49,034 research outputs found

    Relationship between Ocean-Atmospheric Climate Variables and Regional Streamflow of the Conterminous United States

    Get PDF
    Understanding the interconnections between oceanic-atmospheric climate variables and regional streamflow of the conterminous United States may aid in improving regional long lead-time streamflow forecasting. The current research evaluates the time-lagged relationship between streamflow of six geographical regions defined from National Climate Assessment and sea surface temperature (SST), 500-mbar geopotential height (Z500), 500-mbar specific humidity (SH500), and 500-mbar east-west wind (U500) of the Pacific and the Atlantic Ocean using singular value decomposition (SVD). The spatio-temporal correlation between streamflow and SST was developed first from SVD and thus obtained correlation was later associated with Z500, SH500, and U500 separately to evaluate the coupled interconnections between the climate variables. Furthermore, the associations between regional streamflow and the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation, and Atlantic Multidecadal Oscillation were evaluated using the derivatives of continuous wavelet transform. Regional SVD analysis revealed significant teleconnection between several regions and climate variables. The warm phase of equatorial SST had shown a stronger correlation with the majority of streamflow. Both SVD and wavelet analyses concluded that the streamflow variability of the regions in close proximity to the Pacific Ocean was strongly associated with the ENSO. Improved knowledge of teleconnection of climate variables with regional streamflow variability may help in regional water management and streamflow prediction studies

    Hydrologic homogeneous regions using monthly Streamflow in Turkey

    Get PDF
    Cluster analysis of gauged streamflow records into homogeneous and robust regions is an important tool for the characterization of hydrologic systems. In this paper we applied the hierarchical cluster analysis to the task of objectively classifying streamflow data into regions encompassing similar streamflow patterns over Turkey. The performance of three standardization techniques was also tested, and standardizing by range was found better than standardizing with zero mean and unit variance. Clustering was carried out using Ward’s minimum variance method which became prominent in managing water resources with squared Euclidean dissimilarity measures on 80 streamflow stations. The stations have natural flow regimes where no intensive river regulation had occurred. A general conclusion drawn is that the zones having similar streamflow pattern were not be overlapped well with the conventional climate zones of Turkey; however, they are coherent with the climate zones of Turkey recently redefined by the cluster analysis to total precipitation data as well as homogenous streamflow zones of Turkey determined by the rotated principal component analysis. The regional streamflow information in this study can significantly improve the accuracy of flow predictions in ungauged watersheds

    Bringing Statistical Learning Machines Together for Hydro-Climatological Predictions - Case Study for Sacramento San Joaquin River Basin, California

    Get PDF
    Study region: Sacramento San Joaquin River Basin, California Study focus: The study forecasts the streamflow at a regional scale within SSJ river basin with largescale climate variables. The proposed approach eliminates the bias resulting from predefined indices at regional scale. The study was performed for eight unimpaired streamflow stations from 1962–2016. First, the Singular Valued Decomposition (SVD) teleconnections of the streamflow corresponding to 500 mbar geopotential height, sea surface temperature, 500 mbar specific humidity (SHUM500), and 500 mbar U-wind (U500) were obtained. Second, the skillful SVD teleconnections were screened non-parametrically. Finally, the screened teleconnections were used as the streamflow predictors in the non-linear regression models (K-nearest neighbor regression and data-driven support vector machine). New hydrological insights: The SVD results identified new spatial regions that have not been included in existing predefined indices. The nonparametric model indicated the teleconnections of SHUM500 and U500 being better streamflow predictors compared to other climate variables. The regression models were capable to apprehend most of the sustained low flows, proving the model to be effective for drought-affected regions. It was also observed that the proposed approach showed better forecasting skills with preprocessed large scale climate variables rather than using the predefined indices. The proposed study is simple, yet robust in providing qualitative streamflow forecasts that may assist water managers in making policy-related decisions when planning and managing watersheds

    Controls on the diurnal streamflow cycles in two subbasins of an alpine headwater catchment

    Get PDF
    In high-altitude alpine catchments, diurnal streamflow cycles are typically dominated by snowmelt or ice melt. Evapotranspiration-induced diurnal streamflow cycles are less observed in these catchments but might happen simultaneously. During a field campaign in the summer 2012 in an alpine catchment in the Swiss Alps (Val Ferret catchment, 20.4 km2, glaciarized area: 2%), we observed a transition in the early season from a snowmelt to an evapotranspiration-induced diurnal streamflow cycle in one of two monitored subbasins. The two different cycles were of comparable amplitudes and the transition happened within a time span of several days. In the second monitored subbasin, we observed an ice melt-dominated diurnal cycle during the entire season due to the presence of a small glacier. Comparisons between ice melt and evapotranspiration cycles showed that the two processes were happening at the same times of day but with a different sign and a different shape. The amplitude of the ice melt cycle decreased exponentially during the season and was larger than the amplitude of the evapotranspiration cycle which was relatively constant during the season. Our study suggests that an evapotranspiration-dominated diurnal streamflow cycle could damp the ice melt-dominated diurnal streamflow cycle. The two types of diurnal streamflow cycles were separated using a method based on the identification of the active riparian area and measurement of evapotranspiration

    21st Century Projections of High Streamflow Events in the UK and Germany

    Get PDF
    Radiative effects of anthropogenic changes in atmospheric composition are expected to enhance the hydrological cycle leading to more frequent and intense floods. To explore if there will be an increased risk of river flooding in the future, 21st century projections under global warming scenarios of High Streamflow Events (HSEs) for UK and German rivers are carried out, using a model that statistically relates large-scale atmospheric predictors - 850 hPa Geopotential Height (GPH850) and Integrated Water Vapor Transport (IVT) - to the occurrence of HSEs in one or simultaneously in several streamflow gauges. Here, HSE is defined as the streamflow exceeding the 99th percentile of daily flowrate time series measured at streamflow gauges. For the common period 1960-2012, historical data from 57 streamflow gauges in UK and 61 streamflow gauges in Germany, as well as, reanalysis data of GPH850 and IVT fields, bounded from 90W to 70E and from 20N to 80N are used. The link between GPH850 configurations and HSEs, and more precisely, identification of the GPH850 states potentially able to generate HSEs, is performed by a combined Kohonen Networks (Self Organized Map, SOM) and Event Syncronization approach. Complex network and modularity methods are used to cluster streamflow gauges that share common GPH850 configurations. Then a model based on a conditional Poisson distribution, in which the parameter of the Poisson distribution is assumed to be a nonlinear function of GPH850 and IVT, allows for the identification of GPH850 state and threshold of IVT beyond which there is the HSE highest probability. Using that model, projections of 21st century changes in frequency of HSEs occurrence in UK and Germany are estimated using the simulated fields of GPH850 and IVT from selected GCMs belonging to the Coupled Model Inter-comparison Project Phase 5 (CMIP5). Among the different GCMs, those are selected whose retrospective predictor fields have consistent statistics with the corresponding reanalysis data

    Optimal Ranking Regime Analysis of Intra- to Multidecadal U.S. Climate Variability. Part II: Precipitation and Streamflow

    Get PDF
    In Part I of this paper, the optimal ranking regime (ORR) method was used to identify intradecadal to multidecadal (IMD) regimes in U.S. climate division temperature data during 1896–2012. Here, the method is used to test for annual and seasonal precipitation regimes during that same period. Water-year mean streamflow rankings at 125 U.S. Hydro-Climatic Data Network gauge stations are also evaluated during 1939–2011. The precipitation and streamflow regimes identified are compared with ORR-derived regimes in the Pacific decadal oscillation (PDO), the Atlantic multidecadal oscillation (AMO), and indices derived from gridded SST anomaly (SSTA) analysis data. Using a graphic display approach that allows for the comparison of IMD climate regimes in multiple time series, an interdecadal cycle in western precipitation is apparent after 1980, as is a similar cycle in northwestern streamflow. Before 1980, IMD regimes in northwestern streamflow and annual precipitation are in approximate antiphase with the PDO. One of the clearest IMD climate signals found in this analysis are post-1970 wet regimes in eastern U.S streamflow and annual precipitation, as well as in fall [September–November (SON)] precipitation. Pearson correlations between time series of annual and seasonal precipitation averaged over the eastern United States and SSTA analysis data show relatively extensive positive correlations between warming tropical SSTA and increasing fall precipitation. The possible Pacific and northern Atlantic roots of the recent eastern U.S. wet regime, as well as the general characteristics of U.S. climate variability in recent decades that emerge from this analysis and that of Part I, are discussed

    Absence of historical temporal trends in monthly, seasonal, and annual streamflows for the Okanagan and Similkameen Rivers in south-central British Columbia, Canada

    Get PDF
    Potential historical temporal trends in monthly, seasonal, and annual mean, minimum, and maximum streamflows and date of the spring freshet runoff peak were investigated for the Okanagan and Similkameen Rivers in south-central British Columbia, Canada. There appears to be no compelling evidence that streamflow patterns in the Okanagan and Similkameen Rivers have changed over the available hydrometric record, nor does there appear to be evidence that future changes in streamflow patterns are imminent or likely
    • 

    corecore