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Abstract
Water is one of the most critical resources derived from natural systems. While it has long been
recognized that forest disturbances like fire influence watershed streamflow characteristics,
individual studies have reported conflicting results with some showing streamflow increases post-
disturbance and others decreases, while other watersheds are insensitive to even large disturbance
events. Characterizing the differences between sensitive (e.g. where streamflow does change post-
disturbance) and insensitive watersheds is crucial to anticipating response to future disturbance
events. Here, we report on an analysis of a national-scale, gaged watershed database together with
high-resolution forest mortality imagery. A simple watershed response model was developed
based on the runoff ratio for watersheds (n¼ 73) prior to a major disturbance, detrended for
variation in precipitation inputs. Post-disturbance deviations from the expected water yield and
streamflow timing from expected (based on observed precipitation) were then analyzed relative to
the abiotic and biotic characteristics of the individual watershed and observed extent of forest
mortality. The extent of the disturbance was significantly related to change in post-disturbance
water yield (p< 0.05), and there were several distinctive differences between watersheds exhibiting
post-disturbance increases, decreases, and those showing no change in water yield. Highly
disturbed, arid watersheds with low soil: water contact time are the most likely to see increases,
with the magnitude positively correlated with the extent of disturbance. Watersheds dominated by
deciduous forest with low bulk density soils typically show reduced yield post-disturbance. Post-
disturbance streamflow timing change was associated with climate, forest type, and soil. Snowy
coniferous watersheds were generally insensitive to disturbance, whereas finely textured soils with
rapid runoff were sensitive. This is the first national scale investigation of streamflow post-
disturbance using fused gage and remotely sensed data at high resolution, and gives important
insights that can be used to anticipate changes in streamflow resulting from future disturbances.
1. Introduction

Water is one of the most critical environmental
resources and is tightly linked to landscape composi-
tion (ecology), soils, and land cover change. Forested
watersheds in particular are important as natural water
© 2017 IOP Publishing Ltd
sources for residential, commercial, and agricultural
needs around the world [NRC 2008]. But despite a
long appreciation of the significance of forests to water
supplies, the effect of forest disturbances (e.g. wildfire,
insect outbreaks) on water yield remains difficult to
predict [Hibbert 1967, Postel and Thompson 2005,
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Neary et al 2009] and is a highly interdisciplinary
problem, incorporating aspects of biology, geology,
soil sciences, climatology, and hydrology. This
complexity is reflected in the variety in published
research; with regard to post-disturbance streamflow
yield, many studies report increases in yield [Sahin and
Hall 1996, Wondzell and King 2003, Brown et al 2005,
Buma and Livneh 2015] but several find little change
or a decrease in yield [e.g. Adams et al 2012,
Biederman et al 2012, Biederman et al 2014, Brantley
et al 2014, Biederman et al 2015] or increased yield
transitioning to decreased after a decade or more post-
disturbance [Hornbeck et al 1997]. In this context
water yield is defined as the total annual runoff from a
watershed as measured in a stream, i.e. total stream-
flow. In addition, while much of the attention
historically has focused on sensitive watersheds, it is
equally interesting to understand why some water-
sheds are insensitive to major disturbances which may
cause substantial streamflow changes in other loca-
tions [e.g. in the context of streamwater nitrate loss,
Rhoades et al 2013]. Knowing which watersheds are
likely insensitive is a means to save managerial
resources for future needs elsewhere. Anticipated
changes in the future prevalence of disturbances [Dale
et al 2001] highlights the need for a clearer
understanding of which watershed features are
associated with sensitivity to these events.

Vegetation exerts important controls on the
hydrological functioning of most watersheds through
a variety of mechanisms that impact water inputs,
outputs, and flux rates [Jorgenson and Gardner 1987,
Schleppi 2010]. The relationship between forest
disturbances and resulting hydrologic impacts has a
long research history spanning a broad range of
ecosystems [McCulloch and Robinson 1993] with
increasing frequency in recent decades [Hibbert 1967,
Bosch and Hewlett 1982, Zhang et al 2001, Naranjo
et al 2011].

The catchment water balance, and broad drivers of
its change, were formalized by Horton [1933] and have
received substantial attention since. Forest have an
important influence on catchment water balance.
Precipitation input into a catchment (fog, rain, and
snow) is modulated by canopy interception and
incoming/outgoing radiation are further affected by
that canopy [Gustafson et al 2010, Harpold et al 2014,
Veatch et al 2009], influencing sublimation and
evaporation processes within and below the canopy
[Rinehart et al 2008, Simonin et al 2009, Boon 2012,
Pugh and Gordon 2013]. Belowground, tree roots alter
soil properties, typically increasing infiltration and
lowering the potential for evaporation [Jorgensen and
Gardner 1987, Federer et al 2003, Guswa 2012, Miller
and Zegre 2014]. Once water infiltrates into the
watershed soils, vegetative transpiration is a dominant
water flux from many catchments [Biederman et al
2015, Jasechko et al 2013], though discharge can be
2

more significant in humid/wet systems. Forests in
particular lose a greater fraction of their annual
precipitation to transpiration than lower biomass
systems, i.e. grasslands [Zhang et al 2001]. Therefore,
because forests are strong drivers of transpiration and
because their spatial distribution is often driven by
patterns of water availability [Thompson et al 2011],
disturbance and vegetation change are critical
components of streamflow patterns.

Although conceptual models have been put
forward that relate vegetation disturbance with
hydrological response [e.g. Pugh and Gordon 2013],
the majority of empirical research has been limited to
paired catchment studies, numerical modeling, and
syntheses [Schleppi 2010, Mikkelson et al 2013, Sahin
and Hall 1996, Livneh et al 2015]. Brown et al (2005)
provide a review of studies exploring the response of
different forest types (conifer, deciduous, scrub) to
clear-cutting disturbance, identifying characteristic
responses for each forest type, and reporting an overall
increase in water yield observed in response to forest
loss. Experimentation in a moist temperate forested
area [Hibbert 1967] demonstrated that streamflow
generally increased proportionally with the degree of
forest harvest. However, substantial temporal varia-
tions in this relationship have been reported there and
elsewhere with streamflow increases strongly influ-
enced by topographic characteristics [e.g. slope;
Voepel et al 2011] and related effects such as changes
in solar radiation [e.g. Douglass 1983]. While
disturbances alter the relative partitioning between
total evaporation and transpiration losses through a
variety of site specific conditions, water yield increases
are often attributed to reduced transpiration with less
forest cover post-disturbance [Sahin and Hall 1996,
Andreassian 2004]. Supporting this hypothesis,
growth of vegetation has a negative effect on stream-
flow. A survey of ten catchments in the US piedmont
region showed that 10%–28% increases in forest cover
led to increased ETand reduced water yield by between
4%–21% [Trimble et al 1987]. Projections across
China have similarly suggested post-afforestation
declines of 10%–50% in water yield based on statistical
landcover ET-precipitation relationships [Sun et al
2006]. Studies like Kuczera [1987] and Brookhouse
et al [2013] report that as forests recover from
disturbance, subsequent increases in water yield
diminish and over time (> 10 years) can eventually
reverse, becoming decreases in water yield below
undisturbed levels, attributed to early successional
vegetation with higher ETrates [Hornbeck et al 1997].
Overall, the majority of studies have posited that
reduced transpiration driven by mortality [e.g. Schäfer
et al 2014] should overwhelm the other mechanisms,
leading to increases in water yield and earlier
streamflow post-disturbance.

Importantly, various exceptions to the expectation
of increased water yield post-disturbance have been
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published recently. Some watersheds are relatively
insensitive to disturbance, meaning little change is
noted despite substantial vegetation change. This has
been attributed to other drivers overwhelming the
transpiration response, such as climate [e.g. Hallema
et al 2016]. Unanticipated decreases in water yield
post-disturbance have been attributed in part to
regrowth of water-intensive understory vegetation and
evaporation [Adams et al 2012, Biederman et al 2014,
Biederman et al 2015, Fernandez et al 2006,
Guardiola-Claramonte et al 2011]. Similarly, conflict-
ing shifts in streamflow timing have been reported (i.e.
changes in the date at which a given fraction of annual
streamflow is observed). Several disturbance-mediated
mechanisms have been identified that influence these
changes, such as changes to infiltration and base-flow
[Bruijnzeel 1988], soil compaction [Miller and Zegre
2014], net transmission of solar radiation [Pugh and
Gordon 2013], and hydrophobicity/reduced porosity
from fires [Wondzell and King 2003].

Predicting the sign of the water yield and timing
change post-disturbance remains an open problem.
Recent attempts at prediction have taken multiple
approaches, such as portioning streamflow into fast
and slow groups which have different responses to
disturbance [Harman et al 2011], developing new
indices [e.g. rain use efficiency, Troch et al 2009,
Thompson et al 2013], or tying response to climate in
some fashion [e.g. aridity: Budyko 1974, storminess:
Milly 1994]. Applications of indices over large
numbers of catchments have had mixed results due
to complex topographic and climate interactions
[Voepel et al 2011]. To date, no single feature has been
identified capable of predicting the direction of
watershed hydrologic sensitivity to disturbance.

To address this gap, we developed a simple model
to predict change in water yield and streamflow timing
post disturbance. First, we describe the shift in water
yield or timing using a detrended version of runoff
ratio (yield) and the centroid of yearly flow (timing;
described as Julian date) which incorporates variable
precipitation inputs and historical records. In situ and
remotely sensed historical data were used to identify
characteristic traits of sensitive and insensitive water-
sheds, using a large, continent spanning set of
historical streamflow data. The unique perspective
presented here is an evaluation of deviations from
assumed precipitation-hydrology relationships across
a range of disturbance amounts and vegetation types.
Understanding which watersheds are likely sensitive to
disturbance will ultimately enable better proactive
management of water and forests [Douglass 1983,
Thompson et al 2013] by enabling more informed
allocation of limited managerial resources.

Our primary research goal is identifying what
watershed characteristics are associated with either
sensitivity to disturbances or insensitivity (no major
change) in terms of both yield and streamflow timing.
3

2. Data sources and methodology

For a flowchart of processing steps, see figure M1.
Among the 671 United States Geological Survey
(USGS) watersheds identified as best representing
natural flow [Newman et al 2015, Lins 2012], initial
consideration was restricted to the 228 that are
undammed, while development of the statistical
modeling component was further restricted to 73
that experienced substantial disturbance during the
time-period of observation (> 1% disturbed area, see
below and supplementary methods available at stacks.
iop.org/ERL/12/074028/mmedia). The area disturbed
in each watershed was quantified on a yearly basis
(2001–2010) using yearly, 30 m resolution maps of
forest disturbance [Hansen et al 2013]. We then
identified the year of the largest disturbance (total
area) and focused on changes in water yield and
streamflow timing in the subsequent water year (water
year¼ 1 Oct. through 30 Sep.); as a result, if the largest
disturbance year was 2010 the watershed was
discarded. The year of largest forest disturbance and
subsequent hydrologic response was chosen for two
reasons: First, it did not constrain our focus to a single
minimum cutoff disturbance extent across the entire
dataset, which represents a diversity of disturbance
drivers and landscapes. Second, focusing on the
hydrologic response in the subsequent year allowed for
clarity in the drivers of immediate hydrological
change, before ecological communities have signifi-
cant time to recover (though partial recovery within a
single year cannot be excluded). Other drivers, such as
dominant species shifts in response to the disturbance,
may become significant in later years.

2.1. Simple model of expected water yield and
streamflow timing change post disturbance
GIS maps of watershed boundaries [Newman et al
2015] were combined with precipitation from Daymet
[Thornton et al 2014] and observed streamflow data
from the USGS. Expected water yield from a watershed
is commonly assessed using the Runoff Ratio (RR¼
total streamflow / total precipitation; figure 1). Runoff
ratio is a means to standardize between watersheds
of very different sizes and precipitation amounts by
relating precipitation to water yield. Importantly,
runoff ratio and streamflow timing can vary with
precipitation, and the response is different between
disturbed and undisturbed watersheds as demonstrat-
ed in Brown et al [2005]. Therefore, we first detrended
the runoff ratio by observed precipitation to account
for ratio variability as a function of precipitation. We
developed a simple linear regression model of the
expected detrended runoff ratio and streamflow
timing for years prior to the disturbance. The
observed runoff ratio post-disturbance was compared
to expected runoff ratio, calculated using the
pre-disturbance regression model and observed
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Table 1. Characteristics of the final groups for the discriminant analysis (n¼ 73).

dRRR (difference in RR from expected) Centroid timing change (days)

Group Min Mean Max Min Mean Max

Decreasing −0.45 −0.14 −0.05 −103 −19 −45

Insensitive −0.04 0.01 0.06 −18 −2 13

Increasing 0.06 0.13 0.34 14 37 173

Figure 1. Creation of the detrended runoff ratio, RR, response variable. All years prior to the disturbance were used to model the
observed precipitation—runoff ratio relationship. For the year following the disturbance, the expected RR was calculated based on
observed precipitation (A). Actual runoff (C) was then subtracted from (A), leaving (B), the residual from expected (dRRR). The
meaningfulness of the residual runoff ratio departures, dRRR, was verified against the expected historical range of variability using an
independent preceding period, 1985–2000. An identical procedure was repeated for streamflow timing change based on changes in the
centroid date of streamflow post-disturbance.

Environ. Res. Lett. 12 (2017) 074028
precipitation, to create the detrended residual runoff
ratio (dRRR)—the amount by which the actual runoff
ratio differed from expected in the absence of a
disturbance and given the observed precipitation in
the year immediately following the disturbance. This is
our measure of sensitivity; i.e. deviation from expected
behavior.

2.1.1. Grouping watersheds
Selecting watersheds for the final analysis was a two-
step process, involving grouping all watersheds into
general post-disturbance response groups (stream-
flow: increasing, insensitive, or decreasing; timing:
earlier, insensitive, later) and then sub-setting to
highly disturbed watersheds. First, undammed water-
sheds (n¼ 228) were grouped into three categories
based on post-disturbance behavior: sensitive (in-
creasing or decreasing) or insensitive. The watersheds
were divided by percentiles based on hydrologic
response—those that experienced large decreases in
water yield (bottom 25%, dRRR highly negative
[mean −18% change in RR from expected]), those that
were relatively insensitive (middle 50%, dRRR
approximately zero [mean + 0.1% change in RR]),
and those where water yield increased (top 25%, dRRR
highly positive [mean + 13% change in RR]; figure S1).
Finally, since not all the watersheds experienced amajor
disturbance during the time period of observation, only
watersheds with a disturbance exceeding 1% of their
total area in at least one year were retained; 32% of the
4

undammed watersheds met this criterion (final n¼ 73;
14 in the decreasing yield group, 37 in the insensitive
group, and 22 in the increasing yield group). All
watersheds in the negative group showed a decline in
RR, all watersheds in the positive group show an
increase, and the insensitive group showed little
deviation from expected (table 1). The watersheds were
well distributed spatially with a range of drainage areas
(mean¼ 399 km2, SD¼ 582 km2), climates (annual
precipitation:mean¼ 1430mm, SD¼ 740mm; annual
temperature: mean¼ 10.3 °C, SD¼ 5.4 °C), and land
cover types (figure S2).

The fact that themagnitudechangeof thedecreasing
group is of similar magnitude to the increasing group
represents a departure from the expectation of previous
paired-catchment work (e.g. Bosch and Hewlett 1982)
and instead is more in line with newer studies such as
Guardiola-Claramonte et al [2011] that use a pre- and
post-disturbance runoff ratio approach and find
decreases in streamflow in some cases. Our method
calculates a detrended runoff ratio residual, which
although similar to the latter study, is unique, since it
considers and controls for the influences of wet and dry
years (known to influence runoff ratio) on streamflow
response.

Partitioning into response groups was done based
on the relative magnitude of streamflow change rather
than a statistical threshold because of the limited
number of years of satellite disturbance data [Hansen
et al 2013], extending back only to 2000. This meant
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watersheds had differing numbers of years prior to the
disturbance from which to develop our model. For
example, a major disturbance in 2007 would result in 6
prior years of runoff-ratio data versus a disturbance in
2005, which would have 4 prior years. The asynchro-
nous effect of disturbance and data availability
complicate subsequent statistical analysis of the
response groups (variable statistical power), although
we report the significance of the changes in streamflow
relative to historical variability in the next section.
Furthermore, we use percentile groupings (positive,
no change, negative) rather than simple percentage
thresholds (e.g. >−5%, −5 to + 5%, and >5% change
in RR) to avoid making arbitrary numerical cutoffs in
the data. However, the end result was balanced, as the
percentile cutoffs were −0.45% and +0.5% for the
decreasing and increasing yield groups respectively
(table 1).

As a secondary check that the sensitive groups
(increased or decreased yield) were associated with
substantial changes in historical streamflow amount or
timing, we constructed an estimate of detrended
runoff ratio variability for each watershed from 1985
to 2000 as a control. Linear precipitation-RR relation-
ships for each watershed were used to calculate the
expected 95% prediction interval. We then compared
the observed post-disturbance RR and precipitation to
verify that the post-disturbance RR change was outside
the expected RR range of variability using the control
1985–2000 time period. 93% of the watersheds with
decreased streamflow post-disturbance were outside
the 1985–2000 precipitation-RR relationship inter-
annual variability envelope whereas 60% of the
watersheds with increasing streamflow were outside
the interval. This indicates that the grouping based on
percentiles is statistically meaningful; in other words,
the majority of the increasing and decreasing response
groups were significantly different from their historical
norms, regardless of the proportion disturbed.

Streamflow timing change was calculated in an
identical way as RR, except using the centroid of the
runoff response: the date each year on which 50% of
daily flow had been observed. The same detrending and
grouping procedure based on percentiles was employed
for streamflow timing yielding an earlier group (mean
47 days before expected, n¼ 20), no change (mean 3
days before expected, n¼ 34), and later group (mean 51
days after expected, n¼ 19, figure S1).

2.1.2. Model development
To identify watershed characteristics which differenti-
ated sensitive from non-sensitive watersheds, we
associated post-disturbance watershed response with
75 vegetative, climatic, soil, and disturbance character-
istics [Falcone et al 2010] in a linear discriminant
analysis (LDA) framework. A complete description of
the predictor variables, including how they are
calculated and original data sources, are in table S1.
The LDA methodology is a supervised technique
5

which uses groups identified a priori (the three post-
disturbance response groups) and identifies which
linear combination of variables best differentiates
between those groups. However, because the LDA
methodology is sensitive to the range of variability and
correlation across variables, two preliminary steps
were taken. First, variables were scaled (normalized)
giving them a mean value of zero and standard
deviation of one. Second, to reduce the inter-
correlation and total number of potential explanatory
variables, group membership was modeled using the
Random Forests technique [Breiman 2001]. The top
25 most explanatory variables from that framework
were then used in the LDA analysis. This was done
separately for water yield and streamflow timing,
resulting in different potential variables for each.

The final 25 variables were combined via the LDA
to determine the most significant features which
differentiate one response group from another using
the caret package in R (Kuhn 2008). To assess if final
groupings were significantly different from each other
Kruskal–Wallis nonparametric tests were used. A
detailed methodology, including full variable selection
procedures, is found in Supplementary Methods.
3. Results and discussion

Both water yield changes and streamflow timing
showed relationships to disturbance, but in different
contexts and with differing magnitudes (examples:
table 2). The majority of disturbed watersheds
displayed either little change (n¼ 37) or an increase
in streamflow (n¼ 22), with a minor component
showing streamflow declines (n¼ 14). The strongest
predictors of groupmembership are shown in figure 2.
Overall classification accuracy was 84% for predicting
water yield change (95% confidence interval: 73.1%-
–91.2%), and significantly better than the null
hypothesis of no response (p< 0.00001) and 74%
for predicting streamflow timing change (95%
confidence interval: 0.62%–0.84%, p¼ 0.003).
3.1. Water yield change
Disturbance from a combination of natural and
anthropogenic sources was the most important
variable in predicting post-disturbance yield change,
with larger disturbances associated with increased
runoff (p< 0.01). Cumulatively, watersheds with
increased water yield had a significantly higher
(p< 0.01) percent of their forested area disturbed
(group mean 47%, median 15%) compared to those
with decreased water yield (mean 16%, median 9%) or
did not change (mean 10%, median 9%). Watersheds
with persistent disturbances, measured as cumulative
(multi-year) area disturbed prior to the major
disturbance year, were more sensitive to a large
disturbance event in a single year than those without
persistent disturbances.



3

2

1

0

–1

2

1

0

–1

–2

Percent Forest Disturbed Precipitation Fragmentation Deciduous Forest Cover Subsurface Contact Time

Water Yield

Runoff Timing

Decrease
No change

No change

Increase

Earlier

Later

Snow percent of precipitation Percent soil <2mm Topographic Shape (In(area)/slope) Base Flow Index Percentage Evergreen

Figure 2. The most explanatory variables for post-disturbance watershed response, with predictor variables shown as standardized
anomalies, e.g. subtracted the mean then divided by the standard deviation, and binned into response groups. Therefore the y-axis
shows the number of standard deviations from the mean computed for all watersheds (e.g. across all groups) for each variable.
Differences among groups illustrate their associative values relative to watershed response in terms of water yield (top) or streamflow
timing (bottom). For example, large values of percent forest disturbed were strongly associated with observed increases in water yield.
High snow percentage was associated with insensitivity to disturbances in terms of streamflow timing. Soil <2 mm refers to the fine
fraction percentage of the total soil volume. Numbers indicate significantly different groups (p< 0.05, pairwise Kruskal–Wallis rank
sum test). Boxplots show 25th and 75th percentiles, whiskers extent to 1.5 the interquartile range beyond those percentiles. Outliers are
shown as points.

Table 2. Examples of both highly and lightly disturbed watersheds used in the final analysis. The USGS stream gage ID and
approximate location are included. Watershed characteristics are a subset of all the characteristics that were considered in the
development of the model. For all variables, see supplementary data for distributions and the GAGES-II database (Falcone et al 2010)
for complete derivation methods.

ID Lat. Long. Disturbed

percent

Drainage

size

(km2)

Mean

Precip.

(cm)

Contact

time

(days)

Fragment-

ation

Indexa

Deciduous

cover

(percent)

dRRR Timing

change

(days)

Group for

yield

Group

for

timing

11098000 34.2 −118.2 0.62 41.60 78.85 6.50 16.60 0.00 0.10 −1.38 Increase Insens.

12447390 48.8 −120.1 0.62 58.10 88.33 13.40 3.00 0.00 −0.01 −35.09 Insens.b Earlier

12374250 47.8 −114.7 0.56 50.80 57.97 16.10 3.00 0.00 0.13 7.39 Increase Insens.

11124500 34.6 −119.9 0.50 191.50 83.10 26.40 3.50 0.01 0.15 −28.49 Increase Earlier

13235000 44.1 −115.6 0.03 1163.20 101.19 16.80 2.30 0.42 0.03 5.96 Insens. Insens.

08269000 36.4 −105.5 0.03 163.30 63.82 8.50 1.70 5.13 −0.02 10.72 Insens. Insens.

14222500 45.8 −122.5 0.03 323.90 334.17 49.40 9.90 2.34 −0.04 −9.20 Insens. Insens.

07340300 34.4 −94.2 0.01 230.40 157.30 83.60 9.20 58.97 −0.18 14.66 Decrease Later

02381600 34.6 −84.5 0.01 10.30 159.91 50.80 38.30 70.21 −0.23 −20.10 Decrease Earlier

14306500 44.4 −123.8 0.01 857.20 210.88 26.00 21.10 2.50 −0.06 20.93 Decrease Later

a Low is unfragmented, high is highly fragmented.
b Insensitive.
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The trend in water yield change was also compared
to the percent of the watershed disturbed without
grouping watersheds. Disturbances greater than > 7%
of the forested area were associated with increased
water yield, while disturbances greater than > 20%
showed even greater increases (p< 0.05; figure 3). This
is consistent with previous studies associating stream-
flow increases with disturbance, but also with the
notion of a minimum disturbance threshold for
detecting hydrologic response [Brown et al 2005,
Bosch and Hewlett 1982, Stednick 1996]. Interestingly,
a disturbance threshold of 20% disturbed area was
previously proposed [Stednick 1996] as the minimum
for detecting yield changes (typically increasing) in
6

forested watersheds, though recent, more fine-scaled
work has found responses at smaller harvest areas
[e.g. Hornbeck et al 1997] and others have suggested
that watershed size plays a role in the disturbance
area-streamflow response relationship, with smaller
headwater watersheds likely less sensitive than the
larger watersheds [Trimble et al 1987]. Our findings
demonstrate that observable hydrologic responses can
be detected for smaller disturbance extents (<20%) at
multiple watershed sizes.

Watersheds where dRRR was highly positive,
meaning more runoff than expected after accounting
for precipitation,hadgenerallyhigher percentageof area
disturbed, lower precipitation, lower fragmentation,
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Figure 3. Absolute water yield change as a function of total
loss area. All undammed watersheds which experienced >1%
disturbance are shown (n¼ 73). The normalized yield
response refers to the change in runoff ratio post-disturbance
after controlling for precipitation inputs, i.e. the detrended
runoff ratio residual (dRRR); positive values indicate
increased water yield. The horizontal line at y¼ 0 indicates no
change. The trend line is significant (p< 0.05, linear
regression), indicating that water yield increases with
increasing disturbance extent. The dashed vertical line is at
20% disturbed. The solid vertical line indicates the point
where responses generally trend positive, at approximately 7%
of total area disturbed (log(0.07)¼−2.66).
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and lower deciduous forest cover (and thus higher
coniferous and mixed forest cover), and lower subsur-
face contact time, ameasure of the residence time (days)
of water in the saturated subsurface zone of the
watershed [Falcone et al 2010, figure 2]. Average soil
bulk density (g cm−3) was also significantly higher in
watersheds with increased RR post-disturbance com-
pared to insensitive or declining RR watersheds, as was
permeability (though not significantly so).

Insensitive watersheds generally exhibited inter-
mediate values of the explanatory variables relative to
those watersheds that increased or decreased their
yields. This intermediate relationship was true for all
the top five variables identified (figure 2). For example,
median precipitation was highest in watersheds that
decreased their water yield post-disturbance, and was
sequentially higher in the no-change, and decreasing
groups, respectively.

Interestingly, wet regions (high precipitation) were
generally associated with a lower RR than expected
post-disturbance (figure 2). We hypothesize that this
occurs when rapid (within a year of disturbance, and
thus included in our methods) understory regrowth/
rapid recovery of post-disturbance vegetation (such as
the filling of small, gap openings by neighboring trees)
compensates for canopy loss [Helvey and Tiedemann
1978, Runkle 1982, Buchanan and Hart 2012] as
biological structures, e.g. leaves, are rebuilt [Trimble
et al 1987, Hornbeck et al 1997, Fernandez et al 2006,
Brookhouse et al 2013]. We note that high fractions of
deciduous cover (often re-sprouting species) and
longer contact time between water and soil, and thus
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plant available water, are strong predictors for water
yield reduction post-disturbance, similar to previous
work [Voepel et al 2011, Jasechko et al 2013, Brantley
et al 2014]. This outcome is also in partial agreement
with previous research which found that clear-cut
deciduous and grassland dominated watersheds
typically show smaller increases in water yield
compared to coniferous forests [Sahin and Hall
1996, Bosch and Hewlett 1982].

3.2. Streamflow timing change
There was a significant relationship between stream-
flow timing change and water yield change, with
earlier streamflow associated with increases in water
yield (chi-squared test, p< 0.05, figure S3). Earlier
streamflow timing was also associated with greater
percent of the watershed disturbed (mean percent
disturbed 8.6%, median 2.7%) relative to no change
(mean 6.9%, median 2.6%) and later timing (mean
5.7%, median 2.0%). In contrast to water yield, the
strongest contrast was between insensitive and
sensitive watersheds, not between the sign of response
of the sensitive groups (figure 2, bottom row).
Insensitive watersheds generally had a higher percent-
age of snow, lower percentage of fine soils, and steeper
slopes. We hypothesize that the insensitivity seen here
is a result of temporally dependent factors driving
streamflow timing (e.g. yearly weather driving early or
late snowmelt) rather than disturbance characteristics.
The lack of distinguishing characteristics among
sensitive watersheds (e.g. earlier vs. later) was
surprising, and suggests that the relevant drivers are
not static watershed features, like slope. Disturbance
characteristics are potential explanations, for example
fire can dramatically alter runoff rates by increasing
hydrophobicity [Wondzell and King 2003], whereas
insect mortality does not have, nor is expected to have,
the same effect [Helvey and Tiedemann 1978, Pugh
and Gordon 2013]. Vegetation composition is also
likely important; watersheds with extensive shrublands
showed later streamflow timing (mean 25.5% shrub-
land) relative to the insensitive and earlier streamflow
groups (19.3% and 16.1% shrubland, respectively).
This research did not focus on multi-year forest
recovery and was only interested in hydrological
response in the year following disturbance. Overall the
finding of later streamflow timing in watersheds with
high shrubland coverage is consistent with research
suggesting delayed streamflow timing is driven by
understory and shrub regeneration [Johnson and
Kovner 1956, Fernandez et al 2006, Guardiola-
Claramonte et al 2011].
4. Conclusions

Vegetation is an important mediator of water
movement into and out of catchments multiple scales
[Thompson et al 2011] and as a result, vegetation
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disturbance can cause substantial water balance
variability. Previous research looking for broad scale
patterns frequently used indices as a means to predict
hydrological response to vegetation disturbance. For
example, reductions in catchment vapor, i.e. ET, loss as
it relates to the watershed Horton Index (ratio of total
vapor losses to plant-available water) and partitioning
flow into fast and slow components were identified as
useful predictors of watershed response [Voepel et al
2011, Harman et al 2011]. Here we take a different,
but complimentary approach by utilizing extensive
spatial information on soils, climate, and anthropo-
genic activities and statistical associations to further
refine our understanding of vegetation change and
streamflow response. Although regional precipitation
trends likely exist during the study period, the
detrending of response variables (dRRR and timing)
by observed precipitation minimizes the influence of
any regional climatic trends over that time.Water yield
changes are observable despite the fact that our
analysis did not differentiate between disturbance type
(fire, insect mortality, harvest, etc.). This stands as a
limitation of currently available highly validated
remote sensing products. Management treatments,
such as clear cutting vs. partial harvest, can be
designed to alter water yield intentionally [Douglass
1983], and different anthropogenic disturbances
influence hydrology in unique ways [Hornbeck et al
1997]. This study did not distinguish those treatments
with other forms of disturbance. In some cases,
specific disturbance processes may result in differing
effects, such as forest declines; a recent review
suggested that low precipitation, rain dominated
watersheds were more likely to experience no change
or decreased streamflow [Adams et al 2012]. The work
presented here also did not consider potential land use
changes post-disturbance, such as appropriating
forests for agriculture. Despite these limitations, and
the resultant unaccounted for variability in observed
response, predictable patterns were seen at the
national level. Future work should incorporate longer
historical time horizons, using paleo reconstructions
of disturbance events and subsequent water proxy
responses (e.g. tree ring methodologies) to determine
historical variability.

At this broad scale, which spans multiple climate
contexts, topographic and soil settings, and distur-
bance processes, we suggest the link between water
yield and streamflow timing immediately post-
disturbance, at the study scale, can be primarily
attributed to soil conditions and disturbance extent.
First, the residence time of water in the soil was shown
to be critical: Longer soil contact time/slower drainage
[Wolock et al 1989, Wolock 1997] makes water more
readily available for ET losses. This outcome
corresponds to another broad-scale analysis by Voepel
et al [2011] which found that steeper slopes
correspond with decreases in relative vaporization
by vegetation. Lower residence times in the soil would
8

serve to increase the likelihood of increased streamflow
post-disturbance because a lower fraction of water is
interacting with vegetation pre-disturbance. Using a
larger subset of the same dataset, Harman et al [2011]
similarly found the fraction of water in the surface soil
layers (fast component) varied more rapidly than
deeper moisture in response to yearly climate, partially
mediated through changes in vegetation activity and
associated ET controls. While Voepel et al [2011]
utilized topography as a proxy for partitioning water
into plant-available and subsurface fractions, here we
found a stronger relationship to subsurface contact
time, a more integrated variable that includes both soil
information and topography [Wolock 1997]. This
characteristic is generally considered static across time,
dependent on soil and topography (figure S4),
however we acknowledge that soil properties can be
altered by disturbance e.g. post-fire soil hydrophobic-
ity decreases contact time.

Second, disturbance extent was shown to strongly
influence water yield, with a significant but small effect
on streamflow timing. Increasing water yield with
increasing disturbance extent supports the idea that
transpiration reductions are the primary driver of
water yield change post-disturbance (e.g. Johnson and
Kovner 1956). Yet, rapid recovery of hydrological
functioning has been observed in several systems
[Guardiola-Claramonte et al 2011, Brantley et al 2014,
Brookhouse et al 2013] and is likely favored by low
severity disturbance events. For example, forests
recover quickly (e.g. over the subsequent growing
season) from many non-lethal defoliators, rapidly
rebuilding water intensive structures. Recovery from
wildfires can similarly be enough to partially mitigate
hydrological impacts [Hallema et al 2016]. As a result,
impacts to water supplies are typically minor and only
observed in extreme years [Helvey and Tiedemann
1978]. This recovery pathway stands in contrast to
lethal insect outbreaks, from which forests and forest
hydrology may take decades to recover [Pugh and
Gordon 2013]. The results presented here highlight
how local contexts constrain and influence any
disturbance effects on immediate hydrological prop-
erties, and should be interpreted at the scale of
individual watersheds by local research and expert
knowledge.

A novel feature of this work is the implementation
of a broad set of mechanistic variables (e.g. soil-water
contact time) and an extremely wide range of
disturbance severities over a large number of water-
sheds. As the regional distribution of precipitation
changes due to shifting climates, areas of relative water
scarcity and surplus will be further modulated by
forest dynamics. Understanding the sensitivity of
water-supplying landscapes to forest disturbance will
become increasingly important. Some of the charac-
teristics identified here may themselves respond to
climate change, such as shifting forest composition
and snow fractions. Future efforts to integrate
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plot-scale theory and in situ observations together
with emerging national-scale disturbance datasets will
help to refine predictions of watershed-disturbance
responses.
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