18 research outputs found

    Implicitization of curves and (hyper)surfaces using predicted support

    Get PDF
    We reduce implicitization of rational planar parametric curves and (hyper)surfaces to linear algebra, by interpolating the coefficients of the implicit equation. For predicting the implicit support, we focus on methods that exploit input and output structure in the sense of sparse (or toric) elimination theory, namely by computing the Newton polytope of the implicit polynomial, via sparse resultant theory. Our algorithm works even in the presence of base points but, in this case, the implicit equation shall be obtained as a factor of the produced polynomial. We implement our methods on Maple, and some on Matlab as well, and study their numerical stability and efficiency on several classes of curves and surfaces. We apply our approach to approximate implicitization, and quantify the accuracy of the approximate output, which turns out to be satisfactory on all tested examples; we also relate our measures to Hausdorff distance. In building a square or rectangular matrix, an important issue is (over)sampling the given curve or surface: we conclude that unitary complexes offer the best tradeoff between speed and accuracy when numerical methods are employed, namely SVD, whereas for exact kernel computation random integers is the method of choice. We compare our prototype to existing software and find that it is rather competitive

    Determining Critical Points of Handwritten Mathematical Symbols Represented as Parametric Curves

    Get PDF
    We consider the problem of computing critical points of plane curves represented in a finite orthogonal polynomial basis. This is motivated by an approach to the recognition of hand-written mathematical symbols in which the initial data is in such an orthogonal basis and it is desired to avoid ill-conditioned basis conversions. Our main contribution is to assemble the relevant mathematical tools to perform all the necessary operations in the orthogonal polynomial basis. These include implicitization, differentiation, root finding and resultant computation

    Data-driven quasi-interpolant spline surfaces for point cloud approximation

    Get PDF
    In this paper we investigate a local surface approximation, the Weighted Quasi Interpolant Spline Approximation (wQISA), specifically designed for large and noisy point clouds. We briefly describe the properties of the wQISA representation and introduce a novel data-driven implementation, which combines prediction capability and complexity efficiency. We provide an extended comparative analysis with other continuous approximations on real data, including different types of surfaces and levels of noise, such as 3D models, terrain data and digital environmental data

    Using implicit equations of parametric curves and surfaces without computing them: Polynomial algebra by values

    Get PDF
    The availability of the implicit equation of a plane curve or of a 3D surface can be very useful in order to solve many geometric problems involving the considered curve or surface: for example, when dealing with the point position problem or answering intersection questions. On the other hand, it is well known that in most cases, even for moderate degrees, the implicit equation is either difficult to compute or, if computed, the high degree and the big size of the coefficients makes extremely difficult its use in practice. We will show that, for several problems involving plane curves, 3D surfaces and some of their constructions (for example, offsets), it is possible to use the implicit equation (or, more precisely, its properties) without needing to explicitly determine it. We replace the computation of the implicit equation with the evaluation of the considered parameterizations in a set of points. We then translate the geometric problem in hand, into one or several generalized eigenvalue problems on matrix pencils (depending again on several evaluations of the considered parameterizations). This is the so-called “polynomial algebra by values” approach where the huge polynomial equations coming from Elimination Theory (e.g., using resultants) are replaced by big structured and sparse numerical matrices. For these matrices there are well-known numerical techniques allowing to provide the results we need to answer the geometric questions on the considered curves and surfaces

    Changing representation of curves and surfaces: exact and approximate methods

    Get PDF
    Το κύριο αντικείμενο μελέτης στην παρούσα διατριβή είναι η αλλαγή αναπαράστασης γεωμετρικών αντικειμένων από παραμετρική σε αλγεβρική (ή πεπλεγμένη) μορφή. Υπολογίζουμε την αλγεβρική εξίσωση παρεμβάλλοντας τους άγνωστους συντελεστές του πολυωνύμου δεδομένου ενός υπερσυνόλου των μονωνύμων του. Το τελευταίο υπολογίζεται απο το Newton πολύτοπο της αλγεβρικής εξίσωσης που υπολογίζεται από μια πρόσφατη μέθοδο πρόβλεψης του συνόλου στήριξης της εξίσωσης. H μέθοδος πρόβλεψης του συνόλου στήριξης βασίζεται στην αραιή (ή τορική) απαλοιφή: το πολύτοπο υπολογίζεται από το Newton πολύτοπο της αραιής απαλοίφουσας αν θεωρίσουμε την παραμετροποίηση ως πολυωνυμικό σύστημα. Στα μονώνυμα που αντιστοιχούν στα ακέραια σημεία του Newton πολυτόπου δίνονται τιμές ώστε να σχηματίσουν έναν αριθμητικό πίνακα. Ο πυρήνα του πίνακα αυτού, διάστασης 1 σε ιδανική περίπτωση, περιέχει τους συντελεστές των μονωνύμων στην αλγεβρική εξίσωση. Υπολογίζουμε τον πυρήνα του πίνακα είτε συμβολικά είτε αριθμητικά εφαρμόζοντας την μέθοδο του singular value decomposition (SVD). Προτείνουμε τεχνικές για να διαχειριστούμε την περίπτωση ενός πολυδιάστατου πυρήνα το οποίο εμφανίζεται όταν το προβλεπόμενο σύνολο στήριξης είναι ένα υπερσύνολο του πραγματικού. Αυτό δίνει έναν αποτελεσματικό ευαίσθητο-εξόδου αλγόριθμο υπολογισμού της αλγεβρικής εξίσωσης. Συγκρίνουμε διαφορετικές προσεγγίσεις κατασκευής του πίνακα μέσω των λογισμικών Maple και SAGE. Στα πειράματά μας χρησιμοποιήθηκαν ρητές καμπύλες και επιφάνειες καθώς και NURBS. Η μέθοδός μας μπορεί να εφαρμοστεί σε πολυώνυμα ή ρητές παραμετροποιήσεις επίπεδων καμπυλών ή (υπερ)επιφανειών οποιασδήποτε διάστασης συμπεριλαμβανομένων και των περιπτώσεων με παραμετροποίηση σεσημεία βάσης που εγείρουν σημαντικά ζητήματα για άλλες μεθόδους αλγεβρικοποίησης. Η μέθοδος έχει τον εξής περιορισμό: τα γεωμετρικά αντικείμενα πρέπει να αναπαριστώνται από βάσεις μονωνύμων που στην περίπτωση τριγωνομετρικών παραμετροποιήσεων θα πρέπει να μπορούν να μετασχηματιστούν σε ρητές συναρτήσεις. Επιπλέον η τεχνική που προτείνουμε μπορεί να εφαρμοστεί σε μη γεωμετρικά προβλήματα όπως ο υπολογισμόςτης διακρίνουσας ενός πολυωνύμου με πολλές μεταβλητές ή της απαλοίφουσας ενός συστήματος πολυωνύμων με πολλές μεταβλητές.The main object of study in our dissertation is the representation change of the geometric objects from the parametric form to implicit. We compute the implicit equation interpolating the unknown coefficients of the implicit polynomial given a superset of its monomials. The latter is derived from the Newton polytope of the implicit equation obtained by the recently developed method for support prediction. The support prediction method we use relies on sparse (or toric) elimination: the implicit polytope is obtained from the Newton polytope of the sparse resultant of the system in parametrization, represented as polynomials. The monomials that correspond to the lattice points of the Newton polytope are suitably evaluated to build a numeric matrix, ideally of corank 1. Its kernel contains their coefficients in the implicit equation. We compute kernel of the matrix either symbolically, or numerically, applying singular value decomposition (SVD). We propose techniques for handling the case of the multidimensional kernel space, caused by the predicted support being a superset of the actual. This yields an efficient, output-sensitive algorithm for computing the implicit equation. We compare different approaches for constructing the matrix in Maple and SAGE software. In our experiments we have used classical algebraic curves and surfaces as well as NURBS. Our method can be applied to polynomial or rational parametrizations of planar curves or (hyper)surfaces of any dimension including cases of parameterizations with base points which raise important issues for other implicitization methods. The method has its limits: geometric objects have to be presented using monomial basis; in the case of trigonometric parametrizations they have to be convertible to rational functions. Moreover, the proposed technique can be applied for nongeometric problems such as the computation of the discriminant of a multivariate polynomial or the resultant of a system of multivariate polynomials

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Tropical algebraic geometry in Maple: A preprocessing algorithm for finding common factors for multivariate polynomials with approximate coefficients

    Get PDF
    AbstractFinding a common factor of two multivariate polynomials with approximate coefficients is a problem in symbolic–numeric computing. Taking a tropical view of this problem leads to efficient preprocessing techniques, applying polyhedral methods to the exact exponents and numerical techniques to the approximate coefficients. With Maple we will illustrate our use of tropical algebraic geometry
    corecore