Supereulerian Properties in Graphs and Hamiltonian Properties in Line Graphs

Keke Wang

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation

Wang, Keke, "Supereulerian Properties in Graphs and Hamiltonian Properties in Line Graphs" (2015). Graduate Theses, Dissertations, and Problem Reports. 7143.
https://researchrepository.wvu.edu/etd/7143

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact researchrepository@mail.wvu.edu.

Supereulerian Properties in Graphs and Hamiltonian Properties in Line Graphs

Keke Wang
Dissertation submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in
Mathematics
Hong-Jian Lai, Ph.D., Chair
Guodong Guo, Ph.D.
Rong Luo, Ph.D.
Jerzy Wojciechowski, Ph.D.
Cun-Quan Zhang, Ph.D.
Department of Mathematics
Morgantown, West Virginia
2015

Keywords: Line graph, Claw-free graph, Hamiltonicity, Collapsible Reduction, Supereulerian graph, spanning-trailable

Copyright 2015 Keke Wang

ABSTRACT
 Supereulerian Properties in Graphs and Hamiltonian Properties in Line Graphs

Keke Wang

Following the trend initiated by Chvátal and Erdös, using the relation of independence number and connectivity as sufficient conditions for hamiltonicity of graphs, we characterize supereulerian graphs with small matching number, which implies a characterization of hamiltonian claw-free graph with small independence number.

We also investigate strongly spanning trailable graphs and their applications to hamiltonian connected line graphs characterizations for small strongly spanning trailable graphs and strongly spanning trailable graphs with short longest cycles are obtained. In particular, we have found a graph family \mathcal{F} of reduced nonsupereulerian graphs such that for any graph G with $\kappa^{\prime}(G) \geq 2$ and $\alpha^{\prime}(G) \leq 3, G$ is supereulerian if and only if the reduction of G is not in \mathcal{F}.

We proved that any connected graph G with at most 12 vertices, at most one vertex of degree 2 and without vertices of degree 1 is either supereulerian or its reduction is one of six exceptional cases. This is applied to show that if a 3-edge-connected graph has the property that every pair of edges is joined by a longest path of length at most 8 , then G is strongly spanning trailable if and only if G is not the wagner graph.

Using charge and discharge method, we prove that every 3-connected, essentially 10connected line graph is hamiltonian connected. We also provide a unified treatment with short proofs for several former results by Fujisawa and Ota in [20], by Kaiser et al in [24], and by Pfender in [40]. New sufficient conditions for hamiltonian claw-free graphs are also obtained.

Acknowledgements

First and foremost, I am most indebted to my supervisor, Dr. Hong-Jian Lai, for his continued encouragement and support over these last few years. It is a pleasure to work under his supervision. Without him, this thesis could not have come out.

I would like to take this opportunity to thank Dr. Rongxia Hao at Beijing Jiaotong University, who brought me to the research field of graph theory.

I would also like to thank my other committee members: Dr. Guodong Guo, Dr. Rong Luo, Dr. Jerzy Wojciechowski, and Dr. Cun-Quan Zhang, for their help during my studies.

And finally, I would like to thank the Department of Mathematics and Eberly College of Arts and Sciences at West Virginia University for providing me with an excellent study environment and support during my study as a graduate student.

DEDICATION

To
my father Xinhua Wang, my mother Aifang Xu
and
my friend Jian Cheng
iv

Contents

1 Preliminaries 1
1.1 Notation and Terminology 1
1.2 Catlin's Reduction Method 6
1.3 Main Results 8
2 Supereulerian graphs with small matching number 10
2.1 Introduction 10
2.2 Preliminaries 12
2.3 Proof of Theorem 2.1.4 19
2.4 Proofs of Corollaries 2.1.5 and 2.1.7 22
3 On 3-edge-connected Strongly Spanning Trailable Graphs 24
3.1 Introduction 24
3.2 Collapsible Graphs 26
3.3π-collapsible Graphs 29
3.4 Proof of Theorem 3.1.2 and Proposition 3.1.3 31
3.5 Proof of Theorem 3.1.4 36
4 Strongly Spanning Trailable Graphs with Short Longest Paths 38
4.1 Introduction 38
4.2 Preliminaries 40
4.3 Proof of Theorem 4.1.4 53
4.4 Proof of Theorem 4.3.1 54
5 The Discharging Method and 3-Connected Essentially 10-Connected Line Graphs 78
5.1 Introduction 78
5.2 Proof of Theorem 5.1.2 79
6 Cycle Chains and hamiltonian 3-connected claw-free graphs 84
6.1 Introduction 84
6.2 Proof of Theorem 6.1.5 86
6.3 Proofs of Theorems 6.1.1, 6.1.2, 6.1.4 and 6.1.6 90

Chapter 1

Preliminaries

1.1 Notation and Terminology

We consider finite graphs which may have multiple edges, use [5] for terminology and notations not defined here, and unless otherwise stated, graphs are loopless. Let G be a graph, we use $V(G)$ and $E(G)$ to denote the set of vertices and the set of edges of G, respectively. The independence number $\alpha(G)$ of a graph G is the cardinality of the largest independent vertex subset. $\kappa(G), \kappa^{\prime}(G), \alpha^{\prime}(G)$ and $\tau(G)$ represent the connectivity, the edge connectivity, the matching number of a graph G, and the maximum number of edge-disjoint trees in G respectively. A graph is trivial if it contains no edges.

Given a graph G, and an integer $k>0$, a cycle (or a bond, respectively) of length k is a k-cycle (or a k-bond, respectively). A 2 -cycle is also denoted as $2 K_{2}$. A minimal edge cut is a bond. Let $\mathcal{C}_{k}(G)$ and $\mathcal{C}_{k}^{*}(G)$ denote the set of k-cycles of G and the set of k-bonds of G, respectively. The circumference of G, denoted by $c(G)$, is the length of a longest cycle of G. The girth of G, denoted by $g(G)$, is the length of a shortest cycle of G.

If $X \subseteq E(G)$ is an edge subset, then $V(X)$ denotes the set of vertices of G that are incident with an edge in X. For a vertex $v \in V(G), E_{G}(v)$ denotes the set of edges
incident with v in G, and $N_{G}(v)$ denotes the set of vertices adjacent to v in G. For a subset $W \subseteq V(G)$, define $N_{G}(W)$ to be the set of vertices in $V(G)-W$ that are adjacent to a vertex in W. For an edge subset $X, N_{G}(X)=N_{G}(V(X))$. For any integer $i \geq 1$, define

$$
D_{i}(G)=\left\{v \in V(G): d_{G}(v)=i\right\}, \text { and } D_{\geq i}(G)=\bigcup_{k \geq i} D_{k}(G)
$$

Let A, B be the subsets of $V(G)$ with $A \cap B=\emptyset$. Denote

$$
E(A, B)=\{a b \in E(G) \mid a \in A, b \in B\} \text { and } e(A, B)=|E(A, B)|
$$

An edge cut Y of G is essential if $G-Y$ has at least two nontrivial components. For an integer $k>0$, a graph G is essentially k-edge-connected if G does not have an essential edge cut Y with $|Y|<k$.

For a set $\mathcal{F}=\left\{F_{1}, F_{2}, \ldots\right\}$ of graphs, a graph G is \mathcal{F}-free if G does not have an induced subgraph isomorphic to any member in \mathcal{F}. In particular, a $\left\{K_{1,3}\right\}$-free graph is referred as a claw-free graph.

Figure 1.1
The line graph of a graph G, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in G have at least one vertex in common. See Figure 1.2 as an example. Graph G consists of sold vertices and sold edges. Empty vertices and dash edges are the corresponding $L(G)$.

Figure 1.2

Beineke ([2]) and Robertson ([22] and [42]) showed that every line graph is also a claw-free graph. By definition, if a line graph $L(G)$ is not a complete graph, then a subset $X \subset V(L(G))$ is a k-vertex cut of $L(G)$ if and only if X is an essential k-edge-cut of G.

Conjecture 1.1.1 (Matthews and Sumner [37]) Every 4-connected claw-free graph is hamiltonian.

Conjecture 1.1.2 (Thomassen [46]) Every 4-connected line graph is hamiltonian.

In [43], Ryjáček pointed out that these two conjectures are equivalent. Towards these conjectures, there has been efforts in investigating 3-connected hamiltonian clawfree graphs, as can be seen in the survey paper by Fardree, Flandrin, and Ryjáček [18].

A subgraph H of a graph G is dominating if $E(G-V(H))=\emptyset$. Let $O(G)$ denote the set of odd degree vertices in a graph G. If G is connected with $O(G)=\emptyset$, then G is eulerian. If G has a spanning eulerian subgraph, then G is supereulerian.

Boesch et al [3] first posed the problem of characterizing supereulerian graphs. Then Pulleyblank [41] proved that determining whether a 3-edge-connected planar graph is supereulerian is NP-complete. Catlin [11] gave a survey on supereulerian graphs, which was supplemented and updated in $[15,30]$. Characterizations of supereulerian graphs for certain classes of graphs have been widely invetigated. See [[6], [13], [28], [33]].

A spanning cycle of G is a Hamiltonian cycle of G. If G has a Hamiltonian cycle, then G is hamiltonian. A graph G is Hamiltonian-connected if for any two vertices $u, v \in V(G)(u \neq v)$, there exists a (u, v)-path containing all vertices of G.

A trail of G as a vertex-edge alternating sequence

$$
\begin{equation*}
v_{0}, e_{1}, v_{1}, e_{2}, \cdots, e_{k}, v_{k} \tag{1.1}
\end{equation*}
$$

such that all e_{i} 's are distinct, $i=1,2, \cdots, k$, and e_{i} is incident with both v_{i-1} and v_{i}. Here vertices in $\left\{v_{1}, v_{2}, \cdots, v_{k-1}\right\}$ are internal vertices of the trail in (1.1). If a closed trail C of G satisfies $E(G-V(C))=\emptyset$, then C is called a dominating eulerian subgraph.

Theorem 1.1.3 (Li et al., [31])Let G be a graph with $|E(G)| \geq 3$. Then $L(G)$ is Hamilton-connected if and only if for any pair of edges $e_{1}, e_{2} \in E(G), G$ has a dominating $\left(e_{1}, e_{2}\right)$-trail.

Let G be a graph such that $\kappa(L(G)) \geq 3$ and $L(G)$ is not complete. The core of the graph G, denoted by G_{0}, is obtained by deleting all pendant edges and contracting exactly one edge $x y$ or $y z$ for each path $P=x y z$ in G with $d_{G}(y)=2$, where $d(x), d(z)>2$ since $\kappa(L(G)) \geq 3$. The remaining edge of P will be referred as a nontrivial edge in the contraction. Shao [45] proved Theorem 1.1.4 (a)-(c). In a similar way as Theorem 1.1.4 (c), we can prove Theorem 1.1.4 (d).

Theorem 1.1.4 (Shao, [45]) Let G_{0} be the core of graph G, then each of the following holds:
(a) G_{0} is nontrivial and $\delta\left(G_{0}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq 3$;
(b) G_{0} is well defined;
(c) If G_{0} has a spanning eulerian subgraph, then G has a dominating eulerian subgraph;
(d) If G_{0} has a dominating eulerian subgraph containing all nontrivial vertices and both endvertices of each nontrivial edges, then G has a dominating eulerian subgraph.

Spanning trailable graphs are a special class of supereulerian graphs. Let $e, e^{\prime} \in E(G)$. A trail from e to e^{\prime} is called an $\left(e, e^{\prime}\right)$-trail. An $\left(e, e^{\prime}\right)$-trail is dominating if each edge of G
is incident with at least one internal vertex of the trail, it is spanning if it is a dominating trail which contains all the vertices of G. A graph is spanning trailable if for any pair of edges $e, e^{\prime} \in E(G), G$ has a spanning $\left(e, e^{\prime}\right)$-trail. As $e=e^{\prime}$ is possible, spanning trailable graphs are supereulerian. Luo et al [35] first studied spanning trailable graphs (called eulerian-connected graphs in [35]). They showed that every 4-edge-connected graph is spanning trailable, improved the former result of Caltin [8] and Jaeger [23] that every 4-edge-connected graph is supereulerian. Thus it is natural to study whether 3-edgeconnected graphs are spanning trailable.

Suppose that $e=u_{1} v_{1}, e^{\prime}=u_{2} v_{2} \in E(G)$ denote two edges of G. If $e \neq e^{\prime}$, then the graph $G\left(e, e^{\prime}\right)$ is obtained from G by replacing $e=u_{1} v_{1}$ by a path $u_{1} v_{e} v_{1}$ and by replacing $e^{\prime}=u_{2} v_{2}$ by a path $u_{2} v_{e^{\prime}} v_{2}$, where $v_{e}, v_{e^{\prime}}$ are two new vertices not in $V(G)$. If $e=e^{\prime}$, then $G\left(e, e^{\prime}\right)$ is also denoted by $G(e)$ and is obtained from G by replacing $e=u_{1} v_{1}$ by a path $u_{1} v_{e} v_{1}$. Given $u, v \in V(G)$, a (u, v)-trail is a trail from u to v. A graph G is strongly spanning trailable if for any $e, e^{\prime} \in E(G), G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail. By definition,

> every strongly spanning trailable graph is also spanning trailable.

As shown explicitly in [35] (see Theorem 4.1 .2 below) and implicitly in Theorem 4 of [9], every 4-edge-connected graph is strongly spanning trailable. However, it is routine to see that the Wagner graph H_{8} depicted in Figure 1.3 below is spanning trailable but not strongly spanning trailable. Thus strongly spanning trailable and spanning trailable are not equivalent concepts in graphs with edge-connectivity at most 3. As $e=e^{\prime}$ is possible, strongly spanning trailable graphs are supereulerian. The following Catlin-Jaeger Theorem indicates that it suffices to study supereulerian graphs with edge-connectivity at most 3.

Figure 1.3

Theorem 1.1.5 (Catlin [8] and Jaeger [23]) Every 4-edge-connected graph is supereulerian.

The four cycle is an example that a supereulerian graph may not be spanning trailable. Luo, Chen and Chen [35] first explicitly studied spanning trailable graphs (called eulerianconnected graphs in [35]). The following theorem improves Theorem 1.1.5.

Theorem 1.1.6 (Luo, Chen and Chen [35]) Every 4-edge-connected graph is spanning trailable.

1.2 Catlin's Reduction Method

Let G be a graph and $X \subseteq E(G)$ be an edge subset. The contraction G / X is the graph obtained from G by identifying two ends of each edge in X and then deleting the resulting loops. We define $G / \emptyset=G$. If $H \subseteq G$, then we write G / H for $G / E(H)$. If H is a connected subgraph of G, and if v_{H} is the vertex in G / H onto which H is contracted, then H is the preimage of v_{H}, and is denoted by $P I_{G}\left(v_{H}\right)$.

Collapsible graphs were introduced by Catlin [8]. A graph G is collapsible if for any subset $R \subseteq V(G)$ with $|R| \equiv 0(\bmod 2), G$ has a spanning connected subgraph G_{R} such that $O\left(G_{R}\right)=R$. Catlin showed in [8] that for any graph G, every vertex of G lies in a unique maximal collapsible subgraph of G. The reduction of G, denoted by G^{\prime}, is obtained from G by contracting all maximal collapsible subgraphs of G. A graph is reduced if it does not contain nontrivial collapsible subgraphs.

Let $F(G)$ be the minimum number of additional edges that must be added to G so that the resulting graph has two edge-disjoint spanning trees.

Theorem 1.2.1 Let G be a connected simple graph on $n \geq 1$ vertices.
(ii) (Chen and Lai, Theorem 2.4 of [16]) If $n \leq 11, d_{1}(G)=0, d_{2}(G) \leq 1$ and $F(G) \leq 3$, then the reduction of G is in $\left\{K_{1}, K_{2}, K_{1,2}, K_{2,3}, P(10)\right\}$.
(iii) (Chen [14], see also Theorem 3.2 of [16]) If $n \leq 13$ and $\delta(G) \geq 3$, then either $G \in \mathcal{S}_{12}$, or the reduction of G is in $\left\{K_{1}, K_{2}, K_{1,2}, K_{1,3}, P(10)\right\}$.

Theorem 1.2.2 Let G be a connected graph, H be a collapsible subgraph of G, v_{H} the vertex in G / H with $P I_{G}\left(v_{H}\right)=H$, and G^{\prime} the reduction graph of G. Then each of the following holds.
(i) (Theorems 3 and 8 of [8]) G is collapsible if and only if G / H is collapsible; and G is supereulerian if and only if G^{\prime} is supereulerian. In particular, G is collapsible if and only if the reduction $G^{\prime}=K_{1}$.
(ii) (Theorem 5 of [8]) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iii) (Theorem 8 of [8]) G^{\prime} is simple, girth $\left(G^{\prime}\right) \geq 4$ and $\delta\left(G^{\prime}\right) \leq 3$.
(iv) (Lemma 1 of [7]) Every subdivision of K_{4} with at most 6 vertices is collapsible. In particular, $K_{3,3}^{-}$is collapsible, where $K_{3,3}^{-}$is the graph obtained from $K_{3,3}$ by deleting an edge.
(v) (Theorem 1.3 of [12]) If G is connected and if $F(G) \leq 2$, then $G^{\prime} \in\left\{K_{1}, K_{2}\right\} \cup$ $\left\{K_{2, t} \mid t \geq 1\right\}$.
(vi) If G is reduced, then $F(G)=2|V(G)|-|E(G)|-2$.
(vii) (Theorem 11 of [7]) For an integer $t>0$, let $G(t)$ be the graph with $2 t+3$ vertices and $3 t+3$ edges with $V(G(t))=\left\{x_{0}, x_{1}, \ldots, x_{t}, y_{0}, y_{1}, \ldots, y_{t}, v\right\}$, where $E(G(t))$ consists of the edges $\left\{x_{0} y_{0}, x_{0} v\right\} \cup\left(\bigcup_{i=1}^{t}\left\{x_{i} y_{i}, x_{i-1} x_{i}, y_{i-1} y_{i}\right\}\right)$ and exactly one edge in $\left\{v x_{t}, v y_{t}\right\}$. Then $G(t)$ is collapsible if and only if $G(t)$ is not bipartite.

Lemma 1.2.3 Let G be a connected simple graph with $n \geq 3$ vertices.
(i) (Li et al., Lemma 2.1 of [31]) If $n \leq 8$ and if $d_{1}(G)=0$ and $d_{2}(G) \leq 2$, then the reduction of G is in $\left\{K_{1}, K_{2}, K_{2,3}\right\}$.
(ii) (Chen [14], also Theorem 2.5 of [16]) If G is reduced with $|V(G)| \leq 11$ and $\kappa^{\prime}(G) \geq 3$, then $G=K_{1}$ or G is the Petersen graph.
(iii) (Theorem 2.4 of [16]) If G is a connected reduced graph with $6 \leq|V(G)| \leq 11$ and $F(G) \leq 3$, then either G is the Petersen graph, or G must have at least 3 vertices of degree at most 2.

1.3 Main Results

In the coming several chapters, we will present the following main results.
(1) Motivated by the Chinese Postman Problem, Boesch, Suffel, and Tindell in [3] proposed the supereulerian graph problem which seeks the characterization of graphs with a spanning eulerian subgraph. Pulleyblank in [41] showed that the supereulerian problem, even within planar graphs, is NP-complete. In this paper, we settle an open problem raised by An and Xiong in [1] on characterization of supereulerian graphs with small matching numbers. A well known theorem by Chvátal and Erdös in [17] states that if G satisfies $\alpha(G) \leq \kappa(G)$, then G is hamiltonian. Flandrin and Li in [19] showed that every 3-connected claw-free graph G with $\alpha(G) \leq 2 \kappa(G)$ is hamiltonian. Our characterization is also applied to show that every 2-connected claw-free graph G with $\alpha(G) \leq 3$ is hamiltonian, with only one well characterized exceptional class.
(2) A graph is supereulerian if it has a spanning eulerian subgraph, and is spanning trailable if for any pair of edges $e, e^{\prime} \in E(G), G$ has a spanning trail from e to e^{\prime}. Luo et al in [35] proved that every 4-edge-connected graphs are trailable. In this paper, we show that the Wagner graph is the smallest 3-edge-connected non-spanning trailable graph, and we prove a characterization of the reduced graphs of an almost 3-edge-connected graph with at most 12 vertices, extending a former result of Chen in [14]. This characterization help us to prove that, under a condition on bounded length of longest paths, a 3-edgeconnected graph is spanning trailable graphs if and only if it is not contractible to the Wagner graph.
(3) In Chapter 4 , for a graph G and edges $e=u_{1} v_{1}, e^{\prime}=u_{2} v_{2} \in E(G)$, the graph $G\left(e, e^{\prime}\right)$ is obtained from G by replacing $e=u_{1} v_{1}$ by a path $u_{1} v_{e} v_{1}$ and by replacing $e^{\prime}=u_{2} v_{2}$ by a path $u_{2} v_{e^{\prime}} v_{2}$, where $v_{e}, v_{e^{\prime}}$ are two new vertices not in $V(G)$. A graph G is strongly spanning trailable if for any $e=u_{1} v_{1}, e^{\prime}=u_{2} v_{2} \in E(G), G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$ trail. Luo et alin [35] proved that every 4-edge-connected graph is spanning trailable. In this paper, we show that, for a 3-edge-connected graph G which is not the Wagner graph, if every pair of edges is joined by a longest path of length at most 8 , then G is strongly spanning trailable.
(4) In Chapter 5, we use a discharge method to prove that every 3-connected, essentially 10 -connected line graph is hamiltonian connected.
(5) In Chapter 6, we develop a cycle chain method to prove that every 3-edge-connected graph G is supereulerian if every 3 -edge-cut of G intersects with short cycles in G. This is applied to the study of hamiltonian claw-free graphs, and provides a unified treatment with short proofs for several former results by Fujisawa and Ota in [20], by Kaiser et al in [24], and by Pfender in [40]. New sufficient conditions for hamiltonian claw-free graphs are also obtained.

Chapter 2

Supereulerian graphs with small matching number

2.1 Introduction

The main purpose of this chapter is to characterize supereulerian graphs with small matching number. For graph G with $\alpha^{\prime}(G)$ small, the following have been proved.

Theorem 2.1.1 Let G be a graph with $\kappa^{\prime}(G) \geq 2$ and $\alpha^{\prime}(G) \leq 2$. Following holds.
(i) (Lai and Yan, [29]) Graph G is supereulerian if and only if G is not contractible to a $K_{2, t}$ for some odd integer $t \geq 3$.
(ii) (An and Xiong, [1]) Either G is collapsible, or G has a nontrivial collapsible subgraph H such that for some integer $t \geq 2, G / H \cong K_{2, t}$.
(iii) (An and Xiong, [1]) If $\kappa^{\prime}(G) \geq 3$ and $\alpha^{\prime}(G) \leq 5$, then G is supereulerian if and only if G is not contractible to the Petersen graph.

An and Xiong proposed a conjecture (Conjecture 12 in [1]), which can be restated as the following open problem. Chapter 2's main result is motivated by their conjecture.

Problem 2.1.2 (An and Xiong, [1]) If $\kappa^{\prime}(G) \geq 2$ and $\alpha^{\prime}(G) \leq 3$, determine the collection of graphs such that G is supereulerian if and only if G is not contractible to a member in this collection.

A well known theorem by Chvátal and Erdös [17] states that if G satisfies $\alpha(G) \leq$ $\kappa(G)$, then G is hamiltonian. Flandrin and Li in [19] showed that for 3-connected claw-free graphs, this assumption can be relaxed.

Theorem 2.1.3 (E. Flandrin and H. Li, [19]) Every claw-free graph G with connectivity $\kappa(G) \geq 3$ and independence number $\alpha(G) \leq 2 \kappa(G)$ is hamiltonian.

In this chapter, we have determined a graph family \mathcal{F}^{\prime} and prove the following main results.

Theorem 2.1.4 Let G be a graph with $\kappa^{\prime}(G) \geq 2$ and $\alpha^{\prime}(G) \leq 3$. Then G is supereulerian if and only if the reduction of G is not a member in \mathcal{F}^{\prime}.

Theorem 2.1.4 has an application to hamiltonian line graphs and hamiltonian clawfree graphs. Let $K_{2,3}$ be the complete bipartite graph with vertex bipartition $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}\right\}$. For integers $s_{1}, s_{2}, s_{3} \geq 1$, the graph $K_{2,3}^{s_{1}, s_{2}, s_{3}}$ is obtained from $K_{2,3}$ by attaching s_{i} pendant vertices adjacent to $y_{i},(1 \leq i \leq 3)$. Theorem 2.1.4 implies the following.

Corollary 2.1.5 Let G be a connected simple graph. If $\kappa(L(G)) \geq 2$ and $\alpha(L(G)) \leq 3$, then $L(G)$ is hamiltonian if and only if G is not a member in $\left\{K_{2,3}^{s_{1}, s_{2}, s_{3}}: s_{1} \geq s_{2} \geq s_{3}>0\right\}$.

It has been a question whether Theorem 2.1.3 holds for 2-connected line graphs. A consequence of Theorem 2.1.4 answers this question.

Definition 2.1.6 (Ryjác̆ek closure [43]) If G is a claw-free graph, then there is a graph $\operatorname{cl}(G)$ such that
(i) G is a spanning subgraph of $\operatorname{cl}(G)$
(ii) $\operatorname{cl}(G)$ is a line graph of a triangle-free graph, and
(iii) the length of a longest cycle in G and $\operatorname{in} \operatorname{cl}(G)$ is the same.

Corollary 2.1.7 Let G be a claw-free graph with $\kappa(G) \geq 2$ and $\alpha(G) \leq 3$. Then G is hamiltonian if and only if the Ryjácěk closure of G is not isomorphic to $L(H)$, for some $H \in\left\{K_{2,3}^{s_{1}, s_{2}, s_{3}}: s_{1} \geq s_{2} \geq s_{3}>0\right\}$.

2.2 Preliminaries

The following theorem summarizes the useful results on collapsible graphs and reduced graphs needed in our arguments.

Theorem 2.2.1 Let G be a connected graph. Then each of the following holds.
(i) (Catlin, Theorem 3 of [8]) Let H be a collapsible subgraph of G. Then G is collapsible if and only if G / H is collapsible; G is supereulerian if and only if G / H is supereulerian. (ii) (Lemma 2.3 of [12]) If $G \neq K_{1}$ is reduced, then $F(G)=2|V(G)|-|E(G)|-2$.
(iii) (Catlin, Han and Lai, Theorem 1.3 of [12]) If $F(G) \leq 2$, then G is collapsible if and only if the reduction of G is not isomorphic to a K_{2} or to a $K_{2, t}$ for some integer $t \geq 1$. (iv) (Catlin, [8]) The reduction of G is reduced. In particular, the reduction of G is simple and contains no cycles of length 3.
(v) (Catlin, Lemma 3 of [8]) If G is collapsible, then any contraction of G is also collapsible.

To answer the question in Problem 2.1.2, we first describe the graph families \mathcal{F} and \mathcal{F}^{\prime}, where \mathcal{F}^{\prime} is the excluded graph family stated in Theorem 2.1.4.

Definition 2.2.2 (The families \mathcal{F} and \mathcal{F}^{\prime}): Let $i, s_{1}, s_{2}, s_{3}, m, l, t$ be natural numbers with $t \geq 2$ and $i, m, l \geq 1$. Let C^{i} denote the cycle of length i. Let $M \cong K_{1,3}$ with center a and ends a_{1}, a_{2}, a_{3}. Define $K_{1,3}\left(s_{1}, s_{2}, s_{3}\right)$ to be the graph obtained from M by adding
s_{i} vertices with neighbors $\left\{a_{i}, a_{i+1}\right\}$, where $i \equiv 1,2,3(\bmod 3)$. Define $C^{6}\left(s_{1}, s_{2}, s_{3}\right)=$ $K_{1,3}\left(s_{1}, s_{2}, s_{3}\right)-a$. Let $K_{2, t}\left(u, u^{\prime}\right)$ be a $K_{2, t}$ with u, u^{\prime} being the nonadjacent vertices of degree t. Let $K_{2, t}^{\prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$ be the graph obtained from a $K_{2, t}\left(u, u^{\prime}\right)$ by adding a new vertex $u^{\prime \prime}$ that joins to u^{\prime} only. Hence $u^{\prime \prime}$ has degree 1 and u has degree t in $K_{2, t}^{\prime}\left(u, u^{\prime \prime}\right)$. Let $K_{2, t}^{\prime \prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$ be the graph obtained from a $K_{2, t}\left(u, u^{\prime}\right)$ by adding a new vertex $u^{\prime \prime}$ that joins to a vertex of degree 2 of $K_{2, t}$. Hence $u^{\prime \prime}$ has degree 1 and both u and u^{\prime} have degree t in $K_{2, t}^{\prime \prime}\left(u, u^{\prime \prime}\right)$. We shall use $K_{2, t}^{\prime}$ and $K_{2, t}^{\prime \prime}$ for a $K_{2, t}^{\prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$ and a $K_{2, t}^{\prime \prime}\left(u, u^{\prime}, u^{\prime \prime}\right)$, respectively. Let $S_{m, l}$ be the graph obtained from a $K_{2, m}\left(u, u^{\prime}\right)$ and a $K_{2, l}^{\prime}\left(w, w^{\prime}, w^{\prime \prime}\right)$ by identifying u with w, and $w^{\prime \prime}$ with u^{\prime}. Let $J(m, l)$ denote the graph obtained from a $K_{2, m+1}$ and a $K_{2, l}^{\prime}\left(w, w^{\prime}, w^{\prime \prime}\right)$ by identifying $w, w^{\prime \prime}$ with the two ends of an edge in $K_{2, m+1}$, respectively; and $J^{\prime}(m, l)=J(m, l)-w w^{\prime \prime}$. Let $K_{2,3}(1,2,2)$ be the union of three internally disjoint (u, w)-paths of lengths 2, 3 and 3, respectively; and let $K_{2,3}^{*}(1,2,2)$ be obtained from $K_{2,3}(1,2,2)$ by adding a chord e to the 6 -cycle joining two vertices of degree 2 so that no 3-cycle is resulted. Let $C^{7}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{1}$ denote a cycle of length 7. Define $J_{1}^{7}=C^{7}+v_{1} v_{4}$ and $J_{2}^{7}=J_{1}^{7}+v_{2} v_{5}=C^{7}+\left\{v_{1} v_{4}, v_{2} v_{5}\right\}$. See Figure 1 for examples of these graphs. Let

$$
\begin{aligned}
\mathcal{F}= & \left\{K_{1}\right\} \bigcup\left(\left\{C^{7}, J_{1}^{7}, J_{2}^{7}, K_{2,3}(1,2,2), K_{2,3}^{*}(1,2,2)\right\} \bigcup\left\{K_{2, t} \mid t \geq 1\right\}\right. \\
& \left.\bigcup\left\{K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right), C^{6}\left(s, s^{\prime}, s^{\prime \prime}\right) \mid s, s^{\prime}, s^{\prime \prime} \geq 0\right\} \bigcup\left\{S_{m, l}: m, l \geq 1\right\}\right) \bigcap\{G \mid \kappa(G) \geq 2\}
\end{aligned}
$$

and define

$$
\mathcal{F}^{\prime}=\{G \in \mathcal{F}: G \text { is non supereulerian. }\}
$$

$S(3,2)$

Figure 1: Some graphs in \mathcal{F} with small parameters

$K_{3,3}-e$

L_{1}

L_{2}

Figure 2: Some collapsible graphs: $K_{3,3}, L_{1}$ and L_{2}

Define $L_{3}=K_{2,3}^{*}(1,2,2)+\left\{a_{1} b_{2}\right\}$.

Lemma 2.2.3 The graphs $K_{3,3}-e, L_{1}, L_{2}$ and L_{3} are collapsible.

Proof: The graph $K_{3,3}-e$ is proved to be collapsible in Lemma 1 of [7]. By Theorem 11 in [7] we can directly get L_{1} and L_{2} are collapsible. L_{3} is also collapsible by Theorem 3.3.2 (i).

Definition 2.2.4 (Families \mathcal{F}_{1} and \mathcal{F}_{2}) Define
$\mathcal{F}_{1}=\left\{C^{7}, K_{2,3}(1,2,2)\right\} \cup\left\{C^{6}\left(s, s^{\prime}, s^{\prime \prime}\right), K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right) \mid s \geq s^{\prime}>0, s^{\prime \prime} \geq 0\right\} \cup\left\{S_{m, l} \mid m \geq l \geq 1\right\}$.

Figure 3: The graph $J(3,2,4)$

For integers $s_{1}, s_{2}, s_{3} \geq 2$, Let $K_{2, s_{1}}\left(x_{1}, y_{1}\right), K_{2, s_{2}}\left(x_{2}, y_{2}\right), K_{2, s_{3}}\left(x_{3}, y_{3}\right)$ be three disjoint graphs such that for $i \in\{1,2,3\}, K_{2, s_{i}}\left(x_{i}, y_{i}\right)$ is isomorphic to $K_{2, s_{i}}$ with x_{i} and y_{i} being the two nonadjacent vertices of degree s_{i}. The graph $J\left(s_{1}, s_{2}, s_{3}\right)$ is obtained by identifying y_{1} with y_{2} and x_{2} with x_{3}, and by adding new edges $e_{1}=x_{1} x_{3}$ and $e_{2}=y_{1} y_{3}$. (See Figure 3 for an example). Note that $J(m, 0, l)=J^{\prime}(m, l)$.

Define
$\mathcal{F}_{2}=\left\{K_{1}\right\} \cup(\mathcal{F} \cap\{\Gamma: \Gamma$ is essentially 4-edge-connected $\}) \cup\left\{J\left(s_{1}, s_{2}, s_{3}\right) \mid s_{1} \geq s_{3} \geq 3, s_{2} \geq 2\right\}$.

Lemma 2.2.5 below is a key lemma in the proof of Theorem 2.1.4. It indicates that once a certain type of subgraph appears in G, then G must be in \mathcal{F}. The family \mathcal{F}_{2} will be needed in Theorem 2.3.2 of the next section.

Lemma 2.2.5 Let G be a reduced graph with $\kappa^{\prime}(G) \geq 2$ and $\alpha^{\prime}(G) \leq 3$. If G has a subgraph $H \in \mathcal{F}_{1}-\left\{K_{1}\right\}$, then $G \in \mathcal{F}$.

Proof. We first observe that if $H \in \mathcal{F}_{1}-\left\{K_{1}, S_{1,1}\right\}$, then $\alpha^{\prime}(H) \geq 3$. By contradiction, we assume that G is a counterexample to the lemma such that $|V(G)|$ is minimized.

Claim 1. $\quad \kappa(G) \geq 2$.
By contradiction, assume that G has a cut vertex z. Then G has nontrivial connected subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cup V\left(G_{2}\right)=\{z\}$. Since $\kappa^{\prime}(G) \geq 2$ and $\alpha^{\prime}(G) \leq 3$, both $\kappa^{\prime}\left(G_{1}\right) \geq 2$ and $\kappa^{\prime}\left(G_{2}\right) \geq 2$, and both $\alpha^{\prime}\left(G_{1}\right) \leq 3$ and $\alpha^{\prime}\left(G_{2}\right) \leq 3$. Since every graph in \mathcal{F}_{1} is 2-connected, we may assume that H is a subgraph of G_{1}. If $H=S_{1,1}$, which is a 5 -cycle, then H has a matching M_{1} of size 2 such that M_{1} is not incident with the vertex z. Since G_{2} is a 2-edge-connected nontrivial reduced graph, G_{2} has a cycle of length at least 4 , and so G_{2} has a matching M_{2} of size at least 2. As M_{1} is not incident with z, it follows that $M_{1} \cup M_{2}$ is a matching of size at least 4, contrary to $\alpha^{\prime}(G) \leq 3$. This contradiction proves Claim 1.

Since G is a counterexample, G has a subgraph $H \in \mathcal{F}_{1}-\left\{K_{1}\right\}$, but $G \notin \mathcal{F}$. We assume that H is maximal, in the sense that H is not properly contained in another subgraph of G in \mathcal{F}_{1}. We have the following observations.

Observation 2.2.6 Let H be a subgraph of G.
(i) If $H \in\left\{C^{7}, K_{2,3}(1,2,2)\right\} \cup\left\{K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right) \mid s \geq s^{\prime} \geq s^{\prime \prime}>0\right\}$, and if G has an edge with exactly one end in H, then $\alpha^{\prime}(G) \geq 4$.
(ii) If $H=K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right)$ with $s \geq s^{\prime} \geq s^{\prime \prime}>0$, then adding any additional edge to join two distinct vertices in H will result in a collapsible graph. Since G is reduced, we conclude that in this case $G=K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right)$.
(iii) If G is spanned by $H=K_{2,3}(1,2,2)$, then by Lemma 6.2.1 and by the assumption that G is reduced, G cannot have L_{3} or a 3-cycle as a subgraph. By inspection, $G \in$ $\left\{K_{2,3}(1,2,2), K_{2,3}^{*}(1,2,2)\right\}$.
(iv) If G is spanned by C^{7}, then as G is reduced, C^{7} can have at most 2 chords in G. (This is because, if C^{7} with 3 chords, $F\left(G\left[V\left(C^{7}\right)\right]\right) \leq 2(7)-10-2=2$, and so by Theorem 6.2.2(iii), $G\left[V\left(C^{7}\right)\right]$ is not reduced.) As G has no cycles of length at most 3, $G \in\left\{C^{7}, J_{1}^{7}, J_{2}^{7}\right\}$.

Only Observation 2.2.6 (i) when $H=K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right)$ needs an explanation. We use the notations in Figure 1. Let $x y$ denote an edge incident with a vertex $x \in V(H)$ and $y \notin V(H)$. If x has degree 2 in H or if $x=a$, then $G[E(H) \cup\{x y\}]$ has 4 independent
edges. Therefore, we assume that any edges in G incident with exactly one vertex in H must be incident with one in $\left\{a_{1}, a_{2}, a_{3}\right\}$. Since $\kappa(G) \geq 2$, and since $y \in V(G)-V(H)$, we may assume that G has a path P with $y \in V(P)$ such that $V(P) \cap V(H)=\left\{a_{i}, a_{j}\right\}$ for some $i \neq j$ and $1 \leq i, j \leq 3$. Since H is maximal, $|E(P)| \geq 3$, and so $G[E(H) \cup E(P)]$ has 4 independent edges. This verifies the observation.

Recall that $c(G)$ is the length of a longest cycle in G. By Observation 2.2.6, and since any cycle of length at least 8 has 4 independent edges, we may assume that
G has no subgraph in $\left\{C^{7}, K_{2,3}(1,2,2)\right\} \cup\left\{K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right): s \geq s^{\prime} \geq s^{\prime \prime}>0\right\}$ and $c(G) \leq 6$.

By (2.1), we only need to examine the cases when $H \in\left\{C^{6}\left(s, s^{\prime}, s^{\prime \prime}\right) \mid s \geq s^{\prime} \geq s^{\prime \prime} \geq\right.$ $0\} \cup\left\{K_{1,3}\left(s, s^{\prime}, 0\right) \mid s \geq s^{\prime}>0\right\} \cup\left\{S_{m, l}, \mid m \geq l \geq 1\right\}$. We make another observation.

Observation 2.2.7 Let e^{\prime} be an edge in $E(G)-E(H)$ joining two distinct vertices in H. Let $H^{\prime}=G\left[E(H) \cup\left\{e^{\prime}\right\}\right]$ be the edge induced subgraph of G. Each of the following holds. (i) If $H \in\left\{K_{1,3}\left(s, s^{\prime}, 0\right): s \geq s^{\prime}>0\right\} \cup\left\{S_{m, l}, \mid m \geq l \geq 1\right\}$, then H^{\prime} has a K_{3} or a $K_{3,3}-e$, and so G is not reduced.
(ii) If $H=C^{6}\left(s, s^{\prime}, s^{\prime \prime}\right)$ for some $s \geq s^{\prime} \geq s^{\prime \prime} \geq 0$ either with $s^{\prime \prime}>0$, or with $s^{\prime \prime}=0$ and $s^{\prime} \geq 2$, then either H^{\prime} has a K_{3}, or H^{\prime} is a $K_{1,3}\left(t, t^{\prime}, t^{\prime \prime}\right)$ with $t \geq t^{\prime}>0$ and $t^{\prime \prime} \geq 0$, or is an $S_{m, l}$, with $m \geq l \geq 2$, contrary to the maximality of H.

By (2.1) and by Observation 2.2.7, we proceed the proof of the lemma by examining the following cases.

Case 1. $\quad H=K_{1,3}\left(s, s^{\prime}, 0\right)$ with $s \geq s^{\prime}>0$.
Since $G \neq H$ and by Observation 2.2.7 $(i), V(G)-V(H)$ has a vertex z. By $\kappa(G) \geq 2$ and by $\alpha^{\prime}(G) \leq 3=\alpha^{\prime}(H)$, there exist distinct vertices $u, v \in N_{G}(z) \cap V(H)$. Since $u, v \in N_{G}(z)$, the edge induced subgraph $H^{\prime}=G[E(H) \cup\{u z, v z\}]$ of G either has one of $\left\{K_{3}, K_{3,3}-e, L_{2}\right\}$ as a subgraph, contrary to the assumption that G is reduced; or is a $K_{1,3}\left(t, t^{\prime}, t^{\prime \prime}\right)$ with $t \geq t^{\prime}>0$ and $t^{\prime \prime} \geq 0$ properly containing H, contrary to the maximality

CHAPTER 2. SUPEREULERIAN GRAPHS WITH SMALL MATCHING NUMBER18

of H; or $\alpha^{\prime}(G) \geq \alpha^{\prime}\left(H^{\prime}\right) \geq 4$. These contradictions complete the proof for Case 1 .

Case 2. $H=S_{m, l}$ for some $m \geq l \geq 1$ and with $m+l \geq 3$ maximized.
Since $G \neq H$ and by Observation 2.2.7 $(i), V(G)-V(H)$ has a vertex z. By $\kappa(G) \geq 2$ and by $\alpha^{\prime}(G) \leq 3=\alpha^{\prime}(H)$, there exist distinct vertices $u, v \in N_{G}(z) \cap V(H)$. Since $u, v \in N_{G}(z)$, the edge induced subgraph $H^{\prime}=G[E(H) \cup\{u z, v z\}]$ of G either has one of $\left\{C^{7}, K_{3}, L_{1}, L_{2}\right\}$ as a subgraph, contrary to (2.1) or the assumption that G is reduced; or is an $S_{m^{\prime}, l^{\prime}}$ with $m \geq l^{\prime}>0$ properly containing H, contrary to the maximality of H. These contradictions complete the proof for Case 2.

Case 3. $H=C^{6}\left(s, s^{\prime}, s^{\prime \prime}\right)$ is a subgraph of G for some $s \geq s^{\prime} \geq s^{\prime \prime} \geq 0$ with either $s^{\prime \prime}>0$ or $s^{\prime \prime}=0$ and $s^{\prime} \geq 2$.

Since $G \neq H$ and by Observation 2.2.7 $(i), V(G)-V(H)$ has a vertex z. By $\kappa(G) \geq 2$ and by $\alpha^{\prime}(G) \leq 3=\alpha^{\prime}(H)$, there exist distinct vertices $u, v \in N_{G}(z) \cap V(H)$. Since $u, v \in N_{G}(z)$, the edge induced subgraph $H^{\prime}=G[E(H) \cup\{u z, v z\}]$ of G either has one of $\left\{C^{7}, K_{2,3}(1,2,2), K_{3}\right\}$ as a subgraph, contrary to (2.1) or the assumption that G is reduced; or is $C^{6}\left(t, t^{\prime}, t^{\prime \prime}\right)$ with $t \geq t^{\prime} \geq t^{\prime \prime} \geq 0$ and with either $t^{\prime \prime}>0$ or both $t^{\prime \prime}=0$ and $t^{\prime} \geq 2$, properly containing H, contrary to the maximality of H; or $\alpha^{\prime}(G) \geq \alpha\left(H^{\prime}\right) \geq 4$. These contradictions complete the proof for Case 3.

Case 4. $\quad H=C^{6}(s, 1,0)$ is a subgraph of G with either $s>0$, and G does not have a subgraph in Cases 1, 2 or 3 .

Let $P=v_{1} v_{2} v_{3} v_{4} v_{5}$ be a path of length 4 in H such that $d_{H}\left(v_{1}\right)=1$, and $N_{H}\left(v_{3}\right) \cap$ $N_{H}(5)$ has s vertices of degree 2 in H. Since $\kappa(G) \geq 2, N_{G}\left(v_{1}\right)-\left\{v_{2}\right\}$ has a vertex z. Since G does not have a subgraph in Cases 1,2 or 3 , and by $(2.1), z \notin V(H)$. Since $\kappa(G) \geq 2$, the edges $v_{1} z$ and $v_{3} v_{4}$ are in a cycle of G, and so $G-v_{1}$ has a path Q from z to a vertex $w \in V(H)-\left\{v_{1}, v_{2}\right\}$ such that $V(H) \cap V(Q)=\{w\}$. If $|E(Q)| \geq 3$, then G has a cycle of length at least 6 , contrary to (2.1) or to the assumption that G does not have subgraph in Cases 1,2 or 3 . Hence $|E(Q)|=2$ and so we must have $s=1$,
$d_{H}\left(v_{5}\right)=1, H=P$ and $w=v_{4}$. By Symmetry, there must be a vertex $z^{\prime} \in V(G)-V(H)$ such that $z^{\prime} v_{5}, z^{\prime} v_{2} \in E(G)$. Thus $G\left[V(P) \cup\left\{z, z^{\prime}\right\}\right]$ contains a $K_{2,3}(1,2,2)$, contrary to (2.1). These contradictions prove Case 4 , and the proof for the lemma is done.

2.3 Proof of Theorem 2.1.4

In this section we will prove the following theorem, which together with Theorem 2.2.1(i), implies Theorem 2.1.4.

Theorem 2.3.1 Let G be a graph with $\kappa^{\prime}(G) \geq 2$ and $\alpha^{\prime}(G) \leq 3$. Then the reduction of G is in \mathcal{F}.

The proof of Theorem 2.3.1 needs a useful tool stated as Theorem 2.3.2 below. We shall need the graphs introduced in Definitions 2.2 .2 and 2.2.4. By Definition 2.2.4, $\left.\mathcal{F}_{2}=\left\{K_{1}\right\} \cup\left\{K_{2, t}: t \geq 3\right\} \cup K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right) \mid s \geq s^{\prime} \geq 2, s^{\prime \prime} \geq 0\right\} \cup\left\{S_{m, l} \mid m \geq l \geq 2\right\}$ $\cup\left\{C^{6}\left(s, s^{\prime}, s^{\prime \prime}\right) \mid\right.$ either $s \geq s^{\prime} \geq 2$ and $s^{\prime \prime} \geq 1$ or $s \geq s^{\prime} \geq 3$ and $\left.s^{\prime \prime}=0\right\} \cup\left\{K_{2,3}^{*}(1,2,2)\right\}$ $\cup\left\{J\left(s_{1}, s_{2}, s_{3}\right) \mid s_{1} \geq s_{3} \geq 3, s_{2} \geq 2\right\}$.

Theorem 2.3.2 Let G be a 2-edge-connected graph. Each of the following holds.
(i) Suppose that $c(G) \leq 5$. Then G is collapsible if and only if the reduction of G is not a member in $\left\{K_{2, t}, S_{m, l}\right\}$, where $l, m \geq 1$ and $t \geq 2$ are integers.
(ii) Suppose that G is essentially 4-edge-connected graph with $c(G) \leq 6$. Then G is collapsible if and only if the reduction of G is not in \mathcal{F}_{2}.

Proof. Since any graph in $\left\{K_{2, t}, S_{m, l}\right\}$ is not collapsible, by Theorem 6.2.2(v), if the reduction of G is in $\left\{K_{2, t}, S_{m, l}\right\}$, then G is not collapsible.

To prove the necessity, we argue by contradiction to assume that $G \neq K_{1}$ is reduced, but $G \notin\left\{K_{2, t}, S_{m, l}\right\}$. By Theorem 2.2.1 (iv), G has no cycles of length at most 3. Suppose first that $c(G)=4$. Then G contains a $K_{2,2}$ as a subgraph. Let $t \geq 2$ be the maximum
number such that G has $K_{2, t}$ as a subgraph. Since $G \neq K_{2, t}, V(G)-V\left(K_{2, t}\right)$ has a vertex v. Since $\kappa(G) \geq 2, G$ has a path P from a vertex x to a vertex y with $v \in V(P)$ such that $V(P) \cap V\left(K_{2, t}\right)=\{x, y\}$. As $v \in V(P)-V\left(K_{2, t}\right),|E(P)| \geq 2$. If x and y are adjacent in $K_{2, t}$, then G has a 5 -cycle, contrary to $c(G)=4$. Therefore, we must have $x, y \in N_{G}(v)$, and x and y are of distance 2 in $K_{2, t}$. It then follows that either $c(G) \geq 5$, contrary to $c(G)=4$; or G has a $K_{2, t+1}$, contrary to the maximality of t.

Hence $c(G)=5$, and so G contains a $C^{5}=S_{1,1}$ as a subgraph. Thus G has $S_{m, l}$ as a subgraph with $m \geq l \geq 1$ such that $m+l$ is maximized. Since $G \neq S_{m, l}, V(G)-V\left(S_{m, l}\right)$ has a vertex v^{\prime}. By $\kappa(G) \geq 2, G$ has a path P^{\prime} from a vertex x^{\prime} to a vertex y^{\prime} with $v^{\prime} \in V\left(P^{\prime}\right)$ such that $V\left(P^{\prime}\right) \cap V\left(S_{m, l}\right)=\left\{x^{\prime}, y^{\prime}\right\}$.

If $x^{\prime} y^{\prime} \in E\left(S_{m, l}\right)$, then G has a cycle of length at least 6 , contrary to $c(G)=5$. Therefore, the distance between x^{\prime} and y^{\prime} in $S_{m, l}$ is 2 . It follows that $G\left[V\left(S_{m, l}\right) \cup\left\{v^{\prime}\right\}\right]$ either has a cycle of length at least 6 , contrary to $c(G)=5$; or is isomorphic to an $S_{m+1, l}$ or an $S_{m, l+1}$, contrary to the maximality of $m+l$. This completes the proof for Theorem 2.3.2 (i).

To prove Theorem 2.3.2(ii), we argue by contradiction to assume that
G is a counterexample with $|V(G)|$ minimized.

By (2.2), by the assumption that G is essentially 4-edge-connected, and by Theorem 2.3.2 (i), we further assume that

$$
\begin{equation*}
G \text { is reduced, } \kappa(G) \geq 2, D_{2}(G) \text { is an independent set, and } c(G)=6 \tag{2.3}
\end{equation*}
$$

Let $C^{6}=v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{1}$ be a longest cycle of G. Since G is reduced and by Lemma 6.2.1, G contains no K_{3} or $K_{3,3}-e$ as a subgraph. Thus if C^{6} has chords, then C^{6} has exactly one chord, isomorphic to a $J(1,1)=K_{1,3}(1,1,0)$. Note that $C^{6}=J^{\prime}(1,1)$. Hence G has a subgraph $H \in\{J(m, l) \mid m \geq l \geq 1\} \cup\left\{J^{\prime}(m, l) \mid m \geq l \geq 1\right\} \cup\left\{C^{6}\left(s, s^{\prime}, s^{\prime \prime}\right)\right.$ $\left.\mid s \geq s^{\prime} \geq s^{\prime \prime}>0\right\} \cup\left\{K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right) \mid s \geq s^{\prime}>0, s^{\prime \prime} \geq 0\right\}$. Choose such an H so that

$$
\begin{equation*}
|V(H)|+|E(H)| \text { is maximized. } \tag{2.4}
\end{equation*}
$$

If $G=H$, then as G is essentially 4-edge-connected, $G \neq J^{\prime}(m, l)$ with $m \geq l \geq 1$. Since $\alpha^{\prime}(G) \leq 3, G \neq J(m, l)$ for $m \geq l \geq 2$. As $J(m, 1)=K_{1,3}(m, 1,0)$, we conclude that if $G=H$, then $G \in \mathcal{F}_{2}$, contrary to (2.2).

Hence $G \neq H$. By (2.4), $V(G)-V(H)$ has a vertex z. As $\kappa(G) \geq 2, G$ has a path Q with $z \in V(Q)$, and $V(Q) \cap V(H)=\{u, v\}$ for some distinct u and v. Since $\alpha^{\prime}(H)=3=\alpha^{\prime}(G)$ and since G is reduced, $u, v \in N_{G}(z)$ and u and v are not adjacent in H. In the arguments below, we will use the notation in Figure 1.

If $H \in\left\{K_{1,3}\left(s, s^{\prime}, s^{\prime \prime}\right) \mid s \geq s^{\prime}>0, s^{\prime \prime} \geq 0\right\} \cup\left\{C^{6}\left(s, s^{\prime}, s^{\prime \prime}\right) \mid s \geq s^{\prime} \geq s^{\prime \prime}>0\right\}$, then either $u, v \in\left\{a_{1}, a_{2}, a_{3}\right\}$, whence (2.4) is violated; or (by symmetry) $H=K_{1,3}(s, 1,0), u=a$ and $v \in D_{2}(H)$, whence (2.4) is violated; or $\{u, v\}-\left\{a_{1}, a_{2}, a_{3}\right\} \neq \emptyset$, and $G[V(H) \cup\{z\}]$ contains a cycle of length at least 7 , contrary to (2.3).

Assume that $H \in\{J(m, l) \mid m \geq l \geq 1\}$. Since $J(m, 1)=K_{1,3}(m, 1,0)$, we assume that $m \geq l \geq 2$. If $u, v \in D_{2}(H)$, then $G[V(H) \cup\{z\}]$ contains a cycle of length at least 7 , contrary to (2.3). Hence we assume that $u \notin D_{2}(H)$. Then $G[V(H) \cup\{z\}]$ either violates (2.4), or contains a cycle of length at least 7 , contrary to (2.3).

Finally we assume that $H \in\left\{J^{\prime}(m, l) \mid m \geq l \geq 1\right\}$. As $J^{\prime}(m, 1)=C^{6}(m, 1,1)$, we may assume $m \geq l \geq 2$. Since $J^{\prime}(m, l)=J(m, 0, l)$, we may assume that $H=J\left(s, s^{\prime}, s^{\prime \prime}\right)$ with $s \geq s^{\prime \prime} \geq 2$ and $s^{\prime} \geq 0$, and $s+s^{\prime}+s^{\prime \prime}$ maximized. If $\{u, v\} \cap D_{2}(H) \neq \emptyset$, then $G[V(H) \cup\{z\}]$ also contains a cycle of length at least 7 , contrary to (2.3). Hence $u, v \in V(H)-D_{2}(H)$. It follows that $G[V(H) \cup\{z\}]$ contains a $J\left(t, t^{\prime}, t^{\prime \prime}\right)$ with $t+t^{\prime}+t^{\prime \prime}=s+s^{\prime}+s^{\prime \prime}+1$, contrary to the maximality of H. This completes the proof of Theorem 2.3.2 (ii).

Proof of Theorem 2.3.1. By contradiction, we assume that
G is a counterexample to Theorem 2.3.1 with $|V(G)|$ minimized.

By Theorem 4.1.2 and by (2.5), G is reduced. By the assumption $\alpha^{\prime}(G) \leq 3, c(G) \leq 7$. If G has a C^{7} or a C^{6} as a subgraph, then by Lemma 2.2.5, $G \in \mathcal{F}$, contrary to (2.5). Therefore, we must have $c(G) \leq 5$. By Theorem 2.3.2 (i), $G \in \mathcal{F}$, contrary to (2.5). This
completes the proof.

2.4 Proofs of Corollaries 2.1.5 and 2.1.7

To prove Corollary 2.1.5, we also need the following theorem of Harary and Nash-Williams, which reveals a close relationship between eulerian subgraphs in G and Hamilton cycles in $L(G)$.

Theorem 2.4.1 (Harary and Nash-Williams [21]) Let G be a connected graph with $|E(G)| \geq$ 3. Then $L(G)$ is hamiltonian if and only if G has an eulerian subgraph H such that $E(G-V(H))=\emptyset$.

Let G be a graph such that $\kappa(L(G)) \geq 2, E_{1}(G)$ denote the set of pendant edges (edges incident with a vertex in $\left.D_{1}(G)\right)$ of G, and let $\Gamma=G / E_{1}(G)$. Let Γ^{\prime} denote the reduction of Γ, and define $\Lambda\left(\Gamma^{\prime}\right)=\left\{v \in V\left(\Gamma^{\prime}\right)\right.$ such that v is the contraction image of a nontrivial connected subgraph of $G\}$. Using Theorem 2.4.1, Shao proved the following.

Proposition 2.4.2 (Shao, Section 1.4 of [45]) If Γ^{\prime} has an eulerian subgraph H with $\Lambda\left(\Gamma^{\prime}\right) \subseteq V(H)$, then $L(G)$ is hamiltonian.

Proof of Corollary 2.1.5 Let G be a graph with $\kappa(L(G)) \geq 2$ and $\alpha(L(G)) \leq 3$. Since $\kappa(L(G)) \geq 2$ and $\alpha(L(G)) \leq 3, \kappa^{\prime}(\Gamma) \geq 2$ and $\alpha^{\prime}(\Gamma) \leq 3$. Let Γ^{\prime} be the reduction of Γ. If Γ^{\prime} is supereulerian, then by Proposition 2.4.2, $L(G)$ is hamiltonian. Thus by Theorem 2.1.4, we may assume that $\Gamma^{\prime} \in \mathcal{F}^{\prime}$. By the definition of \mathcal{F}^{\prime}, we observe that
$\forall F \in \mathcal{F}^{\prime}$, and $\forall v \in D_{2}(F), F$ has an eulereian subgraph H such that $V(F)-v \subseteq V(H)$.

By (2.6) and Proposition 2.4.2, if $\Gamma^{\prime} \in \mathcal{F}^{\prime}$ such that $D_{2}\left(\Gamma^{\prime}\right)-\Lambda\left(\Gamma^{\prime}\right) \neq \emptyset$, then $L(G)$ is hamiltonian. Thus $L(G)$ is not hamiltonian only if $D_{2}\left(\Gamma^{\prime}\right) \subseteq \Lambda\left(\Gamma^{\prime}\right)$. Therefore, each vertex in $D_{2}\left(\Gamma^{\prime}\right)$ contains an edge of G, and these edges are independent. Hence $\left|D_{2}\left(\Gamma^{\prime}\right)\right| \leq$
$\alpha^{\prime}(\Gamma) \leq 3$, and so as $\Gamma^{\prime} \in \mathcal{F}^{\prime}$, we conclude that $L(G)$ is not hamiltonian only if $\Gamma^{\prime}=K_{2,3}$ with $D_{2}\left(\Gamma^{\prime}\right) \subseteq \Lambda\left(\Gamma^{\prime}\right)$. Suppose that one vertex v in $D_{2}\left(\Gamma^{\prime}\right)$ is the contraction image of a nontrivial collapsible graph H. Let $A_{G}(H)$ denote the vertices of H that are adjacent to vertices in $V(G)-V(H)$ in G. Thus $\left|A_{G}(H)\right| \leq d_{\Gamma^{\prime}}(v) \leq 3$. Since H is a simple collapsible graph, $|E(H)| \geq 3$, and so there must be an edge $e_{1} \in E(H)$ and an edge $e_{2} \in E_{\Gamma^{\prime}}(v)$ such that $\left\{e_{1}, e_{2}\right\}$ is a matching in G. Let e_{3}, e_{4} be two edges in the preimages of the two vertices of $D_{2}\left(\Gamma^{\prime}\right)-\{v\}$. Then $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ would be a matching of G, contrary to $\alpha^{\prime}(G) \leq 3$. With a similar argument, the two vertices of degree 3 in Γ^{\prime} must be trivial, and so $G \cong K_{2,3}^{s_{1}, s_{2}, s_{3}}$ for some $s_{1}, s_{2}, s_{3}>0$. This proves Corollary 2.1.5. \square.

A vertex $v \in V(G)$ is locally connected if $G\left[N_{G}(v)\right]$ is connected. Following the definition given by Ryjácěk ([43]), a graph H is the closure of a claw-free graph G, denoted by $H=\operatorname{cl}(G)$, if both of the following hold.
(A) There is a sequence of graphs G_{1}, \ldots, G_{t} such that $G_{1}=G, G_{t}=H, V\left(G_{i+1}\right)=V\left(G_{i}\right)$ and $E\left(G_{i+1}\right)=E\left(G_{i}\right) \bigcup\left\{u v \mid u, v \in N_{G_{i}}\left(x_{i}\right), u v \notin E\left(G_{i}\right)\right\}$ for some $x_{i} \in V\left(G_{i}\right)$ with connected non-complete $G_{i}\left[N_{G_{i}}\left(x_{i}\right)\right]$, for $i=1, \ldots, t-1$
(B) No vertex of H has a connected non-complete neighborhood.

Theorem 2.4.3 (Ryjáček, [43]) Let G be a claw-free graph. Then
(i) $\operatorname{cl}(G)$ is uniquely determined.
(ii) $\operatorname{cl}(G)$ is the line graph of a triangle-free graph.
(iii) G is hamiltonian if and only if $\operatorname{cl}(G)$ is hamiltonian

Proof of Corollary 2.1.7 By Theorem 2.4.3, we may assume that for some simple graph $H, c l(G)=L(H)$. As adding edge to a graph does not increase the independence number α and does not decrease the connectivity κ, both $\kappa(c l(G)) \geq \kappa(G) \geq 2$ and $\alpha(c l(G)) \leq \alpha(G) \leq 3$ hold. By Corollary 2.1.5, $c l(G)=L(H)$ is hamiltonian if and only if $H \notin\left\{K_{2,3}^{s_{1}, s_{2}, s_{3}}: s_{1} \geq s_{2} \geq s_{3}>0\right\}$.

Chapter 3

On 3-edge-connected Strongly Spanning Trailable Graphs

3.1 Introduction

In order to apply Catlin's reduction method by contracting collapsible subgraphs, identifying small reduced graphs are of particular importance ([11, 15]). Let $P(10)$ denote the Petersen graph, and let \mathcal{S}_{12} denote the family of supereulerian graphs on 12 vertices. Chen proved the following useful results.

Theorem 3.1.1 Let G be a connected simple graph on $n \geq 1$ vertices.
(ii) (Chen and Lai, Theorem 2.4 of [16]) If $n \leq 11, d_{1}(G)=0, d_{2}(G) \leq 1$ and $F(G) \leq 3$, then the reduction of G is in $\left\{K_{1}, K_{2}, K_{1,2}, K_{2,3}, P(10)\right\}$.
(iii) (Chen [14], see also Theorem 3.2 of [16]) If $n \leq 13$ and $\delta(G) \geq 3$, then either $G \in \mathcal{S}_{12}$, or the reduction of G is in $\left\{K_{1}, K_{2}, K_{1,2}, K_{1,3}, P(10)\right\}$.

The graph H_{8} and $K_{2,3}^{+}$, are defined in Figure 1. The graph H_{8} is often known as the Wagner graph. A relaxation of Theorem 3.1.1(ii) is obtained in this chapter.

Theorem 3.1.2 Let G be a connected simple graph with $n \leq 12$ vertices and with $d_{1}(G)=$ 0 and $d_{2}(G) \leq 1$. Then the reduction of G is either in $\left\{K_{1}, K_{2}, K_{1,2}, K_{2,3}, K_{2,3}^{+}, P(10), P(10)(e)\right\}$ or G is a supereulerian graph on 12 vertices.

By inspection, H_{8} is not strongly spanning trailable. In fact, we have the following conclusion.

Proposition 3.1.3 Let G be a 3-edge-connected non strongly spanning trailable graph. Each of the following holds.
(i) $|V(G)| \geq 8$.
(ii) If $|V(G)|=8$, then $G \cong H_{8}$.

H_{8}

$K_{2,3}^{+}$

Figure 1: The graph H_{8} and $K_{2,3}^{+}$

Since spanning trailable graphs are supereulerian, and since deciding 3-edge-connected supereulerian graphs is NP-complete, characterizing 3-edge-connected spanning trailable graphs will also be difficult. In this chapter, we prove the following, which implies that under the given longest path length condition, G is not strongly spanning trailable if and only if G can be contractible to H_{8} in which the preimage of every vertex of H_{8} is nontrivial.

Theorem 3.1.4 Let G be a graph with $\kappa(G) \geq 2$ and $\kappa^{\prime}(G) \geq 3$ such that G is not contractible to H_{8}. For any distinct edges e, $e^{\prime} \in E(G)$, if every longest $\left(v_{e}, v_{e^{\prime}}\right)$-path P in
$G\left(e, e^{\prime}\right)$ is not spanning and satisfies $|E(P)| \leq 8$, then one of the following holds:
(i) $G\left(e, e^{\prime}\right)$ is not reduced.
(ii) $G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail.

For an integer $n \geq 0$, let P_{n} denote the path on n vertices, and Z_{7} denote the graph obtained by identifying a vertex of a K_{3} and a P_{8}. Let \mathcal{F} denote the family of graphs that are obtained from H_{8} by attaching at least one pendant edge to each vertex of H_{8}; and let H_{8}^{\prime} denote the graph obtained from H_{8} by attaching exactly on pendant edge to each vertex of H_{8}. In a separate paper, Theorem 3.1.4 will be applied to show that every 3 -connected line graph without an induced Z_{7} is hamiltonian-connected if and only if it is not the line graph of H_{8}^{\prime}; and that every 3-connected line graph without an induced P_{10} is hamiltonian-connected if and only if it is not the line graph of a member in \mathcal{F}.

This chapter is organized as follows: In Sections 2 and 3, we present needed tools in our proofs for the main results. In the last two sections, we will prove the main results.

3.2 Collapsible Graphs

We will present some basic properties of collapsible graph in this section. By $H \subseteq G$ we mean that H is a subgraph of a graph G. For a vertex $v \in V(G)$, define $N_{G}(v)=$ $\{u \in V(G) \mid v u \in E(G)\}$, and for $X \subseteq V(G), N_{G}(X)=\cup_{x \in X} N_{G}(x)$. The subscript G might be omitted if G is understood from the context. The next theorem summarizes the properties needed in our arguments in the proofs.

Theorem 3.2.1 (Catlin, [8]) Let G be a connected graph, H be a collapsible subgraph of G, v_{H} the vertex in G / H with $P I_{G}\left(v_{H}\right)=H$, and G^{\prime} the reduction graph of G. Let $K_{3,3}^{-}$ denote the graph obtained from $K_{3,3}$ by deleting an edge. Then each of the following holds. (i) (Theorem 3 of [8]) G is collapsible if and only if G / H is collapsible. In particular, G is collapsible if and only if the reduction $G^{\prime}=K_{1}$.
(ii) (Theorem 5 of [8]) G is reduced if and only if G has no nontrivial collapsible subgraphs.
(iii) (Theorem 8 of [8]) G^{\prime} is simple, girth $\left(G^{\prime}\right) \geq 4$ and $\delta\left(G^{\prime}\right) \leq 3$.
(iv) (Theorem 8 of [8]) G is supereulerian if and only if G^{\prime} is supereulerian.
(v) (Theorem 8 of [8]) If L^{\prime} if an open (or closed, respectively) trail of G / H such that $v_{H} \in V\left(L^{\prime}\right)$, then G has an open (or closed, respectively) trail L with $E\left(L^{\prime}\right) \subseteq E(L)$ and $V(H) \subseteq V(L)$.
(vi) (Lemma 1 of [7]) Every subdivision of K_{4} with at most 6 vertices is collapsible. In particular, $K_{3,3}^{-}$is collapsible.
(vii) (Theorem 1.3 of [12]) If G is connected and if $F(G) \leq 2$, then the reduction of G must be in $\left\{K_{1}, K_{2}\right\} \cup\left\{K_{2, t}: t \geq 1\right\}$.

The symmetric difference of two sets X and Y, is

$$
X \oplus Y=(X \cup Y)-(X \cap Y)
$$

Figure 2: Non collapsible graphs in Lemma 1.2.2

Lemma 3.2.2 Each of the following holds.
(i) (Li et al, Lemma 2.1 of [31]) Let G be a connected simple graph with $n \leq 8$ vertices and with $D_{1}(G)=\emptyset,\left|D_{2}(G)\right| \leq 2$. Then either G is one of three graphs depicted in Figure 2, or the reduction of G is K_{1} or K_{2}.
(ii) Let $u, w \in V(G)$, H be a collapsible subgraph of G, and $G^{\prime}=G / H$. Let v_{H} denote the vertex in G^{\prime} onto which H is contracted, and

$$
u^{\prime}=\left\{\begin{array}{ll}
u & \text { if } u \notin V(H) \\
v_{H} & \text { if } u \in V(H) .
\end{array}, \text { and } w^{\prime}= \begin{cases}u & \text { if } w \notin V(H) \\
v_{H} & \text { if } w \in V(H) .\end{cases}\right.
$$

If G^{\prime} has a $\left(u^{\prime}, w^{\prime}\right)$-trail L^{\prime} containing v_{H}, then G has a (u, w)-trail L such that $\left(V\left(L^{\prime}\right)-\right.$ $\left.\left\{v_{H}\right\}\right) \cup V(H) \subseteq V(L)$.

Proof. (ii). Let L^{\prime} be a $\left(u^{\prime}, w^{\prime}\right)$-trail of G^{\prime}. By the definition of contractions, $E\left(L^{\prime}\right) \subseteq$ $E(G)$. Let $L^{\prime \prime}$ be the spanning subgraph of G with edge set $E\left(L^{\prime}\right)$ and define

$$
R=\left\{v \in V(H) \mid d_{L^{\prime \prime}}(v) \text { is odd }\right\} \oplus\{u, w\}
$$

Since L^{\prime} is a $\left(u^{\prime}, w^{\prime}\right)$-trail of $G^{\prime}, d_{L^{\prime}}\left(v_{H}\right)$ is odd if and only if $|V(H) \cap\{u, w\}|=1$. It follows that $|R| \equiv 0(\bmod 2)$. Since H is collapsible, H has a spanning connected subgraph H_{R} such that $O\left(H_{R}\right)=R$. Let $L=G\left[E\left(L^{\prime}\right) \cup E\left(H_{R}\right)\right]$ be an edge induced subgraph of G. Since L^{\prime} contains v_{H}, L is connected. By the definition of R and the choice of H_{R}, $O(L)=\{u, w\}$, and so L satisfies the conclusion of (ii).

Lemma 3.2.3 Let G be a graph with $\kappa^{\prime}(G) \geq 3$, and let $G_{1}, G_{2}, \cdots, G_{k}$ be the blocks of G. Then the following are equivalent.
(i) G is strongly spanning trailable.
(ii) For every $i=1,2, \cdots, k, G_{i}$ is strongly spanning trailable.

Proof. Since each block of G is also 3-edge-connected, (i) implies (ii). To prove (ii) implies (i), we argue by induction on k, the number of blocks of G. As (ii) trivially implies (i) when $k=1$, we assume that $k>1$ and for any graph with fewer than k blocks, (ii) implies (i).

Since $k \geq 2, G$ has two connected subgraphs H and L and a vertex z_{0} such that $G=H \cup L$ and $V(H) \cap V(L)=\left\{z_{0}\right\}$. Let $e, e^{\prime} \in E(G)$. If $\left\{e, e^{\prime}\right\} \cap E(L)=\emptyset$, then by induction, $H\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail Q_{1}. By induction, for any edge $e^{\prime \prime} \in E(L)$, $L\left(e^{\prime \prime}\right)$ has a spanning $\left(v_{e^{\prime \prime}}, v_{e^{\prime \prime}}\right)$-trial, and so L has a spanning closed trail Q_{2}. It follows that $Q=G\left[E\left(Q_{1}\right) \cup E\left(Q_{2}\right)\right]$ is a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail of G. The proof for the case when $\left\{e, e^{\prime}\right\} \subseteq E(L)$ is similar, and will be omitted. Hence we may assume that $e \in E(H)$ and $e^{\prime} \in E(L)$.

Since $\kappa^{\prime}(H) \geq \kappa^{\prime}(G) \geq 3$, and so H has an edge $e^{\prime \prime} \in E_{H}\left(z_{0}\right)-\{e\}$. By induction, H has a spanning closed $\left(v_{e}, v_{e^{\prime \prime}}\right)$-trail T_{1}^{\prime}. Assume that $e^{\prime \prime}=z_{0} w$. Define

$$
T_{1}= \begin{cases}T_{1}^{\prime}-z_{0} v\left(e^{\prime \prime}\right) & \text { if } z_{0} v\left(e^{\prime \prime}\right) \text { is the last edge in } T_{1}^{\prime} \\ H\left[E\left(T_{1}^{\prime}-v\left(e^{\prime \prime}\right)\right) \cup\left\{e^{\prime \prime}\right\}\right] & \text { if } w v\left(e^{\prime \prime}\right) \text { is the last edge in } T_{1}^{\prime}\end{cases}
$$

Thus T_{1} is a spanning $\left(v(e), z_{0}\right)$-trail of H. Similarly, L has a spanning $\left(z_{0}, v\left(e^{\prime}\right)\right)$-trail T_{2}. It follows $T=T_{1} \cup T_{2}$ is a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail.

Lemma 3.2.4 Let G be a graph with $\kappa^{\prime}(G) \geq 3$ and $\kappa(G) \geq 2$. Then for any connected subgraph W of G with $|V(W)| \geq 2$, and for any $v \in V(G)-V(W)$, G has three edgedisjoint paths $\left(v, w_{i}\right)$-paths $Q_{i}(1 \leq i \leq 3)$ such that

$$
\begin{equation*}
V\left(Q_{i}^{\prime}\right) \cap V(P)=\left\{w_{i}\right\}, \text { and }\left|\left\{w_{1}, w_{2}, w_{3}\right\}\right| \geq 2 . \tag{3.1}
\end{equation*}
$$

Proof. Since $\kappa^{\prime}(G) \geq 3$, by Menger Theorem (Theorem 9.7 of [5]), for some vertices $w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime} \in V(W), G$ has edge-disjoint $\left(v, w_{i}^{\prime}\right)$-paths Q_{i} such that $V\left(Q_{i}\right) \cap V(W)=\left\{w_{i}^{\prime}\right\}$, $i \in\{1,2,3\}$. If $\left|\left\{w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right\}\right| \geq 2$, then we are done with $\left\{w_{1}, w_{2}, w_{3}\right\}=\left\{w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right\}$. Therefore, we assume that $\left|\left\{w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right\}\right|=1$. Thus $w_{1}^{\prime}=w_{2}^{\prime}=w_{3}^{\prime}$. Since $|V(W)| \geq 2$, $W-w_{1}^{\prime}$ has a vertex w. Since $\kappa(G) \geq 2, G-w_{1}^{\prime}$ is also connected, and so $G-w_{1}^{\prime}$ has a (v, w)-path Q_{4} in $G-w_{1}^{\prime}$. Since $v \in V\left(Q_{1} \cup Q_{2} \cup Q_{3}\right)$ and since $w \notin V\left(Q_{1} \cup Q_{2} \cup Q_{3}\right), Q_{4}$ has a vertex w^{\prime} which is the last vertex of Q_{4} in $V\left(Q_{1} \cup Q_{2} \cup Q_{3}\right)$. Without lose of generality, we assume that $w^{\prime} \in V\left(Q_{3}\right)$. Let $Q_{3}\left[v, w^{\prime}\right]$ denote the subpath of Q_{3} from v to w^{\prime}, and let $Q_{4}\left[w^{\prime}, w\right]$ denote the subpath $Q_{4}\left[w^{\prime}, w\right]$ of Q_{4} from w^{\prime} to w. Then $Q_{3}^{\prime}=Q_{3}\left[v, w^{\prime}\right] \cup Q_{4}\left[w^{\prime}, w\right]$ is a path edge-disjoint from Q_{1} and Q_{2}. Therefore, with $w_{1}=w_{2}=w_{1}^{\prime}$ and $w_{3}=w$, $Q_{1}, Q_{2}, Q_{3}^{\prime}$ are edge disjoint $\left(v, w_{i}\right)$-paths from v to W satisfying $\left|\left\{w_{1}, w_{2}, w_{3}\right\}\right| \geq 2$.

3.3π-collapsible Graphs

We in this section will introduce the concept of π-collapsible graphs, which was first introduced by Catlin.

Definition 3.3.1 Let $C=w_{1} w_{2} w_{3} w_{3} w_{4}$ be a 4-cycle in G with a partition $\pi(C)=$ $\left\langle\left\{w_{1}, w_{3}\right\},\left\{w_{2}, w_{4}\right\}\right\rangle$. Following [7], we define $G / \pi(C)$ to be the graph obtained from $G-E(C)$ by identifying w_{1} and w_{3} to form a vertex w^{\prime}, by identifying w_{2} and w_{4} to form a vertex $w^{\prime \prime}$, and by adding an edge $e_{\pi(C)}=w^{\prime} w^{\prime \prime}$.

Theorem 3.3.2 (Caltin, [7]) Let G be a graph containing a 4-cycle C and let $G / \pi(C)$ be defined as in Definition 3.3.1. Each of the following holds.
(i) If $G / \pi(C)$ is collapsible, then G is collapsible.
(ii) If $G / \pi(C)$ has a spanning eulerian subgraph, then G has a spanning eulerian subgraph.
(iii) If G is reduced with a 4-cycle C, then $F(G / \pi) \leq F(G)-1$.

Theorem 3.3.2 (ii) can be directly verified by definition. Let $J_{i}, 1 \leq i \leq 7$, denote the graphs depicted in Figure 3, where J_{7} denotes any graph in the family of graphs such that each of the vertices w_{1} and v_{3} can be adjacent to any (identical of distinct) vertices in v_{6}, v_{7} or v_{8}. Applying Theorem 3.3.2(i) to each of these graphs with the indicated partition of a given 4 -cycle $C=w_{1} w_{2} w_{3} w_{4} w_{1}$, it is routine to verify that all these are collapsible graphs.

Lemma 3.3.3 For each i with $1 \leq i \leq 7, J_{i}$ is collapsible.

Figure 3: A collection of collapsible graphs

3.4 Proof of Theorem 3.1.2 and Proposition 3.1.3

The main purpose of this section is to prove Theorem 3.1.2 and proposition 3.1.3. For a graph G and for an integer k, define

$$
D_{\leq k}(G)=\cup_{i=1}^{k} D_{i}(G) .
$$

Define the graphs $\Phi_{1}, \Phi_{2}, \Phi_{3}$ as depicted in Figure 4 below. Note that $\Phi_{1}=P(10)(e)$. It is routine to verify that the graphs Φ_{2}, Φ_{3} are in \mathcal{S}_{12}.

Figure 4: The graphs $\Phi_{1}, \Phi_{2}, \Phi_{3}$

We shall prove the following useful tool, which is a restatement of Theorem 3.1.2.

Theorem 3.4.1 Let G be a connected simple graph on n vertices. If

$$
\begin{equation*}
n \leq 12, d_{1}(G)=0 \text { and } d_{2}(G) \leq 1 \tag{3.2}
\end{equation*}
$$

then either the reduction of G is in $\left\{K_{1}, K_{2}, K_{1,2}, K_{2,3}, K_{2,3}^{+}, P(10), \Phi_{1}\right\}$, or $G \in \mathcal{S}_{12}$.

Proof. Let G^{\prime} be the reduction of G. We argue by contradiction and assume that

$$
\begin{equation*}
G \notin \mathcal{S}_{12} \text { and } G^{\prime} \notin\left\{K_{1}, K_{2}, K_{1,2}, K_{2,3}, P(10), \Phi_{1}\right\} \tag{3.3}
\end{equation*}
$$

We shall frequently use the facts that K_{3} is the smallest nontrivial collapsible simple graph and the nontrivial reduced graphs with at most 5 vertices are either a tree, or a 4 -cycle, or $K_{2,3}$ or $K_{2,3}$ minus an edge. Since $d_{1}(G)=0$ and $d_{2}(G) \leq 1$,

$$
\begin{equation*}
\text { both }\left|\cup_{v \in D_{1}\left(G^{\prime}\right)} P I_{G}(v)\right| \geq 4 d_{1}\left(G^{\prime}\right) \text { and }\left|\cup_{v \in D_{2}\left(G^{\prime}\right)} P I_{G}(v)\right| \geq 4\left(d_{2}\left(G^{\prime}\right)-1\right)+1 \tag{3.4}
\end{equation*}
$$

By (3.2) and (3.4), we must have $d_{1}\left(G^{\prime}\right) \leq 2$ and $d_{1}\left(G^{\prime}\right)+d_{2}\left(G^{\prime}\right) \leq 3$. Let $m^{\prime}=\left|E\left(G^{\prime}\right)\right|$ and $n^{\prime}=\left|V\left(G^{\prime}\right)\right|$. We first indicate that

$$
\begin{equation*}
G \text { is reduced, with } 11 \leq n^{\prime} \leq 12, d_{1}\left(G^{\prime}\right)=0 \text { and } d_{2}\left(G^{\prime}\right) \leq 1 . \tag{3.5}
\end{equation*}
$$

If $d_{2}\left(G^{\prime}\right)=3$, then $d_{1}\left(G^{\prime}\right)=0$. By (3.4), $\left|\cup_{v \in D_{2}\left(G^{\prime}\right)} P I_{G}(v)\right| \geq 9$. Hence $n^{\prime} \leq$ $12-9+3=6$, and so by (3.2) and by $d_{2}\left(G^{\prime}\right)=3$, we must have $G^{\prime}=K_{2,3}$, contrary to (3.3). Hence $d_{2}\left(G^{\prime}\right) \leq 2$. Assume that $d_{1}\left(G^{\prime}\right)=2$. By (3.4), $\left|\cup_{v \in D_{1}\left(G^{\prime}\right)} P I_{G}(v)\right| \geq 8$. Thus $n^{\prime} \leq 12-8+2=4$, and so by $d_{1}\left(G^{\prime}\right)=2$, we have $G^{\prime} \in\left\{K_{2}, K_{1,2}\right\}$, contrary to (3.3). Hence $d_{1}\left(G^{\prime}\right) \leq 1$.

Suppose that $D_{1}\left(G^{\prime}\right)=\{v\}$. Let $H_{1}=G-P I_{G}(v)$, and $v_{1} \in V\left(H_{1}\right)$ be the vertex adjacent to a vertex in H_{1}. By (3.4), $\left|V\left(H_{1}\right)\right| \leq 12-4=8$. If $d_{G}\left(v_{1}\right) \geq 3$, then by (3.2), $d_{1}\left(H_{1}\right)=0$ and $d_{2}\left(H_{1}\right) \leq 2$. By Lemma 3.2.2(i), the reduction of H_{1} is in $\left\{K_{1}, K_{2}, K_{2,3}\right\}$. It follows that the the reduction of G is in $\left\{K_{2}, K_{1,2}, K_{2,3}^{+}\right\}$, contrary to (3.3). Hence $d_{G}\left(v_{1}\right)=2$. Let $N_{H_{1}}\left(v_{1}\right)=\left\{v_{2}\right\}$. Let $H_{2}=G-\left(P I_{G}(v) \cup\left\{v_{1}\right\}\right)$. Since $d_{2}(G) \leq 1$, we have $d_{G}\left(v_{2}\right) \geq 3$, and so $d_{1}\left(H_{2}\right)=0$ and $d_{2}\left(H_{1}\right) \leq 1$. By Lemma 3.2.2(i), the reduction of H_{2} is in $\left\{K_{1}, K_{2}\right\}$. Accordingly, the reduction of G is in $\left\{K_{2}, K_{1,2}\right\}$, contrary to (3.3). Hence we must have $d_{1}\left(G^{\prime}\right)=0$.

As $d_{1}\left(G^{\prime}\right)=0$ and $d_{2}\left(G^{\prime}\right) \leq 2$, by Lemma 3.2.2(i) and by (3.3), we assume that $9 \leq n^{\prime} \leq 12$. By (3.4) and by $n \leq 12$, we have $9 \leq n^{\prime} \leq 12-\left(4 d_{2}\left(G^{\prime}\right)-3\right)$, and so $d_{2}\left(G^{\prime}\right) \leq 1$.

If $n^{\prime} \in\{9,10\}$, then $2 m^{\prime} \geq 2+3\left(n^{\prime}-1\right)=3 n^{\prime}-1 . \quad F\left(G^{\prime}\right)=2 n^{\prime}-m^{\prime}-2 \leq$ $2 n^{\prime}-\frac{3}{2} n^{\prime}-\frac{3}{2}=\frac{n^{\prime}-3}{2}$, implying that $F\left(G^{\prime}\right) \leq 3$. As $d_{2}\left(G^{\prime}\right) \leq 1$, by Theorem 3.1.1 (ii), $G^{\prime}=P(10)$, contrary to (3.3). Therefore, we have $11 \leq n^{\prime} \leq 12$. Since every simple collapsible graph must have at least 3 vertices, G is reduced. This verifies (3.5).

Claim 1. $\quad \kappa^{\prime}(G) \geq 2$ and $d_{2}(G)=1$.
Assume that e is an cut-edge of G, and let H_{1} and H_{2} be the components of $G-e$. Since G is reduced and by (3.2), $5 \leq\left|V\left(H_{i}\right)\right| \leq 7$, for $i=1,2$. By Lemma 3.2.2(i), $H_{i} \in\left\{K_{1}, K_{2}, K_{2,3}\right\}$, contrary to (3.5). Hence $\kappa^{\prime}(G) \geq 2$. Suppose that $\delta(G) \geq 3$. Then by $\kappa^{\prime}(G) \geq 2$, and by Theorem 3.1.1(iii), either $G \in \mathcal{S}_{12}$, contrary to (3.3), or G is contracted to $P(10)$, whence by (3.5), $G=P(10)$, contrary to (3.3). Hence $d_{2}(G)=1$. This proves Claim 1.

By Claim 1, we denote $D_{2}(G)=\{v\}$.

Claim 2. $\quad d_{3}(G)=10$. Moreover, if $n=12$, then $d_{4}(G)=1$.
If $d_{\geq 4}(G) \geq 1$, then $2|E(G)| \geq 3 n+d_{\geq 5}(G) . F(G)=2 n-m-2 \leq 2 n-\frac{3 n+d_{\geq 5}(G)}{2}-2=$ $\frac{n-4-d_{\geq 5}(G)}{2}$. If $n=11$, then $F(G) \leq 3$. By Theorem 3.1.1(ii), $G=P(10)$, contrary to $n=11$. Hence if $n=11$, then $d_{3}(G)=10$.

Let $n=12$. Since $n=12$, and since the number of odd degree vertices is even, $d_{3}(G) \leq 10$, and so $d_{i \geq 4}(G) \geq 1$. If $d_{i \geq 5}(G) \geq 1$, then $F(G) \leq 24-19-2=3$. Let $H=G-v$. As $\kappa^{\prime}(G) \geq 2, H$ is connected and reduced with $|V(H)|=11, d_{2}(H) \leq 2$ and $F(H)=3$. By Theorem 3.1.1(ii), $H \in\left\{K_{1}, K_{2}, K_{1,2}, K_{2,3}, P(10)\right\}$, contrary to the fact $|V(H)|=11$. Thus we have $d_{2}(G)=1, d_{3}(G)=10$ and $d_{4}(G)=1$. Claim 2 holds.

Claim 3. If $\operatorname{girth}(G) \geq 5$, then $G \in\left\{\Phi_{1}, \Phi_{2}\right\}$.
If $n=11$, then by $\operatorname{girth}(G) \geq 5$, there must be a vertex $w \in V(G)$ such that the distance between v and w is at least 3 . If $n=12$, then by Claim 2, we denote $D_{4}(G)=\{w\}$. In any case, for integer $i \geq 0$, define

$$
T_{i}=\{u \in V(G) \mid \text { the distance from } u \text { to } w \text { in } G \text { is } i\}
$$

Suppose first that $n=11$. Then $\left|T_{0}\right|=1,\left|T_{1}\right|=3,\left|T_{2}\right|=6$ and $\left|T_{3}\right|=1$. Let $T_{1}=$ $\left\{u_{1}, u_{2}, u_{3}\right\}$ and let $T_{2}=\left\{v_{1}, v_{2}, \cdots, v_{6}\right\}$. Since the degree of each vertex of $T_{2} \cup T_{3}$ in the induced subgraph $G\left[T_{2} \cup T_{3}\right]$ is two, and since G is reduced, the induced subgraph $G\left[T_{2} \cup T_{3}\right]$ is a C_{7}. Without loss of generality, we assume that $C_{7}=v_{1} v_{2} \cdots v_{6} v v_{1}$. Also
we assume that $N_{G}\left(u_{1}\right) \cap T_{2}=\left\{v_{1}, v_{4}\right\}$ and $u_{2} v_{2} \in E(G)$. Then $N_{G}\left(u_{2}\right)=\left\{v_{2}, v_{5}\right\}$ and $N_{G}\left(u_{3}\right)=\left\{v_{3}, v_{6}\right\}$. Thus $G=\Phi_{1}$.

Next we assume that $n=12$. Then $\left|T_{0}\right|=1,\left|T_{1}\right|=4,\left|T_{2}\right|=7$ and $u_{1} \in T_{1}$. Let $T_{1}=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and let $T_{2}=\left\{v_{1}, v_{2}, \cdots, v_{7}\right\}$. Since the degree of each vertex of T_{2} in the induced subgraph $G\left[T_{2}\right]$ is two, and since G is reduced, the induced subgraph $G\left[T_{2}\right]$ is a C_{7}. Without loss of generality, we assume that $C_{7}=v_{1} v_{2} \cdots v_{7} v_{1}$. By symmetry, we assume that $u_{1} v_{7} \in E(G), N_{G}\left(u_{2}\right) \cap T_{2}=\left\{v_{1}, v_{4}\right\}, N_{G}\left(u_{3}\right)=\left\{v_{2}, v_{5}\right\}$ and $N_{G}\left(u_{3}\right)=$ $\left\{v_{3}, v_{6}\right\}$. Thus $G=\Phi_{2}$. This completes the proof for Claim 3.

By Claim 3, we may assume that G has a 4 -cycle $C=v_{1} v_{2} v_{3} v_{4} v_{1}$. Let $\pi(C)=$ $\left\langle\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{4}\right\}\right\rangle$ be a partition of $V(C)$. Form the graph G / π with the new edge $e_{\pi}=$ $e_{\pi(C)}$ as in Definition 3.3.1. Hence we identify v_{1} and v_{3} to get u_{1} and identify v_{2} and v_{4} to get u_{2}.

Claim 4. $\kappa^{\prime}(G / \pi) \geq 2$.
By Claim $1, \kappa^{\prime}(G) \geq 2$. If G / π has a cut edge, then it must be e_{π}. Assume that $e_{\pi}=u_{1} u_{2}$ is an cut edge in G / π and let H_{1} and H_{2} be the components of $G / \pi-e$ with $u_{1} \in V\left(H_{1}\right)$ and $u_{2} \in V\left(H_{2}\right)$.

Case 1. $N_{G}\left(v_{1}\right)=N_{G}\left(v_{3}\right)$. Let $N_{G}\left(v_{1}\right)=N_{G}\left(v_{3}\right)=\left\{v_{2}, v_{4}, x\right\}$. By Claim 1, we must have $x=v$. (See Figure 5).

Figure 5: The two cases in the proof of Claim 4

Let $K=G-\left\{v, v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Then K is connected, and $|V(K)|=\left\{\begin{array}{ll}6, & \text { if } n=11 \\ 7, & \text { if } n=12\end{array}\right.$. By Claims 3 and $4,|E(K)|=\left\{\begin{array}{ll}8, & \text { if } n=11 \\ 9 \text { or 10, } & \text { if } n=12\end{array}\right.$.

Thus $F(K)=\left\{\begin{array}{ll}2, & \text { if } n=11, \text { or } n=12 \text { and }|E(K)|=10 \\ 3, & \text { if } n=12 \text { and }|E(K)|=9\end{array}\right.$.
Furthermore, $d_{1}(K)=0$ and $d_{2}(K)=\left\{\begin{array}{ll}2, & \text { if } n=11, \text { or } n=12 \text { and }|E(K)|=10 \\ 3, & \text { if } n=12 \text { and }|E(K)|=9\end{array}\right.$. If $F(K)=2$, then by Theorem 3.2 .1 (vii), $K=K_{2, n-2}$, contrary to fact $d_{2}(K) \leq 3$. If $F(K)=3$, then $d_{2}(K)=3$ and $|V(K)|=7$. By Theorem 3.1.1(ii), $K=K_{1}$, contrary to (3.3). This proves Case 1.

Case 2. $\quad N_{G}\left(v_{1}\right) \neq N_{G}\left(v_{3}\right)$ and $N_{G}\left(v_{2}\right) \neq N_{G}\left(v_{4}\right)$.
Let L_{1} and L_{2} be components of $G-\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. (See Figure 5). Since $\kappa^{\prime}(G) \geq 2$, L_{1} and L_{2} are connected. As G is reduced and $d_{2}(G) \leq 1,\left|V\left(L_{1}\right)\right|+\left|V\left(L_{2}\right)\right| \geq 9$, and so $n \geq 13$, contrary to the hypothesis that $n \leq 12$. Claim 4 holds.

If $n=11$, then $|V(G / \pi)|=9$, and so by Theorem 3.1.1(ii), the reduction of G / π is in $\left\{K_{1}, K_{2}, K_{1,2}, K_{2,3}\right\}$. By Claim 4, $\kappa^{\prime}(G / \pi) \geq 2$, and by Claim 1, $d_{2}(G)=1$. It follows that the reduction of G / π is K_{1}. By Theorem 3.3.2, G is collapsible, contrary to (3.3).

Hence we have $n=12$. By (3.5), G is reduced. By Claims 1 and $2, d_{2}(G)=1, d_{3}(G)=$ 10 and $d_{4}(G)=1, F(G)=4$, and so by Theorem 3.3.2 (iii), $F(G / \pi) \leq F(G)-1=3$. By Definition 3.3.1, $|V(G / \pi)|=n-2 \in\{9,10\}$. By Theorem 3.1.1(ii) and by Claim 4, the reduction of G / π is in $\left\{K_{1}, P(10)\right\}$. By Theorem 3.3.2, if the reduction of G / π is K_{1}, then G is collapsible, contrary to (3.3). Therefore, $n=12$ and $G / \pi=P(10)$. This implies $G=\Phi_{3}$. The proof of Theorem 3.4.1 is now complete.

Proof of Proposition 3.1.3. Let G be a non strongly spanning trailable graph with $\kappa^{\prime}(G) \geq 3$. Then for some pair of edges $e, e^{\prime}, G\left(e^{\prime}, e^{\prime \prime}\right)$ does not have a spanning $\left(v_{e}, v_{e^{\prime}}\right)$ -
trail. Let H be the graph obtained from $G\left(e^{\prime}, e^{\prime \prime}\right)$ by adding a new vertex z_{0} and new edges $z_{0} v_{e^{\prime}}, z_{0} v_{e^{\prime \prime}}$. Then H cannot be supereulerian.

Suppose that $|V(G)| \leq 8$, then $|V(H)| \leq 11$. By Theorem 3.4.1, we must have $H=P(10)(e)$, which forces that $G=H_{8}$. This proves the proposition.

3.5 Proof of Theorem 3.1.4

The follow lemma is verified using case analysis. Detailed proofs will be in Chapter 4.

Lemma 3.5.1 (Chapter 4 Theorem 4.3.1) Let G be a graph with $\kappa(G) \geq 2$ and $\kappa^{\prime}(G) \geq 3$, $e=v_{0} v_{1}$ and $e^{\prime}=v_{c-1} v_{c}$ be distinct edges in G, and $P=v_{e} v_{1} \cdots v_{c-1} v_{e^{\prime}}$ is a longest $\left(v_{e}, v_{e^{\prime}}\right)$-path in $G\left(e, e^{\prime}\right)$ with $c=|E(P)| \leq 8$. If $G\left(e, e^{\prime}\right)$ is reduced, then $V(G)=V(P) \cup$ $\left\{v_{0}, v_{c}\right\}$.

Lemma 3.5.2 Let G be a graph with $\kappa^{\prime}(G) \geq 3$ and let $e=u v \in E(G)$. If $|V(G)| \leq 11$ and if the reduction of $G(e)$ is $P(10)$, then G has $a(u, v)$-path of length at least 9.

Proof. Let v_{e} denote the vertex so that $G(e)$ is obtained from $G-e$ by adding new edges $u v_{e}, v_{e} v$. Since the the reduction of $G(e)$ is $P(10), v_{e}, u, v$ must be in a maximal collapsible subgraph of $G(e)$, which is the preimage of a vertex w (say) of $P(10)$. Since $P(10)$ has a cycle of length 9 passing w, this cycle of length 9 can be lifted to a cycle of length 11 containing v_{e} in $G(e)$. Therefore, G has a (u, v)-path with length at least 9 .

Proof of Theorem 3.1.4. We argue by contradiction and assume that
G is counterexample to the theorem.
Thus for some edges $e, e^{\prime} \in E(G)$, every longest $\left(v_{e}, v_{e^{\prime}}\right)$-path in $G\left(e, e^{\prime}\right)$ has length $c \leq 8$. By Lemma 3.2.2 (ii) and by (3.6), we may assume that $G\left(e, e^{\prime}\right)$ is reduced. Hence $G\left(e, e^{\prime}\right)$ does not have a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail.

Let $P=v_{e} v_{1} \cdots v_{c-1} v_{e^{\prime}}$ be a longest $\left(v_{e}, v_{e^{\prime}}\right)$-path in $G\left(e, e^{\prime}\right)$ and $V(P) \neq V\left(G\left(e, e^{\prime}\right)\right)$. Let $e=v_{0} v_{1}$ and $e^{\prime}=v_{c-1} v_{p}$ for some vertices $v_{0}, v_{c} \in V(G)$.

Obtain a new graph L from $G\left(e, e^{\prime}\right)$ by adding a new vertex z_{0} not in $G\left(e, e^{\prime}\right)$ and by adding two new edges $z_{0} v_{e}, z_{0} v_{e^{\prime}}$. Thus L has a spanning eulerian subgraph. This would imply that $G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail, contrary to the assumption that $G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail. Since $\kappa^{\prime}(G) \geq 3$, we have $\kappa^{\prime}(L) \geq 2$ and L has exactly one edge cut of size 2. By Lemma 3.5.1, $V\left(G\left(e, e^{\prime}\right)\right)=V(P) \cup\left\{v_{0}, v_{c}\right\}$, and so $\left|V\left(G\left(e, e^{\prime}\right)\right)\right| \leq c+3=11$. Thus $|V(L)| \leq 12$. Hence one of the conclusions of Theorem 3.1.2 must hold. Since $\kappa^{\prime}(L) \geq 2$ and L has exactly one edge cut of size 2, the reduction of L cannot be $K_{2}, K_{1,2}, K_{2,3}$ or $K_{2,3}^{+}$. If L is collapsible or supereulerian, then Theorem 3.1.4 (ii) holds. If $L=\Phi_{1}$, then since $\kappa^{\prime}(G) \geq 3$, the only vertex of degree 2 in Φ_{1} must be the newly added vertex z_{0} in L. It follows that $G=H_{8}$. contrary to the assumption that G is not contractible to H_{8}.

Therefore, by Theorem 3.1.2, the reduction of L must be $P(10)$. By Lemma 3.5.2, $G\left(e, e^{\prime}\right)$ has a $\left(v_{e}, v_{e^{\prime}}\right)$-path with length at least 9 , contrary to the assumption that every longest such path has length at most 8 . This completes the proof of the theorem.

Chapter 4

Strongly Spanning Trailable Graphs with Short Longest Paths

4.1 Introduction

Catlin in [8] and Jaeger in [23] proved that every 4-edge-connected graph is supereulerian. In fact, Catlin's proof implies a stronger result stated below.

Theorem 4.1.1 (Catlin [8]) Every 4-edge-connected graph is strongly spanning trailable.

The four cycle is an example that a supereulerian graph may not be spanning trailable. Luo, Chen and Chen [35] first explicitly studied spanning trailable graphs (called eulerianconnected graphs in [35]). The following theorem improves Theorem 4.1.1.

Theorem 4.1.2 (Luo, Chen and Chen [35]) Every 4-edge-connected graph is spanning trailable.

Theorem 4.1.2 was implicitly proved in Theorem 4.1.3 below.

Theorem 4.1.3 (Catlin and Lai [9]) If G has two edge-disjoint spanning trees, then G is strongly spanning trailable if and only if G is essentially 3-edge-connected.

Spanning trailable graphs have several useful applications. Shao [45] indicated that spanning trailable graphs have applications in the investigation of hamiltonian-connected line graphs. For fixed distinct edges $e, e^{\prime} \in E(G), G^{*}\left(e, e^{\prime}\right)$ is obtained from $G\left(e, e^{\prime}\right)$ by adding a new vertex z and new edges $z v_{e}, z v_{e^{\prime}}$. Then $G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail if and only if $G^{*}\left(e, e^{\prime}\right)$ is supereulerian. As Pulleyblank [41] indicated that determining if a 3-edge-connected graph is supereulerian is NP-complete, determining if a 3 -edgeconnected graph is strongly spanning trailable is at least as hard as the supereulerian graph problem.

Figure 1. The graph W_{8} and $K_{2,3}^{+}$

Let H_{8} denote the Wagner graph as depicted in Figure 1. For $e=v_{1} v_{5}, e^{\prime}=v_{3} v_{7} \in$ $E\left(H_{8}\right)$, it is routine to check that $H_{8}\left(e, e^{\prime}\right)$ does not have a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail, and so any longest $\left(v_{e}, v_{e^{\prime}}\right)$-path in $H_{8}\left(e, e^{\prime}\right)$ has length 8 . Later in this chapter, we verified that H_{8} is the 3-edge-connected non-spanning trailable graph with fewest number of vertices. Our main results of this paper are the following.

Theorem 4.1.4 Let G be a 3-edge-connected graph. Let $e, e^{\prime} \in E(G)$ be two edges. If the length of a longest $\left(v_{e}, v_{e^{\prime}}\right)$-path in $G\left(e, e^{\prime}\right)$ is at most 8 , then either G has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail or $G=H_{8}$ with, up to isomorphism, $e=v_{1} v_{5}$ and $e^{\prime}=v_{3} v_{7}$.

Corollary 4.1.5 Let G be a 3-edge-connected graph. If for any edges e, $e^{\prime} \in E(G)$, the length of a longest $\left(v_{e}, v_{e^{\prime}}\right)$-path in $G\left(e, e^{\prime}\right)$ is at most 8 , then either G is strongly spanning trailable.

Corollary 4.1.5 follows from Theorem 4.1.4 immediately as for edges $e_{1}=v_{1} v_{2}$ and $e_{2}=v_{7} v_{8}$, a longest $\left(v_{e_{1}}, v_{e_{2}}\right)$-path $v_{e_{1}} v_{2} v_{3} v_{4} v_{8} v_{1} v_{5} v_{6} v_{7} v_{e_{2}}$ has length 9. Hence H_{8} does not satisfy the hypothesis of Corollary 4.1.5. This chapter is organized as the proof of Theorem 4.1.4 will be given in the last two sections.

4.2 Preliminaries

Lemma 4.2.1 Let $u, w \in V(G)$, H be a collapsible subgraph of G, and let v_{H} denote the vertex in G / H onto which H is contracted, and

$$
u^{\prime}=\left\{\begin{array}{ll}
u, & \text { if } u \notin V(H) \\
v_{H}, & \text { if } u \in V(H)
\end{array} \quad \text { and } w^{\prime}=\left\{\begin{array}{ll}
w, & \text { if } w \notin V(H) \\
v_{H}, & \text { if } w \in V(H)
\end{array} .\right.\right.
$$

If G / H has $a\left(u^{\prime}, w^{\prime}\right)$-trail L^{\prime} containing v_{H}, then G has $a(u, w)$-trail L such that $\left(V\left(L^{\prime}\right)-\left\{v_{H}\right\}\right) \cup V(H) \subseteq V(L)$.

Proof. By the definition of contraction, $E\left(L^{\prime}\right) \subseteq E(G)$. Let $L^{\prime \prime}$ be the subgraph of G with edge set $E\left(L^{\prime}\right)$ and define

$$
\begin{aligned}
R= & {\left[\left\{v \in V(H) \mid d_{L^{\prime \prime}}(v) \text { is odd }\right\} \cup\{u, w\}\right] } \\
& -\left[\left\{v \in V(H) \mid d_{L^{\prime \prime}}(v) \text { is odd }\right\} \cap\{u, w\}\right] .
\end{aligned}
$$

Since L^{\prime} is a $\left(u^{\prime}, w^{\prime}\right)$-trail of $G / H, d_{L^{\prime}}\left(v_{H}\right)$ is odd if and only if $|V(H) \cap\{u, w\}|=1$. It follows that $|R| \equiv 0(\bmod 2)$. Since H is collapsible, H has a spanning connected subgraph H_{R} such that $O\left(H_{R}\right)=R$. Let $L=G\left[E\left(L^{\prime}\right) \cup E\left(H_{R}\right)\right]$ be an edge induced subgraph of G. Since L^{\prime} contains v_{H}, L is connected. By the definition of R and the choice of $H_{R}, O(L)=\{u, w\}$, and so L satisfies $\left(V\left(L^{\prime}\right)-\left\{v_{H}\right\}\right) \cup V(H) \subseteq V(L)$.

Lemma 4.2.2 Let G be a graph with $\kappa^{\prime}(G) \geq 3$, and let $G_{1}, G_{2}, \cdots, G_{k}$ be the blocks of G. Then the following are equivalent.
(i) G is strongly spanning trailable.
(ii) For every $i=1,2, \cdots, k, G_{i}$ is strongly spanning trailable.

Proof. Since each block of G is also 3-edge-connected, (i) implies (ii). To prove (ii) implies (i), we argue by induction on k, the number of blocks of G. As (ii) trivially implies (i) when $k=1$, we assume that $k>1$ and for any graph with fewer than k blocks, (ii) implies (i).

Since $k \geq 2, G$ has two connected subgraphs H and L and a vertex z_{0} such that $G=H \cup L$ and $V(H) \cap V(L)=\left\{z_{0}\right\}$. Let $e, e^{\prime} \in E(G)$. If $\left\{e, e^{\prime}\right\} \cap E(L)=\emptyset$, then by induction, $H\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail Q_{1}. By induction, for any edge $e^{\prime \prime} \in E(L)$, $L\left(e^{\prime \prime}\right)$ has a spanning $\left(v_{e^{\prime \prime}}, v_{e^{\prime \prime}}\right)$-trial, and so L has a spanning closed trail Q_{2}. It follows that $Q=G\left[E\left(Q_{1}\right) \cup E\left(Q_{2}\right)\right]$ is a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail of G. The proof for the case when $\left\{e, e^{\prime}\right\} \subseteq E(L)$ is similar, and will be omitted. Hence we may assume that $e \in E(H)$ and $e^{\prime} \in E(L)$.

Since $\kappa^{\prime}(H) \geq \kappa^{\prime}(G) \geq 3$, and so H has an edge $e^{\prime \prime} \in E_{H}\left(z_{0}\right)-\{e\}$. By induction, H has a spanning closed $\left(v_{e}, v_{e^{\prime \prime}}\right)$-trail T_{1}^{\prime}. Assume that $e^{\prime \prime}=z_{0} w$. Define

$$
T_{1}=\left\{\begin{array}{ll}
T_{1}^{\prime}-z_{0} v\left(e^{\prime \prime}\right), & \text { if } z_{0} v\left(e^{\prime \prime}\right) \text { is the last edge in } T_{1}^{\prime} \\
H\left[E\left(T_{1}^{\prime}-v\left(e^{\prime \prime}\right)\right) \cup\left\{e^{\prime \prime}\right\}\right], & \text { if } w v\left(e^{\prime \prime}\right) \text { is the last edge in } T_{1}^{\prime}
\end{array} .\right.
$$

Thus T_{1} is a spanning $\left(v(e), z_{0}\right)$-trail of H. Similarly, L has a spanning $\left(z_{0}, v\left(e^{\prime}\right)\right)$-trail T_{2}. It follows $T=T_{1} \cup T_{2}$ is a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail.

In the rest of this section, we will discuss properties of a graph H as specified in the next definition.

Definition 4.2.3 Let $k>0$ be an integer. A connected graph H with two distinct vertices $w_{1}, w_{2} \in V(H)$ is said to have Property $\mathbf{R}(k)$ if each of the following holds.
(i) For any $v \in V(H)-\left\{w_{1}, w_{2}\right\}, d_{H}(v) \geq 3$.
(ii) For any longest $\left(w_{1}, w_{2}\right)$-path P and for any $u \in V(H)-V(P)$, H has three edgedisjoint paths Q_{1}, Q_{2}, Q_{3} from u to $V(P)$ with $\left|V\left(Q_{i}\right) \cap V(P)\right|=1,(1 \leq i \leq 3)$ and with
$\left|\cup_{i=1}^{3} V\left(Q_{i}\right) \cap V(P)\right| \geq 2$.
(iii) every $\left(w_{1}, w_{2}\right)$-path in H has length at most k.

Throughout the rest of this section in Lemmas 4.2.4-4.2.7, H always denotes a 2connected graph with Property $\mathrm{R}(6)$ and with the same notations in Definition 4.2.3, and

$$
\begin{equation*}
P=z_{0} z_{1} \ldots z_{h} \text { is a longest }\left(w_{1}, w_{2}\right) \text {-path in } H . \tag{4.1}
\end{equation*}
$$

Lemma 4.2.4 If for a pair of distinct vertices $z_{i}, z_{j}(0 \leq i<j \leq h \leq 6), H-E(P)$ has a longest $\left(z_{i}, z_{j}\right)$-path $Q=x_{0} x_{1} \ldots x_{k}$ with $x_{0}=z_{i}$ and $x_{k}=z_{j}$ such that $k=|E(Q)| \geq 4$ and $V(P) \cap V(Q)=\left\{z_{i}, z_{j}\right\}$, then either
(i) H is not reduced, or
(ii) $H[V(P) \cap V(Q)]$ is spanned by the graph L depicted in Figure 2 below.

Figure 2: The graph L

Proof. We assume that H is reduced to prove Lemma 4.2.4(ii). By Theorem 1.2.2 (iii), $\operatorname{girth}(H) \geq 4$. Since H is connected, for each $i(1 \leq i<k), H$ has a shortest path T_{i} from x_{i} to P with $V\left(T_{i}\right) \cap V(P)=\left\{z_{t_{i}}\right\}$. Then we have the following observations: either (A0), or one of (A1) or (A2) must hold, and either (B0) or (B1) must hold. Moreover, if $k=6$, (C0) holds.
(A0) $V\left(T_{1}\right) \cap V(Q)-\left(V(P) \cup\left\{x_{1}\right\}-\left\{z_{i}, z_{j}\right\}\right) \neq \emptyset$.
Note that if (A0) fails, then $t_{1} \leq j$. Otherwise, assume that $t_{1}>j$. By (4.1), $j \geq i+|E(Q)| \geq i+4$, and so $6 \geq t_{1} \geq j+4 \geq i+8$, a contradiction.
(A1) If (A0) fails and $i<t_{1}<j$, then by $\operatorname{girth}(H) \geq 4, t_{1} \geq i+2$. Hence $6 \geq j \geq$ $t_{1}+|E(Q)| \geq t_{1}+4 \geq i+6$. It follows that we must have $i=0, t_{1}=2, j=6, x_{1} z_{2} \in E(H)$ and $|E(Q)|=4$.
(A2) If (A0) fails and $t_{1}<i$, then by $\operatorname{girth}(H) \geq 4, i \geq t_{1}+2$. Hence $6 \geq j \geq$ $i+|E(Q)| \geq i+4 \geq t_{1}+6$. It follows that we must have $t_{1}=0, i=2, j=6, x_{1} z_{0} \in E(H)$ and $|E(Q)|=4$.
(B0) $V\left(T_{2}\right) \cap V(Q)-\left(V(P) \cup\left\{x_{2}\right\}-\left\{z_{i}, z_{j}\right\}\right) \neq \emptyset$.
Note that if (B0) fails, then $i \leq t_{2} \leq j$. Otherwise, if $t_{2}<i$, then by (4.1), $i \geq t_{2}+3$, whence $6 \geq j \geq i+|E(Q)| \geq i+4 \geq t_{1}+7$, a contradiction. Thus $i \leq t_{2}$. By symmetry, $t_{2} \leq j$.
(B1) If (B0) fails and $i<t_{2}<j$, then by (4.1), $t_{2} \geq i+3$ and so $6 \geq j \geq t_{2}+$ $\left|E\left(Q\left[x_{2}, x_{k}\right]\right)\right| \geq t_{2}+3 \geq i+6$. It follows that we must have $i=0, t_{2}=3, j=6$, $x_{2} z_{3} \in E(F)$ and $|E(Q)|=4$.
(C0) If $k=6$, then $V\left(T_{3}\right) \cap V(Q)-\left(V(P) \cup\left\{x_{3}\right\}-\left\{z_{i}, z_{j}\right\}\right) \neq \emptyset$. Otherwise, symmetrically, we may assume that $j \geq t_{3} \geq 3$ and so $P\left[z_{0}, z_{t_{3}}\right] x_{3} Q\left[x_{3}, z_{j}\right] P\left[z_{j}, z_{h}\right]$ is longer than P, contrary to (4.1).

By symmetry, these observations can also be applied to x_{k-1} (as symmetric to x_{1}) and to x_{k-2} (as symmetric to x_{2}).

Claim 1. (A0) holds for x_{1}.
If not, then assume first that (A1) holds for x_{1}. Thus (B1) does not hold as otherwise $t_{1}=2$ and $t_{2}=3$, and so $P\left[z_{0}, z_{2}\right] T_{1}^{-}\left[x_{1}, z_{2}\right] T_{2}\left[x_{2}, z_{3}\right] P\left[z_{4}, z_{h}\right]$ is longer than P. Hence (B0) must hold. By $|E(Q)|=4, t_{2} \in\{0,6\}$. If $t_{2}=0$, then by $\operatorname{girth}(H) \geq 4,\left|E\left(T_{2}\right)\right| \geq 2$, and so $T_{2}^{-}\left[x_{2}, z_{0}\right] x_{1} T_{1}\left[x_{1}, z_{2}\right] P\left[z_{2}, z_{6}\right]$ is longer than P, contrary to (4.1). Hence $t_{2}=6$ and $T_{2}=x_{2} x_{3}^{\prime} z_{6}$. Applying the observations of (A0)-(A2) to x_{3} (by the symmetry between x_{1} and x_{3}), we conclude that $t_{3}=0$, whence $z_{0} x_{3} x_{2} x_{1} P\left[z_{2}, z_{6}\right]$ is longer than P, contrary to (4.1). This proves that (A1) does not hold. The proof for (A2) does not hold is similar.

CHAPTER 4. STRONGLY SPANNING TRAILABLE GRAPHS WITH SHORT LONGEST PATHS44

This proves Claim 1.
Since $\operatorname{girth}(H) \geq 4$, and since Q is longest, $T=T_{1}\left[x_{1}, x_{s}\right]$ satisfies $V(T) \cap V(Q)=$ $\left\{x_{1}, x_{s}\right\}$ such that if $s=3$, then $|E(T)| \geq 2$. As T_{1} is shortest, $s \geq 3$.

Claim 2. If $x_{s} \neq z_{j}$, then (B0) holds for x_{2}.
If (B0) does not hold for x_{2}, then (B1) holds for x_{2}, implying $s=3$. As Q is longest, $T=x_{1} x_{2}^{\prime} x_{3}$, and so (B0) or (B1) must also hold for x_{2}^{\prime}. If (B1) holds for x_{2}^{\prime}, then $x_{2}^{\prime} z_{3} \in E(H)$, and so $P\left[z_{0}, z_{3}\right] x_{x}^{\prime} x_{1} x_{2} x_{3} z_{6}$ is longer than P, contrary to (4.1). Hence (B0) holds for x_{2}^{\prime}. By symmetry, and since $\operatorname{girth}(H) \geq 4$ and since Q is longest, we may assume that H has a vertex $x_{1}^{\prime} \notin V(P) \cup V(Q)$ such that $z_{0} x_{1}^{\prime}, x_{1}^{\prime} x_{2}^{\prime} \in E(H)$. (See Figure 3). Thus $z_{0} x_{1}^{\prime} x_{2}^{\prime} x_{1} x_{2} z_{3} P\left[z_{3}, z_{6}\right]$ is longer than P, contrary to (4.1). This proves Claim 2.

(A1) and (A2)

Figure 3: $(\mathrm{A} 0),(\mathrm{B} 1)$ and $(\mathrm{B} 0)$ for $x_{2^{\prime}}$

If $t_{2}=i$, then by $\operatorname{girth}(H) \geq 4$ and as Q is longest, $T_{2}=x_{2} x_{1}^{\prime} z_{i}$ for some $x_{1}^{\prime} \notin$ $V(P) \cup V(Q)$. By the symmetry between x_{1} and x_{1}^{\prime}, we must also have (A0) holds for x_{1}^{\prime}. Let T^{\prime} be an $\left(x_{1}^{\prime}, x_{s^{\prime}}\right)$-path with $V\left(T^{\prime}\right) \cap V(Q)=\left\{x_{1}^{\prime}, x_{s^{\prime}}\right\}$ and $V\left(T^{\prime}\right) \cap V(P)=\emptyset$.

Claim 3. If $x_{s} \neq z_{j}$ and $t_{2}=i$, then $s=s^{\prime}$. Moreover, $s>3$.
If $s^{\prime} \neq s$, then as $\operatorname{girth}(H) \geq 4, H$ would have an $\left(z_{i}, z_{j}\right)$-path of length at least 7 (See Figure 4). Hence we assume that $s=s^{\prime} \geq 3$. If $s=s^{\prime}=3$, then by $\operatorname{girth}(H) \geq 4$ and by (4.1), $\left|E\left(T^{\prime}\right)\right|=2$ and $E\left(T_{1}\left[x_{1}, x_{3}\right]\right)=2$. It follows that $H\left[\left\{x_{0}, x_{2}\right\} \cup V\left(T^{\prime}\right) \cup\right.$ $\left.V\left(T_{1}\left[x_{1}, x_{3}\right]\right)\right] \cong G(2)$ defined in Theorem 1.2 .2 (vii), and so by Theorem 1.2.2 (vii), H is not reduced, contrary to the assumption that H is reduced. This proves Claim 3.

Figure 4

Claim 4. If $x_{s} \neq z_{j}$ and $t_{2}=i$, then $s=s^{\prime}=5$ (and so $k=6$).
If $s=s^{\prime}=4$, and if $\min \left\{\left|E\left(T^{\prime}\right)\right|,\left|E\left(T_{1}\left[x_{1}, x_{4}\right]\right)\right|\right\}=1$, then by Theorem 1.2.2 (vii), H is not reduced. Hence when $s=s^{\prime}=4$, by (4.1), we must have $\left|E\left(T^{\prime}\right)\right|=\left|E\left(T_{1}\left[x_{1}, x_{4}\right]\right)\right|=$ 2, and so we may denote $T^{\prime}=x_{1}^{\prime} y_{2}^{\prime} x_{4}$ and $T_{1}\left[x_{1}, x_{4}\right]=x_{1} y_{2} x_{4}$. If $k=5$, then by symmetry with x_{2}, either (B 0) or (B 1) holds (with x_{3} replacing x_{2}). If $i<t_{3}<j$, then $z_{i} x_{1} x_{2} T^{\prime}\left[x_{1}^{\prime}, x_{4}\right] x_{3} T_{3}\left[x_{3}, z_{t_{3}}\right] P\left[z_{t_{3}}, z_{j}\right]$ is longer than $P\left[z_{i}, z_{j}\right]$, contrary to (4.1). Therefore (B0) must hold for x_{3}, and so H has an $\left(x_{3}, z\right)$-path T_{3}^{\prime} such that $V\left(T_{3}^{\prime}\right) \cap\left(V(Q) \cup V\left(T^{\prime}\right) \cup\right.$ $\left.V\left(T_{2}\right)\right)=\left\{x_{3}, z\right\}$. Table 1 below shows that for any values of x, either H has a nontrivial collapsible subgraph, or (4.1) is violated, and so Claim 4 is proved.

z	longer $\left(z_{0}, z_{h}\right)$-path or H is not reduced	Explanations
x_{1}	$P\left[z_{0}, z_{i}\right]\left(T_{3}^{\prime}\right)^{-}\left[x_{1}, x_{3}\right] x_{2} x_{1}^{\prime} x_{4} P\left[z_{j}, z_{h}\right]$,	$\operatorname{girth}(H) \geq 4$, $\left\|E\left(T_{3}^{\prime}\right)\right\| \geq 2$.
x_{2}	$P\left[z_{0}, z_{i}\right] x_{1}\left(T_{3}^{\prime}\right)^{-}\left[x_{2}, x_{3}\right] x_{4} P\left[z_{j}, z_{h}\right]$,	$\operatorname{girth}(H) \geq 4$, $\left\|E\left(T_{3}^{\prime}\right)\right\| \geq 3$.
x_{4}	$P\left[z_{0}, z_{i}\right] Q\left[x_{1}, x_{3}\right] T^{\prime}\left[x_{3}, x_{4}\right] P\left[z_{j}, z_{h}\right]$,	$\operatorname{girth}(H) \geq 4$, $\left\|E\left(T_{3}^{\prime}\right)\right\| \geq 3$.
x_{1}^{\prime}	$P\left[z_{0}, z_{i}\right] x_{1} x_{2} x_{3}\left(T_{3}^{\prime}\right)^{-}\left[x_{1}^{\prime}, x_{3}\right] y_{2}^{\prime} x_{4} P\left[z_{j}, z_{h}\right]$,	$\operatorname{girth}(H) \geq 4$, $\left\|E\left(T_{3}^{\prime}\right)\right\| \geq 2$.
y_{2}	$P\left[z_{0}, z_{i}\right] x_{1} y_{2} x_{3} x_{2} x_{1}^{\prime} y_{2}^{\prime} x_{4} P\left[z_{j}, z_{h}\right]$.	
z_{i}	$\left.H\left[V\left(Q\left[x_{0}, x_{4}\right]\right) \cup x_{1}^{\prime}, y_{2}, y_{2}^{\prime}\right\}\right]$ is not reduced,	by Lemma 1.2.3(i), if $\left\|E\left(T_{3}^{\prime}\right)\right\|=1$.
z_{i}	$P\left[z_{0}, z_{i}\right]\left(T_{3}^{\prime}\right)^{-}\left[z_{i}, x_{3}\right] x_{2} x_{1} T_{1}\left[x_{1}, x_{4}\right] P\left[z_{j}, z_{h}\right]$,	if $\left\|E\left(T_{3}^{\prime}\right)\right\| \geq 2$.
z_{j}	$P\left[z_{0}, z_{i}\right] T_{1}\left[x_{1}, x_{4}\right]\left(T^{\prime}\right)^{-}\left[x_{4}, x_{1}^{\prime}\right] x_{2} T_{3}^{\prime}\left[x_{3}, z_{j}\right] P\left[z_{j}, z_{h}\right]$.	

Table 1: When $s=s^{\prime}=4$, a contradiction is found

Claim 5. If $x_{s} \neq z_{j}$, then $t_{2} \neq i$, and so $t_{2}=j$.
If not, then by Claim 4, we have $s=s^{\prime}=5$ and $k=6$. Thus $i=0$ and $j=$ 6. By Definition 4.2.3 (ii), H has an $\left(y_{2}, y\right)$-path T_{4}^{\prime} such that $x_{1}^{\prime} y_{2}, y_{2} x_{5} \notin E\left(T_{4}^{\prime}\right)$ and $V\left(T_{4}^{\prime}\right) \cap\left(V(P) \cap V(Q) \cup\left\{x_{1}^{\prime}, y_{2}, y_{2}^{\prime}\right\}\right)=\left\{y_{2}, y\right\}$. If $y=z_{t}$ for some $0<t<6$, then either $P\left[z_{0}, z_{t}\right]\left(T_{4}^{\prime}\right)^{-}\left[y_{2}, z_{t}\right] x_{1}^{\prime} Q\left[x_{2}, z_{6}\right]$ or $z_{0} x_{1} x_{2} x_{1}^{\prime} T_{4}^{\prime}\left[y_{2}, z_{t}\right] P\left[z_{t}, z_{6}\right]$ is longer than P, contrary to (4.1). Hence $y \in V(Q) \cup\left\{x_{1}^{\prime}, y_{2}, y_{2}^{\prime}\right\}$. Table 2 below indicates that for any possibilities of y, a violation to (4.1) always occurs, and so Claim 5 follows.

y	longer $\left(z_{0}, z_{h}\right)$-path in H	Explanations
x_{1}	$z_{0} x_{1}^{\prime} T_{4}^{\prime}\left[y_{2}, x_{1}\right] Q\left[x_{1}, z_{6}\right]$.	
x_{2}	$z_{0} x_{1}^{\prime} T_{4}^{\prime}\left[y_{2}, x_{2}\right] Q\left[x_{2}, z_{6}\right]$.	
x_{3}	$z_{0} x_{1} x_{2} x_{1}^{\prime} T_{4}^{\prime}\left[y_{2}, x_{3}\right] Q\left[x_{4}, z_{6}\right]$.	
x_{4}	$z_{0} x_{1} x_{2} x_{1}^{\prime} T_{4}^{\prime}\left[y_{2}, x_{4}\right] x_{5} z_{6}$.	
x_{5}	$z_{0} x_{1} x_{2} x_{1}^{\prime} T_{4}^{\prime}\left[y_{2}, x_{5}\right] z_{6}$,	by $\operatorname{girth}(H) \geq 4,\left\|E\left(T_{4}^{\prime}\right)\right\| \geq 3$.
x_{1}^{\prime}	$z_{0} x_{1} x_{2} x_{1}^{\prime}\left(T_{4}^{\prime}\right)\left[y_{2}, x_{1}^{\prime}\right] x_{5} z_{6}$,	by $\operatorname{girth}(H) \geq 4,\left\|E\left(T_{4}^{\prime}\right)\right\| \geq 3$.
y_{2}^{\prime}	$z_{0} x_{1} x_{2} x_{1}^{\prime} T_{4}^{\prime}\left[y_{2}, y_{2}^{\prime}\right] x_{5} z_{6}$,	by $\operatorname{girth}(H) \geq 4,\left\|E\left(T_{4}^{\prime}\right)\right\| \geq 2$.
z_{0}	$\left.\left(T_{4}^{\prime}\right)\right)^{-}\left[z_{0}, y_{2}\right] x_{1}^{\prime} x_{2} Q\left[x_{2}, z_{6}\right]$.	
z_{6}	$Q\left[z_{0}, z_{5}\right] y_{2} T_{4}^{\prime}\left[y_{2}, z_{6}\right]$.	

Table 2: When $s=s^{\prime}=5$, a contradiction to (4.1) is found.

Claim 6. $x_{s}=z_{j}$, and so $t_{1}=j$.
If not, then by Claim $5, t_{2}=j$. If $k=4$, then $s=3$. By $\operatorname{girth}(H) \geq 4$, both $\left|E\left(T\left[x_{1}, x_{3}\right]\right)\right| \geq 2$ and $\left|E\left(T_{2}\right)\right| \geq 2$. It follows that $z_{0} T_{1}\left[x_{1}, x_{3}\right] x_{2} T_{2}\left[x_{2}, z_{j}\right]$ is longer than Q, contrary to the choice of Q. Suppose that $k=5$ and $s=4$. By symmetry, $t_{3}=i$ and T_{3} is internally disjoint from Q. If $\left|E\left(T\left[x_{1}, x_{4}\right]\right)\right|=\left|E\left(T_{2}\right)\right|=\left|E\left(T_{3}\right)\right|=1$, then $H[V(Q)]$ contains a $K_{3,3}^{-}$, contrary to the assumption that H is reduced. Hence $\max \left\{\left|E\left(T\left[x_{1}, x_{4}\right]\right)\right|,\left|E\left(T_{2}\right)\right|,\left|E\left(T_{3}\right)\right|\right\} \geq 2$. Table 3 shows that a contradiction to the choice of Q always exists.

Cases	$\left(z_{i}, z_{j}\right)$-path longer than Q in $H-E(P)$
$\left\|E\left(T\left[x_{1}, x_{4}\right]\right)\right\| \geq 2$	$z_{i} T_{1}\left[x_{1}, x_{4}\right] x_{3}^{\prime} T_{2}\left[x_{2}, z_{j}\right]$.
$\left\|E\left(T_{2}\right)\right\| \geq 2$	$z_{i} T_{1}\left[x_{1}, x_{4}\right] x_{3}^{\prime} T_{2}\left[x_{2}, z_{j}\right]$.
$\left\|E\left(T_{3}\right)\right\| \geq 2$	$T_{3}^{-}\left[z_{i}, x_{3}\right] x_{2} T_{1}\left[x_{1}, z_{j}\right]$.

Table 3: When $k=5$ and $s=4$, a, $\left(z_{i}, z_{j}\right)$-path longer than Q is found.

Therefore we must have $k=5$ and $s=3$. By $\operatorname{girth}(H) \geq 4,\left|E\left(T_{1}\right)\right| \geq 2$. As Q is longest, $T_{1}=x_{1} x_{2}^{\prime} x_{3}$ and $T_{2}=x_{2} z_{j}$. By (4.1), $t_{4}=i$ and $T_{4}=x_{4} z_{i}$. By Theorem 1.2.2 (vii), $H[V(Q)]$ is not reduced, contrary to the assumption that H is reduced. This proves Claim 6.

CHAPTER 4. STRONGLY SPANNING TRAILABLE GRAPHS WITH SHORT LONGEST PATHS48

Claim 7. (B0) holds for x_{2}.
If not, then (B1) holds for x_{2}, whence $i=0, t_{2}=3, j=6, x_{2} z_{3} \in E(F)$ and $|E(Q)|=4$. If $\left|E\left(T_{1}\right)\right| \geq 2$, then $P\left[z_{0}, z_{3}\right] x_{2} T_{1}\left[x_{1}, z_{6}\right]$ is longer than P. Hence we have $T_{1}=x_{1} z_{6}$. By symmetry to x_{1}, we also have $T_{3}=x_{3} z_{0}$. Thus $H[V(P) \cap V(Q)]$ is spanned by the graph depicted in Figure 2, and so Claim 1 must hold. Hence Claim 7 follows.

By Claims 1 and 6, and by the symmetry between x_{1} and x_{k-1}, we may assume that $V\left(T_{1}\right) \cap(V(P) \cup V(Q))=\left\{z_{j}, x_{1}\right\}$ and $V\left(T_{k-1}\right) \cap(V(P) \cup V(Q))=\left\{z_{i}, x_{k-1}\right\}$. By the maximality of Q, we have

$$
\begin{equation*}
T_{1}=x_{1} z_{j} \text { and } T_{k-1}=x_{k-1} z_{i} \tag{4.2}
\end{equation*}
$$

By Claim 7, T_{2} contains a subpath $T_{2}^{\prime}=T_{2}\left[x_{2}, y^{\prime}\right]$ such that $V\left(T_{2}^{\prime}\right) \cap V(Q)=\left\{x_{2}, y^{\prime}\right\}$ and such that $x_{1} x_{2}, x_{2} x_{3} \notin E\left(T_{2}^{\prime}\right)$. By the choice of $Q, y^{\prime} \notin\left\{x_{1}, x_{3}\right\}$. By Claim 6 and by symmetry, $y^{\prime} \neq x_{k-1}$.

If $k=4$, then as Q is longest and by $\operatorname{girth}(H) \geq 4$, we have

$$
\begin{equation*}
T_{2}=x_{2} x z, \text { where } z \in\left\{z_{i}, z_{j}\right\} \text { and } x \notin V(P) \cup V(Q) \tag{4.3}
\end{equation*}
$$

By the symmetry between x and x_{1}, we must have $\{x, z\}=\left\{z_{i}, z_{j}\right\}$. Thus $H[V(Q) \cup\{x\}] \cong$ $K_{3,3}^{-}$, contrary to the assumption that H is reduced. Hence $k \geq 5$.

Assume that $k=5$. As $y^{\prime} \neq x_{k-1}, y^{\prime} \in\left\{z_{i}, z_{j}\right\}$. If $y^{\prime}=z_{i}$, then by maximality of Q, (4.3) holds. Hence by Lemma 1.2.3(i), $H\left[V(Q) \cup V\left(T_{2}\right)\right]$ is not reduced, contrary to the assumption that H is reduced. Thus we have $y^{\prime}=z_{j}$. By the maximality of Q, $\left|E\left(T_{2}\right)\right|=2$. By the symmetry between x_{2} and x_{3}, we also have $t_{3}=i$ and $\left|E\left(T_{3}\right)\right|=2$. If follows by Lemma 1.2 .3 (i) that $H\left[V(Q) \cup V\left(T_{2}\right) \cup V\left(T_{3}\right)\right]$ is not reduced, contrary to the assumption that H is reduced.

Hence $k=6$. Then $y^{\prime} \in\left\{z_{i}, x_{4}, z_{j}\right\}$. If $y^{\prime}=z_{i}$, by the maximality of Q, (4.3) holds with $z=z_{i}$. By the symmetry between x_{1} and x, and by (4.2), we have $x z_{j} \in E(H)$. It follows that $H\left[\left\{z_{i}, z_{j}, x_{1}, x, x_{2}, x_{5}\right\}\right] \cong K_{3,3}^{-}$, contrary to the assumption that H is reduced. Thus $y^{\prime} \neq z_{i}\left(t_{2} \neq i\right)$ and by symmetry, $t_{4} \neq j$.

If $y^{\prime}=x_{4}$, then $\left|E\left(T_{2}^{\prime}\right)\right|=2$. By (C 0$), T_{3}$ has a subpath $T_{3}^{\prime}=T_{3}\left[x_{3}, y^{\prime \prime}\right]$ such that $V\left(T_{3}^{\prime}\right) \cap V(Q)=\left\{x_{3}, y^{\prime \prime}\right\}$ and such that $x_{2} x_{3}, x_{3} x_{4} \notin E\left(T_{3}^{\prime}\right)$. By Claim 6 and by symmetry, $y^{\prime \prime} \notin\left\{x_{1}, x_{5}\right\}$. Thus $y^{\prime \prime} \in\left\{z_{i}, z_{j}\right\}$. Assume first $y^{\prime \prime}=z_{i}$. If $\left|E\left(T_{3}\right)\right| \geq 2$, then $z_{i} T_{2}^{-}\left[z_{i}, x_{3}\right] x_{4} T_{2}^{-}\left[x_{4}, x_{2}\right] x_{1} z_{j}$ has length at least 7 , contrary to (4.1); if $T_{3}=x_{3} z_{i}$, then by Lemma 1.2.3 (i), $H\left[V(Q) \cup V\left(T_{2}\right)\right]$ is not reduced, contrary to the assumption that H is reduced. Thus $y^{\prime \prime} \neq z_{i}$. By symmetry, we also have $y^{\prime \prime} \neq z_{j}$.

Hence we must have $y^{\prime}=z_{j}$. If $\left|E\left(T_{2}\right)\right| \geq 3$, then $z_{i} Q^{-}\left[x_{5}, x_{2}\right] T_{2}\left[x_{2}, z_{j}\right]$ has length at least 7 , contrary to (4.1). Thus we must have $T_{2} x_{2} x^{\prime} z_{j}$. By symmetry, we must also have $T_{4}=x_{4} x^{\prime \prime} z_{i}$. Now applying (4.2) to the path $Q^{\prime}=x_{0} x^{\prime \prime} x_{4} x_{3} x_{2} x^{\prime} x_{6}$, we also have $x^{\prime \prime} z_{j}, x^{\prime} z_{i} \in E(H)$. Thus by Lemma 1.2.3 (iii), $H\left[V(Q) \cup\left\{x^{\prime}, x^{\prime \prime}\right\}\right]$ is not reduced, contrary to the assumption that H is reduced. This completes the proof of the lemma.

Denote $V(H)-V(P)=\left\{u_{1}, u_{2}, \ldots\right\}$. By Definition 4.2 .3 (ii), for each $1 \leq i \leq 3$ and $u_{j} \in V(H)-V(P)$, let

$$
\begin{equation*}
Q_{i}^{j} \text { denote a }\left(u_{j}, z_{t_{i}^{j}}\right) \text {-path with } V(P) \cap V\left(Q_{i}^{j}\right)=\left\{z_{t_{i}^{j}}\right\} \tag{4.4}
\end{equation*}
$$

such that Q_{1}^{j}, Q_{2}^{j} and Q_{3}^{j} are mutually edge-disjoint.

Lemma 4.2.5 Let H be a reduced graph satisfying Property $R(6)$. If for some j, i_{1} and i_{2} with $i_{1} \neq i_{2}$, we have $V\left(Q_{j}^{i_{1}}\right) \cap V\left(Q_{i_{2}}^{j}\right)-\left(V(P) \cup\left\{u_{1}\right\}\right) \neq \emptyset$, then $\left\{t_{i_{1}}^{j}, t_{i_{2}}^{j}\right\}=\{0,6\}$ and for a path Q in $Q_{j}^{i_{1}} \cup Q_{j}^{i_{2}}, P \cup Q$ is spanned by the graph L depicted in Figure 2.

Proof. Let $Q_{i}^{1}=v_{0}^{i} v_{1}^{i} \ldots v_{n_{i}}^{i}$ with $u_{1}=v_{0}^{i}$ and $z_{t_{i}^{1}}=v_{n_{i}}^{i}$. We assume that $p<n_{1}$ is the largest such that $v_{p}^{1} \in V\left(Q_{2}^{1}\right)$ and $q<n_{2}$ is the largest such that $v_{q}^{2} \in V\left(Q_{1}^{1}\right)$.

Figure 5. $V\left(Q_{1}^{1}\right) \cap V\left(Q_{2}^{1}\right)-\left(V(P) \cup\left\{u_{1}\right\}\right) \neq \emptyset$.

Suppose first that $v_{p}^{1} \neq v_{q}^{2}$. By symmetry, we may assume that $v_{q}^{2} \in V\left(Q_{1}^{1}\left[u_{1}, v_{p}^{1}\right]\right)$. Hence $t_{2}^{1}>t_{1}^{1}$. As $\operatorname{girth}(H) \geq 4, H$ has a $\left(z_{t_{1}^{1}}, z_{t_{2}^{1}}\right)$-path Q_{12} with

$$
\begin{equation*}
V(P) \cap V\left(Q_{12}\right)=\left\{z_{t_{1}^{1}}, z_{t_{2}^{1}}\right\} \text { and with } \mid E\left(Q_{12} \mid \geq 4\right. \tag{4.5}
\end{equation*}
$$

Next we assume that $v_{p}^{1}=v_{q}^{2}$. By (4.6), $H-v_{p}^{1}$ has a path Q^{\prime} from v_{q-1}^{2} to a vertex in $V(P)$. By $\operatorname{girth}(H) \geq 4$, we also conclude that (4.5) must hold (see Figure 5). By Lemma 4.2.4, we must have $\left\{t_{1}^{1}, t_{2}^{1}\right\}=\{0,6\}$ and $H\left[V(P) \cup V\left(Q_{12}\right)\right]$ is spanned by L. \square

Lemma 4.2.6 Let H be a reduced graph satisfying Property $R(6)$ with $h=6, z_{0}=w_{1}$, $z_{6}=w_{2}$ and P in (4.1) being a longest (w_{1}, w_{2})-path. Each of the following must hold.
(A) H does not have L (depicted in Figure 2) as a subgraph.
(B) For any $u_{j} \in V(H)-V(P)$, if $i_{1} \neq i_{2}$, then $V\left(Q_{i_{1}}^{j}\right) \cap V\left(Q_{i_{2}}^{j}\right) \subseteq\left\{u_{j}\right\} \cup V(P)$.
(C) There is no path Q satisfying the condition in Claim 1 in the proof of Lemma 4.2.4.
(Thus any path Q satisfying the condition of Claim 1 of Lemma 4.2.4 will be referred to a forbidden path).
(D) $E(H-V(P))=\emptyset$.

Proof. We shall use the same notations in Lemmas 4.2.4 and 4.2.5.
(A). Assume that H has L as a subgraph. Let Q be a path stated in Lemma 4.2.5 such that $H[V(P) \cup V(Q)]$ is spanned by L. If the neighbors of vertices in z_{1}, z_{2}, z_{4} and z_{5} are all on $V(P)$, then by Definition 4.2.3(i), we have $\kappa^{\prime}(H[V(P) \cup V(Q)]) \geq 3$, and so by $|V(L)|=10$ and by Lemma 1.2.3(ii), $H[V(P) \cup V(Q)]$ is not reduced, contrary to the assumption that H is reduced. Hence by symmetry we assume that z_{1} or z_{2} is adjacent to a vertex z^{\prime} not on P. Let $z \in\left\{z_{1}, z_{2}\right\}$. By Claim 1 in the proof of Lemma 4.2.4, z is not adjacent to any vertex in $Q-V(P)$. Let $z^{\prime} \in N_{H}(z)-V(P)$. By Definition 4.2.3 (ii), H has a $\left(z^{\prime}, z_{i}\right)$-path Q_{z}, for some $0 \leq i \leq 6$ such that $V\left(Q_{z}\right) \cap V(P)=\left\{z_{i}\right\}$. By Lemma 4.2.4, $V\left(Q_{z}\right) \cap V(Q) \subseteq\left\{z_{0}, z_{6}\right\}$. By (4.1), $z_{i} \notin N_{H}(z) \cap V(P)$. If $i \in\{4,5\}$, then $P\left[z_{0}, z\right] Q_{z}\left[z, z_{i}\right] P^{-}\left[z_{3}, z_{i}\right] x_{2} x_{1} z_{6}$ is longer than P. Therefore, if $z=z_{1}$, then $i \neq 0$ and so $i=6$. It follows that $z_{0} x_{1} x_{2} z_{3} z_{2} z_{1} z Q_{z}\left[z^{\prime}, z_{6}\right]$ is longer than P. Therefore, we must have $z=z_{2}$ and $N_{H}\left(z^{\prime}\right)=\left\{z_{0}, z_{2}, z_{6}\right\}$. It follows by Lemma 1.2.3 (i) that $H\left[V(Q) \cup\left\{z^{\prime}, z_{2}, z_{3}\right\}\right]$ is not reduced, contrary to the assumption that H is reduced. This proves (A).
(B). If not, we assume that for $j=1$ and so $V\left(Q_{1}^{1}\right) \cap V\left(Q_{2}^{1}\right)-\left\{u_{1}\right\} \cup V(P) \neq \emptyset$. By Lemma 4.2.5, the graph L depicted in Figure 2 is a subgraph of H containing P, contrary to (A).
(C). If it does, then by Lemma 4.2.4, H contains L as a subgraph, contrary to (A).
(D). By contradiction, we assume that $u_{1} u_{2} \in E(H-V(P))$. By (B), the paths in (4.4) are internally vertex disjoint. Without lose of generality, for $j \in\{1,2\}$, we assume $t_{1}^{j} \leq t_{2}^{j} \leq t_{3}^{j}$. By Definition 4.2.3 (ii), we may assume $t_{1}^{1} \leq t_{2}^{1}<t_{3}^{1}$, and $t_{2}^{1}<t_{3}^{2}$. By symmetry, we further assume that $t_{1}^{1} \leq t_{2}^{2}, t_{2}^{1} \leq t_{3}^{2}$. If $t_{1}^{1}<t_{2}^{1}<t_{2}^{2}<t_{3}^{2}$, then since $\operatorname{girth}(H) \geq 4$ and by (4.1), we must have $t_{2}^{1} \geq t_{1}^{1}+2, t_{2}^{2} \geq t_{2}^{1}+3$ and $t_{3}^{2} \geq t_{2}^{2}+2$. Thus $6 \geq h \geq t_{3}^{2} \geq t_{1}^{1}+7$, a contradiction. Hence we cannot have $t_{1}^{1}<t_{2}^{1}<t_{2}^{2}<t_{3}^{2}$. Similarly, we cannot have $t_{1}^{1}<t_{2}^{2}<t_{2}^{1}<t_{3}^{2}$. Hence we must have $\left|\left\{t_{1}^{1}, t_{2}^{2}, t_{2}^{1}, t_{3}^{2}\right\}\right| \leq\{2,3\}$,

Case D1. $\left|\left\{t_{1}^{1}, t_{2}^{2}, t_{2}^{1}, t_{3}^{2}\right\}\right|=3$
Thus either $t_{1}^{1}<t_{2}^{1}=t_{2}^{2}<t_{3}^{2}$, or $t_{1}^{1}=t_{2}^{2}<t_{2}^{1}<t_{3}^{2}$ or $t_{1}^{1}<t_{2}^{2}<t_{2}^{1}=t_{3}^{2}$ must hold (see Figure 6 (a) and (b)). As $\operatorname{girth}(H) \geq 4$, if $t_{1}^{1}<t_{2}^{1}=t_{2}^{2}<t_{3}^{2}$, then $\left|E\left(Q_{2}^{1}\right)\right|+\left|E\left(Q_{2}^{2}\right)\right| \geq 3$, and so either $Q_{1}^{1} \cup Q_{2}^{2} \cup\left\{u_{1} u_{2}\right\}$ or $Q_{2}^{1} \cup Q_{3}^{2} \cup\left\{u_{1} u_{2}\right\}$ is a forbidden path; if $t_{1}^{1}=t_{2}^{2}<t_{2}^{1}<t_{3}^{2}$, then $\left|E\left(Q_{1}^{1}\right)\right|+\left|E\left(Q_{2}^{2}\right)\right| \geq 3$, and so either $Q_{1}^{1} \cup Q_{3}^{2} \cup\left\{u_{1} u_{2}\right\}$ or $Q_{2}^{1} \cup Q_{2}^{2} \cup\left\{u_{1} u_{2}\right\}$ is a forbidden path. The case when $t_{1}^{1}<t_{2}^{2}<t_{2}^{1}=t_{3}^{2}$ is similar to that for $t_{1}^{1}=t_{2}^{2}<t_{2}^{1}<t_{3}^{2}$. Thus a contradiction to (C) always exists.

Figure 6. forbidden paths in Lemma 4.2.6(D).

Case D2. $\left|\left\{t_{1}^{1}, t_{2}^{2}, t_{2}^{1}, t_{3}^{2}\right\}\right|=2$.

Thus $\left\{t_{1}^{1}, t_{2}^{1}\right\}=\left\{t_{2}^{2}, t_{3}^{2}\right\}$, and so $t_{1}^{1}=t_{2}^{2}$ and $t_{2}^{1}=t_{3}^{2}$. By $\operatorname{girth}(H) \geq 4$, both $\left|E\left(Q_{1}^{1}\right)\right|+$ $\left|E\left(Q_{2}^{2}\right)\right| \geq 3$ and $\left|E\left(Q_{2}^{1}\right)\right|+\left|E\left(Q_{2}^{3}\right)\right| \geq 3$ (see Figure 6(c)). It follows that a forbidden path must exist, contrary to (C).

This completes the proof for Case D2, and so (D) is justified.

Lemma 4.2.7 If H is a graph satisfying Property $R(6)$, then H is not reduced.

Proof. By contradiction, we assume that H is a smallest counterexample, and so H is reduced. Then by Theorem 1.2.2, $\operatorname{girth}(H) \geq 4$. We shall assume and use the notations of (4.1).

If $|V(H)| \leq 8$, then by Lemma 1.2.3, H is not reduced. Hence we must have $\mid V(H)-$ $V(P) \mid \geq 2$. If H has a cut vertex w, then H has two connected nontrivial subgraphs H_{1} and H_{2} such that $H=H_{1} \cup H_{2}$ and $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\{w\}$. If for some $i \in\{1,2\}$, $w_{1}, w_{2} \in V\left(H_{i}\right)$, then by the minimality of H, H_{i} is not reduced. If for $i \in\{1,2\}$, $w_{i} \in V\left(H_{i}\right)$, then applying the minimality of H to w_{1}, w in H_{1}, we conclude that H_{1} is not reduced. These contradictions show that

$$
\begin{equation*}
\kappa(H) \geq 2 \tag{4.6}
\end{equation*}
$$

Claim 1. $|V(H)-V(P)| \geq 4$.
If $|V(H)-V(P)|<4$, then as $|V(P)| \leq 7,|V(H)| \leq 10$. Construct a new graph G from H by adding a new vertex z, which is adjacent to both w_{1} and w_{2}. Then z is the only vertex of degree 2 in G and $|V(G)| \leq 11$. By (4.6) and Lemma 1.2.3 (iv), the reduction of G is either $K_{2,3}$, whence H is not reduced; or is in $\{P(10), P(10)(e)\}$, whence a longest path connecting w_{1} and w_{2} in H is at least 9 . These contradictions establish Claim 1.

By Lemma 4.2.6(D), for any $u_{j} \in V(H)-V(P), z_{t_{1}^{j}}, z_{t_{2}^{j}}, z_{t_{3}^{j}} \in N_{H}\left(u_{j}\right) \subseteq V(P)$. By Claim 1, $|E(G)|=|E(P)|+|E(G)-E(P)| \geq|V(P)|-1+3|V(H)-V(P)|=3|V(H)|-$ $1-2|V(P)| \geq 2|V(H)|-1+|V(H)-V(P)|-|V(P)| \geq 2|V(H)|+3-7=2|V(H)|-4$. By Theorem 1.2.2(vi) $F(H)=2|V(H)|-|E(H)|-2 \leq 2$. By Theorem 1.2.2(vi), either H is not reduced, contrary to the assumption; or H is a $K_{2, t}$ for some integer $t \geq 11-2=9$, contrary to the fact that H has a path of length at least 6 . This proves the lemma.

4.3 Proof of Theorem 4.1.4

In order to prove Theorem 4.1.4, we need an auxiliary theorem as stated below. The proof of Theorem 4.3.1 will be given in Section 4.

Theorem 4.3.1 Suppose G is a graph such that $G \neq H_{8}$, and satisfies $\kappa(G) \geq 2$ and $\kappa^{\prime}(G) \geq 3$. Let $e=v_{0} v_{1}$ and $e^{\prime}=v_{c-1} v_{c}$ be edges in G, and $P=v_{e} v_{1} \cdots v_{c-1} v_{e^{\prime}}$ be a longest $\left(v_{e}, v_{e^{\prime}}\right)$-path in $G\left(e, e^{\prime}\right)$ with $c=|E(P)| \leq 8$. If $G\left(e, e^{\prime}\right)$ is reduced and contains no spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail, then $V(G)=\left\{v_{i}: 0 \leq i \leq c\right\}$.

Proof of Theorem 4.1.4. Let G be a counterexample to Theorem ?? with

$$
\begin{equation*}
|V(G)| \text { is minimized. } \tag{4.7}
\end{equation*}
$$

Let $e, e^{\prime} \in E(G)$ be edges such that the length of a longest $\left(v_{e}, v_{e^{\prime}}\right)$-path in $G\left(e, e^{\prime}\right)$ is at most 8 and such that $G\left(e, e^{\prime}\right)$ does not have a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail. If $G=H_{8}$, then it is routine to verify that, up to isomorphism, $e=v_{1} v_{5}$ and $e^{\prime}=v_{3} v_{7}$ (using notations in Figure 1 or Figure 7). Hence we assume that $G \neq H_{8}$. Denote $e=z_{0} z_{1}$ and $e^{\prime}=z_{c-1} z_{c}$ and let $P=v_{e} z_{1} \cdots z_{c-1} z_{e^{\prime}}$ be a longest $\left(v_{e}, v_{e^{\prime}}\right)$-path in $G\left(e, e^{\prime}\right)$, By the assumption of Theorem 4.1.4, $c \leq 8$. By (4.7), by Lemmas 4.2 .1 and 4.2.2, we may assume that

$$
\begin{equation*}
\kappa(G) \geq 2 \text { and } G\left(e, e^{\prime}\right) \text { is reduced. } \tag{4.8}
\end{equation*}
$$

By Theorem 4.3.1, $V(G)=\left\{z_{i}: 0 \leq i \leq c\right\}$. Obtain a new graph L_{w} from $G\left(e, e^{\prime}\right)$ by adding a new vertex w and new edges $w v_{e}$ and $w v_{e^{\prime}}$. Then $G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail if and only if L_{w} is supereulerian. Since $|V(G)|=c+1 \leq 9$, we have $\left|V\left(L_{w}\right)\right| \leq|V(G)|+3=12$. As L_{w} has exactly one edge cut of size 2 , it follows by Lemma 1.2.3(iv) that either L is supereulerian, or the reduction of L_{z} is $P(10)$ or $P(10)(f)$, for any edge $f \in E(P(10))$.

If the reduction of L_{w} is $P(10)$, then one vertex v_{L} (say) of $P(10)$ must be the image of a nontrivial collapsible subgraph of L_{w} containing the new vertex w. As $P(10)$ has a cycle of length 9 containing v_{L}, this implies that $G\left(e, e^{\prime}\right)$ has a $\left(v_{e}, v_{e^{\prime}}\right)$-path of length at least 9 , contrary to the assumption of Theorem 4.1.4. If L_{w} is supereulerian, then
$G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail, contrary to (4.7). Hence the reduction of L_{w} must be isomorphic to $P(10)(f)$. (In Figure 7, we choose $f=v_{5}^{\prime} v_{7}^{\prime}$ as an illustration.) Thus w must be the only vertex of degree 2 in $P(10)(f)$.

If any vertex w^{\prime} of $P(10)(f)-w$ is the contraction image of a nontrivial collapsible subgraph of $G\left(e, e^{\prime}\right)$, then $P(10)(f)$ has a cycle containing both w and w^{\prime} with length 10. By definition of contraction, this cycle can be lifted to yield a $\left(v_{e}, v_{e}^{\prime}\right)$-path in $G\left(e, e^{\prime}\right)$ of length at least 9 , contrary to the assumption of Theorem 4.1.4. Thus we must have $L_{w}=P(10)(f)$, implying that $G=H_{8}$ with, up to isomorphism, $e=v_{1} v_{5}$ and $e^{\prime}=v_{3} v_{7}$. (See Figure 7. The labels indicates that the H_{8} in Figure 7 is a different drawing of the H_{8} in Figure 1.) This contradicts to the assumption that $G \neq H_{8}$, and completes the proof of the theorem.

Figure 7. The graphs in the proof of Theorem 4.1.4.

4.4 Proof of Theorem 4.3.1

We denote $e=v_{0} v_{1}$ and $e^{\prime}=v_{c-1} v_{c}$. For any longest $\left(v_{e}, v_{e}^{\prime}\right)$-path $P=v_{e} v_{1} \ldots v_{c-1} v_{e^{\prime}}$ in $G\left(e, e^{\prime}\right)$, define $P^{\prime}=v_{0} v_{1} \ldots v_{c-1} v_{c}$ and $J=J(P)=G\left(e, e^{\prime}\right)-\left(V(P) \cup\left\{v_{0}, v_{c}\right\}\right)=G-V\left(P^{\prime}\right)$. The strategy of the proof is to work on a counterexample G. First show that $E(J)=\emptyset$ for any longest $\left(v_{e}, v_{e}^{\prime}\right)$-path P in $G\left(e, e^{\prime}\right)$. Then we use case analysis to show that if $|V(J)| \geq 2$, then a longer $\left(v_{e}, v_{e}^{\prime}\right)$-path or a nontrivial collapsible subgraph can always be
found. Finally, we prove that assuming $|V(J)|=1$ will also yield a similar contradiction, which forces that $V(J)=\emptyset$, and completes the proof of Theorem 4.3.1.

If H is a subgraph of a graph Γ, we define the set of vertices of attachment of H in Γ as

$$
A_{\Gamma}(H)=\{v \in V(H): \quad v \text { is adjacent to a vertex in } V(\Gamma)-V(H)\}
$$

To prove Theorem 4.3.1, we assume $G \neq W_{8}$,

$$
\begin{equation*}
P=v_{e} v_{1} \cdots v_{c-1} v_{e^{\prime}} \text { is a longest }\left(v_{e}, v_{e^{\prime}}\right) \text {-path in } G\left(e, e^{\prime}\right), \tag{4.9}
\end{equation*}
$$

that $G\left(e, e^{\prime}\right)$ has no spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail and that

$$
\begin{equation*}
\left.c \leq 8 \text { and } G\left(e, e^{\prime}\right) \text { is reduced (and so } \operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4\right) \tag{4.10}
\end{equation*}
$$

If $e=e^{\prime}$, then let $e=w_{1} w_{2}$. Thus in $G-e$, every longest $\left(w, w^{\prime}\right)$-path has length at most 6 , and so $G-e$ has Property $R(6)$. By Lemma 4.2.7, $G-e$ is not reduced, contrary to (4.10). Throughout the rest of this section, we assume that $e \neq e^{\prime}$. For each vertex $u \in V(J)$, as $\kappa(G) \geq 2$ and $\kappa^{\prime}(G) \geq 3$, we note that G has edge-disjoint ($\left.u, v_{i_{j}}\right)$-path Q_{i} with

$$
\begin{equation*}
V\left(Q_{i}\right) \cap V\left(P^{\prime}\right)=\left\{v_{i_{j}}\right\}(1 \leq j \leq 3) \text { and }\left|\left\{v_{i_{1}}, v_{i_{2}}, v_{i_{3}}\right\}\right| \geq 2 . \tag{4.11}
\end{equation*}
$$

The following notation will be used in the proof:

$$
\begin{equation*}
Q_{j}=u z_{1}^{j} z_{2}^{j} \ldots z_{n_{j}}^{j} v_{i_{j}}, \text { for } j=1,2,3 . \tag{4.12}
\end{equation*}
$$

Claim 1. In each component of J, choose a vertex u and the related paths $Q_{i}(1 \leq i \leq 3)$ such that

$$
\begin{equation*}
\left|\left\{v_{i_{1}}, v_{i_{2}}, v_{i_{3}}\right\}\right| \text { is maximized. } \tag{4.13}
\end{equation*}
$$

Then $\left|\left\{i_{1}, i_{2}, i_{3}\right\}\right|=3$.
Proof of Claim 1. By contradiction and without lose of generality, we assume that J has a component J_{1} with a vertex $u \in V\left(J_{1}\right)$ satisfying (4.13) with $\left\{i_{1}, i_{2}, i_{3}\right\}=\left\{i_{1}, i_{2}\right\}$. Since u satisfies (4.13), we have $A_{G\left(e, e^{\prime}\right)}\left(J_{1}\right)=\left\{v_{i_{1}}, v_{i_{2}}\right\}$. It follows by $c \leq 8$ that J_{1} has Property $R(6)$ with $\left\{w_{1}, w_{2}\right\}=\left\{v_{i_{1}}, v_{i_{2}}\right\}$. By Lemma 4.2.7, J_{1} is not reduced, contrary to (4.10). This proves Claim 1.

(a) L_{1}

(b) L_{2}

(c) L_{3}

Figure 8. The subgraphs in Claim 2(B).

Claim 2. Let $u \in V(J)$ and define the Q_{j} 's as in (4.11). Each of the following holds.
(A) J does not have an edge $u_{1} u_{2} \in E(J)$ such that $N_{G}\left(u_{1}\right) \cup N_{G}\left(u_{2}\right)-\left\{u_{1}, u_{2}\right\} \subseteq$ $V(P) \cup\left\{v_{0}, v_{c}\right\}$.
(B) If $v_{0} \neq v_{c}$, and if a nontrivial component of J contains a vertex $u \in N_{G}\left(v_{i}\right)$ for some i with $1 \leq i \leq c-1$, then either $G\left(e, e^{\prime}\right)$ is not reduced or $G\left(e, e^{\prime}\right)$ has a $\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P, or $G\left(e, e^{\prime}\right)$ has a subgraph isomorphic to one of the graphs depicted in Figure 8. (C) $E(J)=\emptyset$.

Proof of Claim 2. (A). Assume that such u_{1}, u_{2} exist. Let $v_{i_{1}}, v_{i_{2}} \in N_{G}\left(u_{1}\right)-\left\{u_{2}\right\}$ and $v_{j_{1}}, v_{j_{2}} \in N_{G}\left(u_{2}\right)-\left\{u_{1}\right\}$. By (4.10), $i_{1}, i_{2}, j_{1}, j_{2}$ are mutually distinct. By symmetry, we assume that $j_{1}<j_{2}$ and $i_{1}<\min \left\{i_{2}, j_{1}\right\}<j_{2}$.

Case A1. $i_{1}<i_{2}<j_{1}<j_{2}$.
By (4.9), $i_{2} \geq i_{1}+2, j_{1} \geq i_{2}+3$ and $j_{2} \geq j_{1}+2$. Hence $j_{2} \geq i_{1}+7$. It follows that we must have $i_{1}=0$ or $j_{2}=c=8$. If $i_{1}=0$, then by (4.9), $i_{2} \geq 3$, and so $j_{2} \geq i_{2}+5=8$, forcing $j_{1}=6$ and $j_{2}=8$. But then, $P\left[v_{e}, v_{6}\right] u_{2} v_{8} v_{e^{\prime}}$ is longer than P, contrary to (4.9).

Case A2. $i_{1}<j_{1}<i_{2}<j_{2}$.
By (4.9), $j_{2} \geq i_{1}+3, i_{2} \geq j_{1}+3$ and $j_{2} \geq i_{2}+3$. It follows that $8=c \geq j_{2} \geq i_{1}+9$, a contradiction.

Case A3. $i_{1}<j_{1}<j_{2}<i_{2}$.
By (4.9), $j_{1} \geq i_{1}+3, j_{2} \geq j_{1}+2$ and $i_{2} \geq j_{2}+3$. Hence $i_{2} \geq i_{1}+7$. It follows that we must have $i_{1}=0$ or $i_{2}=c=8$. If $i_{1}=0$, then by (4.9), $j_{1} \geq 4$, and so $i_{2} \geq j_{1}+5=9$, forcing $j_{2}=6$ and $i_{2}=8$. But then, $P\left[v_{e}, v_{6}\right] u_{2} u_{1} v_{8} v_{e^{\prime}}$ is longer than P, contrary to (4.9).
(B). Let H be a nontrivial component of J with a vertex $u \in V(H)$ satisfying the hypothesis of Claim 2(B). Since $E(H) \neq \emptyset, H$ contains a longest $\left(u, u^{\prime}\right)$-path Q for some vertex $u^{\prime} \in A_{G}(H)-\{u\}$ such that u^{\prime} is adjacent to a vertex v_{j} with $j \neq i$. Since $\kappa(G) \geq 2$, such u^{\prime} exists. By symmetry, we may assume that $i<j$. Denote $Q=u_{0} u_{1} u_{2} \ldots u_{q}$ with $u=u_{0}, u^{\prime}=u_{q}$. By (4.9), we have $4 \geq q \geq 2$. If every path from a vertex in Q to a vertex in $P \cup\left\{v_{0}, v_{c}\right\}$ must use v_{i} or v_{j}, then by Lemma 4.2.7 (with w_{i}, w_{i} replaced by v_{i}, v_{j}), $G\left[V(H) \cup\left\{v_{i}, v_{j}\right\}\right]$ is not reduced. Hence we may assume that for some h with $0 \leq h \leq q$, and a $\left(u_{h}, v_{k}\right)$-path Q^{\prime} with $k \notin\{i, j\}$.

Case B1. $i<k<j$. By (4.9), we have

$$
\begin{cases}k \geq i+2, j \geq k+|E(Q)|+2 \geq i+6 & \text { if } h=0 \\ k \geq i+3, j \geq k+\left|E\left(Q\left[u_{h}, u_{q}\right]\right)\right|+2 \geq i+6 & \text { if } 0<h<q \\ k \geq i+|E(Q)|+2, j \geq k+2 \geq i+6 & \text { if } h=q\end{cases}
$$

Since $i \geq 1$, we must have $i=1, j \in\{7,8\}, k \in\{3,4,5\},\left|E\left(Q^{\prime}\right)\right|=1$ and $|E(Q)|=2$. Let

$$
z= \begin{cases}u_{1} & \text { if } h=0(\text { whence } k=3) \text { or if } h=2(\text { whence } k=5) \\ u_{0} & \text { if } h=1(\text { whence } k=4)\end{cases}
$$

As $\kappa^{\prime}(G) \geq 3, G\left(e, e^{\prime}\right)$ has a $\left(z, v_{l}\right)$-path T_{1} such that $V(Q) \cap V\left(T_{1}\right)=\{z\}$. Tables 4A and 4B below indicate that either a $\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P always exists, or when $k=3$ and $h=0, l=j \in\{7,8\}$. Thus we may assume that $k=3$ and $h=0$, either $u_{0} v_{7}, u_{2} v_{7} \in E(G)$ or $u_{0} v_{8}, u_{2} v_{8} \in E(G)$. By symmetry, either $u_{0} v_{0}, u_{2} v_{0} \in E(G)$ or $u_{0} v_{1}, u_{2} v_{1} \in E(G)$. Thus $G\left(e, e^{\prime}\right)$ contains a graph in Figure 8 as a subgraph.

k	h	j	z	l	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P $\left(\right.$ or collapsible subgraph in $\left.G\left(e, e^{\prime}\right)\right)$
3	0	7,8	u_{1}	0	$v_{e} v_{0} u_{1} u_{0} P\left[v_{1}, v_{e^{\prime}}\right]$
3	0	7,8	u_{1}	1	$v_{e} v_{0} u_{1} P\left[v_{1}, v_{e^{\prime}}\right]$
3	0	7,8	u_{1}	2,3	$v_{e} v_{1} u_{0} u_{1} P\left[v_{l}, v_{e^{\prime}}\right]$
3	0	7,8	u_{1}	4,5	$v_{e} v_{1} v_{2} v_{3} u_{0} u_{1} P\left[v_{l}, v_{e^{\prime}}\right]$
3	0	7,8	u_{1}	6	$\left.v_{e} P\left[v_{1}, v_{6}\right] u_{1} u_{2} v_{7} v_{e^{\prime}}\right]$
3	0	7 (or 8$)$	u_{1}	$7($ or 8$)$	$G\left[\left\{u_{1}, u_{2}, v_{7}\right\}\right] \cong K_{3}$ or 0
3	0	7	u_{1}	8	$\left.\left.\left.v_{e} P\left[u_{1}, u_{2}, v_{8}\right\}\right] \cong K_{3}, v_{7}\right] u_{2} u_{1} v_{8} v_{e^{\prime}}\right]$
3	0	8	u_{1}	7	$\left.v_{e} P\left[v_{1}, v_{7}\right] u_{1} u_{2} v_{8} v_{e^{\prime}}\right]$

Table 4A: Case B1 with $k=3$ and $h=0$
(The case $k=5$ and $h=2$ is symmetric to this).

k	h	j	z	l	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P $\left(\right.$ or collapsible subgraph in $\left.G\left(e, e^{\prime}\right)\right)$
4	1	7,8	u_{0}	0	$v_{e} v_{0} u_{0} P\left[v_{1}, v_{e^{\prime}}\right]$
4	1	7,8	u_{0}	$2($ or 4$)$	$G\left[\left\{u_{1}, v_{1}, v_{2}\right\}\right] \cong K_{3}$ or $G\left[\left\{u_{1}, u_{2}, v_{4}\right\}\right] \cong K_{3}$
4	1	7,8	u_{0}	3	$P\left[v_{e}, v_{3}\right] u_{0} u_{1} P\left[v_{4}, v_{e^{\prime}}\right]$
4	1	7,8	u_{0}	5,6	$P\left[v_{e}, v_{4}\right] u_{1} u_{0} P\left[v_{l}, v_{e^{\prime}}\right]$
4	1	7	u_{0}	8	$\left.P\left[v_{e}, v_{7}\right] u_{2} u_{1} u_{0} v_{8} v_{e^{\prime}}\right]$
4	1	8	u_{0}	7	$\left.P\left[v_{e}, v_{7}\right] u_{0} u_{1} u_{2} v_{8} v_{e^{\prime}}\right]$

Table 4B: Case B1 with $k=3$ and $h=0$.

Case B2. $k<i<j$. If $h>0$, then by (4.9), $i \geq k+\left|E\left(Q\left[u_{1}, u_{h}\right]\right)\right|+2$ and $8 \geq j \geq$ $i+|E(Q)|+2 \geq k+\left|E\left(Q\left[u_{1}, u_{h}\right]\right)\right|+5$. It follows that either $k=1, i=4,|E(Q)|=2$, $h=1, u_{1} v_{1} \in E(G)$ and $j=8$, or $k=0, i=4,|E(Q)|=2, h=1, u_{1} v_{0} \in E(G)$ and $j=8$. In any case, $P\left[v_{e}, v_{4}\right] u_{0} u_{1} u_{2} v_{8} v_{e^{\prime}}$ is longer than P. Hence we must have $h=0$. By (4.9), $i \geq k+2$ and $j \geq i+|E(Q)|+2 \geq k+\left|E\left(Q\left[u_{1}, u_{h}\right]\right)\right|+4$. Thus $k \in\{0,1\}, i=3$,
$u_{0} v_{k} \in E(G), j \in\{7,8\}$ and $|E(Q)|=2$. As $\kappa^{\prime}(G) \geq 3, G\left(e, e^{\prime}\right)$ has a $\left(u_{1}, v_{l}\right)$-path T_{2} such that $V(Q) \cap V\left(T_{2}\right)=\left\{u_{1}\right\}$. Table 5 completes the proof of Case B2.

k	h	j	l	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P $\left(\right.$ or collapsible subgraph in $\left.G\left(e, e^{\prime}\right)\right)$
0	0	7,8	$0($ or 3, or $j)$	$G\left[\left\{u_{0}, u_{1}, v_{0}\right\}\right] \cong K_{3}$ or $G\left[\left\{u_{1}, u_{2}, v_{3}\right\}\right] \cong$ K_{3} or $G\left[\left\{u_{1}, u_{2}, v_{j}\right\}\right] \cong K_{3}$
0	0	7,8	1,2	$v_{e} v_{0} u_{0} u_{1} P\left[v_{l}, v_{e^{\prime}}\right]$
0	0	7,8	4,5	$P\left[v_{e}, v_{3}\right] u_{0} u_{1} P\left[v_{l}, v_{e^{\prime}}\right]$
0	0	7,8	6	$P\left[v_{e}, v_{l}\right] u_{1} u_{2} v_{j} v_{e^{\prime}}$
0	0	7	8	$P\left[v_{e}, v_{7}\right] u_{2} u_{1} v_{8} v_{e^{\prime}}$
0	0	8	7	$P\left[v_{e}, v_{7}\right] u_{1} u_{2} v_{8} v_{e^{\prime}}$

Table 5: Case B2 .

Case B3. $i<j<k$. If $h<q$, then by (4.9), $j \geq i+|E(Q)|+2$ and $8 \geq k \geq$ $j+\left|E\left(Q\left[u_{h}, u_{q}\right]\right)\right|+2 \geq i+7$. It follows that $i=1, j=4,|E(Q)|=2, h=1, u_{1} v_{8} \in E(G)$ and $k=8$, whence $v_{e} v_{1} u_{0} u_{1} u_{2} P\left[v_{4}, v_{e^{\prime}}\right]$ is longer than P. Therefore, we must have $h=q$. By (4.9), $j \geq i+|E(Q)|+2$ and $k \geq j+2 \geq i+|E(Q)|+4$. Thus $i=1, j=5, k \in\{7,8\}$, $|E(Q)|=2$ and $u_{2} v_{k} \in E(G)$. As $\kappa^{\prime}(G) \geq 3, G\left(e, e^{\prime}\right)$ has a $\left(u_{1}, v_{l}\right)$-path T_{3} such that $V(Q) \cap V\left(T_{3}\right)=\left\{u_{1}\right\}$. Table 6 completes the proof of Case B3.

k	h	j	l	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P $\left(\right.$ or collapsible subgraph in $\left.G\left(e, e^{\prime}\right)\right)$
7,8	2	5	1 (or 5, or $k)$	$G\left[\left\{u_{0}, u_{1}, v_{1}\right\}\right] \cong K_{3}$ or $G\left[\left\{u_{1}, u_{2}, v_{5}\right\}\right] \cong$ K_{3} or $G\left[\left\{u_{1}, u_{2}, v_{k}\right\}\right] \cong K_{3}$
7,8	2	5	1	$v_{e} v_{0} u_{1} u_{0} P\left[v_{l}, v_{e^{\prime}}\right]$
7,8	2	5	2,3	$v_{e} v_{1} u_{0} u_{1} P\left[v_{l}, v_{e^{\prime}}\right]$
7,8	2	5	4	$P\left[v_{e}, v_{4}\right] u_{1} u_{2} P\left[v_{5}, v_{e^{\prime}}\right]$
7,8	2	5	6	$P\left[v_{e}, v_{6}\right] u_{1} u_{2} v_{k} v_{e^{\prime}}$
7	2	5	8	$P\left[v_{e}, v_{7}\right] u_{2} u_{1} v_{8} v_{e^{\prime}}$
8	2	5	7	$P\left[v_{e}, v_{7}\right] u_{1} u_{2} v_{8} v_{e^{\prime}}$

Table 6: Case B3 .
(C). By Claim 2(B), for any $i \in\{2,3,5,6\}$, either $N_{G}\left(v_{i}\right) \subseteq V(P) \cup\left\{v_{0}, v_{c}\right\}$ or for some $u \in V(J)$,

$$
\begin{equation*}
v_{i} \in N_{G}(u) \subseteq V(P) \cup\left\{v_{0}, v_{c}\right\} . \tag{4.14}
\end{equation*}
$$

Assume first that $G\left(e, e^{\prime}\right)$ does not have any graph depicted in Figure 8 as a subgraph. By Claim 2(B), for any nontrivial component L of J, we must have $A_{G}(L)=\left\{v_{0}, v_{c}\right\}$. But by Claim 1, we should have $\left|A_{G}(L)\right| \geq 3$, a contradiction. Thus (C) must hold as J does not have any nontrivial components. Hence we assume that $G\left(e, e^{\prime}\right)$ has a graph in Figure 8 as a subgraph.

For $2 \leq i \leq 3$, by $\kappa(G) \geq 3, N_{G}\left(v_{i}\right)-N_{P}\left(v_{i}\right)$ contains a vertex x_{i}^{\prime}. Define,

$$
x_{i}=\left\{\begin{array}{ll}
x_{i}^{\prime} & \text { if } x_{i}^{\prime} \notin V(J) \tag{4.15}\\
\text { a vertex in } N_{G}\left(x_{i}^{\prime}\right) \cap V(P)-\left\{v_{i}\right\} & \text { if } x_{i}^{\prime} \in V(J)
\end{array} .\right.
$$

Case C1. $G\left(e, e^{\prime}\right)$ has L_{1} as a subgraph.
Since $G\left(e, e^{\prime}\right)$ is reduced, if $x^{\prime} \notin V(J)$, then $x \notin\left\{v_{1}, v_{3}, v_{4}\right\}$ and if $x^{\prime} \in V(J)$, then as $\left|N_{G}\left(x^{\prime}\right) \cap\left(V(P) \cup\left\{v_{0}, v_{c}\right\}\right)\right| \geq 3$, we can choose $x_{2} \notin\left\{v_{1}, v_{3}, v_{4}\right\}$. Similarly, we may assume that $x_{3} \notin\left\{v_{1}, v_{2}, v_{4}\right\}$. Table 7 shows that we must have $x_{2}=x_{2}^{\prime}=x_{3}=x_{3}^{\prime}=v_{7}$, and so $G\left(e, e^{\prime}\right)\left[\left\{v_{2}, v_{3}, v_{7}\right\}\right] \cong K_{3}$, contrary to (4.10).

x_{2}	x_{3}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P
v_{0}		$v_{e} v_{0} v_{2} v_{1} u_{0} u_{1} P\left[v_{4}, v_{e^{\prime}}\right]$ or $v_{e} v_{0} x_{2}^{\prime} v_{2} v_{1} u_{0} u_{1} P\left[v_{4}, v_{e^{\prime}}\right]$
v_{5}, v_{6}		$v_{e} v_{1} u_{2} u_{1} v_{4} v_{3} v_{2} P\left[x_{2}, v_{e^{\prime}}\right]$ or $v_{e} v_{1} u_{2} u_{1} v_{4} v_{3} v_{2} x_{2}^{\prime} P\left[x_{2}, v_{e^{\prime}}\right]$
v_{8}		$v_{e} v_{1} u_{2} u_{1} u_{0} v_{7} v_{6} v_{5} v_{4} v_{3} v_{2} v_{8} v_{e^{\prime}}$ or $v_{e} v_{1} u_{2} u_{1} u_{0} v_{7} v_{6} v_{5} v_{4} v_{3} v_{2} x_{2}^{\prime} v_{8} v_{e^{\prime}}$
	v_{0} v_{0}	$v_{e} v_{0} v_{3} v_{2} v_{1} u_{1} u_{2} P\left[v_{4}, v_{e^{\prime}}\right]$ or $v_{e} v_{0} x_{3}^{\prime} v_{3} v_{2} v_{1} u_{1} u_{2} P\left[v_{4}, v_{e^{\prime}}\right]$
	v_{5}	$v_{e} v_{1} u_{0} u_{1} v_{4} v_{3} P\left[v_{5}, v_{e^{\prime}}\right]$ or
$v_{e} v_{1} u_{0} u_{1} v_{4} v_{3} x_{3}^{\prime} P\left[v_{5}, v_{e^{\prime}}\right]$		

Table 7: Case C1 in Claim 2.

Case C2. $G\left(e, e^{\prime}\right)$ has L_{2} as a subgraph.
As in Case C1, since $G\left(e, e^{\prime}\right)$ is reduced, we may assume that $x_{2} \notin\left\{v_{1}, v_{3}, v_{4}\right\}$. As shown in Table 8, we always obtain a contradiction to (4.9).

x_{2}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P
v_{0}	$v_{e} v_{0} v_{2} v_{1} u_{0} u_{1} P\left[v_{4}, v_{e^{\prime}}\right]$ or $v_{e} v_{0} x_{2}^{\prime} v_{2} v_{1} u_{0} u_{1} P\left[v_{4}, v_{e^{\prime}}\right]$
v_{5}, v_{6}	$v_{e} v_{1} u_{0} u_{1} v_{4} v_{3} v_{2} P\left[x_{2}, v_{e^{\prime}}\right]$ or $v_{e} v_{1} u_{0} u_{1} v_{4} v_{3} v_{2} x_{2}^{\prime} P\left[x_{2}, v_{e^{\prime}}\right]$
v_{7}	$P\left[v_{e}, v_{2}\right] v_{7} v_{6} v_{5} v_{4} u_{1} u_{2} v_{8} v_{e^{\prime}}$ or $P\left[v_{e}, v_{2}\right] x_{2}^{\prime} v_{7} v_{6} v_{5} v_{4} u_{1} u_{2} v_{8} v_{e^{\prime}}$
v_{8}	$v_{e} v_{1} u_{2} u_{1} u_{0} v_{8} P\left[v_{2}, v_{e^{\prime}}\right]$ or $v_{e} v_{1} u_{2} u_{1} u_{0} v_{8} x_{2}^{\prime} P\left[v_{2}, v_{e^{\prime}}\right]$

Table 8: Case C2 in Claim 2.

Case C3. $\quad G\left(e, e^{\prime}\right)$ has L_{3} as a subgraph.

As in Case C1, since $G\left(e, e^{\prime}\right)$ is reduced, we may assume that $x_{2} \notin\left\{v_{1}, v_{3}, v_{4}\right\}$. As shown in Table 9, we always obtain a contradiction to (4.9). This proves Case (C3) and completes the proof of Claim 2.

x_{2}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P
v_{0}	$v_{e} v_{1} v_{2} v_{0} u_{0} u_{1} P\left[v_{4}, v_{e^{\prime}}\right]$ or $v_{e} v_{1} v_{2} x_{2}^{\prime} v_{0} u_{0} u_{1} P\left[v_{4}, v_{e^{\prime}}\right]$
v_{5}	$v_{e} v_{0} u_{0} u_{1} v_{4} v_{3} v_{2} P\left[x_{5}, v_{e^{\prime}}\right]$ or $v_{e} v_{0} u_{0} u_{1} v_{4} v_{3} v_{2} x_{2}^{\prime} P\left[x_{5}, v_{e^{\prime}}\right]$
v_{6}, v_{7}	$P\left[v_{e}, v_{2}\right] P^{-}\left[x_{2}, v_{4}\right] u_{1} u_{2} v_{8} v_{e^{\prime}}$ or $P\left[v_{e}, v_{2}\right] x_{2}^{\prime} P^{-}\left[x_{2}, v_{4}\right] u_{1} u_{2} v_{8} v_{e^{\prime}}$
v_{8}	$v_{e} v_{0} u_{0} u_{1} u_{2} v_{8} P\left[v_{2}, v_{e^{\prime}}\right]$ or $v_{e} v_{0} u_{0} u_{1} u_{2} v_{8} x_{2}^{\prime} P\left[v_{2}, v_{e^{\prime}}\right]$

Table 9: Case C3 in Claim 2.

Let $V(J)=\left\{u_{1}, u_{2}, \cdots\right\}$. By Claim 2(C), if $j \geq 1$, then $N_{G}(u) \subseteq V(P) \cup\left\{v_{0}, v_{c}\right\}$. Thus we may denote that $N_{G}\left(u_{j}\right)=\left\{v_{i_{1}^{j}}, v_{i_{2}^{j}}, v_{i_{3}^{j}}\right\}$ with $i_{1}^{j}<i_{2}^{j}<i_{3}^{j}$. Claim 3 below follows from the fact that P is longest.

Claim 3. Let $u_{j} \in V\left((G)\left(e, e^{\prime}\right)\right)-V(P) \cup\left\{v_{0}, v_{c}\right\}$. Then

$$
i_{2}^{j} \geq\left\{\begin{array}{ll}
i_{1}^{j}+2, & \text { if } i_{1} \neq 0 \\
3, & \text { if } i_{1}=0
\end{array}, \text { and } i_{3}^{j} \geq\left\{\begin{array}{ll}
i_{2}^{j}+2, & \text { if } c>i_{3}^{j} \\
i_{2}^{j}+3, & \text { if } c=i_{3}^{j}
\end{array} .\right.\right.
$$

Therefore, $c \geq 6$.
Claim 4. Let $u_{j} \in V(J)$. If $i_{2}^{j}=i_{1}^{j}+2$, then $N_{G}\left(v_{i_{1}^{j}+1}\right) \subseteq V(P) \cup\left\{v_{0}, v_{c}\right\}$. If $i_{3}^{j}=i_{2}^{j}+2$, then $N_{G}\left(v_{i_{2}^{j}+1}\right) \subseteq V(P) \cup\left\{v_{0}, v_{c}\right\}$.

Proof of Claim 4. By symmetry, we only prove the case when $i_{2}^{j}=i_{1}^{j}+2$. Let $P^{\prime}=P\left[v_{e}, v_{i_{1}^{j}}\right] u_{j} P^{-}\left[v_{i_{2}^{j}}, v_{e^{\prime}}\right]$. Then $|P|=\left|V\left(P^{\prime}\right)\right|$. Applying Claim 2(C) on P^{\prime}, we conclude that $E\left(G\left(e, e^{\prime}\right)-\left(V\left(P^{\prime}\right) \cup\left\{v_{0}, v_{c}\right\}\right)\right)=\emptyset$, and so $N_{G}\left(v_{i_{1}^{j}+1}\right) \subseteq V\left(P^{\prime}\right) \cup\left\{v_{0}, v_{c}\right\}$. Since $\operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4, u_{j} v_{i_{1}^{j}+1} \notin E(G)$. Thus $N_{G}\left(v_{i_{1}^{j}+1}\right) \subseteq V(P) \cup\left\{v_{0}, v_{c}\right\}$. This justifies Claim 4.

In Claims 5-8 below, we assume that $u_{1}, u_{2} \in V(J)$ and define $s=\min \left\{i_{1}^{1}, i_{2}^{1}, i_{3}^{1}, i_{1}^{2}, i_{2}^{2}, i_{3}^{2}\right\}$ and $\ell=\max \left\{i_{1}^{1}, i_{2}^{1}, i_{3}^{1}, i_{1}^{2}, i_{2}^{2}, i_{3}^{2}\right\}$. For any v_{i} with $1 \leq i \leq 7$, by $\kappa^{\prime}(G) \geq 3$, there exists $x_{i}^{\prime} \in N_{G}\left(v_{i}\right)-N_{P}\left(v_{i}\right)$. By Claim 2(C), either $x_{i}^{\prime} \in V(P) \cup\left\{v_{0}, v_{c}\right\}$, or $x_{i}^{\prime} \in V(J)$ with
$N_{G}\left(x_{i}^{\prime}\right) \subseteq V(P) \cup\left\{v_{0}, v_{c}\right\}$. Define x_{i} as in (4.15). By (4.10) and (4.9), when $i-2 \geq 1$ and $i+2 \leq c-1$, we can always choose x_{i} so that

$$
\begin{equation*}
x_{i} \notin\left\{v_{i-2}, v_{i-1}, v_{i+1}, v_{i+2}\right\}, \text { unless } x_{i}^{\prime} \in V(J) \text { and } N_{G}\left(x_{i}^{\prime}\right)=\left\{v_{i-2}, v_{i}, v_{i+2}\right\} . \tag{4.16}
\end{equation*}
$$

Claim 5. Each of the following holds.
(i) $\ell-s \leq 8$. Furthermore, if $\ell-s=8$, then $c=8, \ell=8$ and $s=0$.
(ii) $i_{1}^{2} \leq i_{2}^{1}$. (By symmetry, $i_{1}^{1} \leq i_{2}^{2}, i_{3}^{1} \geq i_{2}^{2}$ and $i_{3}^{2} \geq i_{2}^{1}$.)
(iii) A $\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P exists if for some $s \in\{1,2\}$,

$$
1 \leq i_{1}^{1}<i_{s}^{2}<i_{2}^{1}<i_{s+1}^{2}<i_{3}^{1}<c \text { or } 1 \leq i_{1}^{2}<i_{s}^{1}<i_{2}^{2}<i_{s+1}^{1}<i_{3}^{2}<c .
$$

(iv) We cannot have $i_{1}^{1}=i_{1}^{2}<i_{2}^{1}<i_{2}^{2}=i_{3}^{1}<i_{3}^{2}$. (By symmetry, we cannot have $i_{1}^{1}<i_{1}^{2}=i_{2}^{1}<i_{2}^{2}<i_{3}^{1}=i_{3}^{2}$.)
(v) We cannot have $i_{1}^{1}=i_{1}^{2}<i_{2}^{1}<i_{2}^{2}<i_{3}^{1}=i_{3}^{2}$.
(vi) $i_{2}^{2}=i_{2}^{1}$.

Proof of Claim 5. (i). Claim 5(i) follows immediately from $c \leq 8$.
(ii). We argue by contradiction to prove $i_{1}^{2} \leq i_{2}^{1}$. The proof for $i_{3}^{1} \geq i_{2}^{2}$ is omitted by symmetry. Assume that $i_{1}^{2}>i_{2}^{1}$.

Case 5(ii).1. $i_{3}^{2}>i_{3}^{1}$.
If $i_{2}^{2}>i_{3}^{1}$, then $i_{3}^{2} \geq i_{2}^{2}+2$. As $P\left[v_{e}, v_{i_{2}^{1}}\right] u_{1} P^{-}\left[v_{i_{3}^{1}}, v_{i_{1}^{2}}\right] u_{2} P\left[v_{i_{2}^{2}}, v_{e^{\prime}}\right]$ is not longer than P, we have $\left(i_{1}^{2}-i_{2}^{1}\right)+\left(i_{2}^{2}-i_{3}^{1}\right) \geq 4$ and so $i_{3}^{2}-i_{1}^{1} \geq 9$, contrary to Claim 5(i). If $i_{2}^{2}=i_{3}^{1}$, then as $P\left[v_{e}, v_{i_{2}^{1}}\right] u_{1} P^{-}\left[v_{i_{3}^{1}}, v_{i_{1}^{2}}\right] u_{2} P\left[v_{i_{3}^{2}}, v_{e^{\prime}}\right]$ is not longer than P, we have $\left(i_{1}^{2}-i_{2}^{1}\right)+\left(i_{3}^{2}-i_{2}^{2}\right) \geq 4$, and so $i_{3}^{2}-i_{1}^{1} \geq 8$. By Claim 5(i), $c=8, i_{1}^{1}=0$ and $i_{3}^{2}=8$. Thus $i_{2}^{1}=3, i_{3}^{1}=6$, and so the path $P\left[v_{e}, v_{6}\right] u_{2} v_{8} v_{e^{\prime}}$ is longer than P, contrary to (4.9). If $i_{2}^{2}<i_{3}^{1}$, then as $P\left[v_{e}, v_{i_{2}^{1}}\right] u_{1} P^{-}\left[v_{i_{3}^{1}}, v_{i_{1}^{2}}\right] u_{2} P\left[v_{i_{3}^{2}}, v_{e^{\prime}}\right]$ is not longer than P, and so $\left(i_{3}^{2}-i_{3}^{1}\right)+\left(i_{1}^{2}-i_{2}^{1}\right) \geq 4$. Since $i_{2}^{1}-i_{1}^{1} \geq 2$ and $i_{2}^{2}-i_{1}^{2} \geq 2$, we have $i_{3}^{2}-i_{1}^{1} \geq 9$, contrary to Claim 5(i).

Case 5(ii).2. $\quad i_{3}^{2}=i_{3}^{1}$.
By (4.9), $i_{3}^{1} \geq i_{1}^{1}+7$. As $i_{1}^{1}=0$ implies $i_{2}^{1} \geq 3$, we conclude that we always have
$c=v_{3}^{1}=8, i_{2}^{2}=6, i_{1}^{2}=3$, and $i_{1}^{1} \in\{0,1\}$. Hence $\left.P\left[v_{e}, v_{6}\right] u_{2} v_{8} v_{e^{\prime}}\right]$ is longer than P, contrary to (4.9).

Case 5(ii).3. $i_{3}^{2}<i_{3}^{1}$.
By (4.9), $i_{3}^{1} \geq i_{1}^{1}+8$, and so we must have $i_{1}^{1}=0, i_{3}^{1}=8$. That $i_{1}^{1}=0$ forces $i_{2}^{1} \geq 3$, and so $i_{3}^{1} \geq 9$, contrary to Claim 5(i).
(iii). If $1 \leq i_{1}^{1}<i_{s}^{2}<i_{2}^{1}<i_{s+1}^{2}<i_{3}^{1}<c$, then either $P\left[v_{e}, v_{i_{1}^{1}}\right] u_{1} P^{-}\left[v_{i_{2}^{1}}, v_{i_{s}^{2}}\right] u_{2} P\left[v_{i_{s+1}^{2}}, v_{e^{\prime}}\right]$ or $P\left[v_{e}, v_{i_{s}^{2}}\right] u_{2} P^{-}\left[v_{i_{s+1}^{2}}^{2}, v_{i_{2}^{1}}\right] u_{1} P\left[v_{i_{3}^{1}}, v_{e^{\prime}}\right]$ is longer than P. The proof for the other case is similar. This proves Claim 5(iii).
(iv). Assume that $i_{1}^{1}=i_{1}^{2}<i_{2}^{1}<i_{2}^{2}=i_{3}^{1}<i_{3}^{2}$.

By (4.10), $i_{3}^{2}-i_{1}^{1} \geq 6$. If $i_{1}^{1}=0$, then by (4.9), we must have $i_{2}^{1} \geq 3, i_{3}^{1} \geq 5$ and $i_{3}^{2} \in\{7,8\}$. Then $P\left[v_{e}, v_{i_{3}}\right] u_{1} v_{0} u_{2} v_{i_{3}^{2}} v_{e^{\prime}}$ is longer than P, and so we assume that $2 \geq i_{1}^{1} \geq 1$. If $i_{1}^{1}=2$, then we must have $i_{3}^{1}=6, c=8$ and $v_{8} u_{2} \in E(G)$, and so $P\left[v_{e}, v_{6}\right] u_{2} v_{8} v_{e^{\prime}}$ is longer than P. Hence we have $\left(i_{1}^{1}, i_{2}^{1}, i_{3}^{1}\right)=(1,3,5)$ with $i_{3}^{2} \in\{7,8\}$. If $i_{3}^{2}=8$, then Table 10A shows that a contradiction can always be found. By (4.16), $x_{4} \notin\left\{v_{3}, v_{4}, v_{5}\right\}$, and $x_{4} \in\left\{v_{2}, v_{6}\right\}$ only if $x_{4}^{\prime} \neq x_{4}$.

x_{4}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P	Explanation
v_{0}	$v_{e} v_{0} v_{4} v_{3} v_{2} v_{1} u_{1} P\left[v_{5}, v_{e^{\prime}}\right]$	
v_{1}		$G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, u_{1}\right\}\right]$ is not reduced, by Lemma 1.2.3(i).
v_{2}	$v_{e} v_{1} v_{2} x_{4}^{\prime} v_{4} v_{3} u_{1} P\left[v_{5}, v_{e^{\prime}}\right]$	
v_{6}, v_{7}	$P\left[v_{e}, v_{4}\right] v_{6} v_{5} u_{2} v_{8} v_{e^{\prime}}$ or $P\left[v_{e}, v_{4}\right] v_{7} v_{6} v_{5} u_{2} v_{8} v_{e^{\prime}}$	
v_{8}	$P\left[v_{e}, v_{4}\right] v_{8} u_{2} v_{5} v_{6} v_{7} v_{e^{\prime}}$	

Table 10A: Claim 5(iv) with $i_{3}^{2}=8$.

If $i_{3}^{2}=7$, then Table 10B shows that a contradiction can always be found. By (4.16), $x_{2} \notin\left\{v_{1}, v_{2}, v_{3}\right\}$ and $x_{2}=v_{4}$ only if $x_{2}^{\prime} \neq x_{2}$.

x_{2}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P	Explanation
v_{0}	$v_{e} v_{0} v_{2} v_{1} u_{1} P\left[v_{3}, v_{e^{\prime}}\right]$	
v_{4}	$v_{e} v_{1} v_{2} x_{2}^{\prime} v_{4} v_{3} u_{1} P\left[v_{5}, v_{e^{\prime}}\right]$	
v_{5}		$G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, u_{1}\right\}\right]$ is not reduced, by Lemma 1.2.3 (i).
v_{6}	$v_{e} v_{1} u_{1} v_{5} v_{4} v_{3} v_{2} v_{6} v_{7} v_{e^{\prime}}$	
v_{7}	$\left(x_{2}^{\prime} \neq v_{7}\right), v_{e} v_{1} u_{1} v_{5} v_{4} v_{3} v_{2} x_{2}^{\prime} v_{7} v_{e^{\prime}}$	$\left(x_{2}^{\prime}=v_{7}\right)$ and $G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}\right.\right.$, $\left.\left.v_{5}, v_{7}, u_{1}, u_{2}\right\}\right]$ is not reduced, by Lemma 1.2.3(i).
v_{8}	$v_{e} v_{1} u_{2} P^{-}\left[v_{7}, v_{2}\right] v_{8} v_{e^{\prime}}$	

Table 10B: Claim 5(iv) with $i_{3}^{2}=7$.
(v). Assume that $i_{1}^{1}=i_{1}^{2}<i_{2}^{1}<i_{2}^{2}<i_{3}^{1}=i_{3}^{2}$.

By (4.10), $i_{3}^{2}-i_{1}^{1} \geq 5$. If $i_{3}^{2}-i_{1}^{1}=5$, then $G\left[V\left(P\left[v_{i_{1}^{1}}, v_{i_{3}^{2}}\right]\right) \cup\left\{u_{1}, u_{2}\right\}\right]$ is not reduced, by Lemma 1.2.3(i). Hence we assume that $i_{3}^{2}-i_{1}^{1} \geq 6$. If $i_{1}^{1}=0$, then by (4.9), $i_{2}^{1} \geq$ 3 and $i_{2}^{2} \geq 4$, and so $P\left[v_{e}, v_{i_{2}^{2}}\right] u_{2} v_{0} u_{1} P\left[v_{i_{3}^{1}}, v_{e^{\prime}}\right]$ is longer than P. Thus $i_{1}^{1}>0$. By symmetry, $i_{3}^{2}<c$. As $c \leq 7$ implies $i_{3}^{2}-i_{1}^{1}=5$, we must have $c=8$ and $\left(i_{1}^{1}, i_{2}^{1}, i_{2}^{2}, i_{3}^{2}\right) \in$ $\{(1,3,4,6),(1,3,5,7),(1,3,4,7)\}$. By (4.16), $x_{4} \notin\left\{v_{3}, v_{4}, v_{5}\right\}$ and $x_{4} \in\left\{v_{2}, v_{6}\right\}$ only if $x_{4}^{\prime} \neq x_{4} ; x_{2} \notin\left\{v_{1}, v_{2}, v_{3}\right\}$ and $x_{2}=v_{4}$ only if $x_{2}^{\prime} \neq x_{2}$.

x_{4}	x_{2}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P	Explanation or Conclusion
v_{0}		$v_{e} v_{0} v_{4} v_{3} v_{2} v_{1} u_{2} v_{5} v_{6} v_{7} v_{e^{\prime}}$	
v_{1}			$G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, u_{1}\right\}\right]$ is not reduced, by Lemma 1.2.3 (i).
v_{2}		$v_{e} v_{1} u_{1} v_{3} v_{2} x_{4}^{\prime} P\left[v_{4}, v_{e^{\prime}}\right]$	(same for $\left.x_{2}=v_{4}\right)$.
v_{6}		$P\left[v_{e}, v_{4}\right] x_{4}^{\prime} v_{6} v_{5} u_{2} v_{7} v_{e^{\prime}}$	
v_{7}			either $v_{4} v_{7} \in E(G)$ and $G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{7}, u_{1}, u_{2}\right\}\right]$ is not reduced, by Lemma 1.2.3(i); or $v_{4}, v_{7} \in N_{G}\left(x_{4}^{\prime}\right)$, for $\pi=\left\langle\left\{u_{2}, v_{6}\right\},\left\{v_{5}, v_{7}\right\}\right\rangle$,
			$G\left[\left(V(P)-\left\{v_{e}, v_{e^{\prime}}\right\}\right) \cup\right.$ $\left.\left\{u_{1}, u_{2}, x_{4}^{\prime}\right\}\right] / \pi$ is collapsible by Theorem ??, G is not reduced.
v_{8}		$P\left[v_{e}, v_{3}\right] u_{1} v_{5} x_{4}^{\prime} v_{8} v_{e^{\prime}}$	Hence $v_{4} v_{8} \in E(G)$.
	v_{0}	$v_{e} v_{0} P\left[v_{2}, v_{5}\right] u_{1} v_{1} u_{2} v_{7} v_{e^{\prime}}$	
	v_{5}		
			$G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, u_{1}\right\}\right]$ is not reduced, by Lemma 1.2.3 (i).
v_{8}	v_{7}	$v_{e} v_{e} v_{1} u_{1} v_{3} v_{2} v_{7} v_{6} v_{5} v_{4} v_{8} v_{e^{\prime}}$	$v_{4} v_{8} \in E(G)$.
v_{8}	v_{8}	$v_{e} v_{1} u_{1} v_{3} v_{2} v_{8} P\left[v_{4}, v_{e^{\prime}}\right]$	$v_{4} v_{8} \in E(G)$.

Table 11A: Claim $5(\mathrm{v})$ with $\left(i_{1}^{1}, i_{2}^{1}, i_{2}^{2}, i_{3}^{2}\right)=(1,3,5,7)$.

If $\left(i_{1}^{1}, i_{2}^{1}, i_{2}^{2}, i_{3}^{2}\right)=(1,3,4,6)$, by Theorem 1.2.3(i), $G\left(e, e^{\prime}\right)\left[V\left(P\left[v_{1}, v_{6}\right]\right) \cup\left\{u_{1}, u_{2}\right\}\right]$ is collapsible, contrary to (4.10). If $\left(i_{1}^{1}, i_{2}^{1}, i_{2}^{2}, i_{3}^{2}\right)=(1,3,5,7)$, then Table 11A first indicates that $v_{4} v_{8} \in E(G)$ and then shows that a contradiction can always be found.

Thus we assume $\left(i_{1}^{1}, i_{2}^{1}, i_{2}^{2}, i_{3}^{2}\right)=(1,3,4,7)$. Table 11B shows that a contradiction can always be found. By (4.15), if $v_{2} v_{7} \notin E(G)$, then $x_{2} \neq v_{7}$.

x_{2}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P	Explanation or Conclusion
v_{0}	$v_{e} v_{0} v_{2} v_{3} u_{1} v_{1} u_{2} P\left[v_{4}, v_{e^{\prime}}\right]$	
v_{4}	$v_{e} v_{1} u_{1} v_{3} v_{2} x_{2}^{\prime} P\left[v_{4}, v_{e^{\prime}}\right]$	
v_{5}, v_{6}	$v_{e} v_{1} v_{2} x_{2}^{\prime} P^{-}\left[x_{2}, v_{3}\right] u_{1} v_{7} v_{e^{\prime}}$	$G\left[V\left(P\left[v_{1}, v_{7}\right]\right) \cup\left\{u_{1}, u_{2}\right\}\right]$ is not reduced, by Lemma 1.2.3 (iv).
v_{7}		$G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{7}, u_{1}, u_{2}\right\}\right]$ is not reduced, by Lemma 1.2.3(i).
v_{8}	$v_{e} v_{1} u_{2} P^{-}\left[v_{7}, v_{2}\right] v_{8} v_{e^{\prime}}$	

Table 11B: Claim $5(\mathrm{v})$ with $\left(i_{1}^{1}, i_{2}^{1}, i_{2}^{2}, i_{3}^{2}\right)=(1,3,4,7)$.
(vi). We shall prove that assuming $i_{2}^{2}>i_{2}^{1}$ will lead to contradictions, and so $i_{2}^{2} \leq i_{2}^{1}$. By symmetric arguments, we also have $i_{2}^{1} \leq i_{2}^{2}$, which proves (vi). In the rest of the proof of Claim 5(vi), we assume that $i_{2}^{2}>i_{2}^{1}$. By Claim 5(ii), (iv) and (v), $i_{1}^{2} \leq i_{2}^{1}, i_{3}^{1} \geq i_{2}^{2}$ and $i_{1}^{1} \neq i_{1}^{2}$ when $i_{1}^{3} \in\left\{i_{2}^{2}, i_{3}^{2}\right\}$.

Case 5(vi).1. $\quad i_{3}^{1} \notin\left\{i_{2}^{2}, i_{3}^{2}\right\}$.
Case 5(vi).1A. $i_{3}^{1}>i_{3}^{2}$.
If $i_{1}^{2}<i_{1}^{1}$, then by (4.9), either $\left(i_{1}^{2}, i_{1}^{1}, i_{3}^{2}, i_{3}^{1}\right)=(0,1,6,7)$, whence $v_{e} v_{0} u_{2} P^{-}\left[v_{6}, v_{1}\right] u_{1} v_{7} v_{e^{\prime}}$ is longer than P; or $\left(i_{1}^{2}, i_{1}^{1}, i_{3}^{2}, i_{3}^{1}\right)=(1,2,7,8)$, whence $v_{e} v_{1} u_{2} P^{-}\left[v_{7}, v_{2}\right] u_{1} v_{8} v_{e^{\prime}}$ is longer than P. If $i_{1}^{1}=i_{1}^{2} \in\{0,1\}$, then $i_{2}^{1} \geq 3, i_{3}^{2}-i_{2}^{1} \geq 3$ and $i_{3}^{1} \in\{7,8\}$. Thus $v_{e} v_{i_{1}^{1}} u_{2} P^{-}\left[v_{i_{3}^{2}}, v_{i_{2}}\right] u_{1} v_{i_{3}^{1}} v_{e^{\prime}}$ is longer than P. Hence we assume $i_{1}^{2}>i_{1}^{1}$.

If $i_{1}^{2}=i_{2}^{1}$, then by $\operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4, i_{3}^{1}-i_{1}^{1} \geq 8$, and so $i_{1}^{1} \in\{0,1\}$ and $\left(i_{1}^{2}, i_{2}^{2}, i_{3}^{2}, i_{3}^{1}\right)=$ $(3,5,7,8)$. By (4.16), $x_{4} \notin\left\{v_{3}, v_{4}, v_{5}\right\}$, and $x_{4} \in\left\{v_{2}, v_{6}\right\}$ only if $x_{4}^{\prime} \neq x_{4}$. Table 11C shows that a contradiction always exists.

x_{4}	i_{1}^{1}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P	Explanation or Conclusion
v_{0}	0,1	$v_{e} v_{0} v_{4} v_{5} v_{6} v_{7} u_{2} v_{3} u_{1} v_{8} v_{e^{\prime}}$	
v_{1}	0	$v_{e} v_{0} u_{1} v_{3} v_{2} v_{1} P\left[v_{4}, v_{e^{\prime}}\right]$	
v_{1}	1	$v_{e} v_{1} P\left[v_{4}, v_{7}\right] u_{2} v_{3} u_{1} v_{8} v_{e^{\prime}}$	
v_{2}	0,1	$v_{e} v_{1} v_{2} x_{4}^{\prime} P\left[v_{4}, v_{7}\right] u_{2} v_{3} u_{1} v_{8} v_{e^{\prime}}$	
v_{6}	0,1	$P\left[v_{e}, v_{4}\right] x_{6}^{\prime} v_{6} v_{5} u_{2} v_{7} v_{e^{\prime}}$	
v_{7}	0,1	$\left(x_{4}^{\prime} \neq v_{7}\right) P\left[v_{e}, v_{3}\right] u_{2} v_{5} v_{4} x_{4}^{\prime} v_{7} v_{e^{\prime}}$	$\left(x_{4}^{\prime}=v_{7}\right) G\left[\left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right.\right.$, $\left.\left.u_{2}\right\}\right]$ is not reduced, by Lemma 1.2.3(i).
v_{8}	0,1	$P\left[v_{e}, v_{3}\right] u_{2} P^{-}\left[v_{7}, v_{4}\right] v_{8} v_{e^{\prime}}$	

Table 11C: Claim 5(vi). 1 A with $i_{1}^{1} \in\{0,1\}$ and $\left(i_{1}^{2}, i_{2}^{2}, i_{3}^{2}, i_{3}^{1}\right)=(3,5,7,8)$.

Thus we have $i_{1}^{1}<i_{1}^{2}<i_{2}^{1}<i_{2}^{2}<i_{3}^{2}<i_{3}^{1}$. By Claim 5(iii), a $\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P exists. This excludes this subcase.

Case 5(vi).1B. $i_{2}^{2}<i_{3}^{1}<i_{3}^{2}$.
Now we have $i_{1}^{1}<i_{2}^{1}<i_{2}^{2}<i_{3}^{1}<i_{3}^{2}$, As $P\left[v_{e}, v_{i_{2}^{1}}\right] u_{1} P^{-}\left[v_{i_{3}^{1}}, v_{i_{2}^{2}}\right] u_{2} P\left[v_{i_{3}^{2}}, v_{e^{\prime}}\right]$ is not longer than $P,\left(i_{2}^{2}-i_{2}^{1}\right)+\left(i_{3}^{2}-i_{3}^{1}\right) \geq 4$. By Claim 5(iii), we cannot have $i_{1}^{1}<i_{1}^{2}<i_{2}^{1}$, and so $i_{1}^{2}<i_{1}^{1}$ or $i_{1}^{2} \in\left\{i_{1}^{1}, i_{2}^{1}\right\}$.

If $i_{1}^{2}<i_{1}^{1}$, then $i_{2}^{1}-i_{1}^{1} \geq 2$. Since $\left(i_{2}^{2}-i_{2}^{1}\right)+\left(i_{3}^{2}-i_{3}^{1}\right) \geq 4$, it follows that $l-s \geq i_{3}^{2}-i_{1}^{2} \geq 8$. By Claim 5(i), $i_{1}^{2}=0, i_{1}^{1}=1, i_{2}^{2}=5, i_{3}^{1}=6$ and $i_{3}^{2}=8$. Hence $v_{e} v_{0} u_{2} P^{-}\left[v_{5}, v_{1}\right] u_{1} v_{6} v_{7} v_{e^{\prime}}$ is longer than P.

If $i_{1}^{2}=i_{1}^{1}$, then by $\operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4$ and by Claim 3, we must have $i_{2}^{1} \geq 3$. It follows by $l-s \leq 8$ and by $\left(i_{2}^{2}-i_{2}^{1}\right)+\left(i_{3}^{2}-i_{3}^{1}\right) \geq 4$, we must have $i_{1}^{1} \in\{0,1\}$, and $\left(i_{2}^{1}, i_{2}^{2}, i_{3}^{1}, i_{3}^{2}\right) \in\{(3,5,6,8),(3,6,7,8)\}$. If $i_{1}^{1}=0$, then $P\left[v_{e}, v_{i_{3}^{1}}\right] u_{1} v_{0} u_{2} v_{i_{3}^{2}} v_{e^{\prime}}$ is longer than P. If $i_{1}^{1}=1$, then $P\left[v_{e}, v_{i_{2}^{1}}\right] u_{1} P^{-}\left[v_{i_{3}^{1}}, v_{i_{2}^{2}}\right] u_{2} v_{8} v_{e^{\prime}}$ is longer than P. This excludes this subcase.

Case 5(vi).1C. $i_{3}^{1}<i_{2}^{2}$.
Then $i_{1}^{1}<i_{2}^{1}<i_{3}^{1}<i_{2}^{2}<i_{3}^{2}$. By Claim 5(ii), $i_{2}^{1} \geq i_{1}^{2}$. If $i_{2}^{1}>i_{1}^{2}>i_{1}^{1}$, then As $P\left[v_{e}, v_{i_{1}^{1}}\right] u_{1} P^{-}\left[v_{i_{3}^{1}}, v_{i_{1}^{2}}\right] u_{2} P\left[v_{i_{2}^{2}}, v_{e^{\prime}}\right]$ is not longer than P, we have $\left(i_{1}^{2}-i_{1}^{1}\right)+\left(i_{2}^{2}-i_{3}^{1}\right) \geq 4$.

By $\operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4, i_{3}^{2}-i_{2}^{2} \geq 2$ and $i_{3}^{1}-i_{2}^{1} \geq 2$, it follows $i_{3}^{2}-i_{1}^{1} \geq 9$, contrary to Claim 5 (i). If $i_{1}^{2}<i_{1}^{1}$, then by $\operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4$, we must have $i_{3}^{2}-i_{1}^{2} \geq 8$, and so by Claim $5(\mathrm{i})$, we have $i_{3}^{2}=8$. By Claim $3, i_{2}^{2} \leq 5$, which forces $i_{3}^{2}-i_{1}^{2} \geq 9$, contrary to Claim 5(i).

Hence $i_{1}^{2} \in\left\{i_{1}^{1}, i_{2}^{1}\right\}$. If $i_{2}^{1}=i_{1}^{1}=1$, then by $\operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4$, we have $i_{3}^{2}=8$. By Claim $3, i_{2}^{2} \leq 5$, which forces $i_{3}^{2}-i_{1}^{2} \geq 9$, contrary to Claim 5(i). If $i_{2}^{1}=i_{1}^{1}=0$, then by Claim 3 and by $\operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4$, we have $i_{3}^{1} \in\{5,6\}$ and $i_{2}^{2} \in\{6,7\}$. Thus $P\left[v_{e}, v_{i_{3}}\right] u_{1} v_{0} u_{2} P\left[v_{i_{2}^{2}}, v_{e^{\prime}}\right]$ is longer than P. If $i_{1}^{2}=i_{2}^{1}$, then by $\operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4$, we have $i_{3}^{2}-i_{1}^{1} \geq 7$. As $P\left[v_{e}, v_{i_{1}^{1}}\right] u_{1} P^{-}\left[v_{i_{3}^{1}}, v_{i_{2}^{1}}\right] u_{2} P\left[v_{i_{2}^{2}}, v_{e^{\prime}}\right]$ is not longer than P, we have $\left(i_{2}^{1}-i_{1}^{1}\right)+\left(i_{2}^{2}-i_{3}^{1}\right) \geq 4$, forcing $i_{3}^{2}-i_{1}^{1} \geq 8$. By Claim $5(\mathrm{i})$, we have $\left(i_{2}^{2}, i_{3}^{2}\right)=(7,8)$, and so $P\left[v_{e}, v_{7}\right] u_{2} v_{8} v_{e^{\prime}}$ is longer than P. This excludes this subcase and completes the proof of Case 5(vi).1.

Case 5(vi).2. $i_{3}^{1}=i_{3}^{2}$. Thus $i_{3}^{1}=i_{3}^{2}>i_{2}^{2}>i_{2}^{1}>i_{1}^{1}$.
By Claim 3, we cannot have $i_{1}^{1}<i_{1}^{2}<i_{2}^{1}$. By Claim 5(iv) and (v), $i_{1}^{2} \notin\left\{i_{1}^{1}, i_{2}^{1}\right\}$. Hence we have $i_{1}^{2}<i_{1}^{1}$. Then either $v_{e} v_{0} u_{2} P^{-}\left[v_{i_{2}^{2}}, v_{i_{1}^{1}}\right] u_{1} P\left[v_{i_{3}^{2}}, v_{e^{\prime}}\right]$ (if $i_{1}^{2}=0$) or $P\left[v_{e}, v_{i_{1}^{2}}\right] u_{2} P^{-}\left[v_{i_{2}^{2}}, v_{i_{1}^{1}}\right] u_{1} P\left[v_{i_{3}^{2}}, v_{e^{\prime}}\right]\left(\right.$ if $\left.i_{1}^{2}>0\right)$ is longer than P. This proves this case.

Case 5(vi).3. $i_{3}^{1}=i_{2}^{2}$. Thus $i_{3}^{2}>i_{3}^{1}=i_{2}^{2}>i_{2}^{1}>i_{1}^{1}$.
By $\operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4, i_{3}^{2}-i_{1}^{1} \geq 6$. By Claim $5(\mathrm{iv}), i_{1}^{1} \neq i_{1}^{2}$. Assume first that $i_{1}^{2}<i_{1}^{1}$, and so $i_{3}^{2}-i_{1}^{2} \geq 7$, implying $i_{3}^{2} \in\{7,8\}$. Note that when $i_{3}^{2} \in\{7,8\}$, we must have $i_{3}^{1}-i_{1}^{1}=4$, and so by Theorem 6.2.1(v) and (vi), adding any edge to

$$
\begin{equation*}
G\left(e, e^{\prime}\right)\left[V\left(P\left[v_{1}^{1}, v_{3}^{1}\right]\right)\right] \text { will result in a non reduced subgraph. } \tag{4.17}
\end{equation*}
$$

As $i_{3}^{2} \in\{7,8\}$, by Claim 3 and by $\operatorname{girth}\left(G\left(e, e^{\prime}\right)\right) \geq 4$, we must have $\left(i_{1}^{2}, i_{1}^{1}, i_{2}^{1}, i_{2}^{2}\right)=$ $(0,1,3,5)$. By (4.17) and (4.16), $x_{4} \notin\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$. Table 11D shows that for any other values of x_{4}, a contradiction to (4.9) can always be found, which completes the proof of this case.

x_{4}	i_{3}^{2}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P
v_{0}		$v_{e} v_{0} P^{-}\left[v_{4}, v_{1}\right] u_{1} P\left[v_{5}, v_{e^{\prime}}\right]$
v_{7} or v_{8}	7,8	$v_{e} v_{0} u_{2} v_{5} u_{1} P\left[v_{1}, v_{4}\right] v_{i_{3}^{2}} v_{e^{\prime}}$

Table 11D: Claim 5(vi). 3 with $i_{3}^{2} \in\{7,8\}$ and $\left(i_{1}^{2}, i_{1}^{1}, i_{2}^{1}, i_{2}^{2}\right)=(0,1,3,5)$.

Claim 6. $s=\left|\left\{v_{i_{1}^{1}}, v_{i_{2}^{1}}, v_{i_{3}^{1}}\right\} \cap\left\{v_{i_{1}^{2}}, v_{i_{2}^{2}}, v_{i_{3}^{2}}\right\}\right| \geq 2$.
If $s<2$ then by Claim $5(\mathrm{i}), s=1$. Without loss of generality, we assume that $i_{1}^{1} \leq i_{1}^{2}$. Hence by Claim 5, we have $i_{1}^{1}<i_{1}^{2}<i_{2}^{2}=i_{2}^{1} \leq i_{3}^{1}$. By Claim 5(iii), we have $i_{1}^{1}<i_{1}^{2}$ and $i_{3}^{1}<i_{3}^{2}$. By (4.10), $i_{3}^{1}-i_{1}^{2} \geq 4$. It follows that $P\left[v_{e}, v_{i_{1}^{1}}\right] u_{1} P^{-}\left[v_{i_{3}^{1}}, v_{i_{1}^{2}}\right] u_{2} P\left[v_{i_{3}^{2}}, v_{e^{\prime}}\right]$ is longer than P, contrary to (4.9). Claim 6 is justified.

Claim 7. $s=\left|\left\{v_{i_{1}}, v_{i_{2}^{1}}, v_{i_{3}^{1}}\right\} \cap\left\{v_{i_{1}^{2}}, v_{i_{2}^{2}}, v_{i_{3}^{2}}\right\}\right|=3$.
By contradiction and Claim 6, assume that $s=2$. Without loss of generality, we assume that $i_{1}^{1} \leq i_{1}^{2}$. Hence by Claim 5, we have $i_{1}^{1} \leq i_{1}^{2} \leq i_{2}^{2}=i_{2}^{1} \leq i_{3}^{1}$, and so $s=2$ implies, in addition to $i_{2}^{1}=i_{2}^{2}$, either $i_{1}^{1}=i_{1}^{2}$ or $i_{3}^{1}=i_{3}^{2}$. By symmetry, it suffices to assume that both $i_{1}^{1}=i_{1}^{2}$ and $i_{2}^{1}=i_{2}^{2}$ to find contradictions.

Hence we have $i_{1}^{1}=i_{1}^{2}<i_{2}^{2}=i_{2}^{1}<i_{3}^{1}$. By symmetry, we may assume that $i_{3}^{1}<i_{3}^{2}$. As $P\left[v_{e}, v_{i_{1}^{1}}\right] u_{1} P^{-}\left[v_{i_{3}^{1}}, v_{i_{2}^{2}}\right] u_{2} P\left[v_{i_{3}^{2}}^{2}, v_{e^{\prime}}\right]$ is not longer than $P,\left(i_{3}^{2}-i_{3}^{1}\right)+\left(i_{2}^{1}-i_{1}^{1}\right) \geq 4$, and so by (4.9) and (4.10), $i_{3}^{2}-i_{1}^{1} \geq 6$. Hence $i_{2}^{1} \geq 3, i_{1}^{1} \leq 1$ or $i_{3}^{2} \geq 7$. If $v_{1}^{1}=0$, then by (4.9), $i_{3}^{1} \geq 5$, and so $P\left[v_{e}, v_{i_{3}^{1}}\right] u_{1} v_{0} u_{2} v_{i_{2}^{2}} v_{e^{\prime}}$ is longer than P. This forces that $i_{1}^{1}=1$ and $i_{3}^{1}-i_{2}^{1}=2$, and so $\left(i_{2}^{1}, i_{3}^{1}, i_{3}^{2}\right) \in\{(4,6,7),(4,6,8),(3,5,7),(3,5,8)\}$.

Assume first that $\left(i_{2}^{1}, i_{3}^{1}, i_{3}^{2}\right) \in\{(3,5,7),(3,5,8)\}$. By (4.16), $x_{4} \notin\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$. If $v_{1} v_{4} \in E(G)$, then by Lemma 1.2.3(i), $G\left[V\left(P\left[v_{1}, v_{5}\right]\right) \cup\left\{u_{2}\right\}\right]$ is not reduced. Hence when $x_{4}=v_{1}, x_{4}^{\prime} \in V(J)$. By $\kappa^{\prime}(G) \geq 3$, we can choose $x_{4} \in N_{G}\left(x_{4}^{\prime}\right)-\left\{v_{1}, v_{4}\right\}$. Thus we may assume that $x_{4} \neq v_{1}$ as well. If $u_{2} v_{7}, x_{4} v_{7} \in E(G)$, then by Lemma 1.2.3(i), $G\left[V\left(P\left[v_{3}, v_{7}\right]\right) \cup\left\{v_{1}, u_{1}, u_{2}\right\}\right]$ is not reduced. Hence when $i_{3}^{2}=7$ and $x_{4}=v_{1}, x_{4}^{\prime} \in V(J)$. Table 12A indicates that a contradiction can always be found.

x_{4}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P
v_{0}	$v_{e} v_{0} P^{-}\left[v_{1}, v_{4}\right] u_{1} P\left[v_{5}, v_{e^{\prime}}\right]$ or $v_{e} v_{0} x_{4}^{\prime} P^{-}\left[v_{1}, v_{4}\right] u_{1} P\left[v_{5}, v_{e^{\prime}}\right]$
v_{6}	$P\left[v_{e}, v_{3}\right] u_{1} v_{5} v_{4} P\left[v_{6}, v_{e^{\prime}}\right]$ or $P\left[v_{e}, v_{3}\right] u_{1} v_{5} v_{4} x_{4}^{\prime} P\left[v_{6}, v_{e^{\prime}}\right]$
v_{7}	$P\left[v_{e}, v_{3}\right] u_{1} v_{5} v_{4} x_{4}^{\prime} P\left[v_{5}, v_{e^{\prime}}\right]$, if $i_{3}^{2}=7$.
v_{7}	$v_{e} v_{1} u_{1} v_{5} v_{6} v_{7} v_{4} v_{3} u_{2} v_{8} v_{e^{\prime}}$ or $v_{e} v_{1} u_{1} v_{5} v_{6} v_{7} x_{4}^{\prime} v_{4} v_{3} u_{2} v_{8} v_{e^{\prime}}$, if $i_{3}^{2}=8$.
v_{8}	$P\left[v_{e}, v_{3}\right] u_{2} P^{-}\left[v_{4}, v_{7}\right] v_{8} v_{e^{\prime}}$ or $P\left[v_{e}, v_{3}\right] u_{2} P^{-}\left[v_{4}, v_{7}\right] x_{4}^{\prime} v_{8} v_{e^{\prime},}$, if $i_{3}^{2}=7$.
v_{8}	$P\left[v_{e}, v_{3}\right] u_{2} v_{8} P\left[v_{4}, v_{e^{\prime}}\right]$ or $P\left[v_{e}, v_{3}\right] u_{2} v_{8} x_{4}^{\prime} P\left[v_{4}, v_{e^{\prime}}\right]$, if $i_{3}^{2}=8$.

Table 12A: Claim 7, with $i_{1}^{1}=i_{1}^{2}, i_{2}^{1}=i_{2}^{2}$ and $\left(i_{2}^{1}, i_{3}^{1}, i_{3}^{2}\right) \in\{(3,5,7),(3,5,8)\}$.

Hence $\left(i_{2}^{1}, i_{3}^{1}, i_{3}^{2}\right) \in\{(4,6,7),(4,6,8)\}$. By (4.16), $x_{5} \notin\left\{v_{3}, v_{4}, v_{5}, v_{6}\right\}$. If $v_{1} v_{v} \in E(G)$, then by Lemma 1.2.3(i), $G\left[\left\{v_{1}, v_{4}, v_{5}, v_{6}, u_{1}, u_{2}\right\}\right]$ is not reduced. Hence when $x_{5}=v_{1}$, $x_{5}^{\prime} \in V(J)$. By $\kappa^{\prime}(G) \geq 3$, we can choose $x_{5} \in N_{G}\left(x_{5}^{\prime}\right)-\left\{v_{1}, v_{5}\right\}$. Thus we may assume that $x_{5} \neq v_{1}$ as well. Table 12B indicates that a contradiction can always be found. This completes the proof for Claim 7.

x_{5}	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P
v_{0}	$v_{e} v_{0} P^{-}\left[v_{5}, v_{1}\right] u_{1} P\left[v_{6}, v_{e^{\prime}}\right]$ or $v_{e} v_{0} x_{5}^{\prime} P^{-}\left[v_{5}, v_{1}\right] u_{1} P\left[v_{6}, v_{e^{\prime}}\right]$
v_{2}	$v_{e} v_{1} u_{1} v_{4} v_{3} v_{2} P\left[v_{5}, v_{e^{\prime}}\right]$ or $v_{e} v_{1} u_{1} v_{4} v_{3} v_{2} x_{5}^{\prime} P\left[v_{5}, v_{e^{\prime}}\right]$
v_{7} or v_{8}	$P\left[v_{e}, v_{4}\right] u_{1} v_{6} v_{5} x_{5} v_{e^{\prime}}$ or $P\left[v_{e}, v_{4}\right] u_{1} v_{6} v_{5} x_{5}^{\prime} x_{5} v_{e^{\prime}}$

Table 12B: Claim 7, with $i_{1}^{1}=i_{1}^{2}, i_{2}^{1}=i_{2}^{2}$ and $\left(i_{2}^{1}, i_{3}^{1}, i_{3}^{2}\right) \in\{(4,6,7),(4,6,8)\}$.

Claim 8. $\left|V\left(G\left(e, e^{\prime}\right)\right)-V(P) \cup\left\{v_{0}, v_{c}\right\}\right|=1$.
By contradiction, we assume that $u_{1}, u_{2} \in V\left(G\left(e, e^{\prime}\right)\right)-V(P) \cup\left\{v_{0}, v_{c}\right\}$. By Claim 7, $\left|N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right)\right|=3$, and so $i_{j}^{1}=i_{j}^{2}$ for $1 \leq j \leq 3$. If $i_{1}^{2}=i_{1}^{1}+2$ or $i_{3}^{1}=i_{2}^{1}+2$, then $G\left(e, e^{\prime}\right)$ has a collapsible subgraph $K_{3,3}^{-}$, contrary to (4.10). Therefore, we must have both $i_{2}^{1} \geq i_{1}^{1}+3$ and $i_{3}^{1} \geq i_{2}^{1}+3$. Since $G\left(e, e^{\prime}\right)$ does not contain a collapsible subgraph $K_{3,3}$, by Claim 7, $V(G)=V(P) \cup\left\{v_{0}, v_{c}, u_{1}, u_{2}\right\}$.

Since $V(G)=V(P) \cup\left\{v_{0}, v_{c}, u_{1}, u_{2}\right\}, x_{3}=x_{3}^{\prime}$. By (4.16), $x_{3} \notin\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. If $x_{3}=v_{7}$, then $v_{3} v_{7} \in E(G)$, and so by Lemma 1.2.3(i), $G\left[\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{7}, u_{1}, u_{2}\right\}\right]$ is not
reduced. Thus $x_{3} \neq v_{7}$ and so $x_{3} \in\left\{v_{0}, v_{6}, v_{8}\right\}$. It follows that $v_{e} v_{0} v_{3} v_{2} v_{1} u_{1} P\left[v_{4}, v_{e^{\prime}}\right]$ (if $x_{3}=v_{0}$) or $P\left[v_{e}, v_{3}\right] v_{6} v_{5} v_{4} u_{1} v_{7} v_{e^{\prime}}\left(\right.$ if $\left.x_{3}=v_{6}\right)$, or $v_{e} v_{1} u_{1} P^{-}\left[v_{7}, v_{3}\right] v_{8} v_{e^{\prime}}\left(\right.$ if $\left.x_{3}=v_{8}\right)$ is longer than P.

Thus either $i_{1}^{1}=0$ or $i_{3}^{1}=c$. Without loss of generality, we assume that $i_{1}^{1}=0$. As neither $v_{e} v_{0} u_{1} P\left[v_{i_{2}^{1}}, v_{e^{\prime}}\right]$ nor $P\left[v_{e}, v_{i_{2}^{2}}\right] u_{1} v_{0} u_{2} P\left[v_{i_{3}}, v_{e^{\prime}}\right]$ is longer than P, we must have $i_{2}^{1}=3$. By symmetry, that $i_{3}^{1}=c=8$ implies $i_{2}^{1}=5>3$, and so $i_{1}^{1}=1$ implies $i_{3}^{1}=7$. Hence $\left(i_{1}^{1}, i_{2}^{1}, i_{3}^{1}\right) \in\{(0,3,6),(0,3,7)\}$. If $\left(i_{1}^{1}, i_{2}^{1}, i_{3}^{1}\right)=(0,3,6)$, then $v_{e} v_{1} v_{2} v_{3} u_{2} v_{0} u_{1} P\left[v_{6}, v_{e^{\prime}}\right]$ is longer than P. Therefore $\left(i_{1}^{1}, i_{2}^{1}, i_{3}^{1}\right)=(0,3,7)$.

By (4.16), $x_{4} \notin\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}$. Since $G\left(e, e^{\prime}\right)$ cannot have a $K_{3,3}^{-}, x_{4} \notin\left\{v_{0}, v_{7}\right\}$, and so $x_{4} \in\left\{v_{1}, v_{8}\right\}$. Hence $v_{e} v_{0} u_{1} v_{3} v_{2} v_{1} P\left[v_{4}, v_{e^{\prime}}\right]$ (if $x_{4}=v_{1}$) or $P\left[v_{e}, v_{3}\right] u_{1} P^{-}\left[v_{7}, v_{4}\right] v_{8} v_{e^{\prime}}$ (if $x_{4}=v_{8}$) is longer than P, contrary to (4.9). This proves Claim 8 .

Define a new graph L_{z} from $G\left(e, e^{\prime}\right)$ by adding a new vertex z and new edges $z v_{e}$ and $z v_{e^{\prime}}$. Then $G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail if and only if L_{z} is supereulerian. If $c \leq 7$, or if $c=8$ and $v_{0}=v_{c}$, then by Claim $8,\left|V\left(L_{z}\right)\right| \leq 12$. As L_{z} has exactly one edge cut of size 2, it follows by Lemma 1.2.3(iv) that either L is supereulerian, whence $G\left(e, e^{\prime}\right)$ has a spanning $\left(v_{e}, v_{e^{\prime}}\right)$-trail; or $L_{z}=P(10)(e)$, whence $G=H_{8}$. In either case, a contradiction to the assumptions of Theorem 4.3.1 is found. Hence we will assume that $c=8$ and that $v_{0} \neq v_{c}$.

By Claim 8, we denote $V(J)=\{u\}$. By Claim $7, N_{G}(u) \subseteq V(P) \cup\left\{v_{0}, v_{c}\right\}$. Let $N_{G}(u)=\left\{v_{i_{1}}, v_{i_{2}}, v_{i_{3}} \ldots\right\}$. By Claim 4, we may assume $i_{1}<i_{2}<i_{3}$. By (4.10), both $i_{2}>i_{1}+2$ and $i_{3} \geq i_{2}+2$, and if $i_{1}=0$, then $i_{2}>2$, and if $i_{3}=c$, then $i_{2}<c-2$. Therefore, the possibilities of $\left(i_{1}, i_{2}, i_{3}\right)$ can be listed below:

CHAPTER 4. STRONGLY SPANNING TRAILABLE GRAPHS WITH SHORT LONGEST PATHS73

i_{1}	i_{2}	$\left(i_{1}, i_{2}, i_{3}\right)$	Symmetric case	i_{1}	i_{2}	$\left(i_{1}, i_{2}, i_{3}\right)$	Symmetric case
0	3	$(0,3,5)$	$(3,5,8)$	1	3	$(1,3,5)$	$(3,5,7)$
0	3	$(0,3,6)$	$(2,5,8)$	1	3	$(1,3,6)$	$(2,5,7)$
0	3	$(0,3,7)$	$(1,5,8)$	1	3	$(1,3,7)$	$(1,5,7)$
0	3	$(0,3,8)$	$(0,5,8)$	1	4	$(1,4,6)$	$(2,4,7)$
0	4	$(0,4,6)$	$(2,4,8)$	1	4	$(1,4,7)$	$(1,4,7)$
0	4	$(0,4,7)$	$(1,4,8)$	2	4	$(2,4,6)$	$(2,4,6)$
0	4	$(0,4,8)$	$(0,4,8)$				
0	5	$(0,5,7)$	$(1,3,8)$				

Table 13: Possibilities of $\left(i_{1}, i_{2}, i_{3}\right)$.

We shall show that in each of these cases of $\left(i_{1}, i_{2}, i_{3}\right)$, either a longer $\left(v_{e}, v_{e^{\prime}}\right)$-path is found or a nontrivial collapsible subgraph of $G\left(e, e^{\prime}\right)$ is found, leading to contractions to (4.10). For each i with $1 \leq i \leq 7$, denote $x_{i}\left(=x_{i}^{\prime}\right)=v_{s_{i}}$. By (4.16),

$$
\begin{gather*}
s_{1} \in\{4,5,6,7,8\}, s_{2} \in\{0,5,6,7,8\}, s_{3} \in\{0,6,7,8\} \\
s_{4} \in\{0,1,7,8\}, s_{5} \in\{0,1,2,8\}, s_{6} \in\{0,1,2,3,8\}, s_{7} \in\{0,1,2,3,4\} \tag{4.18}
\end{gather*}
$$

Claim 9. If $i_{1}=0$, then each the following statements holds.
(i) Let $t \in\left\{i_{2}, i_{3}\right\}$. Then $v_{0} v_{t-1}, v_{0} v_{t-2} \notin E(G)$, and $v_{0} v_{t+1}, v_{0} v_{t+2}, v_{1} v_{t+1}, v_{1} v_{t+2} \notin E(G)$ if $t+1, t+2 \leq 8$.
(ii) If $i_{3} \neq 8$, then $v_{1} v_{8} \notin E(G)$.

As $i_{3} \geq 5$, Table 14 proves Claim 9.

	Edge in $E(G)$	$\left(v_{e}, v_{e^{\prime}}\right)$-path longer than P	
(i)	$v_{0} v_{t-1} \in E(G)$	$P\left[v_{e}, v_{t-1}\right] v_{0} u P\left[v_{t}, v_{e^{\prime}}\right]$	
	$v_{0} v_{t-2} \in E(G)$	$P\left[v_{e}, v_{t-2}\right] v_{0} u P\left[v_{t}, v_{e^{\prime}}\right]$	
	$v_{0} v_{t+1} \in E(G)$	$P\left[v_{e}, v_{t}\right] u v_{0} P\left[v_{t+1}, v_{e^{\prime}}\right]$	$t+1 \leq 8$
	$v_{0} v_{t+2} \in E(G)$	$P\left[v_{e}, v_{t}\right] u v_{0} P\left[v_{t+2}, v_{e^{\prime}}\right]$	$t+2 \leq 8$
	$v_{1} v_{t+1} \in E(G)$	$v_{e} v_{0} u P^{-}\left[v_{t}, v_{1}\right] P\left[v_{t+1}, v_{e^{\prime}}\right]$	$t+1 \leq 8$
	$v_{1} v_{t+2} \in E(G)$	$v_{e} v_{0} u P^{-}\left[v_{t}, v_{1}\right] P\left[v_{t+2}, v_{e^{\prime}}\right]$	$t+2 \leq 8$
(ii)	$v_{1} v_{8} \in E(G)$	$v_{e} v_{0} u P^{-}\left[v_{i_{3}}, v_{1}\right] v_{8} v_{e^{\prime}}$	

Table 14: Proof of Claim 9.

Claim 10. If $i_{1}=0$, then $i_{2}=3$.
If $i_{2} \geq 4$, then $\left(i_{1}, i_{2}, i_{3}\right) \in\{(0,4,6),(0,4,7),(0,4,8),(0,5,7)\} . \quad$ By $(4.18), s_{5} \in$ $\{0,1,2,8\}$. Hence $P\left[v_{e}, v_{4}\right] u v_{0} P\left[v_{5}, v_{e^{\prime}}\right]$ (if $v_{0} v_{5} \in E(G)$), or $v_{e} v_{0} u P^{-}\left[v_{4}, v_{1}\right] P\left[v_{5}, v_{e^{\prime}}\right]$ (if $v_{1} v_{5} \in E(G)$), or $v_{e} v_{0} u v_{4} v_{3} v_{2} P\left[v_{5}, v_{e^{\prime}}\right]$ (if $v_{2} v_{5} \in E(G)$) is longer than P. Thus $v_{5} v_{8} \in E(G)$. If $i_{3} \in\{6,7\}$, then $P\left[v_{e}, v_{4}\right] u v_{i_{3}} P^{-}\left[v_{i_{3}}, v_{5}\right] v_{8} v_{e^{\prime}}$ is longer than P. Hence $\left(i_{1}, i_{2}, i_{3}\right)=(0,4,8)$. In this case, $P\left[v_{e}, v_{4}\right] u v_{8} P\left[v_{5}, v_{e^{\prime}}\right]$ is longer than P, contrary to (4.9), and so Claim 10 holds.

Claim 11. Both $i_{1} \geq 1$ and $i_{3} \leq c-1$. Furthermore, when $i_{1}=1$, each of the following holds.
(i) Let $t \in\left\{i_{2}, i_{3}\right\}$. Then $x_{0} v_{t-1} \notin E(G)$.
(ii) If $i_{2} \geq 4$, then $v_{0} v_{i_{2}-2} \notin E(G)$. If $i_{3} \geq i_{2}+3$, then $v_{0} v_{i_{3}-2} \notin E(G)$.

By symmetry, we assume that $i_{1}=0$. By Claim 10, $\left(i_{1}, i_{2}, i_{3}\right) \in\{(0,3,5),(0,3,6),(0,3,7),(0,3,8)\}$. By (4.18), $s_{1} \in\{4,5,6,7,8\}$. By Claim $9,\left(i_{1}, i_{2}, i_{3}\right) \neq(0,3,5)$.

If $\left(i_{1}, i_{2}, i_{3}\right)=(0,3,6)$, then by Claim $9, v_{1} v_{6} \in E(G)$, and so $v_{2} v_{6} \notin E(G)$. By (4.18), $s_{2} \in\{5,7,8\}$.

If $\left(i_{1}, i_{2}, i_{3}\right)=(0,3,8)$, then by (4.18) and Claim $9, s_{1} \in\{6,7,8\}$. If $s_{1}=6$, then $s_{2} \neq 6$ and so by (4.18), and Claim $9, s_{2} \in\{5,7,8\}$.

If $\left(i_{1}, i_{2}, i_{3}\right)=(0,3,7)$, then by (4.18) and Claim $9, s_{4} \in\{7,8\}$; and if $s_{4}=7$, $s_{5} \in\{2,8\}$. Similarly, When $v_{4} v_{7}, v_{2} v_{5} \in E(G), s_{1} \in\{6,7\}$.

With these analysis, Table 15 proves Claim 11.

CHAPTER 4. STRONGLY SPANNING TRAILABLE GRAPHS WITH SHORT LONGEST PATHS75

Cases	$\left(i_{1}, i_{2}, i_{3}\right)$	Edge in $E(G)$	$\begin{aligned} & \left(v_{e}, v_{e^{\prime}}\right) \text {-path } \\ & \text { longer than } P \end{aligned}$	Conclusions
$\begin{aligned} & i_{1} \geq 1 \\ & i_{3} \leq c-1 \end{aligned}$	$(0,3,6)$	$v_{2} v_{5} \in E(G)$	$\begin{aligned} & v_{e} v_{1} v_{2} v_{5} v_{4} v_{3} \\ & u P\left[v_{6}, v_{e^{\prime}}\right] \end{aligned}$	
		$v_{2} v_{s_{2}} \in E(G)$	$\begin{aligned} & v_{e} v_{0} u P^{-}\left[v_{6},\right. \\ & \left.v_{2}\right] v_{s_{2}} v_{e^{\prime}} \end{aligned}$	$\begin{aligned} & s_{2} \in\{7,8\} \\ & s_{2} \in\{7,8\} \end{aligned}$
	$(0,3,8)$	$v_{1} v_{7} \in E(G)$	$\begin{aligned} & v_{e} v_{1} P^{-}\left[v_{7},\right. \\ & \left.v_{3}\right] u v_{8} v_{e^{\prime}} \end{aligned}$	
		$v_{1} v_{8} \in E(G)$	$v_{e} v_{0} u v_{8} P\left[v_{1}, v_{e^{\prime}}\right]$	$\begin{aligned} & s_{1}=6, \text { and so } \\ & s_{2} \in\{5,7,8\} \end{aligned}$
		$v_{2} v_{5} \in E(G)$	$v_{e} v_{0} u v_{3} v_{4} v_{5}$ $v_{2} v_{1} v_{6} v_{7} v_{e^{\prime}}$	
		$v_{2} v_{s_{2}} \in E(G)$	$\begin{aligned} & v_{e} v_{0} u P\left[v_{3},\right. \\ & \left.v_{6}\right] v_{1} v_{2} v_{s_{2}} v_{e^{\prime}} \end{aligned}$	$s_{2} \in\{7,8\}$
	$(0,3,7)$	$v_{4} v_{8} \in E(G)$	$\begin{aligned} & P\left[v_{e}, v_{3}\right] u P^{-}\left[v_{7},\right. \\ & \left.v_{4}\right] v_{8} v_{e^{\prime}} \end{aligned}$	$\begin{aligned} & v_{4} v_{7} \in E(G), \\ & \text { and so } s_{5} \in\{2,8\} \end{aligned}$
		$\begin{aligned} & v_{4} v_{7}, \\ & v_{5} v_{8} \in E(G) \end{aligned}$	$\begin{aligned} & P\left[v_{e}, v_{4}\right] v_{7} v_{6} v_{5} \\ & v_{8} v_{e^{\prime}} \end{aligned}$	$v_{2} v_{5} \in E(G),$ and so $s_{1} \in\{6,7\}$
		$\begin{aligned} & v_{2} v_{5} \\ & v_{1} v_{6} \in E(G) \end{aligned}$	$\begin{aligned} & v_{e} v_{0} u v_{3} v_{4} v_{5} v_{2} \\ & v_{1} P\left[v_{6}, v_{e^{\prime}}\right] \end{aligned}$	
		$\begin{aligned} & v_{2} v_{5}, \\ & v_{1} v_{7} \in E(G) \end{aligned}$	$\begin{aligned} & v_{e} v_{0} u v_{3} v_{4} v_{5} v_{2} \\ & v_{1} v_{7} v_{e^{\prime}} \end{aligned}$	
$\begin{aligned} & i_{1}=1 \\ & t \in\left\{i_{2}, i_{3}\right\} \end{aligned}$		$\begin{aligned} & x_{0} v_{t-1} \\ & \in E(G) \\ & \hline \end{aligned}$	$\begin{aligned} & v_{e} v_{0} P^{-}\left[v_{t-1},\right. \\ & \left.v_{1}\right] u P\left[v_{t}, v_{e^{\prime}}\right] \end{aligned}$	
$\begin{aligned} & i_{1}=1 \\ & i_{2} \geq 4 \end{aligned}$		$\begin{aligned} & v_{0} v_{i_{2}-2} \\ & \in E(G) \end{aligned}$	$\begin{aligned} & v_{e} v_{0} P^{-}\left[v_{i_{2}-2},\right. \\ & \left.v_{1}\right] u P\left[v_{i_{2}}, v_{e^{\prime}}\right] \end{aligned}$	
$\begin{aligned} & i_{1}=1 \\ & i_{3} \geq i_{2}+3 \end{aligned}$		$\begin{aligned} & v_{0} v_{i_{3}-2} \\ & \in E(G) \end{aligned}$	$\begin{aligned} & v_{e} v_{0} P^{-}\left[v_{i_{3}-2},\right. \\ & \left.v_{1}\right] u P\left[v_{i_{3}}, v_{e^{\prime}}\right] \end{aligned}$	

Table 15: Proof of Claim 11.

Claim 12. $\quad i_{1} \geq 2$ and $i_{3} \leq c-2$.
By contradiction, by symmetry and Claim 11, we assume that $i_{1}=1$ and so $\left(i_{1}, i_{2}, i_{3}\right) \in$ $\{(1,3,5),(1,3,6),(1,3,7),(1,4,6),(1,4,7)\}$.

Case 12.1. $\left(i_{1}, i_{2}, i_{3}\right)=(1,3,5)$.
By (4.10), $G\left(e, e^{\prime}\right)\left[\left\{v_{1}, v_{2}, \cdots, v_{5}, u\right\}\right] \not \approx K_{3,3}^{-}$, and so $s_{1} \neq 4$ and $s_{2} \neq 5,6 \notin E(G)$. By (4.18) and Claim 11, $s_{2} \in\{0,7,8\}$. If $v_{2} v_{8} \in E(G)$, then $P^{\prime}=v_{e} v_{1} u v_{3} \cdots v_{7} v_{e^{\prime}}$ satisfies $\left|V\left(P^{\prime}\right)\right|=|V(P)|$ and $N_{G}\left(v_{2}\right) \cap V\left(P^{\prime}\right)=\left\{v_{8}, v_{3}, v_{1}\right\}$, and so P^{\prime} violates applying Claim 11 (when P is replaced by P^{\prime}). Hence $v_{2} v_{7} \in E(G)$.

Note that $v_{4} v_{8}, v_{6} v_{8}, v_{0} v_{6} \notin E(G)$, as otherwise, $v_{e} v_{1} u v_{3} v_{2} v_{7} v_{6} v_{5} v_{4} v_{8} v_{e^{\prime}}$ or $v_{e} v_{1} v_{5} v_{4} v_{3} v_{2} v_{7} v_{6} v_{8} v_{e^{\prime}}$ or $v_{e} v_{0} v_{6} v_{5} v_{4} v_{3} u v_{1} v_{2} v_{7} v_{e^{\prime}}$ would be longer than P. Hence by (4.18) and Claim 11, $s_{4} \in$ $\{1,7\}$ and $s_{6} \in\{1,2,3\}$. Let $H_{1}=G\left[V\left(P\left[v_{1}, v_{7}\right] \cup\{u\}\right]\right.$. As $s_{4} \in\{1,7\}$ and $s_{6} \in\{1,2,3\}$, by Theorem $1.2 .2(\mathrm{vi})$ and $(\mathrm{v}), F\left(H_{1}\right) \leq 2(8)-12-2=2$, and so H_{1} is not reduced, contrary to (4.10). This excludes Case 12.1.

Case 12.2. $\left(i_{1}, i_{2}, i_{3}\right)=(1,3,6)$.
By (4.18) and Claim 11, $s_{2} \in\{5,6,7,8\}$. Note that $v_{2} v_{5}, v_{2} v_{7}, v_{2} v_{8} \notin E(G)$, as otherwise, $v_{e} v_{1} v_{2} v_{5} v_{4} v_{3} u v_{6} v_{7} v_{e^{\prime}}$, or $v_{e} v_{1} u P^{-}\left[v_{6}, v_{2}\right] v_{7} v_{e^{\prime}}$, or $v_{e} v_{1} u P^{-}\left[v_{6}, v_{2}\right] v_{8} v_{e^{\prime}}$ would be longer than P. This implies $v_{2} v_{6} \in E(G)$. By (4.18) and Claim 11, $s_{5} \in\{1,8\}$. If $v_{5} v_{8} \in E(G)$, then $v_{e} v_{1} u v_{6} P\left[v_{2}, v_{5}\right] v_{8} v_{e^{\prime}}$ would be longer than P, and so $v_{5} v_{1} \in E(G)$. By Lemma 1.2.3(i), with $v_{2} v_{6}, v_{5} v_{1} \in E(G), G\left[\left(e, e^{\prime}\right)\left[\left\{v_{1}, v_{3}, v_{6}, u, v_{2}, v_{5}\right\}\right]\right.$ is not reduced, contrary to (4.10). This excludes Case 12.2.

Case 12.3. $\left(i_{1}, i_{2}, i_{3}\right)=(1,3,7)$.
First note that $v_{2} v_{6} \notin E(G)$, as otherwise $v_{e} v_{1} v_{2} v_{6} v_{5} v_{4} v_{3} u v_{7} v_{e^{\prime}}$ is longer than P. Hence by (4.18), Claim 11, and symmetry, $s_{2} \in\{5,7\}$. But then $v_{6} v_{8} \notin E(G)$, as otherwise, either $v_{e} v_{1} v_{2} v_{5} v_{4} v_{3} u v_{7} v_{6} v_{8} v_{e^{\prime}}$ (if $s_{2}=5$) or $v_{e} v_{1} u v_{7} P\left[v_{2}, v_{6}\right] v_{8} v_{e^{\prime}}$ (if $s_{2}=7$) is longer than P. By Claim 11 and as $s_{6} \neq 8, s_{6} \in\{1,3\}$. As $G\left(e, e^{\prime}\right)\left[\left\{v_{1}, v_{3}, v_{7}, u, v_{6}, v_{2}\right\} \not \equiv K_{3,3}^{-}\right.$, we have $s_{2} \neq 7$, and so $s_{2}=5$.

As $s_{2}=5, v_{0} v_{4} \notin E(G)$, as otherwise, $v_{e} v_{0} v_{4} v_{3} u v_{1} v_{2} P\left[v_{5}, v_{e^{\prime}}\right]$ is longer than P. By Claim 11, $s_{4} \in\{1,7\}$. As $s_{2}=5$ and $s_{4} \in\{1,7\}$, by Lemma 1.2.3(i), $G\left(e, e^{\prime}\right)\left[V\left(P\left[v_{1}, v_{7}\right]\right) \cup\right.$ $\{u\}]$ is not reduced, contrary to (4.10). This proves Case 12.3.

Case 12.4. $\left(i_{1}, i_{2}, i_{3}\right)=(1,4,6)$.

By (4.18) and Claim 11, $s_{2} \in\{5,6,7,8\}$. Note that $v_{2} v_{5}, v_{2} v_{7}, v_{2} v_{8} \notin E(G)$ as otherwise, $v_{e} v_{1} u v_{4} v_{3} v_{2} P\left[v_{5}, v_{e^{\prime}}\right]$, or $v_{e} v_{1} u P^{-}\left[v_{2}, v_{6}\right] v_{7} v_{e^{\prime}}, v_{e} v_{1} u P^{-}\left[v_{6}, v_{2}\right] v_{8} v_{e^{\prime}}$ is longer than P. Thus $s_{2}=6$. By (4.18), Claim 11, and symmetry, $s_{5}=1$. Thus by Lemma 1.2.3(i), $G\left(e, e^{\prime}\right)\left[\left\{v_{1}, v_{4}, v_{6}, u, v_{5}, v_{2}\right\}\right]$ is not reduced, contrary to (4.10). This proves Case 12.4.

Case 12.5. $\left(i_{1}, i_{2}, i_{3}\right)=(1,4,7)$.
Note that $v_{2} v_{5}, v_{3} v_{6} \notin E(G)$, as otherwise $v_{e} v_{1} u v_{4} v_{3} v_{2} P\left[v_{5}, v_{e^{\prime}}\right]$ or $P\left[v_{e}, v_{3}\right] v_{6} v_{5} v_{4} u v_{7} v_{e^{\prime}}$ is longer than P. By (4.18), Claim 11, and by symmetry, we may assume that $s_{2} \in\{6,7\}$, $s_{3}=7$ and $s_{5}=1$. By Lemma 1.2.3(i), $G\left(e, e^{\prime}\right)\left[V\left(P\left[v_{1}, v_{7}\right]\right) \cup\{u\}\right]$ is not reduced, contrary to (4.10). This precludes Case 12.5, and so Claim 12 holds.

By Claim 12, $\left(i_{1}, i_{2}, i_{3}\right)=(2,4,6)$. By (4.18) and Claim 11, $s_{3} \in\{0,6,7,8\}$. Note that $v_{3} v_{0}, v_{3} v_{7}, v_{3} v_{8} \notin E(G)$, as otherwise $v_{e} v_{0} v_{3} v_{2} u P\left[v_{4}, v_{e^{\prime}}\right]$, or $v_{e} v_{1} v_{2} u P^{-}\left[v_{6}, v_{3}\right] v_{7} v_{e^{\prime}}$, or $v_{e} v_{1} v_{2} u P^{-}\left[v_{6}, v_{3}\right] v_{8} v_{e^{\prime}}$ is longer than P. Hence $s_{3}=6$. By Lemma 1.2.3(i), $G\left(e, e^{\prime}\right)\left[V\left(P\left[v_{2}, v_{6}\right]\right) \cup\right.$ $\{u\}]$ is not reduced, contrary to (4.10). The proof for Theorem 4.3.1 is now complete.

Chapter 5

The Discharging Method and 3-Connected Essentially 10-Connected Line Graphs

5.1 Introduction

A subgraph of G isomorphic to a $K_{1,2}$ or a 2 -cycle is called a P_{2}-subgraph of G, and a 2 -cycle is a graph consisting of two non loop edges sharing two end-vertices. An edge cut X of G is a P_{2}-edge cut of G if at least two components of $G-X$ contain P_{2}-subgraphs. By the definition of a line graph, if $L(G)$ is not a complete graph, then $L(G)$ is essentially k-connected if and only if G does not have a P_{2}-edge cut with size less than k. In 2006, Lai et al. considered the hamiltonicity of 3 -connected line graphs and showed that the high essential connectivity of a 3-connected line graph can guarantee the existence of a hamiltonian cycle as follows.

Theorem 5.1.1 (Lai, Shao, Wu and Zhou [26]) Every 3-connected, essentially 11-connected line graph is hamiltonian.

Recently, Li and Yang improved Theorem 5.1.1 by directly counting the number of edges between partitioned vertex subsets in applying spanning trees packing theorem of Nash-Williams [38] and Tutte [47].

Theorem 5.1.2 (Li and Yang [32]) Every 3-connected, essentially 10-connected line graph is hamiltonian connected.

In this note we shall use discharging to give a short proof of Theorem 5.1.2. Using the $c l^{M}$-closure introduced by Ryjáček and Vrána on claw-free graphs (Theorem 9, [44]), we have the following.

Corollary 5.1.3 Every 3-connected, essentially 10-connected claw-free graph is hamiltonian connected.

5.2 Proof of Theorem 5.1.2

Recall that subset D of the vertex set $V(G)$ is a dominating set if every edge has at least one end-vertex in D. Let $e_{1}, e_{2} \in E(G)$. We use " $\left(e_{1}, e_{2}\right)$-trail" to denote a trail having the end-edges e_{1} and e_{2}. An $\left(e_{1}, e_{2}\right)$-trail is a dominating trail if each edge of G is incident with at least one internal vertex of the trail. An $\left(e_{1}, e_{2}\right)$-trail is a spanning trail if it is a dominating trail which contains all the vertices of G. A graph is dominating trailable if for each pair of e_{1} and e_{2} of edges of G there exists a dominating trail with end-edges e_{1} and e_{2}. Similarly, one can define the spanning trailable graphs.

Theorem 5.2.1 (Nash-Williams [39]) Let G be a graph. If $|E(G)| \geq k(|V(G)|-1)$, then G has a nontrivial subgraph H such that $\tau(H) \geq k$.

Theorem 5.2.2 Let G be a graph, and let H be a subgraph of G.
(i) (Catlin and Lai, Theorem 4 of [10]) Suppose that $\tau(G) \geq 2$. For any $e_{1}, e_{2} \in E(G)$, G has a spanning $\left(e_{1}, e_{2}\right)$-trail if and only if $\left\{e_{1}, e_{2}\right\}$ is not an essential edge cut of G.
(ii) (Liu et al, Lemma 2.1 of [34]) If $\tau(H) \geq 2$ and $\tau(G / H) \geq 2$, then $\tau(G) \geq 2$.

Let G be a connected, essentially 3-edge-connected graph such that $L(G)$ is not a complete graph. The core of the graph G, denoted by G_{0}, is obtained from G by deleting all the vertices of degree 1 and contracting exactly one edge $x y$ or $y z$ for each path $x y z$ in G with $d_{G}(y)=2$.

Lemma 5.2.3 (Shao [45]) Let G be a connected, essentially 3-edge-connected graph. Then the core G_{0} of G satisfies the following.
(i) G_{0} is uniquely defined and $\kappa^{\prime}\left(G_{0}\right) \geq 3$.
(ii) If G_{0} is spanning trailable, then $L(G)$ is hamiltonian connected.

Proof of Theorem 5.1.2. To prove $L(G)$ is hamiltonian connected, by Theorem 5.2 .2 (i) and Lemma 5.2.3, it suffices to prove that $\tau\left(G_{0}\right) \geq 2$, where G_{0} is the core of G. By contradiction, assume that $\tau\left(G_{0}\right)<2$. We choose $L(G)$ such that $\left|V\left(G_{0}\right)\right|$ is minimized. By Theorem 5.2.2(ii),

$$
\begin{equation*}
G_{0} \text { does not have a nontrivial subgraph } T \text { such that } \tau(T) \geq 2 \tag{5.1}
\end{equation*}
$$

Thus, if H is a P_{2}-subgraph in G_{0}, then $H=K_{1,2}$.
Claim 1. Let H be a P_{2}-subgraph in G_{0}. Then $e(V(H), V(G)-V(H)) \geq 10$.
Assume that $e(V(H), V(G)-V(H)) \leq 9$. Let $H=K_{1,2}$ with $\{x y, y z\} \subseteq E(H)$. Then $X=E(V(H), V(G)-V(H))$ is an edge cut in G_{0}. Let $H, H_{1}, H_{2}, \cdots, H_{k}$ be components of $G_{0}-X$. Then each $H_{i}(i=1, \cdots, k)$ does not contain a P_{2}-subgraph. Thus each H_{i} is either a single vertex or a single edge.

Assume that $E\left(H_{1}\right)=\{u w\}$. As $d_{G_{0}}(v) \geq 3$ and $d_{G_{0}}(w) \geq 3$, we have $\mid N_{G_{0}}(v) \cap$ $\{x, y, z\} \mid \geq 2$ and $\left|N_{G_{0}}(w) \cap\{x, y, z\}\right| \geq 2$. As G_{0} has no subgraph T such that $\tau(T) \geq 2$, $d_{G_{0}}(v)=3$ and $d_{G_{0}}(w)=3$, and the subgraph induced by $\{x, y, z\} \cup\{u, w\}$ is one of graphs in Figure 1. Thus $k \geq 2$. Without loss of generality, we assume that $V\left(H_{2}\right) \cap$ $\left(N_{G_{0}}(y) \cup N_{G_{0}}(z)\right) \neq \emptyset$. Consider the new edge cut $X^{\prime}=E\left(\{x, u, w\}, V\left(G_{0}\right)-\{x, u, w\}\right)$. Then X^{\prime} is a P_{2}-edge-cut, and so $\left|X^{\prime}\right| \geq 10$. As $e(\{x, u, w\},\{y, z\})=3,4$, we have $\left|N_{G_{0}}(x) \cap\left(V\left(H_{2}\right) \cup \cdots \cup V\left(H_{k}\right)\right)\right| \geq 6$. Therefore, $|X| \geq 6+4=10$, a contradiction. So each H_{i} is a single vertex.

Figure 1.

Let $V\left(H_{i}\right)=\left\{a_{i}\right\}$. Since G_{0} is 3-edge-connected, we have $a_{i} x, a_{i} y, a_{i} z \in E(G)$ and $k \geq 2$. Thus the subgraph induced by $V(H) \cup\left\{a_{1}, a_{2}\right\}$ in G_{0} contains 2 edge-disjoint trees, contrary to (1). Therefore, Claim 1 holds.

Next we will get a contradiction by using the discharging method to find a nontrivial subgraph H in G_{0} with $\tau(H) \geq 2$. We define the initial charge at v as $\operatorname{charge}(v)=d_{G_{0}}(v)$. Recharging rule is defined as follows.
(R1) Let $v \in D_{i}\left(G_{0}\right)(i=5,6,7)$. By Claim 1, $\left|N_{G_{0}}(v) \cap D_{3}\left(G_{0}\right)\right| \leq 1$. We define the charge of v as

$$
\operatorname{charge}(v):=\left\{\begin{array}{ll}
\operatorname{charge}(v)-1, & \text { if }\left|N_{G_{0}}(v) \cap D_{3}\left(G_{0}\right)\right|=1 \\
\operatorname{charge}(v), & \text { if }\left|N_{G_{0}}(v) \cap D_{3}\left(G_{0}\right)\right|=0
\end{array} .\right.
$$

If $w \in D_{3}\left(G_{0}\right) \cap N_{G_{0}}(v)$, we define the discharge of w as

$$
\operatorname{charge}(w):=\operatorname{charge}(w)+1
$$

(R2) Let $v \in D_{i}\left(G_{0}\right)(i \geq 8)$, we define the charge of v as

$$
\operatorname{charge}(v):=4
$$

For every $w \in N_{G_{0}}(v)$, we define the discharge of w as

$$
\operatorname{charge}(w):=\operatorname{charge}(w)+\frac{d_{G}(v)-4}{d_{G}(v)} .
$$

As $d_{G_{0}}(v) \geq 8$, we have $\frac{d_{G_{0}}(v)-4}{d_{G_{0}}(v)} \geq \frac{1}{2}$.

Claim 2. After all vertices are recharged, for each vertex $v \in V\left(G_{0}\right), \operatorname{charge}(v) \geq 4$.
Let $v \in D_{i}\left(G_{0}\right)(i \geq 4)$. By (R1) and (R2), we have charge(v) ≥ 4. Next we consider $v \in D_{3}\left(G_{0}\right)$.

Case 1. $\quad N_{G_{0}}(v) \cap D_{3}\left(G_{0}\right)=\emptyset$.
If $N_{G_{0}}(v) \cap\left(D_{5}\left(G_{0}\right) \cup D_{6}\left(G_{0}\right) \cup D_{7}\left(G_{0}\right)\right) \neq \emptyset$, by (R1), we have $\operatorname{charge}(v)=4$. Otherwise, $N_{G_{0}}(v) \cap\left(D_{5}\left(G_{0}\right) \cup D_{6}\left(G_{0}\right) \cup D_{7}\left(G_{0}\right)\right)=\emptyset$. By Claim 1, $\left|N_{G_{0}}(v) \cap D_{4}\left(G_{0}\right)\right| \leq 1$, Thus $\left|N_{G_{0}}(v) \cap D_{\geq 8}\left(G_{0}\right)\right| \geq 2$. By (R2), we have

$$
\operatorname{charge}(v) \geq 3+\frac{1}{2}+\frac{1}{2}=4 .
$$

Case 2. $\quad N_{G_{0}}(v) \cap D_{3}\left(G_{0}\right) \neq \emptyset$.
By Claim 1, $\left|N_{G_{0}}(v) \cap D_{3}\left(G_{0}\right)\right|=1$. Let $N_{G_{0}}(v) \cap D_{3}\left(G_{0}\right)=\{u\}$. By Claim 1, for any $w \in\left(N_{G_{0}}(v) \cup N_{G_{0}}(u)-\{u, v\}\right), d_{G_{0}}(w) \geq 8$. By (R2), we have

$$
\operatorname{charge}(v) \geq 3+\frac{1}{2}+\frac{1}{2}=4, \text { and } \operatorname{charge}(u) \geq 3+\frac{1}{2}+\frac{1}{2}=4 .
$$

Claim 2 hods.
By Claim 2, we have

$$
2\left|E\left(G_{0}\right)\right|=\sum_{v \in V\left(G_{0}\right)} d_{G_{0}}(v)=\sum_{v \in V\left(G_{0}\right)} \text { charge }(v) \geq 4\left|V\left(G_{0}\right)\right|,
$$

and so $\left|E\left(G_{0}\right)\right| \geq 2\left|V\left(G_{0}\right)\right|$. By Theorem 5.2.1, G_{0} has a nontrivial subgraph T such that $\tau(T) \geq 2$, contrary to (1).

Figure 2.

Remark: If the essential connectivity of $L(G)$ in Theorem 5.1.2 is less than 10, we fail to prove $\left|E\left(G_{0}\right)\right| \geq 2\left|V\left(G_{0}\right)\right|$ using the discharging method. For example, we take $2 k(k \geq 1)$ copies of $H_{i}=K_{2,7}(i=0,1, \cdots, 2 k-1)$, where $V\left(H_{i}\right)=$ $\left\{a^{i}, b^{i}, u_{1}^{i}, u_{2}^{i}, \cdots, u_{7}^{i}\right\}$ with $d_{H_{i}}\left(a^{i}\right)=d_{H_{i}}\left(b^{i}\right)=7$ and $d_{H_{i}}\left(u_{j}^{i}\right)=2(j=1,2, \cdots, 7)$. The graph G is defined as $V(G)=\bigcup_{i=0}^{2 k-1} V\left(H_{i}\right)$ and $E(G)=\bigcup_{i=0}^{2 k-1} E\left(H_{i}\right) \cup \bigcup_{i=0}^{2 k-1} E\left(H_{i}, H_{i+1}\right)$ (i is modulo by $2 k$), where $H(2 t, 2 t+1)=\left\{u_{1}^{2 t} u_{1}^{2 t+1}, u_{3}^{2 t} u_{3}^{2 t+1}, u_{5}^{2 t} u_{5}^{2 t+1}, u_{7}^{2 t} u_{7}^{2 t+1}\right\}$ and $H(2 t+1,2 t+2)=\left\{u_{2}^{2 t+1} u_{2}^{2 t+2}, u_{4}^{2 t+1} u_{4}^{2 t+2}, u_{6}^{2 t+1} u_{6}^{2 t+2}\right\}(t=0,1, \cdots, k-1)$ (The subgraph induced by $\bigcup_{j=1}^{7} \bigcup_{i=0}^{2 k-1}\left\{u_{j}^{i}\right\}$ is shown in Figure 2). Then $|V(G)|=18 k$ and $|E(G)|=35 k$, and so $2|V(G)|-|E(G)|=36 k-35 k=k$. Therefore, the difference of $2|V(G)|-|E(G)|$ can be as large as possible. However, $L(G)$ is 3-connected, essentially 9-connected.

Chapter 6

Cycle Chains and hamiltonian 3-connected claw-free graphs

6.1 Introduction

Graphs in this chapter are finite and may have multiple edges or loops. Let H_{5} (usually called the hour-glass) denote the graph obtained from K_{5} by deleting two independent edges, and let T_{3} be the graph with

$$
V\left(T_{3}\right)=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\} \text { and } E\left(T_{3}\right)=\left\{v_{i} v_{i+1}, v_{i} v_{i+4}, v_{i+1} v_{i+4}: 1 \leq i \leq 3\right\} .
$$

Theorem 6.1.1 (T. Kaiser, M. Li, Ryjác̆ek and L. Xiong [24]) A graph G is said to have the hourglass property if in every induced hourglass H_{5}, G has two non-adjacent vertices which have a common vertex in $V(G)-V\left(H_{5}\right)$. Then every 4-connected claw-free graph is hamiltonian.

Theorem 6.1.2 (F. Pfender [40]) Every 4-connected $\left\{K_{1,3}, T_{3}\right\}$-free graph is Hamiltonian.

For a vertex $v \in V(G), N_{G}(v)$ is the set of all vertices adjacent to v in G. For a subset $S \subseteq V(G), N_{G}(S)=\cup_{v \in S} N_{G}(v)$. A vertex v is locally connected in G if $G\left[N_{G}(v)\right]$ is connected. Let G be a claw-free graph. If $v \in V(G)$ is locally connected, the operation of adding all possible edges between vertices in $N_{G}(v)$ is referred as local completion at v. The line graph closure of G, denoted by $c l(G)$, is obtained from this claw-free graph G by repeatedly applying local completion at every locally connected vertices until none left. Ryjáček [43] showed that $\operatorname{cl}(G)$ is well-defined and unique. Furthermore, he proved the following very useful result.

Theorem 6.1.3 Let G be a claw-free graph. Then $\operatorname{cl}(G)$ is the line graph of a K_{3}-free graph, and G is hamiltonian if and only if $\operatorname{cl}(G)$ is hamiltonian.

Theorem 6.1.4 (Fujisawa and Ota [20]) Let G be a 4-connected claw-free graph. Assume that $G\left[N_{G}(T)\right]$ is cyclically 3-connected if T is a maximal K_{3} in G which is also maximal in $\operatorname{cl}(G)$. Then G is Hamiltonian.

The purpose of this paper is to find a unified approach to generalize all these results. A graph G is supereulerian if G has a spanning eulerian subgraph. For any edge $e=u v \in$ $E(G)$, define

$$
d_{G}(e)=d_{G}(u)+d_{G}(v)-2 .
$$

Our main theorem states as follows.

Theorem 6.1.5 Let G be a graph with $\kappa^{\prime}(G) \geq 3$. If for any 3-bond D of G,
(i) either D intersects a cycle of length at most 3, or
(ii) every $e \in D$ lies in at least $\min \left\{d_{G}(e)-3,2\right\}$ cycles of length at most 4,
then G is supereulerian.

In the last section, we shall show that Theorem 6.1 .5 can be applied to obtain short proofs for each of Theorems 6.1.1 6.1.2, and 6.1.4. Moreover, Theorem 6.1.5 can also be applied to obtained new sufficient conditions for a 3 -connected claw-free graph to be hamiltonian.

A claw-free graph G is said to have the maximal K_{3}-property if for every maximal K_{3} subgraph K of G, every edge in K lies in a cycle of length at most 4 in G other than K itself. For a vertex cut X of G, a cycle of G that contains at least two vertices of X is called an X-cycle. If L is a component of $G-X$, then $G[V(L) \cup X]$ is an X-component of G. An X-component is a clique X-component if it is a maximal complete subgraph of G. A vertex cut X is essential if $G-X$ has at least two nontrivial components. Our main result also implies the following.

Theorem 6.1.6 Let G be a 3-connected claw-free graph with the maximal K_{3}-property. Then G is Hamiltonian if for any vertex 3-cut X of G, either
(i) G does not have a clique X-component, and either G has an X-cycle C with $|E(C)| \leq$ 3, or every pair of vertices of X are in an X-cycle of length at most 4 in G, or (ii) one of the X-component K is a complete graph, and either G has an X-cycle C not in K with $|E(C)| \leq 3$, or every pair of vertices of X are in an X-cycle not in K of length at most 4.

Theorem 6.1.6 has the following immediate corollary.

Corollary 6.1.7 Every 4-connected claw-free graph with maximal K_{3}-property is hamiltonian.

6.2 Proof of Theorem 6.1.5

In this section, we will prove a stronger result (Theorem 6.2.6 below) which implies Theorem 6.1.5. If K is a subgraph of G, then we write G / K for $G / E(K)$. If K is a connected subgraph of G, and if v_{K} is the vertex in G / K onto which K is contracted, then K is called the preimage of v_{K}. A vertex u in G / K is a trivial vertex (of the contraction) if the preimage of u in G is u itself.

Definition 6.2.1 A graph G is collapsible if for any subset R of $V(G)$ with $|R| \equiv 0$ (mod 2), G has a spanning connected subgraph Γ_{R} with $O\left(\Gamma_{R}\right)=R$. In particular, K_{1} is collapsible.

Collapsible graphs were discovered by Catlin in [8]. Catlin in [8] showed that every graph G has a unique collection of pairwise vertex-disjoint maximal collapsible subgraphs $H_{1}, H_{2}, \cdots, H_{k}$ such that $\bigcup_{i=1}^{k} V\left(H_{i}\right)=V(G)$. The reduction of G is the graph obtained from G by successively contracting $H_{1}, H_{2}, \cdots, H_{k}$. A graph G is reduced if it equals to its reduction. Thus reduced graphs do not have any nontrivial collapsible subgraphs. Note that any collapsible graph G has a spanning Eulerian subgraph, and so itself is supereulerian. Let $a_{1}(G)$ be the minimum number of spanning trees of G such that every edge of G is in at least one of them.

Theorem 6.2.2 Each of the following holds for a a connected graph G.
(i) (Catlin, Theorem 3 of [8]) Let H be a collapsible subgraph of G. Then G is collapsible if and only if G / H is collapsible; and G is supereulerian if and only if G / H is supereulerian. (ii) (Catlin, Corollary 1 of [8]) If G has a spanning tree T such that every edge of T lies in a collapsible subgraph of G, then G is collapsible.
(iii). (Catlin, Theorem 7 of [8], Jaeger [23]) If $\kappa^{\prime}(G) \geq 4$, then G is collapsible.
(iv). (Catlin, Theorem 8 of [8], Lemma 1 of [7]) If G is reduced, then $a_{1}(G) \leq 2$, and G contains no subgraph isomorphic to C_{2}, K_{3}, or $K_{3,3}-e$. When $G \notin\left\{K_{1}, K_{2}\right\}$ and $a_{1}(G) \leq 2, F(G)=2|V(G)|-|E(G)|-2$.

Let G be a graph. Define a relation \sim on $E(G)$ as follows: $\forall e, e^{\prime} \in E(G), e \sim e^{\prime}$ if and only if either $e=e^{\prime}$ or G has a sequence of cycles $C_{1}, C_{2}, \cdots, C_{k}$ such that (4C1) for each i with $1 \leq i \leq k,\left|E\left(C_{i}\right)\right| \leq 4$,
(4C2) for $i=1,2, \ldots, k-1, E\left(C_{i}\right) \cap E\left(C_{i+1}\right) \neq \emptyset$, and $(4 \mathrm{C} 3) e \in E\left(C_{1}\right.$ and $e^{\prime} \in E\left(C_{k}\right)$.

Such a sequence $C_{1}, C_{2}, \ldots, C_{k}$ is referred as a 4 -cycle (e, e^{\prime})-chain. It is routine to verify that this is an equivalence relation. The equivalence classes on $E(G)$ induce subgraphs in G which are referred as 4-cycle-connected components. Part (i) of Lemma 6.2.3 follows from the definition.

Lemma 6.2.3 Let G be a connected graph.
(i) Every 4-cycle-component H of G is either 2-connected or a K_{2}.
(ii) (Theorem 1 of [25]) If every edge of G lies in a cycle of length at most 4 in G, and if both $\kappa(G) \geq 2$ and $\delta(G) \geq 3$, then G is collapsible.
(iii) If H is a 4-cycle-component of G and if H has a collapsible subgraph with least one edge, then H is collapsible.
(iv) If H is a 4-cycle-component of G, then for any $e \in E(H)$, H/e is collapsible.

Proof. If (iii) holds, then (iv) follows. In fact, if H contains a 3-cycle, then by (iii), H is collapsible, and so H / e is also collapsible. Assume that H does not contain a 3-cycle. For any edge $e \in E(H)$, e must be in a 4-cycle C in H. Therefore C / e is a 3 -cycle and by definition, H / e is either 4 -cycle connected, or is an edge-disjoint union of 4-cyclecomponents with the contraction image of e being the only cut vertex. As in the latter case, each component of H / e contains a 3 -cycle (contraction image of 4-cycles containing e in H) and so by (iii), H is collapsible. Hence (iv) follows from (iii).

It suffices to prove (iii). Since H has a collapsible subgraph with least one edge, H has a maximal nontrivial collapsible subgraph L. If $H=L$, then done. Otherwise assume that $H \neq L$. Since H is a 4-cycle component, and since $H \neq L, H$ must have an edge $e \in E(H)-E(L)$ such that e is incident with a vertex in L. Since H is 4-cycle connected, e must be in a 4-cycle C with $E(C) \cap E(L) \neq \emptyset$, and so $C /(C \cap L)$ is a cycle of length at most 3 in H / L. By Theorem 6.2.2 (iv), $C /(C \cap L)$ is collapsible. By Theorem 6.2.2 (i), $C \cup L$ is collapsible in H, contrary to the maximality of L. Hence H must be collapsible.

Let \mathcal{F} denote the family of graphs satisfying the hypothesis of Theorem 6.1.5. By the definition of contraction,

$$
\begin{equation*}
\text { if } G \in \mathcal{F} \text {, then for any } e \in E(G), G / e \in \mathcal{F} \tag{6.1}
\end{equation*}
$$

Lemma 6.2.4 Let $G \in \mathcal{F}$ and let H be a 4-cycle-connected component of G with $|E(H)|>$ 2. Then H is collapsible.

Proof. Since 3-cycles are collapsible, by Lemma 6.2.3 (iii), we assume that H does not have a cycle of length at most 3. Since every edge of H lies in a cycle of length at most $4, \delta(H) \geq 2$. By Lemma 6.2.3(i) and (ii), it suffices to show that $\delta(H) \geq 3$. Suppose, by contradiction, that $d_{H}\left(z_{0}\right)=2$ for some vertex $z_{0} \in V(H)$. Let $N_{G}\left(z_{0}\right)=\left\{z_{1}, z_{2}, \cdots, z_{d}\right\}$ such that $d=d_{G}\left(z_{0}\right)$ and such that $N_{H}\left(z_{0}\right)=\left\{z_{1}, z_{2}\right\}$.

We claim that $d \geq 4$. If not, as $d=d_{G}(v) \geq \kappa^{\prime}(G) \geq 3$, we must have $d=3$. Since G has no cycles of length at most $3, z_{0} z_{3}$ must be in a 4 -cycle C of G. Since $d=3$, $\left|E(C) \cap E_{G}\left(z_{0}\right)\right|=2$. It follows that $z_{3} \in V(H)$ by the definition of 4-cycle-connectedness, contrary to the fact that $z_{3} \notin V(H)$.

By this claim and since $\kappa^{\prime}(G) \geq 3, d_{G}\left(z_{0} z_{1}\right)=2$ and so by the definition of $\mathcal{F}, z_{0} z_{1}$ must be in 2 distinct 4-cycles C_{1}, C_{2} (say) of G. By the definition of 4-cycle-connectedness, both $E\left(C_{1}\right) \cup E\left(C_{2}\right) \subseteq E(H)$, and so we must have $d_{H}\left(z_{0}\right) \geq 3$, contrary to the assumption that $d_{H}\left(z_{0}\right)=2$.

Lemma 6.2.5 Let G be a 3-edge-connected graph. If for any 3-bond D, G has a collapsible subgraph H_{D} with $D \cap E\left(H_{D}\right) \neq \emptyset$, then G is collapsible.

Proof. Let $D_{1}, D_{2}, \cdots, D_{t}$ denote the list of all 3-bonds of G. By assumption, G has collapsible subgraphs $H_{D_{1}}, \cdots, H_{D_{t}}$ such that $E\left(H_{D_{i}}\right) \cap D_{i} \neq \emptyset$, for each $i=1,2, \cdots, t$. Let $G^{\prime}=G /\left(H_{D_{1}} \cup \cdots \cup H_{D_{t}}\right)$. By the definition of contractions, $\kappa^{\prime}\left(G^{\prime}\right) \geq \kappa^{\prime}(G)$. Since G^{\prime} does not have any 3 -bonds, $\kappa^{\prime}\left(G^{\prime}\right) \geq 4$. By Theorem 6.2.2(iii), G^{\prime} is collapsible. By repeated applications of Theorem 6.2.2(i), G is collapsible.

Theorem 6.2.6 Let G be a graph with $\kappa^{\prime}(G) \geq 3$. If for any 3-bond D, either D intersects a cycle of length at most 3, or every $e \in D$ lies in at least $\min \left\{d_{G}(e)-3,2\right\}$ cycles of length at most 4, then G is collapsible.

Proof. By Lemma 6.2.4, every edge e in a 3-bond of G lies in a collapsible subgraph of G. By Lemma 6.2.5, G is collapsible.

CHAPTER 6. CYCLE CHAINS AND HAMILTONIAN 3-CONNECTED CLAW-FREE GRAPHS90

6.3 Proofs of Theorems 6.1.1, 6.1.2, 6.1.4 and 6.1.6

Let G be a graph such that $\kappa(L(G)) \geq 3$ and such that $L(G)$ is not complete. For each $v \in D_{2}(G)$, let $E_{G}(v)=\left\{e_{1}^{v}, e_{2}^{v}\right\}$ and define

$$
\begin{equation*}
X_{1}(G)=\cup_{v \in D_{1}(G)} E_{G}(v), \text { and } X_{2}(G)=\left\{e_{2}^{v}: v \in D_{2}(G)\right\} \tag{6.2}
\end{equation*}
$$

Since $\kappa(L(G)) \geq 3, D_{2}(G)$ is an independent set of G and for any vertex $v \in D_{2}(G)$, $\left|X_{2}(G) \cap E_{G}(v)\right|=1$. Define the core of the graph G as

$$
\begin{equation*}
G_{0}=G /\left(X_{1}(G) \cup X_{2}(G)\right)=\left(G-D_{1}(G)\right) / X_{2}(G) \tag{6.3}
\end{equation*}
$$

Recall thta an eulerian subgraph H of a graph G is dominating if $E(G-V(H))=$ \emptyset. Edges in $\cup_{v \in D_{2}(G)} E_{G}(v)-X_{2}(G)$ are referred as nontrivial edges in G_{0}. Vertices of G adjacent to a vertex in $D_{1}(G)$ are viewed as the contraction image of edges in $\cup_{v \in D_{1}(G)} E_{G}(v)$. Utilizing the well-known theorem of Harary and Nash-Willaims ([21]) and Catlin's collapsible graphs ([8]), Shao proves the following useful theorem. A detailed justification for Theorem 6.3.1(iii) can be found in [36].

Theorem 6.3.1 (Shao, Section 1.4 of [45]) Let G_{0} be the core of graph G, then each of the following holds.
(i) G_{0} is nontrivial and $\delta\left(G_{0}\right) \geq \kappa^{\prime}\left(G_{0}\right) \geq 3$.
(ii) G_{0} is well defined.
(iii) $L(G)$ is hamiltonian if and only if G_{0} has a dominating eulerian subgraph containing all nontrivial vertices and both end vertices of each nontrivial edges.

Theorem 6.3.2 Let G be a claw-free graph and let cl (G) be its closure. Each of the following holds.
(i) (Kaiser, Li, Ryjác̆ek and Xiong, Proposition 3 of [24]) If G has the hourglass property, then $\operatorname{cl}(G)$ also has the hourglass property.
(ii) (Pfender, Theorem 14 of [40]) The closure of a $\left\{K_{1,3}, T_{3}\right\}$-free graph is also $\left\{K_{1,3}, T_{3}\right\}$ free.
(iii) (Fujisawa and Ota, Lemma 5 in [20]) Any maximal K_{3} in $\operatorname{cl}(G)$ is also a maximal
K_{3} of G.
(iv) If G satisfies the hypothesis of Theorem 6.1.6, then cl (G) also satisfies the hypothesis of Theorem 6.1.6.

Proof. It remains to prove (iv). By (iii), $c l(G)$ also has maximum K_{3}-property. Since $c l(G)$ is obtained from G by adding edges, and adding edges will not increase the length of the cycles in G. Therefore, $\operatorname{cl}(G)$ also satisfies Theorem 6.1.6 (i) and (ii).

By Theorem 6.1.3 and Theorem 6.3.2, it suffices to prove Theorems 6.1.1 6.1.2, 6.1.4 and 6.1.6 for line graphs.

Proof of Theorems 6.1.1 and 6.1.2 Let $L(G)$ be a 4-connected line graph with the hourglass property or without an induced T_{3}. Let G_{0} be the core of G. Then by the definitions of a line graph and of the core, every edge in G_{0} lies in a cycle of length at most 4. By Theorem 6.1.5, G_{0} is collapsible, and so by Theorem 6.3.1, $L(G)$ is hamiltonian.

Proof of Theorem 6.1.4 Let $L(G)$ be a line graph satisfying the conditions of Theorem 6.1.4. As indicated in Proposition 9 in [20], the core G_{0} of G must satisfy the condition of Theorem 6.1.5, and so by Theorem 6.1.5, G_{0} is collapsible. By Theorem 6.3.1, $L(G)$ is hamiltonian.

Proof of Theorem 6.1.6 Let $L(G)$ be a line graph satisfying the conditions of Theorem 6.1.6 and denote the core of G by G_{0}.

We argue by contradiction and assume that $L(G)$ is a line graph satisfying the conditions of Theorem 6.1.6 but $L(G)$ is not hamiltonian. Denote the core of G by G_{0}. We choose G so that

$$
\begin{equation*}
|V(G)| \text { is minimized. } \tag{6.4}
\end{equation*}
$$

Claim 1. G does not have an essential vertex cut of size 1 , and so the only cut vertices of G are those adjacent to a vertex of degree 1 in G.

By contradiction, assume that G has an essential vertex cut $\left\{v_{0}\right\}$. Then G has nontrivial connected subgraphs G_{1} and G_{2} such that $G=G_{1} \cup G_{2}$ and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{v_{0}\right\}$, and for each $i \in\{1,2\}, G_{i}-v_{0}$ is nontrivial. Let G_{i}^{\prime} be the graph obtained from G_{i} by
adding a new vertex z_{i} and a new edge $z_{i} v_{0}$. Thus every essential edge cut of G_{i}^{\prime} is also an essential edge cut of G. Since G is essentially 3-edge-connected, each G_{i}^{\prime} is also essentially 3-edge-connected, and so $L\left(G_{i}^{\prime}\right)$ is 3-connected.

Fix $i \in\{1,2\}$. As G is essentially 3-edge-connected, $d_{G_{i}}\left(v_{0}\right) \geq 3$, and so $d_{G_{i}^{\prime}}\left(v_{0}\right) \geq$ 4. Hence any maximal K_{3} in $L\left(G_{i}^{\prime}\right)$ must be a maximal K_{3} of G. It follows from the assumption that $L(G)$ has the maximal K_{3}-property that $L\left(G_{i}^{\prime}\right)$ also has the maximal K_{3}-property. Let $X=\left\{e_{1}, e_{2}, e_{3}\right\}$ be a vertex 3 -cut of $L\left(G_{i}^{\prime}\right)$. Then X must be an essential edge cut of G_{i}^{\prime}, and so $X \subseteq E\left(G_{i}\right)$. If $X \neq E_{G_{i}}\left(v_{0}\right)$, then X is also an essential edge cut of $L(G)$, and so a vertex 3-cut of $L(G)$. It follows that X must satisfy Theorem 6.1.6 (i) and (ii) in $L(G)$, and so X satisfies Theorem 6.1.6 (i) and (ii) in $L\left(G_{i}^{\prime}\right)$. By (6.4), $L\left(G_{i}^{\prime}\right)$ has a Hamilton cycle C_{i}.

Let $f_{i}=z_{i} v_{0}$. Suppose that in $C_{i}, e_{1}^{i}, e_{2}^{i}$ are adjacent to f_{i}. Then $e_{1}^{i}, e_{2}^{i} \in E_{G}\left(v_{0}\right)$. Since $E_{G}\left(v_{0}\right)$ induces a complete graph in $L(G),\left(C_{1}-f_{1}\right) \cup\left(C_{2}-f_{2}\right) \cup\left\{e_{1}^{1} e_{1}^{2}, e_{2}^{1} e_{2}^{2}\right\}$ is a Hamilton cycle of $L(G)$, contrary to the assumption that G is a counterexample. This proves Claim 1.

If G_{0} satisfies Theorem 6.1.5 (i) and (ii), then by Theorems 6.1.5 and 6.3.1, Theorem 6.1.6 follows, and so a contradiction would be obtained. Therefore, we shall show that G_{0} satisfies Theorem 6.1.5 (i) and (ii). By contradiction, we assume that G_{0} has a 3 -bond X that does not satisfy Theorem 6.1.5 (i) or (ii). Denote $X=\left\{e_{1}, e_{2}, e_{3}\right\}$. Since G_{0} is a contraction of G, X can also be viewed as a subset of $E(G)$, and so X is also an edge cut of G.

Claim 2. For any $v \in V(G)$, we cannot have $X=E_{G}(v)$. (This implies that X must be an essential edge cut of G).

If $X=E_{G}(v)$, then X induces a maximal K_{3} of $L(G)$. Since $L(G)$ has the maximal K_{3} property, every edge of X satisfies Theorem 6.1.5 (i) and (ii), contrary to the assumption on X. Hence this proves Claim 2.

Claim 3. For any $v \in V(G)$, we cannot have $X \subset E_{G}(v)$.

Suppose that for some $v, X \subseteq E_{G}(v)$. Since X is an edge cut of G, v must be a cut vertex of G. By Claims 1 and 2, and since X is an essential edge cut of G, every edge in $E_{G}(v)-X$ must be incident with a vertex of degree 1 in G. It follows that $E_{G}(v)$ induces a clique X-component K. By Theorem 6.1.6(ii), $L(G)$ must have either a 3 -cycle C containing two vertices in X, or every pair of vertices $e_{i}, e_{j} \in X$ are in a cycle $C_{i j}$ of length at most 4 in $L(G)$. Since $X \subseteq E_{G}(v), G$ must have a cycle C^{\prime} or cycles $C_{i j}^{\prime}$ such that $C=L\left(C^{\prime}\right)$ or $C_{i j}=L\left(C_{i j}^{\prime}\right)$, for all possible values i and j. Hence X satisfies Theorem 6.1.5 (i) and (ii), contrary to the assumption on X. This proves Claim 3.

Claim 4. $L(G)$ does not have a clique X-component.
If $L(G)$ has a clique X-component K, then $|V(K)|=d \geq|X|+1=4$. It follows that there must be some $v \in V(G)$ of degree d such that $X \subseteq E_{G}(v)$, contrary to Claims 2 or 3. This proves Claim 4.

By Claim 2, X does not induce a maximal K_{3} in $L(G)$. By Claim 4, $L(G)$ doe snot have a clique X-component. Since X is a vertex cut of $L(G)$, by Theorem 6.1.6 (i), $L(G)$ must have either a 3 -cycle C containing two vertices in X, or every pair of vertices $e_{i}, e_{j} \in X$ are in a cycle $C_{i j}$ of length at most 4 in $L(G)$. Since $L(G)$ does not have a clique X-component, G must have a cycle C^{\prime} or cycles $C_{i j}^{\prime}$ such that $C=L\left(C^{\prime}\right)$ or $C_{i j}=L\left(C_{i j}^{\prime}\right)$, for all possible values i and j. Hence X satisfies Theorem 6.1.5 (i) and (ii), contrary to the assumption on X. This proves that G_{0} satisfies the hypothesis of Theorem 6.1.5, and so G_{0} must be collapsible. By Theorem 6.3.1, $L(G)$ is hamiltonian, contrary to the assumption that $L(G)$ is a counterexample. This completes the proof for Theorem 6.1.6.

Bibliography

[1] M. An and L. Xiong, Supereulerian graphs, collapsible graphs and matchings, To appear in Acta Mathematicae Applicatae Sinia (English Series).
[2] L. W. Beinike, Derived graphs and digaphs, Beitrage zur Graphentheorie, (H. Sachs, H. Voss and H. Walther, eds.) Teubner, Leipzig, 1968, pp 17-33.
[3] F. T. Boesch, C. Suffel and R. Tindell, The spanning subgraphs of eulerian graphs, J. Graph Theory, 1 (1977) 79-84.
[4] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Macmillan, London and Elsevier, New York, 1976.
[5] J. A. Bondy and U. S. R. Murty, Graph Theory. Springer, New York, 2008.
[6] H. J. Broersma and L. M. Xiong, A note on minimum degree conditions for supereulerian graphs, Discrete Appl. Math., 120 (2002) 35-43.
[7] P. A. Catlin, Supereulerian graph, collapsible graphs and 4-cycles, Congressus Numerantium 56 (1987) 223-246.
[8] P. A. Catlin, A reduction methods to find spanning eulerian subgraphs, J. Graph Theory 12 (1988) 29-44.
[9] P. A. Catlin and H.-J. Lai, Spanning trails joining two given edges, in: Y. Alavi et al (Eds.), Graph Theory, Combinatorics, and Applications, Vol. 1, Kalamazoo, MI. 1988, Wiley, New York, 1991, 207-222.
[10] P. A. Catlin and H.-J. Lai, Spanning trail edges, in: Y. Alavi, G. Chartrand, O.R.Ollermann, A.J. Schwenk (Eds.), Graph Theory, Combinatorics, and Applications, John Wiley and Sons, Inc. 1991, pp. 207-222.
[11] P. A. Catlin, Super-Eulerian graphs, a survey, J. Graph Theory, 16 (1992) 177-196.
[12] P. A. Catlin, Z. Hand and H.-J. Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996), 81-91.
[13] P. A. Catlin, X. W. Li, Supereulerian graphs of minimum degree at least 4, J. Adv. Math., 28 (1999) 65-69.
[14] Z. H. Chen, Reduction of Graphs and Spanning Eulerian Subgraphs, Ph. D. dissertation, Wayne State University, 1991.
[15] Z. H. Chen, H.-J. Lai, Reduction techniques for super-Eulerian graphs and related topics-a survey, Combinatorics and graph theory '95, Vol. 1 (Hefei), World Sci. Publishing, River Edge, NJ, (1995) 53-69.
[16] Z. H. Chen and H.-J. Lai, Supereulerian graphs and the Petersen graph, II, ARS Combinatoria 48 (1998) 271-282.
[17] V. Chvátal and P. Erdös, A note on Hamiltonian circuits, Discrete Math., 2 (1972) 111-135.
[18] R. Fardree, E. Flandrin, and Z. Ryjác̆ek, Claw-free graphs, a survey, Discrete Math., 164 (1997) 87-147.
[19] E. Flandrin and H. Li, Further result on neighborhood intersections, Repport de Recheche, L. R. I. No. 416, Univ. Paris-Sud, Orsay, 1989.
[20] J. Fujisawa and K. Ota, Maximal K_{3} 's and Hamiltonicity of 4-connected Claw-free Graphs, J. Graph Theory, 70 (2012), 40-53.
[21] F. Harary and C. St. J. A. Nash-Williams, On eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965), 701-709.
[22] F. Harary, Graph Theory, Addison-Wesley Publishing, Reading, (1969).
[23] F. Jaeger, A note on subeulerian graphs, J. Graph Theory, 3 (1979) 91-93.
[24] T. Kaiser, M. Li, Z. Ryjáček and L. Xiong, Hourglasses and hamiltonian cycles in 4-connected claw-free graphs, J. Graph Theory, 48 (2005), 267-276.
[25] H.-J. Lai, Graphs whose edges are in small cycles, Discrete Math. 94 (1991) 11-22.
[26] H.-J. Lai, Y. Shao, H. Wu, and J. Zhou, Every 3-connected, essentially 11-connected line graph is hamiltonian, J. Combinatorial Theory, Series B, 96(2006), 571-576.
[27] H.-J. Lai, L. Xiong, H. Yan and J. Yan, Every 3-connected claw-free Z_{8}-free graph is Hamiltonian, J. Graph Theory 64 (2010) 1-11.
[28] H.-J. Lai and Y. T. Liang, Supereulerian Graphs in the Graph Family $C_{2}(6, k)$, Discrete Applied Mathematics, 159 (2011) 467-477.
[29] H.-J. Lai and H. Y. Yan, Supereulerian graphs and matchings, Applied Math. Letters, 24 (2011) 1867-1869.
[30] H.-J. Lai, Y. Shao and H. Yan, An update on supereulerian graphs, WSEAS Transactions On Mathematics, 12 (2013) 926-940.
[31] D. Li, H.-J. Lai, M. Zhan, Eulerian subgraphs and Hamilton-connected line graphs, Discrete Appl. Math. 145 (2005) 422-428.
[32] H. Li and W. Yang, Every 3-connected essentially 10-connected line graph is hamilton-connected, Discrete Mathematics, 312(2012), 3670-3674.
[33] X. M. Li, D. X. Li and H.-J. Lai, The Supereulerian Graphs in the Graph Family $C(l, k)$, Discrete Math., 309 (2009) 2937-2942.
[34] D. Liu, H.-J. Lai and Z.H. Chen, Reinforcing the number of disjoint spanning trees, Ars Combinatoria, 93 (2009), 113-127.
[35] W. Luo, Z.-H. Chen, W.-G. Chen, Spanning trails containing given edges, Discrete Mathematics 306 (2006) 87-98.
[36] X. Ma, H.-J. Lai, W. Xiong, B. Wu and X. An, Hamiltonicity of 3-connected claw-free graphs, submitted.
[37] M. M. Matthews and D. P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory, 8 (1984) 139-146.
[38] C.St.J.A. Nash-Williams, Edge disjoint spanning trees of finite graphs, J. London Math Soc. 36(1961), 445-450.
[39] C.St.J.A. Nash-Williams, Decompositions of finite graphs into forests, J. London Math Soc. 39(1964), 12.
[40] F. Pfender, Hamiltonicity and forbidden subgraphs in 4-connected graphs, J. Graph Theory, 49 (2005), no. 4, 262-272.
[41] W. R. Pulleyblank, A note on graphs spanned by eulerian graphs. J. Graph Theory, 3 (1979) 309-310.
[42] N. Robertson, unpublished notes, see Page 74 of "Graph Theory" by F. Harary, Addison-Wesley, Reading Massachusetts, 1969.
[43] Z. Ryjác̆ek, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B, 70 (1997) 217-224.
[44] Z. Ryjáček, P. Vrána, Line graphs of multigraphs and Hamilton-connectedness of claw-free graphs. J. Graph Theory 66 (2011), 152-173.
[45] Y. Shao, Claw-free graphs and line graphs, Ph. D. Dissertation, West Virginia University, (2005).
[46] C. Thomassen, Reflections on graph theory, J. Graph Theory, 10 (1986) 309-324.
[47] W. T. Tutte, On the problems of decomposing a graph into n-connected factors, J. Lond. Math. Soc. 36 (1961), 231-245.
[48] S. M. Zhan, On Hamiltonian line graphs and connectivity, Discrete Math., 89 (1991) 89-95.

