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u0vk ∈ E(G), j ∈ {7, 8} and |E(Q)| = 2. As κ′(G) ≥ 3, G(e, e′) has a (u1, vl)-path T2

such that V (Q) ∩ V (T2) = {u1}. Table 5 completes the proof of Case B2.

k h j l (ve, ve′)-path longer than P

(or collapsible subgraph in G(e, e′))

0 0 7, 8 0 (or 3, or j) G[{u0, u1, v0}] ∼= K3 or G[{u1, u2, v3}] ∼=
K3 or G[{u1, u2, vj}] ∼= K3

0 0 7,8 1, 2 vev0u0u1P [vl, ve′ ]

0 0 7,8 4, 5 P [ve, v3]u0u1P [vl, ve′ ]

0 0 7,8 6 P [ve, vl]u1u2vjve′

0 0 7 8 P [ve, v7]u2u1v8ve′

0 0 8 7 P [ve, v7]u1u2v8ve′

Table 5: Case B2 .

Case B3. i < j < k. If h < q, then by (4.9), j ≥ i + |E(Q)| + 2 and 8 ≥ k ≥
j+ |E(Q[uh, uq])|+2 ≥ i+7. It follows that i = 1, j = 4, |E(Q)| = 2, h = 1, u1v8 ∈ E(G)

and k = 8, whence vev1u0u1u2P [v4, ve′ ] is longer than P . Therefore, we must have h = q.

By (4.9), j ≥ i+ |E(Q)|+ 2 and k ≥ j+ 2 ≥ i+ |E(Q)|+ 4. Thus i = 1, j = 5, k ∈ {7, 8},
|E(Q)| = 2 and u2vk ∈ E(G). As κ′(G) ≥ 3, G(e, e′) has a (u1, vl)-path T3 such that

V (Q) ∩ V (T3) = {u1}. Table 6 completes the proof of Case B3.

k h j l (ve, ve′)-path longer than P

(or collapsible subgraph in G(e, e′))

7,8 2 5 1 (or 5, or k) G[{u0, u1, v1}] ∼= K3 or G[{u1, u2, v5}] ∼=
K3 or G[{u1, u2, vk}] ∼= K3

7,8 2 5 1 vev0u1u0P [vl, ve′ ]

7,8 2 5 2,3 vev1u0u1P [vl, ve′ ]

7,8 2 5 4 P [ve, v4]u1u2P [v5, ve′ ]

7,8 2 5 6 P [ve, v6]u1u2vkve′

7 2 5 8 P [ve, v7]u2u1v8ve′

8 2 5 7 P [ve, v7]u1u2v8ve′

Table 6: Case B3 .
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(C). By Claim 2(B), for any i ∈ {2, 3, 5, 6}, either NG(vi) ⊆ V (P )∪ {v0, vc} or for some

u ∈ V (J),

vi ∈ NG(u) ⊆ V (P ) ∪ {v0, vc}. (4.14)

Assume first that G(e, e′) does not have any graph depicted in Figure 8 as a subgraph.

By Claim 2(B), for any nontrivial component L of J , we must have AG(L) = {v0, vc}.
But by Claim 1, we should have |AG(L)| ≥ 3, a contradiction. Thus (C) must hold as J

does not have any nontrivial components. Hence we assume that G(e, e′) has a graph in

Figure 8 as a subgraph.

For 2 ≤ i ≤ 3, by κ(G) ≥ 3, NG(vi)−NP (vi) contains a vertex x′i. Define,

xi =

{
x′i if x′i /∈ V (J)

a vertex in NG(x′i) ∩ V (P )− {vi} if x′i ∈ V (J)
. (4.15)

Case C1. G(e, e′) has L1 as a subgraph.

Since G(e, e′) is reduced, if x′ /∈ V (J), then x /∈ {v1, v3, v4} and if x′ ∈ V (J), then

as |NG(x′) ∩ (V (P ) ∪ {v0, vc})| ≥ 3, we can choose x2 /∈ {v1, v3, v4}. Similarly, we may

assume that x3 /∈ {v1, v2, v4}. Table 7 shows that we must have x2 = x′2 = x3 = x′3 = v7,

and so G(e, e′)[{v2, v3, v7}] ∼= K3, contrary to (4.10).
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x2 x3 (ve, ve′)-path longer than P

v0 vev0v2v1u0u1P [v4, ve′ ] or

vev0x
′
2v2v1u0u1P [v4, ve′ ]

v5, v6 vev1u2u1v4v3v2P [x2, ve′ ] or

vev1u2u1v4v3v2x
′
2P [x2, ve′ ]

v8 vev1u2u1u0v7v6v5v4v3v2v8ve′ or

vev1u2u1u0v7v6v5v4v3v2x
′
2v8ve′

v0 vev0v3v2v1u1u2P [v4, ve′ ] or

v0 vev0x
′
3v3v2v1u1u2P [v4, ve′ ]

v5 vev1u0u1v4v3P [v5, ve′ ] or

vev1u0u1v4v3x
′
3P [v5, ve′ ]

v6 P [ve, v3]v6v5v4u1u0v7ve′ or

P [ve, v3]x′3v6v5v4u1u0v7ve′

v8 vev1u0u1u2v7v6v5v4v3v8ve′ or

vev1u0u1u2v7v6v5v4v3x
′
3v8ve′

Table 7: Case C1 in Claim 2 .

Case C2. G(e, e′) has L2 as a subgraph.

As in Case C1, since G(e, e′) is reduced, we may assume that x2 /∈ {v1, v3, v4}. As

shown in Table 8, we always obtain a contradiction to (4.9).

x2 (ve, ve′)-path longer than P

v0 vev0v2v1u0u1P [v4, ve′ ] or vev0x
′
2v2v1u0u1P [v4, ve′ ]

v5, v6 vev1u0u1v4v3v2P [x2, ve′ ] or vev1u0u1v4v3v2x
′
2P [x2, ve′ ]

v7 P [ve, v2]v7v6v5v4u1u2v8ve′ or P [ve, v2]x′2v7v6v5v4u1u2v8ve′

v8 vev1u2u1u0v8P [v2, ve′ ] or vev1u2u1u0v8x
′
2P [v2, ve′ ]

Table 8: Case C2 in Claim 2 .

Case C3. G(e, e′) has L3 as a subgraph.
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As in Case C1, since G(e, e′) is reduced, we may assume that x2 /∈ {v1, v3, v4}. As

shown in Table 9, we always obtain a contradiction to (4.9). This proves Case (C3) and

completes the proof of Claim 2.

x2 (ve, ve′)-path longer than P

v0 vev1v2v0u0u1P [v4, ve′ ] or vev1v2x
′
2v0u0u1P [v4, ve′ ]

v5 vev0u0u1v4v3v2P [x5, ve′ ] or vev0u0u1v4v3v2x
′
2P [x5, ve′ ]

v6, v7 P [ve, v2]P−[x2, v4]u1u2v8ve′ or P [ve, v2]x′2P
−[x2, v4]u1u2v8ve′

v8 vev0u0u1u2v8P [v2, ve′ ] or vev0u0u1u2v8x
′
2P [v2, ve′ ]

Table 9: Case C3 in Claim 2 .

Let V (J) = {u1, u2, · · · }. By Claim 2(C), if j ≥ 1, then NG(u) ⊆ V (P ) ∪ {v0, vc}.
Thus we may denote that NG(uj) = {vij1 , vij2 , vij3} with ij1 < ij2 < ij3. Claim 3 below follows

from the fact that P is longest.

Claim 3. Let uj ∈ V ((G)(e, e′))− V (P ) ∪ {v0, vc}. Then

ij2 ≥

{
ij1 + 2, if i1 6= 0

3, if i1 = 0
, and ij3 ≥

{
ij2 + 2, if c > ij3
ij2 + 3, if c = ij3

.

Therefore, c ≥ 6.

Claim 4. Let uj ∈ V (J). If ij2 = ij1 + 2, then NG(vij1+1) ⊆ V (P )∪{v0, vc}. If ij3 = ij2 + 2,

then NG(vij2+1) ⊆ V (P ) ∪ {v0, vc}.

Proof of Claim 4. By symmetry, we only prove the case when ij2 = ij1 + 2. Let

P ′ = P [ve, vij1
]ujP

−[vij2
, ve′ ]. Then |P | = |V (P ′)|. Applying Claim 2(C) on P ′, we conclude

that E(G(e, e′) − (V (P ′) ∪ {v0, vc})) = ∅, and so NG(vij1+1) ⊆ V (P ′) ∪ {v0, vc}. Since

girth(G(e, e′)) ≥ 4, ujvij1+1 6∈ E(G). Thus NG(vij1+1) ⊆ V (P ) ∪ {v0, vc}. This justifies

Claim 4.

In Claims 5-8 below, we assume that u1, u2 ∈ V (J) and define s = min{i11, i12, i13, i21, i22, i23}
and ` = max{i11, i12, i13, i21, i22, i23}. For any vi with 1 ≤ i ≤ 7, by κ′(G) ≥ 3, there exists

x′i ∈ NG(vi) − NP (vi). By Claim 2(C), either x′i ∈ V (P ) ∪ {v0, vc}, or x′i ∈ V (J) with
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NG(x′i) ⊆ V (P )∪{v0, vc}. Define xi as in (4.15). By (4.10) and (4.9), when i− 2 ≥ 1 and

i+ 2 ≤ c− 1, we can always choose xi so that

xi /∈ {vi−2, vi−1, vi+1, vi+2}, unless x′i ∈ V (J) and NG(x′i) = {vi−2, vi, vi+2}. (4.16)

Claim 5. Each of the following holds.

(i) `− s ≤ 8. Furthermore, if `− s = 8, then c = 8, ` = 8 and s = 0.

(ii) i21 ≤ i12. (By symmetry, i11 ≤ i22, i13 ≥ i22 and i23 ≥ i12.)

(iii) A (ve, ve′)-path longer than P exists if for some s ∈ {1, 2},

1 ≤ i11 < i2s < i12 < i2s+1 < i13 < c or 1 ≤ i21 < i1s < i22 < i1s+1 < i23 < c.

(iv) We cannot have i11 = i21 < i12 < i22 = i13 < i23. (By symmetry, we cannot have

i11 < i21 = i12 < i22 < i13 = i23.)

(v) We cannot have i11 = i21 < i12 < i22 < i13 = i23.

(vi) i22 = i12.

Proof of Claim 5. (i). Claim 5(i) follows immediately from c ≤ 8.

(ii). We argue by contradiction to prove i21 ≤ i12. The proof for i13 ≥ i22 is omitted by

symmetry. Assume that i21 > i12.

Case 5(ii).1. i23 > i13.

If i22 > i13, then i23 ≥ i22 + 2. As P [ve, vi12 ]u1P
−[vi13 , vi21 ]u2P [vi22 , ve′ ] is not longer than P ,

we have (i21− i12) + (i22− i13) ≥ 4 and so i23− i11 ≥ 9, contrary to Claim 5(i). If i22 = i13, then

as P [ve, vi12 ]u1P
−[vi13 , vi21 ]u2P [vi23 , ve′ ] is not longer than P , we have (i21− i12) + (i23− i22) ≥ 4,

and so i23 − i11 ≥ 8. By Claim 5(i), c = 8, i11 = 0 and i23 = 8. Thus i12 = 3, i13 = 6,

and so the path P [ve, v6]u2v8ve′ is longer than P , contrary to (4.9). If i22 < i13, then as

P [ve, vi12 ]u1P
−[vi13 , vi21 ]u2P [vi23 , ve′ ] is not longer than P , and so (i23 − i13) + (i21 − i12) ≥ 4.

Since i12 − i11 ≥ 2 and i22 − i21 ≥ 2, we have i23 − i11 ≥ 9, contrary to Claim 5(i).

Case 5(ii).2. i23 = i13.

By (4.9), i13 ≥ i11 + 7. As i11 = 0 implies i12 ≥ 3, we conclude that we always have
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c = v1
3 = 8, i22 = 6, i21 = 3, and i11 ∈ {0, 1}. Hence P [ve, v6]u2v8ve′ ] is longer than P ,

contrary to (4.9).

Case 5(ii).3. i23 < i13.

By (4.9), i13 ≥ i11 + 8, and so we must have i11 = 0, i13 = 8. That i11 = 0 forces i12 ≥ 3,

and so i13 ≥ 9, contrary to Claim 5(i).

(iii). If 1 ≤ i11 < i2s < i12 < i2s+1 < i13 < c, then either P [ve, vi11 ]u1P
−[vi12 , vi2s ] u2P [vi2s+1

, ve′ ]

or P [ve, vi2s ]u2 P
−[vi2s+1

, vi12 ]u1P [vi13 , ve′ ] is longer than P . The proof for the other case is

similar. This proves Claim 5(iii).

(iv). Assume that i11 = i21 < i12 < i22 = i13 < i23.

By (4.10), i23 − i11 ≥ 6. If i11 = 0, then by (4.9), we must have i12 ≥ 3, i13 ≥ 5 and

i23 ∈ {7, 8}. Then P [ve, vi13 ]u1v0u2vi23ve′ is longer than P , and so we assume that 2 ≥ i11 ≥ 1.

If i11 = 2, then we must have i13 = 6, c = 8 and v8u2 ∈ E(G), and so P [ve, v6]u2v8ve′ is

longer than P . Hence we have (i11, i
1
2, i

1
3) = (1, 3, 5) with i23 ∈ {7, 8}. If i23 = 8, then Table

10A shows that a contradiction can always be found. By (4.16), x4 /∈ {v3, v4, v5}, and

x4 ∈ {v2, v6} only if x′4 6= x4.

x4 (ve, ve′)-path longer than P Explanation

v0 vev0v4v3v2v1u1P [v5, ve′ ]

v1 G[{v1, v2, v3, v4, v5, u1}] is not

reduced, by Lemma 1.2.3(i).

v2 vev1v2x
′
4v4v3u1P [v5, ve′ ]

v6, v7 P [ve, v4]v6v5u2v8ve′ or

P [ve, v4]v7v6v5u2v8ve′

v8 P [ve, v4]v8u2v5v6v7ve′

Table 10A: Claim 5(iv) with i23 = 8.

If i23 = 7, then Table 10B shows that a contradiction can always be found. By (4.16),

x2 /∈ {v1, v2, v3} and x2 = v4 only if x′2 6= x2.
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x2 (ve, ve′)-path longer than P Explanation

v0 vev0v2v1u1P [v3, ve′ ]

v4 vev1v2x
′
2v4v3u1P [v5, ve′ ]

v5 G[{v1, v2, v3, v4, v5, u1}] is not

reduced, by Lemma 1.2.3 (i).

v6 vev1u1v5v4v3v2v6v7ve′

v7 (x′2 6= v7), vev1u1v5v4v3v2x
′
2v7ve′ (x′2 = v7) and G[{v1, v2, v3, v4,

v5, v7, u1, u2}] is not reduced,

by Lemma 1.2.3(i).

v8 vev1u2P
−[v7, v2]v8ve′

Table 10B: Claim 5(iv) with i23 = 7.

(v). Assume that i11 = i21 < i12 < i22 < i13 = i23.

By (4.10), i23 − i11 ≥ 5. If i23 − i11 = 5, then G[V (P [vi11 , vi23 ]) ∪ {u1, u2}] is not reduced,

by Lemma 1.2.3(i). Hence we assume that i23 − i11 ≥ 6. If i11 = 0, then by (4.9), i12 ≥
3 and i22 ≥ 4, and so P [ve, vi22 ]u2v0u1P [vi13 , ve′ ] is longer than P . Thus i11 > 0. By

symmetry, i23 < c. As c ≤ 7 implies i23 − i11 = 5, we must have c = 8 and (i11, i
1
2, i

2
2, i

2
3) ∈

{(1, 3, 4, 6), (1, 3, 5, 7), (1, 3, 4, 7)}. By (4.16), x4 /∈ {v3, v4, v5} and x4 ∈ {v2, v6} only if

x′4 6= x4; x2 /∈ {v1, v2, v3} and x2 = v4 only if x′2 6= x2.
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x4 x2 (ve, ve′)-path longer than P Explanation or Conclusion

v0 vev0v4v3v2v1u2v5v6v7ve′

v1 G[{v1, v2, v3, v4, v5, u1}] is not
reduced, by Lemma 1.2.3 (i).

v2 vev1u1v3v2x
′
4P [v4, ve′ ] (same for x2 = v4).

v6 P [ve, v4]x
′
4v6v5u2v7ve′

v7 either v4v7 ∈ E(G) and

G[{v1, v2, v3, v4, v5, v7, u1, u2}]
is not reduced, by Lemma 1.2.3(i);

or v4, v7 ∈ NG(x
′
4), for

π = 〈{u2, v6}, {v5, v7}〉,
G[(V (P )− {ve, ve′})∪
{u1, u2, x

′
4}]/π is collapsible by

Theorem ??, G is not reduced.

v8 P [ve, v3]u1v5x
′
4v8ve′ Hence v4v8 ∈ E(G).

v0 vev0P [v2, v5]u1v1u2v7ve′

v5 G[{v1, v2, v3, v4, v5, u1}] is not
reduced, by Lemma 1.2.3 (i).

v6 vev1u1P
−[v5, v2]v6v7ve′

v8 v7 vev1u1v3v2v7v6v5v4v8ve′ v4v8 ∈ E(G).

v8 v8 vev1u1v3v2v8P [v4, ve′ ] v4v8 ∈ E(G).

Table 11A: Claim 5(v) with (i11, i
1
2, i

2
2, i

2
3) = (1, 3, 5, 7).

If (i11, i
1
2, i

2
2, i

2
3) = (1, 3, 4, 6), by Theorem 1.2.3(i), G(e, e′)[V (P [v1, v6]) ∪ {u1, u2}] is

collapsible, contrary to (4.10). If (i11, i
1
2, i

2
2, i

2
3) = (1, 3, 5, 7), then Table 11A first indicates

that v4v8 ∈ E(G) and then shows that a contradiction can always be found.

Thus we assume (i11, i
1
2, i

2
2, i

2
3) = (1, 3, 4, 7). Table 11B shows that a contradiction can

always be found. By (4.15), if v2v7 /∈ E(G), then x2 6= v7.
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x2 (ve, ve′)-path longer than P Explanation or Conclusion

v0 vev0v2v3u1v1u2P [v4, ve′ ]

v4 vev1u1v3v2x
′
2P [v4, ve′ ]

v5, v6 vev1v2x
′
2P
−[x2, v3]u1v7ve′ G[V (P [v1, v7]) ∪ {u1, u2}] is not

reduced, by Lemma 1.2.3 (iv).

v7 G[{v1, v2, v3, v4, v7, u1, u2}] is not
reduced, by Lemma 1.2.3(i).

v8 vev1u2P
−[v7, v2]v8ve′

Table 11B: Claim 5(v) with (i11, i
1
2, i

2
2, i

2
3) = (1, 3, 4, 7).

(vi). We shall prove that assuming i22 > i12 will lead to contradictions, and so i22 ≤ i12.

By symmetric arguments, we also have i12 ≤ i22, which proves (vi). In the rest of the proof

of Claim 5(vi), we assume that i22 > i12. By Claim 5(ii), (iv) and (v), i21 ≤ i12, i13 ≥ i22 and

i11 6= i21 when i31 ∈ {i22, i23}.

Case 5(vi).1. i13 6∈ {i22, i23}.

Case 5(vi).1A. i13 > i23.

If i21 < i11, then by (4.9), either (i21, i
1
1, i

2
3, i

1
3) = (0, 1, 6, 7), whence vev0u2P

−[v6, v1]u1v7ve′

is longer than P ; or (i21, i
1
1, i

2
3, i

1
3) = (1, 2, 7, 8), whence vev1u2P

−[v7, v2]u1v8ve′ is longer

than P . If i11 = i21 ∈ {0, 1}, then i12 ≥ 3, i23−i12 ≥ 3 and i13 ∈ {7, 8}. Thus vevi11u2P
−[vi23 , vi12 ]u1vi13ve′

is longer than P . Hence we assume i21 > i11.

If i21 = i12, then by girth(G(e, e′)) ≥ 4, i13−i11 ≥ 8, and so i11 ∈ {0, 1} and (i21, i
2
2, i

2
3, i

1
3) =

(3, 5, 7, 8). By (4.16), x4 /∈ {v3, v4, v5}, and x4 ∈ {v2, v6} only if x′4 6= x4. Table 11C shows

that a contradiction always exists.
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x4 i11 (ve, ve′)-path longer than P Explanation or Conclusion

v0 0, 1 vev0v4v5v6v7u2v3u1v8ve′

v1 0 vev0u1v3v2v1P [v4, ve′ ]

v1 1 vev1P [v4, v7]u2v3u1v8ve′

v2 0, 1 vev1v2x
′
4P [v4, v7]u2v3u1v8ve′

v6 0,1 P [ve, v4]x
′
6v6v5u2v7ve′

v7 0,1 (x′4 6= v7) P [ve, v3]u2v5v4x
′
4v7ve′ (x′4 = v7) G[{v3, v4, v5, v6, v7,

u2}] is not reduced, by
Lemma 1.2.3(i).

v8 0,1 P [ve, v3]u2P
−[v7, v4]v8ve′

Table 11C: Claim 5(vi).1A with i11 ∈ {0, 1} and (i21, i
2
2, i

2
3, i

1
3) = (3, 5, 7, 8).

Thus we have i11 < i21 < i12 < i22 < i23 < i13. By Claim 5(iii), a (ve, ve′)-path longer than

P exists. This excludes this subcase.

Case 5(vi).1B. i22 < i13 < i23.

Now we have i11 < i12 < i22 < i13 < i23, As P [ve, vi12 ]u1P
−[vi13 , vi22 ]u2 P [vi23 , ve′ ] is not

longer than P , (i22 − i12) + (i23 − i13) ≥ 4. By Claim 5(iii), we cannot have i11 < i21 < i12, and

so i21 < i11 or i21 ∈ {i11, i12}.

If i21 < i11, then i12−i11 ≥ 2. Since (i22−i12)+(i23−i13) ≥ 4, it follows that l−s ≥ i23−i21 ≥ 8.

By Claim 5(i), i21 = 0, i11 = 1, i22 = 5, i13 = 6 and i23 = 8. Hence vev0u2P
−[v5, v1]u1v6v7ve′

is longer than P .

If i21 = i11, then by girth(G(e, e′)) ≥ 4 and by Claim 3, we must have i12 ≥ 3. It

follows by l − s ≤ 8 and by (i22 − i12) + (i23 − i13) ≥ 4, we must have i11 ∈ {0, 1}, and

(i12, i
2
2, i

1
3, i

2
3) ∈ {(3, 5, 6, 8), (3, 6, 7, 8)}. If i11 = 0, then P [ve, vi13 ]u1v0u2vi23ve′ is longer than

P . If i11 = 1, then P [ve, vi12 ]u1P
−[vi13 , vi22 ]u2v8ve′ is longer than P . This excludes this

subcase.

Case 5(vi).1C. i13 < i22.

Then i11 < i12 < i13 < i22 < i23. By Claim 5(ii), i12 ≥ i21. If i12 > i21 > i11, then As

P [ve, vi11 ]u1P
−[vi13 , vi21 ]u2P [vi22 , ve′ ] is not longer than P , we have (i21 − i11) + (i22 − i13) ≥ 4.
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By girth(G(e, e′)) ≥ 4, i23− i22 ≥ 2 and i13− i12 ≥ 2, it follows i23− i11 ≥ 9, contrary to Claim

5(i). If i21 < i11, then by girth(G(e, e′)) ≥ 4, we must have i23 − i21 ≥ 8, and so by Claim

5(i), we have i23 = 8. By Claim 3, i22 ≤ 5, which forces i23 − i21 ≥ 9, contrary to Claim 5(i).

Hence i21 ∈ {i11, i12}. If i12 = i11 = 1, then by girth(G(e, e′)) ≥ 4, we have i23 = 8.

By Claim 3, i22 ≤ 5, which forces i23 − i21 ≥ 9, contrary to Claim 5(i). If i12 = i11 = 0,

then by Claim 3 and by girth(G(e, e′)) ≥ 4, we have i13 ∈ {5, 6} and i22 ∈ {6, 7}. Thus

P [ve, vi13 ]u1v0u2P [vi22 , ve′ ] is longer than P . If i21 = i12, then by girth(G(e, e′)) ≥ 4, we

have i23 − i11 ≥ 7. As P [ve, vi11 ]u1P
−[vi13 , vi12 ]u2P [vi22 , ve′ ] is not longer than P , we have

(i12 − i11) + (i22 − i13) ≥ 4, forcing i23 − i11 ≥ 8. By Claim 5(i), we have (i22, i
2
3) = (7, 8), and

so P [ve, v7]u2v8ve′ is longer than P . This excludes this subcase and completes the proof

of Case 5(vi).1.

Case 5(vi).2. i13 = i23. Thus i13 = i23 > i22 > i12 > i11.

By Claim 3, we cannot have i11 < i21 < i12. By Claim 5(iv) and (v), i21 /∈ {i11, i12}. Hence

we have i21 < i11. Then either vev0u2P
−[vi22 , vi11 ]u1P [vi23 , ve′ ] (if i21 = 0) or

P [ve, vi21 ]u2P
−[vi22 , vi11 ]u1P [vi23 , ve′ ] (if i21 > 0) is longer than P . This proves this case.

Case 5(vi).3. i13 = i22. Thus i23 > i13 = i22 > i12 > i11.

By girth(G(e, e′)) ≥ 4, i23− i11 ≥ 6. By Claim 5(iv), i11 6= i21. Assume first that i21 < i11,

and so i23 − i21 ≥ 7, implying i23 ∈ {7, 8}. Note that when i23 ∈ {7, 8}, we must have

i13 − i11 = 4, and so by Theorem 6.2.1(v) and (vi), adding any edge to

G(e, e′)[V (P [v1
1, v

1
3])] will result in a non reduced subgraph. (4.17)

As i23 ∈ {7, 8}, by Claim 3 and by girth(G(e, e′)) ≥ 4, we must have (i21, i
1
1, i

1
2, i

2
2) =

(0, 1, 3, 5). By (4.17) and (4.16), x4 /∈ {v1, v2, v3, v4, v5, v6}. Table 11D shows that for

any other values of x4, a contradiction to (4.9) can always be found, which completes the

proof of this case.

x4 i23 (ve, ve′)-path longer than P

v0 vev0P
−[v4, v1]u1P [v5, ve′ ]

v7 or v8 7, 8 vev0u2v5u1P [v1, v4]vi23ve′

Table 11D: Claim 5(vi).3 with i23 ∈ {7, 8} and (i21, i
1
1, i

1
2, i

2
2) = (0, 1, 3, 5).
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Claim 6. s = |{vi11 , vi12 , vi13} ∩ {vi21 , vi22 , vi23}| ≥ 2.

If s < 2 then by Claim 5(i), s = 1. Without loss of generality, we assume that i11 ≤ i21.

Hence by Claim 5, we have i11 < i21 < i22 = i12 ≤ i13. By Claim 5(iii), we have i11 < i21 and

i13 < i23. By (4.10), i13 − i21 ≥ 4. It follows that P [ve, vi11 ]u1P
−[vi13 , vi21 ]u2P [vi23 , ve′ ] is longer

than P , contrary to (4.9). Claim 6 is justified.

Claim 7. s = |{vi11 , vi12 , vi13} ∩ {vi21 , vi22 , vi23}| = 3.

By contradiction and Claim 6, assume that s = 2. Without loss of generality, we

assume that i11 ≤ i21. Hence by Claim 5, we have i11 ≤ i21 ≤ i22 = i12 ≤ i13, and so s = 2

implies, in addition to i12 = i22, either i11 = i21 or i13 = i23. By symmetry, it suffices to assume

that both i11 = i21 and i12 = i22 to find contradictions.

Hence we have i11 = i21 < i22 = i12 < i13. By symmetry, we may assume that i13 < i23.

As P [ve, vi11 ]u1 P
−[vi13 , vi12 ] u2P [vi23 , ve′ ] is not longer than P , (i23 − i13) + (i12 − i11) ≥ 4, and

so by (4.9) and (4.10), i23 − i11 ≥ 6. Hence i12 ≥ 3, i11 ≤ 1 or i23 ≥ 7. If v1
1 = 0, then by

(4.9), i13 ≥ 5, and so P [ve, vi13 ]u1v0u2vi23ve′ is longer than P . This forces that i11 = 1 and

i13 − i12 = 2, and so (i12, i
1
3, i

2
3) ∈ {(4, 6, 7), (4, 6, 8), (3, 5, 7), (3, 5, 8)}.

Assume first that (i12, i
1
3, i

2
3) ∈ {(3, 5, 7), (3, 5, 8)}. By (4.16), x4 /∈ {v2, v3, v4, v5}. If

v1v4 ∈ E(G), then by Lemma 1.2.3(i), G[V (P [v1, v5]) ∪ {u2}] is not reduced. Hence

when x4 = v1, x′4 ∈ V (J). By κ′(G) ≥ 3, we can choose x4 ∈ NG(x′4) − {v1, v4}. Thus

we may assume that x4 6= v1 as well. If u2v7, x4v7 ∈ E(G), then by Lemma 1.2.3(i),

G[V (P [v3, v7]) ∪ {v1, u1, u2}] is not reduced. Hence when i23 = 7 and x4 = v1, x′4 ∈ V (J).

Table 12A indicates that a contradiction can always be found.
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x4 (ve, ve′)-path longer than P

v0 vev0P
−[v1, v4]u1P [v5, ve′ ] or vev0x

′
4P
−[v1, v4]u1P [v5, ve′ ]

v6 P [ve, v3]u1v5v4P [v6, ve′ ] or P [ve, v3]u1v5v4x
′
4P [v6, ve′ ]

v7 P [ve, v3]u1v5v4x
′
4P [v5, ve′ ], if i23 = 7.

v7 vev1u1v5v6v7v4v3u2v8ve′ or vev1u1v5v6v7x
′
4v4v3u2v8ve′ , if i23 = 8.

v8 P [ve, v3]u2P
−[v4, v7]v8ve′ or P [ve, v3]u2P

−[v4, v7]x′4v8ve′ , if i23 = 7.

v8 P [ve, v3]u2v8P [v4, ve′ ] or P [ve, v3]u2v8x
′
4P [v4, ve′ ], if i23 = 8.

Table 12A: Claim 7, with i11 = i21, i12 = i22 and (i12, i
1
3, i

2
3) ∈ {(3, 5, 7), (3, 5, 8)}.

Hence (i12, i
1
3, i

2
3) ∈ {(4, 6, 7), (4, 6, 8)}. By (4.16), x5 /∈ {v3, v4, v5, v6}. If v1vv ∈ E(G),

then by Lemma 1.2.3(i), G[{v1, v4, v5, v6, u1, u2}] is not reduced. Hence when x5 = v1,

x′5 ∈ V (J). By κ′(G) ≥ 3, we can choose x5 ∈ NG(x′5) − {v1, v5}. Thus we may assume

that x5 6= v1 as well. Table 12B indicates that a contradiction can always be found. This

completes the proof for Claim 7.

x5 (ve, ve′)-path longer than P

v0 vev0P
−[v5, v1]u1P [v6, ve′ ] or vev0x

′
5P
−[v5, v1]u1P [v6, ve′ ]

v2 vev1u1v4v3v2P [v5, ve′ ] or vev1u1v4v3v2x
′
5P [v5, ve′ ]

v7 or v8 P [ve, v4]u1v6v5x5ve′ or P [ve, v4]u1v6v5x
′
5x5ve′

Table 12B: Claim 7, with i11 = i21, i12 = i22 and (i12, i
1
3, i

2
3) ∈ {(4, 6, 7), (4, 6, 8)}.

Claim 8. |V (G(e, e′))− V (P ) ∪ {v0, vc}| = 1.

By contradiction, we assume that u1, u2 ∈ V (G(e, e′))− V (P )∪ {v0, vc}. By Claim 7,

|NG(u1) ∩ NG(u2)| = 3, and so i1j = i2j for 1 ≤ j ≤ 3. If i21 = i11 + 2 or i13 = i12 + 2, then

G(e, e′) has a collapsible subgraph K−3,3, contrary to (4.10). Therefore, we must have both

i12 ≥ i11 + 3 and i13 ≥ i12 + 3. Since G(e, e′) does not contain a collapsible subgraph K3,3,

by Claim 7, V (G) = V (P ) ∪ {v0, vc, u1, u2}.

Since V (G) = V (P ) ∪ {v0, vc, u1, u2}, x3 = x′3. By (4.16), x3 /∈ {v1, v2, v3, v4, v5}. If

x3 = v7, then v3v7 ∈ E(G), and so by Lemma 1.2.3(i), G[{v1, v2, v3, v4, v7, u1, u2}] is not



CHAPTER 4. STRONGLY SPANNING TRAILABLE GRAPHSWITH SHORT LONGEST PATHS72

reduced. Thus x3 6= v7 and so x3 ∈ {v0, v6, v8}. It follows that vev0v3v2v1u1P [v4, ve′ ]

(if x3 = v0) or P [ve, v3]v6v5v4u1v7ve′ (if x3 = v6), or vev1u1P
−[v7, v3]v8ve′ (if x3 = v8) is

longer than P .

Thus either i11 = 0 or i13 = c. Without loss of generality, we assume that i11 = 0.

As neither vev0u1P [vi12 , ve′ ] nor P [ve, vi12 ]u1v0u2P [vi13 , ve′ ] is longer than P , we must have

i12 = 3. By symmetry, that i13 = c = 8 implies i12 = 5 > 3, and so i11 = 1 implies i13 = 7.

Hence (i11, i
1
2, i

1
3) ∈ {(0, 3, 6), (0, 3, 7)}. If (i11, i

1
2, i

1
3) = (0, 3, 6), then vev1v2v3u2v0u1P [v6, ve′ ]

is longer than P . Therefore (i11, i
1
2, i

1
3) = (0, 3, 7).

By (4.16), x4 /∈ {v2, v3, v4, v5, v6}. Since G(e, e′) cannot have a K−3,3, x4 /∈ {v0, v7},
and so x4 ∈ {v1, v8}. Hence vev0u1v3v2v1P [v4, ve′ ] (if x4 = v1) or P [ve, v3]u1P

−[v7, v4]v8ve′

(if x4 = v8) is longer than P , contrary to (4.9). This proves Claim 8.

Define a new graph Lz from G(e, e′) by adding a new vertex z and new edges zve and

zve′ . Then G(e, e′) has a spanning (ve, ve′)-trail if and only if Lz is supereulerian. If c ≤ 7,

or if c = 8 and v0 = vc, then by Claim 8, |V (Lz)| ≤ 12. As Lz has exactly one edge cut of

size 2, it follows by Lemma 1.2.3(iv) that either L is supereulerian, whence G(e, e′) has a

spanning (ve, ve′)-trail; or Lz = P (10)(e), whence G = H8. In either case, a contradiction

to the assumptions of Theorem 4.3.1 is found. Hence we will assume that c = 8 and that

v0 6= vc.

By Claim 8, we denote V (J) = {u}. By Claim 7, NG(u) ⊆ V (P ) ∪ {v0, vc}. Let

NG(u) = {vi1 , vi2 , vi3 ...}. By Claim 4, we may assume i1 < i2 < i3. By (4.10), both

i2 > i1 + 2 and i3 ≥ i2 + 2, and if i1 = 0, then i2 > 2, and if i3 = c, then i2 < c − 2.

Therefore, the possibilities of (i1, i2, i3) can be listed below:
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i1 i2 (i1, i2, i3) Symmetric case i1 i2 (i1, i2, i3) Symmetric case

0 3 (0, 3, 5) (3,5,8) 1 3 (1, 3, 5) (3,5,7)

0 3 (0, 3, 6) (2,5,8) 1 3 (1, 3, 6) (2,5,7)

0 3 (0, 3, 7) (1,5,8) 1 3 (1, 3, 7) (1,5,7)

0 3 (0, 3, 8) (0,5,8) 1 4 (1, 4, 6) (2,4,7)

0 4 (0, 4, 6) (2,4,8) 1 4 (1, 4, 7) (1,4,7)

0 4 (0, 4, 7) (1,4,8) 2 4 (2, 4, 6) (2,4,6)

0 4 (0, 4, 8) (0,4,8)

0 5 (0, 5, 7) (1,3,8)

Table 13: Possibilities of (i1, i2, i3).

We shall show that in each of these cases of (i1, i2, i3), either a longer (ve, ve′)-path is

found or a nontrivial collapsible subgraph of G(e, e′) is found, leading to contractions to

(4.10). For each i with 1 ≤ i ≤ 7, denote xi(= x′i) = vsi . By (4.16),

s1 ∈ {4, 5, 6, 7, 8}, s2 ∈ {0, 5, 6, 7, 8}, s3 ∈ {0, 6, 7, 8}

s4 ∈ {0, 1, 7, 8}, s5 ∈ {0, 1, 2, 8}, s6 ∈ {0, 1, 2, 3, 8}, s7 ∈ {0, 1, 2, 3, 4} (4.18)

Claim 9. If i1 = 0, then each the following statements holds.

(i) Let t ∈ {i2, i3}. Then v0vt−1, v0vt−2 6∈ E(G), and v0vt+1, v0vt+2, v1vt+1, v1vt+2 6∈ E(G)

if t+ 1, t+ 2 ≤ 8.

(ii) If i3 6= 8, then v1v8 6∈ E(G).

As i3 ≥ 5, Table 14 proves Claim 9.

Edge in E(G) (ve, ve′)-path longer than P

(i) v0vt−1 ∈ E(G) P [ve, vt−1]v0uP [vt, ve′ ]

v0vt−2 ∈ E(G) P [ve, vt−2]v0uP [vt, ve′ ]

v0vt+1 ∈ E(G) P [ve, vt]uv0P [vt+1, ve′ ] t+ 1 ≤ 8

v0vt+2 ∈ E(G) P [ve, vt]uv0P [vt+2, ve′ ] t+ 2 ≤ 8

v1vt+1 ∈ E(G) vev0uP
−[vt, v1]P [vt+1, ve′ ] t+ 1 ≤ 8

v1vt+2 ∈ E(G) vev0uP
−[vt, v1]P [vt+2, ve′ ] t+ 2 ≤ 8

(ii) v1v8 ∈ E(G) vev0u P
−[vi3 , v1]v8ve′

Table 14: Proof of Claim 9.



CHAPTER 4. STRONGLY SPANNING TRAILABLE GRAPHSWITH SHORT LONGEST PATHS74

Claim 10. If i1 = 0, then i2 = 3.

If i2 ≥ 4, then (i1, i2, i3) ∈ {(0, 4, 6), (0, 4, 7), (0, 4, 8), (0, 5, 7)}. By (4.18), s5 ∈
{0, 1, 2, 8}. Hence P [ve, v4]uv0P [v5, ve′ ] (if v0v5 ∈ E(G)), or vev0uP

−[v4, v1]P [v5, ve′ ]

(if v1v5 ∈ E(G)), or vev0uv4v3v2P [v5, ve′ ] (if v2v5 ∈ E(G)) is longer than P . Thus

v5v8 ∈ E(G). If i3 ∈ {6, 7}, then P [ve, v4]uvi3P
−[vi3 , v5]v8ve′ is longer than P . Hence

(i1, i2, i3) = (0, 4, 8). In this case, P [ve, v4]uv8P [v5, ve′ ] is longer than P , contrary to (4.9),

and so Claim 10 holds.

Claim 11. Both i1 ≥ 1 and i3 ≤ c− 1. Furthermore, when i1 = 1, each of the following

holds.

(i) Let t ∈ {i2, i3}. Then x0vt−1 6∈ E(G).

(ii) If i2 ≥ 4, then v0vi2−2 6∈ E(G). If i3 ≥ i2 + 3, then v0vi3−2 6∈ E(G).

By symmetry, we assume that i1 = 0. By Claim 10, (i1, i2, i3) ∈ {(0, 3, 5), (0, 3, 6), (0, 3, 7), (0, 3, 8)}.
By (4.18), s1 ∈ {4, 5, 6, 7, 8}. By Claim 9, (i1, i2, i3) 6= (0, 3, 5).

If (i1, i2, i3) = (0, 3, 6), then by Claim 9, v1v6 ∈ E(G), and so v2v6 6∈ E(G). By (4.18),

s2 ∈ {5, 7, 8}.

If (i1, i2, i3) = (0, 3, 8), then by (4.18) and Claim 9, s1 ∈ {6, 7, 8}. If s1 = 6, then

s2 6= 6 and so by (4.18), and Claim 9, s2 ∈ {5, 7, 8}.

If (i1, i2, i3) = (0, 3, 7), then by (4.18) and Claim 9, s4 ∈ {7, 8}; and if s4 = 7,

s5 ∈ {2, 8}. Similarly, When v4v7, v2v5 ∈ E(G), s1 ∈ {6, 7}.

With these analysis, Table 15 proves Claim 11.
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Cases (i1, i2, i3) Edge in E(G) (ve, ve′)-path Conclusions

longer than P

i1 ≥ 1 (0,3,6) v2v5 ∈ E(G) vev1v2v5v4v3

i3 ≤ c− 1 uP [v6, ve′ ]

v2vs2 ∈ E(G) vev0uP
−[v6, s2 ∈ {7, 8}

v2]vs2ve′ s2 ∈ {7, 8}
(0,3,8) v1v7 ∈ E(G) vev1P

−[v7,

v3]uv8ve′

v1v8 ∈ E(G) vev0uv8P [v1, ve′ ] s1 = 6, and so

s2 ∈ {5, 7, 8}
v2v5 ∈ E(G) vev0uv3v4v5

v2v1v6v7ve′

v2vs2 ∈ E(G) vev0uP [v3, s2 ∈ {7, 8}
v6]v1v2vs2ve′

(0,3,7) v4v8 ∈ E(G) P [ve, v3]uP
−[v7, v4v7 ∈ E(G),

v4]v8ve′ and so s5 ∈ {2, 8}
v4v7, P [ve, v4]v7v6v5 v2v5 ∈ E(G),

v5v8 ∈ E(G) v8ve′ and so s1 ∈ {6, 7}
v2v5, vev0uv3v4v5v2

v1v6 ∈ E(G) v1P [v6, ve′ ]

v2v5, vev0uv3v4v5v2

v1v7 ∈ E(G) v1v7ve′

i1 = 1 x0vt−1 vev0P
−[vt−1,

t ∈ {i2, i3} ∈ E(G) v1]uP [vt, ve′ ]

i1 = 1 v0vi2−2 vev0P
−[vi2−2,

i2 ≥ 4 ∈ E(G) v1]uP [vi2 , ve′ ]

i1 = 1 v0vi3−2 vev0P
−[vi3−2,

i3 ≥ i2 + 3 ∈ E(G) v1]uP [vi3 , ve′ ]

Table 15: Proof of Claim 11.

Claim 12. i1 ≥ 2 and i3 ≤ c− 2.

By contradiction, by symmetry and Claim 11, we assume that i1 = 1 and so (i1, i2, i3) ∈
{(1, 3, 5), (1, 3, 6), (1, 3, 7), (1, 4, 6), (1, 4, 7)}.
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Case 12.1. (i1, i2, i3) = (1, 3, 5).

By (4.10), G(e, e′)[{v1, v2, · · · , v5, u}] 6∼= K−3,3, and so s1 6= 4 and s2 6= 5, 6 6∈ E(G). By

(4.18) and Claim 11, s2 ∈ {0, 7, 8}. If v2v8 ∈ E(G), then P ′ = vev1uv3 · · · v7ve′ satisfies

|V (P ′)| = |V (P )| and NG(v2) ∩ V (P ′) = {v8, v3, v1}, and so P ′ violates applying Claim

11 (when P is replaced by P ′). Hence v2v7 ∈ E(G).

Note that v4v8, v6v8, v0v6 6∈ E(G), as otherwise, vev1uv3v2v7v6v5v4v8ve′ or vev1v5v4v3v2v7v6v8ve′

or vev0v6v5v4v3uv1v2v7ve′ would be longer than P . Hence by (4.18) and Claim 11, s4 ∈
{1, 7} and s6 ∈ {1, 2, 3}. Let H1 = G[V (P [v1, v7]∪{u}]. As s4 ∈ {1, 7} and s6 ∈ {1, 2, 3},
by Theorem 1.2.2(vi) and (v), F (H1) ≤ 2(8) − 12 − 2 = 2, and so H1 is not reduced,

contrary to (4.10). This excludes Case 12.1.

Case 12.2. (i1, i2, i3) = (1, 3, 6).

By (4.18) and Claim 11, s2 ∈ {5, 6, 7, 8}. Note that v2v5, v2v7, v2v8 6∈ E(G), as

otherwise, vev1v2v5v4v3uv6v7ve′ , or vev1uP
−[v6, v2]v7ve′ , or vev1u P

−[v6, v2]v8ve′ would be

longer than P . This implies v2v6 ∈ E(G). By (4.18) and Claim 11, s5 ∈ {1, 8}. If

v5v8 ∈ E(G), then vev1uv6P [v2, v5]v8ve′ would be longer than P , and so v5v1 ∈ E(G).

By Lemma 1.2.3(i), with v2v6, v5v1 ∈ E(G), G[(e, e′)[{v1, v3, v6, u, v2, v5}] is not reduced,

contrary to (4.10). This excludes Case 12.2.

Case 12.3. (i1, i2, i3) = (1, 3, 7).

First note that v2v6 /∈ E(G), as otherwise vev1v2v6v5v4v3uv7ve′ is longer than P . Hence

by (4.18), Claim 11, and symmetry, s2 ∈ {5, 7}. But then v6v8 6∈ E(G), as otherwise,

either vev1v2v5v4v3uv7v6v8ve′ (if s2 = 5) or vev1uv7P [v2, v6]v8ve′ (if s2 = 7) is longer than

P . By Claim 11 and as s6 6= 8, s6 ∈ {1, 3}. As G(e, e′)[{v1, v3, v7, u, v6, v2} 6∼= K−3,3, we

have s2 6= 7, and so s2 = 5.

As s2 = 5, v0v4 /∈ E(G), as otherwise, vev0v4v3uv1v2P [v5, ve′ ] is longer than P . By

Claim 11, s4 ∈ {1, 7}. As s2 = 5 and s4 ∈ {1, 7}, by Lemma 1.2.3(i), G(e, e′)[V (P [v1, v7])∪
{u}] is not reduced, contrary to (4.10). This proves Case 12.3.

Case 12.4. (i1, i2, i3) = (1, 4, 6).



CHAPTER 4. STRONGLY SPANNING TRAILABLE GRAPHSWITH SHORT LONGEST PATHS77

By (4.18) and Claim 11, s2 ∈ {5, 6, 7, 8}. Note that v2v5, v2v7, v2v8 6∈ E(G) as oth-

erwise, vev1uv4v3v2P [v5, ve′ ], or vev1uP
−[v2, v6]v7ve′ , vev1uP

− [v6, v2]v8ve′ is longer than

P . Thus s2 = 6. By (4.18), Claim 11, and symmetry, s5 = 1. Thus by Lemma 1.2.3(i),

G(e, e′)[{v1, v4, v6, u, v5, v2}] is not reduced, contrary to (4.10). This proves Case 12.4.

Case 12.5. (i1, i2, i3) = (1, 4, 7).

Note that v2v5, v3v6 6∈ E(G), as otherwise vev1uv4v3v2P [v5, ve′ ] or P [ve, v3]v6v5v4uv7ve′

is longer than P . By (4.18), Claim 11, and by symmetry, we may assume that s2 ∈ {6, 7},
s3 = 7 and s5 = 1. By Lemma 1.2.3(i), G(e, e′)[V (P [v1, v7])∪{u}] is not reduced, contrary

to (4.10). This precludes Case 12.5, and so Claim 12 holds.

By Claim 12, (i1, i2, i3) = (2, 4, 6). By (4.18) and Claim 11, s3 ∈ {0, 6, 7, 8}. Note

that v3v0, v3v7, v3v8 /∈ E(G), as otherwise vev0v3v2uP [v4, ve′ ], or vev1v2uP
−[v6, v3]v7ve′ , or

vev1v2uP
−[v6, v3]v8ve′ is longer than P . Hence s3 = 6. By Lemma 1.2.3(i), G(e, e′)[V (P [v2, v6])∪

{u}] is not reduced, contrary to (4.10). The proof for Theorem 4.3.1 is now complete.



Chapter 5

The Discharging Method and

3-Connected Essentially

10-Connected Line Graphs

5.1 Introduction

A subgraph of G isomorphic to a K1,2 or a 2-cycle is called a P2-subgraph of G, and a

2-cycle is a graph consisting of two non loop edges sharing two end-vertices. An edge cut

X of G is a P2-edge cut of G if at least two components of G−X contain P2-subgraphs.

By the definition of a line graph, if L(G) is not a complete graph, then L(G) is essentially

k-connected if and only if G does not have a P2-edge cut with size less than k. In 2006,

Lai et al. considered the hamiltonicity of 3-connected line graphs and showed that the

high essential connectivity of a 3-connected line graph can guarantee the existence of a

hamiltonian cycle as follows.

Theorem 5.1.1 (Lai, Shao, Wu and Zhou [26]) Every 3-connected, essentially 11-connected

line graph is hamiltonian.
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Recently, Li and Yang improved Theorem 5.1.1 by directly counting the number of

edges between partitioned vertex subsets in applying spanning trees packing theorem of

Nash-Williams [38] and Tutte [47].

Theorem 5.1.2 (Li and Yang [32]) Every 3-connected, essentially 10-connected line

graph is hamiltonian connected.

In this note we shall use discharging to give a short proof of Theorem 5.1.2. Using

the clM -closure introduced by Ryjác̆ek and Vrána on claw-free graphs (Theorem 9, [44]),

we have the following.

Corollary 5.1.3 Every 3-connected, essentially 10-connected claw-free graph is hamilto-

nian connected.

5.2 Proof of Theorem 5.1.2

Recall that subset D of the vertex set V (G) is a dominating set if every edge has at least

one end-vertex in D. Let e1, e2 ∈ E(G). We use “(e1, e2)-trail” to denote a trail having

the end-edges e1 and e2. An (e1, e2)-trail is a dominating trail if each edge of G is incident

with at least one internal vertex of the trail. An (e1, e2)-trail is a spanning trail if it is a

dominating trail which contains all the vertices of G. A graph is dominating trailable if

for each pair of e1 and e2 of edges of G there exists a dominating trail with end-edges e1

and e2. Similarly, one can define the spanning trailable graphs.

Theorem 5.2.1 (Nash-Williams [39]) Let G be a graph. If |E(G)| ≥ k(|V (G)|−1), then

G has a nontrivial subgraph H such that τ(H) ≥ k.

Theorem 5.2.2 Let G be a graph, and let H be a subgraph of G.

(i) (Catlin and Lai, Theorem 4 of [10]) Suppose that τ(G) ≥ 2. For any e1, e2 ∈ E(G),

G has a spanning (e1, e2)-trail if and only if {e1, e2} is not an essential edge cut of G.

(ii) (Liu et al, Lemma 2.1 of [34]) If τ(H) ≥ 2 and τ(G/H) ≥ 2, then τ(G) ≥ 2.
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Let G be a connected, essentially 3-edge-connected graph such that L(G) is not a

complete graph. The core of the graph G, denoted by G0, is obtained from G by deleting

all the vertices of degree 1 and contracting exactly one edge xy or yz for each path xyz

in G with dG(y) = 2.

Lemma 5.2.3 (Shao [45]) Let G be a connected, essentially 3-edge-connected graph.

Then the core G0 of G satisfies the following.

(i) G0 is uniquely defined and κ′(G0) ≥ 3.

(ii) If G0 is spanning trailable, then L(G) is hamiltonian connected.

Proof of Theorem 5.1.2. To prove L(G) is hamiltonian connected, by Theorem

5.2.2(i) and Lemma 5.2.3, it suffices to prove that τ(G0) ≥ 2, where G0 is the core of

G. By contradiction, assume that τ(G0) < 2. We choose L(G) such that |V (G0)| is

minimized. By Theorem 5.2.2(ii),

G0 does not have a nontrivial subgraph T such that τ(T ) ≥ 2. (5.1)

Thus, if H is a P2-subgraph in G0, then H = K1,2.

Claim 1. Let H be a P2-subgraph in G0. Then e(V (H), V (G)− V (H)) ≥ 10.

Assume that e(V (H), V (G)−V (H)) ≤ 9. Let H = K1,2 with {xy, yz} ⊆ E(H). Then

X = E(V (H), V (G)−V (H)) is an edge cut in G0. Let H,H1, H2, · · · , Hk be components

of G0 −X. Then each Hi(i = 1, · · · , k) does not contain a P2-subgraph. Thus each Hi is

either a single vertex or a single edge.

Assume that E(H1) = {uw}. As dG0(v) ≥ 3 and dG0(w) ≥ 3, we have |NG0(v) ∩
{x, y, z}| ≥ 2 and |NG0(w)∩{x, y, z}| ≥ 2. As G0 has no subgraph T such that τ(T ) ≥ 2,

dG0(v) = 3 and dG0(w) = 3, and the subgraph induced by {x, y, z} ∪ {u,w} is one of

graphs in Figure 1. Thus k ≥ 2. Without loss of generality, we assume that V (H2) ∩
(NG0(y)∪NG0(z)) 6= ∅. Consider the new edge cut X ′ = E({x, u, w}, V (G0)−{x, u, w}).
Then X ′ is a P2-edge-cut, and so |X ′| ≥ 10. As e({x, u, w}, {y, z}) = 3, 4, we have

|NG0(x) ∩ (V (H2) ∪ · · · ∪ V (Hk))| ≥ 6. Therefore, |X| ≥ 6 + 4 = 10, a contradiction. So

each Hi is a single vertex.
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u w

x y z

u w
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u w

x y z

u w

Figure 1.

Let V (Hi) = {ai}. Since G0 is 3-edge-connected, we have aix, aiy, aiz ∈ E(G) and

k ≥ 2. Thus the subgraph induced by V (H) ∪ {a1, a2} in G0 contains 2 edge-disjoint

trees, contrary to (1). Therefore, Claim 1 holds.

Next we will get a contradiction by using the discharging method to find a nontrivial

subgraph H in G0 with τ(H) ≥ 2. We define the initial charge at v as charge(v) = dG0(v).

Recharging rule is defined as follows.

(R1) Let v ∈ Di(G0)(i = 5, 6, 7). By Claim 1, |NG0(v) ∩ D3(G0)| ≤ 1. We define the

charge of v as

charge(v) :=

{
charge(v)− 1, if |NG0(v) ∩D3(G0)| = 1

charge(v), if |NG0(v) ∩D3(G0)| = 0
.

If w ∈ D3(G0) ∩NG0(v), we define the discharge of w as

charge(w) := charge(w) + 1.

(R2) Let v ∈ Di(G0)(i ≥ 8), we define the charge of v as

charge(v) := 4.

For every w ∈ NG0(v), we define the discharge of w as

charge(w) := charge(w) +
dG(v)− 4

dG(v)
.

As dG0(v) ≥ 8, we have
dG0

(v)−4

dG0
(v)
≥ 1

2
.



CHAPTER 5. THE DISCHARGINGMETHODAND 3-CONNECTED ESSENTIALLY 10-CONNECTED LINE GRAPHS82

Claim 2. After all vertices are recharged, for each vertex v ∈ V (G0), charge(v) ≥ 4.

Let v ∈ Di(G0)(i ≥ 4). By (R1) and (R2), we have charge(v) ≥ 4. Next we consider

v ∈ D3(G0).

Case 1. NG0(v) ∩D3(G0) = ∅.

If NG0(v) ∩ (D5(G0) ∪ D6(G0) ∪ D7(G0)) 6= ∅, by (R1), we have charge(v) = 4.

Otherwise, NG0(v)∩(D5(G0)∪D6(G0)∪D7(G0)) = ∅. By Claim 1, |NG0(v)∩D4(G0)| ≤ 1,

Thus |NG0(v) ∩D≥8(G0)| ≥ 2. By (R2), we have

charge(v) ≥ 3 +
1

2
+

1

2
= 4.

Case 2. NG0(v) ∩D3(G0) 6= ∅.

By Claim 1, |NG0(v) ∩ D3(G0)| = 1. Let NG0(v) ∩ D3(G0) = {u}. By Claim 1, for

any w ∈ (NG0(v) ∪NG0(u)− {u, v}), dG0(w) ≥ 8. By (R2), we have

charge(v) ≥ 3 +
1

2
+

1

2
= 4, and charge(u) ≥ 3 +

1

2
+

1

2
= 4.

Claim 2 hods.

By Claim 2, we have

2|E(G0)| =
∑

v∈V (G0)

dG0(v) =
∑

v∈V (G0)

charge (v) ≥ 4|V (G0)|,

and so |E(G0)| ≥ 2|V (G0)|. By Theorem 5.2.1, G0 has a nontrivial subgraph T such that

τ(T ) ≥ 2, contrary to (1).
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Figure 2.

Remark: If the essential connectivity of L(G) in Theorem 5.1.2 is less than

10, we fail to prove |E(G0)| ≥ 2|V (G0)| using the discharging method. For exam-

ple, we take 2k(k ≥ 1) copies of Hi = K2,7(i = 0, 1, · · · , 2k − 1), where V (Hi) =

{ai, bi, ui1, ui2, · · · , ui7} with dHi
(ai) = dHi

(bi) = 7 and dHi
(uij) = 2(j = 1, 2, · · · , 7). The

graph G is defined as V (G) =
2k−1⋃
i=0

V (Hi) and E(G) =
2k−1⋃
i=0

E(Hi) ∪
2k−1⋃
i=0

E(Hi, Hi+1)

(i is modulo by 2k), where H(2t, 2t + 1) = {u2t
1 u

2t+1
1 , u2t

3 u
2t+1
3 , u2t

5 u
2t+1
5 , u2t

7 u
2t+1
7 } and

H(2t+ 1, 2t+ 2) = {u2t+1
2 u2t+2

2 , u2t+1
4 u2t+2

4 , u2t+1
6 u2t+2

6 }(t = 0, 1, · · · , k− 1) (The subgraph

induced by
7⋃
j=1

2k−1⋃
i=0

{uij} is shown in Figure 2). Then |V (G)| = 18k and |E(G)| = 35k, and

so 2|V (G)| − |E(G)| = 36k − 35k = k. Therefore, the difference of 2|V (G)| − |E(G)| can

be as large as possible. However, L(G) is 3-connected, essentially 9-connected.



Chapter 6

Cycle Chains and hamiltonian

3-connected claw-free graphs

6.1 Introduction

Graphs in this chapter are finite and may have multiple edges or loops. Let H5 (usually

called the hour-glass) denote the graph obtained from K5 by deleting two independent

edges, and let T3 be the graph with

V (T3) = {v1, v2, v3, v4, v5, v6, v7} and E(T3) = {vivi+1, vivi+4, vi+1vi+4 : 1 ≤ i ≤ 3}.

Theorem 6.1.1 (T. Kaiser, M. Li, Ryjác̆ek and L. Xiong [24]) A graph G is said to

have the hourglass property if in every induced hourglass H5, G has two non-adjacent

vertices which have a common vertex in V (G)−V (H5). Then every 4-connected claw-free

graph is hamiltonian.

Theorem 6.1.2 (F. Pfender [40]) Every 4-connected {K1,3, T3}-free graph is Hamilto-

nian.
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For a vertex v ∈ V (G), NG(v) is the set of all vertices adjacent to v in G. For a subset

S ⊆ V (G), NG(S) = ∪v∈SNG(v). A vertex v is locally connected in G if G[NG(v)] is

connected. Let G be a claw-free graph. If v ∈ V (G) is locally connected, the operation of

adding all possible edges between vertices in NG(v) is referred as local completion at v.

The line graph closure of G, denoted by cl(G), is obtained from this claw-free graph

G by repeatedly applying local completion at every locally connected vertices until none

left. Ryjác̆ek [43] showed that cl(G) is well-defined and unique. Furthermore, he proved

the following very useful result.

Theorem 6.1.3 Let G be a claw-free graph. Then cl(G) is the line graph of a K3-free

graph, and G is hamiltonian if and only if cl(G) is hamiltonian.

Theorem 6.1.4 (Fujisawa and Ota [20]) Let G be a 4-connected claw-free graph. Assume

that G[NG(T )] is cyclically 3-connected if T is a maximal K3 in G which is also maximal

in cl(G). Then G is Hamiltonian.

The purpose of this paper is to find a unified approach to generalize all these results.

A graph G is supereulerian if G has a spanning eulerian subgraph. For any edge e = uv ∈
E(G), define

dG(e) = dG(u) + dG(v)− 2.

Our main theorem states as follows.

Theorem 6.1.5 Let G be a graph with κ′(G) ≥ 3. If for any 3-bond D of G,

(i) either D intersects a cycle of length at most 3, or

(ii) every e ∈ D lies in at least min{dG(e)− 3, 2} cycles of length at most 4,

then G is supereulerian.

In the last section, we shall show that Theorem 6.1.5 can be applied to obtain short

proofs for each of Theorems 6.1.1 6.1.2, and 6.1.4. Moreover, Theorem 6.1.5 can also

be applied to obtained new sufficient conditions for a 3-connected claw-free graph to be

hamiltonian.
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A claw-free graph G is said to have the maximal K3-property if for every maximal

K3 subgraph K of G, every edge in K lies in a cycle of length at most 4 in G other than

K itself. For a vertex cut X of G, a cycle of G that contains at least two vertices of X is

called an X-cycle. If L is a component of G−X, then G[V (L)∪X] is an X-component

of G. An X-component is a clique X-component if it is a maximal complete subgraph

of G. A vertex cut X is essential if G−X has at least two nontrivial components. Our

main result also implies the following.

Theorem 6.1.6 Let G be a 3-connected claw-free graph with the maximal K3-property.

Then G is Hamiltonian if for any vertex 3-cut X of G, either

(i) G does not have a clique X-component, and either G has an X-cycle C with |E(C)| ≤
3, or every pair of vertices of X are in an X-cycle of length at most 4 in G, or

(ii) one of the X-component K is a complete graph, and either G has an X-cycle C not

in K with |E(C)| ≤ 3, or every pair of vertices of X are in an X-cycle not in K of length

at most 4.

Theorem 6.1.6 has the following immediate corollary.

Corollary 6.1.7 Every 4-connected claw-free graph with maximal K3-property is hamil-

tonian.

6.2 Proof of Theorem 6.1.5

In this section, we will prove a stronger result (Theorem 6.2.6 below) which implies Theo-

rem 6.1.5. If K is a subgraph of G, then we write G/K for G/E(K). If K is a connected

subgraph of G, and if vK is the vertex in G/K onto which K is contracted, then K is

called the preimage of vK . A vertex u in G/K is a trivial vertex (of the contraction)

if the preimage of u in G is u itself.
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Definition 6.2.1 A graph G is collapsible if for any subset R of V (G) with |R| ≡ 0

(mod 2), G has a spanning connected subgraph ΓR with O(ΓR) = R. In particular, K1 is

collapsible.

Collapsible graphs were discovered by Catlin in [8]. Catlin in [8] showed that every

graph G has a unique collection of pairwise vertex-disjoint maximal collapsible subgraphs

H1, H2, · · · , Hk such that
k⋃
i=1

V (Hi) = V (G). The reduction of G is the graph obtained

from G by successively contracting H1, H2, · · · , Hk. A graph G is reduced if it equals

to its reduction. Thus reduced graphs do not have any nontrivial collapsible subgraphs.

Note that any collapsible graph G has a spanning Eulerian subgraph, and so itself is

supereulerian. Let a1(G) be the minimum number of spanning trees of G such that every

edge of G is in at least one of them.

Theorem 6.2.2 Each of the following holds for a a connected graph G.

(i) (Catlin, Theorem 3 of [8]) Let H be a collapsible subgraph of G. Then G is collapsible if

and only if G/H is collapsible; and G is supereulerian if and only if G/H is supereulerian.

(ii) (Catlin, Corollary 1 of [8]) If G has a spanning tree T such that every edge of T lies

in a collapsible subgraph of G, then G is collapsible.

(iii). (Catlin, Theorem 7 of [8], Jaeger [23]) If κ′(G) ≥ 4, then G is collapsible.

(iv). (Catlin, Theorem 8 of [8], Lemma 1 of [7]) If G is reduced, then a1(G) ≤ 2, and

G contains no subgraph isomorphic to C2, K3, or K3,3 − e. When G 6∈ {K1, K2} and

a1(G) ≤ 2, F (G) = 2|V (G)| − |E(G)| − 2.

Let G be a graph. Define a relation ∼ on E(G) as follows: ∀e, e′ ∈ E(G), e ∼ e′ if

and only if either e = e′ or G has a sequence of cycles C1, C2, · · · , Ck such that

(4C1) for each i with 1 ≤ i ≤ k, |E(Ci)| ≤ 4,

(4C2) for i = 1, 2, ..., k − 1, E(Ci) ∩ E(Ci+1) 6= ∅, and

(4C3) e ∈ E(C1 and e′ ∈ E(Ck).

Such a sequence C1, C2, ..., Ck is referred as a 4-cycle (e, e′)-chain. It is routine to verify

that this is an equivalence relation. The equivalence classes on E(G) induce subgraphs

in G which are referred as 4-cycle-connected components. Part (i) of Lemma 6.2.3

follows from the definition.
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Lemma 6.2.3 Let G be a connected graph.

(i) Every 4-cycle-component H of G is either 2-connected or a K2.

(ii) (Theorem 1 of [25]) If every edge of G lies in a cycle of length at most 4 in G, and

if both κ(G) ≥ 2 and δ(G) ≥ 3, then G is collapsible.

(iii) If H is a 4-cycle-component of G and if H has a collapsible subgraph with least one

edge, then H is collapsible.

(iv) If H is a 4-cycle-component of G, then for any e ∈ E(H), H/e is collapsible.

Proof. If (iii) holds, then (iv) follows. In fact, if H contains a 3-cycle, then by (iii), H

is collapsible, and so H/e is also collapsible. Assume that H does not contain a 3-cycle.

For any edge e ∈ E(H), e must be in a 4-cycle C in H. Therefore C/e is a 3-cycle

and by definition, H/e is either 4-cycle connected, or is an edge-disjoint union of 4-cycle-

components with the contraction image of e being the only cut vertex. As in the latter

case, each component of H/e contains a 3-cycle (contraction image of 4-cycles containing

e in H) and so by (iii), H is collapsible. Hence (iv) follows from (iii).

It suffices to prove (iii). Since H has a collapsible subgraph with least one edge, H

has a maximal nontrivial collapsible subgraph L. If H = L, then done. Otherwise assume

that H 6= L. Since H is a 4-cycle component, and since H 6= L, H must have an edge

e ∈ E(H)−E(L) such that e is incident with a vertex in L. Since H is 4-cycle connected,

e must be in a 4-cycle C with E(C)∩E(L) 6= ∅, and so C/(C ∩L) is a cycle of length at

most 3 in H/L. By Theorem 6.2.2 (iv), C/(C ∩ L) is collapsible. By Theorem 6.2.2 (i),

C ∪L is collapsible in H, contrary to the maximality of L. Hence H must be collapsible.

Let F denote the family of graphs satisfying the hypothesis of Theorem 6.1.5. By the

definition of contraction,

if G ∈ F , then for any e ∈ E(G), G/e ∈ F . (6.1)

Lemma 6.2.4 Let G ∈ F and let H be a 4-cycle-connected component of G with |E(H)| >
2. Then H is collapsible.



CHAPTER 6. CYCLE CHAINS ANDHAMILTONIAN 3-CONNECTED CLAW-FREE GRAPHS89

Proof. Since 3-cycles are collapsible, by Lemma 6.2.3 (iii), we assume that H does not

have a cycle of length at most 3. Since every edge of H lies in a cycle of length at most

4, δ(H) ≥ 2. By Lemma 6.2.3(i) and (ii), it suffices to show that δ(H) ≥ 3. Suppose, by

contradiction, that dH(z0) = 2 for some vertex z0 ∈ V (H). Let NG(z0) = {z1, z2, · · · , zd}
such that d = dG(z0) and such that NH(z0) = {z1, z2}.

We claim that d ≥ 4. If not, as d = dG(v) ≥ κ′(G) ≥ 3, we must have d = 3.

Since G has no cycles of length at most 3, z0z3 must be in a 4-cycle C of G. Since d = 3,

|E(C)∩EG(z0)| = 2. It follows that z3 ∈ V (H) by the definition of 4-cycle-connectedness,

contrary to the fact that z3 /∈ V (H).

By this claim and since κ′(G) ≥ 3, dG(z0z1) = 2 and so by the definition of F , z0z1

must be in 2 distinct 4-cycles C1, C2 (say) of G. By the definition of 4-cycle-connectedness,

both E(C1)∪E(C2) ⊆ E(H), and so we must have dH(z0) ≥ 3, contrary to the assumption

that dH(z0) = 2.

Lemma 6.2.5 Let G be a 3-edge-connected graph. If for any 3-bond D, G has a collapsi-

ble subgraph HD with D ∩ E(HD) 6= ∅, then G is collapsible.

Proof. Let D1, D2, · · · , Dt denote the list of all 3-bonds of G. By assumption, G has

collapsible subgraphs HD1 , · · · , HDt such that E(HDi
) ∩Di 6= ∅, for each i = 1, 2, · · · , t.

Let G′ = G/(HD1 ∪ · · · ∪HDt). By the definition of contractions, κ′(G′) ≥ κ′(G). Since

G′ does not have any 3-bonds, κ′(G′) ≥ 4. By Theorem 6.2.2(iii), G′ is collapsible. By

repeated applications of Theorem 6.2.2(i), G is collapsible.

Theorem 6.2.6 Let G be a graph with κ′(G) ≥ 3. If for any 3-bond D, either D intersects

a cycle of length at most 3, or every e ∈ D lies in at least min{dG(e) − 3, 2} cycles of

length at most 4, then G is collapsible.

Proof. By Lemma 6.2.4, every edge e in a 3-bond of G lies in a collapsible subgraph of

G. By Lemma 6.2.5, G is collapsible.
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6.3 Proofs of Theorems 6.1.1, 6.1.2, 6.1.4 and 6.1.6

Let G be a graph such that κ(L(G)) ≥ 3 and such that L(G) is not complete. For each

v ∈ D2(G), let EG(v) = {ev1, ev2} and define

X1(G) = ∪v∈D1(G)EG(v), and X2(G) = {ev2 : v ∈ D2(G)}. (6.2)

Since κ(L(G)) ≥ 3, D2(G) is an independent set of G and for any vertex v ∈ D2(G),

|X2(G) ∩ EG(v)| = 1. Define the core of the graph G as

G0 = G/(X1(G) ∪X2(G)) = (G−D1(G))/X2(G). (6.3)

Recall thta an eulerian subgraph H of a graph G is dominating if E(G − V (H)) =

∅. Edges in ∪v∈D2(G)EG(v) − X2(G) are referred as nontrivial edges in G0. Vertices

of G adjacent to a vertex in D1(G) are viewed as the contraction image of edges in

∪v∈D1(G)EG(v). Utilizing the well-known theorem of Harary and Nash-Willaims ([21])

and Catlin’s collapsible graphs ([8]), Shao proves the following useful theorem. A detailed

justification for Theorem 6.3.1(iii) can be found in [36].

Theorem 6.3.1 (Shao, Section 1.4 of [45]) Let G0 be the core of graph G, then each of

the following holds.

(i) G0 is nontrivial and δ(G0) ≥ κ′(G0) ≥ 3.

(ii) G0 is well defined.

(iii) L(G) is hamiltonian if and only if G0 has a dominating eulerian subgraph containing

all nontrivial vertices and both end vertices of each nontrivial edges.

Theorem 6.3.2 Let G be a claw-free graph and let cl(G) be its closure. Each of the

following holds.

(i) (Kaiser, Li, Ryjác̆ek and Xiong, Proposition 3 of [24]) If G has the hourglass property,

then cl(G) also has the hourglass property.

(ii) (Pfender, Theorem 14 of [40]) The closure of a {K1,3, T3}-free graph is also {K1,3, T3}-
free.

(iii) (Fujisawa and Ota, Lemma 5 in [20]) Any maximal K3 in cl(G) is also a maximal
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K3 of G.

(iv) If G satisfies the hypothesis of Theorem 6.1.6, then cl(G) also satisfies the hypothesis

of Theorem 6.1.6.

Proof. It remains to prove (iv). By (iii), cl(G) also has maximum K3-property. Since

cl(G) is obtained from G by adding edges, and adding edges will not increase the length

of the cycles in G. Therefore, cl(G) also satisfies Theorem 6.1.6 (i) and (ii).

By Theorem 6.1.3 and Theorem 6.3.2, it suffices to prove Theorems 6.1.1 6.1.2, 6.1.4

and 6.1.6 for line graphs.

Proof of Theorems 6.1.1 and 6.1.2 Let L(G) be a 4-connected line graph with the

hourglass property or without an induced T3. Let G0 be the core of G. Then by the

definitions of a line graph and of the core, every edge in G0 lies in a cycle of length at most

4. By Theorem 6.1.5, G0 is collapsible, and so by Theorem 6.3.1, L(G) is hamiltonian.

Proof of Theorem 6.1.4 Let L(G) be a line graph satisfying the conditions of Theorem

6.1.4. As indicated in Proposition 9 in [20], the core G0 of G must satisfy the condition

of Theorem 6.1.5, and so by Theorem 6.1.5, G0 is collapsible. By Theorem 6.3.1, L(G) is

hamiltonian.

Proof of Theorem 6.1.6 Let L(G) be a line graph satisfying the conditions of Theorem

6.1.6 and denote the core of G by G0.

We argue by contradiction and assume that L(G) is a line graph satisfying the con-

ditions of Theorem 6.1.6 but L(G) is not hamiltonian. Denote the core of G by G0. We

choose G so that

|V (G)| is minimized. (6.4)

Claim 1. G does not have an essential vertex cut of size 1, and so the only cut vertices

of G are those adjacent to a vertex of degree 1 in G.

By contradiction, assume that G has an essential vertex cut {v0}. Then G has non-

trivial connected subgraphs G1 and G2 such that G = G1∪G2 and V (G1)∩V (G2) = {v0},
and for each i ∈ {1, 2}, Gi − v0 is nontrivial. Let G′i be the graph obtained from Gi by
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adding a new vertex zi and a new edge ziv0. Thus every essential edge cut of G′i is also an

essential edge cut of G. Since G is essentially 3-edge-connected, each G′i is also essentially

3-edge-connected, and so L(G′i) is 3-connected.

Fix i ∈ {1, 2}. As G is essentially 3-edge-connected, dGi
(v0) ≥ 3, and so dG′i(v0) ≥

4. Hence any maximal K3 in L(G′i) must be a maximal K3 of G. It follows from the

assumption that L(G) has the maximal K3-property that L(G′i) also has the maximal

K3-property. Let X = {e1, e2, e3} be a vertex 3-cut of L(G′i). Then X must be an

essential edge cut of G′i, and so X ⊆ E(Gi). If X 6= EGi
(v0), then X is also an essential

edge cut of L(G), and so a vertex 3-cut of L(G). It follows that X must satisfy Theorem

6.1.6 (i) and (ii) in L(G), and so X satisfies Theorem 6.1.6 (i) and (ii) in L(G′i). By (6.4),

L(G′i) has a Hamilton cycle Ci.

Let fi = ziv0. Suppose that in Ci, e
i
1, e

i
2 are adjacent to fi. Then ei1, e

i
2 ∈ EG(v0).

Since EG(v0) induces a complete graph in L(G), (C1 − f1) ∪ (C2 − f2) ∪ {e1
1e

2
1, e

1
2e

2
2} is a

Hamilton cycle of L(G), contrary to the assumption that G is a counterexample. This

proves Claim 1.

If G0 satisfies Theorem 6.1.5 (i) and (ii), then by Theorems 6.1.5 and 6.3.1, Theorem

6.1.6 follows, and so a contradiction would be obtained. Therefore, we shall show that G0

satisfies Theorem 6.1.5 (i) and (ii). By contradiction, we assume that G0 has a 3-bond

X that does not satisfy Theorem 6.1.5 (i) or (ii). Denote X = {e1, e2, e3}. Since G0 is a

contraction of G, X can also be viewed as a subset of E(G), and so X is also an edge cut

of G.

Claim 2. For any v ∈ V (G), we cannot have X = EG(v). (This implies that X must

be an essential edge cut of G).

IfX = EG(v), thenX induces a maximalK3 of L(G). Since L(G) has the maximalK3-

property, every edge of X satisfies Theorem 6.1.5 (i) and (ii), contrary to the assumption

on X. Hence this proves Claim 2.

Claim 3. For any v ∈ V (G), we cannot have X ⊂ EG(v).
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Suppose that for some v, X ⊆ EG(v). Since X is an edge cut of G, v must be a cut

vertex of G. By Claims 1 and 2, and since X is an essential edge cut of G, every edge

in EG(v) − X must be incident with a vertex of degree 1 in G. It follows that EG(v)

induces a clique X-component K. By Theorem 6.1.6(ii), L(G) must have either a 3-cycle

C containing two vertices in X, or every pair of vertices ei, ej ∈ X are in a cycle Cij

of length at most 4 in L(G). Since X ⊆ EG(v), G must have a cycle C ′ or cycles C ′ij
such that C = L(C ′) or Cij = L(C ′ij), for all possible values i and j. Hence X satisfies

Theorem 6.1.5 (i) and (ii), contrary to the assumption on X. This proves Claim 3.

Claim 4. L(G) does not have a clique X-component.

If L(G) has a clique X-component K, then |V (K)| = d ≥ |X|+ 1 = 4. It follows that

there must be some v ∈ V (G) of degree d such that X ⊆ EG(v), contrary to Claims 2 or

3. This proves Claim 4.

By Claim 2, X does not induce a maximal K3 in L(G). By Claim 4, L(G) doe snot

have a clique X-component. Since X is a vertex cut of L(G), by Theorem 6.1.6 (i),

L(G) must have either a 3-cycle C containing two vertices in X, or every pair of vertices

ei, ej ∈ X are in a cycle Cij of length at most 4 in L(G). Since L(G) does not have a clique

X-component, G must have a cycle C ′ or cycles C ′ij such that C = L(C ′) or Cij = L(C ′ij),

for all possible values i and j. Hence X satisfies Theorem 6.1.5 (i) and (ii), contrary

to the assumption on X. This proves that G0 satisfies the hypothesis of Theorem 6.1.5,

and so G0 must be collapsible. By Theorem 6.3.1, L(G) is hamiltonian, contrary to the

assumption that L(G) is a counterexample. This completes the proof for Theorem 6.1.6.
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